Regenerate spu overlay and icache manager files
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "floatformat.h"
41 #include "block.h"
42 #include "observer.h"
43 #include "infcall.h"
44 #include "dwarf2.h"
45 #include "dwarf2-frame.h"
46 #include "ax.h"
47 #include "spu-tdep.h"
48
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
194 ULONGEST ul;
195
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
206 return REG_VALID;
207 }
208
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 gdb_byte reg[16];
214 char annex[32];
215 ULONGEST id;
216 enum register_status status;
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
224 memcpy (buf, reg, 4);
225 return status;
226
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
233 return status;
234
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
246
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250 }
251
252 static void
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255 {
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 char reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
268 }
269
270 static void
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273 {
274 gdb_byte reg[16];
275 char annex[32];
276 ULONGEST id;
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311 }
312
313 static int
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316 {
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333 }
334
335 static int
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338 {
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355 }
356
357
358 /* Value conversion -- access scalar values at the preferred slot. */
359
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
363 {
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
366 int len = TYPE_LENGTH (type);
367
368 if (regnum < SPU_NUM_GPRS && len < 16)
369 {
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
372 }
373
374 return value;
375 }
376
377 /* Register groups. */
378
379 static int
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382 {
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397 }
398
399 /* DWARF-2 register numbers. */
400
401 static int
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403 {
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406 }
407
408
409 /* Address handling. */
410
411 static int
412 spu_gdbarch_id (struct gdbarch *gdbarch)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427 }
428
429 static int
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431 {
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436 }
437
438 static const char *
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440 {
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445 }
446
447 static int
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450 {
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458 }
459
460 static void
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463 {
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467 }
468
469 static CORE_ADDR
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
472 {
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
477
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
482 return addr? SPUADDR (id, addr) : 0;
483 }
484
485 static CORE_ADDR
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488 {
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
491
492 return SPUADDR (id, addr);
493 }
494
495
496 /* Decoding SPU instructions. */
497
498 enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
514 op_selb = 0x8,
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532 static int
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534 {
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548 {
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563 {
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573 }
574
575 static int
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577 {
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587 }
588
589 static int
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591 {
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600 }
601
602 static int
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604 {
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613 }
614
615 static int
616 is_branch (unsigned int insn, int *offset, int *reg)
617 {
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652 }
653
654
655 /* Prolog parsing. */
656
657 struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670 static CORE_ADDR
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
674 {
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
679 int found_bc = 0;
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
709
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
737 insn = extract_unsigned_integer (buf, 4, byte_order);
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852 }
853
854 /* Return the first instruction after the prologue starting at PC. */
855 static CORE_ADDR
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
857 {
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
860 }
861
862 /* Return the frame pointer in use at address PC. */
863 static void
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
866 {
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882 }
883
884 /* Return true if we are in the function's epilogue, i.e. after the
885 instruction that destroyed the function's stack frame.
886
887 1) scan forward from the point of execution:
888 a) If you find an instruction that modifies the stack pointer
889 or transfers control (except a return), execution is not in
890 an epilogue, return.
891 b) Stop scanning if you find a return instruction or reach the
892 end of the function or reach the hard limit for the size of
893 an epilogue.
894 2) scan backward from the point of execution:
895 a) If you find an instruction that modifies the stack pointer,
896 execution *is* in an epilogue, return.
897 b) Stop scanning if you reach an instruction that transfers
898 control or the beginning of the function or reach the hard
899 limit for the size of an epilogue. */
900
901 static int
902 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
903 {
904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
905 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
906 bfd_byte buf[4];
907 unsigned int insn;
908 int rt, ra, rb, immed;
909
910 /* Find the search limits based on function boundaries and hard limit.
911 We assume the epilogue can be up to 64 instructions long. */
912
913 const int spu_max_epilogue_size = 64 * 4;
914
915 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
916 return 0;
917
918 if (pc - func_start < spu_max_epilogue_size)
919 epilogue_start = func_start;
920 else
921 epilogue_start = pc - spu_max_epilogue_size;
922
923 if (func_end - pc < spu_max_epilogue_size)
924 epilogue_end = func_end;
925 else
926 epilogue_end = pc + spu_max_epilogue_size;
927
928 /* Scan forward until next 'bi $0'. */
929
930 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
931 {
932 if (target_read_memory (scan_pc, buf, 4))
933 return 0;
934 insn = extract_unsigned_integer (buf, 4, byte_order);
935
936 if (is_branch (insn, &immed, &ra))
937 {
938 if (immed == 0 && ra == SPU_LR_REGNUM)
939 break;
940
941 return 0;
942 }
943
944 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
945 || is_rr (insn, op_a, &rt, &ra, &rb)
946 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
947 {
948 if (rt == SPU_RAW_SP_REGNUM)
949 return 0;
950 }
951 }
952
953 if (scan_pc >= epilogue_end)
954 return 0;
955
956 /* Scan backward until adjustment to stack pointer (R1). */
957
958 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
959 {
960 if (target_read_memory (scan_pc, buf, 4))
961 return 0;
962 insn = extract_unsigned_integer (buf, 4, byte_order);
963
964 if (is_branch (insn, &immed, &ra))
965 return 0;
966
967 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
968 || is_rr (insn, op_a, &rt, &ra, &rb)
969 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
970 {
971 if (rt == SPU_RAW_SP_REGNUM)
972 return 1;
973 }
974 }
975
976 return 0;
977 }
978
979
980 /* Normal stack frames. */
981
982 struct spu_unwind_cache
983 {
984 CORE_ADDR func;
985 CORE_ADDR frame_base;
986 CORE_ADDR local_base;
987
988 struct trad_frame_saved_reg *saved_regs;
989 };
990
991 static struct spu_unwind_cache *
992 spu_frame_unwind_cache (struct frame_info *this_frame,
993 void **this_prologue_cache)
994 {
995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
998 struct spu_unwind_cache *info;
999 struct spu_prologue_data data;
