Use ui_file_as_string in gdb/compile/
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "floatformat.h"
41 #include "block.h"
42 #include "observer.h"
43 #include "infcall.h"
44 #include "dwarf2.h"
45 #include "dwarf2-frame.h"
46 #include "ax.h"
47 #include "spu-tdep.h"
48 #include "location.h"
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
194 ULONGEST ul;
195
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
206 return REG_VALID;
207 }
208
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 gdb_byte reg[16];
214 char annex[32];
215 ULONGEST id;
216 enum register_status status;
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
224 memcpy (buf, reg, 4);
225 return status;
226
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
233 return status;
234
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
246
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250 }
251
252 static void
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255 {
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 char reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
268 }
269
270 static void
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273 {
274 gdb_byte reg[16];
275 char annex[32];
276 ULONGEST id;
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311 }
312
313 static int
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316 {
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333 }
334
335 static int
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338 {
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355 }
356
357
358 /* Value conversion -- access scalar values at the preferred slot. */
359
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
363 {
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
366 LONGEST len = TYPE_LENGTH (type);
367
368 if (regnum < SPU_NUM_GPRS && len < 16)
369 {
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
372 }
373
374 return value;
375 }
376
377 /* Register groups. */
378
379 static int
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382 {
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397 }
398
399 /* DWARF-2 register numbers. */
400
401 static int
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403 {
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406 }
407
408
409 /* Address handling. */
410
411 static int
412 spu_gdbarch_id (struct gdbarch *gdbarch)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427 }
428
429 static int
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431 {
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436 }
437
438 static const char *
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440 {
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445 }
446
447 static int
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450 {
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458 }
459
460 static void
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463 {
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467 }
468
469 static CORE_ADDR
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
472 {
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
477
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
482 return addr? SPUADDR (id, addr) : 0;
483 }
484
485 static CORE_ADDR
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488 {
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
491
492 return SPUADDR (id, addr);
493 }
494
495
496 /* Decoding SPU instructions. */
497
498 enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
514 op_selb = 0x8,
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532 static int
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534 {
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548 {
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563 {
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573 }
574
575 static int
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577 {
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587 }
588
589 static int
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591 {
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600 }
601
602 static int
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604 {
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613 }
614
615 static int
616 is_branch (unsigned int insn, int *offset, int *reg)
617 {
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652 }
653
654
655 /* Prolog parsing. */
656
657 struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670 static CORE_ADDR
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
674 {
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
679 int found_bc = 0;
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
709
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
737 insn = extract_unsigned_integer (buf, 4, byte_order);
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852 }
853
854 /* Return the first instruction after the prologue starting at PC. */
855 static CORE_ADDR
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
857 {
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
860 }
861
862 /* Return the frame pointer in use at address PC. */
863 static void
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
866 {
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882 }
883
884 /* Implement the stack_frame_destroyed_p gdbarch method.
885
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
889 an epilogue, return.
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
892 an epilogue.
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
899
900 static int
901 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
902 {
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
905 bfd_byte buf[4];
906 unsigned int insn;
907 int rt, ra, rb, immed;
908
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
911
912 const int spu_max_epilogue_size = 64 * 4;
913
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
915 return 0;
916
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
919 else
920 epilogue_start = pc - spu_max_epilogue_size;
921
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
924 else
925 epilogue_end = pc + spu_max_epilogue_size;
926
927 /* Scan forward until next 'bi $0'. */
928
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
930 {
931 if (target_read_memory (scan_pc, buf, 4))
932 return 0;
933 insn = extract_unsigned_integer (buf, 4, byte_order);
934
935 if (is_branch (insn, &immed, &ra))
936 {
937 if (immed == 0 && ra == SPU_LR_REGNUM)
938 break;
939
940 return 0;
941 }
942
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
946 {
947 if (rt == SPU_RAW_SP_REGNUM)
948 return 0;
949 }
950 }
951
952 if (scan_pc >= epilogue_end)
953 return 0;
954
955 /* Scan backward until adjustment to stack pointer (R1). */
956
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
958 {
959 if (target_read_memory (scan_pc, buf, 4))
960 return 0;
961 insn = extract_unsigned_integer (buf, 4, byte_order);
962
963 if (is_branch (insn, &immed, &ra))
964 return 0;
965
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
969 {
970 if (rt == SPU_RAW_SP_REGNUM)
971 return 1;
972 }
973 }
974
975 return 0;
976 }
977
978
979 /* Normal stack frames. */
980
981 struct spu_unwind_cache
982 {
983 CORE_ADDR func;
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
986
987 struct trad_frame_saved_reg *saved_regs;
988 };
989
990 static struct spu_unwind_cache *
991 spu_frame_unwind_cache (struct frame_info *this_frame,
992 void **this_prologue_cache)
993 {
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
999 CORE_ADDR id = tdep->id;
1000 gdb_byte buf[16];
1001
1002 if (*this_prologue_cache)
1003 return (struct spu_unwind_cache *) *this_prologue_cache;
1004
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 info->frame_base = 0;
1009 info->local_base = 0;
1010
1011 /* Find the start of the current function, and analyze its prologue. */
1012 info->func = get_frame_func (this_frame);
1013 if (info->func == 0)
1014 {
1015 /* Fall back to using the current PC as frame ID. */
1016 info->func = get_frame_pc (this_frame);
1017 data.size = -1;
1018 }
1019 else
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1021 &data);
1022
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1025 {
1026 CORE_ADDR cfa;
1027 int i;
1028
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1030 get_frame_register (this_frame, data.cfa_reg, buf);
