2010-06-21 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "block.h"
44 #include "observer.h"
45 #include "infcall.h"
46
47 #include "spu-tdep.h"
48
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, "invalid regnum");
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static void
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 gdb_byte reg[32];
191 char annex[32];
192 ULONGEST id;
193
194 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
195 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
196 memset (reg, 0, sizeof reg);
197 target_read (&current_target, TARGET_OBJECT_SPU, annex,
198 reg, 0, sizeof reg);
199
200 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
201 }
202
203 static void
204 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
205 int regnum, gdb_byte *buf)
206 {
207 gdb_byte reg[16];
208 char annex[32];
209 ULONGEST id;
210
211 switch (regnum)
212 {
213 case SPU_SP_REGNUM:
214 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
215 memcpy (buf, reg, 4);
216 break;
217
218 case SPU_FPSCR_REGNUM:
219 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
220 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
221 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
222 break;
223
224 case SPU_SRR0_REGNUM:
225 spu_pseudo_register_read_spu (regcache, "srr0", buf);
226 break;
227
228 case SPU_LSLR_REGNUM:
229 spu_pseudo_register_read_spu (regcache, "lslr", buf);
230 break;
231
232 case SPU_DECR_REGNUM:
233 spu_pseudo_register_read_spu (regcache, "decr", buf);
234 break;
235
236 case SPU_DECR_STATUS_REGNUM:
237 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
238 break;
239
240 default:
241 internal_error (__FILE__, __LINE__, _("invalid regnum"));
242 }
243 }
244
245 static void
246 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
247 const gdb_byte *buf)
248 {
249 struct gdbarch *gdbarch = get_regcache_arch (regcache);
250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
251 gdb_byte reg[32];
252 char annex[32];
253 ULONGEST id;
254
255 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
256 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
257 xsnprintf (reg, sizeof reg, "0x%s",
258 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
259 target_write (&current_target, TARGET_OBJECT_SPU, annex,
260 reg, 0, strlen (reg));
261 }
262
263 static void
264 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
265 int regnum, const gdb_byte *buf)
266 {
267 gdb_byte reg[16];
268 char annex[32];
269 ULONGEST id;
270
271 switch (regnum)
272 {
273 case SPU_SP_REGNUM:
274 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
275 memcpy (reg, buf, 4);
276 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
277 break;
278
279 case SPU_FPSCR_REGNUM:
280 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
281 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
282 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
283 break;
284
285 case SPU_SRR0_REGNUM:
286 spu_pseudo_register_write_spu (regcache, "srr0", buf);
287 break;
288
289 case SPU_LSLR_REGNUM:
290 spu_pseudo_register_write_spu (regcache, "lslr", buf);
291 break;
292
293 case SPU_DECR_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "decr", buf);
295 break;
296
297 case SPU_DECR_STATUS_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
299 break;
300
301 default:
302 internal_error (__FILE__, __LINE__, _("invalid regnum"));
303 }
304 }
305
306 /* Value conversion -- access scalar values at the preferred slot. */
307
308 static struct value *
309 spu_value_from_register (struct type *type, int regnum,
310 struct frame_info *frame)
311 {
312 struct value *value = default_value_from_register (type, regnum, frame);
313 int len = TYPE_LENGTH (type);
314
315 if (regnum < SPU_NUM_GPRS && len < 16)
316 {
317 int preferred_slot = len < 4 ? 4 - len : 0;
318 set_value_offset (value, preferred_slot);
319 }
320
321 return value;
322 }
323
324 /* Register groups. */
325
326 static int
327 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
328 struct reggroup *group)
329 {
330 /* Registers displayed via 'info regs'. */
331 if (group == general_reggroup)
332 return 1;
333
334 /* Registers displayed via 'info float'. */
335 if (group == float_reggroup)
336 return 0;
337
338 /* Registers that need to be saved/restored in order to
339 push or pop frames. */
340 if (group == save_reggroup || group == restore_reggroup)
341 return 1;
342
343 return default_register_reggroup_p (gdbarch, regnum, group);
344 }
345
346
347 /* Address handling. */
348
349 static int
350 spu_gdbarch_id (struct gdbarch *gdbarch)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353 int id = tdep->id;
354
355 /* The objfile architecture of a standalone SPU executable does not
356 provide an SPU ID. Retrieve it from the the objfile's relocated
357 address range in this special case. */
358 if (id == -1
359 && symfile_objfile && symfile_objfile->obfd
360 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
361 && symfile_objfile->sections != symfile_objfile->sections_end)
362 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
363
364 return id;
365 }
366
367 static int
368 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
369 {
370 if (dwarf2_addr_class == 1)
371 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
372 else
373 return 0;
374 }
375
376 static const char *
377 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
378 {
379 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
380 return "__ea";
381 else
382 return NULL;
383 }
384
385 static int
386 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
387 const char *name, int *type_flags_ptr)
388 {
389 if (strcmp (name, "__ea") == 0)
390 {
391 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
392 return 1;
393 }
394 else
395 return 0;
396 }
397
398 static void
399 spu_address_to_pointer (struct gdbarch *gdbarch,
400 struct type *type, gdb_byte *buf, CORE_ADDR addr)
401 {
402 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
403 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
404 SPUADDR_ADDR (addr));
405 }
406
407 static CORE_ADDR
408 spu_pointer_to_address (struct gdbarch *gdbarch,
409 struct type *type, const gdb_byte *buf)
410 {
411 int id = spu_gdbarch_id (gdbarch);
412 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
413 ULONGEST addr
414 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
415
416 /* Do not convert __ea pointers. */
417 if (TYPE_ADDRESS_CLASS_1 (type))
418 return addr;
419
420 return addr? SPUADDR (id, addr) : 0;
421 }
422
423 static CORE_ADDR
424 spu_integer_to_address (struct gdbarch *gdbarch,
425 struct type *type, const gdb_byte *buf)
426 {
427 int id = spu_gdbarch_id (gdbarch);
428 ULONGEST addr = unpack_long (type, buf);
429
430 return SPUADDR (id, addr);
431 }
432
433
434 /* Decoding SPU instructions. */
435
436 enum
437 {
438 op_lqd = 0x34,
439 op_lqx = 0x3c4,
440 op_lqa = 0x61,
441 op_lqr = 0x67,
442 op_stqd = 0x24,
443 op_stqx = 0x144,
444 op_stqa = 0x41,
445 op_stqr = 0x47,
446
447 op_il = 0x081,
448 op_ila = 0x21,
449 op_a = 0x0c0,
450 op_ai = 0x1c,
451
452 op_selb = 0x4,
453
454 op_br = 0x64,
455 op_bra = 0x60,
456 op_brsl = 0x66,
457 op_brasl = 0x62,
458 op_brnz = 0x42,
459 op_brz = 0x40,
460 op_brhnz = 0x46,
461 op_brhz = 0x44,
462 op_bi = 0x1a8,
463 op_bisl = 0x1a9,
464 op_biz = 0x128,
465 op_binz = 0x129,
466 op_bihz = 0x12a,
467 op_bihnz = 0x12b,
468 };
469
470 static int
471 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
472 {
473 if ((insn >> 21) == op)
474 {
475 *rt = insn & 127;
476 *ra = (insn >> 7) & 127;
477 *rb = (insn >> 14) & 127;
478 return 1;
479 }
480
481 return 0;
482 }
483
484 static int
485 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
486 {
487 if ((insn >> 28) == op)
488 {
489 *rt = (insn >> 21) & 127;
490 *ra = (insn >> 7) & 127;
491 *rb = (insn >> 14) & 127;
492 *rc = insn & 127;
493 return 1;
494 }
495
496 return 0;
497 }
498
499 static int
500 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
501 {
502 if ((insn >> 21) == op)
503 {
504 *rt = insn & 127;
505 *ra = (insn >> 7) & 127;
506 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
507 return 1;
508 }
509
510 return 0;
511 }
512
513 static int
514 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
515 {
516 if ((insn >> 24) == op)
517 {
518 *rt = insn & 127;
519 *ra = (insn >> 7) & 127;
520 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
521 return 1;
522 }
523
524 return 0;
525 }
526
527 static int
528 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
529 {
530 if ((insn >> 23) == op)
531 {
532 *rt = insn & 127;
533 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
534 return 1;
535 }
536
537 return 0;
538 }
539
540 static int
541 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
542 {
