Put GDB's terminal settings into effect when paginating
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include <string.h>
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "block.h"
44 #include "observer.h"
45 #include "infcall.h"
46 #include "dwarf2.h"
47 #include "dwarf2-frame.h"
48 #include "ax.h"
49 #include "exceptions.h"
50 #include "spu-tdep.h"
51
52
53 /* The list of available "set spu " and "show spu " commands. */
54 static struct cmd_list_element *setspucmdlist = NULL;
55 static struct cmd_list_element *showspucmdlist = NULL;
56
57 /* Whether to stop for new SPE contexts. */
58 static int spu_stop_on_load_p = 0;
59 /* Whether to automatically flush the SW-managed cache. */
60 static int spu_auto_flush_cache_p = 1;
61
62
63 /* The tdep structure. */
64 struct gdbarch_tdep
65 {
66 /* The spufs ID identifying our address space. */
67 int id;
68
69 /* SPU-specific vector type. */
70 struct type *spu_builtin_type_vec128;
71 };
72
73
74 /* SPU-specific vector type. */
75 static struct type *
76 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
77 {
78 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
79
80 if (!tdep->spu_builtin_type_vec128)
81 {
82 const struct builtin_type *bt = builtin_type (gdbarch);
83 struct type *t;
84
85 t = arch_composite_type (gdbarch,
86 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
87 append_composite_type_field (t, "uint128", bt->builtin_int128);
88 append_composite_type_field (t, "v2_int64",
89 init_vector_type (bt->builtin_int64, 2));
90 append_composite_type_field (t, "v4_int32",
91 init_vector_type (bt->builtin_int32, 4));
92 append_composite_type_field (t, "v8_int16",
93 init_vector_type (bt->builtin_int16, 8));
94 append_composite_type_field (t, "v16_int8",
95 init_vector_type (bt->builtin_int8, 16));
96 append_composite_type_field (t, "v2_double",
97 init_vector_type (bt->builtin_double, 2));
98 append_composite_type_field (t, "v4_float",
99 init_vector_type (bt->builtin_float, 4));
100
101 TYPE_VECTOR (t) = 1;
102 TYPE_NAME (t) = "spu_builtin_type_vec128";
103
104 tdep->spu_builtin_type_vec128 = t;
105 }
106
107 return tdep->spu_builtin_type_vec128;
108 }
109
110
111 /* The list of available "info spu " commands. */
112 static struct cmd_list_element *infospucmdlist = NULL;
113
114 /* Registers. */
115
116 static const char *
117 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
118 {
119 static char *register_names[] =
120 {
121 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
122 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
123 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
124 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
125 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
126 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
127 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
128 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
129 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
130 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
131 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
132 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
133 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
134 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
135 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
136 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
137 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
138 };
139
140 if (reg_nr < 0)
141 return NULL;
142 if (reg_nr >= sizeof register_names / sizeof *register_names)
143 return NULL;
144
145 return register_names[reg_nr];
146 }
147
148 static struct type *
149 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
150 {
151 if (reg_nr < SPU_NUM_GPRS)
152 return spu_builtin_type_vec128 (gdbarch);
153
154 switch (reg_nr)
155 {
156 case SPU_ID_REGNUM:
157 return builtin_type (gdbarch)->builtin_uint32;
158
159 case SPU_PC_REGNUM:
160 return builtin_type (gdbarch)->builtin_func_ptr;
161
162 case SPU_SP_REGNUM:
163 return builtin_type (gdbarch)->builtin_data_ptr;
164
165 case SPU_FPSCR_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint128;
167
168 case SPU_SRR0_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_LSLR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 case SPU_DECR_STATUS_REGNUM:
178 return builtin_type (gdbarch)->builtin_uint32;
179
180 default:
181 internal_error (__FILE__, __LINE__, _("invalid regnum"));
182 }
183 }
184
185 /* Pseudo registers for preferred slots - stack pointer. */
186
187 static enum register_status
188 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
189 gdb_byte *buf)
190 {
191 struct gdbarch *gdbarch = get_regcache_arch (regcache);
192 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
193 enum register_status status;
194 gdb_byte reg[32];
195 char annex[32];
196 ULONGEST id;
197 ULONGEST ul;
198
199 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
200 if (status != REG_VALID)
201 return status;
202 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
203 memset (reg, 0, sizeof reg);
204 target_read (&current_target, TARGET_OBJECT_SPU, annex,
205 reg, 0, sizeof reg);
206
207 ul = strtoulst ((char *) reg, NULL, 16);
208 store_unsigned_integer (buf, 4, byte_order, ul);
209 return REG_VALID;
210 }
211
212 static enum register_status
213 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
214 int regnum, gdb_byte *buf)
215 {
216 gdb_byte reg[16];
217 char annex[32];
218 ULONGEST id;
219 enum register_status status;
220
221 switch (regnum)
222 {
223 case SPU_SP_REGNUM:
224 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
225 if (status != REG_VALID)
226 return status;
227 memcpy (buf, reg, 4);
228 return status;
229
230 case SPU_FPSCR_REGNUM:
231 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
232 if (status != REG_VALID)
233 return status;
234 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
235 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
236 return status;
237
238 case SPU_SRR0_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
240
241 case SPU_LSLR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
243
244 case SPU_DECR_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr", buf);
246
247 case SPU_DECR_STATUS_REGNUM:
248 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
249
250 default:
251 internal_error (__FILE__, __LINE__, _("invalid regnum"));
252 }
253 }
254
255 static void
256 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
257 const gdb_byte *buf)
258 {
259 struct gdbarch *gdbarch = get_regcache_arch (regcache);
260 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
261 char reg[32];
262 char annex[32];
263 ULONGEST id;
264
265 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
266 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
267 xsnprintf (reg, sizeof reg, "0x%s",
268 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
269 target_write (&current_target, TARGET_OBJECT_SPU, annex,
270 (gdb_byte *) reg, 0, strlen (reg));
271 }
272
273 static void
274 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
275 int regnum, const gdb_byte *buf)
276 {
277 gdb_byte reg[16];
278 char annex[32];
279 ULONGEST id;
280
281 switch (regnum)
282 {
283 case SPU_SP_REGNUM:
284 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
285 memcpy (reg, buf, 4);
286 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
287 break;
288
289 case SPU_FPSCR_REGNUM:
290 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
291 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
292 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
293 break;
294
295 case SPU_SRR0_REGNUM:
296 spu_pseudo_register_write_spu (regcache, "srr0", buf);
297 break;
298
299 case SPU_LSLR_REGNUM:
300 spu_pseudo_register_write_spu (regcache, "lslr", buf);
301 break;
302
303 case SPU_DECR_REGNUM:
304 spu_pseudo_register_write_spu (regcache, "decr", buf);
305 break;
306
307 case SPU_DECR_STATUS_REGNUM:
308 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
309 break;
310
311 default:
312 internal_error (__FILE__, __LINE__, _("invalid regnum"));
313 }
314 }
315
316 static int
317 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
318 struct agent_expr *ax, int regnum)
319 {
320 switch (regnum)
321 {
322 case SPU_SP_REGNUM:
323 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
324 return 0;
325
326 case SPU_FPSCR_REGNUM:
327 case SPU_SRR0_REGNUM:
328 case SPU_LSLR_REGNUM:
329 case SPU_DECR_REGNUM:
330 case SPU_DECR_STATUS_REGNUM:
331 return -1;
332
333 default:
334 internal_error (__FILE__, __LINE__, _("invalid regnum"));
335 }
336 }
337
338 static int
339 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
340 struct agent_expr *ax, int regnum)
341 {
342 switch (regnum)
343 {
344 case SPU_SP_REGNUM:
345 ax_reg (ax, SPU_RAW_SP_REGNUM);
346 return 0;
347
348 case SPU_FPSCR_REGNUM:
349 case SPU_SRR0_REGNUM:
350 case SPU_LSLR_REGNUM:
351 case SPU_DECR_REGNUM:
352 case SPU_DECR_STATUS_REGNUM:
353 return -1;
354
355 default:
356 internal_error (__FILE__, __LINE__, _("invalid regnum"));
357 }
358 }
359
360
361 /* Value conversion -- access scalar values at the preferred slot. */
362
363 static struct value *
364 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
365 int regnum, struct frame_id frame_id)
366 {
367 struct value *value = default_value_from_register (gdbarch, type,
368 regnum, frame_id);
369 int len = TYPE_LENGTH (type);
370
371 if (regnum < SPU_NUM_GPRS && len < 16)
372 {
373 int preferred_slot = len < 4 ? 4 - len : 0;
374 set_value_offset (value, preferred_slot);
375 }
376
377 return value;
378 }
379
380 /* Register groups. */
381
