* inferior.h (read_sp): Remove prototype.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* Support routines for reading and decoding debugging information in
25 the "stabs" format. This format is used with many systems that use
26 the a.out object file format, as well as some systems that use
27 COFF or ELF where the stabs data is placed in a special section.
28 Avoid placing any object file format specific code in this file. */
29
30 #include "defs.h"
31 #include "gdb_string.h"
32 #include "bfd.h"
33 #include "gdb_obstack.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "expression.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
40 #include "libaout.h"
41 #include "aout/aout64.h"
42 #include "gdb-stabs.h"
43 #include "buildsym.h"
44 #include "complaints.h"
45 #include "demangle.h"
46 #include "language.h"
47 #include "doublest.h"
48 #include "cp-abi.h"
49 #include "cp-support.h"
50
51 #include <ctype.h>
52
53 /* Ask stabsread.h to define the vars it normally declares `extern'. */
54 #define EXTERN
55 /**/
56 #include "stabsread.h" /* Our own declarations */
57 #undef EXTERN
58
59 extern void _initialize_stabsread (void);
60
61 /* The routines that read and process a complete stabs for a C struct or
62 C++ class pass lists of data member fields and lists of member function
63 fields in an instance of a field_info structure, as defined below.
64 This is part of some reorganization of low level C++ support and is
65 expected to eventually go away... (FIXME) */
66
67 struct field_info
68 {
69 struct nextfield
70 {
71 struct nextfield *next;
72
73 /* This is the raw visibility from the stab. It is not checked
74 for being one of the visibilities we recognize, so code which
75 examines this field better be able to deal. */
76 int visibility;
77
78 struct field field;
79 }
80 *list;
81 struct next_fnfieldlist
82 {
83 struct next_fnfieldlist *next;
84 struct fn_fieldlist fn_fieldlist;
85 }
86 *fnlist;
87 };
88
89 static void
90 read_one_struct_field (struct field_info *, char **, char *,
91 struct type *, struct objfile *);
92
93 static struct type *dbx_alloc_type (int[2], struct objfile *);
94
95 static long read_huge_number (char **, int, int *, int);
96
97 static struct type *error_type (char **, struct objfile *);
98
99 static void
100 patch_block_stabs (struct pending *, struct pending_stabs *,
101 struct objfile *);
102
103 static void fix_common_block (struct symbol *, int);
104
105 static int read_type_number (char **, int *);
106
107 static struct type *read_type (char **, struct objfile *);
108
109 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110
111 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112
113 static struct type *read_sun_floating_type (char **, int[2],
114 struct objfile *);
115
116 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117
118 static struct type *rs6000_builtin_type (int);
119
120 static int
121 read_member_functions (struct field_info *, char **, struct type *,
122 struct objfile *);
123
124 static int
125 read_struct_fields (struct field_info *, char **, struct type *,
126 struct objfile *);
127
128 static int
129 read_baseclasses (struct field_info *, char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_tilde_fields (struct field_info *, char **, struct type *,
134 struct objfile *);
135
136 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137
138 static int attach_fields_to_type (struct field_info *, struct type *,
139 struct objfile *);
140
141 static struct type *read_struct_type (char **, struct type *,
142 enum type_code,
143 struct objfile *);
144
145 static struct type *read_array_type (char **, struct type *,
146 struct objfile *);
147
148 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149
150 static void add_undefined_type (struct type *, int[2]);
151
152 static int
153 read_cpp_abbrev (struct field_info *, char **, struct type *,
154 struct objfile *);
155
156 static char *find_name_end (char *name);
157
158 static int process_reference (char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 /* Define this as 1 if a pcc declaration of a char or short argument
166 gives the correct address. Otherwise assume pcc gives the
167 address of the corresponding int, which is not the same on a
168 big-endian machine. */
169
170 #if !defined (BELIEVE_PCC_PROMOTION)
171 #define BELIEVE_PCC_PROMOTION 0
172 #endif
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
178 }
179
180 static void
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183 complaint (&symfile_complaints,
184 _("register number %d too large (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint (&symfile_complaints, "%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221 \f
222
223 /* Look up a dbx type-number pair. Return the address of the slot
224 where the type for that number-pair is stored.
225 The number-pair is in TYPENUMS.
226
227 This can be used for finding the type associated with that pair
228 or for associating a new type with the pair. */
229
230 static struct type **
231 dbx_lookup_type (int typenums[2])
232 {
233 int filenum = typenums[0];
234 int index = typenums[1];
235 unsigned old_len;
236 int real_filenum;
237 struct header_file *f;
238 int f_orig_length;
239
240 if (filenum == -1) /* -1,-1 is for temporary types. */
241 return 0;
242
243 if (filenum < 0 || filenum >= n_this_object_header_files)
244 {
245 complaint (&symfile_complaints,
246 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
247 filenum, index, symnum);
248 goto error_return;
249 }
250
251 if (filenum == 0)
252 {
253 if (index < 0)
254 {
255 /* Caller wants address of address of type. We think
256 that negative (rs6k builtin) types will never appear as
257 "lvalues", (nor should they), so we stuff the real type
258 pointer into a temp, and return its address. If referenced,
259 this will do the right thing. */
260 static struct type *temp_type;
261
262 temp_type = rs6000_builtin_type (index);
263 return &temp_type;
264 }
265
266 /* Type is defined outside of header files.
267 Find it in this object file's type vector. */
268 if (index >= type_vector_length)
269 {
270 old_len = type_vector_length;
271 if (old_len == 0)
272 {
273 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
274 type_vector = (struct type **)
275 xmalloc (type_vector_length * sizeof (struct type *));
276 }
277 while (index >= type_vector_length)
278 {
279 type_vector_length *= 2;
280 }
281 type_vector = (struct type **)
282 xrealloc ((char *) type_vector,
283 (type_vector_length * sizeof (struct type *)));
284 memset (&type_vector[old_len], 0,
285 (type_vector_length - old_len) * sizeof (struct type *));
286 }
287 return (&type_vector[index]);
288 }
289 else
290 {
291 real_filenum = this_object_header_files[filenum];
292
293 if (real_filenum >= N_HEADER_FILES (current_objfile))
294 {
295 struct type *temp_type;
296 struct type **temp_type_p;
297
298 warning (_("GDB internal error: bad real_filenum"));
299
300 error_return:
301 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
302 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
303 *temp_type_p = temp_type;
304 return temp_type_p;
305 }
306
307 f = HEADER_FILES (current_objfile) + real_filenum;
308
309 f_orig_length = f->length;
310 if (index >= f_orig_length)
311 {
312 while (index >= f->length)
313 {
314 f->length *= 2;
315 }
316 f->vector = (struct type **)
317 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
318 memset (&f->vector[f_orig_length], 0,
319 (f->length - f_orig_length) * sizeof (struct type *));
320 }
321 return (&f->vector[index]);
322 }
323 }
324
325 /* Make sure there is a type allocated for type numbers TYPENUMS
326 and return the type object.
327 This can create an empty (zeroed) type object.
328 TYPENUMS may be (-1, -1) to return a new type object that is not
329 put into the type vector, and so may not be referred to by number. */
330
331 static struct type *
332 dbx_alloc_type (int typenums[2], struct objfile *objfile)
333 {
334 struct type **type_addr;
335
336 if (typenums[0] == -1)
337 {
338 return (alloc_type (objfile));
339 }
340
341 type_addr = dbx_lookup_type (typenums);
342
343 /* If we are referring to a type not known at all yet,
344 allocate an empty type for it.