543 if ((insn >> 25) == op)
544 {
545 *rt = insn & 127;
546 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
547 return 1;
548 }
549
550 return 0;
551 }
552
553 static int
554 is_branch (unsigned int insn, int *offset, int *reg)
555 {
556 int rt, i7, i16;
557
558 if (is_ri16 (insn, op_br, &rt, &i16)
559 || is_ri16 (insn, op_brsl, &rt, &i16)
560 || is_ri16 (insn, op_brnz, &rt, &i16)
561 || is_ri16 (insn, op_brz, &rt, &i16)
562 || is_ri16 (insn, op_brhnz, &rt, &i16)
563 || is_ri16 (insn, op_brhz, &rt, &i16))
564 {
565 *reg = SPU_PC_REGNUM;
566 *offset = i16 << 2;
567 return 1;
568 }
569
570 if (is_ri16 (insn, op_bra, &rt, &i16)
571 || is_ri16 (insn, op_brasl, &rt, &i16))
572 {
573 *reg = -1;
574 *offset = i16 << 2;
575 return 1;
576 }
577
578 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
579 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
580 || is_ri7 (insn, op_biz, &rt, reg, &i7)
581 || is_ri7 (insn, op_binz, &rt, reg, &i7)
582 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
583 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
584 {
585 *offset = 0;
586 return 1;
587 }
588
589 return 0;
590 }
591
592
593 /* Prolog parsing. */
594
595 struct spu_prologue_data
596 {
597 /* Stack frame size. -1 if analysis was unsuccessful. */
598 int size;
599
600 /* How to find the CFA. The CFA is equal to SP at function entry. */
601 int cfa_reg;
602 int cfa_offset;
603
604 /* Offset relative to CFA where a register is saved. -1 if invalid. */
605 int reg_offset[SPU_NUM_GPRS];
606 };
607
608 static CORE_ADDR
609 spu_analyze_prologue (struct gdbarch *gdbarch,
610 CORE_ADDR start_pc, CORE_ADDR end_pc,
611 struct spu_prologue_data *data)
612 {
613 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
614 int found_sp = 0;
615 int found_fp = 0;
616 int found_lr = 0;
617 int found_bc = 0;
618 int reg_immed[SPU_NUM_GPRS];
619 gdb_byte buf[16];
620 CORE_ADDR prolog_pc = start_pc;
621 CORE_ADDR pc;
622 int i;
623
624
625 /* Initialize DATA to default values. */
626 data->size = -1;
627
628 data->cfa_reg = SPU_RAW_SP_REGNUM;
629 data->cfa_offset = 0;
630
631 for (i = 0; i < SPU_NUM_GPRS; i++)
632 data->reg_offset[i] = -1;
633
634 /* Set up REG_IMMED array. This is non-zero for a register if we know its
635 preferred slot currently holds this immediate value. */
636 for (i = 0; i < SPU_NUM_GPRS; i++)
637 reg_immed[i] = 0;
638
639 /* Scan instructions until the first branch.
640
641 The following instructions are important prolog components:
642
643 - The first instruction to set up the stack pointer.
644 - The first instruction to set up the frame pointer.
645 - The first instruction to save the link register.
646 - The first instruction to save the backchain.
647
648 We return the instruction after the latest of these four,
649 or the incoming PC if none is found. The first instruction
650 to set up the stack pointer also defines the frame size.
651
652 Note that instructions saving incoming arguments to their stack
653 slots are not counted as important, because they are hard to
654 identify with certainty. This should not matter much, because
655 arguments are relevant only in code compiled with debug data,
656 and in such code the GDB core will advance until the first source
657 line anyway, using SAL data.
658
659 For purposes of stack unwinding, we analyze the following types
660 of instructions in addition:
661
662 - Any instruction adding to the current frame pointer.
663 - Any instruction loading an immediate constant into a register.
664 - Any instruction storing a register onto the stack.
665
666 These are used to compute the CFA and REG_OFFSET output. */
667
668 for (pc = start_pc; pc < end_pc; pc += 4)
669 {
670 unsigned int insn;
671 int rt, ra, rb, rc, immed;
672
673 if (target_read_memory (pc, buf, 4))
674 break;
675 insn = extract_unsigned_integer (buf, 4, byte_order);
676
677 /* AI is the typical instruction to set up a stack frame.
678 It is also used to initialize the frame pointer. */
679 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
680 {
681 if (rt == data->cfa_reg && ra == data->cfa_reg)
682 data->cfa_offset -= immed;
683
684 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
685 && !found_sp)
686 {
687 found_sp = 1;
688 prolog_pc = pc + 4;
689
690 data->size = -immed;
691 }
692 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
693 && !found_fp)
694 {
695 found_fp = 1;
696 prolog_pc = pc + 4;
697
698 data->cfa_reg = SPU_FP_REGNUM;
699 data->cfa_offset -= immed;
700 }
701 }
702
703 /* A is used to set up stack frames of size >= 512 bytes.
704 If we have tracked the contents of the addend register,
705 we can handle this as well. */
706 else if (is_rr (insn, op_a, &rt, &ra, &rb))
707 {
708 if (rt == data->cfa_reg && ra == data->cfa_reg)
709 {
710 if (reg_immed[rb] != 0)
711 data->cfa_offset -= reg_immed[rb];
712 else
713 data->cfa_reg = -1; /* We don't know the CFA any more. */
714 }
715
716 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
717 && !found_sp)
718 {
719 found_sp = 1;
720 prolog_pc = pc + 4;
721
722 if (reg_immed[rb] != 0)
723 data->size = -reg_immed[rb];
724 }
725 }
726
727 /* We need to track IL and ILA used to load immediate constants
728 in case they are later used as input to an A instruction. */
729 else if (is_ri16 (insn, op_il, &rt, &immed))
730 {
731 reg_immed[rt] = immed;
732
733 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
734 found_sp = 1;
735 }
736
737 else if (is_ri18 (insn, op_ila, &rt, &immed))
738 {
739 reg_immed[rt] = immed & 0x3ffff;
740
741 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
742 found_sp = 1;
743 }
744
745 /* STQD is used to save registers to the stack. */
746 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
747 {
748 if (ra == data->cfa_reg)
749 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
750
751 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
752 && !found_lr)
753 {
754 found_lr = 1;
755 prolog_pc = pc + 4;
756 }
757
758 if (ra == SPU_RAW_SP_REGNUM
759 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
760 && !found_bc)
761 {
762 found_bc = 1;
763 prolog_pc = pc + 4;
764 }
765 }
766
767 /* _start uses SELB to set up the stack pointer. */
768 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
769 {
770 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
771 found_sp = 1;
772 }
773
774 /* We terminate if we find a branch. */
775 else if (is_branch (insn, &immed, &ra))
776 break;
777 }
778
779
780 /* If we successfully parsed until here, and didn't find any instruction
781 modifying SP, we assume we have a frameless function. */
782 if (!found_sp)
783 data->size = 0;
784
785 /* Return cooked instead of raw SP. */
786 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
787 data->cfa_reg = SPU_SP_REGNUM;
788
789 return prolog_pc;
790 }
791
792 /* Return the first instruction after the prologue starting at PC. */
793 static CORE_ADDR
794 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
795 {
796 struct spu_prologue_data data;
797 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
798 }
799
800 /* Return the frame pointer in use at address PC. */
801 static void
802 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
803 int *reg, LONGEST *offset)
804 {
805 struct spu_prologue_data data;
806 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
807
808 if (data.size != -1 && data.cfa_reg != -1)
809 {
810 /* The 'frame pointer' address is CFA minus frame size. */
811 *reg = data.cfa_reg;
812 *offset = data.cfa_offset - data.size;
813 }
814 else
815 {
816 /* ??? We don't really know ... */
817 *reg = SPU_SP_REGNUM;
818 *offset = 0;
819 }
820 }
821
822 /* Return true if we are in the function's epilogue, i.e. after the
823 instruction that destroyed the function's stack frame.
824
825 1) scan forward from the point of execution:
826 a) If you find an instruction that modifies the stack pointer
827 or transfers control (except a return), execution is not in
828 an epilogue, return.
829 b) Stop scanning if you find a return instruction or reach the
830 end of the function or reach the hard limit for the size of
831 an epilogue.
832 2) scan backward from the point of execution:
833 a) If you find an instruction that modifies the stack pointer,
834 execution *is* in an epilogue, return.
835 b) Stop scanning if you reach an instruction that transfers
836 control or the beginning of the function or reach the hard
837 limit for the size of an epilogue. */
838
839 static int
840 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
841 {
842 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
843 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
844 bfd_byte buf[4];
845 unsigned int insn;
846 int rt, ra, rb, rc, immed;
847
848 /* Find the search limits based on function boundaries and hard limit.