382 static int
383 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
384 struct reggroup *group)
385 {
386 /* Registers displayed via 'info regs'. */
387 if (group == general_reggroup)
388 return 1;
389
390 /* Registers displayed via 'info float'. */
391 if (group == float_reggroup)
392 return 0;
393
394 /* Registers that need to be saved/restored in order to
395 push or pop frames. */
396 if (group == save_reggroup || group == restore_reggroup)
397 return 1;
398
399 return default_register_reggroup_p (gdbarch, regnum, group);
400 }
401
402 /* DWARF-2 register numbers. */
403
404 static int
405 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
406 {
407 /* Use cooked instead of raw SP. */
408 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
409 }
410
411
412 /* Address handling. */
413
414 static int
415 spu_gdbarch_id (struct gdbarch *gdbarch)
416 {
417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418 int id = tdep->id;
419
420 /* The objfile architecture of a standalone SPU executable does not
421 provide an SPU ID. Retrieve it from the objfile's relocated
422 address range in this special case. */
423 if (id == -1
424 && symfile_objfile && symfile_objfile->obfd
425 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
426 && symfile_objfile->sections != symfile_objfile->sections_end)
427 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
428
429 return id;
430 }
431
432 static int
433 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
434 {
435 if (dwarf2_addr_class == 1)
436 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
437 else
438 return 0;
439 }
440
441 static const char *
442 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
443 {
444 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
445 return "__ea";
446 else
447 return NULL;
448 }
449
450 static int
451 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
452 const char *name, int *type_flags_ptr)
453 {
454 if (strcmp (name, "__ea") == 0)
455 {
456 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
457 return 1;
458 }
459 else
460 return 0;
461 }
462
463 static void
464 spu_address_to_pointer (struct gdbarch *gdbarch,
465 struct type *type, gdb_byte *buf, CORE_ADDR addr)
466 {
467 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
468 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
469 SPUADDR_ADDR (addr));
470 }
471
472 static CORE_ADDR
473 spu_pointer_to_address (struct gdbarch *gdbarch,
474 struct type *type, const gdb_byte *buf)
475 {
476 int id = spu_gdbarch_id (gdbarch);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478 ULONGEST addr
479 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
480
481 /* Do not convert __ea pointers. */
482 if (TYPE_ADDRESS_CLASS_1 (type))
483 return addr;
484
485 return addr? SPUADDR (id, addr) : 0;
486 }
487
488 static CORE_ADDR
489 spu_integer_to_address (struct gdbarch *gdbarch,
490 struct type *type, const gdb_byte *buf)
491 {
492 int id = spu_gdbarch_id (gdbarch);
493 ULONGEST addr = unpack_long (type, buf);
494
495 return SPUADDR (id, addr);
496 }
497
498
499 /* Decoding SPU instructions. */
500
501 enum
502 {
503 op_lqd = 0x34,
504 op_lqx = 0x3c4,
505 op_lqa = 0x61,
506 op_lqr = 0x67,
507 op_stqd = 0x24,
508 op_stqx = 0x144,
509 op_stqa = 0x41,
510 op_stqr = 0x47,
511
512 op_il = 0x081,
513 op_ila = 0x21,
514 op_a = 0x0c0,
515 op_ai = 0x1c,
516
517 op_selb = 0x8,
518
519 op_br = 0x64,
520 op_bra = 0x60,
521 op_brsl = 0x66,
522 op_brasl = 0x62,
523 op_brnz = 0x42,
524 op_brz = 0x40,
525 op_brhnz = 0x46,
526 op_brhz = 0x44,
527 op_bi = 0x1a8,
528 op_bisl = 0x1a9,
529 op_biz = 0x128,
530 op_binz = 0x129,
531 op_bihz = 0x12a,
532 op_bihnz = 0x12b,
533 };
534
535 static int
536 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
537 {
538 if ((insn >> 21) == op)
539 {
540 *rt = insn & 127;
541 *ra = (insn >> 7) & 127;
542 *rb = (insn >> 14) & 127;
543 return 1;
544 }
545
546 return 0;
547 }
548
549 static int
550 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
551 {
552 if ((insn >> 28) == op)
553 {
554 *rt = (insn >> 21) & 127;
555 *ra = (insn >> 7) & 127;
556 *rb = (insn >> 14) & 127;
557 *rc = insn & 127;
558 return 1;
559 }
560
561 return 0;
562 }
563
564 static int
565 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
566 {
567 if ((insn >> 21) == op)
568 {
569 *rt = insn & 127;
570 *ra = (insn >> 7) & 127;
571 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
572 return 1;
573 }
574
575 return 0;
576 }
577
578 static int
579 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
580 {
581 if ((insn >> 24) == op)
582 {
583 *rt = insn & 127;
584 *ra = (insn >> 7) & 127;
585 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
586 return 1;
587 }
588
589 return 0;
590 }
591
592 static int
593 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
594 {
595 if ((insn >> 23) == op)
596 {
597 *rt = insn & 127;
598 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
599 return 1;
600 }
601
602 return 0;
603 }
604
605 static int
606 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
607 {
608 if ((insn >> 25) == op)
609 {
610 *rt = insn & 127;
611 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
612 return 1;
613 }
614
615 return 0;
616 }
617
618 static int
619 is_branch (unsigned int insn, int *offset, int *reg)
620 {
621 int rt, i7, i16;
622
623 if (is_ri16 (insn, op_br, &rt, &i16)
624 || is_ri16 (insn, op_brsl, &rt, &i16)
625 || is_ri16 (insn, op_brnz, &rt, &i16)
626 || is_ri16 (insn, op_brz, &rt, &i16)
627 || is_ri16 (insn, op_brhnz, &rt, &i16)
628 || is_ri16 (insn, op_brhz, &rt, &i16))
629 {
630 *reg = SPU_PC_REGNUM;
631 *offset = i16 << 2;
632 return 1;
633 }
634
635 if (is_ri16 (insn, op_bra, &rt, &i16)
636 || is_ri16 (insn, op_brasl, &rt, &i16))
637 {
638 *reg = -1;
639 *offset = i16 << 2;
640 return 1;
641 }
642
643 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
644 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
645 || is_ri7 (insn, op_biz, &rt, reg, &i7)
646 || is_ri7 (insn, op_binz, &rt, reg, &i7)
647 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
648 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
649 {
650 *offset = 0;
651 return 1;
652 }
653
654 return 0;
655 }
656
657
658 /* Prolog parsing. */
659
660 struct spu_prologue_data
661 {
662 /* Stack frame size. -1 if analysis was unsuccessful. */
663 int size;
664
665 /* How to find the CFA. The CFA is equal to SP at function entry. */
666 int cfa_reg;
667 int cfa_offset;
668
669 /* Offset relative to CFA where a register is saved. -1 if invalid. */
670 int reg_offset[SPU_NUM_GPRS];
671 };
672
673 static CORE_ADDR
674 spu_analyze_prologue (struct gdbarch *gdbarch,
675 CORE_ADDR start_pc, CORE_ADDR end_pc,
676 struct spu_prologue_data *data)
677 {
678 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
679 int found_sp = 0;
680 int found_fp = 0;
681 int found_lr = 0;
682 int found_bc = 0;
683 int reg_immed[SPU_NUM_GPRS];
684 gdb_byte buf[16];
685 CORE_ADDR prolog_pc = start_pc;
686 CORE_ADDR pc;
687 int i;
688
689
690 /* Initialize DATA to default values. */
691 data->size = -1;
692
693 data->cfa_reg = SPU_RAW_SP_REGNUM;
694 data->cfa_offset = 0;
695
696 for (i = 0; i < SPU_NUM_GPRS; i++)
697 data->reg_offset[i] = -1;
698
699 /* Set up REG_IMMED array. This is non-zero for a register if we know its
700 preferred slot currently holds this immediate value. */
701 for (i = 0; i < SPU_NUM_GPRS; i++)
702 reg_immed[i] = 0;
703
704 /* Scan instructions until the first branch.
705
706 The following instructions are important prolog components:
707
708 - The first instruction to set up the stack pointer.
709 - The first instruction to set up the frame pointer.
710 - The first instruction to save the link register.
711 - The first instruction to save the backchain.
712
713 We return the instruction after the latest of these four,
714 or the incoming PC if none is found. The first instruction
715 to set up the stack pointer also defines the frame size.
716
717 Note that instructions saving incoming arguments to their stack
718 slots are not counted as important, because they are hard to
719 identify with certainty. This should not matter much, because
720 arguments are relevant only in code compiled with debug data,
721 and in such code the GDB core will advance until the first source
722 line anyway, using SAL data.
723
724 For purposes of stack unwinding, we analyze the following types
725 of instructions in addition:
726
727 - Any instruction adding to the current frame pointer.
728 - Any instruction loading an immediate constant into a register.
729 - Any instruction storing a register onto the stack.
730
731 These are used to compute the CFA and REG_OFFSET output. */
732
733 for (pc = start_pc; pc < end_pc; pc += 4)
734 {
735 unsigned int insn;
736 int rt, ra, rb, rc, immed;
737
738 if (target_read_memory (pc, buf, 4))
739 break;
740 insn = extract_unsigned_integer (buf, 4, byte_order);
741
742 /* AI is the typical instruction to set up a stack frame.
743 It is also used to initialize the frame pointer. */
744 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
745 {
746 if (rt == data->cfa_reg && ra == data->cfa_reg)
747 data->cfa_offset -= immed;
748
749 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
750 && !found_sp)
751 {
752 found_sp = 1;
753 prolog_pc = pc + 4;
754
755 data->size = -immed;
756 }
757 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
758 && !found_fp)
759 {
760 found_fp = 1;
761 prolog_pc = pc + 4;
762
763 data->cfa_reg = SPU_FP_REGNUM;
764 data->cfa_offset -= immed;
765 }
766 }
767
768 /* A is used to set up stack frames of size >= 512 bytes.