1000 CORE_ADDR id = tdep->id;
1001 gdb_byte buf[16];
1002
1003 if (*this_prologue_cache)
1004 return *this_prologue_cache;
1005
1006 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1007 *this_prologue_cache = info;
1008 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1009 info->frame_base = 0;
1010 info->local_base = 0;
1011
1012 /* Find the start of the current function, and analyze its prologue. */
1013 info->func = get_frame_func (this_frame);
1014 if (info->func == 0)
1015 {
1016 /* Fall back to using the current PC as frame ID. */
1017 info->func = get_frame_pc (this_frame);
1018 data.size = -1;
1019 }
1020 else
1021 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1022 &data);
1023
1024 /* If successful, use prologue analysis data. */
1025 if (data.size != -1 && data.cfa_reg != -1)
1026 {
1027 CORE_ADDR cfa;
1028 int i;
1029
1030 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1031 get_frame_register (this_frame, data.cfa_reg, buf);
1032 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1033 cfa = SPUADDR (id, cfa);
1034
1035 /* Call-saved register slots. */
1036 for (i = 0; i < SPU_NUM_GPRS; i++)
1037 if (i == SPU_LR_REGNUM
1038 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1039 if (data.reg_offset[i] != -1)
1040 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1041
1042 /* Frame bases. */
1043 info->frame_base = cfa;
1044 info->local_base = cfa - data.size;
1045 }
1046
1047 /* Otherwise, fall back to reading the backchain link. */
1048 else
1049 {
1050 CORE_ADDR reg;
1051 LONGEST backchain;
1052 ULONGEST lslr;
1053 int status;
1054
1055 /* Get local store limit. */
1056 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1057 if (!lslr)
1058 lslr = (ULONGEST) -1;
1059
1060 /* Get the backchain. */
1061 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1062 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1063 &backchain);
1064
1065 /* A zero backchain terminates the frame chain. Also, sanity
1066 check against the local store size limit. */
1067 if (status && backchain > 0 && backchain <= lslr)
1068 {
1069 /* Assume the link register is saved into its slot. */
1070 if (backchain + 16 <= lslr)
1071 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1072 backchain + 16);
1073
1074 /* Frame bases. */
1075 info->frame_base = SPUADDR (id, backchain);
1076 info->local_base = SPUADDR (id, reg);
1077 }
1078 }
1079
1080 /* If we didn't find a frame, we cannot determine SP / return address. */
1081 if (info->frame_base == 0)
1082 return info;
1083
1084 /* The previous SP is equal to the CFA. */
1085 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1086 SPUADDR_ADDR (info->frame_base));
1087
1088 /* Read full contents of the unwound link register in order to
1089 be able to determine the return address. */
1090 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1091 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1092 else
1093 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1094
1095 /* Normally, the return address is contained in the slot 0 of the
1096 link register, and slots 1-3 are zero. For an overlay return,
1097 slot 0 contains the address of the overlay manager return stub,
1098 slot 1 contains the partition number of the overlay section to
1099 be returned to, and slot 2 contains the return address within
1100 that section. Return the latter address in that case. */
1101 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1102 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1103 extract_unsigned_integer (buf + 8, 4, byte_order));
1104 else
1105 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1106 extract_unsigned_integer (buf, 4, byte_order));
1107
1108 return info;
1109 }
1110
1111 static void
1112 spu_frame_this_id (struct frame_info *this_frame,
1113 void **this_prologue_cache, struct frame_id *this_id)
1114 {
1115 struct spu_unwind_cache *info =
1116 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1117
1118 if (info->frame_base == 0)
1119 return;
1120
1121 *this_id = frame_id_build (info->frame_base, info->func);
1122 }
1123
1124 static struct value *
1125 spu_frame_prev_register (struct frame_info *this_frame,
1126 void **this_prologue_cache, int regnum)
1127 {
1128 struct spu_unwind_cache *info
1129 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1130
1131 /* Special-case the stack pointer. */
1132 if (regnum == SPU_RAW_SP_REGNUM)
1133 regnum = SPU_SP_REGNUM;
1134
1135 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1136 }
1137
1138 static const struct frame_unwind spu_frame_unwind = {
1139 NORMAL_FRAME,
1140 default_frame_unwind_stop_reason,
1141 spu_frame_this_id,
1142 spu_frame_prev_register,
1143 NULL,
1144 default_frame_sniffer
1145 };
1146
1147 static CORE_ADDR
1148 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1149 {
1150 struct spu_unwind_cache *info
1151 = spu_frame_unwind_cache (this_frame, this_cache);
1152 return info->local_base;
1153 }
1154
1155 static const struct frame_base spu_frame_base = {
1156 &spu_frame_unwind,
1157 spu_frame_base_address,
1158 spu_frame_base_address,
1159 spu_frame_base_address
1160 };
1161
1162 static CORE_ADDR
1163 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1164 {
1165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1166 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1167 /* Mask off interrupt enable bit. */
1168 return SPUADDR (tdep->id, pc & -4);
1169 }
1170
1171 static CORE_ADDR
1172 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1173 {
1174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1175 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1176 return SPUADDR (tdep->id, sp);
1177 }
1178
1179 static CORE_ADDR
1180 spu_read_pc (struct regcache *regcache)
1181 {
1182 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1183 ULONGEST pc;
1184 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1185 /* Mask off interrupt enable bit. */
1186 return SPUADDR (tdep->id, pc & -4);
1187 }
1188
1189 static void
1190 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1191 {
1192 /* Keep interrupt enabled state unchanged. */
1193 ULONGEST old_pc;
1194
1195 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1196 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1197 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1198 }
1199
1200
1201 /* Cell/B.E. cross-architecture unwinder support. */
1202
1203 struct spu2ppu_cache
1204 {
1205 struct frame_id frame_id;
1206 struct regcache *regcache;
1207 };
1208
1209 static struct gdbarch *
1210 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211 {
1212 struct spu2ppu_cache *cache = *this_cache;
1213 return get_regcache_arch (cache->regcache);
1214 }
1215
1216 static void
1217 spu2ppu_this_id (struct frame_info *this_frame,
1218 void **this_cache, struct frame_id *this_id)
1219 {
1220 struct spu2ppu_cache *cache = *this_cache;
1221 *this_id = cache->frame_id;
1222 }
1223
1224 static struct value *
1225 spu2ppu_prev_register (struct frame_info *this_frame,
1226 void **this_cache, int regnum)
1227 {
1228 struct spu2ppu_cache *cache = *this_cache;
1229 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1230 gdb_byte *buf;
1231
1232 buf = alloca (register_size (gdbarch, regnum));
1233 regcache_cooked_read (cache->regcache, regnum, buf);
1234 return frame_unwind_got_bytes (this_frame, regnum, buf);
1235 }
1236
1237 static int
1238 spu2ppu_sniffer (const struct frame_unwind *self,
1239 struct frame_info *this_frame, void **this_prologue_cache)
1240 {
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 CORE_ADDR base, func, backchain;
1244 gdb_byte buf[4];
1245
1246 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1247 return 0;
1248
1249 base = get_frame_sp (this_frame);
1250 func = get_frame_pc (this_frame);
1251 if (target_read_memory (base, buf, 4))
1252 return 0;
1253 backchain = extract_unsigned_integer (buf, 4, byte_order);
1254
1255 if (!backchain)
1256 {
1257 struct frame_info *fi;
1258
1259 struct spu2ppu_cache *cache
1260 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261
1262 cache->frame_id = frame_id_build (base + 16, func);
1263
1264 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1265 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1266 break;
1267
1268 if (fi)
1269 {
1270 cache->regcache = frame_save_as_regcache (fi);
1271 *this_prologue_cache = cache;
1272 return 1;
1273 }
1274 else
1275 {
1276 struct regcache *regcache;
1277 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1278 cache->regcache = regcache_dup (regcache);
1279 *this_prologue_cache = cache;
1280 return 1;
1281 }