849 We assume the epilogue can be up to 64 instructions long. */
850
851 const int spu_max_epilogue_size = 64 * 4;
852
853 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
854 return 0;
855
856 if (pc - func_start < spu_max_epilogue_size)
857 epilogue_start = func_start;
858 else
859 epilogue_start = pc - spu_max_epilogue_size;
860
861 if (func_end - pc < spu_max_epilogue_size)
862 epilogue_end = func_end;
863 else
864 epilogue_end = pc + spu_max_epilogue_size;
865
866 /* Scan forward until next 'bi $0'. */
867
868 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
869 {
870 if (target_read_memory (scan_pc, buf, 4))
871 return 0;
872 insn = extract_unsigned_integer (buf, 4, byte_order);
873
874 if (is_branch (insn, &immed, &ra))
875 {
876 if (immed == 0 && ra == SPU_LR_REGNUM)
877 break;
878
879 return 0;
880 }
881
882 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
883 || is_rr (insn, op_a, &rt, &ra, &rb)
884 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
885 {
886 if (rt == SPU_RAW_SP_REGNUM)
887 return 0;
888 }
889 }
890
891 if (scan_pc >= epilogue_end)
892 return 0;
893
894 /* Scan backward until adjustment to stack pointer (R1). */
895
896 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
897 {
898 if (target_read_memory (scan_pc, buf, 4))
899 return 0;
900 insn = extract_unsigned_integer (buf, 4, byte_order);
901
902 if (is_branch (insn, &immed, &ra))
903 return 0;
904
905 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
906 || is_rr (insn, op_a, &rt, &ra, &rb)
907 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
908 {
909 if (rt == SPU_RAW_SP_REGNUM)
910 return 1;
911 }
912 }
913
914 return 0;
915 }
916
917
918 /* Normal stack frames. */
919
920 struct spu_unwind_cache
921 {
922 CORE_ADDR func;
923 CORE_ADDR frame_base;
924 CORE_ADDR local_base;
925
926 struct trad_frame_saved_reg *saved_regs;
927 };
928
929 static struct spu_unwind_cache *
930 spu_frame_unwind_cache (struct frame_info *this_frame,
931 void **this_prologue_cache)
932 {
933 struct gdbarch *gdbarch = get_frame_arch (this_frame);
934 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
935 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
936 struct spu_unwind_cache *info;
937 struct spu_prologue_data data;
938 CORE_ADDR id = tdep->id;
939 gdb_byte buf[16];
940
941 if (*this_prologue_cache)
942 return *this_prologue_cache;
943
944 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
945 *this_prologue_cache = info;
946 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
947 info->frame_base = 0;
948 info->local_base = 0;
949
950 /* Find the start of the current function, and analyze its prologue. */
951 info->func = get_frame_func (this_frame);
952 if (info->func == 0)
953 {
954 /* Fall back to using the current PC as frame ID. */
955 info->func = get_frame_pc (this_frame);
956 data.size = -1;
957 }
958 else
959 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
960 &data);
961
962 /* If successful, use prologue analysis data. */
963 if (data.size != -1 && data.cfa_reg != -1)
964 {
965 CORE_ADDR cfa;
966 int i;
967
968 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
969 get_frame_register (this_frame, data.cfa_reg, buf);
970 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
971 cfa = SPUADDR (id, cfa);
972
973 /* Call-saved register slots. */
974 for (i = 0; i < SPU_NUM_GPRS; i++)
975 if (i == SPU_LR_REGNUM
976 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
977 if (data.reg_offset[i] != -1)
978 info->saved_regs[i].addr = cfa - data.reg_offset[i];
979
980 /* Frame bases. */
981 info->frame_base = cfa;
982 info->local_base = cfa - data.size;
983 }
984
985 /* Otherwise, fall back to reading the backchain link. */
986 else
987 {
988 CORE_ADDR reg;
989 LONGEST backchain;
990 ULONGEST lslr;
991 int status;
992
993 /* Get local store limit. */
994 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
995 if (!lslr)
996 lslr = (ULONGEST) -1;
997
998 /* Get the backchain. */
999 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1000 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1001 &backchain);
1002
1003 /* A zero backchain terminates the frame chain. Also, sanity
1004 check against the local store size limit. */
1005 if (status && backchain > 0 && backchain <= lslr)
1006 {
1007 /* Assume the link register is saved into its slot. */
1008 if (backchain + 16 <= lslr)
1009 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, backchain + 16);
1010
1011 /* Frame bases. */
1012 info->frame_base = SPUADDR (id, backchain);
1013 info->local_base = SPUADDR (id, reg);
1014 }
1015 }
1016
1017 /* If we didn't find a frame, we cannot determine SP / return address. */
1018 if (info->frame_base == 0)
1019 return info;
1020
1021 /* The previous SP is equal to the CFA. */
1022 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1023 SPUADDR_ADDR (info->frame_base));
1024
1025 /* Read full contents of the unwound link register in order to
1026 be able to determine the return address. */
1027 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1028 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1029 else
1030 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1031
1032 /* Normally, the return address is contained in the slot 0 of the
1033 link register, and slots 1-3 are zero. For an overlay return,
1034 slot 0 contains the address of the overlay manager return stub,
1035 slot 1 contains the partition number of the overlay section to
1036 be returned to, and slot 2 contains the return address within
1037 that section. Return the latter address in that case. */
1038 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1039 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1040 extract_unsigned_integer (buf + 8, 4, byte_order));
1041 else
1042 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1043 extract_unsigned_integer (buf, 4, byte_order));
1044
1045 return info;
1046 }
1047
1048 static void
1049 spu_frame_this_id (struct frame_info *this_frame,
1050 void **this_prologue_cache, struct frame_id *this_id)
1051 {
1052 struct spu_unwind_cache *info =
1053 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1054
1055 if (info->frame_base == 0)
1056 return;
1057
1058 *this_id = frame_id_build (info->frame_base, info->func);
1059 }
1060
1061 static struct value *
1062 spu_frame_prev_register (struct frame_info *this_frame,
1063 void **this_prologue_cache, int regnum)
1064 {
1065 struct spu_unwind_cache *info
1066 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1067
1068 /* Special-case the stack pointer. */
1069 if (regnum == SPU_RAW_SP_REGNUM)
1070 regnum = SPU_SP_REGNUM;
1071
1072 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1073 }
1074
1075 static const struct frame_unwind spu_frame_unwind = {
1076 NORMAL_FRAME,
1077 spu_frame_this_id,
1078 spu_frame_prev_register,
1079 NULL,
1080 default_frame_sniffer
1081 };
1082
1083 static CORE_ADDR
1084 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1085 {
1086 struct spu_unwind_cache *info
1087 = spu_frame_unwind_cache (this_frame, this_cache);
1088 return info->local_base;
1089 }
1090
1091 static const struct frame_base spu_frame_base = {
1092 &spu_frame_unwind,
1093 spu_frame_base_address,
1094 spu_frame_base_address,
1095 spu_frame_base_address
1096 };
1097
1098 static CORE_ADDR
1099 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1100 {
1101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1102 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1103 /* Mask off interrupt enable bit. */
1104 return SPUADDR (tdep->id, pc & -4);
1105 }
1106
1107 static CORE_ADDR
1108 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1109 {
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1112 return SPUADDR (tdep->id, sp);
1113 }
1114
1115 static CORE_ADDR
1116 spu_read_pc (struct regcache *regcache)
1117 {
1118 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1119 ULONGEST pc;
1120 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1121 /* Mask off interrupt enable bit. */
1122 return SPUADDR (tdep->id, pc & -4);
1123 }
1124
1125 static void
1126 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1127 {
1128 /* Keep interrupt enabled state unchanged. */
1129 ULONGEST old_pc;
1130 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1131 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1132 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1133 }
1134
1135
1136 /* Cell/B.E. cross-architecture unwinder support. */
1137
1138 struct spu2ppu_cache
1139 {
1140 struct frame_id frame_id;
1141 struct regcache *regcache;
1142 };
1143
1144 static struct gdbarch *
1145 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1146 {
1147 struct spu2ppu_cache *cache = *this_cache;
1148 return get_regcache_arch (cache->regcache);
1149 }
1150
1151 static void
1152 spu2ppu_this_id (struct frame_info *this_frame,
1153 void **this_cache, struct frame_id *this_id)
1154 {
1155 struct spu2ppu_cache *cache = *this_cache;
1156 *this_id = cache->frame_id;
1157 }
1158
1159 static struct value *
1160 spu2ppu_prev_register (struct frame_info *this_frame,
1161 void **this_cache, int regnum)
1162 {
1163 struct spu2ppu_cache *cache = *this_cache;
1164 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1165 gdb_byte *buf;
1166
1167 buf = alloca (register_size (gdbarch, regnum));
1168 regcache_cooked_read (cache->regcache, regnum, buf);
1169 return frame_unwind_got_bytes (this_frame, regnum, buf);
1170 }
1171
1172 static int