769 If we have tracked the contents of the addend register,
770 we can handle this as well. */
771 else if (is_rr (insn, op_a, &rt, &ra, &rb))
772 {
773 if (rt == data->cfa_reg && ra == data->cfa_reg)
774 {
775 if (reg_immed[rb] != 0)
776 data->cfa_offset -= reg_immed[rb];
777 else
778 data->cfa_reg = -1; /* We don't know the CFA any more. */
779 }
780
781 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
782 && !found_sp)
783 {
784 found_sp = 1;
785 prolog_pc = pc + 4;
786
787 if (reg_immed[rb] != 0)
788 data->size = -reg_immed[rb];
789 }
790 }
791
792 /* We need to track IL and ILA used to load immediate constants
793 in case they are later used as input to an A instruction. */
794 else if (is_ri16 (insn, op_il, &rt, &immed))
795 {
796 reg_immed[rt] = immed;
797
798 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
799 found_sp = 1;
800 }
801
802 else if (is_ri18 (insn, op_ila, &rt, &immed))
803 {
804 reg_immed[rt] = immed & 0x3ffff;
805
806 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
807 found_sp = 1;
808 }
809
810 /* STQD is used to save registers to the stack. */
811 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
812 {
813 if (ra == data->cfa_reg)
814 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
815
816 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
817 && !found_lr)
818 {
819 found_lr = 1;
820 prolog_pc = pc + 4;
821 }
822
823 if (ra == SPU_RAW_SP_REGNUM
824 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
825 && !found_bc)
826 {
827 found_bc = 1;
828 prolog_pc = pc + 4;
829 }
830 }
831
832 /* _start uses SELB to set up the stack pointer. */
833 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
834 {
835 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
836 found_sp = 1;
837 }
838
839 /* We terminate if we find a branch. */
840 else if (is_branch (insn, &immed, &ra))
841 break;
842 }
843
844
845 /* If we successfully parsed until here, and didn't find any instruction
846 modifying SP, we assume we have a frameless function. */
847 if (!found_sp)
848 data->size = 0;
849
850 /* Return cooked instead of raw SP. */
851 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
852 data->cfa_reg = SPU_SP_REGNUM;
853
854 return prolog_pc;
855 }
856
857 /* Return the first instruction after the prologue starting at PC. */
858 static CORE_ADDR
859 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
860 {
861 struct spu_prologue_data data;
862 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
863 }
864
865 /* Return the frame pointer in use at address PC. */
866 static void
867 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
868 int *reg, LONGEST *offset)
869 {
870 struct spu_prologue_data data;
871 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
872
873 if (data.size != -1 && data.cfa_reg != -1)
874 {
875 /* The 'frame pointer' address is CFA minus frame size. */
876 *reg = data.cfa_reg;
877 *offset = data.cfa_offset - data.size;
878 }
879 else
880 {
881 /* ??? We don't really know ... */
882 *reg = SPU_SP_REGNUM;
883 *offset = 0;
884 }
885 }
886
887 /* Return true if we are in the function's epilogue, i.e. after the
888 instruction that destroyed the function's stack frame.
889
890 1) scan forward from the point of execution:
891 a) If you find an instruction that modifies the stack pointer
892 or transfers control (except a return), execution is not in
893 an epilogue, return.
894 b) Stop scanning if you find a return instruction or reach the
895 end of the function or reach the hard limit for the size of
896 an epilogue.
897 2) scan backward from the point of execution:
898 a) If you find an instruction that modifies the stack pointer,
899 execution *is* in an epilogue, return.
900 b) Stop scanning if you reach an instruction that transfers
901 control or the beginning of the function or reach the hard
902 limit for the size of an epilogue. */
903
904 static int
905 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
906 {
907 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
908 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
909 bfd_byte buf[4];
910 unsigned int insn;
911 int rt, ra, rb, immed;
912
913 /* Find the search limits based on function boundaries and hard limit.
914 We assume the epilogue can be up to 64 instructions long. */
915
916 const int spu_max_epilogue_size = 64 * 4;
917
918 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
919 return 0;
920
921 if (pc - func_start < spu_max_epilogue_size)
922 epilogue_start = func_start;
923 else
924 epilogue_start = pc - spu_max_epilogue_size;
925
926 if (func_end - pc < spu_max_epilogue_size)
927 epilogue_end = func_end;
928 else
929 epilogue_end = pc + spu_max_epilogue_size;
930
931 /* Scan forward until next 'bi $0'. */
932
933 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
934 {
935 if (target_read_memory (scan_pc, buf, 4))
936 return 0;
937 insn = extract_unsigned_integer (buf, 4, byte_order);
938
939 if (is_branch (insn, &immed, &ra))
940 {
941 if (immed == 0 && ra == SPU_LR_REGNUM)
942 break;
943
944 return 0;
945 }
946
947 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
948 || is_rr (insn, op_a, &rt, &ra, &rb)
949 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
950 {
951 if (rt == SPU_RAW_SP_REGNUM)
952 return 0;
953 }
954 }
955
956 if (scan_pc >= epilogue_end)
957 return 0;
958
959 /* Scan backward until adjustment to stack pointer (R1). */
960
961 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
962 {
963 if (target_read_memory (scan_pc, buf, 4))
964 return 0;
965 insn = extract_unsigned_integer (buf, 4, byte_order);
966
967 if (is_branch (insn, &immed, &ra))
968 return 0;
969
970 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
971 || is_rr (insn, op_a, &rt, &ra, &rb)
972 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
973 {
974 if (rt == SPU_RAW_SP_REGNUM)
975 return 1;
976 }
977 }
978
979 return 0;
980 }
981
982
983 /* Normal stack frames. */
984
985 struct spu_unwind_cache
986 {
987 CORE_ADDR func;
988 CORE_ADDR frame_base;
989 CORE_ADDR local_base;
990
991 struct trad_frame_saved_reg *saved_regs;
992 };
993
994 static struct spu_unwind_cache *
995 spu_frame_unwind_cache (struct frame_info *this_frame,
996 void **this_prologue_cache)
997 {
998 struct gdbarch *gdbarch = get_frame_arch (this_frame);
999 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1000 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1001 struct spu_unwind_cache *info;
1002 struct spu_prologue_data data;
1003 CORE_ADDR id = tdep->id;
1004 gdb_byte buf[16];
1005
1006 if (*this_prologue_cache)
1007 return *this_prologue_cache;
1008
1009 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1010 *this_prologue_cache = info;
1011 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1012 info->frame_base = 0;
1013 info->local_base = 0;
1014
1015 /* Find the start of the current function, and analyze its prologue. */
1016 info->func = get_frame_func (this_frame);
1017 if (info->func == 0)
1018 {
1019 /* Fall back to using the current PC as frame ID. */
1020 info->func = get_frame_pc (this_frame);
1021 data.size = -1;
1022 }
1023 else
1024 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1025 &data);
1026
1027 /* If successful, use prologue analysis data. */
1028 if (data.size != -1 && data.cfa_reg != -1)
1029 {
1030 CORE_ADDR cfa;
1031 int i;
1032
1033 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1034 get_frame_register (this_frame, data.cfa_reg, buf);
1035 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1036 cfa = SPUADDR (id, cfa);
1037
1038 /* Call-saved register slots. */
1039 for (i = 0; i < SPU_NUM_GPRS; i++)
1040 if (i == SPU_LR_REGNUM
1041 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1042 if (data.reg_offset[i] != -1)
1043 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1044
1045 /* Frame bases. */
1046 info->frame_base = cfa;
1047 info->local_base = cfa - data.size;
1048 }
1049
1050 /* Otherwise, fall back to reading the backchain link. */
1051 else
1052 {
1053 CORE_ADDR reg;
1054 LONGEST backchain;
1055 ULONGEST lslr;
1056 int status;
1057
1058 /* Get local store limit. */
1059 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1060 if (!lslr)
1061 lslr = (ULONGEST) -1;
1062
1063 /* Get the backchain. */
1064 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1065 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1066 &backchain);
1067
1068 /* A zero backchain terminates the frame chain. Also, sanity
1069 check against the local store size limit. */
1070 if (status && backchain > 0 && backchain <= lslr)
1071 {
1072 /* Assume the link register is saved into its slot. */
1073 if (backchain + 16 <= lslr)
1074 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1075 backchain + 16);
1076
1077 /* Frame bases. */
1078 info->frame_base = SPUADDR (id, backchain);
1079 info->local_base = SPUADDR (id, reg);
1080 }
1081 }
1082
1083 /* If we didn't find a frame, we cannot determine SP / return address. */
1084 if (info->frame_base == 0)
1085 return info;
1086
1087 /* The previous SP is equal to the CFA. */
1088 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1089 SPUADDR_ADDR (info->frame_base));
1090
