*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "block.h"
44 #include "observer.h"
45 #include "infcall.h"
46
47 #include "spu-tdep.h"
48
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, "invalid regnum");
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static void
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 gdb_byte reg[32];
191 char annex[32];
192 ULONGEST id;
193
194 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
195 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
196 memset (reg, 0, sizeof reg);
197 target_read (&current_target, TARGET_OBJECT_SPU, annex,
198 reg, 0, sizeof reg);
199
200 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
201 }
202
203 static void
204 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
205 int regnum, gdb_byte *buf)
206 {
207 gdb_byte reg[16];
208 char annex[32];
209 ULONGEST id;
210
211 switch (regnum)
212 {
213 case SPU_SP_REGNUM:
214 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
215 memcpy (buf, reg, 4);
216 break;
217
218 case SPU_FPSCR_REGNUM:
219 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
220 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
221 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
222 break;
223
224 case SPU_SRR0_REGNUM:
225 spu_pseudo_register_read_spu (regcache, "srr0", buf);
226 break;
227
228 case SPU_LSLR_REGNUM:
229 spu_pseudo_register_read_spu (regcache, "lslr", buf);
230 break;
231
232 case SPU_DECR_REGNUM:
233 spu_pseudo_register_read_spu (regcache, "decr", buf);
234 break;
235
236 case SPU_DECR_STATUS_REGNUM:
237 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
238 break;
239
240 default:
241 internal_error (__FILE__, __LINE__, _("invalid regnum"));
242 }
243 }
244
245 static void
246 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
247 const gdb_byte *buf)
248 {
249 struct gdbarch *gdbarch = get_regcache_arch (regcache);
250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
251 gdb_byte reg[32];
252 char annex[32];
253 ULONGEST id;
254
255 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
256 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
257 xsnprintf (reg, sizeof reg, "0x%s",
258 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
259 target_write (&current_target, TARGET_OBJECT_SPU, annex,
260 reg, 0, strlen (reg));
261 }
262
263 static void
264 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
265 int regnum, const gdb_byte *buf)
266 {
267 gdb_byte reg[16];
268 char annex[32];
269 ULONGEST id;
270
271 switch (regnum)
272 {
273 case SPU_SP_REGNUM:
274 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
275 memcpy (reg, buf, 4);
276 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
277 break;
278
279 case SPU_FPSCR_REGNUM:
280 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
281 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
282 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
283 break;
284
285 case SPU_SRR0_REGNUM:
286 spu_pseudo_register_write_spu (regcache, "srr0", buf);
287 break;
288
289 case SPU_LSLR_REGNUM:
290 spu_pseudo_register_write_spu (regcache, "lslr", buf);
291 break;
292
293 case SPU_DECR_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "decr", buf);
295 break;
296
297 case SPU_DECR_STATUS_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
299 break;
300
301 default:
302 internal_error (__FILE__, __LINE__, _("invalid regnum"));
303 }
304 }
305
306 /* Value conversion -- access scalar values at the preferred slot. */
307
308 static struct value *
309 spu_value_from_register (struct type *type, int regnum,
310 struct frame_info *frame)
311 {
312 struct value *value = default_value_from_register (type, regnum, frame);
313 int len = TYPE_LENGTH (type);
314
315 if (regnum < SPU_NUM_GPRS && len < 16)
316 {
317 int preferred_slot = len < 4 ? 4 - len : 0;
318 set_value_offset (value, preferred_slot);
319 }
320
321 return value;
322 }
323
324 /* Register groups. */
325
326 static int
327 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
328 struct reggroup *group)
329 {
330 /* Registers displayed via 'info regs'. */
331 if (group == general_reggroup)
332 return 1;
333
334 /* Registers displayed via 'info float'. */
335 if (group == float_reggroup)
336 return 0;
337
338 /* Registers that need to be saved/restored in order to
339 push or pop frames. */
340 if (group == save_reggroup || group == restore_reggroup)
341 return 1;
342
343 return default_register_reggroup_p (gdbarch, regnum, group);
344 }
345
346
347 /* Address handling. */
348
349 static int
350 spu_gdbarch_id (struct gdbarch *gdbarch)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353 int id = tdep->id;
354
355 /* The objfile architecture of a standalone SPU executable does not
356 provide an SPU ID. Retrieve it from the the objfile's relocated
357 address range in this special case. */
358 if (id == -1
359 && symfile_objfile && symfile_objfile->obfd
360 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
361 && symfile_objfile->sections != symfile_objfile->sections_end)
362 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
363
364 return id;
365 }
366
367 static int
368 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
369 {
370 if (dwarf2_addr_class == 1)
371 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
372 else
373 return 0;
374 }
375
376 static const char *
377 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
378 {
379 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
380 return "__ea";
381 else
382 return NULL;
383 }
384
385 static int
386 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
387 const char *name, int *type_flags_ptr)
388 {
389 if (strcmp (name, "__ea") == 0)
390 {
391 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
392 return 1;
393 }
394 else
395 return 0;
396 }
397
398 static void
399 spu_address_to_pointer (struct gdbarch *gdbarch,
400 struct type *type, gdb_byte *buf, CORE_ADDR addr)
401 {
402 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
403 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
404 SPUADDR_ADDR (addr));
405 }
406
407 static CORE_ADDR
408 spu_pointer_to_address (struct gdbarch *gdbarch,
409 struct type *type, const gdb_byte *buf)
410 {
411 int id = spu_gdbarch_id (gdbarch);
412 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
413 ULONGEST addr
414 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
415
416 /* Do not convert __ea pointers. */
417 if (TYPE_ADDRESS_CLASS_1 (type))
418 return addr;
419
420 return addr? SPUADDR (id, addr) : 0;
421 }
422
423 static CORE_ADDR
424 spu_integer_to_address (struct gdbarch *gdbarch,
425 struct type *type, const gdb_byte *buf)
426 {
427 int id = spu_gdbarch_id (gdbarch);
428 ULONGEST addr = unpack_long (type, buf);
429
430 return SPUADDR (id, addr);
431 }
432
433
434 /* Decoding SPU instructions. */
435
436 enum
437 {
438 op_lqd = 0x34,
439 op_lqx = 0x3c4,
440 op_lqa = 0x61,
441 op_lqr = 0x67,
442 op_stqd = 0x24,
443 op_stqx = 0x144,
444 op_stqa = 0x41,
445 op_stqr = 0x47,
446
447 op_il = 0x081,
448 op_ila = 0x21,
449 op_a = 0x0c0,
450 op_ai = 0x1c,
451
452 op_selb = 0x4,
453
454 op_br = 0x64,
455 op_bra = 0x60,
456 op_brsl = 0x66,
457 op_brasl = 0x62,
458 op_brnz = 0x42,
459 op_brz = 0x40,
460 op_brhnz = 0x46,
461 op_brhz = 0x44,
462 op_bi = 0x1a8,
463 op_bisl = 0x1a9,
464 op_biz = 0x128,
465 op_binz = 0x129,
466 op_bihz = 0x12a,
467 op_bihnz = 0x12b,
468 };
469
470 static int
471 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
472 {
473 if ((insn >> 21) == op)
474 {
475 *rt = insn & 127;
476 *ra = (insn >> 7) & 127;
477 *rb = (insn >> 14) & 127;
478 return 1;
479 }
480
481 return 0;
482 }
483
484 static int
485 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
486 {
487 if ((insn >> 28) == op)
488 {
489 *rt = (insn >> 21) & 127;
490 *ra = (insn >> 7) & 127;
491 *rb = (insn >> 14) & 127;
492 *rc = insn & 127;
493 return 1;
494 }
495
496 return 0;
497 }
498
499 static int
500 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
501 {
502 if ((insn >> 21) == op)
503 {
504 *rt = insn & 127;
505 *ra = (insn >> 7) & 127;
506 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
507 return 1;
508 }
509
510 return 0;
511 }
512
513 static int
514 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
515 {
516 if ((insn >> 24) == op)
517 {
518 *rt = insn & 127;
519 *ra = (insn >> 7) & 127;
520 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
521 return 1;
522 }
523
524 return 0;
525 }
526
527 static int
528 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
529 {
530 if ((insn >> 23) == op)
531 {
532 *rt = insn & 127;
533 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
534 return 1;
535 }
536
537 return 0;
538 }
539
540 static int
541 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
542 {
543 if ((insn >> 25) == op)
544 {
545 *rt = insn & 127;
546 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
547 return 1;
548 }
549
550 return 0;
551 }
552
553 static int
554 is_branch (unsigned int insn, int *offset, int *reg)
555 {
556 int rt, i7, i16;
557
558 if (is_ri16 (insn, op_br, &rt, &i16)
559 || is_ri16 (insn, op_brsl, &rt, &i16)
560 || is_ri16 (insn, op_brnz, &rt, &i16)
561 || is_ri16 (insn, op_brz, &rt, &i16)
562 || is_ri16 (insn, op_brhnz, &rt, &i16)
563 || is_ri16 (insn, op_brhz, &rt, &i16))
564 {
565 *reg = SPU_PC_REGNUM;
566 *offset = i16 << 2;
567 return 1;
568 }
569
570 if (is_ri16 (insn, op_bra, &rt, &i16)
571 || is_ri16 (insn, op_brasl, &rt, &i16))
572 {
573 *reg = -1;
574 *offset = i16 << 2;
575 return 1;
576 }
577
578 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
579 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
580 || is_ri7 (insn, op_biz, &rt, reg, &i7)
581 || is_ri7 (insn, op_binz, &rt, reg, &i7)
582 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
583 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
584 {
585 *offset = 0;
586 return 1;
587 }
588
589 return 0;
590 }
591
592
593 /* Prolog parsing. */
594
595 struct spu_prologue_data
596 {
597 /* Stack frame size. -1 if analysis was unsuccessful. */
598 int size;
599
600 /* How to find the CFA. The CFA is equal to SP at function entry. */
601 int cfa_reg;
602 int cfa_offset;
603
604 /* Offset relative to CFA where a register is saved. -1 if invalid. */
605 int reg_offset[SPU_NUM_GPRS];
606 };
607
608 static CORE_ADDR
609 spu_analyze_prologue (struct gdbarch *gdbarch,
610 CORE_ADDR start_pc, CORE_ADDR end_pc,
611 struct spu_prologue_data *data)
612 {
613 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
614 int found_sp = 0;
615 int found_fp = 0;
616 int found_lr = 0;
617 int found_bc = 0;
618 int reg_immed[SPU_NUM_GPRS];
619 gdb_byte buf[16];
620 CORE_ADDR prolog_pc = start_pc;
621 CORE_ADDR pc;
622 int i;
623
624
625 /* Initialize DATA to default values. */
626 data->size = -1;
627
628 data->cfa_reg = SPU_RAW_SP_REGNUM;
629 data->cfa_offset = 0;
630
631 for (i = 0; i < SPU_NUM_GPRS; i++)
632 data->reg_offset[i] = -1;
633
634 /* Set up REG_IMMED array. This is non-zero for a register if we know its
635 preferred slot currently holds this immediate value. */
636 for (i = 0; i < SPU_NUM_GPRS; i++)
637 reg_immed[i] = 0;
638
639 /* Scan instructions until the first branch.