1173 spu2ppu_sniffer (const struct frame_unwind *self,
1174 struct frame_info *this_frame, void **this_prologue_cache)
1175 {
1176 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1177 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1178 CORE_ADDR base, func, backchain;
1179 gdb_byte buf[4];
1180
1181 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1182 return 0;
1183
1184 base = get_frame_sp (this_frame);
1185 func = get_frame_pc (this_frame);
1186 if (target_read_memory (base, buf, 4))
1187 return 0;
1188 backchain = extract_unsigned_integer (buf, 4, byte_order);
1189
1190 if (!backchain)
1191 {
1192 struct frame_info *fi;
1193
1194 struct spu2ppu_cache *cache
1195 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1196
1197 cache->frame_id = frame_id_build (base + 16, func);
1198
1199 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1200 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1201 break;
1202
1203 if (fi)
1204 {
1205 cache->regcache = frame_save_as_regcache (fi);
1206 *this_prologue_cache = cache;
1207 return 1;
1208 }
1209 else
1210 {
1211 struct regcache *regcache;
1212 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1213 cache->regcache = regcache_dup (regcache);
1214 *this_prologue_cache = cache;
1215 return 1;
1216 }
1217 }
1218
1219 return 0;
1220 }
1221
1222 static void
1223 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1224 {
1225 struct spu2ppu_cache *cache = this_cache;
1226 regcache_xfree (cache->regcache);
1227 }
1228
1229 static const struct frame_unwind spu2ppu_unwind = {
1230 ARCH_FRAME,
1231 spu2ppu_this_id,
1232 spu2ppu_prev_register,
1233 NULL,
1234 spu2ppu_sniffer,
1235 spu2ppu_dealloc_cache,
1236 spu2ppu_prev_arch,
1237 };
1238
1239
1240 /* Function calling convention. */
1241
1242 static CORE_ADDR
1243 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1244 {
1245 return sp & ~15;
1246 }
1247
1248 static CORE_ADDR
1249 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1250 struct value **args, int nargs, struct type *value_type,
1251 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1252 struct regcache *regcache)
1253 {
1254 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1255 sp = (sp - 4) & ~15;
1256 /* Store the address of that breakpoint */
1257 *bp_addr = sp;
1258 /* The call starts at the callee's entry point. */
1259 *real_pc = funaddr;
1260
1261 return sp;
1262 }
1263
1264 static int
1265 spu_scalar_value_p (struct type *type)
1266 {
1267 switch (TYPE_CODE (type))
1268 {
1269 case TYPE_CODE_INT:
1270 case TYPE_CODE_ENUM:
1271 case TYPE_CODE_RANGE:
1272 case TYPE_CODE_CHAR:
1273 case TYPE_CODE_BOOL:
1274 case TYPE_CODE_PTR:
1275 case TYPE_CODE_REF:
1276 return TYPE_LENGTH (type) <= 16;
1277
1278 default:
1279 return 0;
1280 }
1281 }
1282
1283 static void
1284 spu_value_to_regcache (struct regcache *regcache, int regnum,
1285 struct type *type, const gdb_byte *in)
1286 {
1287 int len = TYPE_LENGTH (type);
1288
1289 if (spu_scalar_value_p (type))
1290 {
1291 int preferred_slot = len < 4 ? 4 - len : 0;
1292 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1293 }
1294 else
1295 {
1296 while (len >= 16)
1297 {
1298 regcache_cooked_write (regcache, regnum++, in);
1299 in += 16;
1300 len -= 16;
1301 }
1302
1303 if (len > 0)
1304 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1305 }
1306 }
1307
1308 static void
1309 spu_regcache_to_value (struct regcache *regcache, int regnum,
1310 struct type *type, gdb_byte *out)
1311 {
1312 int len = TYPE_LENGTH (type);
1313
1314 if (spu_scalar_value_p (type))
1315 {
1316 int preferred_slot = len < 4 ? 4 - len : 0;
1317 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1318 }
1319 else
1320 {
1321 while (len >= 16)
1322 {
1323 regcache_cooked_read (regcache, regnum++, out);
1324 out += 16;
1325 len -= 16;
1326 }
1327
1328 if (len > 0)
1329 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1330 }
1331 }
1332
1333 static CORE_ADDR
1334 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1335 struct regcache *regcache, CORE_ADDR bp_addr,
1336 int nargs, struct value **args, CORE_ADDR sp,
1337 int struct_return, CORE_ADDR struct_addr)
1338 {
1339 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1340 CORE_ADDR sp_delta;
1341 int i;
1342 int regnum = SPU_ARG1_REGNUM;
1343 int stack_arg = -1;
1344 gdb_byte buf[16];
1345
1346 /* Set the return address. */
1347 memset (buf, 0, sizeof buf);
1348 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1349 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1350
1351 /* If STRUCT_RETURN is true, then the struct return address (in
1352 STRUCT_ADDR) will consume the first argument-passing register.
1353 Both adjust the register count and store that value. */
1354 if (struct_return)
1355 {
1356 memset (buf, 0, sizeof buf);
1357 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1358 regcache_cooked_write (regcache, regnum++, buf);
1359 }
1360
1361 /* Fill in argument registers. */
1362 for (i = 0; i < nargs; i++)
1363 {
1364 struct value *arg = args[i];
1365 struct type *type = check_typedef (value_type (arg));
1366 const gdb_byte *contents = value_contents (arg);
1367 int len = TYPE_LENGTH (type);
1368 int n_regs = align_up (len, 16) / 16;
1369
1370 /* If the argument doesn't wholly fit into registers, it and
1371 all subsequent arguments go to the stack. */
1372 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1373 {
1374 stack_arg = i;
1375 break;
1376 }
1377
1378 spu_value_to_regcache (regcache, regnum, type, contents);
1379 regnum += n_regs;
1380 }
1381
1382 /* Overflow arguments go to the stack. */
1383 if (stack_arg != -1)
1384 {
1385 CORE_ADDR ap;
1386
1387 /* Allocate all required stack size. */
1388 for (i = stack_arg; i < nargs; i++)
1389 {
1390 struct type *type = check_typedef (value_type (args[i]));
1391 sp -= align_up (TYPE_LENGTH (type), 16);
1392 }
1393
1394 /* Fill in stack arguments. */
1395 ap = sp;
1396 for (i = stack_arg; i < nargs; i++)
1397 {
1398 struct value *arg = args[i];
1399 struct type *type = check_typedef (value_type (arg));
1400 int len = TYPE_LENGTH (type);
1401 int preferred_slot;
1402
1403 if (spu_scalar_value_p (type))
1404 preferred_slot = len < 4 ? 4 - len : 0;
1405 else
1406 preferred_slot = 0;
1407
1408 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1409 ap += align_up (TYPE_LENGTH (type), 16);
1410 }
1411 }
1412
1413 /* Allocate stack frame header. */
1414 sp -= 32;
1415
1416 /* Store stack back chain. */
1417 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1418 target_write_memory (sp, buf, 16);
1419
1420 /* Finally, update all slots of the SP register. */
1421 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1422 for (i = 0; i < 4; i++)
1423 {
1424 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1425 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1426 }
1427 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1428
1429 return sp;
1430 }
1431
1432 static struct frame_id
1433 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1434 {
1435 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1436 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1437 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1438 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1439 }
1440
1441 /* Function return value access. */
1442
1443 static enum return_value_convention
1444 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1445 struct type *type, struct regcache *regcache,
1446 gdb_byte *out, const gdb_byte *in)
1447 {
1448 enum return_value_convention rvc;
1449
1450 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1451 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1452 else
1453 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1454
1455 if (in)
1456 {
1457 switch (rvc)
1458 {
1459 case RETURN_VALUE_REGISTER_CONVENTION:
1460 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1461 break;
1462
1463 case RETURN_VALUE_STRUCT_CONVENTION:
1464 error ("Cannot set function return value.");
1465 break;
1466 }
1467 }
1468 else if (out)
1469 {
1470 switch (rvc)
1471 {
1472 case RETURN_VALUE_REGISTER_CONVENTION:
1473 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1474 break;
1475
1476 case RETURN_VALUE_STRUCT_CONVENTION:
1477 error ("Function return value unknown.");
1478 break;
1479 }
1480 }
1481
1482 return rvc;
1483 }
1484
1485
1486 /* Breakpoints. */
1487
1488 static const gdb_byte *
1489 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1490 {
1491 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1492
1493 *lenptr = sizeof breakpoint;
1494 return breakpoint;
1495 }
1496
1497
1498 /* Software single-stepping support. */
1499
1500 static int
1501 spu_software_single_step (struct frame_info *frame)
1502 {
1503 struct gdbarch *gdbarch = get_frame_arch (frame);
1504 struct address_space *aspace = get_frame_address_space (frame);
1505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1506 CORE_ADDR pc, next_pc;
1507 unsigned int insn;
1508 int offset, reg;
1509 gdb_byte buf[4];
1510 ULONGEST lslr;
1511
1512 pc = get_frame_pc (frame);
1513
1514 if (target_read_memory (pc, buf, 4))
1515 return 1;
1516 insn = extract_unsigned_integer (buf, 4, byte_order);
1517
1518 /* Get local store limit. */
1519 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1520 if (!lslr)
1521 lslr = (ULONGEST) -1;
1522
1523 /* Next sequential instruction is at PC + 4, except if the current
1524 instruction is a PPE-assisted call, in which case it is at PC + 8.