1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1032 cfa = SPUADDR (id, cfa);
1033
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1040
1041 /* Frame bases. */
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1044 }
1045
1046 /* Otherwise, fall back to reading the backchain link. */
1047 else
1048 {
1049 CORE_ADDR reg;
1050 LONGEST backchain;
1051 ULONGEST lslr;
1052 int status;
1053
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1056 if (!lslr)
1057 lslr = (ULONGEST) -1;
1058
1059 /* Get the backchain. */
1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1062 &backchain);
1063
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
1066 if (status && backchain > 0 && backchain <= lslr)
1067 {
1068 /* Assume the link register is saved into its slot. */
1069 if (backchain + 16 <= lslr)
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1071 backchain + 16);
1072
1073 /* Frame bases. */
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
1076 }
1077 }
1078
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1081 return info;
1082
1083 /* The previous SP is equal to the CFA. */
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
1086
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1091 else
1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1093
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1102 extract_unsigned_integer (buf + 8, 4, byte_order));
1103 else
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1105 extract_unsigned_integer (buf, 4, byte_order));
1106
1107 return info;
1108 }
1109
1110 static void
1111 spu_frame_this_id (struct frame_info *this_frame,
1112 void **this_prologue_cache, struct frame_id *this_id)
1113 {
1114 struct spu_unwind_cache *info =
1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1116
1117 if (info->frame_base == 0)
1118 return;
1119
1120 *this_id = frame_id_build (info->frame_base, info->func);
1121 }
1122
1123 static struct value *
1124 spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
1126 {
1127 struct spu_unwind_cache *info
1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1129
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1133
1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1135 }
1136
1137 static const struct frame_unwind spu_frame_unwind = {
1138 NORMAL_FRAME,
1139 default_frame_unwind_stop_reason,
1140 spu_frame_this_id,
1141 spu_frame_prev_register,
1142 NULL,
1143 default_frame_sniffer
1144 };
1145
1146 static CORE_ADDR
1147 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1148 {
1149 struct spu_unwind_cache *info
1150 = spu_frame_unwind_cache (this_frame, this_cache);
1151 return info->local_base;
1152 }
1153
1154 static const struct frame_base spu_frame_base = {
1155 &spu_frame_unwind,
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1159 };
1160
1161 static CORE_ADDR
1162 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1163 {
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
1167 return SPUADDR (tdep->id, pc & -4);
1168 }
1169
1170 static CORE_ADDR
1171 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172 {
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
1176 }
1177
1178 static CORE_ADDR
1179 spu_read_pc (struct regcache *regcache)
1180 {
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1182 ULONGEST pc;
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1184 /* Mask off interrupt enable bit. */
1185 return SPUADDR (tdep->id, pc & -4);
1186 }
1187
1188 static void
1189 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1190 {
1191 /* Keep interrupt enabled state unchanged. */
1192 ULONGEST old_pc;
1193
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1197 }
1198
1199
1200 /* Cell/B.E. cross-architecture unwinder support. */
1201
1202 struct spu2ppu_cache
1203 {
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1206 };
1207
1208 static struct gdbarch *
1209 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1210 {
1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1212 return get_regcache_arch (cache->regcache);
1213 }
1214
1215 static void
1216 spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1218 {
1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1220 *this_id = cache->frame_id;
1221 }
1222
1223 static struct value *
1224 spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1226 {
1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1228 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1229 gdb_byte *buf;
1230
1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1234 }
1235
1236 static int
1237 spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1239 {
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1243 gdb_byte buf[4];
1244
1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1246 return 0;
1247
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1251 return 0;
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1253
1254 if (!backchain)
1255 {
1256 struct frame_info *fi;
1257
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1260
1261 cache->frame_id = frame_id_build (base + 16, func);
1262
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1265 break;
1266
1267 if (fi)
1268 {
1269 cache->regcache = frame_save_as_regcache (fi);
1270 *this_prologue_cache = cache;
1271 return 1;
1272 }
1273 else
1274 {
1275 struct regcache *regcache;
1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 static void
1287 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1288 {
1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1290 regcache_xfree (cache->regcache);
1291 }
1292
1293 static const struct frame_unwind spu2ppu_unwind = {
1294 ARCH_FRAME,
1295 default_frame_unwind_stop_reason,
1296 spu2ppu_this_id,
1297 spu2ppu_prev_register,
1298 NULL,
1299 spu2ppu_sniffer,
1300 spu2ppu_dealloc_cache,
1301 spu2ppu_prev_arch,
1302 };
1303
1304
1305 /* Function calling convention. */
1306
1307 static CORE_ADDR
1308 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1309 {
1310 return sp & ~15;
1311 }
1312
1313 static CORE_ADDR
1314 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1318 {
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1322 *bp_addr = sp;
1323 /* The call starts at the callee's entry point. */
1324 *real_pc = funaddr;
1325
1326 return sp;
1327 }
1328
1329 static int
1330 spu_scalar_value_p (struct type *type)
1331 {
1332 switch (TYPE_CODE (type))
1333 {
1334 case TYPE_CODE_INT:
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1339 case TYPE_CODE_PTR:
1340 case TYPE_CODE_REF:
1341 return TYPE_LENGTH (type) <= 16;
1342
1343 default:
1344 return 0;
1345 }
1346 }
1347
1348 static void
1349 spu_value_to_regcache (struct regcache *regcache, int regnum,
1350 struct type *type, const gdb_byte *in)
1351 {
1352 int len = TYPE_LENGTH (type);
1353
1354 if (spu_scalar_value_p (type))
1355 {
1356 int preferred_slot = len < 4 ? 4 - len : 0;
1357 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1358 }
1359 else
1360 {
1361 while (len >= 16)
1362 {
1363 regcache_cooked_write (regcache, regnum++, in);
1364 in += 16;
1365 len -= 16;
1366 }
1367
1368 if (len > 0)
1369 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1370 }
1371 }
1372
1373 static void
1374 spu_regcache_to_value (struct regcache *regcache, int regnum,
1375 struct type *type, gdb_byte *out)
1376 {
1377 int len = TYPE_LENGTH (type);
1378
1379 if (spu_scalar_value_p (type))
1380 {
1381 int preferred_slot = len < 4 ? 4 - len : 0;
1382 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1383 }
1384 else
1385 {
1386 while (len >= 16)
1387 {
1388 regcache_cooked_read (regcache, regnum++, out);
1389 out += 16;
1390 len -= 16;
1391 }
1392
1393 if (len > 0)
1394 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1395 }
1396 }
1397
1398 static CORE_ADDR
1399 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1400 struct regcache *regcache, CORE_ADDR bp_addr,
1401 int nargs, struct value **args, CORE_ADDR sp,
1402 int struct_return, CORE_ADDR struct_addr)
1403 {
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1405 CORE_ADDR sp_delta;
1406 int i;
1407 int regnum = SPU_ARG1_REGNUM;
1408 int stack_arg = -1;
1409 gdb_byte buf[16];
1410
1411 /* Set the return address. */
1412 memset (buf, 0, sizeof buf);
1413 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1414 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1415