640
641 The following instructions are important prolog components:
642
643 - The first instruction to set up the stack pointer.
644 - The first instruction to set up the frame pointer.
645 - The first instruction to save the link register.
646 - The first instruction to save the backchain.
647
648 We return the instruction after the latest of these four,
649 or the incoming PC if none is found. The first instruction
650 to set up the stack pointer also defines the frame size.
651
652 Note that instructions saving incoming arguments to their stack
653 slots are not counted as important, because they are hard to
654 identify with certainty. This should not matter much, because
655 arguments are relevant only in code compiled with debug data,
656 and in such code the GDB core will advance until the first source
657 line anyway, using SAL data.
658
659 For purposes of stack unwinding, we analyze the following types
660 of instructions in addition:
661
662 - Any instruction adding to the current frame pointer.
663 - Any instruction loading an immediate constant into a register.
664 - Any instruction storing a register onto the stack.
665
666 These are used to compute the CFA and REG_OFFSET output. */
667
668 for (pc = start_pc; pc < end_pc; pc += 4)
669 {
670 unsigned int insn;
671 int rt, ra, rb, rc, immed;
672
673 if (target_read_memory (pc, buf, 4))
674 break;
675 insn = extract_unsigned_integer (buf, 4, byte_order);
676
677 /* AI is the typical instruction to set up a stack frame.
678 It is also used to initialize the frame pointer. */
679 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
680 {
681 if (rt == data->cfa_reg && ra == data->cfa_reg)
682 data->cfa_offset -= immed;
683
684 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
685 && !found_sp)
686 {
687 found_sp = 1;
688 prolog_pc = pc + 4;
689
690 data->size = -immed;
691 }
692 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
693 && !found_fp)
694 {
695 found_fp = 1;
696 prolog_pc = pc + 4;
697
698 data->cfa_reg = SPU_FP_REGNUM;
699 data->cfa_offset -= immed;
700 }
701 }
702
703 /* A is used to set up stack frames of size >= 512 bytes.
704 If we have tracked the contents of the addend register,
705 we can handle this as well. */
706 else if (is_rr (insn, op_a, &rt, &ra, &rb))
707 {
708 if (rt == data->cfa_reg && ra == data->cfa_reg)
709 {
710 if (reg_immed[rb] != 0)
711 data->cfa_offset -= reg_immed[rb];
712 else
713 data->cfa_reg = -1; /* We don't know the CFA any more. */
714 }
715
716 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
717 && !found_sp)
718 {
719 found_sp = 1;
720 prolog_pc = pc + 4;
721
722 if (reg_immed[rb] != 0)
723 data->size = -reg_immed[rb];
724 }
725 }
726
727 /* We need to track IL and ILA used to load immediate constants
728 in case they are later used as input to an A instruction. */
729 else if (is_ri16 (insn, op_il, &rt, &immed))
730 {
731 reg_immed[rt] = immed;
732
733 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
734 found_sp = 1;
735 }
736
737 else if (is_ri18 (insn, op_ila, &rt, &immed))
738 {
739 reg_immed[rt] = immed & 0x3ffff;
740
741 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
742 found_sp = 1;
743 }
744
745 /* STQD is used to save registers to the stack. */
746 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
747 {
748 if (ra == data->cfa_reg)
749 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
750
751 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
752 && !found_lr)
753 {
754 found_lr = 1;
755 prolog_pc = pc + 4;
756 }
757
758 if (ra == SPU_RAW_SP_REGNUM
759 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
760 && !found_bc)
761 {
762 found_bc = 1;
763 prolog_pc = pc + 4;
764 }
765 }
766
767 /* _start uses SELB to set up the stack pointer. */
768 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
769 {
770 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
771 found_sp = 1;
772 }
773
774 /* We terminate if we find a branch. */
775 else if (is_branch (insn, &immed, &ra))
776 break;
777 }
778
779
780 /* If we successfully parsed until here, and didn't find any instruction
781 modifying SP, we assume we have a frameless function. */
782 if (!found_sp)
783 data->size = 0;
784
785 /* Return cooked instead of raw SP. */
786 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
787 data->cfa_reg = SPU_SP_REGNUM;
788
789 return prolog_pc;
790 }
791
792 /* Return the first instruction after the prologue starting at PC. */
793 static CORE_ADDR
794 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
795 {
796 struct spu_prologue_data data;
797 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
798 }
799
800 /* Return the frame pointer in use at address PC. */
801 static void
802 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
803 int *reg, LONGEST *offset)
804 {
805 struct spu_prologue_data data;
806 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
807
808 if (data.size != -1 && data.cfa_reg != -1)
809 {
810 /* The 'frame pointer' address is CFA minus frame size. */
811 *reg = data.cfa_reg;
812 *offset = data.cfa_offset - data.size;
813 }
814 else
815 {
816 /* ??? We don't really know ... */
817 *reg = SPU_SP_REGNUM;
818 *offset = 0;
819 }
820 }
821
822 /* Return true if we are in the function's epilogue, i.e. after the
823 instruction that destroyed the function's stack frame.
824
825 1) scan forward from the point of execution:
826 a) If you find an instruction that modifies the stack pointer
827 or transfers control (except a return), execution is not in
828 an epilogue, return.
829 b) Stop scanning if you find a return instruction or reach the
830 end of the function or reach the hard limit for the size of
831 an epilogue.
832 2) scan backward from the point of execution:
833 a) If you find an instruction that modifies the stack pointer,
834 execution *is* in an epilogue, return.
835 b) Stop scanning if you reach an instruction that transfers
836 control or the beginning of the function or reach the hard
837 limit for the size of an epilogue. */
838
839 static int
840 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
841 {
842 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
843 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
844 bfd_byte buf[4];
845 unsigned int insn;
846 int rt, ra, rb, rc, immed;
847
848 /* Find the search limits based on function boundaries and hard limit.