1282 }
1283
1284 return 0;
1285 }
1286
1287 static void
1288 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289 {
1290 struct spu2ppu_cache *cache = this_cache;
1291 regcache_xfree (cache->regcache);
1292 }
1293
1294 static const struct frame_unwind spu2ppu_unwind = {
1295 ARCH_FRAME,
1296 default_frame_unwind_stop_reason,
1297 spu2ppu_this_id,
1298 spu2ppu_prev_register,
1299 NULL,
1300 spu2ppu_sniffer,
1301 spu2ppu_dealloc_cache,
1302 spu2ppu_prev_arch,
1303 };
1304
1305
1306 /* Function calling convention. */
1307
1308 static CORE_ADDR
1309 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310 {
1311 return sp & ~15;
1312 }
1313
1314 static CORE_ADDR
1315 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1316 struct value **args, int nargs, struct type *value_type,
1317 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1318 struct regcache *regcache)
1319 {
1320 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1321 sp = (sp - 4) & ~15;
1322 /* Store the address of that breakpoint */
1323 *bp_addr = sp;
1324 /* The call starts at the callee's entry point. */
1325 *real_pc = funaddr;
1326
1327 return sp;
1328 }
1329
1330 static int
1331 spu_scalar_value_p (struct type *type)
1332 {
1333 switch (TYPE_CODE (type))
1334 {
1335 case TYPE_CODE_INT:
1336 case TYPE_CODE_ENUM:
1337 case TYPE_CODE_RANGE:
1338 case TYPE_CODE_CHAR:
1339 case TYPE_CODE_BOOL:
1340 case TYPE_CODE_PTR:
1341 case TYPE_CODE_REF:
1342 return TYPE_LENGTH (type) <= 16;
1343
1344 default:
1345 return 0;
1346 }
1347 }
1348
1349 static void
1350 spu_value_to_regcache (struct regcache *regcache, int regnum,
1351 struct type *type, const gdb_byte *in)
1352 {
1353 int len = TYPE_LENGTH (type);
1354
1355 if (spu_scalar_value_p (type))
1356 {
1357 int preferred_slot = len < 4 ? 4 - len : 0;
1358 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1359 }
1360 else
1361 {
1362 while (len >= 16)
1363 {
1364 regcache_cooked_write (regcache, regnum++, in);
1365 in += 16;
1366 len -= 16;
1367 }
1368
1369 if (len > 0)
1370 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1371 }
1372 }
1373
1374 static void
1375 spu_regcache_to_value (struct regcache *regcache, int regnum,
1376 struct type *type, gdb_byte *out)
1377 {
1378 int len = TYPE_LENGTH (type);
1379
1380 if (spu_scalar_value_p (type))
1381 {
1382 int preferred_slot = len < 4 ? 4 - len : 0;
1383 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1384 }
1385 else
1386 {
1387 while (len >= 16)
1388 {
1389 regcache_cooked_read (regcache, regnum++, out);
1390 out += 16;
1391 len -= 16;
1392 }
1393
1394 if (len > 0)
1395 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1396 }
1397 }
1398
1399 static CORE_ADDR
1400 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1401 struct regcache *regcache, CORE_ADDR bp_addr,
1402 int nargs, struct value **args, CORE_ADDR sp,
1403 int struct_return, CORE_ADDR struct_addr)
1404 {
1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1406 CORE_ADDR sp_delta;
1407 int i;
1408 int regnum = SPU_ARG1_REGNUM;
1409 int stack_arg = -1;
1410 gdb_byte buf[16];
1411
1412 /* Set the return address. */
1413 memset (buf, 0, sizeof buf);
1414 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1415 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1416
1417 /* If STRUCT_RETURN is true, then the struct return address (in
1418 STRUCT_ADDR) will consume the first argument-passing register.
1419 Both adjust the register count and store that value. */
1420 if (struct_return)
1421 {
1422 memset (buf, 0, sizeof buf);
1423 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1424 regcache_cooked_write (regcache, regnum++, buf);
1425 }
1426
1427 /* Fill in argument registers. */
1428 for (i = 0; i < nargs; i++)
1429 {
1430 struct value *arg = args[i];
1431 struct type *type = check_typedef (value_type (arg));
1432 const gdb_byte *contents = value_contents (arg);
1433 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1434
1435 /* If the argument doesn't wholly fit into registers, it and
1436 all subsequent arguments go to the stack. */
1437 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1438 {
1439 stack_arg = i;
1440 break;
1441 }
1442
1443 spu_value_to_regcache (regcache, regnum, type, contents);
1444 regnum += n_regs;
1445 }
1446
1447 /* Overflow arguments go to the stack. */
1448 if (stack_arg != -1)
1449 {
1450 CORE_ADDR ap;
1451
1452 /* Allocate all required stack size. */
1453 for (i = stack_arg; i < nargs; i++)
1454 {
1455 struct type *type = check_typedef (value_type (args[i]));
1456 sp -= align_up (TYPE_LENGTH (type), 16);
1457 }
1458
1459 /* Fill in stack arguments. */
1460 ap = sp;
1461 for (i = stack_arg; i < nargs; i++)
1462 {
1463 struct value *arg = args[i];
1464 struct type *type = check_typedef (value_type (arg));
1465 int len = TYPE_LENGTH (type);
1466 int preferred_slot;
1467
1468 if (spu_scalar_value_p (type))
1469 preferred_slot = len < 4 ? 4 - len : 0;
1470 else
1471 preferred_slot = 0;
1472
1473 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1474 ap += align_up (TYPE_LENGTH (type), 16);
1475 }
1476 }
1477
1478 /* Allocate stack frame header. */
1479 sp -= 32;
1480
1481 /* Store stack back chain. */
1482 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1483 target_write_memory (sp, buf, 16);
1484
1485 /* Finally, update all slots of the SP register. */
1486 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1487 for (i = 0; i < 4; i++)
1488 {
1489 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1490 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1491 }
1492 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1493
1494 return sp;
1495 }
1496
1497 static struct frame_id
1498 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1499 {
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1502 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1503 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1504 }
1505
1506 /* Function return value access. */
1507
1508 static enum return_value_convention
1509 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1510 struct type *type, struct regcache *regcache,
1511 gdb_byte *out, const gdb_byte *in)
1512 {
1513 struct type *func_type = function ? value_type (function) : NULL;
1514 enum return_value_convention rvc;
1515 int opencl_vector = 0;
1516
1517 if (func_type)
1518 {
1519 func_type = check_typedef (func_type);
1520
1521 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1522 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1523
1524 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1525 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1526 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 && TYPE_VECTOR (type))
1528 opencl_vector = 1;
1529 }
1530
1531 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1532 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1533 else
1534 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1535
1536 if (in)
1537 {
1538 switch (rvc)
1539 {
1540 case RETURN_VALUE_REGISTER_CONVENTION:
1541 if (opencl_vector && TYPE_LENGTH (type) == 2)
1542 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1543 else
1544 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1545 break;
1546
1547 case RETURN_VALUE_STRUCT_CONVENTION:
1548 error (_("Cannot set function return value."));
1549 break;
1550 }
1551 }
1552 else if (out)
1553 {
1554 switch (rvc)
1555 {
1556 case RETURN_VALUE_REGISTER_CONVENTION:
1557 if (opencl_vector && TYPE_LENGTH (type) == 2)
1558 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1559 else
1560 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1561 break;
1562
1563 case RETURN_VALUE_STRUCT_CONVENTION:
1564 error (_("Function return value unknown."));
1565 break;
1566 }
1567 }
1568
1569 return rvc;
1570 }
1571
1572
1573 /* Breakpoints. */
1574
1575 static const gdb_byte *
1576 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1577 CORE_ADDR * pcptr, int *lenptr)
1578 {
1579 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1580
1581 *lenptr = sizeof breakpoint;
1582 return breakpoint;
1583 }
1584
1585 static int
1586 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1587 struct bp_target_info *bp_tgt)
1588 {
1589 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1590 that in a combined application, we have some breakpoints inserted in SPU
1591 code, and now the application forks (on the PPU side). GDB common code
1592 will assume that the fork system call copied all breakpoints into the new
1593 process' address space, and that all those copies now need to be removed
1594 (see breakpoint.c:detach_breakpoints).