345 We will fill it in later if we find out how. */
346 if (*type_addr == 0)
347 {
348 *type_addr = alloc_type (objfile);
349 }
350
351 return (*type_addr);
352 }
353
354 /* for all the stabs in a given stab vector, build appropriate types
355 and fix their symbols in given symbol vector. */
356
357 static void
358 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
359 struct objfile *objfile)
360 {
361 int ii;
362 char *name;
363 char *pp;
364 struct symbol *sym;
365
366 if (stabs)
367 {
368
369 /* for all the stab entries, find their corresponding symbols and
370 patch their types! */
371
372 for (ii = 0; ii < stabs->count; ++ii)
373 {
374 name = stabs->stab[ii];
375 pp = (char *) strchr (name, ':');
376 while (pp[1] == ':')
377 {
378 pp += 2;
379 pp = (char *) strchr (pp, ':');
380 }
381 sym = find_symbol_in_list (symbols, name, pp - name);
382 if (!sym)
383 {
384 /* FIXME-maybe: it would be nice if we noticed whether
385 the variable was defined *anywhere*, not just whether
386 it is defined in this compilation unit. But neither
387 xlc or GCC seem to need such a definition, and until
388 we do psymtabs (so that the minimal symbols from all
389 compilation units are available now), I'm not sure
390 how to get the information. */
391
392 /* On xcoff, if a global is defined and never referenced,
393 ld will remove it from the executable. There is then
394 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
395 sym = (struct symbol *)
396 obstack_alloc (&objfile->objfile_obstack,
397 sizeof (struct symbol));
398
399 memset (sym, 0, sizeof (struct symbol));
400 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
401 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
402 DEPRECATED_SYMBOL_NAME (sym) =
403 obsavestring (name, pp - name, &objfile->objfile_obstack);
404 pp += 2;
405 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
406 {
407 /* I don't think the linker does this with functions,
408 so as far as I know this is never executed.
409 But it doesn't hurt to check. */
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 add_symbol_to_list (sym, &global_symbols);
418 }
419 else
420 {
421 pp += 2;
422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
423 {
424 SYMBOL_TYPE (sym) =
425 lookup_function_type (read_type (&pp, objfile));
426 }
427 else
428 {
429 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
430 }
431 }
432 }
433 }
434 }
435 \f
436
437 /* Read a number by which a type is referred to in dbx data,
438 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
439 Just a single number N is equivalent to (0,N).
440 Return the two numbers by storing them in the vector TYPENUMS.
441 TYPENUMS will then be used as an argument to dbx_lookup_type.
442
443 Returns 0 for success, -1 for error. */
444
445 static int
446 read_type_number (char **pp, int *typenums)
447 {
448 int nbits;
449 if (**pp == '(')
450 {
451 (*pp)++;
452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
456 if (nbits != 0)
457 return -1;
458 }
459 else
460 {
461 typenums[0] = 0;
462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
463 if (nbits != 0)
464 return -1;
465 }
466 return 0;
467 }
468 \f
469
470 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
475 /* Structure for storing pointers to reference definitions for fast lookup
476 during "process_later". */
477
478 struct ref_map
479 {
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483 };
484
485 #define MAX_CHUNK_REFS 100
486 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
489 static struct ref_map *ref_map;
490
491 /* Ptr to free cell in chunk's linked list. */
492 static int ref_count = 0;
493
494 /* Number of chunks malloced. */
495 static int ref_chunk = 0;
496
497 /* This file maintains a cache of stabs aliases found in the symbol
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
500 void
501 stabsread_clear_cache (void)
502 {
503 ref_count = 0;
504 ref_chunk = 0;
505 }
506
507 /* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
511 void
512 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
513 {
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
522 ref_map = (struct ref_map *)
523 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
524 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
525 ref_chunk += new_chunks;
526 }
527 ref_map[refnum].stabs = stabs;
528 ref_map[refnum].sym = sym;
529 ref_map[refnum].value = value;
530 }
531
532 /* Return defined sym for the reference REFNUM. */
533 struct symbol *
534 ref_search (int refnum)
535 {
536 if (refnum < 0 || refnum > ref_count)
537 return 0;
538 return ref_map[refnum].sym;
539 }
540
541 /* Parse a reference id in STRING and return the resulting
542 reference number. Move STRING beyond the reference id. */
543
544 static int
545 process_reference (char **string)
546 {
547 char *p;
548 int refnum = 0;
549
550 if (**string != '#')
551 return 0;
552
553 /* Advance beyond the initial '#'. */
554 p = *string + 1;
555
556 /* Read number as reference id. */
557 while (*p && isdigit (*p))
558 {
559 refnum = refnum * 10 + *p - '0';
560 p++;
561 }
562 *string = p;
563 return refnum;
564 }
565
566 /* If STRING defines a reference, store away a pointer to the reference
567 definition for later use. Return the reference number. */
568
569 int
570 symbol_reference_defined (char **string)
571 {
572 char *p = *string;
573 int refnum = 0;
574
575 refnum = process_reference (&p);
576
577 /* Defining symbols end in '=' */
578 if (*p == '=')
579 {
580 /* Symbol is being defined here. */
581 *string = p + 1;
582 return refnum;
583 }
584 else
585 {
586 /* Must be a reference. Either the symbol has already been defined,
587 or this is a forward reference to it. */
588 *string = p;
589 return -1;
590 }
591 }
592
593 struct symbol *
594 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
595 struct objfile *objfile)
596 {
597 struct symbol *sym;
598 char *p = (char *) find_name_end (string);
599 int deftype;
600 int synonym = 0;
601 int i;
602
603 /* We would like to eliminate nameless symbols, but keep their types.
604 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
605 to type 2, but, should not create a symbol to address that type. Since
606 the symbol will be nameless, there is no way any user can refer to it. */
607
608 int nameless;
609
610 /* Ignore syms with empty names. */
611 if (string[0] == 0)
612 return 0;
613
614 /* Ignore old-style symbols from cc -go */
615 if (p == 0)
616 return 0;
617
618 while (p[1] == ':')
619 {
620 p += 2;
621 p = strchr (p, ':');
622 }
623
624 /* If a nameless stab entry, all we need is the type, not the symbol.
625 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
626 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
627
628 current_symbol = sym = (struct symbol *)
629 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
630 memset (sym, 0, sizeof (struct symbol));
631
632 switch (type & N_TYPE)
633 {
634 case N_TEXT:
635 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
636 break;
637 case N_DATA:
638 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
639 break;
640 case N_BSS:
641 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
642 break;
643 }
644
645 if (processing_gcc_compilation)
646 {
647 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
648 number of bytes occupied by a type or object, which we ignore. */
649 SYMBOL_LINE (sym) = desc;
650 }
651 else
652 {
653 SYMBOL_LINE (sym) = 0; /* unknown */
654 }
655
656 if (is_cplus_marker (string[0]))
657 {
658 /* Special GNU C++ names. */
659 switch (string[1])
660 {
661 case 't':
662 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
663 &objfile->objfile_obstack);
664 break;
665
666 case 'v': /* $vtbl_ptr_type */
667 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
668 goto normal;
669
670 case 'e':
671 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
672 &objfile->objfile_obstack);
673 break;
674
675 case '_':
676 /* This was an anonymous type that was never fixed up. */
677 goto normal;
678
679 #ifdef STATIC_TRANSFORM_NAME
680 case 'X':
681 /* SunPRO (3.0 at least) static variable encoding. */
682 goto normal;
683 #endif
684
685 default:
686 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
687 string);
688 goto normal; /* Do *something* with it */
689 }
690 }
691 else
692 {
693 normal:
694 SYMBOL_LANGUAGE (sym) = current_subfile->language;
695 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
696 }
697 p++;
698
699 /* Determine the type of name being defined. */
700 #if 0
701 /* Getting GDB to correctly skip the symbol on an undefined symbol
702 descriptor and not ever dump core is a very dodgy proposition if
703 we do things this way. I say the acorn RISC machine can just
704 fix their compiler. */
705 /* The Acorn RISC machine's compiler can put out locals that don't
706 start with "234=" or "(3,4)=", so assume anything other than the
707 deftypes we know how to handle is a local. */
708 if (!strchr ("cfFGpPrStTvVXCR", *p))
709 #else
710 if (isdigit (*p) || *p == '(' || *p == '-')
711 #endif
712 deftype = 'l';
713 else
714 deftype = *p++;
715
716 switch (deftype)
717 {
718 case 'c':
719 /* c is a special case, not followed by a type-number.