849 We assume the epilogue can be up to 64 instructions long. */
850
851 const int spu_max_epilogue_size = 64 * 4;
852
853 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
854 return 0;
855
856 if (pc - func_start < spu_max_epilogue_size)
857 epilogue_start = func_start;
858 else
859 epilogue_start = pc - spu_max_epilogue_size;
860
861 if (func_end - pc < spu_max_epilogue_size)
862 epilogue_end = func_end;
863 else
864 epilogue_end = pc + spu_max_epilogue_size;
865
866 /* Scan forward until next 'bi $0'. */
867
868 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
869 {
870 if (target_read_memory (scan_pc, buf, 4))
871 return 0;
872 insn = extract_unsigned_integer (buf, 4, byte_order);
873
874 if (is_branch (insn, &immed, &ra))
875 {
876 if (immed == 0 && ra == SPU_LR_REGNUM)
877 break;
878
879 return 0;
880 }
881
882 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
883 || is_rr (insn, op_a, &rt, &ra, &rb)
884 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
885 {
886 if (rt == SPU_RAW_SP_REGNUM)
887 return 0;
888 }
889 }
890
891 if (scan_pc >= epilogue_end)
892 return 0;
893
894 /* Scan backward until adjustment to stack pointer (R1). */
895
896 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
897 {
898 if (target_read_memory (scan_pc, buf, 4))
899 return 0;
900 insn = extract_unsigned_integer (buf, 4, byte_order);
901
902 if (is_branch (insn, &immed, &ra))
903 return 0;
904
905 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
906 || is_rr (insn, op_a, &rt, &ra, &rb)
907 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
908 {
909 if (rt == SPU_RAW_SP_REGNUM)
910 return 1;
911 }
912 }
913
914 return 0;
915 }
916
917
918 /* Normal stack frames. */
919
920 struct spu_unwind_cache
921 {
922 CORE_ADDR func;
923 CORE_ADDR frame_base;
924 CORE_ADDR local_base;
925
926 struct trad_frame_saved_reg *saved_regs;
927 };
928
929 static struct spu_unwind_cache *
930 spu_frame_unwind_cache (struct frame_info *this_frame,
931 void **this_prologue_cache)
932 {
933 struct gdbarch *gdbarch = get_frame_arch (this_frame);
934 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
935 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
936 struct spu_unwind_cache *info;
937 struct spu_prologue_data data;
938 CORE_ADDR id = tdep->id;
939 gdb_byte buf[16];
940
941 if (*this_prologue_cache)
942 return *this_prologue_cache;
943
944 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
945 *this_prologue_cache = info;
946 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
947 info->frame_base = 0;
948 info->local_base = 0;
949
950 /* Find the start of the current function, and analyze its prologue. */
951 info->func = get_frame_func (this_frame);
952 if (info->func == 0)
953 {
954 /* Fall back to using the current PC as frame ID. */
955 info->func = get_frame_pc (this_frame);
956 data.size = -1;
957 }
958 else
959 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
960 &data);
961
962 /* If successful, use prologue analysis data. */
963 if (data.size != -1 && data.cfa_reg != -1)
964 {
965 CORE_ADDR cfa;
966 int i;
967
968 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
969 get_frame_register (this_frame, data.cfa_reg, buf);
970 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
971 cfa = SPUADDR (id, cfa);
972
973 /* Call-saved register slots. */
974 for (i = 0; i < SPU_NUM_GPRS; i++)
975 if (i == SPU_LR_REGNUM
976 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
977 if (data.reg_offset[i] != -1)
978 info->saved_regs[i].addr = cfa - data.reg_offset[i];
979
980 /* Frame bases. */
981 info->frame_base = cfa;
982 info->local_base = cfa - data.size;
983 }
984
985 /* Otherwise, fall back to reading the backchain link. */
986 else
987 {
988 CORE_ADDR reg;
989 LONGEST backchain;
990 ULONGEST lslr;
991 int status;
992
993 /* Get local store limit. */
994 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
995 if (!lslr)
996 lslr = (ULONGEST) -1;
997
998 /* Get the backchain. */
999 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1000 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1001 &backchain);
1002
1003 /* A zero backchain terminates the frame chain. Also, sanity
1004 check against the local store size limit. */
1005 if (status && backchain > 0 && backchain <= lslr)
1006 {
1007 /* Assume the link register is saved into its slot. */
1008 if (backchain + 16 <= lslr)
1009 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, backchain + 16);
1010
1011 /* Frame bases. */
1012 info->frame_base = SPUADDR (id, backchain);
1013 info->local_base = SPUADDR (id, reg);
1014 }
1015 }
1016
1017 /* If we didn't find a frame, we cannot determine SP / return address. */
1018 if (info->frame_base == 0)
1019 return info;
1020
1021 /* The previous SP is equal to the CFA. */
1022 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1023 SPUADDR_ADDR (info->frame_base));
1024
1025 /* Read full contents of the unwound link register in order to
1026 be able to determine the return address. */
1027 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1028 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1029 else
1030 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1031
1032 /* Normally, the return address is contained in the slot 0 of the
1033 link register, and slots 1-3 are zero. For an overlay return,
1034 slot 0 contains the address of the overlay manager return stub,
1035 slot 1 contains the partition number of the overlay section to
1036 be returned to, and slot 2 contains the return address within
1037 that section. Return the latter address in that case. */
1038 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1039 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1040 extract_unsigned_integer (buf + 8, 4, byte_order));
1041 else
1042 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1043 extract_unsigned_integer (buf, 4, byte_order));
1044
1045 return info;
1046 }
1047
1048 static void
1049 spu_frame_this_id (struct frame_info *this_frame,
1050 void **this_prologue_cache, struct frame_id *this_id)
1051 {
1052 struct spu_unwind_cache *info =
1053 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1054
1055 if (info->frame_base == 0)
1056 return;
1057
1058 *this_id = frame_id_build (info->frame_base, info->func);
1059 }
1060
1061 static struct value *
1062 spu_frame_prev_register (struct frame_info *this_frame,
1063 void **this_prologue_cache, int regnum)
1064 {
1065 struct spu_unwind_cache *info
1066 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1067
1068 /* Special-case the stack pointer. */
1069 if (regnum == SPU_RAW_SP_REGNUM)
1070 regnum = SPU_SP_REGNUM;
1071
1072 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1073 }
1074
1075 static const struct frame_unwind spu_frame_unwind = {
1076 NORMAL_FRAME,
1077 spu_frame_this_id,
1078 spu_frame_prev_register,
1079 NULL,
1080 default_frame_sniffer
1081 };
1082
1083 static CORE_ADDR
1084 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1085 {
1086 struct spu_unwind_cache *info
1087 = spu_frame_unwind_cache (this_frame, this_cache);
1088 return info->local_base;
1089 }
1090
1091 static const struct frame_base spu_frame_base = {
1092 &spu_frame_unwind,
1093 spu_frame_base_address,
1094 spu_frame_base_address,
1095 spu_frame_base_address
1096 };
1097
1098 static CORE_ADDR
1099 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1100 {
1101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1102 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1103 /* Mask off interrupt enable bit. */
1104 return SPUADDR (tdep->id, pc & -4);
1105 }
1106
1107 static CORE_ADDR
1108 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1109 {
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1112 return SPUADDR (tdep->id, sp);
1113 }
1114
1115 static CORE_ADDR
1116 spu_read_pc (struct regcache *regcache)
1117 {
1118 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1119 ULONGEST pc;
1120 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1121 /* Mask off interrupt enable bit. */
1122 return SPUADDR (tdep->id, pc & -4);
1123 }
1124
1125 static void
1126 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1127 {
1128 /* Keep interrupt enabled state unchanged. */
1129 ULONGEST old_pc;
1130 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1131 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1132 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1133 }
1134
1135
1136 /* Cell/B.E. cross-architecture unwinder support. */
1137
1138 struct spu2ppu_cache
1139 {
1140 struct frame_id frame_id;
1141 struct regcache *regcache;
1142 };
1143
1144 static struct gdbarch *
1145 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1146 {
1147 struct spu2ppu_cache *cache = *this_cache;
1148 return get_regcache_arch (cache->regcache);
1149 }
1150
1151 static void
1152 spu2ppu_this_id (struct frame_info *this_frame,
1153 void **this_cache, struct frame_id *this_id)
1154 {
1155 struct spu2ppu_cache *cache = *this_cache;
1156 *this_id = cache->frame_id;
1157 }
1158
1159 static struct value *
1160 spu2ppu_prev_register (struct frame_info *this_frame,
1161 void **this_cache, int regnum)
1162 {
1163 struct spu2ppu_cache *cache = *this_cache;
1164 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1165 gdb_byte *buf;
1166