1416 /* If STRUCT_RETURN is true, then the struct return address (in
1417 STRUCT_ADDR) will consume the first argument-passing register.
1418 Both adjust the register count and store that value. */
1419 if (struct_return)
1420 {
1421 memset (buf, 0, sizeof buf);
1422 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1423 regcache_cooked_write (regcache, regnum++, buf);
1424 }
1425
1426 /* Fill in argument registers. */
1427 for (i = 0; i < nargs; i++)
1428 {
1429 struct value *arg = args[i];
1430 struct type *type = check_typedef (value_type (arg));
1431 const gdb_byte *contents = value_contents (arg);
1432 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1433
1434 /* If the argument doesn't wholly fit into registers, it and
1435 all subsequent arguments go to the stack. */
1436 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1437 {
1438 stack_arg = i;
1439 break;
1440 }
1441
1442 spu_value_to_regcache (regcache, regnum, type, contents);
1443 regnum += n_regs;
1444 }
1445
1446 /* Overflow arguments go to the stack. */
1447 if (stack_arg != -1)
1448 {
1449 CORE_ADDR ap;
1450
1451 /* Allocate all required stack size. */
1452 for (i = stack_arg; i < nargs; i++)
1453 {
1454 struct type *type = check_typedef (value_type (args[i]));
1455 sp -= align_up (TYPE_LENGTH (type), 16);
1456 }
1457
1458 /* Fill in stack arguments. */
1459 ap = sp;
1460 for (i = stack_arg; i < nargs; i++)
1461 {
1462 struct value *arg = args[i];
1463 struct type *type = check_typedef (value_type (arg));
1464 int len = TYPE_LENGTH (type);
1465 int preferred_slot;
1466
1467 if (spu_scalar_value_p (type))
1468 preferred_slot = len < 4 ? 4 - len : 0;
1469 else
1470 preferred_slot = 0;
1471
1472 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1473 ap += align_up (TYPE_LENGTH (type), 16);
1474 }
1475 }
1476
1477 /* Allocate stack frame header. */
1478 sp -= 32;
1479
1480 /* Store stack back chain. */
1481 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1482 target_write_memory (sp, buf, 16);
1483
1484 /* Finally, update all slots of the SP register. */
1485 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1486 for (i = 0; i < 4; i++)
1487 {
1488 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1489 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1490 }
1491 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1492
1493 return sp;
1494 }
1495
1496 static struct frame_id
1497 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1498 {
1499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1500 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1501 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1502 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1503 }
1504
1505 /* Function return value access. */
1506
1507 static enum return_value_convention
1508 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1509 struct type *type, struct regcache *regcache,
1510 gdb_byte *out, const gdb_byte *in)
1511 {
1512 struct type *func_type = function ? value_type (function) : NULL;
1513 enum return_value_convention rvc;
1514 int opencl_vector = 0;
1515
1516 if (func_type)
1517 {
1518 func_type = check_typedef (func_type);
1519
1520 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1521 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1522
1523 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1524 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1525 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1526 && TYPE_VECTOR (type))
1527 opencl_vector = 1;
1528 }
1529
1530 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1531 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1532 else
1533 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1534
1535 if (in)
1536 {
1537 switch (rvc)
1538 {
1539 case RETURN_VALUE_REGISTER_CONVENTION:
1540 if (opencl_vector && TYPE_LENGTH (type) == 2)
1541 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1542 else
1543 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1544 break;
1545
1546 case RETURN_VALUE_STRUCT_CONVENTION:
1547 error (_("Cannot set function return value."));
1548 break;
1549 }
1550 }
1551 else if (out)
1552 {
1553 switch (rvc)
1554 {
1555 case RETURN_VALUE_REGISTER_CONVENTION:
1556 if (opencl_vector && TYPE_LENGTH (type) == 2)
1557 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1558 else
1559 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1560 break;
1561
1562 case RETURN_VALUE_STRUCT_CONVENTION:
1563 error (_("Function return value unknown."));
1564 break;
1565 }
1566 }
1567
1568 return rvc;
1569 }
1570
1571
1572 /* Breakpoints. */
1573 constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
1574
1575 typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
1576
1577 static int
1578 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1579 struct bp_target_info *bp_tgt)
1580 {
1581 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1582 that in a combined application, we have some breakpoints inserted in SPU
1583 code, and now the application forks (on the PPU side). GDB common code
1584 will assume that the fork system call copied all breakpoints into the new
1585 process' address space, and that all those copies now need to be removed
1586 (see breakpoint.c:detach_breakpoints).
1587
1588 While this is certainly true for PPU side breakpoints, it is not true
1589 for SPU side breakpoints. fork will clone the SPU context file
1590 descriptors, so that all the existing SPU contexts are in accessible
1591 in the new process. However, the contents of the SPU contexts themselves
1592 are *not* cloned. Therefore the effect of detach_breakpoints is to
1593 remove SPU breakpoints from the *original* SPU context's local store
1594 -- this is not the correct behaviour.
1595
1596 The workaround is to check whether the PID we are asked to remove this
1597 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1598 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1599 true in the context of detach_breakpoints. If so, we simply do nothing.
1600 [ Note that for the fork child process, it does not matter if breakpoints
1601 remain inserted, because those SPU contexts are not runnable anyway --
1602 the Linux kernel allows only the original process to invoke spu_run. */
1603
1604 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1605 return 0;
1606
1607 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1608 }
1609
1610
1611 /* Software single-stepping support. */
1612
1613 static VEC (CORE_ADDR) *
1614 spu_software_single_step (struct frame_info *frame)
1615 {
1616 struct gdbarch *gdbarch = get_frame_arch (frame);
1617 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1618 CORE_ADDR pc, next_pc;
1619 unsigned int insn;
1620 int offset, reg;
1621 gdb_byte buf[4];
1622 ULONGEST lslr;
1623 VEC (CORE_ADDR) *next_pcs = NULL;
1624
1625 pc = get_frame_pc (frame);
1626
1627 if (target_read_memory (pc, buf, 4))
1628 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1629 paddress (gdbarch, pc));
1630
1631 insn = extract_unsigned_integer (buf, 4, byte_order);
1632
1633 /* Get local store limit. */
1634 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1635 if (!lslr)
1636 lslr = (ULONGEST) -1;
1637
1638 /* Next sequential instruction is at PC + 4, except if the current
1639 instruction is a PPE-assisted call, in which case it is at PC + 8.
