Convert struct target_ops to C++
[deliverable/binutils-gdb.git] / gdb / spu-multiarch.c
1 /* Cell SPU GNU/Linux multi-architecture debugging support.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "gdbcmd.h"
24 #include "arch-utils.h"
25 #include "observable.h"
26 #include "inferior.h"
27 #include "regcache.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "solib.h"
31 #include "solist.h"
32
33 #include "ppc-tdep.h"
34 #include "ppc-linux-tdep.h"
35 #include "spu-tdep.h"
36
37 /* The SPU multi-architecture support target. */
38
39 struct spu_multiarch_target final : public target_ops
40 {
41 spu_multiarch_target ()
42 { to_stratum = arch_stratum; };
43
44 const char *shortname () override
45 { return "spu"; }
46
47 const char *longname () override
48 { return _("SPU multi-architecture support."); }
49
50 const char *doc () override
51 { return _("SPU multi-architecture support."); }
52
53 void mourn_inferior () override;
54
55 void fetch_registers (struct regcache *, int) override;
56 void store_registers (struct regcache *, int) override;
57
58 enum target_xfer_status xfer_partial (enum target_object object,
59 const char *annex,
60 gdb_byte *readbuf,
61 const gdb_byte *writebuf,
62 ULONGEST offset, ULONGEST len,
63 ULONGEST *xfered_len) override;
64
65 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
66 const gdb_byte *pattern, ULONGEST pattern_len,
67 CORE_ADDR *found_addrp) override;
68
69 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
70
71 struct gdbarch *thread_architecture (ptid_t) override;
72 };
73
74 static spu_multiarch_target spu_ops;
75
76 /* Number of SPE objects loaded into the current inferior. */
77 static int spu_nr_solib;
78
79 /* Stand-alone SPE executable? */
80 #define spu_standalone_p() \
81 (symfile_objfile && symfile_objfile->obfd \
82 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
83
84 /* PPU side system calls. */
85 #define INSTR_SC 0x44000002
86 #define NR_spu_run 0x0116
87
88 /* If the PPU thread is currently stopped on a spu_run system call,
89 return to FD and ADDR the file handle and NPC parameter address
90 used with the system call. Return non-zero if successful. */
91 static int
92 parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
93 {
94 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
95 struct gdbarch_tdep *tdep;
96 struct regcache *regcache;
97 gdb_byte buf[4];
98 ULONGEST regval;
99
100 /* If we're not on PPU, there's nothing to detect. */
101 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_powerpc)
102 return 0;
103
104 /* If we're called too early (e.g. after fork), we cannot
105 access the inferior yet. */
106 if (find_inferior_ptid (ptid) == NULL)
107 return 0;
108
109 /* Get PPU-side registers. */
110 regcache = get_thread_arch_regcache (ptid, target_gdbarch ());
111 tdep = gdbarch_tdep (target_gdbarch ());
112
113 /* Fetch instruction preceding current NIP. */
114 {
115 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
116 inferior_ptid = ptid;
117 regval = target_read_memory (regcache_read_pc (regcache) - 4, buf, 4);
118 }
119 if (regval != 0)
120 return 0;
121 /* It should be a "sc" instruction. */
122 if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
123 return 0;
124 /* System call number should be NR_spu_run. */
125 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
126 if (regval != NR_spu_run)
127 return 0;
128
129 /* Register 3 contains fd, register 4 the NPC param pointer. */
130 regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
131 *fd = (int) regval;
132 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
133 *addr = (CORE_ADDR) regval;
134 return 1;
135 }
136
137 /* Find gdbarch for SPU context SPUFS_FD. */
138 static struct gdbarch *
139 spu_gdbarch (int spufs_fd)
140 {
141 struct gdbarch_info info;
142 gdbarch_info_init (&info);
143 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
144 info.byte_order = BFD_ENDIAN_BIG;
145 info.osabi = GDB_OSABI_LINUX;
146 info.id = &spufs_fd;
147 return gdbarch_find_by_info (info);
148 }
149
150 /* Override the to_thread_architecture routine. */
151 struct gdbarch *
152 spu_multiarch_target::thread_architecture (ptid_t ptid)
153 {