720 SYMBOL:c=iVALUE for an integer constant symbol.
721 SYMBOL:c=rVALUE for a floating constant symbol.
722 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
723 e.g. "b:c=e6,0" for "const b = blob1"
724 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
725 if (*p != '=')
726 {
727 SYMBOL_CLASS (sym) = LOC_CONST;
728 SYMBOL_TYPE (sym) = error_type (&p, objfile);
729 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
730 add_symbol_to_list (sym, &file_symbols);
731 return sym;
732 }
733 ++p;
734 switch (*p++)
735 {
736 case 'r':
737 {
738 double d = atof (p);
739 gdb_byte *dbl_valu;
740
741 /* FIXME-if-picky-about-floating-accuracy: Should be using
742 target arithmetic to get the value. real.c in GCC
743 probably has the necessary code. */
744
745 /* FIXME: lookup_fundamental_type is a hack. We should be
746 creating a type especially for the type of float constants.
747 Problem is, what type should it be?
748
749 Also, what should the name of this type be? Should we
750 be using 'S' constants (see stabs.texinfo) instead? */
751
752 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
753 FT_DBL_PREC_FLOAT);
754 dbl_valu =
755 obstack_alloc (&objfile->objfile_obstack,
756 TYPE_LENGTH (SYMBOL_TYPE (sym)));
757 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
758 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
759 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
760 }
761 break;
762 case 'i':
763 {
764 /* Defining integer constants this way is kind of silly,
765 since 'e' constants allows the compiler to give not
766 only the value, but the type as well. C has at least
767 int, long, unsigned int, and long long as constant
768 types; other languages probably should have at least
769 unsigned as well as signed constants. */
770
771 /* We just need one int constant type for all objfiles.
772 It doesn't depend on languages or anything (arguably its
773 name should be a language-specific name for a type of
774 that size, but I'm inclined to say that if the compiler
775 wants a nice name for the type, it can use 'e'). */
776 static struct type *int_const_type;
777
778 /* Yes, this is as long as a *host* int. That is because we
779 use atoi. */
780 if (int_const_type == NULL)
781 int_const_type =
782 init_type (TYPE_CODE_INT,
783 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
784 "integer constant",
785 (struct objfile *) NULL);
786 SYMBOL_TYPE (sym) = int_const_type;
787 SYMBOL_VALUE (sym) = atoi (p);
788 SYMBOL_CLASS (sym) = LOC_CONST;
789 }
790 break;
791 case 'e':
792 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
793 can be represented as integral.
794 e.g. "b:c=e6,0" for "const b = blob1"
795 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
796 {
797 SYMBOL_CLASS (sym) = LOC_CONST;
798 SYMBOL_TYPE (sym) = read_type (&p, objfile);
799
800 if (*p != ',')
801 {
802 SYMBOL_TYPE (sym) = error_type (&p, objfile);
803 break;
804 }
805 ++p;
806
807 /* If the value is too big to fit in an int (perhaps because
808 it is unsigned), or something like that, we silently get
809 a bogus value. The type and everything else about it is
810 correct. Ideally, we should be using whatever we have
811 available for parsing unsigned and long long values,
812 however. */
813 SYMBOL_VALUE (sym) = atoi (p);
814 }
815 break;
816 default:
817 {
818 SYMBOL_CLASS (sym) = LOC_CONST;
819 SYMBOL_TYPE (sym) = error_type (&p, objfile);
820 }
821 }
822 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
823 add_symbol_to_list (sym, &file_symbols);
824 return sym;
825
826 case 'C':
827 /* The name of a caught exception. */
828 SYMBOL_TYPE (sym) = read_type (&p, objfile);
829 SYMBOL_CLASS (sym) = LOC_LABEL;
830 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
831 SYMBOL_VALUE_ADDRESS (sym) = valu;
832 add_symbol_to_list (sym, &local_symbols);
833 break;
834
835 case 'f':
836 /* A static function definition. */
837 SYMBOL_TYPE (sym) = read_type (&p, objfile);
838 SYMBOL_CLASS (sym) = LOC_BLOCK;
839 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
840 add_symbol_to_list (sym, &file_symbols);
841 /* fall into process_function_types. */
842
843 process_function_types:
844 /* Function result types are described as the result type in stabs.
845 We need to convert this to the function-returning-type-X type
846 in GDB. E.g. "int" is converted to "function returning int". */
847 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
848 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
849
850 /* All functions in C++ have prototypes. Stabs does not offer an
851 explicit way to identify prototyped or unprototyped functions,
852 but both GCC and Sun CC emit stabs for the "call-as" type rather
853 than the "declared-as" type for unprototyped functions, so
854 we treat all functions as if they were prototyped. This is used
855 primarily for promotion when calling the function from GDB. */
856 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
857
858 /* fall into process_prototype_types */
859
860 process_prototype_types:
861 /* Sun acc puts declared types of arguments here. */
862 if (*p == ';')
863 {
864 struct type *ftype = SYMBOL_TYPE (sym);
865 int nsemi = 0;
866 int nparams = 0;
867 char *p1 = p;
868
869 /* Obtain a worst case guess for the number of arguments
870 by counting the semicolons. */
871 while (*p1)
872 {
873 if (*p1++ == ';')
874 nsemi++;
875 }
876
877 /* Allocate parameter information fields and fill them in. */
878 TYPE_FIELDS (ftype) = (struct field *)
879 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
880 while (*p++ == ';')
881 {
882 struct type *ptype;
883
884 /* A type number of zero indicates the start of varargs.
885 FIXME: GDB currently ignores vararg functions. */
886 if (p[0] == '0' && p[1] == '\0')
887 break;
888 ptype = read_type (&p, objfile);
889
890 /* The Sun compilers mark integer arguments, which should
891 be promoted to the width of the calling conventions, with
892 a type which references itself. This type is turned into
893 a TYPE_CODE_VOID type by read_type, and we have to turn
894 it back into builtin_type_int here.
895 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
896 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
897 ptype = builtin_type_int;
898 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
899 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
900 }
901 TYPE_NFIELDS (ftype) = nparams;
902 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
903 }
904 break;
905
906 case 'F':
907 /* A global function definition. */
908 SYMBOL_TYPE (sym) = read_type (&p, objfile);
909 SYMBOL_CLASS (sym) = LOC_BLOCK;
910 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
911 add_symbol_to_list (sym, &global_symbols);
912 goto process_function_types;
913
914 case 'G':
915 /* For a class G (global) symbol, it appears that the
916 value is not correct. It is necessary to search for the
917 corresponding linker definition to find the value.
918 These definitions appear at the end of the namelist. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_CLASS (sym) = LOC_STATIC;
921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
922 /* Don't add symbol references to global_sym_chain.
923 Symbol references don't have valid names and wont't match up with
924 minimal symbols when the global_sym_chain is relocated.
925 We'll fixup symbol references when we fixup the defining symbol. */
926 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
927 {
928 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
929 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
930 global_sym_chain[i] = sym;
931 }
932 add_symbol_to_list (sym, &global_symbols);
933 break;
934
935 /* This case is faked by a conditional above,
936 when there is no code letter in the dbx data.
937 Dbx data never actually contains 'l'. */
938 case 's':
939 case 'l':
940 SYMBOL_TYPE (sym) = read_type (&p, objfile);
941 SYMBOL_CLASS (sym) = LOC_LOCAL;
942 SYMBOL_VALUE (sym) = valu;
943 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
944 add_symbol_to_list (sym, &local_symbols);
945 break;
946
947 case 'p':
948 if (*p == 'F')
949 /* pF is a two-letter code that means a function parameter in Fortran.