1525 Wrap around LS limit to be on the safe side. */
1526 if ((insn & 0xffffff00) == 0x00002100)
1527 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1528 else
1529 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1530
1531 insert_single_step_breakpoint (gdbarch,
1532 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1533
1534 if (is_branch (insn, &offset, &reg))
1535 {
1536 CORE_ADDR target = offset;
1537
1538 if (reg == SPU_PC_REGNUM)
1539 target += SPUADDR_ADDR (pc);
1540 else if (reg != -1)
1541 {
1542 get_frame_register_bytes (frame, reg, 0, 4, buf);
1543 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1544 }
1545
1546 target = target & lslr;
1547 if (target != next_pc)
1548 insert_single_step_breakpoint (gdbarch, aspace,
1549 SPUADDR (SPUADDR_SPU (pc), target));
1550 }
1551
1552 return 1;
1553 }
1554
1555
1556 /* Longjmp support. */
1557
1558 static int
1559 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1560 {
1561 struct gdbarch *gdbarch = get_frame_arch (frame);
1562 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1563 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1564 gdb_byte buf[4];
1565 CORE_ADDR jb_addr;
1566
1567 /* Jump buffer is pointed to by the argument register $r3. */
1568 get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
1569 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1570 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1571 return 0;
1572
1573 *pc = extract_unsigned_integer (buf, 4, byte_order);
1574 *pc = SPUADDR (tdep->id, *pc);
1575 return 1;
1576 }
1577
1578
1579 /* Disassembler. */
1580
1581 struct spu_dis_asm_data
1582 {
1583 struct gdbarch *gdbarch;
1584 int id;
1585 };
1586
1587 static void
1588 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1589 {
1590 struct spu_dis_asm_data *data = info->application_data;
1591 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1592 }
1593
1594 static int
1595 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1596 {
1597 /* The opcodes disassembler does 18-bit address arithmetic. Make sure the
1598 SPU ID encoded in the high bits is added back when we call print_address. */
1599 struct disassemble_info spu_info = *info;
1600 struct spu_dis_asm_data data;
1601 data.gdbarch = info->application_data;
1602 data.id = SPUADDR_SPU (memaddr);
1603
1604 spu_info.application_data = &data;
1605 spu_info.print_address_func = spu_dis_asm_print_address;
1606 return print_insn_spu (memaddr, &spu_info);
1607 }
1608
1609
1610 /* Target overlays for the SPU overlay manager.
1611
1612 See the documentation of simple_overlay_update for how the
1613 interface is supposed to work.
1614
1615 Data structures used by the overlay manager:
1616
1617 struct ovly_table
1618 {
1619 u32 vma;
1620 u32 size;
1621 u32 pos;
1622 u32 buf;
1623 } _ovly_table[]; -- one entry per overlay section
1624
1625 struct ovly_buf_table
1626 {
1627 u32 mapped;
1628 } _ovly_buf_table[]; -- one entry per overlay buffer
1629
1630 _ovly_table should never change.
1631
1632 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1633 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1634 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1635
1636 mapped is an index into _ovly_table. Both the mapped and buf indices start
1637 from one to reference the first entry in their respective tables. */
1638
1639 /* Using the per-objfile private data mechanism, we store for each
1640 objfile an array of "struct spu_overlay_table" structures, one
1641 for each obj_section of the objfile. This structure holds two
1642 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1643 is *not* an overlay section. If it is non-zero, it represents
1644 a target address. The overlay section is mapped iff the target
1645 integer at this location equals MAPPED_VAL. */
1646
1647 static const struct objfile_data *spu_overlay_data;
1648
1649 struct spu_overlay_table
1650 {
1651 CORE_ADDR mapped_ptr;
1652 CORE_ADDR mapped_val;
1653 };
1654
1655 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1656 the _ovly_table data structure from the target and initialize the
1657 spu_overlay_table data structure from it. */
1658 static struct spu_overlay_table *
1659 spu_get_overlay_table (struct objfile *objfile)
1660 {
1661 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1662 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1663 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1664 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1665 unsigned ovly_table_size, ovly_buf_table_size;
1666 struct spu_overlay_table *tbl;
1667 struct obj_section *osect;
1668 char *ovly_table;
1669 int i;
1670
1671 tbl = objfile_data (objfile, spu_overlay_data);
1672 if (tbl)
1673 return tbl;
1674
1675 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1676 if (!ovly_table_msym)
1677 return NULL;
1678
1679 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1680 if (!ovly_buf_table_msym)
1681 return NULL;
1682
1683 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1684 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1685
1686 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1687 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1688
1689 ovly_table = xmalloc (ovly_table_size);
1690 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1691
1692 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1693 objfile->sections_end - objfile->sections,
1694 struct spu_overlay_table);
1695
1696 for (i = 0; i < ovly_table_size / 16; i++)
1697 {
1698 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1699 4, byte_order);
1700 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1701 4, byte_order);
1702 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1703 4, byte_order);
1704 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1705 4, byte_order);
1706
1707 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1708 continue;
1709
1710 ALL_OBJFILE_OSECTIONS (objfile, osect)
1711 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1712 && pos == osect->the_bfd_section->filepos)
1713 {
1714 int ndx = osect - objfile->sections;
1715 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1716 tbl[ndx].mapped_val = i + 1;
1717 break;
1718 }
1719 }
1720
1721 xfree (ovly_table);
1722 set_objfile_data (objfile, spu_overlay_data, tbl);
1723 return tbl;
1724 }
1725
1726 /* Read _ovly_buf_table entry from the target to dermine whether
1727 OSECT is currently mapped, and update the mapped state. */
1728 static void
1729 spu_overlay_update_osect (struct obj_section *osect)
1730 {
1731 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1732 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1733 struct spu_overlay_table *ovly_table;
1734 CORE_ADDR id, val;
1735
1736 ovly_table = spu_get_overlay_table (osect->objfile);
1737 if (!ovly_table)
1738 return;
1739
1740 ovly_table += osect - osect->objfile->sections;
1741 if (ovly_table->mapped_ptr == 0)
1742 return;
1743
1744 id = SPUADDR_SPU (obj_section_addr (osect));
1745 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1746 4, byte_order);
1747 osect->ovly_mapped = (val == ovly_table->mapped_val);
1748 }
1749
1750 /* If OSECT is NULL, then update all sections' mapped state.