1167 buf = alloca (register_size (gdbarch, regnum));
1168 regcache_cooked_read (cache->regcache, regnum, buf);
1169 return frame_unwind_got_bytes (this_frame, regnum, buf);
1170 }
1171
1172 static int
1173 spu2ppu_sniffer (const struct frame_unwind *self,
1174 struct frame_info *this_frame, void **this_prologue_cache)
1175 {
1176 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1177 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1178 CORE_ADDR base, func, backchain;
1179 gdb_byte buf[4];
1180
1181 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1182 return 0;
1183
1184 base = get_frame_sp (this_frame);
1185 func = get_frame_pc (this_frame);
1186 if (target_read_memory (base, buf, 4))
1187 return 0;
1188 backchain = extract_unsigned_integer (buf, 4, byte_order);
1189
1190 if (!backchain)
1191 {
1192 struct frame_info *fi;
1193
1194 struct spu2ppu_cache *cache
1195 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1196
1197 cache->frame_id = frame_id_build (base + 16, func);
1198
1199 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1200 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1201 break;
1202
1203 if (fi)
1204 {
1205 cache->regcache = frame_save_as_regcache (fi);
1206 *this_prologue_cache = cache;
1207 return 1;
1208 }
1209 else
1210 {
1211 struct regcache *regcache;
1212 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1213 cache->regcache = regcache_dup (regcache);
1214 *this_prologue_cache = cache;
1215 return 1;
1216 }
1217 }
1218
1219 return 0;
1220 }
1221
1222 static void
1223 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1224 {
1225 struct spu2ppu_cache *cache = this_cache;
1226 regcache_xfree (cache->regcache);
1227 }
1228
1229 static const struct frame_unwind spu2ppu_unwind = {
1230 ARCH_FRAME,
1231 spu2ppu_this_id,
1232 spu2ppu_prev_register,
1233 NULL,
1234 spu2ppu_sniffer,
1235 spu2ppu_dealloc_cache,
1236 spu2ppu_prev_arch,
1237 };
1238
1239
1240 /* Function calling convention. */
1241
1242 static CORE_ADDR
1243 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1244 {
1245 return sp & ~15;
1246 }
1247
1248 static CORE_ADDR
1249 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1250 struct value **args, int nargs, struct type *value_type,
1251 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1252 struct regcache *regcache)
1253 {
1254 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1255 sp = (sp - 4) & ~15;
1256 /* Store the address of that breakpoint */
1257 *bp_addr = sp;
1258 /* The call starts at the callee's entry point. */
1259 *real_pc = funaddr;
1260
1261 return sp;
1262 }
1263
1264 static int
1265 spu_scalar_value_p (struct type *type)
1266 {
1267 switch (TYPE_CODE (type))
1268 {
1269 case TYPE_CODE_INT:
1270 case TYPE_CODE_ENUM:
1271 case TYPE_CODE_RANGE:
1272 case TYPE_CODE_CHAR:
1273 case TYPE_CODE_BOOL:
1274 case TYPE_CODE_PTR:
1275 case TYPE_CODE_REF:
1276 return TYPE_LENGTH (type) <= 16;
1277
1278 default:
1279 return 0;
1280 }
1281 }
1282
1283 static void
1284 spu_value_to_regcache (struct regcache *regcache, int regnum,
1285 struct type *type, const gdb_byte *in)
1286 {
1287 int len = TYPE_LENGTH (type);
1288
1289 if (spu_scalar_value_p (type))
1290 {
1291 int preferred_slot = len < 4 ? 4 - len : 0;
1292 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1293 }
1294 else
1295 {
1296 while (len >= 16)
1297 {
1298 regcache_cooked_write (regcache, regnum++, in);
1299 in += 16;
1300 len -= 16;
1301 }
1302
1303 if (len > 0)
1304 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1305 }
1306 }
1307
1308 static void
1309 spu_regcache_to_value (struct regcache *regcache, int regnum,
1310 struct type *type, gdb_byte *out)
1311 {
1312 int len = TYPE_LENGTH (type);
1313
1314 if (spu_scalar_value_p (type))
1315 {
1316 int preferred_slot = len < 4 ? 4 - len : 0;
1317 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1318 }
1319 else
1320 {
1321 while (len >= 16)
1322 {
1323 regcache_cooked_read (regcache, regnum++, out);
1324 out += 16;
1325 len -= 16;
1326 }
1327
1328 if (len > 0)
1329 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1330 }
1331 }
1332
1333 static CORE_ADDR
1334 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1335 struct regcache *regcache, CORE_ADDR bp_addr,
1336 int nargs, struct value **args, CORE_ADDR sp,
1337 int struct_return, CORE_ADDR struct_addr)
1338 {
1339 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1340 CORE_ADDR sp_delta;
1341 int i;
1342 int regnum = SPU_ARG1_REGNUM;
1343 int stack_arg = -1;
1344 gdb_byte buf[16];
1345
1346 /* Set the return address. */
1347 memset (buf, 0, sizeof buf);
1348 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1349 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1350
1351 /* If STRUCT_RETURN is true, then the struct return address (in
1352 STRUCT_ADDR) will consume the first argument-passing register.
1353 Both adjust the register count and store that value. */
1354 if (struct_return)
1355 {
1356 memset (buf, 0, sizeof buf);
1357 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1358 regcache_cooked_write (regcache, regnum++, buf);
1359 }
1360
1361 /* Fill in argument registers. */
1362 for (i = 0; i < nargs; i++)
1363 {
1364 struct value *arg = args[i];
1365 struct type *type = check_typedef (value_type (arg));
1366 const gdb_byte *contents = value_contents (arg);
1367 int len = TYPE_LENGTH (type);
1368 int n_regs = align_up (len, 16) / 16;
1369
1370 /* If the argument doesn't wholly fit into registers, it and
1371 all subsequent arguments go to the stack. */
1372 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1373 {
1374 stack_arg = i;
1375 break;
1376 }
1377
1378 spu_value_to_regcache (regcache, regnum, type, contents);
1379 regnum += n_regs;
1380 }
1381
1382 /* Overflow arguments go to the stack. */
1383 if (stack_arg != -1)
1384 {
1385 CORE_ADDR ap;
1386
1387 /* Allocate all required stack size. */
1388 for (i = stack_arg; i < nargs; i++)
1389 {
1390 struct type *type = check_typedef (value_type (args[i]));
1391 sp -= align_up (TYPE_LENGTH (type), 16);
1392 }
1393
1394 /* Fill in stack arguments. */
1395 ap = sp;
1396 for (i = stack_arg; i < nargs; i++)
1397 {
1398 struct value *arg = args[i];
1399 struct type *type = check_typedef (value_type (arg));
1400 int len = TYPE_LENGTH (type);
1401 int preferred_slot;
1402
1403 if (spu_scalar_value_p (type))
1404 preferred_slot = len < 4 ? 4 - len : 0;
1405 else
1406 preferred_slot = 0;
1407
1408 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1409 ap += align_up (TYPE_LENGTH (type), 16);
1410 }
1411 }
1412
1413 /* Allocate stack frame header. */
1414 sp -= 32;
1415
1416 /* Store stack back chain. */
1417 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1418 target_write_memory (sp, buf, 16);
1419
1420 /* Finally, update all slots of the SP register. */
1421 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1422 for (i = 0; i < 4; i++)
1423 {
1424 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1425 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1426 }
1427 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1428
1429 return sp;
1430 }
1431
1432 static struct frame_id
1433 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1434 {
1435 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1436 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1437 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1438 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1439 }
1440
1441 /* Function return value access. */
1442
1443 static enum return_value_convention
1444 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1445 struct type *type, struct regcache *regcache,
1446 gdb_byte *out, const gdb_byte *in)
1447 {
1448 enum return_value_convention rvc;
1449
1450 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1451 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1452 else
1453 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1454
1455 if (in)
1456 {
1457 switch (rvc)
1458 {
1459 case RETURN_VALUE_REGISTER_CONVENTION:
1460 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1461 break;
1462
1463 case RETURN_VALUE_STRUCT_CONVENTION:
1464 error ("Cannot set function return value.");
1465 break;
1466 }
1467 }
1468 else if (out)
1469 {
1470 switch (rvc)
1471 {
1472 case RETURN_VALUE_REGISTER_CONVENTION:
1473 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1474 break;
1475
1476 case RETURN_VALUE_STRUCT_CONVENTION:
1477 error ("Function return value unknown.");
1478 break;
1479 }
1480 }
1481
1482 return rvc;
1483 }
1484
1485
1486 /* Breakpoints. */
1487
1488 static const gdb_byte *
1489 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1490 {
1491 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1492
1493 *lenptr = sizeof breakpoint;
1494 return breakpoint;
1495 }
1496
1497 static int
1498 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1499 struct bp_target_info *bp_tgt)
1500 {
1501 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1502 that in a combined application, we have some breakpoints inserted in SPU
1503 code, and now the application forks (on the PPU side). GDB common code
1504 will assume that the fork system call copied all breakpoints into the new
1505 process' address space, and that all those copies now need to be removed
1506 (see breakpoint.c:detach_breakpoints).