950 The type-number specifies the type of the return value.
951 Translate it into a pointer-to-function type. */
952 {
953 p++;
954 SYMBOL_TYPE (sym)
955 = lookup_pointer_type
956 (lookup_function_type (read_type (&p, objfile)));
957 }
958 else
959 SYMBOL_TYPE (sym) = read_type (&p, objfile);
960
961 SYMBOL_CLASS (sym) = LOC_ARG;
962 SYMBOL_VALUE (sym) = valu;
963 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
964 add_symbol_to_list (sym, &local_symbols);
965
966 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
967 {
968 /* On little-endian machines, this crud is never necessary,
969 and, if the extra bytes contain garbage, is harmful. */
970 break;
971 }
972
973 /* If it's gcc-compiled, if it says `short', believe it. */
974 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
975 break;
976
977 if (!BELIEVE_PCC_PROMOTION)
978 {
979 /* This is the signed type which arguments get promoted to. */
980 static struct type *pcc_promotion_type;
981 /* This is the unsigned type which arguments get promoted to. */
982 static struct type *pcc_unsigned_promotion_type;
983
984 /* Call it "int" because this is mainly C lossage. */
985 if (pcc_promotion_type == NULL)
986 pcc_promotion_type =
987 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
988 0, "int", NULL);
989
990 if (pcc_unsigned_promotion_type == NULL)
991 pcc_unsigned_promotion_type =
992 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
993 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
994
995 /* If PCC says a parameter is a short or a char, it is
996 really an int. */
997 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
998 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
999 {
1000 SYMBOL_TYPE (sym) =
1001 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1002 ? pcc_unsigned_promotion_type
1003 : pcc_promotion_type;
1004 }
1005 break;
1006 }
1007
1008 case 'P':
1009 /* acc seems to use P to declare the prototypes of functions that
1010 are referenced by this file. gdb is not prepared to deal
1011 with this extra information. FIXME, it ought to. */
1012 if (type == N_FUN)
1013 {
1014 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1015 goto process_prototype_types;
1016 }
1017 /*FALLTHROUGH */
1018
1019 case 'R':
1020 /* Parameter which is in a register. */
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_CLASS (sym) = LOC_REGPARM;
1023 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1024 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1025 {
1026 reg_value_complaint (SYMBOL_VALUE (sym),
1027 NUM_REGS + NUM_PSEUDO_REGS,
1028 SYMBOL_PRINT_NAME (sym));
1029 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1030 }
1031 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1032 add_symbol_to_list (sym, &local_symbols);
1033 break;
1034
1035 case 'r':
1036 /* Register variable (either global or local). */
1037 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1038 SYMBOL_CLASS (sym) = LOC_REGISTER;
1039 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1040 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1041 {
1042 reg_value_complaint (SYMBOL_VALUE (sym),
1043 NUM_REGS + NUM_PSEUDO_REGS,
1044 SYMBOL_PRINT_NAME (sym));
1045 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1046 }
1047 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1048 if (within_function)
1049 {
1050 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1051 the same name to represent an argument passed in a
1052 register. GCC uses 'P' for the same case. So if we find
1053 such a symbol pair we combine it into one 'P' symbol.
1054 For Sun cc we need to do this regardless of
1055 stabs_argument_has_addr, because the compiler puts out
1056 the 'p' symbol even if it never saves the argument onto
1057 the stack.
1058
1059 On most machines, we want to preserve both symbols, so
1060 that we can still get information about what is going on
1061 with the stack (VAX for computing args_printed, using
1062 stack slots instead of saved registers in backtraces,
1063 etc.).
1064
1065 Note that this code illegally combines
1066 main(argc) struct foo argc; { register struct foo argc; }
1067 but this case is considered pathological and causes a warning
1068 from a decent compiler. */
1069
1070 if (local_symbols
1071 && local_symbols->nsyms > 0
1072 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1073 SYMBOL_TYPE (sym)))
1074 {
1075 struct symbol *prev_sym;
1076 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1077 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1078 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1079 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1080 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1081 {
1082 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1083 /* Use the type from the LOC_REGISTER; that is the type
1084 that is actually in that register. */
1085 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1086 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1087 sym = prev_sym;
1088 break;
1089 }
1090 }
1091 add_symbol_to_list (sym, &local_symbols);
1092 }
1093 else
1094 add_symbol_to_list (sym, &file_symbols);
1095 break;
1096
1097 case 'S':
1098 /* Static symbol at top level of file */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100 SYMBOL_CLASS (sym) = LOC_STATIC;
1101 SYMBOL_VALUE_ADDRESS (sym) = valu;
1102 #ifdef STATIC_TRANSFORM_NAME
1103 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1104 {
1105 struct minimal_symbol *msym;
1106 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1107 if (msym != NULL)
1108 {
1109 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1110 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1111 }
1112 }
1113 #endif
1114 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1115 add_symbol_to_list (sym, &file_symbols);
1116 break;
1117
1118 case 't':
1119 /* In Ada, there is no distinction between typedef and non-typedef;
1120 any type declaration implicitly has the equivalent of a typedef,
1121 and thus 't' is in fact equivalent to 'Tt'.
1122
1123 Therefore, for Ada units, we check the character immediately
1124 before the 't', and if we do not find a 'T', then make sure to
1125 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1126 will be stored in the VAR_DOMAIN). If the symbol was indeed
1127 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1128 elsewhere, so we don't need to take care of that.
1129
1130 This is important to do, because of forward references:
1131 The cleanup of undefined types stored in undef_types only uses
1132 STRUCT_DOMAIN symbols to perform the replacement. */
1133 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1134
1135 /* Typedef */
1136 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1137
1138 /* For a nameless type, we don't want a create a symbol, thus we
1139 did not use `sym'. Return without further processing. */
1140 if (nameless)
1141 return NULL;
1142
1143 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1144 SYMBOL_VALUE (sym) = valu;
1145 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1146 /* C++ vagaries: we may have a type which is derived from
1147 a base type which did not have its name defined when the
1148 derived class was output. We fill in the derived class's
1149 base part member's name here in that case. */
1150 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1151 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1152 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1153 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1154 {
1155 int j;
1156 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1157 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1158 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1159 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1160 }
1161
1162 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1163 {
1164 /* gcc-2.6 or later (when using -fvtable-thunks)
1165 emits a unique named type for a vtable entry.
1166 Some gdb code depends on that specific name. */
1167 extern const char vtbl_ptr_name[];
1168
1169 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1170 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1171 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1172 {
1173 /* If we are giving a name to a type such as "pointer to
1174 foo" or "function returning foo", we better not set
1175 the TYPE_NAME. If the program contains "typedef char
1176 *caddr_t;", we don't want all variables of type char
1177 * to print as caddr_t. This is not just a
1178 consequence of GDB's type management; PCC and GCC (at
1179 least through version 2.4) both output variables of
1180 either type char * or caddr_t with the type number
1181 defined in the 't' symbol for caddr_t. If a future
1182 compiler cleans this up it GDB is not ready for it
1183 yet, but if it becomes ready we somehow need to
1184 disable this check (without breaking the PCC/GCC2.4
1185 case).