154 int spufs_fd;
155 CORE_ADDR spufs_addr;
156
157 if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
158 return spu_gdbarch (spufs_fd);
159
160 target_ops *beneath = find_target_beneath (this);
161 return beneath->thread_architecture (ptid);
162 }
163
164 /* Override the to_region_ok_for_hw_watchpoint routine. */
165 int
166 spu_multiarch_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
167 {
168 struct target_ops *ops_beneath = find_target_beneath (this);
169
170 /* We cannot watch SPU local store. */
171 if (SPUADDR_SPU (addr) != -1)
172 return 0;
173
174 return ops_beneath->region_ok_for_hw_watchpoint (addr, len);
175 }
176
177 /* Override the to_fetch_registers routine. */
178
179 void
180 spu_multiarch_target::fetch_registers (struct regcache *regcache, int regno)
181 {
182 struct gdbarch *gdbarch = regcache->arch ();
183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
184 struct target_ops *ops_beneath = find_target_beneath (this);
185 int spufs_fd;
186 CORE_ADDR spufs_addr;
187
188 /* Since we use functions that rely on inferior_ptid, we need to set and
189 restore it. */
190 scoped_restore save_ptid
191 = make_scoped_restore (&inferior_ptid, regcache_get_ptid (regcache));
192
193 /* This version applies only if we're currently in spu_run. */
194 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
195 {
196 ops_beneath->fetch_registers (regcache, regno);
197 return;
198 }
199
200 /* We must be stopped on a spu_run system call. */
201 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
202 return;
203
204 /* The ID register holds the spufs file handle. */
205 if (regno == -1 || regno == SPU_ID_REGNUM)
206 {
207 gdb_byte buf[4];
208 store_unsigned_integer (buf, 4, byte_order, spufs_fd);
209 regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
210 }
211
212 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
213 if (regno == -1 || regno == SPU_PC_REGNUM)
214 {
215 gdb_byte buf[4];
216
217 if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
218 buf, spufs_addr, sizeof buf) == sizeof buf)
219 regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
220 }
221
222 /* The GPRs are found in the "regs" spufs file. */
223 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
224 {
225 gdb_byte buf[16 * SPU_NUM_GPRS];
226 char annex[32];
227 int i;
228
229 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
230 if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
231 buf, 0, sizeof buf) == sizeof buf)
232 for (i = 0; i < SPU_NUM_GPRS; i++)
233 regcache_raw_supply (regcache, i, buf + i*16);
234 }
235 }
236
237 /* Override the to_store_registers routine. */
238
239 void
240 spu_multiarch_target::store_registers (struct regcache *regcache, int regno)
241 {
242 struct gdbarch *gdbarch = regcache->arch ();
243 struct target_ops *ops_beneath = find_target_beneath (this);
244 int spufs_fd;
245 CORE_ADDR spufs_addr;
246
247 /* Since we use functions that rely on inferior_ptid, we need to set and
248 restore it. */
249 scoped_restore save_ptid
250 = make_scoped_restore (&inferior_ptid, regcache_get_ptid (regcache));
251
252 /* This version applies only if we're currently in spu_run. */
253 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
254 {
255 ops_beneath->store_registers (regcache, regno);
256 return;
257 }
258
259 /* We must be stopped on a spu_run system call. */
260 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
261 return;
262
263 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
264 if (regno == -1 || regno == SPU_PC_REGNUM)
265 {
266 gdb_byte buf[4];
267 regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
268
269 target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
270 buf, spufs_addr, sizeof buf);
271 }
272
273 /* The GPRs are found in the "regs" spufs file. */
274 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
275 {
276 gdb_byte buf[16 * SPU_NUM_GPRS];
277 char annex[32];
278 int i;
279
280 for (i = 0; i < SPU_NUM_GPRS; i++)
281 regcache_raw_collect (regcache, i, buf + i*16);
282
283 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
284 target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
285 buf, 0, sizeof buf);
286 }
287 }
288