1507
1508 While this is certainly true for PPU side breakpoints, it is not true
1509 for SPU side breakpoints. fork will clone the SPU context file
1510 descriptors, so that all the existing SPU contexts are in accessible
1511 in the new process. However, the contents of the SPU contexts themselves
1512 are *not* cloned. Therefore the effect of detach_breakpoints is to
1513 remove SPU breakpoints from the *original* SPU context's local store
1514 -- this is not the correct behaviour.
1515
1516 The workaround is to check whether the PID we are asked to remove this
1517 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1518 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1519 true in the context of detach_breakpoints. If so, we simply do nothing.
1520 [ Note that for the fork child process, it does not matter if breakpoints
1521 remain inserted, because those SPU contexts are not runnable anyway --
1522 the Linux kernel allows only the original process to invoke spu_run. */
1523
1524 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1525 return 0;
1526
1527 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1528 }
1529
1530
1531 /* Software single-stepping support. */
1532
1533 static int
1534 spu_software_single_step (struct frame_info *frame)
1535 {
1536 struct gdbarch *gdbarch = get_frame_arch (frame);
1537 struct address_space *aspace = get_frame_address_space (frame);
1538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1539 CORE_ADDR pc, next_pc;
1540 unsigned int insn;
1541 int offset, reg;
1542 gdb_byte buf[4];
1543 ULONGEST lslr;
1544
1545 pc = get_frame_pc (frame);
1546
1547 if (target_read_memory (pc, buf, 4))
1548 return 1;
1549 insn = extract_unsigned_integer (buf, 4, byte_order);
1550
1551 /* Get local store limit. */
1552 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1553 if (!lslr)
1554 lslr = (ULONGEST) -1;
1555
1556 /* Next sequential instruction is at PC + 4, except if the current
1557 instruction is a PPE-assisted call, in which case it is at PC + 8.
1558 Wrap around LS limit to be on the safe side. */
1559 if ((insn & 0xffffff00) == 0x00002100)
1560 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1561 else
1562 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1563
1564 insert_single_step_breakpoint (gdbarch,
1565 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1566
1567 if (is_branch (insn, &offset, &reg))
1568 {
1569 CORE_ADDR target = offset;
1570
1571 if (reg == SPU_PC_REGNUM)
1572 target += SPUADDR_ADDR (pc);
1573 else if (reg != -1)
1574 {
1575 get_frame_register_bytes (frame, reg, 0, 4, buf);
1576 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1577 }
1578
1579 target = target & lslr;
1580 if (target != next_pc)
1581 insert_single_step_breakpoint (gdbarch, aspace,
1582 SPUADDR (SPUADDR_SPU (pc), target));
1583 }
1584
1585 return 1;
1586 }
1587
1588
1589 /* Longjmp support. */
1590
1591 static int
1592 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1593 {
1594 struct gdbarch *gdbarch = get_frame_arch (frame);
1595 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1596 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1597 gdb_byte buf[4];
1598 CORE_ADDR jb_addr;
1599
1600 /* Jump buffer is pointed to by the argument register $r3. */
1601 get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
1602 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1603 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1604 return 0;
1605
1606 *pc = extract_unsigned_integer (buf, 4, byte_order);
1607 *pc = SPUADDR (tdep->id, *pc);
1608 return 1;
1609 }
1610
1611
1612 /* Disassembler. */
1613
1614 struct spu_dis_asm_data
1615 {
1616 struct gdbarch *gdbarch;
1617 int id;
1618 };
1619
1620 static void
1621 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1622 {
1623 struct spu_dis_asm_data *data = info->application_data;
1624 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1625 }
1626
1627 static int
1628 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1629 {
1630 /* The opcodes disassembler does 18-bit address arithmetic. Make sure the
1631 SPU ID encoded in the high bits is added back when we call print_address. */
1632 struct disassemble_info spu_info = *info;
1633 struct spu_dis_asm_data data;
1634 data.gdbarch = info->application_data;
1635 data.id = SPUADDR_SPU (memaddr);
1636
1637 spu_info.application_data = &data;
1638 spu_info.print_address_func = spu_dis_asm_print_address;
1639 return print_insn_spu (memaddr, &spu_info);
1640 }
1641
1642
1643 /* Target overlays for the SPU overlay manager.
1644
1645 See the documentation of simple_overlay_update for how the
1646 interface is supposed to work.
1647
1648 Data structures used by the overlay manager:
1649
1650 struct ovly_table
1651 {
1652 u32 vma;
1653 u32 size;
1654 u32 pos;
1655 u32 buf;
1656 } _ovly_table[]; -- one entry per overlay section
1657
1658 struct ovly_buf_table
1659 {
1660 u32 mapped;
1661 } _ovly_buf_table[]; -- one entry per overlay buffer
1662
1663 _ovly_table should never change.
1664
1665 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1666 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1667 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1668
1669 mapped is an index into _ovly_table. Both the mapped and buf indices start
1670 from one to reference the first entry in their respective tables. */
1671
1672 /* Using the per-objfile private data mechanism, we store for each
1673 objfile an array of "struct spu_overlay_table" structures, one
1674 for each obj_section of the objfile. This structure holds two
1675 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1676 is *not* an overlay section. If it is non-zero, it represents
1677 a target address. The overlay section is mapped iff the target
1678 integer at this location equals MAPPED_VAL. */
1679
1680 static const struct objfile_data *spu_overlay_data;
1681
1682 struct spu_overlay_table
1683 {
1684 CORE_ADDR mapped_ptr;
1685 CORE_ADDR mapped_val;
1686 };
1687
1688 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1689 the _ovly_table data structure from the target and initialize the
1690 spu_overlay_table data structure from it. */
1691 static struct spu_overlay_table *
1692 spu_get_overlay_table (struct objfile *objfile)
1693 {
1694 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1695 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1696 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1697 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1698 unsigned ovly_table_size, ovly_buf_table_size;
1699 struct spu_overlay_table *tbl;
1700 struct obj_section *osect;
1701 char *ovly_table;
1702 int i;
1703
1704 tbl = objfile_data (objfile, spu_overlay_data);
1705 if (tbl)
1706 return tbl;
1707
1708 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1709 if (!ovly_table_msym)
1710 return NULL;
1711
1712 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1713 if (!ovly_buf_table_msym)
1714 return NULL;
1715
1716 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1717 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1718
1719 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1720 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1721
1722 ovly_table = xmalloc (ovly_table_size);
1723 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1724
1725 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1726 objfile->sections_end - objfile->sections,
1727 struct spu_overlay_table);
1728
1729 for (i = 0; i < ovly_table_size / 16; i++)
1730 {
1731 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1732 4, byte_order);
1733 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1734 4, byte_order);
1735 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1736 4, byte_order);
1737 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1738 4, byte_order);
1739
1740 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1741 continue;
1742
1743 ALL_OBJFILE_OSECTIONS (objfile, osect)
1744 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1745 && pos == osect->the_bfd_section->filepos)
1746 {
1747 int ndx = osect - objfile->sections;
1748 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1749 tbl[ndx].mapped_val = i + 1;
1750 break;
1751 }
1752 }
1753
1754 xfree (ovly_table);
1755 set_objfile_data (objfile, spu_overlay_data, tbl);
1756 return tbl;
1757 }
1758
1759 /* Read _ovly_buf_table entry from the target to dermine whether
1760 OSECT is currently mapped, and update the mapped state. */
1761 static void
1762 spu_overlay_update_osect (struct obj_section *osect)
1763 {
1764 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1765 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1766 struct spu_overlay_table *ovly_table;
1767 CORE_ADDR id, val;
1768
1769 ovly_table = spu_get_overlay_table (osect->objfile);
1770 if (!ovly_table)
1771 return;
1772
1773 ovly_table += osect - osect->objfile->sections;
1774 if (ovly_table->mapped_ptr == 0)
1775 return;
1776
1777 id = SPUADDR_SPU (obj_section_addr (osect));
1778 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1779 4, byte_order);
1780 osect->ovly_mapped = (val == ovly_table->mapped_val);
1781 }
1782
1783 /* If OSECT is NULL, then update all sections' mapped state.