1186
1187 Sigh.
1188
1189 Fortunately, this check seems not to be necessary
1190 for anything except pointers or functions. */
1191 /* ezannoni: 2000-10-26. This seems to apply for
1192 versions of gcc older than 2.8. This was the original
1193 problem: with the following code gdb would tell that
1194 the type for name1 is caddr_t, and func is char()
1195 typedef char *caddr_t;
1196 char *name2;
1197 struct x
1198 {
1199 char *name1;
1200 } xx;
1201 char *func()
1202 {
1203 }
1204 main () {}
1205 */
1206
1207 /* Pascal accepts names for pointer types. */
1208 if (current_subfile->language == language_pascal)
1209 {
1210 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1211 }
1212 }
1213 else
1214 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1215 }
1216
1217 add_symbol_to_list (sym, &file_symbols);
1218
1219 if (synonym)
1220 {
1221 /* Create the STRUCT_DOMAIN clone. */
1222 struct symbol *struct_sym = (struct symbol *)
1223 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1224
1225 *struct_sym = *sym;
1226 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1227 SYMBOL_VALUE (struct_sym) = valu;
1228 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1229 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1230 TYPE_NAME (SYMBOL_TYPE (sym))
1231 = obconcat (&objfile->objfile_obstack, "", "",
1232 DEPRECATED_SYMBOL_NAME (sym));
1233 add_symbol_to_list (struct_sym, &file_symbols);
1234 }
1235
1236 break;
1237
1238 case 'T':
1239 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1240 by 't' which means we are typedef'ing it as well. */
1241 synonym = *p == 't';
1242
1243 if (synonym)
1244 p++;
1245
1246 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1247
1248 /* For a nameless type, we don't want a create a symbol, thus we
1249 did not use `sym'. Return without further processing. */
1250 if (nameless)
1251 return NULL;
1252
1253 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1254 SYMBOL_VALUE (sym) = valu;
1255 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1256 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1257 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1258 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1259 add_symbol_to_list (sym, &file_symbols);
1260
1261 if (synonym)
1262 {
1263 /* Clone the sym and then modify it. */
1264 struct symbol *typedef_sym = (struct symbol *)
1265 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1266 *typedef_sym = *sym;
1267 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1268 SYMBOL_VALUE (typedef_sym) = valu;
1269 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1270 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1271 TYPE_NAME (SYMBOL_TYPE (sym))
1272 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1273 add_symbol_to_list (typedef_sym, &file_symbols);
1274 }
1275 break;
1276
1277 case 'V':
1278 /* Static symbol of local scope */
1279 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1280 SYMBOL_CLASS (sym) = LOC_STATIC;
1281 SYMBOL_VALUE_ADDRESS (sym) = valu;
1282 #ifdef STATIC_TRANSFORM_NAME
1283 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1284 {
1285 struct minimal_symbol *msym;
1286 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1287 if (msym != NULL)
1288 {
1289 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1290 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1291 }
1292 }
1293 #endif
1294 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1295 add_symbol_to_list (sym, &local_symbols);
1296 break;
1297
1298 case 'v':
1299 /* Reference parameter */
1300 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1301 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1302 SYMBOL_VALUE (sym) = valu;
1303 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1304 add_symbol_to_list (sym, &local_symbols);
1305 break;
1306
1307 case 'a':
1308 /* Reference parameter which is in a register. */
1309 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1310 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1311 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1312 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1313 {
1314 reg_value_complaint (SYMBOL_VALUE (sym),
1315 NUM_REGS + NUM_PSEUDO_REGS,
1316 SYMBOL_PRINT_NAME (sym));
1317 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1318 }
1319 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1320 add_symbol_to_list (sym, &local_symbols);
1321 break;
1322
1323 case 'X':
1324 /* This is used by Sun FORTRAN for "function result value".
1325 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1326 that Pascal uses it too, but when I tried it Pascal used
1327 "x:3" (local symbol) instead. */
1328 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1329 SYMBOL_CLASS (sym) = LOC_LOCAL;
1330 SYMBOL_VALUE (sym) = valu;
1331 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1332 add_symbol_to_list (sym, &local_symbols);
1333 break;
1334
1335 default:
1336 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1337 SYMBOL_CLASS (sym) = LOC_CONST;
1338 SYMBOL_VALUE (sym) = 0;
1339 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1340 add_symbol_to_list (sym, &file_symbols);
1341 break;
1342 }
1343
1344 /* Some systems pass variables of certain types by reference instead
1345 of by value, i.e. they will pass the address of a structure (in a
1346 register or on the stack) instead of the structure itself. */
1347
1348 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1349 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1350 {
1351 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1352 variables passed in a register). */
1353 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1354 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1355 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1356 and subsequent arguments on SPARC, for example). */
1357 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1358 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1359 }
1360
1361 return sym;
1362 }
1363
1364 /* Skip rest of this symbol and return an error type.
1365
1366 General notes on error recovery: error_type always skips to the
1367 end of the symbol (modulo cretinous dbx symbol name continuation).
1368 Thus code like this:
1369
1370 if (*(*pp)++ != ';')
1371 return error_type (pp, objfile);
1372
1373 is wrong because if *pp starts out pointing at '\0' (typically as the
1374 result of an earlier error), it will be incremented to point to the
1375 start of the next symbol, which might produce strange results, at least
1376 if you run off the end of the string table. Instead use
1377
1378 if (**pp != ';')
1379 return error_type (pp, objfile);
1380 ++*pp;
1381
1382 or
1383
1384 if (**pp != ';')
1385 foo = error_type (pp, objfile);
1386 else
1387 ++*pp;
1388
1389 And in case it isn't obvious, the point of all this hair is so the compiler
1390 can define new types and new syntaxes, and old versions of the
1391 debugger will be able to read the new symbol tables. */
1392
1393 static struct type *
1394 error_type (char **pp, struct objfile *objfile)
1395 {
1396 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1397 while (1)
1398 {
1399 /* Skip to end of symbol. */
1400 while (**pp != '\0')
1401 {
1402 (*pp)++;
1403 }
1404
1405 /* Check for and handle cretinous dbx symbol name continuation! */
1406 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1407 {
1408 *pp = next_symbol_text (objfile);
1409 }
1410 else
1411 {
1412 break;
1413 }
1414 }
1415 return (builtin_type_error);
1416 }
1417 \f
1418
1419 /* Read type information or a type definition; return the type. Even
1420 though this routine accepts either type information or a type
1421 definition, the distinction is relevant--some parts of stabsread.c
1422 assume that type information starts with a digit, '-', or '(' in
1423 deciding whether to call read_type. */
1424
1425 static struct type *
1426 read_type (char **pp, struct objfile *objfile)
1427 {
1428 struct type *type = 0;
1429 struct type *type1;
1430 int typenums[2];
1431 char type_descriptor;
1432
1433 /* Size in bits of type if specified by a type attribute, or -1 if
1434 there is no size attribute. */
1435 int type_size = -1;
1436
1437 /* Used to distinguish string and bitstring from char-array and set. */
1438 int is_string = 0;
1439
1440 /* Used to distinguish vector from array. */
1441 int is_vector = 0;
1442
1443 /* Read type number if present. The type number may be omitted.
1444 for instance in a two-dimensional array declared with type
1445 "ar1;1;10;ar1;1;10;4". */
1446 if ((**pp >= '0' && **pp <= '9')
1447 || **pp == '('
1448 || **pp == '-')
1449 {
1450 if (read_type_number (pp, typenums) != 0)
1451 return error_type (pp, objfile);
1452
1453 if (**pp != '=')
1454 {
1455 /* Type is not being defined here. Either it already
1456 exists, or this is a forward reference to it.
1457 dbx_alloc_type handles both cases. */
1458 type = dbx_alloc_type (typenums, objfile);
1459
1460 /* If this is a forward reference, arrange to complain if it
1461 doesn't get patched up by the time we're done
1462 reading. */
1463 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1464 add_undefined_type (type, typenums);
1465
1466 return type;
1467 }
1468
1469 /* Type is being defined here. */
1470 /* Skip the '='.