1640 Wrap around LS limit to be on the safe side. */
1641 if ((insn & 0xffffff00) == 0x00002100)
1642 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1643 else
1644 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1645
1646 VEC_safe_push (CORE_ADDR, next_pcs, SPUADDR (SPUADDR_SPU (pc), next_pc));
1647
1648 if (is_branch (insn, &offset, &reg))
1649 {
1650 CORE_ADDR target = offset;
1651
1652 if (reg == SPU_PC_REGNUM)
1653 target += SPUADDR_ADDR (pc);
1654 else if (reg != -1)
1655 {
1656 int optim, unavail;
1657
1658 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1659 &optim, &unavail))
1660 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1661 else
1662 {
1663 if (optim)
1664 throw_error (OPTIMIZED_OUT_ERROR,
1665 _("Could not determine address of "
1666 "single-step breakpoint."));
1667 if (unavail)
1668 throw_error (NOT_AVAILABLE_ERROR,
1669 _("Could not determine address of "
1670 "single-step breakpoint."));
1671 }
1672 }
1673
1674 target = target & lslr;
1675 if (target != next_pc)
1676 VEC_safe_push (CORE_ADDR, next_pcs, SPUADDR (SPUADDR_SPU (pc),
1677 target));
1678 }
1679
1680 return next_pcs;
1681 }
1682
1683
1684 /* Longjmp support. */
1685
1686 static int
1687 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1688 {
1689 struct gdbarch *gdbarch = get_frame_arch (frame);
1690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1692 gdb_byte buf[4];
1693 CORE_ADDR jb_addr;
1694 int optim, unavail;
1695
1696 /* Jump buffer is pointed to by the argument register $r3. */
1697 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1698 &optim, &unavail))
1699 return 0;
1700
1701 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1702 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1703 return 0;
1704
1705 *pc = extract_unsigned_integer (buf, 4, byte_order);
1706 *pc = SPUADDR (tdep->id, *pc);
1707 return 1;
1708 }
1709
1710
1711 /* Disassembler. */
1712
1713 struct spu_dis_asm_data
1714 {
1715 struct gdbarch *gdbarch;
1716 int id;
1717 };
1718
1719 static void
1720 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1721 {
1722 struct spu_dis_asm_data *data
1723 = (struct spu_dis_asm_data *) info->application_data;
1724 print_address (data->gdbarch, SPUADDR (data->id, addr),
1725 (struct ui_file *) info->stream);
1726 }
1727
1728 static int
1729 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1730 {
1731 /* The opcodes disassembler does 18-bit address arithmetic. Make
1732 sure the SPU ID encoded in the high bits is added back when we
1733 call print_address. */
1734 struct disassemble_info spu_info = *info;
1735 struct spu_dis_asm_data data;
1736 data.gdbarch = (struct gdbarch *) info->application_data;
1737 data.id = SPUADDR_SPU (memaddr);
1738
1739 spu_info.application_data = &data;
1740 spu_info.print_address_func = spu_dis_asm_print_address;
1741 return print_insn_spu (memaddr, &spu_info);
1742 }
1743
1744
1745 /* Target overlays for the SPU overlay manager.
1746
1747 See the documentation of simple_overlay_update for how the
1748 interface is supposed to work.
1749
1750 Data structures used by the overlay manager:
1751
1752 struct ovly_table
1753 {
1754 u32 vma;
1755 u32 size;
1756 u32 pos;
1757 u32 buf;
1758 } _ovly_table[]; -- one entry per overlay section
1759
1760 struct ovly_buf_table
1761 {
1762 u32 mapped;
1763 } _ovly_buf_table[]; -- one entry per overlay buffer
1764
1765 _ovly_table should never change.
1766
1767 Both tables are aligned to a 16-byte boundary, the symbols
1768 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1769 size set to the size of the respective array. buf in _ovly_table is
1770 an index into _ovly_buf_table.
1771
1772 mapped is an index into _ovly_table. Both the mapped and buf indices start
1773 from one to reference the first entry in their respective tables. */
1774
1775 /* Using the per-objfile private data mechanism, we store for each
1776 objfile an array of "struct spu_overlay_table" structures, one
1777 for each obj_section of the objfile. This structure holds two
1778 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1779 is *not* an overlay section. If it is non-zero, it represents
1780 a target address. The overlay section is mapped iff the target
1781 integer at this location equals MAPPED_VAL. */
1782
1783 static const struct objfile_data *spu_overlay_data;
1784
1785 struct spu_overlay_table
1786 {
1787 CORE_ADDR mapped_ptr;
1788 CORE_ADDR mapped_val;
1789 };
1790
1791 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1792 the _ovly_table data structure from the target and initialize the
1793 spu_overlay_table data structure from it. */
1794 static struct spu_overlay_table *
1795 spu_get_overlay_table (struct objfile *objfile)
1796 {
1797 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1798 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1799 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1800 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1801 unsigned ovly_table_size, ovly_buf_table_size;
1802 struct spu_overlay_table *tbl;
1803 struct obj_section *osect;
1804 gdb_byte *ovly_table;
1805 int i;
1806
1807 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1808 if (tbl)
1809 return tbl;
1810
1811 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1812 if (!ovly_table_msym.minsym)
1813 return NULL;
1814
1815 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1816 NULL, objfile);
1817 if (!ovly_buf_table_msym.minsym)
1818 return NULL;
1819
1820 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1821 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1822
1823 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1824 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1825
1826 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1827 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1828
1829 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1830 objfile->sections_end - objfile->sections,
1831 struct spu_overlay_table);
1832
1833 for (i = 0; i < ovly_table_size / 16; i++)
1834 {
1835 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1836 4, byte_order);
1837 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1838 4, byte_order);
1839 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1840 4, byte_order);
1841 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1842 4, byte_order);
1843
1844 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1845 continue;
1846
1847 ALL_OBJFILE_OSECTIONS (objfile, osect)
1848 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1849 && pos == osect->the_bfd_section->filepos)
1850 {
1851 int ndx = osect - objfile->sections;
1852 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1853 tbl[ndx].mapped_val = i + 1;
1854 break;
1855 }
1856 }
1857
1858 xfree (ovly_table);
1859 set_objfile_data (objfile, spu_overlay_data, tbl);
1860 return tbl;
1861 }
1862
1863 /* Read _ovly_buf_table entry from the target to dermine whether
1864 OSECT is currently mapped, and update the mapped state. */
1865 static void
1866 spu_overlay_update_osect (struct obj_section *osect)
1867 {
1868 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1869 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1870 struct spu_overlay_table *ovly_table;
1871 CORE_ADDR id, val;
1872
1873 ovly_table = spu_get_overlay_table (osect->objfile);
1874 if (!ovly_table)
1875 return;
1876
1877 ovly_table += osect - osect->objfile->sections;
1878 if (ovly_table->mapped_ptr == 0)
1879 return;
1880
1881 id = SPUADDR_SPU (obj_section_addr (osect));
1882 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1883 4, byte_order);
1884 osect->ovly_mapped = (val == ovly_table->mapped_val);
1885 }
1886
1887 /* If OSECT is NULL, then update all sections' mapped state.