1751 If OSECT is non-NULL, then update only OSECT's mapped state. */
1752 static void
1753 spu_overlay_update (struct obj_section *osect)
1754 {
1755 /* Just one section. */
1756 if (osect)
1757 spu_overlay_update_osect (osect);
1758
1759 /* All sections. */
1760 else
1761 {
1762 struct objfile *objfile;
1763
1764 ALL_OBJSECTIONS (objfile, osect)
1765 if (section_is_overlay (osect))
1766 spu_overlay_update_osect (osect);
1767 }
1768 }
1769
1770 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1771 If there is one, go through all sections and make sure for non-
1772 overlay sections LMA equals VMA, while for overlay sections LMA
1773 is larger than SPU_OVERLAY_LMA. */
1774 static void
1775 spu_overlay_new_objfile (struct objfile *objfile)
1776 {
1777 struct spu_overlay_table *ovly_table;
1778 struct obj_section *osect;
1779
1780 /* If we've already touched this file, do nothing. */
1781 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1782 return;
1783
1784 /* Consider only SPU objfiles. */
1785 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1786 return;
1787
1788 /* Check if this objfile has overlays. */
1789 ovly_table = spu_get_overlay_table (objfile);
1790 if (!ovly_table)
1791 return;
1792
1793 /* Now go and fiddle with all the LMAs. */
1794 ALL_OBJFILE_OSECTIONS (objfile, osect)
1795 {
1796 bfd *obfd = objfile->obfd;
1797 asection *bsect = osect->the_bfd_section;
1798 int ndx = osect - objfile->sections;
1799
1800 if (ovly_table[ndx].mapped_ptr == 0)
1801 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1802 else
1803 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1804 }
1805 }
1806
1807
1808 /* Insert temporary breakpoint on "main" function of newly loaded
1809 SPE context OBJFILE. */
1810 static void
1811 spu_catch_start (struct objfile *objfile)
1812 {
1813 struct minimal_symbol *minsym;
1814 struct symtab *symtab;
1815 CORE_ADDR pc;
1816 char buf[32];
1817
1818 /* Do this only if requested by "set spu stop-on-load on". */
1819 if (!spu_stop_on_load_p)
1820 return;
1821
1822 /* Consider only SPU objfiles. */
1823 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1824 return;
1825
1826 /* The main objfile is handled differently. */
1827 if (objfile == symfile_objfile)
1828 return;
1829
1830 /* There can be multiple symbols named "main". Search for the
1831 "main" in *this* objfile. */
1832 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1833 if (!minsym)
1834 return;
1835
1836 /* If we have debugging information, try to use it -- this
1837 will allow us to properly skip the prologue. */
1838 pc = SYMBOL_VALUE_ADDRESS (minsym);
1839 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1840 if (symtab != NULL)
1841 {
1842 struct blockvector *bv = BLOCKVECTOR (symtab);
1843 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1844 struct symbol *sym;
1845 struct symtab_and_line sal;
1846
1847 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1848 if (sym)
1849 {
1850 fixup_symbol_section (sym, objfile);
1851 sal = find_function_start_sal (sym, 1);
1852 pc = sal.pc;
1853 }
1854 }
1855
1856 /* Use a numerical address for the set_breakpoint command to avoid having
1857 the breakpoint re-set incorrectly. */
1858 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1859 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1860 NULL /* cond_string */, -1 /* thread */,
1861 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1862 0 /* hardwareflag */, 0 /* traceflag */,
1863 0 /* ignore_count */,
1864 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1865 NULL /* ops */, 0 /* from_tty */, 1 /* enabled */);
1866 }
1867
1868
1869 /* Look up OBJFILE loaded into FRAME's SPU context. */
1870 static struct objfile *
1871 spu_objfile_from_frame (struct frame_info *frame)
1872 {
1873 struct gdbarch *gdbarch = get_frame_arch (frame);
1874 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1875 struct objfile *obj;
1876
1877 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1878 return NULL;
1879
1880 ALL_OBJFILES (obj)
1881 {
1882 if (obj->sections != obj->sections_end
1883 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1884 return obj;
1885 }
1886
1887 return NULL;
1888 }
1889
1890 /* Flush cache for ea pointer access if available. */
1891 static void
1892 flush_ea_cache (void)
1893 {
1894 struct minimal_symbol *msymbol;
1895 struct objfile *obj;
1896
1897 if (!has_stack_frames ())
1898 return;
1899
1900 obj = spu_objfile_from_frame (get_current_frame ());
1901 if (obj == NULL)
1902 return;
1903
1904 /* Lookup inferior function __cache_flush. */
1905 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1906 if (msymbol != NULL)
1907 {
1908 struct type *type;
1909 CORE_ADDR addr;
1910
1911 type = objfile_type (obj)->builtin_void;
1912 type = lookup_function_type (type);
1913 type = lookup_pointer_type (type);
1914 addr = SYMBOL_VALUE_ADDRESS (msymbol);
1915
1916 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
1917 }
1918 }
1919
1920 /* This handler is called when the inferior has stopped. If it is stopped in
1921 SPU architecture then flush the ea cache if used. */
1922 static void
1923 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
1924 {
1925 if (!spu_auto_flush_cache_p)
1926 return;
1927
1928 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
1929 re-entering this function when __cache_flush stops. */
1930 spu_auto_flush_cache_p = 0;
1931 flush_ea_cache ();
1932 spu_auto_flush_cache_p = 1;
1933 }
1934
1935
1936 /* "info spu" commands. */
1937
1938 static void
1939 info_spu_event_command (char *args, int from_tty)
1940 {
1941 struct frame_info *frame = get_selected_frame (NULL);
1942 ULONGEST event_status = 0;
1943 ULONGEST event_mask = 0;
1944 struct cleanup *chain;
1945 gdb_byte buf[100];
1946 char annex[32];
1947 LONGEST len;
1948 int rc, id;
1949
1950 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1951 error (_("\"info spu\" is only supported on the SPU architecture."));
1952
1953 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1954
1955 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1956 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1957 buf, 0, (sizeof (buf) - 1));
1958 if (len <= 0)
1959 error (_("Could not read event_status."));
1960 buf[len] = '\0';
1961 event_status = strtoulst (buf, NULL, 16);
1962
1963 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1964 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1965 buf, 0, (sizeof (buf) - 1));
1966 if (len <= 0)
1967 error (_("Could not read event_mask."));
1968 buf[len] = '\0';
1969 event_mask = strtoulst (buf, NULL, 16);
1970
1971 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
1972
1973 if (ui_out_is_mi_like_p (uiout))
1974 {
1975 ui_out_field_fmt (uiout, "event_status",
1976 "0x%s", phex_nz (event_status, 4));
1977 ui_out_field_fmt (uiout, "event_mask",
1978 "0x%s", phex_nz (event_mask, 4));
1979 }
1980 else
1981 {
1982 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
1983 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
1984 }
1985
1986 do_cleanups (chain);
1987 }
1988
1989 static void
1990 info_spu_signal_command (char *args, int from_tty)
1991 {
1992 struct frame_info *frame = get_selected_frame (NULL);
1993 struct gdbarch *gdbarch = get_frame_arch (frame);
1994 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1995 ULONGEST signal1 = 0;
1996 ULONGEST signal1_type = 0;
1997 int signal1_pending = 0;
1998 ULONGEST signal2 = 0;
1999 ULONGEST signal2_type = 0;
2000 int signal2_pending = 0;
2001 struct cleanup *chain;
2002 char annex[32];
2003 gdb_byte buf[100];
2004 LONGEST len;
2005 int rc, id;
2006
2007 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2008 error (_("\"info spu\" is only supported on the SPU architecture."));
2009
2010 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2011
2012 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2013 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2014 if (len < 0)
2015 error (_("Could not read signal1."));
2016 else if (len == 4)
2017 {
2018 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2019 signal1_pending = 1;
2020 }
2021
2022 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2023 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2024 buf, 0, (sizeof (buf) - 1));
2025 if (len <= 0)
2026 error (_("Could not read signal1_type."));
2027 buf[len] = '\0';
2028 signal1_type = strtoulst (buf, NULL, 16);
2029
2030 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2031 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2032 if (len < 0)
2033 error (_("Could not read signal2."));
2034 else if (len == 4)
2035 {
2036 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2037 signal2_pending = 1;
2038 }
2039
2040 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2041 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2042 buf, 0, (sizeof (buf) - 1));
2043 if (len <= 0)
2044 error (_("Could not read signal2_type."));
2045 buf[len] = '\0';
2046 signal2_type = strtoulst (buf, NULL, 16);
2047
2048 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
2049
2050 if (ui_out_is_mi_like_p (uiout))
2051 {
2052 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
2053 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2054 ui_out_field_int (uiout, "signal1_type", signal1_type);
2055 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
2056 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2057 ui_out_field_int (uiout, "signal2_type", signal2_type);
2058 }
2059 else
2060 {
2061 if (signal1_pending)
2062 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2063 else
2064 printf_filtered (_("Signal 1 not pending "));
2065
2066 if (signal1_type)
2067 printf_filtered (_("(Type Or)\n"));
2068 else
2069 printf_filtered (_("(Type Overwrite)\n"));
2070
2071 if (signal2_pending)
2072 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2073 else
2074 printf_filtered (_("Signal 2 not pending "));
2075
2076 if (signal2_type)
2077 printf_filtered (_("(Type Or)\n"));
2078 else
2079 printf_filtered (_("(Type Overwrite)\n"));
2080 }
2081
2082 do_cleanups (chain);
2083 }
2084
2085 static void
2086 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2087 const char *field, const char *msg)
2088 {
2089 struct cleanup *chain;
2090 int i;
2091
2092 if (nr <= 0)
2093 return;
2094
2095 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
2096
2097 ui_out_table_header (uiout, 32, ui_left, field, msg);
2098 ui_out_table_body (uiout);
2099
2100 for (i = 0; i < nr; i++)
2101 {
2102 struct cleanup *val_chain;
2103 ULONGEST val;
2104 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
2105 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2106 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
2107 do_cleanups (val_chain);
2108
2109 if (!ui_out_is_mi_like_p (uiout))
2110 printf_filtered ("\n");
2111 }
2112
2113 do_cleanups (chain);
2114 }
2115
2116 static void
2117 info_spu_mailbox_command (char *args, int from_tty)
2118 {
2119 struct frame_info *frame = get_selected_frame (NULL);
2120 struct gdbarch *gdbarch = get_frame_arch (frame);
2121 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2122 struct cleanup *chain;
2123 char annex[32];
2124 gdb_byte buf[1024];
2125 LONGEST len;
2126 int i, id;
2127
2128 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2129 error (_("\"info spu\" is only supported on the SPU architecture."));
2130
2131 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2132
2133 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
2134
2135 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2136 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2137 buf, 0, sizeof buf);
2138 if (len < 0)
2139 error (_("Could not read mbox_info."));
2140
2141 info_spu_mailbox_list (buf, len / 4, byte_order,
2142 "mbox", "SPU Outbound Mailbox");
2143
2144 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2145 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2146 buf, 0, sizeof buf);
2147 if (len < 0)
2148 error (_("Could not read ibox_info."));
2149
2150 info_spu_mailbox_list (buf, len / 4, byte_order,
2151 "ibox", "SPU Outbound Interrupt Mailbox");
2152
2153 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2154 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2155 buf, 0, sizeof buf);
2156 if (len < 0)
2157 error (_("Could not read wbox_info."));
2158
2159 info_spu_mailbox_list (buf, len / 4, byte_order,
2160 "wbox", "SPU Inbound Mailbox");
2161
2162 do_cleanups (chain);
2163 }
2164
2165 static ULONGEST
2166 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2167 {
2168 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2169 return (word >> (63 - last)) & mask;
2170 }
2171
2172 static void
2173 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2174 {