1471 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1472 (*pp) += 2;
1473 }
1474 else
1475 {
1476 /* 'typenums=' not present, type is anonymous. Read and return
1477 the definition, but don't put it in the type vector. */
1478 typenums[0] = typenums[1] = -1;
1479 (*pp)++;
1480 }
1481
1482 again:
1483 type_descriptor = (*pp)[-1];
1484 switch (type_descriptor)
1485 {
1486 case 'x':
1487 {
1488 enum type_code code;
1489
1490 /* Used to index through file_symbols. */
1491 struct pending *ppt;
1492 int i;
1493
1494 /* Name including "struct", etc. */
1495 char *type_name;
1496
1497 {
1498 char *from, *to, *p, *q1, *q2;
1499
1500 /* Set the type code according to the following letter. */
1501 switch ((*pp)[0])
1502 {
1503 case 's':
1504 code = TYPE_CODE_STRUCT;
1505 break;
1506 case 'u':
1507 code = TYPE_CODE_UNION;
1508 break;
1509 case 'e':
1510 code = TYPE_CODE_ENUM;
1511 break;
1512 default:
1513 {
1514 /* Complain and keep going, so compilers can invent new
1515 cross-reference types. */
1516 complaint (&symfile_complaints,
1517 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1518 code = TYPE_CODE_STRUCT;
1519 break;
1520 }
1521 }
1522
1523 q1 = strchr (*pp, '<');
1524 p = strchr (*pp, ':');
1525 if (p == NULL)
1526 return error_type (pp, objfile);
1527 if (q1 && p > q1 && p[1] == ':')
1528 {
1529 int nesting_level = 0;
1530 for (q2 = q1; *q2; q2++)
1531 {
1532 if (*q2 == '<')
1533 nesting_level++;
1534 else if (*q2 == '>')
1535 nesting_level--;
1536 else if (*q2 == ':' && nesting_level == 0)
1537 break;
1538 }
1539 p = q2;
1540 if (*p != ':')
1541 return error_type (pp, objfile);
1542 }
1543 to = type_name =
1544 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1545
1546 /* Copy the name. */
1547 from = *pp + 1;
1548 while (from < p)
1549 *to++ = *from++;
1550 *to = '\0';
1551
1552 /* Set the pointer ahead of the name which we just read, and
1553 the colon. */
1554 *pp = from + 1;
1555 }
1556
1557 /* If this type has already been declared, then reuse the same
1558 type, rather than allocating a new one. This saves some
1559 memory. */
1560
1561 for (ppt = file_symbols; ppt; ppt = ppt->next)
1562 for (i = 0; i < ppt->nsyms; i++)
1563 {
1564 struct symbol *sym = ppt->symbol[i];
1565
1566 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1567 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1568 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1569 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1570 {
1571 obstack_free (&objfile->objfile_obstack, type_name);
1572 type = SYMBOL_TYPE (sym);
1573 if (typenums[0] != -1)
1574 *dbx_lookup_type (typenums) = type;
1575 return type;
1576 }
1577 }
1578
1579 /* Didn't find the type to which this refers, so we must
1580 be dealing with a forward reference. Allocate a type
1581 structure for it, and keep track of it so we can
1582 fill in the rest of the fields when we get the full
1583 type. */
1584 type = dbx_alloc_type (typenums, objfile);
1585 TYPE_CODE (type) = code;
1586 TYPE_TAG_NAME (type) = type_name;
1587 INIT_CPLUS_SPECIFIC (type);
1588 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1589
1590 add_undefined_type (type, typenums);
1591 return type;
1592 }
1593
1594 case '-': /* RS/6000 built-in type */
1595 case '0':
1596 case '1':
1597 case '2':
1598 case '3':
1599 case '4':
1600 case '5':
1601 case '6':
1602 case '7':
1603 case '8':
1604 case '9':
1605 case '(':
1606 (*pp)--;
1607
1608 /* We deal with something like t(1,2)=(3,4)=... which
1609 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1610
1611 /* Allocate and enter the typedef type first.
1612 This handles recursive types. */
1613 type = dbx_alloc_type (typenums, objfile);
1614 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1615 {
1616 struct type *xtype = read_type (pp, objfile);
1617 if (type == xtype)
1618 {
1619 /* It's being defined as itself. That means it is "void". */
1620 TYPE_CODE (type) = TYPE_CODE_VOID;
1621 TYPE_LENGTH (type) = 1;
1622 }
1623 else if (type_size >= 0 || is_string)
1624 {
1625 /* This is the absolute wrong way to construct types. Every
1626 other debug format has found a way around this problem and
1627 the related problems with unnecessarily stubbed types;
1628 someone motivated should attempt to clean up the issue
1629 here as well. Once a type pointed to has been created it
1630 should not be modified.
1631
1632 Well, it's not *absolutely* wrong. Constructing recursive
1633 types (trees, linked lists) necessarily entails modifying
1634 types after creating them. Constructing any loop structure
1635 entails side effects. The Dwarf 2 reader does handle this
1636 more gracefully (it never constructs more than once
1637 instance of a type object, so it doesn't have to copy type
1638 objects wholesale), but it still mutates type objects after
1639 other folks have references to them.
1640
1641 Keep in mind that this circularity/mutation issue shows up
1642 at the source language level, too: C's "incomplete types",
1643 for example. So the proper cleanup, I think, would be to
1644 limit GDB's type smashing to match exactly those required
1645 by the source language. So GDB could have a
1646 "complete_this_type" function, but never create unnecessary
1647 copies of a type otherwise. */
1648 replace_type (type, xtype);
1649 TYPE_NAME (type) = NULL;
1650 TYPE_TAG_NAME (type) = NULL;
1651 }
1652 else
1653 {
1654 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1655 TYPE_TARGET_TYPE (type) = xtype;
1656 }
1657 }
1658 break;
1659
1660 /* In the following types, we must be sure to overwrite any existing
1661 type that the typenums refer to, rather than allocating a new one
1662 and making the typenums point to the new one. This is because there
1663 may already be pointers to the existing type (if it had been
1664 forward-referenced), and we must change it to a pointer, function,
1665 reference, or whatever, *in-place*. */
1666
1667 case '*': /* Pointer to another type */
1668 type1 = read_type (pp, objfile);
1669 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1670 break;
1671
1672 case '&': /* Reference to another type */
1673 type1 = read_type (pp, objfile);
1674 type = make_reference_type (type1, dbx_lookup_type (typenums));
1675 break;
1676
1677 case 'f': /* Function returning another type */
1678 type1 = read_type (pp, objfile);
1679 type = make_function_type (type1, dbx_lookup_type (typenums));
1680 break;
1681
1682 case 'g': /* Prototyped function. (Sun) */
1683 {
1684 /* Unresolved questions:
1685
1686 - According to Sun's ``STABS Interface Manual'', for 'f'
1687 and 'F' symbol descriptors, a `0' in the argument type list
1688 indicates a varargs function. But it doesn't say how 'g'
1689 type descriptors represent that info. Someone with access
1690 to Sun's toolchain should try it out.
1691
1692 - According to the comment in define_symbol (search for
1693 `process_prototype_types:'), Sun emits integer arguments as
1694 types which ref themselves --- like `void' types. Do we
1695 have to deal with that here, too? Again, someone with
1696 access to Sun's toolchain should try it out and let us
1697 know. */
1698
1699 const char *type_start = (*pp) - 1;
1700 struct type *return_type = read_type (pp, objfile);
1701 struct type *func_type
1702 = make_function_type (return_type, dbx_lookup_type (typenums));
1703 struct type_list {
1704 struct type *type;
1705 struct type_list *next;
1706 } *arg_types = 0;
1707 int num_args = 0;
1708
1709 while (**pp && **pp != '#')
1710 {
1711 struct type *arg_type = read_type (pp, objfile);
1712 struct type_list *new = alloca (sizeof (*new));
1713 new->type = arg_type;
1714 new->next = arg_types;
1715 arg_types = new;
1716 num_args++;
1717 }