1784 If OSECT is non-NULL, then update only OSECT's mapped state. */
1785 static void
1786 spu_overlay_update (struct obj_section *osect)
1787 {
1788 /* Just one section. */
1789 if (osect)
1790 spu_overlay_update_osect (osect);
1791
1792 /* All sections. */
1793 else
1794 {
1795 struct objfile *objfile;
1796
1797 ALL_OBJSECTIONS (objfile, osect)
1798 if (section_is_overlay (osect))
1799 spu_overlay_update_osect (osect);
1800 }
1801 }
1802
1803 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1804 If there is one, go through all sections and make sure for non-
1805 overlay sections LMA equals VMA, while for overlay sections LMA
1806 is larger than SPU_OVERLAY_LMA. */
1807 static void
1808 spu_overlay_new_objfile (struct objfile *objfile)
1809 {
1810 struct spu_overlay_table *ovly_table;
1811 struct obj_section *osect;
1812
1813 /* If we've already touched this file, do nothing. */
1814 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1815 return;
1816
1817 /* Consider only SPU objfiles. */
1818 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1819 return;
1820
1821 /* Check if this objfile has overlays. */
1822 ovly_table = spu_get_overlay_table (objfile);
1823 if (!ovly_table)
1824 return;
1825
1826 /* Now go and fiddle with all the LMAs. */
1827 ALL_OBJFILE_OSECTIONS (objfile, osect)
1828 {
1829 bfd *obfd = objfile->obfd;
1830 asection *bsect = osect->the_bfd_section;
1831 int ndx = osect - objfile->sections;
1832
1833 if (ovly_table[ndx].mapped_ptr == 0)
1834 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1835 else
1836 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1837 }
1838 }
1839
1840
1841 /* Insert temporary breakpoint on "main" function of newly loaded
1842 SPE context OBJFILE. */
1843 static void
1844 spu_catch_start (struct objfile *objfile)
1845 {
1846 struct minimal_symbol *minsym;
1847 struct symtab *symtab;
1848 CORE_ADDR pc;
1849 char buf[32];
1850
1851 /* Do this only if requested by "set spu stop-on-load on". */
1852 if (!spu_stop_on_load_p)
1853 return;
1854
1855 /* Consider only SPU objfiles. */
1856 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1857 return;
1858
1859 /* The main objfile is handled differently. */
1860 if (objfile == symfile_objfile)
1861 return;
1862
1863 /* There can be multiple symbols named "main". Search for the
1864 "main" in *this* objfile. */
1865 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1866 if (!minsym)
1867 return;
1868
1869 /* If we have debugging information, try to use it -- this
1870 will allow us to properly skip the prologue. */
1871 pc = SYMBOL_VALUE_ADDRESS (minsym);
1872 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1873 if (symtab != NULL)
1874 {
1875 struct blockvector *bv = BLOCKVECTOR (symtab);
1876 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1877 struct symbol *sym;
1878 struct symtab_and_line sal;
1879
1880 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1881 if (sym)
1882 {
1883 fixup_symbol_section (sym, objfile);
1884 sal = find_function_start_sal (sym, 1);
1885 pc = sal.pc;
1886 }
1887 }
1888
1889 /* Use a numerical address for the set_breakpoint command to avoid having
1890 the breakpoint re-set incorrectly. */
1891 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1892 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1893 NULL /* cond_string */, -1 /* thread */,
1894 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1895 bp_breakpoint /* type_wanted */,
1896 0 /* ignore_count */,
1897 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1898 NULL /* ops */, 0 /* from_tty */, 1 /* enabled */,
1899 0 /* internal */);
1900 }
1901
1902
1903 /* Look up OBJFILE loaded into FRAME's SPU context. */
1904 static struct objfile *
1905 spu_objfile_from_frame (struct frame_info *frame)
1906 {
1907 struct gdbarch *gdbarch = get_frame_arch (frame);
1908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1909 struct objfile *obj;
1910
1911 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1912 return NULL;
1913
1914 ALL_OBJFILES (obj)
1915 {
1916 if (obj->sections != obj->sections_end
1917 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1918 return obj;
1919 }
1920
1921 return NULL;
1922 }
1923
1924 /* Flush cache for ea pointer access if available. */
1925 static void
1926 flush_ea_cache (void)
1927 {
1928 struct minimal_symbol *msymbol;
1929 struct objfile *obj;
1930
1931 if (!has_stack_frames ())
1932 return;
1933
1934 obj = spu_objfile_from_frame (get_current_frame ());
1935 if (obj == NULL)
1936 return;
1937
1938 /* Lookup inferior function __cache_flush. */
1939 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1940 if (msymbol != NULL)
1941 {
1942 struct type *type;
1943 CORE_ADDR addr;
1944
1945 type = objfile_type (obj)->builtin_void;
1946 type = lookup_function_type (type);
1947 type = lookup_pointer_type (type);
1948 addr = SYMBOL_VALUE_ADDRESS (msymbol);
1949
1950 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
1951 }
1952 }
1953
1954 /* This handler is called when the inferior has stopped. If it is stopped in
1955 SPU architecture then flush the ea cache if used. */
1956 static void
1957 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
1958 {
1959 if (!spu_auto_flush_cache_p)
1960 return;
1961
1962 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
1963 re-entering this function when __cache_flush stops. */
1964 spu_auto_flush_cache_p = 0;
1965 flush_ea_cache ();
1966 spu_auto_flush_cache_p = 1;
1967 }
1968
1969
1970 /* "info spu" commands. */
1971
1972 static void
1973 info_spu_event_command (char *args, int from_tty)
1974 {
1975 struct frame_info *frame = get_selected_frame (NULL);
1976 ULONGEST event_status = 0;
1977 ULONGEST event_mask = 0;
1978 struct cleanup *chain;
1979 gdb_byte buf[100];
1980 char annex[32];
1981 LONGEST len;
1982 int rc, id;
1983
1984 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1985 error (_("\"info spu\" is only supported on the SPU architecture."));
1986
1987 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1988
1989 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1990 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1991 buf, 0, (sizeof (buf) - 1));
1992 if (len <= 0)
1993 error (_("Could not read event_status."));
1994 buf[len] = '\0';
1995 event_status = strtoulst (buf, NULL, 16);
1996
1997 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1998 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1999 buf, 0, (sizeof (buf) - 1));
2000 if (len <= 0)
2001 error (_("Could not read event_mask."));
2002 buf[len] = '\0';
2003 event_mask = strtoulst (buf, NULL, 16);
2004
2005 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
2006
2007 if (ui_out_is_mi_like_p (uiout))
2008 {
2009 ui_out_field_fmt (uiout, "event_status",
2010 "0x%s", phex_nz (event_status, 4));
2011 ui_out_field_fmt (uiout, "event_mask",
2012 "0x%s", phex_nz (event_mask, 4));
2013 }
2014 else
2015 {
2016 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2017 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2018 }
2019
2020 do_cleanups (chain);
2021 }
2022
2023 static void
2024 info_spu_signal_command (char *args, int from_tty)
2025 {
2026 struct frame_info *frame = get_selected_frame (NULL);
2027 struct gdbarch *gdbarch = get_frame_arch (frame);
2028 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2029 ULONGEST signal1 = 0;
2030 ULONGEST signal1_type = 0;
2031 int signal1_pending = 0;
2032 ULONGEST signal2 = 0;
2033 ULONGEST signal2_type = 0;
2034 int signal2_pending = 0;
2035 struct cleanup *chain;
2036 char annex[32];
2037 gdb_byte buf[100];
2038 LONGEST len;
2039 int rc, id;
2040
2041 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2042 error (_("\"info spu\" is only supported on the SPU architecture."));
2043
2044 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2045
2046 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2047 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2048 if (len < 0)
2049 error (_("Could not read signal1."));
2050 else if (len == 4)
2051 {
2052 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2053 signal1_pending = 1;
2054 }
2055
2056 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2057 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2058 buf, 0, (sizeof (buf) - 1));
2059 if (len <= 0)
2060 error (_("Could not read signal1_type."));
2061 buf[len] = '\0';
2062 signal1_type = strtoulst (buf, NULL, 16);
2063
2064 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2065 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2066 if (len < 0)
2067 error (_("Could not read signal2."));
2068 else if (len == 4)
2069 {
2070 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2071 signal2_pending = 1;
2072 }
2073
2074 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2075 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2076 buf, 0, (sizeof (buf) - 1));
2077 if (len <= 0)
2078 error (_("Could not read signal2_type."));
2079 buf[len] = '\0';
2080 signal2_type = strtoulst (buf, NULL, 16);
2081
2082 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
2083
2084 if (ui_out_is_mi_like_p (uiout))
2085 {
2086 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
2087 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2088 ui_out_field_int (uiout, "signal1_type", signal1_type);
2089 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
2090 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2091 ui_out_field_int (uiout, "signal2_type", signal2_type);
2092 }
2093 else
2094 {
2095 if (signal1_pending)
2096 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2097 else
2098 printf_filtered (_("Signal 1 not pending "));
2099
2100 if (signal1_type)
2101 printf_filtered (_("(Type Or)\n"));
2102 else
2103 printf_filtered (_("(Type Overwrite)\n"));
2104
2105 if (signal2_pending)
2106 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2107 else
2108 printf_filtered (_("Signal 2 not pending "));
2109
2110 if (signal2_type)
2111 printf_filtered (_("(Type Or)\n"));
2112 else
2113 printf_filtered (_("(Type Overwrite)\n"));
2114 }
2115
2116 do_cleanups (chain);
2117 }
2118
2119 static void
2120 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2121 const char *field, const char *msg)
2122 {
2123 struct cleanup *chain;
2124 int i;
2125
2126 if (nr <= 0)
2127 return;
2128
2129 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
2130
2131 ui_out_table_header (uiout, 32, ui_left, field, msg);
2132 ui_out_table_body (uiout);
2133
2134 for (i = 0; i < nr; i++)
2135 {
2136 struct cleanup *val_chain;
2137 ULONGEST val;
2138 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
2139 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2140 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
2141 do_cleanups (val_chain);
2142
2143 if (!ui_out_is_mi_like_p (uiout))
2144 printf_filtered ("\n");
2145 }
2146
2147 do_cleanups (chain);
2148 }
2149
2150 static void
2151 info_spu_mailbox_command (char *args, int from_tty)
2152 {
2153 struct frame_info *frame = get_selected_frame (NULL);
2154 struct gdbarch *gdbarch = get_frame_arch (frame);
2155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2156 struct cleanup *chain;
2157 char annex[32];
2158 gdb_byte buf[1024];
2159 LONGEST len;
2160 int i, id;
2161
2162 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2163 error (_("\"info spu\" is only supported on the SPU architecture."));
2164
2165 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2166
2167 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
2168
2169 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2170 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2171 buf, 0, sizeof buf);
2172 if (len < 0)
2173 error (_("Could not read mbox_info."));
2174
2175 info_spu_mailbox_list (buf, len / 4, byte_order,
2176 "mbox", "SPU Outbound Mailbox");
2177
2178 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2179 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2180 buf, 0, sizeof buf);
2181 if (len < 0)
2182 error (_("Could not read ibox_info."));
2183
2184 info_spu_mailbox_list (buf, len / 4, byte_order,
2185 "ibox", "SPU Outbound Interrupt Mailbox");
2186
2187 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2188 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2189 buf, 0, sizeof buf);
2190 if (len < 0)
2191 error (_("Could not read wbox_info."));
2192
2193 info_spu_mailbox_list (buf, len / 4, byte_order,
2194 "wbox", "SPU Inbound Mailbox");
2195
2196 do_cleanups (chain);
2197 }
2198
2199 static ULONGEST
2200 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2201 {
2202 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2203 return (word >> (63 - last)) & mask;
2204 }
2205
2206 static void
2207 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2208 {