1091 /* Read full contents of the unwound link register in order to
1092 be able to determine the return address. */
1093 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1094 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1095 else
1096 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1097
1098 /* Normally, the return address is contained in the slot 0 of the
1099 link register, and slots 1-3 are zero. For an overlay return,
1100 slot 0 contains the address of the overlay manager return stub,
1101 slot 1 contains the partition number of the overlay section to
1102 be returned to, and slot 2 contains the return address within
1103 that section. Return the latter address in that case. */
1104 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1105 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1106 extract_unsigned_integer (buf + 8, 4, byte_order));
1107 else
1108 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1109 extract_unsigned_integer (buf, 4, byte_order));
1110
1111 return info;
1112 }
1113
1114 static void
1115 spu_frame_this_id (struct frame_info *this_frame,
1116 void **this_prologue_cache, struct frame_id *this_id)
1117 {
1118 struct spu_unwind_cache *info =
1119 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1120
1121 if (info->frame_base == 0)
1122 return;
1123
1124 *this_id = frame_id_build (info->frame_base, info->func);
1125 }
1126
1127 static struct value *
1128 spu_frame_prev_register (struct frame_info *this_frame,
1129 void **this_prologue_cache, int regnum)
1130 {
1131 struct spu_unwind_cache *info
1132 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1133
1134 /* Special-case the stack pointer. */
1135 if (regnum == SPU_RAW_SP_REGNUM)
1136 regnum = SPU_SP_REGNUM;
1137
1138 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1139 }
1140
1141 static const struct frame_unwind spu_frame_unwind = {
1142 NORMAL_FRAME,
1143 default_frame_unwind_stop_reason,
1144 spu_frame_this_id,
1145 spu_frame_prev_register,
1146 NULL,
1147 default_frame_sniffer
1148 };
1149
1150 static CORE_ADDR
1151 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1152 {
1153 struct spu_unwind_cache *info
1154 = spu_frame_unwind_cache (this_frame, this_cache);
1155 return info->local_base;
1156 }
1157
1158 static const struct frame_base spu_frame_base = {
1159 &spu_frame_unwind,
1160 spu_frame_base_address,
1161 spu_frame_base_address,
1162 spu_frame_base_address
1163 };
1164
1165 static CORE_ADDR
1166 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1167 {
1168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1169 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1170 /* Mask off interrupt enable bit. */
1171 return SPUADDR (tdep->id, pc & -4);
1172 }
1173
1174 static CORE_ADDR
1175 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1176 {
1177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1178 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1179 return SPUADDR (tdep->id, sp);
1180 }
1181
1182 static CORE_ADDR
1183 spu_read_pc (struct regcache *regcache)
1184 {
1185 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1186 ULONGEST pc;
1187 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1188 /* Mask off interrupt enable bit. */
1189 return SPUADDR (tdep->id, pc & -4);
1190 }
1191
1192 static void
1193 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1194 {
1195 /* Keep interrupt enabled state unchanged. */
1196 ULONGEST old_pc;
1197
1198 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1199 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1200 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1201 }
1202
1203
1204 /* Cell/B.E. cross-architecture unwinder support. */
1205
1206 struct spu2ppu_cache
1207 {
1208 struct frame_id frame_id;
1209 struct regcache *regcache;
1210 };
1211
1212 static struct gdbarch *
1213 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1214 {
1215 struct spu2ppu_cache *cache = *this_cache;
1216 return get_regcache_arch (cache->regcache);
1217 }
1218
1219 static void
1220 spu2ppu_this_id (struct frame_info *this_frame,
1221 void **this_cache, struct frame_id *this_id)
1222 {
1223 struct spu2ppu_cache *cache = *this_cache;
1224 *this_id = cache->frame_id;
1225 }
1226
1227 static struct value *
1228 spu2ppu_prev_register (struct frame_info *this_frame,
1229 void **this_cache, int regnum)
1230 {
1231 struct spu2ppu_cache *cache = *this_cache;
1232 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1233 gdb_byte *buf;
1234
1235 buf = alloca (register_size (gdbarch, regnum));
1236 regcache_cooked_read (cache->regcache, regnum, buf);
1237 return frame_unwind_got_bytes (this_frame, regnum, buf);
1238 }
1239
1240 static int
1241 spu2ppu_sniffer (const struct frame_unwind *self,
1242 struct frame_info *this_frame, void **this_prologue_cache)
1243 {
1244 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1246 CORE_ADDR base, func, backchain;
1247 gdb_byte buf[4];
1248
1249 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1250 return 0;
1251
1252 base = get_frame_sp (this_frame);
1253 func = get_frame_pc (this_frame);
1254 if (target_read_memory (base, buf, 4))
1255 return 0;
1256 backchain = extract_unsigned_integer (buf, 4, byte_order);
1257
1258 if (!backchain)
1259 {
1260 struct frame_info *fi;
1261
1262 struct spu2ppu_cache *cache
1263 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1264
1265 cache->frame_id = frame_id_build (base + 16, func);
1266
1267 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1268 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1269 break;
1270
1271 if (fi)
1272 {
1273 cache->regcache = frame_save_as_regcache (fi);
1274 *this_prologue_cache = cache;
1275 return 1;
1276 }
1277 else
1278 {
1279 struct regcache *regcache;
1280 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1281 cache->regcache = regcache_dup (regcache);
1282 *this_prologue_cache = cache;
1283 return 1;
1284 }
1285 }
1286
1287 return 0;
1288 }
1289
1290 static void
1291 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1292 {
1293 struct spu2ppu_cache *cache = this_cache;
1294 regcache_xfree (cache->regcache);
1295 }
1296
1297 static const struct frame_unwind spu2ppu_unwind = {
1298 ARCH_FRAME,
1299 default_frame_unwind_stop_reason,
1300 spu2ppu_this_id,
1301 spu2ppu_prev_register,
1302 NULL,
1303 spu2ppu_sniffer,
1304 spu2ppu_dealloc_cache,
1305 spu2ppu_prev_arch,
1306 };
1307
1308
1309 /* Function calling convention. */
1310
1311 static CORE_ADDR
1312 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1313 {
1314 return sp & ~15;
1315 }
1316
1317 static CORE_ADDR
1318 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1319 struct value **args, int nargs, struct type *value_type,
1320 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1321 struct regcache *regcache)
1322 {
1323 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1324 sp = (sp - 4) & ~15;
1325 /* Store the address of that breakpoint */
1326 *bp_addr = sp;
1327 /* The call starts at the callee's entry point. */
1328 *real_pc = funaddr;
1329
1330 return sp;
1331 }
1332
1333 static int
1334 spu_scalar_value_p (struct type *type)
1335 {
1336 switch (TYPE_CODE (type))
1337 {
1338 case TYPE_CODE_INT:
1339 case TYPE_CODE_ENUM:
1340 case TYPE_CODE_RANGE:
1341 case TYPE_CODE_CHAR:
1342 case TYPE_CODE_BOOL:
1343 case TYPE_CODE_PTR:
1344 case TYPE_CODE_REF:
1345 return TYPE_LENGTH (type) <= 16;
1346
1347 default:
1348 return 0;
1349 }
1350 }
1351
1352 static void
1353 spu_value_to_regcache (struct regcache *regcache, int regnum,
1354 struct type *type, const gdb_byte *in)
1355 {
1356 int len = TYPE_LENGTH (type);
1357
1358 if (spu_scalar_value_p (type))
1359 {
1360 int preferred_slot = len < 4 ? 4 - len : 0;
1361 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1362 }
1363 else
1364 {
1365 while (len >= 16)
1366 {
1367 regcache_cooked_write (regcache, regnum++, in);
1368 in += 16;
1369 len -= 16;
1370 }
1371
1372 if (len > 0)
1373 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1374 }
1375 }
1376
1377 static void
1378 spu_regcache_to_value (struct regcache *regcache, int regnum,
1379 struct type *type, gdb_byte *out)
1380 {
1381 int len = TYPE_LENGTH (type);
1382
1383 if (spu_scalar_value_p (type))
1384 {
1385 int preferred_slot = len < 4 ? 4 - len : 0;
1386 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1387 }
1388 else
1389 {
1390 while (len >= 16)
1391 {
1392 regcache_cooked_read (regcache, regnum++, out);
1393 out += 16;
1394 len -= 16;
1395 }
1396
1397 if (len > 0)
1398 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1399 }
1400 }
1401
1402 static CORE_ADDR
1403 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1404 struct regcache *regcache, CORE_ADDR bp_addr,
1405 int nargs, struct value **args, CORE_ADDR sp,
1406 int struct_return, CORE_ADDR struct_addr)
1407 {
1408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1409 CORE_ADDR sp_delta;
1410 int i;
1411 int regnum = SPU_ARG1_REGNUM;
1412 int stack_arg = -1;
1413 gdb_byte buf[16];
1414
1415 /* Set the return address. */
1416 memset (buf, 0, sizeof buf);
1417 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1418 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1419