1718 if (**pp == '#')
1719 ++*pp;
1720 else
1721 {
1722 complaint (&symfile_complaints,
1723 _("Prototyped function type didn't end arguments with `#':\n%s"),
1724 type_start);
1725 }
1726
1727 /* If there is just one argument whose type is `void', then
1728 that's just an empty argument list. */
1729 if (arg_types
1730 && ! arg_types->next
1731 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1732 num_args = 0;
1733
1734 TYPE_FIELDS (func_type)
1735 = (struct field *) TYPE_ALLOC (func_type,
1736 num_args * sizeof (struct field));
1737 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1738 {
1739 int i;
1740 struct type_list *t;
1741
1742 /* We stuck each argument type onto the front of the list
1743 when we read it, so the list is reversed. Build the
1744 fields array right-to-left. */
1745 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1746 TYPE_FIELD_TYPE (func_type, i) = t->type;
1747 }
1748 TYPE_NFIELDS (func_type) = num_args;
1749 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1750
1751 type = func_type;
1752 break;
1753 }
1754
1755 case 'k': /* Const qualifier on some type (Sun) */
1756 type = read_type (pp, objfile);
1757 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1758 dbx_lookup_type (typenums));
1759 break;
1760
1761 case 'B': /* Volatile qual on some type (Sun) */
1762 type = read_type (pp, objfile);
1763 type = make_cv_type (TYPE_CONST (type), 1, type,
1764 dbx_lookup_type (typenums));
1765 break;
1766
1767 case '@':
1768 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1769 { /* Member (class & variable) type */
1770 /* FIXME -- we should be doing smash_to_XXX types here. */
1771
1772 struct type *domain = read_type (pp, objfile);
1773 struct type *memtype;
1774
1775 if (**pp != ',')
1776 /* Invalid member type data format. */
1777 return error_type (pp, objfile);
1778 ++*pp;
1779
1780 memtype = read_type (pp, objfile);
1781 type = dbx_alloc_type (typenums, objfile);
1782 smash_to_memberptr_type (type, domain, memtype);
1783 }
1784 else
1785 /* type attribute */
1786 {
1787 char *attr = *pp;
1788 /* Skip to the semicolon. */
1789 while (**pp != ';' && **pp != '\0')
1790 ++(*pp);
1791 if (**pp == '\0')
1792 return error_type (pp, objfile);
1793 else
1794 ++ * pp; /* Skip the semicolon. */
1795
1796 switch (*attr)
1797 {
1798 case 's': /* Size attribute */
1799 type_size = atoi (attr + 1);
1800 if (type_size <= 0)
1801 type_size = -1;
1802 break;
1803
1804 case 'S': /* String attribute */
1805 /* FIXME: check to see if following type is array? */
1806 is_string = 1;
1807 break;
1808
1809 case 'V': /* Vector attribute */
1810 /* FIXME: check to see if following type is array? */
1811 is_vector = 1;
1812 break;
1813
1814 default:
1815 /* Ignore unrecognized type attributes, so future compilers
1816 can invent new ones. */
1817 break;
1818 }
1819 ++*pp;
1820 goto again;
1821 }
1822 break;
1823
1824 case '#': /* Method (class & fn) type */
1825 if ((*pp)[0] == '#')
1826 {
1827 /* We'll get the parameter types from the name. */
1828 struct type *return_type;
1829
1830 (*pp)++;
1831 return_type = read_type (pp, objfile);
1832 if (*(*pp)++ != ';')
1833 complaint (&symfile_complaints,
1834 _("invalid (minimal) member type data format at symtab pos %d."),
1835 symnum);
1836 type = allocate_stub_method (return_type);
1837 if (typenums[0] != -1)
1838 *dbx_lookup_type (typenums) = type;
1839 }
1840 else
1841 {
1842 struct type *domain = read_type (pp, objfile);
1843 struct type *return_type;
1844 struct field *args;
1845 int nargs, varargs;
1846
1847 if (**pp != ',')
1848 /* Invalid member type data format. */
1849 return error_type (pp, objfile);
1850 else
1851 ++(*pp);
1852
1853 return_type = read_type (pp, objfile);
1854 args = read_args (pp, ';', objfile, &nargs, &varargs);
1855 if (args == NULL)
1856 return error_type (pp, objfile);
1857 type = dbx_alloc_type (typenums, objfile);
1858 smash_to_method_type (type, domain, return_type, args,
1859 nargs, varargs);
1860 }
1861 break;
1862
1863 case 'r': /* Range type */
1864 type = read_range_type (pp, typenums, type_size, objfile);
1865 if (typenums[0] != -1)
1866 *dbx_lookup_type (typenums) = type;
1867 break;
1868
1869 case 'b':
1870 {
1871 /* Sun ACC builtin int type */
1872 type = read_sun_builtin_type (pp, typenums, objfile);
1873 if (typenums[0] != -1)
1874 *dbx_lookup_type (typenums) = type;
1875 }
1876 break;
1877
1878 case 'R': /* Sun ACC builtin float type */
1879 type = read_sun_floating_type (pp, typenums, objfile);
1880 if (typenums[0] != -1)
1881 *dbx_lookup_type (typenums) = type;
1882 break;
1883
1884 case 'e': /* Enumeration type */
1885 type = dbx_alloc_type (typenums, objfile);
1886 type = read_enum_type (pp, type, objfile);
1887 if (typenums[0] != -1)
1888 *dbx_lookup_type (typenums) = type;
1889 break;
1890
1891 case 's': /* Struct type */
1892 case 'u': /* Union type */
1893 {
1894 enum type_code type_code = TYPE_CODE_UNDEF;
1895 type = dbx_alloc_type (typenums, objfile);
1896 switch (type_descriptor)
1897 {
1898 case 's':
1899 type_code = TYPE_CODE_STRUCT;
1900 break;
1901 case 'u':
1902 type_code = TYPE_CODE_UNION;
1903 break;
1904 }
1905 type = read_struct_type (pp, type, type_code, objfile);
1906 break;
1907 }
1908
1909 case 'a': /* Array type */
1910 if (**pp != 'r')
1911 return error_type (pp, objfile);
1912 ++*pp;
1913
1914 type = dbx_alloc_type (typenums, objfile);
1915 type = read_array_type (pp, type, objfile);
1916 if (is_string)
1917 TYPE_CODE (type) = TYPE_CODE_STRING;
1918 if (is_vector)
1919 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1920 break;
1921
1922 case 'S': /* Set or bitstring type */
1923 type1 = read_type (pp, objfile);
1924 type = create_set_type ((struct type *) NULL, type1);
1925 if (is_string)
1926 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1927 if (typenums[0] != -1)
1928 *dbx_lookup_type (typenums) = type;
1929 break;
1930
1931 default:
1932 --*pp; /* Go back to the symbol in error */
1933 /* Particularly important if it was \0! */
1934 return error_type (pp, objfile);
1935 }
1936
1937 if (type == 0)
1938 {
1939 warning (_("GDB internal error, type is NULL in stabsread.c."));
1940 return error_type (pp, objfile);
1941 }
1942
1943 /* Size specified in a type attribute overrides any other size. */
1944 if (type_size != -1)
1945 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1946
1947 return type;
1948 }
1949 \f
1950 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1951 Return the proper type node for a given builtin type number. */
1952
1953 static struct type *
1954 rs6000_builtin_type (int typenum)
1955 {
1956 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1957 #define NUMBER_RECOGNIZED 34
1958 /* This includes an empty slot for type number -0. */
1959 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1960 struct type *rettype = NULL;
1961
1962 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1963 {
1964 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1965 return builtin_type_error;
1966 }
1967 if (negative_types[-typenum] != NULL)
1968 return negative_types[-typenum];
1969
1970 #if TARGET_CHAR_BIT != 8
1971 #error This code wrong for TARGET_CHAR_BIT not 8
1972 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1973 that if that ever becomes not true, the correct fix will be to
1974 make the size in the struct type to be in bits, not in units of
1975 TARGET_CHAR_BIT. */
1976 #endif
1977
1978 switch (-typenum)
1979 {
1980 case 1:
1981 /* The size of this and all the other types are fixed, defined
1982 by the debugging format. If there is a type called "int" which
1983 is other than 32 bits, then it should use a new negative type
1984 number (or avoid negative type numbers for that case).