1888 If OSECT is non-NULL, then update only OSECT's mapped state. */
1889 static void
1890 spu_overlay_update (struct obj_section *osect)
1891 {
1892 /* Just one section. */
1893 if (osect)
1894 spu_overlay_update_osect (osect);
1895
1896 /* All sections. */
1897 else
1898 {
1899 struct objfile *objfile;
1900
1901 ALL_OBJSECTIONS (objfile, osect)
1902 if (section_is_overlay (osect))
1903 spu_overlay_update_osect (osect);
1904 }
1905 }
1906
1907 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1908 If there is one, go through all sections and make sure for non-
1909 overlay sections LMA equals VMA, while for overlay sections LMA
1910 is larger than SPU_OVERLAY_LMA. */
1911 static void
1912 spu_overlay_new_objfile (struct objfile *objfile)
1913 {
1914 struct spu_overlay_table *ovly_table;
1915 struct obj_section *osect;
1916
1917 /* If we've already touched this file, do nothing. */
1918 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1919 return;
1920
1921 /* Consider only SPU objfiles. */
1922 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1923 return;
1924
1925 /* Check if this objfile has overlays. */
1926 ovly_table = spu_get_overlay_table (objfile);
1927 if (!ovly_table)
1928 return;
1929
1930 /* Now go and fiddle with all the LMAs. */
1931 ALL_OBJFILE_OSECTIONS (objfile, osect)
1932 {
1933 bfd *obfd = objfile->obfd;
1934 asection *bsect = osect->the_bfd_section;
1935 int ndx = osect - objfile->sections;
1936
1937 if (ovly_table[ndx].mapped_ptr == 0)
1938 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1939 else
1940 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1941 }
1942 }
1943
1944
1945 /* Insert temporary breakpoint on "main" function of newly loaded
1946 SPE context OBJFILE. */
1947 static void
1948 spu_catch_start (struct objfile *objfile)
1949 {
1950 struct bound_minimal_symbol minsym;
1951 struct compunit_symtab *cust;
1952 CORE_ADDR pc;
1953 struct event_location *location;
1954 struct cleanup *back_to;
1955
1956 /* Do this only if requested by "set spu stop-on-load on". */
1957 if (!spu_stop_on_load_p)
1958 return;
1959
1960 /* Consider only SPU objfiles. */
1961 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1962 return;
1963
1964 /* The main objfile is handled differently. */
1965 if (objfile == symfile_objfile)
1966 return;
1967
1968 /* There can be multiple symbols named "main". Search for the
1969 "main" in *this* objfile. */
1970 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1971 if (!minsym.minsym)
1972 return;
1973
1974 /* If we have debugging information, try to use it -- this
1975 will allow us to properly skip the prologue. */
1976 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1977 cust
1978 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1979 minsym.minsym));
1980 if (cust != NULL)
1981 {
1982 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1983 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1984 struct symbol *sym;
1985 struct symtab_and_line sal;
1986
1987 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1988 if (sym)
1989 {
1990 fixup_symbol_section (sym, objfile);
1991 sal = find_function_start_sal (sym, 1);
1992 pc = sal.pc;
1993 }
1994 }
1995
1996 /* Use a numerical address for the set_breakpoint command to avoid having
1997 the breakpoint re-set incorrectly. */
1998 location = new_address_location (pc, NULL, 0);
1999 back_to = make_cleanup_delete_event_location (location);
2000 create_breakpoint (get_objfile_arch (objfile), location,
2001 NULL /* cond_string */, -1 /* thread */,
2002 NULL /* extra_string */,
2003 0 /* parse_condition_and_thread */, 1 /* tempflag */,
2004 bp_breakpoint /* type_wanted */,
2005 0 /* ignore_count */,
2006 AUTO_BOOLEAN_FALSE /* pending_break_support */,
2007 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
2008 1 /* enabled */, 0 /* internal */, 0);
2009 do_cleanups (back_to);
2010 }
2011
2012
2013 /* Look up OBJFILE loaded into FRAME's SPU context. */
2014 static struct objfile *
2015 spu_objfile_from_frame (struct frame_info *frame)
2016 {
2017 struct gdbarch *gdbarch = get_frame_arch (frame);
2018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2019 struct objfile *obj;
2020
2021 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2022 return NULL;
2023
2024 ALL_OBJFILES (obj)
2025 {
2026 if (obj->sections != obj->sections_end
2027 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2028 return obj;
2029 }
2030
2031 return NULL;
2032 }
2033
2034 /* Flush cache for ea pointer access if available. */
2035 static void
2036 flush_ea_cache (void)
2037 {
2038 struct bound_minimal_symbol msymbol;
2039 struct objfile *obj;
2040
2041 if (!has_stack_frames ())
2042 return;
2043
2044 obj = spu_objfile_from_frame (get_current_frame ());
2045 if (obj == NULL)
2046 return;
2047
2048 /* Lookup inferior function __cache_flush. */
2049 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2050 if (msymbol.minsym != NULL)
2051 {
2052 struct type *type;
2053 CORE_ADDR addr;
2054
2055 type = objfile_type (obj)->builtin_void;
2056 type = lookup_function_type (type);
2057 type = lookup_pointer_type (type);
2058 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2059
2060 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2061 }
2062 }
2063
2064 /* This handler is called when the inferior has stopped. If it is stopped in
2065 SPU architecture then flush the ea cache if used. */
2066 static void
2067 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2068 {
2069 if (!spu_auto_flush_cache_p)
2070 return;
2071
2072 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2073 re-entering this function when __cache_flush stops. */
2074 spu_auto_flush_cache_p = 0;
2075 flush_ea_cache ();
2076 spu_auto_flush_cache_p = 1;
2077 }
2078
2079
2080 /* "info spu" commands. */
2081
2082 static void
2083 info_spu_event_command (char *args, int from_tty)
2084 {
2085 struct frame_info *frame = get_selected_frame (NULL);
2086 ULONGEST event_status = 0;
2087 ULONGEST event_mask = 0;
2088 struct cleanup *chain;
2089 gdb_byte buf[100];
2090 char annex[32];
2091 LONGEST len;
2092 int id;
2093
2094 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2095 error (_("\"info spu\" is only supported on the SPU architecture."));
2096
2097 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2098
2099 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2100 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2101 buf, 0, (sizeof (buf) - 1));
2102 if (len <= 0)
2103 error (_("Could not read event_status."));
2104 buf[len] = '\0';
2105 event_status = strtoulst ((char *) buf, NULL, 16);
2106
2107 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2108 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2109 buf, 0, (sizeof (buf) - 1));
2110 if (len <= 0)
2111 error (_("Could not read event_mask."));
2112 buf[len] = '\0';
2113 event_mask = strtoulst ((char *) buf, NULL, 16);
2114
2115 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2116
2117 if (ui_out_is_mi_like_p (current_uiout))
2118 {
2119 ui_out_field_fmt (current_uiout, "event_status",
2120 "0x%s", phex_nz (event_status, 4));
2121 ui_out_field_fmt (current_uiout, "event_mask",
2122 "0x%s", phex_nz (event_mask, 4));
2123 }
2124 else
2125 {
2126 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2127 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2128 }
2129
2130 do_cleanups (chain);
2131 }
2132
2133 static void
2134 info_spu_signal_command (char *args, int from_tty)
2135 {
2136 struct frame_info *frame = get_selected_frame (NULL);
2137 struct gdbarch *gdbarch = get_frame_arch (frame);
2138 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2139 ULONGEST signal1 = 0;
2140 ULONGEST signal1_type = 0;
2141 int signal1_pending = 0;
2142 ULONGEST signal2 = 0;
2143 ULONGEST signal2_type = 0;
2144 int signal2_pending = 0;
2145 struct cleanup *chain;
2146 char annex[32];
2147 gdb_byte buf[100];
2148 LONGEST len;
2149 int id;
2150
2151 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2152 error (_("\"info spu\" is only supported on the SPU architecture."));
2153
2154 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2155
2156 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2157 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2158 if (len < 0)
2159 error (_("Could not read signal1."));
2160 else if (len == 4)
2161 {
2162 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2163 signal1_pending = 1;