1595
1596 While this is certainly true for PPU side breakpoints, it is not true
1597 for SPU side breakpoints. fork will clone the SPU context file
1598 descriptors, so that all the existing SPU contexts are in accessible
1599 in the new process. However, the contents of the SPU contexts themselves
1600 are *not* cloned. Therefore the effect of detach_breakpoints is to
1601 remove SPU breakpoints from the *original* SPU context's local store
1602 -- this is not the correct behaviour.
1603
1604 The workaround is to check whether the PID we are asked to remove this
1605 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1606 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1607 true in the context of detach_breakpoints. If so, we simply do nothing.
1608 [ Note that for the fork child process, it does not matter if breakpoints
1609 remain inserted, because those SPU contexts are not runnable anyway --
1610 the Linux kernel allows only the original process to invoke spu_run. */
1611
1612 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1613 return 0;
1614
1615 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1616 }
1617
1618
1619 /* Software single-stepping support. */
1620
1621 static int
1622 spu_software_single_step (struct frame_info *frame)
1623 {
1624 struct gdbarch *gdbarch = get_frame_arch (frame);
1625 struct address_space *aspace = get_frame_address_space (frame);
1626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1627 CORE_ADDR pc, next_pc;
1628 unsigned int insn;
1629 int offset, reg;
1630 gdb_byte buf[4];
1631 ULONGEST lslr;
1632
1633 pc = get_frame_pc (frame);
1634
1635 if (target_read_memory (pc, buf, 4))
1636 return 1;
1637 insn = extract_unsigned_integer (buf, 4, byte_order);
1638
1639 /* Get local store limit. */
1640 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1641 if (!lslr)
1642 lslr = (ULONGEST) -1;
1643
1644 /* Next sequential instruction is at PC + 4, except if the current
1645 instruction is a PPE-assisted call, in which case it is at PC + 8.
1646 Wrap around LS limit to be on the safe side. */
1647 if ((insn & 0xffffff00) == 0x00002100)
1648 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1649 else
1650 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1651
1652 insert_single_step_breakpoint (gdbarch,
1653 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1654
1655 if (is_branch (insn, &offset, &reg))
1656 {
1657 CORE_ADDR target = offset;
1658
1659 if (reg == SPU_PC_REGNUM)
1660 target += SPUADDR_ADDR (pc);
1661 else if (reg != -1)
1662 {
1663 int optim, unavail;
1664
1665 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1666 &optim, &unavail))
1667 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1668 else
1669 {
1670 if (optim)
1671 throw_error (OPTIMIZED_OUT_ERROR,
1672 _("Could not determine address of "
1673 "single-step breakpoint."));
1674 if (unavail)
1675 throw_error (NOT_AVAILABLE_ERROR,
1676 _("Could not determine address of "
1677 "single-step breakpoint."));
1678 }
1679 }
1680
1681 target = target & lslr;
1682 if (target != next_pc)
1683 insert_single_step_breakpoint (gdbarch, aspace,
1684 SPUADDR (SPUADDR_SPU (pc), target));
1685 }
1686
1687 return 1;
1688 }
1689
1690
1691 /* Longjmp support. */
1692
1693 static int
1694 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1695 {
1696 struct gdbarch *gdbarch = get_frame_arch (frame);
1697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1699 gdb_byte buf[4];
1700 CORE_ADDR jb_addr;
1701 int optim, unavail;
1702
1703 /* Jump buffer is pointed to by the argument register $r3. */
1704 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1705 &optim, &unavail))
1706 return 0;
1707
1708 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1709 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1710 return 0;
1711
1712 *pc = extract_unsigned_integer (buf, 4, byte_order);
1713 *pc = SPUADDR (tdep->id, *pc);
1714 return 1;
1715 }
1716
1717
1718 /* Disassembler. */
1719
1720 struct spu_dis_asm_data
1721 {
1722 struct gdbarch *gdbarch;
1723 int id;
1724 };
1725
1726 static void
1727 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1728 {
1729 struct spu_dis_asm_data *data = info->application_data;
1730 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1731 }
1732
1733 static int
1734 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1735 {
1736 /* The opcodes disassembler does 18-bit address arithmetic. Make
1737 sure the SPU ID encoded in the high bits is added back when we
1738 call print_address. */
1739 struct disassemble_info spu_info = *info;
1740 struct spu_dis_asm_data data;
1741 data.gdbarch = info->application_data;
1742 data.id = SPUADDR_SPU (memaddr);
1743
1744 spu_info.application_data = &data;
1745 spu_info.print_address_func = spu_dis_asm_print_address;
1746 return print_insn_spu (memaddr, &spu_info);
1747 }
1748
1749
1750 /* Target overlays for the SPU overlay manager.
1751
1752 See the documentation of simple_overlay_update for how the
1753 interface is supposed to work.
1754
1755 Data structures used by the overlay manager:
1756
1757 struct ovly_table
1758 {
1759 u32 vma;
1760 u32 size;
1761 u32 pos;
1762 u32 buf;
1763 } _ovly_table[]; -- one entry per overlay section
1764
1765 struct ovly_buf_table
1766 {
1767 u32 mapped;
1768 } _ovly_buf_table[]; -- one entry per overlay buffer
1769
1770 _ovly_table should never change.
1771
1772 Both tables are aligned to a 16-byte boundary, the symbols
1773 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1774 size set to the size of the respective array. buf in _ovly_table is
1775 an index into _ovly_buf_table.
1776
1777 mapped is an index into _ovly_table. Both the mapped and buf indices start
1778 from one to reference the first entry in their respective tables. */
1779
1780 /* Using the per-objfile private data mechanism, we store for each
1781 objfile an array of "struct spu_overlay_table" structures, one
1782 for each obj_section of the objfile. This structure holds two
1783 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1784 is *not* an overlay section. If it is non-zero, it represents
1785 a target address. The overlay section is mapped iff the target
1786 integer at this location equals MAPPED_VAL. */
1787
1788 static const struct objfile_data *spu_overlay_data;
1789
1790 struct spu_overlay_table
1791 {
1792 CORE_ADDR mapped_ptr;
1793 CORE_ADDR mapped_val;
1794 };
1795
1796 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1797 the _ovly_table data structure from the target and initialize the
1798 spu_overlay_table data structure from it. */
1799 static struct spu_overlay_table *
1800 spu_get_overlay_table (struct objfile *objfile)
1801 {
1802 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1803 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1804 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1805 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1806 unsigned ovly_table_size, ovly_buf_table_size;
1807 struct spu_overlay_table *tbl;
1808 struct obj_section *osect;
1809 gdb_byte *ovly_table;
1810 int i;
1811
1812 tbl = objfile_data (objfile, spu_overlay_data);
1813 if (tbl)
1814 return tbl;
1815
1816 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1817 if (!ovly_table_msym.minsym)
1818 return NULL;
1819
1820 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1821 NULL, objfile);
1822 if (!ovly_buf_table_msym.minsym)
1823 return NULL;
1824
1825 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1826 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1827
1828 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1829 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1830
1831 ovly_table = xmalloc (ovly_table_size);
1832 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1833
1834 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1835 objfile->sections_end - objfile->sections,
1836 struct spu_overlay_table);
1837
1838 for (i = 0; i < ovly_table_size / 16; i++)
1839 {
1840 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1841 4, byte_order);
1842 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1843 4, byte_order);
1844 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1845 4, byte_order);
1846 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1847 4, byte_order);
1848
1849 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1850 continue;
1851
1852 ALL_OBJFILE_OSECTIONS (objfile, osect)
1853 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1854 && pos == osect->the_bfd_section->filepos)
1855 {
1856 int ndx = osect - objfile->sections;
1857 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1858 tbl[ndx].mapped_val = i + 1;
1859 break;
1860 }
1861 }
1862
1863 xfree (ovly_table);
1864 set_objfile_data (objfile, spu_overlay_data, tbl);
1865 return tbl;
1866 }
1867
1868 /* Read _ovly_buf_table entry from the target to dermine whether
1869 OSECT is currently mapped, and update the mapped state. */
1870 static void
1871 spu_overlay_update_osect (struct obj_section *osect)
1872 {
1873 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1874 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1875 struct spu_overlay_table *ovly_table;
1876 CORE_ADDR id, val;
1877
1878 ovly_table = spu_get_overlay_table (osect->objfile);
1879 if (!ovly_table)
1880 return;
1881
1882 ovly_table += osect - osect->objfile->sections;
1883 if (ovly_table->mapped_ptr == 0)
1884 return;
1885
1886 id = SPUADDR_SPU (obj_section_addr (osect));
1887 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1888 4, byte_order);
1889 osect->ovly_mapped = (val == ovly_table->mapped_val);
1890 }
1891
1892 /* If OSECT is NULL, then update all sections' mapped state.