289 /* Override the to_xfer_partial routine. */
290
291 enum target_xfer_status
292 spu_multiarch_target::xfer_partial (enum target_object object,
293 const char *annex, gdb_byte *readbuf,
294 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
295 ULONGEST *xfered_len)
296 {
297 struct target_ops *ops_beneath = find_target_beneath (this);
298
299 /* Use the "mem" spufs file to access SPU local store. */
300 if (object == TARGET_OBJECT_MEMORY)
301 {
302 int fd = SPUADDR_SPU (offset);
303 CORE_ADDR addr = SPUADDR_ADDR (offset);
304 char mem_annex[32], lslr_annex[32];
305 gdb_byte buf[32];
306 ULONGEST lslr;
307 enum target_xfer_status ret;
308
309 if (fd >= 0)
310 {
311 xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
312 ret = ops_beneath->xfer_partial (TARGET_OBJECT_SPU,
313 mem_annex, readbuf, writebuf,
314 addr, len, xfered_len);
315 if (ret == TARGET_XFER_OK)
316 return ret;
317
318 /* SPU local store access wraps the address around at the
319 local store limit. We emulate this here. To avoid needing
320 an extra access to retrieve the LSLR, we only do that after
321 trying the original address first, and getting end-of-file. */
322 xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
323 memset (buf, 0, sizeof buf);
324 if (ops_beneath->xfer_partial (TARGET_OBJECT_SPU,
325 lslr_annex, buf, NULL,
326 0, sizeof buf, xfered_len)
327 != TARGET_XFER_OK)
328 return ret;
329
330 lslr = strtoulst ((char *) buf, NULL, 16);
331 return ops_beneath->xfer_partial (TARGET_OBJECT_SPU,
332 mem_annex, readbuf, writebuf,
333 addr & lslr, len, xfered_len);
334 }
335 }
336
337 return ops_beneath->xfer_partial (object, annex,
338 readbuf, writebuf, offset, len, xfered_len);
339 }
340
341 /* Override the to_search_memory routine. */
342 int
343 spu_multiarch_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
344 const gdb_byte *pattern, ULONGEST pattern_len,
345 CORE_ADDR *found_addrp)
346 {
347 struct target_ops *ops_beneath = find_target_beneath (this);
348
349 /* For SPU local store, always fall back to the simple method. */
350 if (SPUADDR_SPU (start_addr) >= 0)
351 return simple_search_memory (this, start_addr, search_space_len,
352 pattern, pattern_len, found_addrp);
353
354 return ops_beneath->search_memory (start_addr, search_space_len,
355 pattern, pattern_len, found_addrp);
356 }
357
358
359 /* Push and pop the SPU multi-architecture support target. */
360
361 static void
362 spu_multiarch_activate (void)
363 {
364 /* If GDB was configured without SPU architecture support,
365 we cannot install SPU multi-architecture support either. */
366 if (spu_gdbarch (-1) == NULL)
367 return;
368
369 push_target (&spu_ops);
370
371 /* Make sure the thread architecture is re-evaluated. */
372 registers_changed ();
373 }
374
375 static void
376 spu_multiarch_deactivate (void)
377 {
378 unpush_target (&spu_ops);
379
380 /* Make sure the thread architecture is re-evaluated. */
381 registers_changed ();
382 }
383
384 static void
385 spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
386 {
387 if (spu_standalone_p ())
388 spu_multiarch_activate ();
389 }
390
391 static void
392 spu_multiarch_solib_loaded (struct so_list *so)
393 {
394 if (!spu_standalone_p ())
395 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
396 if (spu_nr_solib++ == 0)
397 spu_multiarch_activate ();
398 }
399
400 static void
401 spu_multiarch_solib_unloaded (struct so_list *so)
402 {
403 if (!spu_standalone_p ())
404 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
405 if (--spu_nr_solib == 0)
406 spu_multiarch_deactivate ();
407 }
408
409 void
410 spu_multiarch_target::mourn_inferior ()
411 {
412 struct target_ops *ops_beneath = find_target_beneath (this);
413
414 ops_beneath->mourn_inferior ();
415 spu_multiarch_deactivate ();
416 }
417
418 void
419 _initialize_spu_multiarch (void)
420 {
421 /* Install observers to watch for SPU objects. */
422 gdb::observers::inferior_created.attach (spu_multiarch_inferior_created);
423 gdb::observers::solib_loaded.attach (spu_multiarch_solib_loaded);
424 gdb::observers::solib_unloaded.attach (spu_multiarch_solib_unloaded);
425 }
426
This page took 0.058076 seconds and 5 git commands to generate.