1420 /* If STRUCT_RETURN is true, then the struct return address (in
1421 STRUCT_ADDR) will consume the first argument-passing register.
1422 Both adjust the register count and store that value. */
1423 if (struct_return)
1424 {
1425 memset (buf, 0, sizeof buf);
1426 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1427 regcache_cooked_write (regcache, regnum++, buf);
1428 }
1429
1430 /* Fill in argument registers. */
1431 for (i = 0; i < nargs; i++)
1432 {
1433 struct value *arg = args[i];
1434 struct type *type = check_typedef (value_type (arg));
1435 const gdb_byte *contents = value_contents (arg);
1436 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1437
1438 /* If the argument doesn't wholly fit into registers, it and
1439 all subsequent arguments go to the stack. */
1440 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1441 {
1442 stack_arg = i;
1443 break;
1444 }
1445
1446 spu_value_to_regcache (regcache, regnum, type, contents);
1447 regnum += n_regs;
1448 }
1449
1450 /* Overflow arguments go to the stack. */
1451 if (stack_arg != -1)
1452 {
1453 CORE_ADDR ap;
1454
1455 /* Allocate all required stack size. */
1456 for (i = stack_arg; i < nargs; i++)
1457 {
1458 struct type *type = check_typedef (value_type (args[i]));
1459 sp -= align_up (TYPE_LENGTH (type), 16);
1460 }
1461
1462 /* Fill in stack arguments. */
1463 ap = sp;
1464 for (i = stack_arg; i < nargs; i++)
1465 {
1466 struct value *arg = args[i];
1467 struct type *type = check_typedef (value_type (arg));
1468 int len = TYPE_LENGTH (type);
1469 int preferred_slot;
1470
1471 if (spu_scalar_value_p (type))
1472 preferred_slot = len < 4 ? 4 - len : 0;
1473 else
1474 preferred_slot = 0;
1475
1476 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1477 ap += align_up (TYPE_LENGTH (type), 16);
1478 }
1479 }
1480
1481 /* Allocate stack frame header. */
1482 sp -= 32;
1483
1484 /* Store stack back chain. */
1485 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1486 target_write_memory (sp, buf, 16);
1487
1488 /* Finally, update all slots of the SP register. */
1489 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1490 for (i = 0; i < 4; i++)
1491 {
1492 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1493 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1494 }
1495 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1496
1497 return sp;
1498 }
1499
1500 static struct frame_id
1501 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1502 {
1503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1504 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1505 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1506 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1507 }
1508
1509 /* Function return value access. */
1510
1511 static enum return_value_convention
1512 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1513 struct type *type, struct regcache *regcache,
1514 gdb_byte *out, const gdb_byte *in)
1515 {
1516 struct type *func_type = function ? value_type (function) : NULL;
1517 enum return_value_convention rvc;
1518 int opencl_vector = 0;
1519
1520 if (func_type)
1521 {
1522 func_type = check_typedef (func_type);
1523
1524 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1525 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1526
1527 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1528 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1529 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1530 && TYPE_VECTOR (type))
1531 opencl_vector = 1;
1532 }
1533
1534 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1535 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1536 else
1537 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1538
1539 if (in)
1540 {
1541 switch (rvc)
1542 {
1543 case RETURN_VALUE_REGISTER_CONVENTION:
1544 if (opencl_vector && TYPE_LENGTH (type) == 2)
1545 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1546 else
1547 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1548 break;
1549
1550 case RETURN_VALUE_STRUCT_CONVENTION:
1551 error (_("Cannot set function return value."));
1552 break;
1553 }
1554 }
1555 else if (out)
1556 {
1557 switch (rvc)
1558 {
1559 case RETURN_VALUE_REGISTER_CONVENTION:
1560 if (opencl_vector && TYPE_LENGTH (type) == 2)
1561 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1562 else
1563 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1564 break;
1565
1566 case RETURN_VALUE_STRUCT_CONVENTION:
1567 error (_("Function return value unknown."));
1568 break;
1569 }
1570 }
1571
1572 return rvc;
1573 }
1574
1575
1576 /* Breakpoints. */
1577
1578 static const gdb_byte *
1579 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1580 CORE_ADDR * pcptr, int *lenptr)
1581 {
1582 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1583
1584 *lenptr = sizeof breakpoint;
1585 return breakpoint;
1586 }
1587
1588 static int
1589 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1590 struct bp_target_info *bp_tgt)
1591 {
1592 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1593 that in a combined application, we have some breakpoints inserted in SPU
1594 code, and now the application forks (on the PPU side). GDB common code
1595 will assume that the fork system call copied all breakpoints into the new
1596 process' address space, and that all those copies now need to be removed
1597 (see breakpoint.c:detach_breakpoints).
1598
1599 While this is certainly true for PPU side breakpoints, it is not true
1600 for SPU side breakpoints. fork will clone the SPU context file
1601 descriptors, so that all the existing SPU contexts are in accessible
1602 in the new process. However, the contents of the SPU contexts themselves
1603 are *not* cloned. Therefore the effect of detach_breakpoints is to
1604 remove SPU breakpoints from the *original* SPU context's local store
1605 -- this is not the correct behaviour.
1606
1607 The workaround is to check whether the PID we are asked to remove this
1608 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1609 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1610 true in the context of detach_breakpoints. If so, we simply do nothing.
1611 [ Note that for the fork child process, it does not matter if breakpoints
1612 remain inserted, because those SPU contexts are not runnable anyway --
1613 the Linux kernel allows only the original process to invoke spu_run. */
1614
1615 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1616 return 0;
1617
1618 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1619 }
1620
1621
1622 /* Software single-stepping support. */
1623
1624 static int
1625 spu_software_single_step (struct frame_info *frame)
1626 {
1627 struct gdbarch *gdbarch = get_frame_arch (frame);
1628 struct address_space *aspace = get_frame_address_space (frame);
1629 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1630 CORE_ADDR pc, next_pc;
1631 unsigned int insn;
1632 int offset, reg;
1633 gdb_byte buf[4];
1634 ULONGEST lslr;
1635
1636 pc = get_frame_pc (frame);
1637
1638 if (target_read_memory (pc, buf, 4))
1639 return 1;
1640 insn = extract_unsigned_integer (buf, 4, byte_order);
1641
1642 /* Get local store limit. */
1643 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1644 if (!lslr)
1645 lslr = (ULONGEST) -1;
1646
1647 /* Next sequential instruction is at PC + 4, except if the current
1648 instruction is a PPE-assisted call, in which case it is at PC + 8.
1649 Wrap around LS limit to be on the safe side. */
1650 if ((insn & 0xffffff00) == 0x00002100)
1651 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1652 else
1653 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1654
1655 insert_single_step_breakpoint (gdbarch,
1656 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1657
1658 if (is_branch (insn, &offset, &reg))
1659 {
1660 CORE_ADDR target = offset;
1661
1662 if (reg == SPU_PC_REGNUM)
1663 target += SPUADDR_ADDR (pc);
1664 else if (reg != -1)
1665 {
1666 int optim, unavail;
1667
1668 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1669 &optim, &unavail))
1670 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1671 else
1672 {
1673 if (optim)
1674 throw_error (OPTIMIZED_OUT_ERROR,
1675 _("Could not determine address of "
1676 "single-step breakpoint."));
1677 if (unavail)
1678 throw_error (NOT_AVAILABLE_ERROR,
1679 _("Could not determine address of "
1680 "single-step breakpoint."));
1681 }
1682 }
1683
1684 target = target & lslr;
1685 if (target != next_pc)
1686 insert_single_step_breakpoint (gdbarch, aspace,
1687 SPUADDR (SPUADDR_SPU (pc), target));
1688 }
1689
1690 return 1;
1691 }
1692
1693
1694 /* Longjmp support. */
1695
1696 static int
1697 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1698 {
1699 struct gdbarch *gdbarch = get_frame_arch (frame);
1700 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1701 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1702 gdb_byte buf[4];
1703 CORE_ADDR jb_addr;
1704 int optim, unavail;
1705
1706 /* Jump buffer is pointed to by the argument register $r3. */
1707 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1708 &optim, &unavail))
1709 return 0;
1710
1711 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1712 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1713 return 0;
1714
1715 *pc = extract_unsigned_integer (buf, 4, byte_order);
1716 *pc = SPUADDR (tdep->id, *pc);
1717 return 1;
1718 }
1719
1720
1721 /* Disassembler. */
1722
1723 struct spu_dis_asm_data
1724 {
1725 struct gdbarch *gdbarch;
1726 int id;
1727 };
1728
1729 static void
1730 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1731 {
1732 struct spu_dis_asm_data *data = info->application_data;
1733 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1734 }
1735
1736 static int
1737 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1738 {
1739 /* The opcodes disassembler does 18-bit address arithmetic. Make
1740 sure the SPU ID encoded in the high bits is added back when we
1741 call print_address. */
1742 struct disassemble_info spu_info = *info;
1743 struct spu_dis_asm_data data;
1744 data.gdbarch = info->application_data;
1745 data.id = SPUADDR_SPU (memaddr);
1746
1747 spu_info.application_data = &data;
1748 spu_info.print_address_func = spu_dis_asm_print_address;
1749 return print_insn_spu (memaddr, &spu_info);
1750 }
1751
1752
1753 /* Target overlays for the SPU overlay manager.
1754
1755 See the documentation of simple_overlay_update for how the
1756 interface is supposed to work.
1757
1758 Data structures used by the overlay manager:
1759
1760 struct ovly_table
1761 {
1762 u32 vma;
1763 u32 size;
1764 u32 pos;
1765 u32 buf;
1766 } _ovly_table[]; -- one entry per overlay section
1767
1768 struct ovly_buf_table
1769 {
1770 u32 mapped;
1771 } _ovly_buf_table[]; -- one entry per overlay buffer
1772
1773 _ovly_table should never change.
1774
1775 Both tables are aligned to a 16-byte boundary, the symbols
1776 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1777 size set to the size of the respective array. buf in _ovly_table is
1778 an index into _ovly_buf_table.
1779
1780 mapped is an index into _ovly_table. Both the mapped and buf indices start
1781 from one to reference the first entry in their respective tables. */
1782
1783 /* Using the per-objfile private data mechanism, we store for each
1784 objfile an array of "struct spu_overlay_table" structures, one
1785 for each obj_section of the objfile. This structure holds two
1786 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1787 is *not* an overlay section. If it is non-zero, it represents
1788 a target address. The overlay section is mapped iff the target
1789 integer at this location equals MAPPED_VAL. */
1790
1791 static const struct objfile_data *spu_overlay_data;
1792
1793 struct spu_overlay_table
1794 {
1795 CORE_ADDR mapped_ptr;
1796 CORE_ADDR mapped_val;
1797 };
1798
1799 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1800 the _ovly_table data structure from the target and initialize the
1801 spu_overlay_table data structure from it. */
1802 static struct spu_overlay_table *
1803 spu_get_overlay_table (struct objfile *objfile)
1804 {
1805 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1806 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1807 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1808 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1809 unsigned ovly_table_size, ovly_buf_table_size;
1810 struct spu_overlay_table *tbl;
1811 struct obj_section *osect;
1812 gdb_byte *ovly_table;
1813 int i;
1814
1815 tbl = objfile_data (objfile, spu_overlay_data);
1816 if (tbl)
1817 return tbl;
1818
1819 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1820 if (!ovly_table_msym.minsym)
1821 return NULL;
1822
1823 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1824 NULL, objfile);
1825 if (!ovly_buf_table_msym.minsym)
1826 return NULL;
1827
1828 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1829 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1830
1831 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1832 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1833
1834 ovly_table = xmalloc (ovly_table_size);
1835 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1836
1837 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1838 objfile->sections_end - objfile->sections,
1839 struct spu_overlay_table);
1840
1841 for (i = 0; i < ovly_table_size / 16; i++)
1842 {
1843 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1844 4, byte_order);
1845 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1846 4, byte_order);
1847 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1848 4, byte_order);
1849 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1850 4, byte_order);
1851
1852 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1853 continue;
1854
1855 ALL_OBJFILE_OSECTIONS (objfile, osect)
1856 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1857 && pos == osect->the_bfd_section->filepos)
1858 {
1859 int ndx = osect - objfile->sections;
1860 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1861 tbl[ndx].mapped_val = i + 1;
1862 break;
1863 }
1864 }
1865
1866 xfree (ovly_table);
1867 set_objfile_data (objfile, spu_overlay_data, tbl);
1868 return tbl;
1869 }
1870
1871 /* Read _ovly_buf_table entry from the target to dermine whether
1872 OSECT is currently mapped, and update the mapped state. */
1873 static void
1874 spu_overlay_update_osect (struct obj_section *osect)
1875 {
1876 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1877 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1878 struct spu_overlay_table *ovly_table;
1879 CORE_ADDR id, val;
1880
1881 ovly_table = spu_get_overlay_table (osect->objfile);
1882 if (!ovly_table)
1883 return;
1884
1885 ovly_table += osect - osect->objfile->sections;
1886 if (ovly_table->mapped_ptr == 0)
1887 return;
1888
1889 id = SPUADDR_SPU (obj_section_addr (osect));
1890 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1891 4, byte_order);
1892 osect->ovly_mapped = (val == ovly_table->mapped_val);
1893 }
1894
1895 /* If OSECT is NULL, then update all sections' mapped state.