1893 If OSECT is non-NULL, then update only OSECT's mapped state. */
1894 static void
1895 spu_overlay_update (struct obj_section *osect)
1896 {
1897 /* Just one section. */
1898 if (osect)
1899 spu_overlay_update_osect (osect);
1900
1901 /* All sections. */
1902 else
1903 {
1904 struct objfile *objfile;
1905
1906 ALL_OBJSECTIONS (objfile, osect)
1907 if (section_is_overlay (osect))
1908 spu_overlay_update_osect (osect);
1909 }
1910 }
1911
1912 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1913 If there is one, go through all sections and make sure for non-
1914 overlay sections LMA equals VMA, while for overlay sections LMA
1915 is larger than SPU_OVERLAY_LMA. */
1916 static void
1917 spu_overlay_new_objfile (struct objfile *objfile)
1918 {
1919 struct spu_overlay_table *ovly_table;
1920 struct obj_section *osect;
1921
1922 /* If we've already touched this file, do nothing. */
1923 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1924 return;
1925
1926 /* Consider only SPU objfiles. */
1927 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1928 return;
1929
1930 /* Check if this objfile has overlays. */
1931 ovly_table = spu_get_overlay_table (objfile);
1932 if (!ovly_table)
1933 return;
1934
1935 /* Now go and fiddle with all the LMAs. */
1936 ALL_OBJFILE_OSECTIONS (objfile, osect)
1937 {
1938 bfd *obfd = objfile->obfd;
1939 asection *bsect = osect->the_bfd_section;
1940 int ndx = osect - objfile->sections;
1941
1942 if (ovly_table[ndx].mapped_ptr == 0)
1943 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1944 else
1945 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1946 }
1947 }
1948
1949
1950 /* Insert temporary breakpoint on "main" function of newly loaded
1951 SPE context OBJFILE. */
1952 static void
1953 spu_catch_start (struct objfile *objfile)
1954 {
1955 struct bound_minimal_symbol minsym;
1956 struct symtab *symtab;
1957 CORE_ADDR pc;
1958 char buf[32];
1959
1960 /* Do this only if requested by "set spu stop-on-load on". */
1961 if (!spu_stop_on_load_p)
1962 return;
1963
1964 /* Consider only SPU objfiles. */
1965 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1966 return;
1967
1968 /* The main objfile is handled differently. */
1969 if (objfile == symfile_objfile)
1970 return;
1971
1972 /* There can be multiple symbols named "main". Search for the
1973 "main" in *this* objfile. */
1974 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1975 if (!minsym.minsym)
1976 return;
1977
1978 /* If we have debugging information, try to use it -- this
1979 will allow us to properly skip the prologue. */
1980 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1981 symtab = find_pc_sect_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1982 minsym.minsym));
1983 if (symtab != NULL)
1984 {
1985 const struct blockvector *bv = BLOCKVECTOR (symtab);
1986 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1987 struct symbol *sym;
1988 struct symtab_and_line sal;
1989
1990 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1991 if (sym)
1992 {
1993 fixup_symbol_section (sym, objfile);
1994 sal = find_function_start_sal (sym, 1);
1995 pc = sal.pc;
1996 }
1997 }
1998
1999 /* Use a numerical address for the set_breakpoint command to avoid having
2000 the breakpoint re-set incorrectly. */
2001 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
2002 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
2003 NULL /* cond_string */, -1 /* thread */,
2004 NULL /* extra_string */,
2005 0 /* parse_condition_and_thread */, 1 /* tempflag */,
2006 bp_breakpoint /* type_wanted */,
2007 0 /* ignore_count */,
2008 AUTO_BOOLEAN_FALSE /* pending_break_support */,
2009 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
2010 1 /* enabled */, 0 /* internal */, 0);
2011 }
2012
2013
2014 /* Look up OBJFILE loaded into FRAME's SPU context. */
2015 static struct objfile *
2016 spu_objfile_from_frame (struct frame_info *frame)
2017 {
2018 struct gdbarch *gdbarch = get_frame_arch (frame);
2019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2020 struct objfile *obj;
2021
2022 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2023 return NULL;
2024
2025 ALL_OBJFILES (obj)
2026 {
2027 if (obj->sections != obj->sections_end
2028 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2029 return obj;
2030 }
2031
2032 return NULL;
2033 }
2034
2035 /* Flush cache for ea pointer access if available. */
2036 static void
2037 flush_ea_cache (void)
2038 {
2039 struct bound_minimal_symbol msymbol;
2040 struct objfile *obj;
2041
2042 if (!has_stack_frames ())
2043 return;
2044
2045 obj = spu_objfile_from_frame (get_current_frame ());
2046 if (obj == NULL)
2047 return;
2048
2049 /* Lookup inferior function __cache_flush. */
2050 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2051 if (msymbol.minsym != NULL)
2052 {
2053 struct type *type;
2054 CORE_ADDR addr;
2055
2056 type = objfile_type (obj)->builtin_void;
2057 type = lookup_function_type (type);
2058 type = lookup_pointer_type (type);
2059 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2060
2061 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2062 }
2063 }
2064
2065 /* This handler is called when the inferior has stopped. If it is stopped in
2066 SPU architecture then flush the ea cache if used. */
2067 static void
2068 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2069 {
2070 if (!spu_auto_flush_cache_p)
2071 return;
2072
2073 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2074 re-entering this function when __cache_flush stops. */
2075 spu_auto_flush_cache_p = 0;
2076 flush_ea_cache ();
2077 spu_auto_flush_cache_p = 1;
2078 }
2079
2080
2081 /* "info spu" commands. */
2082
2083 static void
2084 info_spu_event_command (char *args, int from_tty)
2085 {
2086 struct frame_info *frame = get_selected_frame (NULL);
2087 ULONGEST event_status = 0;
2088 ULONGEST event_mask = 0;
2089 struct cleanup *chain;
2090 gdb_byte buf[100];
2091 char annex[32];
2092 LONGEST len;
2093 int id;
2094
2095 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2096 error (_("\"info spu\" is only supported on the SPU architecture."));
2097
2098 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2099
2100 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2101 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2102 buf, 0, (sizeof (buf) - 1));
2103 if (len <= 0)
2104 error (_("Could not read event_status."));
2105 buf[len] = '\0';
2106 event_status = strtoulst ((char *) buf, NULL, 16);
2107
2108 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2109 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2110 buf, 0, (sizeof (buf) - 1));
2111 if (len <= 0)
2112 error (_("Could not read event_mask."));
2113 buf[len] = '\0';
2114 event_mask = strtoulst ((char *) buf, NULL, 16);
2115
2116 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2117
2118 if (ui_out_is_mi_like_p (current_uiout))
2119 {
2120 ui_out_field_fmt (current_uiout, "event_status",
2121 "0x%s", phex_nz (event_status, 4));
2122 ui_out_field_fmt (current_uiout, "event_mask",
2123 "0x%s", phex_nz (event_mask, 4));
2124 }
2125 else
2126 {
2127 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2128 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2129 }
2130
2131 do_cleanups (chain);
2132 }
2133
2134 static void
2135 info_spu_signal_command (char *args, int from_tty)
2136 {
2137 struct frame_info *frame = get_selected_frame (NULL);
2138 struct gdbarch *gdbarch = get_frame_arch (frame);
2139 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2140 ULONGEST signal1 = 0;
2141 ULONGEST signal1_type = 0;
2142 int signal1_pending = 0;
2143 ULONGEST signal2 = 0;
2144 ULONGEST signal2_type = 0;
2145 int signal2_pending = 0;
2146 struct cleanup *chain;
2147 char annex[32];
2148 gdb_byte buf[100];
2149 LONGEST len;
2150 int id;
2151
2152 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2153 error (_("\"info spu\" is only supported on the SPU architecture."));
2154
2155 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2156
2157 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2158 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2159 if (len < 0)
2160 error (_("Could not read signal1."));
2161 else if (len == 4)
2162 {
2163 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2164 signal1_pending = 1;
2165 }
2166
2167 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2168 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2169 buf, 0, (sizeof (buf) - 1));