2175 static char *spu_mfc_opcode[256] =
2176 {
2177 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2178 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2179 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2180 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2181 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2182 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2183 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2184 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2185 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2186 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2187 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2188 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2189 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2190 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2191 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2192 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2193 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2194 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2195 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2196 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2197 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2198 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2199 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2200 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2201 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2202 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2203 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2204 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2205 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2206 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2207 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2208 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2209 };
2210
2211 int *seq = alloca (nr * sizeof (int));
2212 int done = 0;
2213 struct cleanup *chain;
2214 int i, j;
2215
2216
2217 /* Determine sequence in which to display (valid) entries. */
2218 for (i = 0; i < nr; i++)
2219 {
2220 /* Search for the first valid entry all of whose
2221 dependencies are met. */
2222 for (j = 0; j < nr; j++)
2223 {
2224 ULONGEST mfc_cq_dw3;
2225 ULONGEST dependencies;
2226
2227 if (done & (1 << (nr - 1 - j)))
2228 continue;
2229
2230 mfc_cq_dw3
2231 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2232 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2233 continue;
2234
2235 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2236 if ((dependencies & done) != dependencies)
2237 continue;
2238
2239 seq[i] = j;
2240 done |= 1 << (nr - 1 - j);
2241 break;
2242 }
2243
2244 if (j == nr)
2245 break;
2246 }
2247
2248 nr = i;
2249
2250
2251 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
2252
2253 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
2254 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
2255 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
2256 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
2257 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
2258 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
2259 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
2260 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
2261 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
2262 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
2263
2264 ui_out_table_body (uiout);
2265
2266 for (i = 0; i < nr; i++)
2267 {
2268 struct cleanup *cmd_chain;
2269 ULONGEST mfc_cq_dw0;
2270 ULONGEST mfc_cq_dw1;
2271 ULONGEST mfc_cq_dw2;
2272 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2273 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2274 ULONGEST mfc_ea;
2275 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2276
2277 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2278 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2279
2280 mfc_cq_dw0
2281 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2282 mfc_cq_dw1
2283 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2284 mfc_cq_dw2
2285 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2286
2287 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2288 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2289 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2290 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2291 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2292 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2293 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2294
2295 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2296 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2297
2298 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2299 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2300 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2301 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2302 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2303 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2304
2305 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
2306
2307 if (spu_mfc_opcode[mfc_cmd_opcode])
2308 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2309 else
2310 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
2311
2312 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
2313 ui_out_field_int (uiout, "tid", tclass_id);
2314 ui_out_field_int (uiout, "rid", rclass_id);
2315
2316 if (ea_valid_p)
2317 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
2318 else
2319 ui_out_field_skip (uiout, "ea");
2320
2321 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
2322 if (qw_valid_p)
2323 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
2324 else
2325 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
2326
2327 if (list_valid_p)
2328 {
2329 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
2330 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
2331 }
2332 else
2333 {
2334 ui_out_field_skip (uiout, "lstaddr");
2335 ui_out_field_skip (uiout, "lstsize");
2336 }
2337
2338 if (cmd_error_p)
2339 ui_out_field_string (uiout, "error_p", "*");
2340 else
2341 ui_out_field_skip (uiout, "error_p");
2342
2343 do_cleanups (cmd_chain);
2344
2345 if (!ui_out_is_mi_like_p (uiout))
2346 printf_filtered ("\n");
2347 }
2348
2349 do_cleanups (chain);
2350 }
2351
2352 static void
2353 info_spu_dma_command (char *args, int from_tty)
2354 {
2355 struct frame_info *frame = get_selected_frame (NULL);
2356 struct gdbarch *gdbarch = get_frame_arch (frame);
2357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2358 ULONGEST dma_info_type;
2359 ULONGEST dma_info_mask;
2360 ULONGEST dma_info_status;
2361 ULONGEST dma_info_stall_and_notify;
2362 ULONGEST dma_info_atomic_command_status;
2363 struct cleanup *chain;
2364 char annex[32];
2365 gdb_byte buf[1024];
2366 LONGEST len;
2367 int i, id;
2368
2369 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2370 error (_("\"info spu\" is only supported on the SPU architecture."));
2371
2372 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2373
2374 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2375 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2376 buf, 0, 40 + 16 * 32);
2377 if (len <= 0)
2378 error (_("Could not read dma_info."));
2379
2380 dma_info_type
2381 = extract_unsigned_integer (buf, 8, byte_order);
2382 dma_info_mask
2383 = extract_unsigned_integer (buf + 8, 8, byte_order);
2384 dma_info_status
2385 = extract_unsigned_integer (buf + 16, 8, byte_order);
2386 dma_info_stall_and_notify
2387 = extract_unsigned_integer (buf + 24, 8, byte_order);
2388 dma_info_atomic_command_status
2389 = extract_unsigned_integer (buf + 32, 8, byte_order);
2390
2391 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
2392
2393 if (ui_out_is_mi_like_p (uiout))
2394 {
2395 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
2396 phex_nz (dma_info_type, 4));
2397 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
2398 phex_nz (dma_info_mask, 4));
2399 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
2400 phex_nz (dma_info_status, 4));
2401 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
2402 phex_nz (dma_info_stall_and_notify, 4));
2403 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
2404 phex_nz (dma_info_atomic_command_status, 4));
2405 }
2406 else
2407 {
2408 const char *query_msg = _("no query pending");
2409
2410 if (dma_info_type & 4)
2411 switch (dma_info_type & 3)
2412 {
2413 case 1: query_msg = _("'any' query pending"); break;
2414 case 2: query_msg = _("'all' query pending"); break;
2415 default: query_msg = _("undefined query type"); break;
2416 }
2417
2418 printf_filtered (_("Tag-Group Status 0x%s\n"),
2419 phex (dma_info_status, 4));
2420 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2421 phex (dma_info_mask, 4), query_msg);
2422 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2423 phex (dma_info_stall_and_notify, 4));
2424 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2425 phex (dma_info_atomic_command_status, 4));
2426 printf_filtered ("\n");
2427 }
2428
2429 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2430 do_cleanups (chain);
2431 }
2432
2433 static void
2434 info_spu_proxydma_command (char *args, int from_tty)
2435 {
2436 struct frame_info *frame = get_selected_frame (NULL);
2437 struct gdbarch *gdbarch = get_frame_arch (frame);
2438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2439 ULONGEST dma_info_type;
2440 ULONGEST dma_info_mask;
2441 ULONGEST dma_info_status;
2442 struct cleanup *chain;
2443 char annex[32];
2444 gdb_byte buf[1024];
2445 LONGEST len;
2446 int i, id;
2447
2448 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2449 error (_("\"info spu\" is only supported on the SPU architecture."));
2450
2451 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2452
2453 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2454 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2455 buf, 0, 24 + 8 * 32);
2456 if (len <= 0)
2457 error (_("Could not read proxydma_info."));
2458
2459 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2460 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2461 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2462
2463 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2464
2465 if (ui_out_is_mi_like_p (uiout))
2466 {
2467 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2468 phex_nz (dma_info_type, 4));
2469 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2470 phex_nz (dma_info_mask, 4));
2471 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2472 phex_nz (dma_info_status, 4));
2473 }
2474 else
2475 {
2476 const char *query_msg;
2477
2478 switch (dma_info_type & 3)
2479 {
2480 case 0: query_msg = _("no query pending"); break;
2481 case 1: query_msg = _("'any' query pending"); break;
2482 case 2: query_msg = _("'all' query pending"); break;
2483 default: query_msg = _("undefined query type"); break;
2484 }
2485
2486 printf_filtered (_("Tag-Group Status 0x%s\n"),
2487 phex (dma_info_status, 4));
2488 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2489 phex (dma_info_mask, 4), query_msg);
2490 printf_filtered ("\n");
2491 }
2492
2493 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2494 do_cleanups (chain);
2495 }
2496
2497 static void
2498 info_spu_command (char *args, int from_tty)
2499 {
2500 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2501 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2502 }
2503
2504
2505 /* Root of all "set spu "/"show spu " commands. */
2506
2507 static void
2508 show_spu_command (char *args, int from_tty)
2509 {
2510 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2511 }
2512
2513 static void
2514 set_spu_command (char *args, int from_tty)
2515 {
2516 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2517 }
2518
2519 static void
2520 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2521 struct cmd_list_element *c, const char *value)
2522 {
2523 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2524 value);
2525 }
2526
2527 static void
2528 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2529 struct cmd_list_element *c, const char *value)
2530 {
2531 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2532 value);
2533 }
2534
2535
2536 /* Set up gdbarch struct. */
2537
2538 static struct gdbarch *
2539 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2540 {
2541 struct gdbarch *gdbarch;
2542 struct gdbarch_tdep *tdep;
2543 int id = -1;
2544
2545 /* Which spufs ID was requested as address space? */
2546 if (info.tdep_info)
2547 id = *(int *)info.tdep_info;
2548 /* For objfile architectures of SPU solibs, decode the ID from the name.