1896 If OSECT is non-NULL, then update only OSECT's mapped state. */
1897 static void
1898 spu_overlay_update (struct obj_section *osect)
1899 {
1900 /* Just one section. */
1901 if (osect)
1902 spu_overlay_update_osect (osect);
1903
1904 /* All sections. */
1905 else
1906 {
1907 struct objfile *objfile;
1908
1909 ALL_OBJSECTIONS (objfile, osect)
1910 if (section_is_overlay (osect))
1911 spu_overlay_update_osect (osect);
1912 }
1913 }
1914
1915 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1916 If there is one, go through all sections and make sure for non-
1917 overlay sections LMA equals VMA, while for overlay sections LMA
1918 is larger than SPU_OVERLAY_LMA. */
1919 static void
1920 spu_overlay_new_objfile (struct objfile *objfile)
1921 {
1922 struct spu_overlay_table *ovly_table;
1923 struct obj_section *osect;
1924
1925 /* If we've already touched this file, do nothing. */
1926 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1927 return;
1928
1929 /* Consider only SPU objfiles. */
1930 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1931 return;
1932
1933 /* Check if this objfile has overlays. */
1934 ovly_table = spu_get_overlay_table (objfile);
1935 if (!ovly_table)
1936 return;
1937
1938 /* Now go and fiddle with all the LMAs. */
1939 ALL_OBJFILE_OSECTIONS (objfile, osect)
1940 {
1941 bfd *obfd = objfile->obfd;
1942 asection *bsect = osect->the_bfd_section;
1943 int ndx = osect - objfile->sections;
1944
1945 if (ovly_table[ndx].mapped_ptr == 0)
1946 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1947 else
1948 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1949 }
1950 }
1951
1952
1953 /* Insert temporary breakpoint on "main" function of newly loaded
1954 SPE context OBJFILE. */
1955 static void
1956 spu_catch_start (struct objfile *objfile)
1957 {
1958 struct bound_minimal_symbol minsym;
1959 struct symtab *symtab;
1960 CORE_ADDR pc;
1961 char buf[32];
1962
1963 /* Do this only if requested by "set spu stop-on-load on". */
1964 if (!spu_stop_on_load_p)
1965 return;
1966
1967 /* Consider only SPU objfiles. */
1968 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1969 return;
1970
1971 /* The main objfile is handled differently. */
1972 if (objfile == symfile_objfile)
1973 return;
1974
1975 /* There can be multiple symbols named "main". Search for the
1976 "main" in *this* objfile. */
1977 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1978 if (!minsym.minsym)
1979 return;
1980
1981 /* If we have debugging information, try to use it -- this
1982 will allow us to properly skip the prologue. */
1983 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1984 symtab = find_pc_sect_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1985 minsym.minsym));
1986 if (symtab != NULL)
1987 {
1988 const struct blockvector *bv = BLOCKVECTOR (symtab);
1989 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1990 struct symbol *sym;
1991 struct symtab_and_line sal;
1992
1993 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1994 if (sym)
1995 {
1996 fixup_symbol_section (sym, objfile);
1997 sal = find_function_start_sal (sym, 1);
1998 pc = sal.pc;
1999 }
2000 }
2001
2002 /* Use a numerical address for the set_breakpoint command to avoid having
2003 the breakpoint re-set incorrectly. */
2004 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
2005 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
2006 NULL /* cond_string */, -1 /* thread */,
2007 NULL /* extra_string */,
2008 0 /* parse_condition_and_thread */, 1 /* tempflag */,
2009 bp_breakpoint /* type_wanted */,
2010 0 /* ignore_count */,
2011 AUTO_BOOLEAN_FALSE /* pending_break_support */,
2012 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
2013 1 /* enabled */, 0 /* internal */, 0);
2014 }
2015
2016
2017 /* Look up OBJFILE loaded into FRAME's SPU context. */
2018 static struct objfile *
2019 spu_objfile_from_frame (struct frame_info *frame)
2020 {
2021 struct gdbarch *gdbarch = get_frame_arch (frame);
2022 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2023 struct objfile *obj;
2024
2025 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2026 return NULL;
2027
2028 ALL_OBJFILES (obj)
2029 {
2030 if (obj->sections != obj->sections_end
2031 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2032 return obj;
2033 }
2034
2035 return NULL;
2036 }
2037
2038 /* Flush cache for ea pointer access if available. */
2039 static void
2040 flush_ea_cache (void)
2041 {
2042 struct bound_minimal_symbol msymbol;
2043 struct objfile *obj;
2044
2045 if (!has_stack_frames ())
2046 return;
2047
2048 obj = spu_objfile_from_frame (get_current_frame ());
2049 if (obj == NULL)
2050 return;
2051
2052 /* Lookup inferior function __cache_flush. */
2053 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2054 if (msymbol.minsym != NULL)
2055 {
2056 struct type *type;
2057 CORE_ADDR addr;
2058
2059 type = objfile_type (obj)->builtin_void;
2060 type = lookup_function_type (type);
2061 type = lookup_pointer_type (type);
2062 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2063
2064 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2065 }
2066 }
2067
2068 /* This handler is called when the inferior has stopped. If it is stopped in
2069 SPU architecture then flush the ea cache if used. */
2070 static void
2071 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2072 {
2073 if (!spu_auto_flush_cache_p)
2074 return;
2075
2076 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2077 re-entering this function when __cache_flush stops. */
2078 spu_auto_flush_cache_p = 0;
2079 flush_ea_cache ();
2080 spu_auto_flush_cache_p = 1;
2081 }
2082
2083
2084 /* "info spu" commands. */
2085
2086 static void
2087 info_spu_event_command (char *args, int from_tty)
2088 {
2089 struct frame_info *frame = get_selected_frame (NULL);
2090 ULONGEST event_status = 0;
2091 ULONGEST event_mask = 0;
2092 struct cleanup *chain;
2093 gdb_byte buf[100];
2094 char annex[32];
2095 LONGEST len;
2096 int id;
2097
2098 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2099 error (_("\"info spu\" is only supported on the SPU architecture."));
2100
2101 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2102
2103 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2104 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2105 buf, 0, (sizeof (buf) - 1));
2106 if (len <= 0)
2107 error (_("Could not read event_status."));
2108 buf[len] = '\0';
2109 event_status = strtoulst ((char *) buf, NULL, 16);
2110
2111 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2112 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2113 buf, 0, (sizeof (buf) - 1));
2114 if (len <= 0)
2115 error (_("Could not read event_mask."));
2116 buf[len] = '\0';
2117 event_mask = strtoulst ((char *) buf, NULL, 16);
2118
2119 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2120
2121 if (ui_out_is_mi_like_p (current_uiout))
2122 {
2123 ui_out_field_fmt (current_uiout, "event_status",
2124 "0x%s", phex_nz (event_status, 4));
2125 ui_out_field_fmt (current_uiout, "event_mask",
2126 "0x%s", phex_nz (event_mask, 4));
2127 }
2128 else
2129 {
2130 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2131 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2132 }
2133
2134 do_cleanups (chain);
2135 }
2136
2137 static void
2138 info_spu_signal_command (char *args, int from_tty)
2139 {
2140 struct frame_info *frame = get_selected_frame (NULL);
2141 struct gdbarch *gdbarch = get_frame_arch (frame);
2142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2143 ULONGEST signal1 = 0;
2144 ULONGEST signal1_type = 0;
2145 int signal1_pending = 0;
2146 ULONGEST signal2 = 0;
2147 ULONGEST signal2_type = 0;
2148 int signal2_pending = 0;
2149 struct cleanup *chain;
2150 char annex[32];
2151 gdb_byte buf[100];
2152 LONGEST len;
2153 int id;
2154
2155 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2156 error (_("\"info spu\" is only supported on the SPU architecture."));
2157
2158 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2159
2160 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2161 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2162 if (len < 0)
2163 error (_("Could not read signal1."));
2164 else if (len == 4)
2165 {
2166 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2167 signal1_pending = 1;
2168 }
2169
2170 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2171 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2172 buf, 0, (sizeof (buf) - 1));
2173 if (len <= 0)
2174 error (_("Could not read signal1_type."));
2175 buf[len] = '\0';
2176 signal1_type = strtoulst ((char *) buf, NULL, 16);
2177
2178 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2179 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2180 if (len < 0)
2181 error (_("Could not read signal2."));
2182 else if (len == 4)
2183 {
2184 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2185 signal2_pending = 1;
2186 }
2187
2188 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2189 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2190 buf, 0, (sizeof (buf) - 1));
2191 if (len <= 0)
2192 error (_("Could not read signal2_type."));
2193 buf[len] = '\0';
2194 signal2_type = strtoulst ((char *) buf, NULL, 16);
2195
2196 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2197
2198 if (ui_out_is_mi_like_p (current_uiout))
2199 {
2200 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2201 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2202 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2203 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2204 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2205 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2206 }
2207 else
2208 {
2209 if (signal1_pending)
2210 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2211 else
2212 printf_filtered (_("Signal 1 not pending "));
2213
2214 if (signal1_type)
2215 printf_filtered (_("(Type Or)\n"));
2216 else
2217 printf_filtered (_("(Type Overwrite)\n"));
2218
2219 if (signal2_pending)
2220 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2221 else
2222 printf_filtered (_("Signal 2 not pending "));
2223
2224 if (signal2_type)
2225 printf_filtered (_("(Type Or)\n"));
2226 else
2227 printf_filtered (_("(Type Overwrite)\n"));
2228 }
2229
2230 do_cleanups (chain);
2231 }
2232
2233 static void
2234 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2235 const char *field, const char *msg)
2236 {
2237 struct cleanup *chain;
2238 int i;
2239
2240 if (nr <= 0)
2241 return;
2242
2243 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2244
2245 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2246 ui_out_table_body (current_uiout);
2247
2248 for (i = 0; i < nr; i++)
2249 {
2250 struct cleanup *val_chain;
2251 ULONGEST val;
2252 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2253 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2254 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2255 do_cleanups (val_chain);
2256
2257 if (!ui_out_is_mi_like_p (current_uiout))
2258 printf_filtered ("\n");
2259 }
2260