2164 }
2165
2166 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2167 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2168 buf, 0, (sizeof (buf) - 1));
2169 if (len <= 0)
2170 error (_("Could not read signal1_type."));
2171 buf[len] = '\0';
2172 signal1_type = strtoulst ((char *) buf, NULL, 16);
2173
2174 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2175 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2176 if (len < 0)
2177 error (_("Could not read signal2."));
2178 else if (len == 4)
2179 {
2180 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2181 signal2_pending = 1;
2182 }
2183
2184 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2185 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2186 buf, 0, (sizeof (buf) - 1));
2187 if (len <= 0)
2188 error (_("Could not read signal2_type."));
2189 buf[len] = '\0';
2190 signal2_type = strtoulst ((char *) buf, NULL, 16);
2191
2192 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2193
2194 if (ui_out_is_mi_like_p (current_uiout))
2195 {
2196 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2197 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2198 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2199 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2200 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2201 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2202 }
2203 else
2204 {
2205 if (signal1_pending)
2206 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2207 else
2208 printf_filtered (_("Signal 1 not pending "));
2209
2210 if (signal1_type)
2211 printf_filtered (_("(Type Or)\n"));
2212 else
2213 printf_filtered (_("(Type Overwrite)\n"));
2214
2215 if (signal2_pending)
2216 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2217 else
2218 printf_filtered (_("Signal 2 not pending "));
2219
2220 if (signal2_type)
2221 printf_filtered (_("(Type Or)\n"));
2222 else
2223 printf_filtered (_("(Type Overwrite)\n"));
2224 }
2225
2226 do_cleanups (chain);
2227 }
2228
2229 static void
2230 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2231 const char *field, const char *msg)
2232 {
2233 struct cleanup *chain;
2234 int i;
2235
2236 if (nr <= 0)
2237 return;
2238
2239 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2240
2241 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2242 ui_out_table_body (current_uiout);
2243
2244 for (i = 0; i < nr; i++)
2245 {
2246 struct cleanup *val_chain;
2247 ULONGEST val;
2248 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2249 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2250 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2251 do_cleanups (val_chain);
2252
2253 if (!ui_out_is_mi_like_p (current_uiout))
2254 printf_filtered ("\n");
2255 }
2256
2257 do_cleanups (chain);
2258 }
2259
2260 static void
2261 info_spu_mailbox_command (char *args, int from_tty)
2262 {
2263 struct frame_info *frame = get_selected_frame (NULL);
2264 struct gdbarch *gdbarch = get_frame_arch (frame);
2265 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2266 struct cleanup *chain;
2267 char annex[32];
2268 gdb_byte buf[1024];
2269 LONGEST len;
2270 int id;
2271
2272 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2273 error (_("\"info spu\" is only supported on the SPU architecture."));
2274
2275 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2276
2277 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2278
2279 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2280 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2281 buf, 0, sizeof buf);
2282 if (len < 0)
2283 error (_("Could not read mbox_info."));
2284
2285 info_spu_mailbox_list (buf, len / 4, byte_order,
2286 "mbox", "SPU Outbound Mailbox");
2287
2288 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2289 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2290 buf, 0, sizeof buf);
2291 if (len < 0)
2292 error (_("Could not read ibox_info."));
2293
2294 info_spu_mailbox_list (buf, len / 4, byte_order,
2295 "ibox", "SPU Outbound Interrupt Mailbox");
2296
2297 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2298 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2299 buf, 0, sizeof buf);
2300 if (len < 0)
2301 error (_("Could not read wbox_info."));
2302
2303 info_spu_mailbox_list (buf, len / 4, byte_order,
2304 "wbox", "SPU Inbound Mailbox");
2305
2306 do_cleanups (chain);
2307 }
2308
2309 static ULONGEST
2310 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2311 {
2312 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2313 return (word >> (63 - last)) & mask;
2314 }
2315
2316 static void
2317 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2318 {
2319 static char *spu_mfc_opcode[256] =
2320 {
2321 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2322 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2323 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2326 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2327 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2328 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2329 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2330 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2331 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2332 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2333 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2338 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2339 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2341 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2344 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2345 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2346 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2347 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2348 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2349 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2350 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 };
2354
2355 int *seq = XALLOCAVEC (int, nr);
2356 int done = 0;
2357 struct cleanup *chain;
2358 int i, j;
2359
2360
2361 /* Determine sequence in which to display (valid) entries. */
2362 for (i = 0; i < nr; i++)
2363 {
2364 /* Search for the first valid entry all of whose
2365 dependencies are met. */
2366 for (j = 0; j < nr; j++)
2367 {
2368 ULONGEST mfc_cq_dw3;
2369 ULONGEST dependencies;
2370
2371 if (done & (1 << (nr - 1 - j)))
2372 continue;
2373
2374 mfc_cq_dw3
2375 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2376 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2377 continue;
2378
2379 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2380 if ((dependencies & done) != dependencies)
2381 continue;
2382
2383 seq[i] = j;
2384 done |= 1 << (nr - 1 - j);
2385 break;
2386 }
2387
2388 if (j == nr)
2389 break;
2390 }
2391
2392 nr = i;
2393
2394
2395 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2396 "dma_cmd");
2397
2398 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2399 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2400 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2401 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2402 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2403 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2404 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2405 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2406 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2407 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2408
2409 ui_out_table_body (current_uiout);
2410
2411 for (i = 0; i < nr; i++)
2412 {
2413 struct cleanup *cmd_chain;
2414 ULONGEST mfc_cq_dw0;
2415 ULONGEST mfc_cq_dw1;
2416 ULONGEST mfc_cq_dw2;
2417 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2418 int list_lsa, list_size, mfc_lsa, mfc_size;
2419 ULONGEST mfc_ea;
2420 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2421
2422 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2423 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2424
2425 mfc_cq_dw0
2426 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2427 mfc_cq_dw1
2428 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2429 mfc_cq_dw2
2430 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2431