2209 static char *spu_mfc_opcode[256] =
2210 {
2211 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2212 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2213 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2214 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2215 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2216 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2217 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2218 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2219 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2220 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2221 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2222 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2223 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2224 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2225 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2226 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2227 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2228 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2229 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2230 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2231 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2232 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2233 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2234 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2235 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2236 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2237 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2238 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2239 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2240 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2241 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2242 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2243 };
2244
2245 int *seq = alloca (nr * sizeof (int));
2246 int done = 0;
2247 struct cleanup *chain;
2248 int i, j;
2249
2250
2251 /* Determine sequence in which to display (valid) entries. */
2252 for (i = 0; i < nr; i++)
2253 {
2254 /* Search for the first valid entry all of whose
2255 dependencies are met. */
2256 for (j = 0; j < nr; j++)
2257 {
2258 ULONGEST mfc_cq_dw3;
2259 ULONGEST dependencies;
2260
2261 if (done & (1 << (nr - 1 - j)))
2262 continue;
2263
2264 mfc_cq_dw3
2265 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2266 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2267 continue;
2268
2269 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2270 if ((dependencies & done) != dependencies)
2271 continue;
2272
2273 seq[i] = j;
2274 done |= 1 << (nr - 1 - j);
2275 break;
2276 }
2277
2278 if (j == nr)
2279 break;
2280 }
2281
2282 nr = i;
2283
2284
2285 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
2286
2287 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
2288 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
2289 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
2290 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
2291 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
2292 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
2293 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
2294 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
2295 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
2296 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
2297
2298 ui_out_table_body (uiout);
2299
2300 for (i = 0; i < nr; i++)
2301 {
2302 struct cleanup *cmd_chain;
2303 ULONGEST mfc_cq_dw0;
2304 ULONGEST mfc_cq_dw1;
2305 ULONGEST mfc_cq_dw2;
2306 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2307 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2308 ULONGEST mfc_ea;
2309 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2310
2311 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2312 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2313
2314 mfc_cq_dw0
2315 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2316 mfc_cq_dw1
2317 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2318 mfc_cq_dw2
2319 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2320
2321 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2322 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2323 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2324 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2325 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2326 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2327 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2328
2329 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2330 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2331
2332 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2333 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2334 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2335 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2336 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2337 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2338
2339 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
2340
2341 if (spu_mfc_opcode[mfc_cmd_opcode])
2342 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2343 else
2344 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
2345
2346 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
2347 ui_out_field_int (uiout, "tid", tclass_id);
2348 ui_out_field_int (uiout, "rid", rclass_id);
2349
2350 if (ea_valid_p)
2351 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
2352 else
2353 ui_out_field_skip (uiout, "ea");
2354
2355 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
2356 if (qw_valid_p)
2357 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
2358 else
2359 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
2360
2361 if (list_valid_p)
2362 {
2363 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
2364 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
2365 }
2366 else
2367 {
2368 ui_out_field_skip (uiout, "lstaddr");
2369 ui_out_field_skip (uiout, "lstsize");
2370 }
2371
2372 if (cmd_error_p)
2373 ui_out_field_string (uiout, "error_p", "*");
2374 else
2375 ui_out_field_skip (uiout, "error_p");
2376
2377 do_cleanups (cmd_chain);
2378
2379 if (!ui_out_is_mi_like_p (uiout))
2380 printf_filtered ("\n");
2381 }
2382
2383 do_cleanups (chain);
2384 }
2385
2386 static void
2387 info_spu_dma_command (char *args, int from_tty)
2388 {
2389 struct frame_info *frame = get_selected_frame (NULL);
2390 struct gdbarch *gdbarch = get_frame_arch (frame);
2391 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2392 ULONGEST dma_info_type;
2393 ULONGEST dma_info_mask;
2394 ULONGEST dma_info_status;
2395 ULONGEST dma_info_stall_and_notify;
2396 ULONGEST dma_info_atomic_command_status;
2397 struct cleanup *chain;
2398 char annex[32];
2399 gdb_byte buf[1024];
2400 LONGEST len;
2401 int i, id;
2402
2403 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2404 error (_("\"info spu\" is only supported on the SPU architecture."));
2405
2406 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2407
2408 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2409 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2410 buf, 0, 40 + 16 * 32);
2411 if (len <= 0)
2412 error (_("Could not read dma_info."));
2413
2414 dma_info_type
2415 = extract_unsigned_integer (buf, 8, byte_order);
2416 dma_info_mask
2417 = extract_unsigned_integer (buf + 8, 8, byte_order);
2418 dma_info_status
2419 = extract_unsigned_integer (buf + 16, 8, byte_order);
2420 dma_info_stall_and_notify
2421 = extract_unsigned_integer (buf + 24, 8, byte_order);
2422 dma_info_atomic_command_status
2423 = extract_unsigned_integer (buf + 32, 8, byte_order);
2424
2425 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
2426
2427 if (ui_out_is_mi_like_p (uiout))
2428 {
2429 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
2430 phex_nz (dma_info_type, 4));
2431 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
2432 phex_nz (dma_info_mask, 4));
2433 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
2434 phex_nz (dma_info_status, 4));
2435 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
2436 phex_nz (dma_info_stall_and_notify, 4));
2437 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
2438 phex_nz (dma_info_atomic_command_status, 4));
2439 }
2440 else
2441 {
2442 const char *query_msg = _("no query pending");
2443
2444 if (dma_info_type & 4)
2445 switch (dma_info_type & 3)
2446 {
2447 case 1: query_msg = _("'any' query pending"); break;
2448 case 2: query_msg = _("'all' query pending"); break;
2449 default: query_msg = _("undefined query type"); break;
2450 }
2451
2452 printf_filtered (_("Tag-Group Status 0x%s\n"),
2453 phex (dma_info_status, 4));
2454 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2455 phex (dma_info_mask, 4), query_msg);
2456 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2457 phex (dma_info_stall_and_notify, 4));
2458 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2459 phex (dma_info_atomic_command_status, 4));
2460 printf_filtered ("\n");
2461 }
2462
2463 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2464 do_cleanups (chain);
2465 }
2466
2467 static void
2468 info_spu_proxydma_command (char *args, int from_tty)
2469 {
2470 struct frame_info *frame = get_selected_frame (NULL);
2471 struct gdbarch *gdbarch = get_frame_arch (frame);
2472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2473 ULONGEST dma_info_type;
2474 ULONGEST dma_info_mask;
2475 ULONGEST dma_info_status;
2476 struct cleanup *chain;
2477 char annex[32];
2478 gdb_byte buf[1024];
2479 LONGEST len;
2480 int i, id;
2481
2482 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2483 error (_("\"info spu\" is only supported on the SPU architecture."));
2484
2485 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2486
2487 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2488 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2489 buf, 0, 24 + 8 * 32);
2490 if (len <= 0)
2491 error (_("Could not read proxydma_info."));
2492
2493 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2494 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2495 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2496
2497 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2498
2499 if (ui_out_is_mi_like_p (uiout))
2500 {
2501 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2502 phex_nz (dma_info_type, 4));
2503 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2504 phex_nz (dma_info_mask, 4));
2505 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2506 phex_nz (dma_info_status, 4));
2507 }
2508 else
2509 {
2510 const char *query_msg;
2511
2512 switch (dma_info_type & 3)
2513 {
2514 case 0: query_msg = _("no query pending"); break;
2515 case 1: query_msg = _("'any' query pending"); break;
2516 case 2: query_msg = _("'all' query pending"); break;
2517 default: query_msg = _("undefined query type"); break;
2518 }
2519
2520 printf_filtered (_("Tag-Group Status 0x%s\n"),
2521 phex (dma_info_status, 4));
2522 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2523 phex (dma_info_mask, 4), query_msg);
2524 printf_filtered ("\n");
2525 }
2526
2527 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2528 do_cleanups (chain);
2529 }
2530
2531 static void
2532 info_spu_command (char *args, int from_tty)
2533 {
2534 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2535 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2536 }
2537
2538
2539 /* Root of all "set spu "/"show spu " commands. */
2540
2541 static void
2542 show_spu_command (char *args, int from_tty)
2543 {
2544 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2545 }
2546
2547 static void
2548 set_spu_command (char *args, int from_tty)
2549 {
2550 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2551 }
2552
2553 static void
2554 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2555 struct cmd_list_element *c, const char *value)
2556 {
2557 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2558 value);
2559 }
2560
2561 static void
2562 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2563 struct cmd_list_element *c, const char *value)
2564 {
2565 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2566 value);
2567 }
2568
2569
2570 /* Set up gdbarch struct. */
2571
2572 static struct gdbarch *
2573 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2574 {
2575 struct gdbarch *gdbarch;
2576 struct gdbarch_tdep *tdep;
2577 int id = -1;
2578
2579 /* Which spufs ID was requested as address space? */
2580 if (info.tdep_info)
2581 id = *(int *)info.tdep_info;
2582 /* For objfile architectures of SPU solibs, decode the ID from the name.