2170 if (len <= 0)
2171 error (_("Could not read signal1_type."));
2172 buf[len] = '\0';
2173 signal1_type = strtoulst ((char *) buf, NULL, 16);
2174
2175 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2176 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2177 if (len < 0)
2178 error (_("Could not read signal2."));
2179 else if (len == 4)
2180 {
2181 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2182 signal2_pending = 1;
2183 }
2184
2185 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2186 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2187 buf, 0, (sizeof (buf) - 1));
2188 if (len <= 0)
2189 error (_("Could not read signal2_type."));
2190 buf[len] = '\0';
2191 signal2_type = strtoulst ((char *) buf, NULL, 16);
2192
2193 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2194
2195 if (ui_out_is_mi_like_p (current_uiout))
2196 {
2197 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2198 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2199 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2200 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2201 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2202 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2203 }
2204 else
2205 {
2206 if (signal1_pending)
2207 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2208 else
2209 printf_filtered (_("Signal 1 not pending "));
2210
2211 if (signal1_type)
2212 printf_filtered (_("(Type Or)\n"));
2213 else
2214 printf_filtered (_("(Type Overwrite)\n"));
2215
2216 if (signal2_pending)
2217 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2218 else
2219 printf_filtered (_("Signal 2 not pending "));
2220
2221 if (signal2_type)
2222 printf_filtered (_("(Type Or)\n"));
2223 else
2224 printf_filtered (_("(Type Overwrite)\n"));
2225 }
2226
2227 do_cleanups (chain);
2228 }
2229
2230 static void
2231 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2232 const char *field, const char *msg)
2233 {
2234 struct cleanup *chain;
2235 int i;
2236
2237 if (nr <= 0)
2238 return;
2239
2240 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2241
2242 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2243 ui_out_table_body (current_uiout);
2244
2245 for (i = 0; i < nr; i++)
2246 {
2247 struct cleanup *val_chain;
2248 ULONGEST val;
2249 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2250 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2251 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2252 do_cleanups (val_chain);
2253
2254 if (!ui_out_is_mi_like_p (current_uiout))
2255 printf_filtered ("\n");
2256 }
2257
2258 do_cleanups (chain);
2259 }
2260
2261 static void
2262 info_spu_mailbox_command (char *args, int from_tty)
2263 {
2264 struct frame_info *frame = get_selected_frame (NULL);
2265 struct gdbarch *gdbarch = get_frame_arch (frame);
2266 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2267 struct cleanup *chain;
2268 char annex[32];
2269 gdb_byte buf[1024];
2270 LONGEST len;
2271 int id;
2272
2273 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2274 error (_("\"info spu\" is only supported on the SPU architecture."));
2275
2276 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2277
2278 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2279
2280 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2281 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2282 buf, 0, sizeof buf);
2283 if (len < 0)
2284 error (_("Could not read mbox_info."));
2285
2286 info_spu_mailbox_list (buf, len / 4, byte_order,
2287 "mbox", "SPU Outbound Mailbox");
2288
2289 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2290 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2291 buf, 0, sizeof buf);
2292 if (len < 0)
2293 error (_("Could not read ibox_info."));
2294
2295 info_spu_mailbox_list (buf, len / 4, byte_order,
2296 "ibox", "SPU Outbound Interrupt Mailbox");
2297
2298 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2299 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2300 buf, 0, sizeof buf);
2301 if (len < 0)
2302 error (_("Could not read wbox_info."));
2303
2304 info_spu_mailbox_list (buf, len / 4, byte_order,
2305 "wbox", "SPU Inbound Mailbox");
2306
2307 do_cleanups (chain);
2308 }
2309
2310 static ULONGEST
2311 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2312 {
2313 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2314 return (word >> (63 - last)) & mask;
2315 }
2316
2317 static void
2318 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2319 {
2320 static char *spu_mfc_opcode[256] =
2321 {
2322 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2323 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2326 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2327 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2328 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2329 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2330 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2331 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2332 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2333 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2338 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2339 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2340 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2341 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2342 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2343 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2344 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2345 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2346 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2348 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2349 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2350 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2354 };
2355
2356 int *seq = alloca (nr * sizeof (int));
2357 int done = 0;
2358 struct cleanup *chain;
2359 int i, j;
2360
2361
2362 /* Determine sequence in which to display (valid) entries. */
2363 for (i = 0; i < nr; i++)
2364 {
2365 /* Search for the first valid entry all of whose
2366 dependencies are met. */
2367 for (j = 0; j < nr; j++)
2368 {
2369 ULONGEST mfc_cq_dw3;
2370 ULONGEST dependencies;
2371
2372 if (done & (1 << (nr - 1 - j)))
2373 continue;
2374
2375 mfc_cq_dw3
2376 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2377 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2378 continue;
2379
2380 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2381 if ((dependencies & done) != dependencies)
2382 continue;
2383
2384 seq[i] = j;
2385 done |= 1 << (nr - 1 - j);
2386 break;
2387 }
2388
2389 if (j == nr)
2390 break;
2391 }
2392
2393 nr = i;
2394
2395
2396 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2397 "dma_cmd");
2398
2399 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2400 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2401 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2402 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2403 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2404 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2405 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2406 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2407 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2408 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2409
2410 ui_out_table_body (current_uiout);
2411
2412 for (i = 0; i < nr; i++)
2413 {
2414 struct cleanup *cmd_chain;
2415 ULONGEST mfc_cq_dw0;
2416 ULONGEST mfc_cq_dw1;
2417 ULONGEST mfc_cq_dw2;
2418 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2419 int list_lsa, list_size, mfc_lsa, mfc_size;
2420 ULONGEST mfc_ea;
2421 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2422
2423 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2424 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2425
2426 mfc_cq_dw0
2427 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2428 mfc_cq_dw1
2429 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2430 mfc_cq_dw2
2431 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2432
2433 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2434 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2435 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2436 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2437 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2438 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2439 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2440