2432 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2433 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2434 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2435 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2436 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2437 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2438 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2439
2440 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2441 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2442
2443 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2444 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2445 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2446 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2447 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2448
2449 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2450
2451 if (spu_mfc_opcode[mfc_cmd_opcode])
2452 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2453 else
2454 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2455
2456 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2457 ui_out_field_int (current_uiout, "tid", tclass_id);
2458 ui_out_field_int (current_uiout, "rid", rclass_id);
2459
2460 if (ea_valid_p)
2461 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2462 else
2463 ui_out_field_skip (current_uiout, "ea");
2464
2465 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2466 if (qw_valid_p)
2467 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2468 else
2469 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2470
2471 if (list_valid_p)
2472 {
2473 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2474 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2475 }
2476 else
2477 {
2478 ui_out_field_skip (current_uiout, "lstaddr");
2479 ui_out_field_skip (current_uiout, "lstsize");
2480 }
2481
2482 if (cmd_error_p)
2483 ui_out_field_string (current_uiout, "error_p", "*");
2484 else
2485 ui_out_field_skip (current_uiout, "error_p");
2486
2487 do_cleanups (cmd_chain);
2488
2489 if (!ui_out_is_mi_like_p (current_uiout))
2490 printf_filtered ("\n");
2491 }
2492
2493 do_cleanups (chain);
2494 }
2495
2496 static void
2497 info_spu_dma_command (char *args, int from_tty)
2498 {
2499 struct frame_info *frame = get_selected_frame (NULL);
2500 struct gdbarch *gdbarch = get_frame_arch (frame);
2501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2502 ULONGEST dma_info_type;
2503 ULONGEST dma_info_mask;
2504 ULONGEST dma_info_status;
2505 ULONGEST dma_info_stall_and_notify;
2506 ULONGEST dma_info_atomic_command_status;
2507 struct cleanup *chain;
2508 char annex[32];
2509 gdb_byte buf[1024];
2510 LONGEST len;
2511 int id;
2512
2513 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2514 error (_("\"info spu\" is only supported on the SPU architecture."));
2515
2516 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2517
2518 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2519 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2520 buf, 0, 40 + 16 * 32);
2521 if (len <= 0)
2522 error (_("Could not read dma_info."));
2523
2524 dma_info_type
2525 = extract_unsigned_integer (buf, 8, byte_order);
2526 dma_info_mask
2527 = extract_unsigned_integer (buf + 8, 8, byte_order);
2528 dma_info_status
2529 = extract_unsigned_integer (buf + 16, 8, byte_order);
2530 dma_info_stall_and_notify
2531 = extract_unsigned_integer (buf + 24, 8, byte_order);
2532 dma_info_atomic_command_status
2533 = extract_unsigned_integer (buf + 32, 8, byte_order);
2534
2535 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2536
2537 if (ui_out_is_mi_like_p (current_uiout))
2538 {
2539 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2540 phex_nz (dma_info_type, 4));
2541 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2542 phex_nz (dma_info_mask, 4));
2543 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2544 phex_nz (dma_info_status, 4));
2545 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2546 phex_nz (dma_info_stall_and_notify, 4));
2547 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2548 phex_nz (dma_info_atomic_command_status, 4));
2549 }
2550 else
2551 {
2552 const char *query_msg = _("no query pending");
2553
2554 if (dma_info_type & 4)
2555 switch (dma_info_type & 3)
2556 {
2557 case 1: query_msg = _("'any' query pending"); break;
2558 case 2: query_msg = _("'all' query pending"); break;
2559 default: query_msg = _("undefined query type"); break;
2560 }
2561
2562 printf_filtered (_("Tag-Group Status 0x%s\n"),
2563 phex (dma_info_status, 4));
2564 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2565 phex (dma_info_mask, 4), query_msg);
2566 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2567 phex (dma_info_stall_and_notify, 4));
2568 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2569 phex (dma_info_atomic_command_status, 4));
2570 printf_filtered ("\n");
2571 }
2572
2573 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2574 do_cleanups (chain);
2575 }
2576
2577 static void
2578 info_spu_proxydma_command (char *args, int from_tty)
2579 {
2580 struct frame_info *frame = get_selected_frame (NULL);
2581 struct gdbarch *gdbarch = get_frame_arch (frame);
2582 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2583 ULONGEST dma_info_type;
2584 ULONGEST dma_info_mask;
2585 ULONGEST dma_info_status;
2586 struct cleanup *chain;
2587 char annex[32];
2588 gdb_byte buf[1024];
2589 LONGEST len;
2590 int id;
2591
2592 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2593 error (_("\"info spu\" is only supported on the SPU architecture."));
2594
2595 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2596
2597 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2598 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2599 buf, 0, 24 + 8 * 32);
2600 if (len <= 0)
2601 error (_("Could not read proxydma_info."));
2602
2603 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2604 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2605 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2606
2607 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2608 "SPUInfoProxyDMA");
2609
2610 if (ui_out_is_mi_like_p (current_uiout))
2611 {
2612 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2613 phex_nz (dma_info_type, 4));
2614 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2615 phex_nz (dma_info_mask, 4));
2616 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2617 phex_nz (dma_info_status, 4));
2618 }
2619 else
2620 {
2621 const char *query_msg;
2622
2623 switch (dma_info_type & 3)
2624 {
2625 case 0: query_msg = _("no query pending"); break;
2626 case 1: query_msg = _("'any' query pending"); break;
2627 case 2: query_msg = _("'all' query pending"); break;
2628 default: query_msg = _("undefined query type"); break;
2629 }
2630
2631 printf_filtered (_("Tag-Group Status 0x%s\n"),
2632 phex (dma_info_status, 4));
2633 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2634 phex (dma_info_mask, 4), query_msg);
2635 printf_filtered ("\n");
2636 }
2637
2638 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2639 do_cleanups (chain);
2640 }
2641
2642 static void
2643 info_spu_command (char *args, int from_tty)
2644 {
2645 printf_unfiltered (_("\"info spu\" must be followed by "
2646 "the name of an SPU facility.\n"));
2647 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2648 }
2649
2650
2651 /* Root of all "set spu "/"show spu " commands. */
2652
2653 static void
2654 show_spu_command (char *args, int from_tty)
2655 {
2656 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2657 }
2658
2659 static void
2660 set_spu_command (char *args, int from_tty)
2661 {
2662 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2663 }
2664
2665 static void
2666 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2667 struct cmd_list_element *c, const char *value)
2668 {
2669 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2670 value);
2671 }
2672
2673 static void
2674 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2675 struct cmd_list_element *c, const char *value)
2676 {
2677 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2678 value);
2679 }
2680
2681
2682 /* Set up gdbarch struct. */
2683
2684 static struct gdbarch *
2685 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2686 {
2687 struct gdbarch *gdbarch;
2688 struct gdbarch_tdep *tdep;
2689 int id = -1;
2690
2691 /* Which spufs ID was requested as address space? */
2692 if (info.tdep_info)
2693 id = *(int *)info.tdep_info;
2694 /* For objfile architectures of SPU solibs, decode the ID from the name.