2261 do_cleanups (chain);
2262 }
2263
2264 static void
2265 info_spu_mailbox_command (char *args, int from_tty)
2266 {
2267 struct frame_info *frame = get_selected_frame (NULL);
2268 struct gdbarch *gdbarch = get_frame_arch (frame);
2269 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2270 struct cleanup *chain;
2271 char annex[32];
2272 gdb_byte buf[1024];
2273 LONGEST len;
2274 int id;
2275
2276 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2277 error (_("\"info spu\" is only supported on the SPU architecture."));
2278
2279 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2280
2281 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2282
2283 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2284 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2285 buf, 0, sizeof buf);
2286 if (len < 0)
2287 error (_("Could not read mbox_info."));
2288
2289 info_spu_mailbox_list (buf, len / 4, byte_order,
2290 "mbox", "SPU Outbound Mailbox");
2291
2292 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2293 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2294 buf, 0, sizeof buf);
2295 if (len < 0)
2296 error (_("Could not read ibox_info."));
2297
2298 info_spu_mailbox_list (buf, len / 4, byte_order,
2299 "ibox", "SPU Outbound Interrupt Mailbox");
2300
2301 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2302 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2303 buf, 0, sizeof buf);
2304 if (len < 0)
2305 error (_("Could not read wbox_info."));
2306
2307 info_spu_mailbox_list (buf, len / 4, byte_order,
2308 "wbox", "SPU Inbound Mailbox");
2309
2310 do_cleanups (chain);
2311 }
2312
2313 static ULONGEST
2314 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2315 {
2316 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2317 return (word >> (63 - last)) & mask;
2318 }
2319
2320 static void
2321 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2322 {
2323 static char *spu_mfc_opcode[256] =
2324 {
2325 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2326 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2327 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2328 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2329 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2330 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2331 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2332 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2333 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2334 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2335 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2338 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2339 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2341 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2342 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2343 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2344 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2345 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2346 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2348 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2349 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2350 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2351 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2354 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2355 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2356 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2357 };
2358
2359 int *seq = alloca (nr * sizeof (int));
2360 int done = 0;
2361 struct cleanup *chain;
2362 int i, j;
2363
2364
2365 /* Determine sequence in which to display (valid) entries. */
2366 for (i = 0; i < nr; i++)
2367 {
2368 /* Search for the first valid entry all of whose
2369 dependencies are met. */
2370 for (j = 0; j < nr; j++)
2371 {
2372 ULONGEST mfc_cq_dw3;
2373 ULONGEST dependencies;
2374
2375 if (done & (1 << (nr - 1 - j)))
2376 continue;
2377
2378 mfc_cq_dw3
2379 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2380 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2381 continue;
2382
2383 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2384 if ((dependencies & done) != dependencies)
2385 continue;
2386
2387 seq[i] = j;
2388 done |= 1 << (nr - 1 - j);
2389 break;
2390 }
2391
2392 if (j == nr)
2393 break;
2394 }
2395
2396 nr = i;
2397
2398
2399 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2400 "dma_cmd");
2401
2402 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2403 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2404 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2405 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2406 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2407 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2408 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2409 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2410 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2411 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2412
2413 ui_out_table_body (current_uiout);
2414
2415 for (i = 0; i < nr; i++)
2416 {
2417 struct cleanup *cmd_chain;
2418 ULONGEST mfc_cq_dw0;
2419 ULONGEST mfc_cq_dw1;
2420 ULONGEST mfc_cq_dw2;
2421 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2422 int list_lsa, list_size, mfc_lsa, mfc_size;
2423 ULONGEST mfc_ea;
2424 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2425
2426 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2427 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2428
2429 mfc_cq_dw0
2430 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2431 mfc_cq_dw1
2432 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2433 mfc_cq_dw2
2434 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2435
2436 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2437 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2438 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2439 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2440 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2441 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2442 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2443
2444 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2445 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2446
2447 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2448 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2449 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2450 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2451 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2452 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2453
2454 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2455
2456 if (spu_mfc_opcode[mfc_cmd_opcode])
2457 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2458 else
2459 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2460
2461 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2462 ui_out_field_int (current_uiout, "tid", tclass_id);
2463 ui_out_field_int (current_uiout, "rid", rclass_id);
2464
2465 if (ea_valid_p)
2466 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2467 else
2468 ui_out_field_skip (current_uiout, "ea");
2469
2470 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2471 if (qw_valid_p)
2472 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2473 else
2474 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2475
2476 if (list_valid_p)
2477 {
2478 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2479 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2480 }
2481 else
2482 {
2483 ui_out_field_skip (current_uiout, "lstaddr");
2484 ui_out_field_skip (current_uiout, "lstsize");
2485 }
2486
2487 if (cmd_error_p)
2488 ui_out_field_string (current_uiout, "error_p", "*");
2489 else
2490 ui_out_field_skip (current_uiout, "error_p");
2491
2492 do_cleanups (cmd_chain);
2493
2494 if (!ui_out_is_mi_like_p (current_uiout))
2495 printf_filtered ("\n");
2496 }
2497
2498 do_cleanups (chain);
2499 }
2500
2501 static void
2502 info_spu_dma_command (char *args, int from_tty)
2503 {
2504 struct frame_info *frame = get_selected_frame (NULL);
2505 struct gdbarch *gdbarch = get_frame_arch (frame);
2506 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2507 ULONGEST dma_info_type;
2508 ULONGEST dma_info_mask;
2509 ULONGEST dma_info_status;
2510 ULONGEST dma_info_stall_and_notify;
2511 ULONGEST dma_info_atomic_command_status;
2512 struct cleanup *chain;
2513 char annex[32];
2514 gdb_byte buf[1024];
2515 LONGEST len;
2516 int id;
2517
2518 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2519 error (_("\"info spu\" is only supported on the SPU architecture."));
2520
2521 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2522
2523 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2524 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2525 buf, 0, 40 + 16 * 32);
2526 if (len <= 0)
2527 error (_("Could not read dma_info."));
2528
2529 dma_info_type
2530 = extract_unsigned_integer (buf, 8, byte_order);
2531 dma_info_mask
2532 = extract_unsigned_integer (buf + 8, 8, byte_order);
2533 dma_info_status
2534 = extract_unsigned_integer (buf + 16, 8, byte_order);
2535 dma_info_stall_and_notify
2536 = extract_unsigned_integer (buf + 24, 8, byte_order);
2537 dma_info_atomic_command_status
2538 = extract_unsigned_integer (buf + 32, 8, byte_order);
2539
2540 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2541
2542 if (ui_out_is_mi_like_p (current_uiout))
2543 {
2544 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2545 phex_nz (dma_info_type, 4));
2546 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2547 phex_nz (dma_info_mask, 4));
2548 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2549 phex_nz (dma_info_status, 4));
2550 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2551 phex_nz (dma_info_stall_and_notify, 4));
2552 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2553 phex_nz (dma_info_atomic_command_status, 4));
2554 }
2555 else
2556 {
2557 const char *query_msg = _("no query pending");
2558
2559 if (dma_info_type & 4)
2560 switch (dma_info_type & 3)
2561 {
2562 case 1: query_msg = _("'any' query pending"); break;
2563 case 2: query_msg = _("'all' query pending"); break;
2564 default: query_msg = _("undefined query type"); break;
2565 }
2566
2567 printf_filtered (_("Tag-Group Status 0x%s\n"),
2568 phex (dma_info_status, 4));
2569 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2570 phex (dma_info_mask, 4), query_msg);
2571 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2572 phex (dma_info_stall_and_notify, 4));
2573 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2574 phex (dma_info_atomic_command_status, 4));
2575 printf_filtered ("\n");
2576 }
2577
2578 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2579 do_cleanups (chain);
2580 }
2581
2582 static void
2583 info_spu_proxydma_command (char *args, int from_tty)
2584 {
2585 struct frame_info *frame = get_selected_frame (NULL);
2586 struct gdbarch *gdbarch = get_frame_arch (frame);