2441 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2442 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2443
2444 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2445 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2446 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2447 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2448 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2449 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2450
2451 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2452
2453 if (spu_mfc_opcode[mfc_cmd_opcode])
2454 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2455 else
2456 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2457
2458 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2459 ui_out_field_int (current_uiout, "tid", tclass_id);
2460 ui_out_field_int (current_uiout, "rid", rclass_id);
2461
2462 if (ea_valid_p)
2463 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2464 else
2465 ui_out_field_skip (current_uiout, "ea");
2466
2467 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2468 if (qw_valid_p)
2469 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2470 else
2471 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2472
2473 if (list_valid_p)
2474 {
2475 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2476 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2477 }
2478 else
2479 {
2480 ui_out_field_skip (current_uiout, "lstaddr");
2481 ui_out_field_skip (current_uiout, "lstsize");
2482 }
2483
2484 if (cmd_error_p)
2485 ui_out_field_string (current_uiout, "error_p", "*");
2486 else
2487 ui_out_field_skip (current_uiout, "error_p");
2488
2489 do_cleanups (cmd_chain);
2490
2491 if (!ui_out_is_mi_like_p (current_uiout))
2492 printf_filtered ("\n");
2493 }
2494
2495 do_cleanups (chain);
2496 }
2497
2498 static void
2499 info_spu_dma_command (char *args, int from_tty)
2500 {
2501 struct frame_info *frame = get_selected_frame (NULL);
2502 struct gdbarch *gdbarch = get_frame_arch (frame);
2503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2504 ULONGEST dma_info_type;
2505 ULONGEST dma_info_mask;
2506 ULONGEST dma_info_status;
2507 ULONGEST dma_info_stall_and_notify;
2508 ULONGEST dma_info_atomic_command_status;
2509 struct cleanup *chain;
2510 char annex[32];
2511 gdb_byte buf[1024];
2512 LONGEST len;
2513 int id;
2514
2515 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2516 error (_("\"info spu\" is only supported on the SPU architecture."));
2517
2518 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2519
2520 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2521 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2522 buf, 0, 40 + 16 * 32);
2523 if (len <= 0)
2524 error (_("Could not read dma_info."));
2525
2526 dma_info_type
2527 = extract_unsigned_integer (buf, 8, byte_order);
2528 dma_info_mask
2529 = extract_unsigned_integer (buf + 8, 8, byte_order);
2530 dma_info_status
2531 = extract_unsigned_integer (buf + 16, 8, byte_order);
2532 dma_info_stall_and_notify
2533 = extract_unsigned_integer (buf + 24, 8, byte_order);
2534 dma_info_atomic_command_status
2535 = extract_unsigned_integer (buf + 32, 8, byte_order);
2536
2537 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2538
2539 if (ui_out_is_mi_like_p (current_uiout))
2540 {
2541 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2542 phex_nz (dma_info_type, 4));
2543 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2544 phex_nz (dma_info_mask, 4));
2545 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2546 phex_nz (dma_info_status, 4));
2547 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2548 phex_nz (dma_info_stall_and_notify, 4));
2549 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2550 phex_nz (dma_info_atomic_command_status, 4));
2551 }
2552 else
2553 {
2554 const char *query_msg = _("no query pending");
2555
2556 if (dma_info_type & 4)
2557 switch (dma_info_type & 3)
2558 {
2559 case 1: query_msg = _("'any' query pending"); break;
2560 case 2: query_msg = _("'all' query pending"); break;
2561 default: query_msg = _("undefined query type"); break;
2562 }
2563
2564 printf_filtered (_("Tag-Group Status 0x%s\n"),
2565 phex (dma_info_status, 4));
2566 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2567 phex (dma_info_mask, 4), query_msg);
2568 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2569 phex (dma_info_stall_and_notify, 4));
2570 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2571 phex (dma_info_atomic_command_status, 4));
2572 printf_filtered ("\n");
2573 }
2574
2575 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2576 do_cleanups (chain);
2577 }
2578
2579 static void
2580 info_spu_proxydma_command (char *args, int from_tty)
2581 {
2582 struct frame_info *frame = get_selected_frame (NULL);
2583 struct gdbarch *gdbarch = get_frame_arch (frame);
2584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2585 ULONGEST dma_info_type;
2586 ULONGEST dma_info_mask;
2587 ULONGEST dma_info_status;
2588 struct cleanup *chain;
2589 char annex[32];
2590 gdb_byte buf[1024];
2591 LONGEST len;
2592 int id;
2593
2594 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2595 error (_("\"info spu\" is only supported on the SPU architecture."));
2596
2597 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2598
2599 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2600 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2601 buf, 0, 24 + 8 * 32);
2602 if (len <= 0)
2603 error (_("Could not read proxydma_info."));
2604
2605 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2606 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2607 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2608
2609 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2610 "SPUInfoProxyDMA");
2611
2612 if (ui_out_is_mi_like_p (current_uiout))
2613 {
2614 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2615 phex_nz (dma_info_type, 4));
2616 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2617 phex_nz (dma_info_mask, 4));
2618 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2619 phex_nz (dma_info_status, 4));
2620 }
2621 else
2622 {
2623 const char *query_msg;
2624
2625 switch (dma_info_type & 3)
2626 {
2627 case 0: query_msg = _("no query pending"); break;
2628 case 1: query_msg = _("'any' query pending"); break;
2629 case 2: query_msg = _("'all' query pending"); break;
2630 default: query_msg = _("undefined query type"); break;
2631 }
2632
2633 printf_filtered (_("Tag-Group Status 0x%s\n"),
2634 phex (dma_info_status, 4));
2635 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2636 phex (dma_info_mask, 4), query_msg);
2637 printf_filtered ("\n");
2638 }
2639
2640 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2641 do_cleanups (chain);
2642 }
2643
2644 static void
2645 info_spu_command (char *args, int from_tty)
2646 {
2647 printf_unfiltered (_("\"info spu\" must be followed by "
2648 "the name of an SPU facility.\n"));
2649 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2650 }
2651
2652
2653 /* Root of all "set spu "/"show spu " commands. */
2654
2655 static void
2656 show_spu_command (char *args, int from_tty)
2657 {
2658 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2659 }
2660
2661 static void
2662 set_spu_command (char *args, int from_tty)
2663 {
2664 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2665 }
2666
2667 static void
2668 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2669 struct cmd_list_element *c, const char *value)
2670 {
2671 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2672 value);
2673 }
2674
2675 static void
2676 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2677 struct cmd_list_element *c, const char *value)
2678 {
2679 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2680 value);
2681 }
2682
2683
2684 /* Set up gdbarch struct. */
2685
2686 static struct gdbarch *
2687 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2688 {
2689 struct gdbarch *gdbarch;
2690 struct gdbarch_tdep *tdep;
2691 int id = -1;
2692
2693 /* Which spufs ID was requested as address space? */
2694 if (info.tdep_info)
2695 id = *(int *)info.tdep_info;
2696 /* For objfile architectures of SPU solibs, decode the ID from the name.