2549 This assumes the filename convention employed by solib-spu.c. */
2550 else if (info.abfd)
2551 {
2552 char *name = strrchr (info.abfd->filename, '@');
2553 if (name)
2554 sscanf (name, "@0x%*x <%d>", &id);
2555 }
2556
2557 /* Find a candidate among extant architectures. */
2558 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2559 arches != NULL;
2560 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2561 {
2562 tdep = gdbarch_tdep (arches->gdbarch);
2563 if (tdep && tdep->id == id)
2564 return arches->gdbarch;
2565 }
2566
2567 /* None found, so create a new architecture. */
2568 tdep = XCALLOC (1, struct gdbarch_tdep);
2569 tdep->id = id;
2570 gdbarch = gdbarch_alloc (&info, tdep);
2571
2572 /* Disassembler. */
2573 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2574
2575 /* Registers. */
2576 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2577 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2578 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2579 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2580 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2581 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2582 set_gdbarch_register_name (gdbarch, spu_register_name);
2583 set_gdbarch_register_type (gdbarch, spu_register_type);
2584 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2585 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2586 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2587 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2588
2589 /* Data types. */
2590 set_gdbarch_char_signed (gdbarch, 0);
2591 set_gdbarch_ptr_bit (gdbarch, 32);
2592 set_gdbarch_addr_bit (gdbarch, 32);
2593 set_gdbarch_short_bit (gdbarch, 16);
2594 set_gdbarch_int_bit (gdbarch, 32);
2595 set_gdbarch_long_bit (gdbarch, 32);
2596 set_gdbarch_long_long_bit (gdbarch, 64);
2597 set_gdbarch_float_bit (gdbarch, 32);
2598 set_gdbarch_double_bit (gdbarch, 64);
2599 set_gdbarch_long_double_bit (gdbarch, 64);
2600 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2601 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2602 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2603
2604 /* Address handling. */
2605 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2606 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2607 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2608 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2609 set_gdbarch_address_class_type_flags_to_name
2610 (gdbarch, spu_address_class_type_flags_to_name);
2611 set_gdbarch_address_class_name_to_type_flags
2612 (gdbarch, spu_address_class_name_to_type_flags);
2613
2614
2615 /* Inferior function calls. */
2616 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2617 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2618 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2619 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2620 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2621 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2622 set_gdbarch_return_value (gdbarch, spu_return_value);
2623
2624 /* Frame handling. */
2625 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2626 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2627 frame_base_set_default (gdbarch, &spu_frame_base);
2628 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2629 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2630 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2631 set_gdbarch_frame_args_skip (gdbarch, 0);
2632 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2633 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2634
2635 /* Cell/B.E. cross-architecture unwinder support. */
2636 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2637
2638 /* Breakpoints. */
2639 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2640 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2641 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2642 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2643 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2644
2645 /* Overlays. */
2646 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2647
2648 return gdbarch;
2649 }
2650
2651 /* Provide a prototype to silence -Wmissing-prototypes. */
2652 extern initialize_file_ftype _initialize_spu_tdep;
2653
2654 void
2655 _initialize_spu_tdep (void)
2656 {
2657 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2658
2659 /* Add ourselves to objfile event chain. */
2660 observer_attach_new_objfile (spu_overlay_new_objfile);
2661 spu_overlay_data = register_objfile_data ();
2662
2663 /* Install spu stop-on-load handler. */
2664 observer_attach_new_objfile (spu_catch_start);
2665
2666 /* Add ourselves to normal_stop event chain. */
2667 observer_attach_normal_stop (spu_attach_normal_stop);
2668
2669 /* Add root prefix command for all "set spu"/"show spu" commands. */
2670 add_prefix_cmd ("spu", no_class, set_spu_command,
2671 _("Various SPU specific commands."),
2672 &setspucmdlist, "set spu ", 0, &setlist);
2673 add_prefix_cmd ("spu", no_class, show_spu_command,
2674 _("Various SPU specific commands."),
2675 &showspucmdlist, "show spu ", 0, &showlist);
2676
2677 /* Toggle whether or not to add a temporary breakpoint at the "main"
2678 function of new SPE contexts. */
2679 add_setshow_boolean_cmd ("stop-on-load", class_support,
2680 &spu_stop_on_load_p, _("\
2681 Set whether to stop for new SPE threads."),
2682 _("\
2683 Show whether to stop for new SPE threads."),
2684 _("\
2685 Use \"on\" to give control to the user when a new SPE thread\n\
2686 enters its \"main\" function.\n\
2687 Use \"off\" to disable stopping for new SPE threads."),
2688 NULL,
2689 show_spu_stop_on_load,
2690 &setspucmdlist, &showspucmdlist);
2691
2692 /* Toggle whether or not to automatically flush the software-managed
2693 cache whenever SPE execution stops. */
2694 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2695 &spu_auto_flush_cache_p, _("\
2696 Set whether to automatically flush the software-managed cache."),
2697 _("\
2698 Show whether to automatically flush the software-managed cache."),
2699 _("\
2700 Use \"on\" to automatically flush the software-managed cache\n\
2701 whenever SPE execution stops.\n\
2702 Use \"off\" to never automatically flush the software-managed cache."),
2703 NULL,
2704 show_spu_auto_flush_cache,
2705 &setspucmdlist, &showspucmdlist);
2706
2707 /* Add root prefix command for all "info spu" commands. */
2708 add_prefix_cmd ("spu", class_info, info_spu_command,
2709 _("Various SPU specific commands."),
2710 &infospucmdlist, "info spu ", 0, &infolist);
2711
2712 /* Add various "info spu" commands. */
2713 add_cmd ("event", class_info, info_spu_event_command,
2714 _("Display SPU event facility status.\n"),
2715 &infospucmdlist);
2716 add_cmd ("signal", class_info, info_spu_signal_command,
2717 _("Display SPU signal notification facility status.\n"),
2718 &infospucmdlist);
2719 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2720 _("Display SPU mailbox facility status.\n"),
2721 &infospucmdlist);
2722 add_cmd ("dma", class_info, info_spu_dma_command,
2723 _("Display MFC DMA status.\n"),
2724 &infospucmdlist);
2725 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2726 _("Display MFC Proxy-DMA status.\n"),
2727 &infospucmdlist);
2728 }
This page took 0.149142 seconds and 4 git commands to generate.