2583 This assumes the filename convention employed by solib-spu.c. */
2584 else if (info.abfd)
2585 {
2586 char *name = strrchr (info.abfd->filename, '@');
2587 if (name)
2588 sscanf (name, "@0x%*x <%d>", &id);
2589 }
2590
2591 /* Find a candidate among extant architectures. */
2592 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2593 arches != NULL;
2594 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2595 {
2596 tdep = gdbarch_tdep (arches->gdbarch);
2597 if (tdep && tdep->id == id)
2598 return arches->gdbarch;
2599 }
2600
2601 /* None found, so create a new architecture. */
2602 tdep = XCALLOC (1, struct gdbarch_tdep);
2603 tdep->id = id;
2604 gdbarch = gdbarch_alloc (&info, tdep);
2605
2606 /* Disassembler. */
2607 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2608
2609 /* Registers. */
2610 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2611 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2612 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2613 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2614 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2615 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2616 set_gdbarch_register_name (gdbarch, spu_register_name);
2617 set_gdbarch_register_type (gdbarch, spu_register_type);
2618 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2619 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2620 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2621 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2622
2623 /* Data types. */
2624 set_gdbarch_char_signed (gdbarch, 0);
2625 set_gdbarch_ptr_bit (gdbarch, 32);
2626 set_gdbarch_addr_bit (gdbarch, 32);
2627 set_gdbarch_short_bit (gdbarch, 16);
2628 set_gdbarch_int_bit (gdbarch, 32);
2629 set_gdbarch_long_bit (gdbarch, 32);
2630 set_gdbarch_long_long_bit (gdbarch, 64);
2631 set_gdbarch_float_bit (gdbarch, 32);
2632 set_gdbarch_double_bit (gdbarch, 64);
2633 set_gdbarch_long_double_bit (gdbarch, 64);
2634 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2635 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2636 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2637
2638 /* Address handling. */
2639 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2640 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2641 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2642 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2643 set_gdbarch_address_class_type_flags_to_name
2644 (gdbarch, spu_address_class_type_flags_to_name);
2645 set_gdbarch_address_class_name_to_type_flags
2646 (gdbarch, spu_address_class_name_to_type_flags);
2647
2648
2649 /* Inferior function calls. */
2650 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2651 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2652 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2653 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2654 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2655 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2656 set_gdbarch_return_value (gdbarch, spu_return_value);
2657
2658 /* Frame handling. */
2659 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2660 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2661 frame_base_set_default (gdbarch, &spu_frame_base);
2662 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2663 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2664 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2665 set_gdbarch_frame_args_skip (gdbarch, 0);
2666 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2667 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2668
2669 /* Cell/B.E. cross-architecture unwinder support. */
2670 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2671
2672 /* Breakpoints. */
2673 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2674 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2675 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2676 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2677 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2678 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2679
2680 /* Overlays. */
2681 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2682
2683 return gdbarch;
2684 }
2685
2686 /* Provide a prototype to silence -Wmissing-prototypes. */
2687 extern initialize_file_ftype _initialize_spu_tdep;
2688
2689 void
2690 _initialize_spu_tdep (void)
2691 {
2692 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2693
2694 /* Add ourselves to objfile event chain. */
2695 observer_attach_new_objfile (spu_overlay_new_objfile);
2696 spu_overlay_data = register_objfile_data ();
2697
2698 /* Install spu stop-on-load handler. */
2699 observer_attach_new_objfile (spu_catch_start);
2700
2701 /* Add ourselves to normal_stop event chain. */
2702 observer_attach_normal_stop (spu_attach_normal_stop);
2703
2704 /* Add root prefix command for all "set spu"/"show spu" commands. */
2705 add_prefix_cmd ("spu", no_class, set_spu_command,
2706 _("Various SPU specific commands."),
2707 &setspucmdlist, "set spu ", 0, &setlist);
2708 add_prefix_cmd ("spu", no_class, show_spu_command,
2709 _("Various SPU specific commands."),
2710 &showspucmdlist, "show spu ", 0, &showlist);
2711
2712 /* Toggle whether or not to add a temporary breakpoint at the "main"
2713 function of new SPE contexts. */
2714 add_setshow_boolean_cmd ("stop-on-load", class_support,
2715 &spu_stop_on_load_p, _("\
2716 Set whether to stop for new SPE threads."),
2717 _("\
2718 Show whether to stop for new SPE threads."),
2719 _("\
2720 Use \"on\" to give control to the user when a new SPE thread\n\
2721 enters its \"main\" function.\n\
2722 Use \"off\" to disable stopping for new SPE threads."),
2723 NULL,
2724 show_spu_stop_on_load,
2725 &setspucmdlist, &showspucmdlist);
2726
2727 /* Toggle whether or not to automatically flush the software-managed
2728 cache whenever SPE execution stops. */
2729 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2730 &spu_auto_flush_cache_p, _("\
2731 Set whether to automatically flush the software-managed cache."),
2732 _("\
2733 Show whether to automatically flush the software-managed cache."),
2734 _("\
2735 Use \"on\" to automatically flush the software-managed cache\n\
2736 whenever SPE execution stops.\n\
2737 Use \"off\" to never automatically flush the software-managed cache."),
2738 NULL,
2739 show_spu_auto_flush_cache,
2740 &setspucmdlist, &showspucmdlist);
2741
2742 /* Add root prefix command for all "info spu" commands. */
2743 add_prefix_cmd ("spu", class_info, info_spu_command,
2744 _("Various SPU specific commands."),
2745 &infospucmdlist, "info spu ", 0, &infolist);
2746
2747 /* Add various "info spu" commands. */
2748 add_cmd ("event", class_info, info_spu_event_command,
2749 _("Display SPU event facility status.\n"),
2750 &infospucmdlist);
2751 add_cmd ("signal", class_info, info_spu_signal_command,
2752 _("Display SPU signal notification facility status.\n"),
2753 &infospucmdlist);
2754 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2755 _("Display SPU mailbox facility status.\n"),
2756 &infospucmdlist);
2757 add_cmd ("dma", class_info, info_spu_dma_command,
2758 _("Display MFC DMA status.\n"),
2759 &infospucmdlist);
2760 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2761 _("Display MFC Proxy-DMA status.\n"),
2762 &infospucmdlist);
2763 }
This page took 0.08729 seconds and 4 git commands to generate.