2697 This assumes the filename convention employed by solib-spu.c. */
2698 else if (info.abfd)
2699 {
2700 char *name = strrchr (info.abfd->filename, '@');
2701 if (name)
2702 sscanf (name, "@0x%*x <%d>", &id);
2703 }
2704
2705 /* Find a candidate among extant architectures. */
2706 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2707 arches != NULL;
2708 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2709 {
2710 tdep = gdbarch_tdep (arches->gdbarch);
2711 if (tdep && tdep->id == id)
2712 return arches->gdbarch;
2713 }
2714
2715 /* None found, so create a new architecture. */
2716 tdep = XCNEW (struct gdbarch_tdep);
2717 tdep->id = id;
2718 gdbarch = gdbarch_alloc (&info, tdep);
2719
2720 /* Disassembler. */
2721 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2722
2723 /* Registers. */
2724 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2725 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2726 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2727 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2728 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2729 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2730 set_gdbarch_register_name (gdbarch, spu_register_name);
2731 set_gdbarch_register_type (gdbarch, spu_register_type);
2732 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2733 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2734 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2735 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2736 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2737 set_gdbarch_ax_pseudo_register_collect
2738 (gdbarch, spu_ax_pseudo_register_collect);
2739 set_gdbarch_ax_pseudo_register_push_stack
2740 (gdbarch, spu_ax_pseudo_register_push_stack);
2741
2742 /* Data types. */
2743 set_gdbarch_char_signed (gdbarch, 0);
2744 set_gdbarch_ptr_bit (gdbarch, 32);
2745 set_gdbarch_addr_bit (gdbarch, 32);
2746 set_gdbarch_short_bit (gdbarch, 16);
2747 set_gdbarch_int_bit (gdbarch, 32);
2748 set_gdbarch_long_bit (gdbarch, 32);
2749 set_gdbarch_long_long_bit (gdbarch, 64);
2750 set_gdbarch_float_bit (gdbarch, 32);
2751 set_gdbarch_double_bit (gdbarch, 64);
2752 set_gdbarch_long_double_bit (gdbarch, 64);
2753 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2754 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2755 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2756
2757 /* Address handling. */
2758 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2759 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2760 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2761 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2762 set_gdbarch_address_class_type_flags_to_name
2763 (gdbarch, spu_address_class_type_flags_to_name);
2764 set_gdbarch_address_class_name_to_type_flags
2765 (gdbarch, spu_address_class_name_to_type_flags);
2766
2767
2768 /* Inferior function calls. */
2769 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2770 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2771 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2772 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2773 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2774 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2775 set_gdbarch_return_value (gdbarch, spu_return_value);
2776
2777 /* Frame handling. */
2778 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2779 dwarf2_append_unwinders (gdbarch);
2780 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2781 frame_base_set_default (gdbarch, &spu_frame_base);
2782 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2783 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2784 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2785 set_gdbarch_frame_args_skip (gdbarch, 0);
2786 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2787 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2788
2789 /* Cell/B.E. cross-architecture unwinder support. */
2790 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2791
2792 /* Breakpoints. */
2793 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2794 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2795 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2796 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2797 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2798 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2799
2800 /* Overlays. */
2801 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2802
2803 return gdbarch;
2804 }
2805
2806 /* Provide a prototype to silence -Wmissing-prototypes. */
2807 extern initialize_file_ftype _initialize_spu_tdep;
2808
2809 void
2810 _initialize_spu_tdep (void)
2811 {
2812 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2813
2814 /* Add ourselves to objfile event chain. */
2815 observer_attach_new_objfile (spu_overlay_new_objfile);
2816 spu_overlay_data = register_objfile_data ();
2817
2818 /* Install spu stop-on-load handler. */
2819 observer_attach_new_objfile (spu_catch_start);
2820
2821 /* Add ourselves to normal_stop event chain. */
2822 observer_attach_normal_stop (spu_attach_normal_stop);
2823
2824 /* Add root prefix command for all "set spu"/"show spu" commands. */
2825 add_prefix_cmd ("spu", no_class, set_spu_command,
2826 _("Various SPU specific commands."),
2827 &setspucmdlist, "set spu ", 0, &setlist);
2828 add_prefix_cmd ("spu", no_class, show_spu_command,
2829 _("Various SPU specific commands."),
2830 &showspucmdlist, "show spu ", 0, &showlist);
2831
2832 /* Toggle whether or not to add a temporary breakpoint at the "main"
2833 function of new SPE contexts. */
2834 add_setshow_boolean_cmd ("stop-on-load", class_support,
2835 &spu_stop_on_load_p, _("\
2836 Set whether to stop for new SPE threads."),
2837 _("\
2838 Show whether to stop for new SPE threads."),
2839 _("\
2840 Use \"on\" to give control to the user when a new SPE thread\n\
2841 enters its \"main\" function.\n\
2842 Use \"off\" to disable stopping for new SPE threads."),
2843 NULL,
2844 show_spu_stop_on_load,
2845 &setspucmdlist, &showspucmdlist);
2846
2847 /* Toggle whether or not to automatically flush the software-managed
2848 cache whenever SPE execution stops. */
2849 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2850 &spu_auto_flush_cache_p, _("\
2851 Set whether to automatically flush the software-managed cache."),
2852 _("\
2853 Show whether to automatically flush the software-managed cache."),
2854 _("\
2855 Use \"on\" to automatically flush the software-managed cache\n\
2856 whenever SPE execution stops.\n\
2857 Use \"off\" to never automatically flush the software-managed cache."),
2858 NULL,
2859 show_spu_auto_flush_cache,
2860 &setspucmdlist, &showspucmdlist);
2861
2862 /* Add root prefix command for all "info spu" commands. */
2863 add_prefix_cmd ("spu", class_info, info_spu_command,
2864 _("Various SPU specific commands."),
2865 &infospucmdlist, "info spu ", 0, &infolist);
2866
2867 /* Add various "info spu" commands. */
2868 add_cmd ("event", class_info, info_spu_event_command,
2869 _("Display SPU event facility status.\n"),
2870 &infospucmdlist);
2871 add_cmd ("signal", class_info, info_spu_signal_command,
2872 _("Display SPU signal notification facility status.\n"),
2873 &infospucmdlist);
2874 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2875 _("Display SPU mailbox facility status.\n"),
2876 &infospucmdlist);
2877 add_cmd ("dma", class_info, info_spu_dma_command,
2878 _("Display MFC DMA status.\n"),
2879 &infospucmdlist);
2880 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2881 _("Display MFC Proxy-DMA status.\n"),
2882 &infospucmdlist);
2883 }
This page took 0.093451 seconds and 4 git commands to generate.