2695 This assumes the filename convention employed by solib-spu.c. */
2696 else if (info.abfd)
2697 {
2698 const char *name = strrchr (info.abfd->filename, '@');
2699 if (name)
2700 sscanf (name, "@0x%*x <%d>", &id);
2701 }
2702
2703 /* Find a candidate among extant architectures. */
2704 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2705 arches != NULL;
2706 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2707 {
2708 tdep = gdbarch_tdep (arches->gdbarch);
2709 if (tdep && tdep->id == id)
2710 return arches->gdbarch;
2711 }
2712
2713 /* None found, so create a new architecture. */
2714 tdep = XCNEW (struct gdbarch_tdep);
2715 tdep->id = id;
2716 gdbarch = gdbarch_alloc (&info, tdep);
2717
2718 /* Disassembler. */
2719 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2720
2721 /* Registers. */
2722 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2723 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2724 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2725 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2726 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2727 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2728 set_gdbarch_register_name (gdbarch, spu_register_name);
2729 set_gdbarch_register_type (gdbarch, spu_register_type);
2730 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2731 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2732 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2733 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2734 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2735 set_gdbarch_ax_pseudo_register_collect
2736 (gdbarch, spu_ax_pseudo_register_collect);
2737 set_gdbarch_ax_pseudo_register_push_stack
2738 (gdbarch, spu_ax_pseudo_register_push_stack);
2739
2740 /* Data types. */
2741 set_gdbarch_char_signed (gdbarch, 0);
2742 set_gdbarch_ptr_bit (gdbarch, 32);
2743 set_gdbarch_addr_bit (gdbarch, 32);
2744 set_gdbarch_short_bit (gdbarch, 16);
2745 set_gdbarch_int_bit (gdbarch, 32);
2746 set_gdbarch_long_bit (gdbarch, 32);
2747 set_gdbarch_long_long_bit (gdbarch, 64);
2748 set_gdbarch_float_bit (gdbarch, 32);
2749 set_gdbarch_double_bit (gdbarch, 64);
2750 set_gdbarch_long_double_bit (gdbarch, 64);
2751 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2752 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2753 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2754
2755 /* Address handling. */
2756 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2757 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2758 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2759 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2760 set_gdbarch_address_class_type_flags_to_name
2761 (gdbarch, spu_address_class_type_flags_to_name);
2762 set_gdbarch_address_class_name_to_type_flags
2763 (gdbarch, spu_address_class_name_to_type_flags);
2764
2765
2766 /* Inferior function calls. */
2767 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2768 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2769 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2770 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2771 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2772 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2773 set_gdbarch_return_value (gdbarch, spu_return_value);
2774
2775 /* Frame handling. */
2776 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2777 dwarf2_append_unwinders (gdbarch);
2778 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2779 frame_base_set_default (gdbarch, &spu_frame_base);
2780 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2781 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2782 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2783 set_gdbarch_frame_args_skip (gdbarch, 0);
2784 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2785 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2786
2787 /* Cell/B.E. cross-architecture unwinder support. */
2788 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2789
2790 /* Breakpoints. */
2791 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2792 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2793 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
2794 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2795 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2796 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2797
2798 /* Overlays. */
2799 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2800
2801 return gdbarch;
2802 }
2803
2804 /* Provide a prototype to silence -Wmissing-prototypes. */
2805 extern initialize_file_ftype _initialize_spu_tdep;
2806
2807 void
2808 _initialize_spu_tdep (void)
2809 {
2810 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2811
2812 /* Add ourselves to objfile event chain. */
2813 observer_attach_new_objfile (spu_overlay_new_objfile);
2814 spu_overlay_data = register_objfile_data ();
2815
2816 /* Install spu stop-on-load handler. */
2817 observer_attach_new_objfile (spu_catch_start);
2818
2819 /* Add ourselves to normal_stop event chain. */
2820 observer_attach_normal_stop (spu_attach_normal_stop);
2821
2822 /* Add root prefix command for all "set spu"/"show spu" commands. */
2823 add_prefix_cmd ("spu", no_class, set_spu_command,
2824 _("Various SPU specific commands."),
2825 &setspucmdlist, "set spu ", 0, &setlist);
2826 add_prefix_cmd ("spu", no_class, show_spu_command,
2827 _("Various SPU specific commands."),
2828 &showspucmdlist, "show spu ", 0, &showlist);
2829
2830 /* Toggle whether or not to add a temporary breakpoint at the "main"
2831 function of new SPE contexts. */
2832 add_setshow_boolean_cmd ("stop-on-load", class_support,
2833 &spu_stop_on_load_p, _("\
2834 Set whether to stop for new SPE threads."),
2835 _("\
2836 Show whether to stop for new SPE threads."),
2837 _("\
2838 Use \"on\" to give control to the user when a new SPE thread\n\
2839 enters its \"main\" function.\n\
2840 Use \"off\" to disable stopping for new SPE threads."),
2841 NULL,
2842 show_spu_stop_on_load,
2843 &setspucmdlist, &showspucmdlist);
2844
2845 /* Toggle whether or not to automatically flush the software-managed
2846 cache whenever SPE execution stops. */
2847 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2848 &spu_auto_flush_cache_p, _("\
2849 Set whether to automatically flush the software-managed cache."),
2850 _("\
2851 Show whether to automatically flush the software-managed cache."),
2852 _("\
2853 Use \"on\" to automatically flush the software-managed cache\n\
2854 whenever SPE execution stops.\n\
2855 Use \"off\" to never automatically flush the software-managed cache."),
2856 NULL,
2857 show_spu_auto_flush_cache,
2858 &setspucmdlist, &showspucmdlist);
2859
2860 /* Add root prefix command for all "info spu" commands. */
2861 add_prefix_cmd ("spu", class_info, info_spu_command,
2862 _("Various SPU specific commands."),
2863 &infospucmdlist, "info spu ", 0, &infolist);
2864
2865 /* Add various "info spu" commands. */
2866 add_cmd ("event", class_info, info_spu_event_command,
2867 _("Display SPU event facility status.\n"),
2868 &infospucmdlist);
2869 add_cmd ("signal", class_info, info_spu_signal_command,
2870 _("Display SPU signal notification facility status.\n"),
2871 &infospucmdlist);
2872 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2873 _("Display SPU mailbox facility status.\n"),
2874 &infospucmdlist);
2875 add_cmd ("dma", class_info, info_spu_dma_command,
2876 _("Display MFC DMA status.\n"),
2877 &infospucmdlist);
2878 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2879 _("Display MFC Proxy-DMA status.\n"),
2880 &infospucmdlist);
2881 }
This page took 0.087605 seconds and 4 git commands to generate.