2587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2588 ULONGEST dma_info_type;
2589 ULONGEST dma_info_mask;
2590 ULONGEST dma_info_status;
2591 struct cleanup *chain;
2592 char annex[32];
2593 gdb_byte buf[1024];
2594 LONGEST len;
2595 int id;
2596
2597 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2598 error (_("\"info spu\" is only supported on the SPU architecture."));
2599
2600 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2601
2602 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2603 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2604 buf, 0, 24 + 8 * 32);
2605 if (len <= 0)
2606 error (_("Could not read proxydma_info."));
2607
2608 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2609 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2610 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2611
2612 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2613 "SPUInfoProxyDMA");
2614
2615 if (ui_out_is_mi_like_p (current_uiout))
2616 {
2617 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2618 phex_nz (dma_info_type, 4));
2619 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2620 phex_nz (dma_info_mask, 4));
2621 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2622 phex_nz (dma_info_status, 4));
2623 }
2624 else
2625 {
2626 const char *query_msg;
2627
2628 switch (dma_info_type & 3)
2629 {
2630 case 0: query_msg = _("no query pending"); break;
2631 case 1: query_msg = _("'any' query pending"); break;
2632 case 2: query_msg = _("'all' query pending"); break;
2633 default: query_msg = _("undefined query type"); break;
2634 }
2635
2636 printf_filtered (_("Tag-Group Status 0x%s\n"),
2637 phex (dma_info_status, 4));
2638 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2639 phex (dma_info_mask, 4), query_msg);
2640 printf_filtered ("\n");
2641 }
2642
2643 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2644 do_cleanups (chain);
2645 }
2646
2647 static void
2648 info_spu_command (char *args, int from_tty)
2649 {
2650 printf_unfiltered (_("\"info spu\" must be followed by "
2651 "the name of an SPU facility.\n"));
2652 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2653 }
2654
2655
2656 /* Root of all "set spu "/"show spu " commands. */
2657
2658 static void
2659 show_spu_command (char *args, int from_tty)
2660 {
2661 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2662 }
2663
2664 static void
2665 set_spu_command (char *args, int from_tty)
2666 {
2667 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2668 }
2669
2670 static void
2671 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2672 struct cmd_list_element *c, const char *value)
2673 {
2674 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2675 value);
2676 }
2677
2678 static void
2679 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2680 struct cmd_list_element *c, const char *value)
2681 {
2682 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2683 value);
2684 }
2685
2686
2687 /* Set up gdbarch struct. */
2688
2689 static struct gdbarch *
2690 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2691 {
2692 struct gdbarch *gdbarch;
2693 struct gdbarch_tdep *tdep;
2694 int id = -1;
2695
2696 /* Which spufs ID was requested as address space? */
2697 if (info.tdep_info)
2698 id = *(int *)info.tdep_info;
2699 /* For objfile architectures of SPU solibs, decode the ID from the name.
2700 This assumes the filename convention employed by solib-spu.c. */
2701 else if (info.abfd)
2702 {
2703 char *name = strrchr (info.abfd->filename, '@');
2704 if (name)
2705 sscanf (name, "@0x%*x <%d>", &id);
2706 }
2707
2708 /* Find a candidate among extant architectures. */
2709 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2710 arches != NULL;
2711 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2712 {
2713 tdep = gdbarch_tdep (arches->gdbarch);
2714 if (tdep && tdep->id == id)
2715 return arches->gdbarch;
2716 }
2717
2718 /* None found, so create a new architecture. */
2719 tdep = XCNEW (struct gdbarch_tdep);
2720 tdep->id = id;
2721 gdbarch = gdbarch_alloc (&info, tdep);
2722
2723 /* Disassembler. */
2724 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2725
2726 /* Registers. */
2727 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2728 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2729 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2730 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2731 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2732 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2733 set_gdbarch_register_name (gdbarch, spu_register_name);
2734 set_gdbarch_register_type (gdbarch, spu_register_type);
2735 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2736 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2737 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2738 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2739 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2740 set_gdbarch_ax_pseudo_register_collect
2741 (gdbarch, spu_ax_pseudo_register_collect);
2742 set_gdbarch_ax_pseudo_register_push_stack
2743 (gdbarch, spu_ax_pseudo_register_push_stack);
2744
2745 /* Data types. */
2746 set_gdbarch_char_signed (gdbarch, 0);
2747 set_gdbarch_ptr_bit (gdbarch, 32);
2748 set_gdbarch_addr_bit (gdbarch, 32);
2749 set_gdbarch_short_bit (gdbarch, 16);
2750 set_gdbarch_int_bit (gdbarch, 32);
2751 set_gdbarch_long_bit (gdbarch, 32);
2752 set_gdbarch_long_long_bit (gdbarch, 64);
2753 set_gdbarch_float_bit (gdbarch, 32);
2754 set_gdbarch_double_bit (gdbarch, 64);
2755 set_gdbarch_long_double_bit (gdbarch, 64);
2756 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2757 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2758 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2759
2760 /* Address handling. */
2761 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2762 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2763 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2764 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2765 set_gdbarch_address_class_type_flags_to_name
2766 (gdbarch, spu_address_class_type_flags_to_name);
2767 set_gdbarch_address_class_name_to_type_flags
2768 (gdbarch, spu_address_class_name_to_type_flags);
2769
2770
2771 /* Inferior function calls. */
2772 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2773 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2774 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2775 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2776 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2777 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2778 set_gdbarch_return_value (gdbarch, spu_return_value);
2779
2780 /* Frame handling. */
2781 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2782 dwarf2_append_unwinders (gdbarch);
2783 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2784 frame_base_set_default (gdbarch, &spu_frame_base);
2785 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2786 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2787 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2788 set_gdbarch_frame_args_skip (gdbarch, 0);
2789 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2790 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2791
2792 /* Cell/B.E. cross-architecture unwinder support. */
2793 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2794
2795 /* Breakpoints. */
2796 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2797 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2798 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2799 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2800 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2801 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2802
2803 /* Overlays. */
2804 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2805
2806 return gdbarch;
2807 }
2808
2809 /* Provide a prototype to silence -Wmissing-prototypes. */
2810 extern initialize_file_ftype _initialize_spu_tdep;
2811
2812 void
2813 _initialize_spu_tdep (void)
2814 {
2815 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2816
2817 /* Add ourselves to objfile event chain. */
2818 observer_attach_new_objfile (spu_overlay_new_objfile);
2819 spu_overlay_data = register_objfile_data ();
2820
2821 /* Install spu stop-on-load handler. */
2822 observer_attach_new_objfile (spu_catch_start);
2823
2824 /* Add ourselves to normal_stop event chain. */
2825 observer_attach_normal_stop (spu_attach_normal_stop);
2826
2827 /* Add root prefix command for all "set spu"/"show spu" commands. */
2828 add_prefix_cmd ("spu", no_class, set_spu_command,
2829 _("Various SPU specific commands."),
2830 &setspucmdlist, "set spu ", 0, &setlist);
2831 add_prefix_cmd ("spu", no_class, show_spu_command,
2832 _("Various SPU specific commands."),
2833 &showspucmdlist, "show spu ", 0, &showlist);
2834
2835 /* Toggle whether or not to add a temporary breakpoint at the "main"
2836 function of new SPE contexts. */
2837 add_setshow_boolean_cmd ("stop-on-load", class_support,
2838 &spu_stop_on_load_p, _("\
2839 Set whether to stop for new SPE threads."),
2840 _("\
2841 Show whether to stop for new SPE threads."),
2842 _("\
2843 Use \"on\" to give control to the user when a new SPE thread\n\
2844 enters its \"main\" function.\n\
2845 Use \"off\" to disable stopping for new SPE threads."),
2846 NULL,
2847 show_spu_stop_on_load,
2848 &setspucmdlist, &showspucmdlist);
2849
2850 /* Toggle whether or not to automatically flush the software-managed
2851 cache whenever SPE execution stops. */
2852 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2853 &spu_auto_flush_cache_p, _("\
2854 Set whether to automatically flush the software-managed cache."),
2855 _("\
2856 Show whether to automatically flush the software-managed cache."),
2857 _("\
2858 Use \"on\" to automatically flush the software-managed cache\n\
2859 whenever SPE execution stops.\n\
2860 Use \"off\" to never automatically flush the software-managed cache."),
2861 NULL,
2862 show_spu_auto_flush_cache,
2863 &setspucmdlist, &showspucmdlist);
2864
2865 /* Add root prefix command for all "info spu" commands. */
2866 add_prefix_cmd ("spu", class_info, info_spu_command,
2867 _("Various SPU specific commands."),
2868 &infospucmdlist, "info spu ", 0, &infolist);
2869
2870 /* Add various "info spu" commands. */
2871 add_cmd ("event", class_info, info_spu_event_command,
2872 _("Display SPU event facility status.\n"),
2873 &infospucmdlist);
2874 add_cmd ("signal", class_info, info_spu_signal_command,
2875 _("Display SPU signal notification facility status.\n"),
2876 &infospucmdlist);
2877 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2878 _("Display SPU mailbox facility status.\n"),
2879 &infospucmdlist);
2880 add_cmd ("dma", class_info, info_spu_dma_command,
2881 _("Display MFC DMA status.\n"),
2882 &infospucmdlist);
2883 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2884 _("Display MFC Proxy-DMA status.\n"),
2885 &infospucmdlist);
2886 }
This page took 0.092871 seconds and 4 git commands to generate.