1985 See stabs.texinfo. */
1986 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1987 break;
1988 case 2:
1989 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1990 break;
1991 case 3:
1992 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1993 break;
1994 case 4:
1995 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1996 break;
1997 case 5:
1998 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1999 "unsigned char", NULL);
2000 break;
2001 case 6:
2002 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2003 break;
2004 case 7:
2005 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2006 "unsigned short", NULL);
2007 break;
2008 case 8:
2009 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2010 "unsigned int", NULL);
2011 break;
2012 case 9:
2013 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2014 "unsigned", NULL);
2015 case 10:
2016 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2017 "unsigned long", NULL);
2018 break;
2019 case 11:
2020 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2021 break;
2022 case 12:
2023 /* IEEE single precision (32 bit). */
2024 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2025 break;
2026 case 13:
2027 /* IEEE double precision (64 bit). */
2028 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2029 break;
2030 case 14:
2031 /* This is an IEEE double on the RS/6000, and different machines with
2032 different sizes for "long double" should use different negative
2033 type numbers. See stabs.texinfo. */
2034 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2035 break;
2036 case 15:
2037 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2038 break;
2039 case 16:
2040 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2041 "boolean", NULL);
2042 break;
2043 case 17:
2044 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2045 break;
2046 case 18:
2047 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2048 break;
2049 case 19:
2050 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2051 break;
2052 case 20:
2053 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2054 "character", NULL);
2055 break;
2056 case 21:
2057 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2058 "logical*1", NULL);
2059 break;
2060 case 22:
2061 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2062 "logical*2", NULL);
2063 break;
2064 case 23:
2065 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2066 "logical*4", NULL);
2067 break;
2068 case 24:
2069 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2070 "logical", NULL);
2071 break;
2072 case 25:
2073 /* Complex type consisting of two IEEE single precision values. */
2074 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2075 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2076 NULL);
2077 break;
2078 case 26:
2079 /* Complex type consisting of two IEEE double precision values. */
2080 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2081 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2082 NULL);
2083 break;
2084 case 27:
2085 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2086 break;
2087 case 28:
2088 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2089 break;
2090 case 29:
2091 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2092 break;
2093 case 30:
2094 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2095 break;
2096 case 31:
2097 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2098 break;
2099 case 32:
2100 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2101 "unsigned long long", NULL);
2102 break;
2103 case 33:
2104 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2105 "logical*8", NULL);
2106 break;
2107 case 34:
2108 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2109 break;
2110 }
2111 negative_types[-typenum] = rettype;
2112 return rettype;
2113 }
2114 \f
2115 /* This page contains subroutines of read_type. */
2116
2117 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2118
2119 static void
2120 update_method_name_from_physname (char **old_name, char *physname)
2121 {
2122 char *method_name;
2123
2124 method_name = method_name_from_physname (physname);
2125
2126 if (method_name == NULL)
2127 {
2128 complaint (&symfile_complaints,
2129 _("Method has bad physname %s\n"), physname);
2130 return;
2131 }
2132
2133 if (strcmp (*old_name, method_name) != 0)
2134 {
2135 xfree (*old_name);
2136 *old_name = method_name;
2137 }
2138 else
2139 xfree (method_name);
2140 }
2141
2142 /* Read member function stabs info for C++ classes. The form of each member
2143 function data is:
2144
2145 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2146
2147 An example with two member functions is:
2148
2149 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2150
2151 For the case of overloaded operators, the format is op$::*.funcs, where
2152 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2153 name (such as `+=') and `.' marks the end of the operator name.
2154
2155 Returns 1 for success, 0 for failure. */
2156
2157 static int
2158 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2159 struct objfile *objfile)
2160 {
2161 int nfn_fields = 0;
2162 int length = 0;
2163 /* Total number of member functions defined in this class. If the class
2164 defines two `f' functions, and one `g' function, then this will have
2165 the value 3. */
2166 int total_length = 0;
2167 int i;
2168 struct next_fnfield
2169 {
2170 struct next_fnfield *next;
2171 struct fn_field fn_field;
2172 }
2173 *sublist;
2174 struct type *look_ahead_type;
2175 struct next_fnfieldlist *new_fnlist;
2176 struct next_fnfield *new_sublist;
2177 char *main_fn_name;
2178 char *p;
2179
2180 /* Process each list until we find something that is not a member function
2181 or find the end of the functions. */
2182
2183 while (**pp != ';')
2184 {
2185 /* We should be positioned at the start of the function name.
2186 Scan forward to find the first ':' and if it is not the
2187 first of a "::" delimiter, then this is not a member function. */
2188 p = *pp;
2189 while (*p != ':')
2190 {
2191 p++;
2192 }
2193 if (p[1] != ':')
2194 {
2195 break;
2196 }
2197
2198 sublist = NULL;
2199 look_ahead_type = NULL;
2200 length = 0;
2201
2202 new_fnlist = (struct next_fnfieldlist *)
2203 xmalloc (sizeof (struct next_fnfieldlist));
2204 make_cleanup (xfree, new_fnlist);
2205 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2206
2207 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2208 {
2209 /* This is a completely wierd case. In order to stuff in the
2210 names that might contain colons (the usual name delimiter),
2211 Mike Tiemann defined a different name format which is
2212 signalled if the identifier is "op$". In that case, the
2213 format is "op$::XXXX." where XXXX is the name. This is
2214 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2215 /* This lets the user type "break operator+".
2216 We could just put in "+" as the name, but that wouldn't
2217 work for "*". */
2218 static char opname[32] = "op$";
2219 char *o = opname + 3;
2220
2221 /* Skip past '::'. */
2222 *pp = p + 2;
2223
2224 STABS_CONTINUE (pp, objfile);
2225 p = *pp;
2226 while (*p != '.')
2227 {
2228 *o++ = *p++;
2229 }
2230 main_fn_name = savestring (opname, o - opname);
2231 /* Skip past '.' */
2232 *pp = p + 1;
2233 }
2234 else
2235 {
2236 main_fn_name = savestring (*pp, p - *pp);
2237 /* Skip past '::'. */
2238 *pp = p + 2;
2239 }
2240 new_fnlist->fn_fieldlist.name = main_fn_name;
2241
2242 do
2243 {
2244 new_sublist =
2245 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2246 make_cleanup (xfree, new_sublist);
2247 memset (new_sublist, 0, sizeof (struct next_fnfield));
2248
2249 /* Check for and handle cretinous dbx symbol name continuation! */
2250 if (look_ahead_type == NULL)
2251 {
2252 /* Normal case. */
2253 STABS_CONTINUE (pp, objfile);
2254
2255 new_sublist->fn_field.type = read_type (pp, objfile);
2256 if (**pp != ':')
2257 {
2258 /* Invalid symtab info for member function. */
2259 return 0;
2260 }
2261 }
2262 else
2263 {
2264 /* g++ version 1 kludge */
2265 new_sublist->fn_field.type = look_ahead_type;
2266 look_ahead_type = NULL;
2267 }
2268
2269 (*pp)++;
2270 p = *pp;
2271 while (*p != ';')
2272 {
2273 p++;
2274 }
2275
2276 /* If this is just a stub, then we don't have the real name here. */
2277
2278 if (TYPE_STUB (new_sublist->fn_field.type))
2279 {
2280 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2281 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2282 new_sublist->fn_field.is_stub = 1;
2283 }
2284 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2285 *pp = p + 1;
2286
2287 /* Set this member function's visibility fields. */
2288 switch (*(*pp)++)
2289 {
2290 case VISIBILITY_PRIVATE:
2291 new_sublist->fn_field.is_private = 1;
2292 break;
2293 case VISIBILITY_PROTECTED:
2294 new_sublist->fn_field.is_protected = 1;
2295 break;
2296 }
2297
2298 STABS_CONTINUE (pp, objfile);
2299 switch (**pp)
2300 {
2301 case 'A': /* Normal functions. */
2302 new_sublist->fn_field.is_const = 0;
2303 new_sublist->fn_field.is_volatile = 0;
2304 (*pp)++;
2305 break;
2306 case 'B': /* `const' member functions. */
2307 new_sublist->fn_field.is_const = 1;
2308 new_sublist->fn_field.is_volatile = 0;
2309 (*pp)++;
2310 break;
2311 case 'C': /* `volatile' member function. */
2312 new_sublist->fn_field.is_const = 0;
2313 new_sublist->fn_field.is_volatile = 1;
2314 (*pp)++;
2315 break;
2316 case 'D': /* `const volatile' member function. */
2317 new_sublist->fn_field.is_const = 1;
2318 new_sublist->fn_field.is_volatile = 1;
2319 (*pp)++;
2320 break;
2321 case '*': /* File compiled with g++ version 1 -- no info */
2322 case '?':
2323 case '.':
2324 break;
2325 default:
2326 complaint (&symfile_complaints,
2327 _("const/volatile indicator missing, got '%c'"), **pp);
2328 break;
2329 }
2330
2331 switch (*(*pp)++)
2332 {
2333 case '*':
2334 {
2335 int nbits;
2336 /* virtual member function, followed by index.
2337 The sign bit is set to distinguish pointers-to-methods
2338 from virtual function indicies. Since the array is
2339 in words, the quantity must be shifted left by 1
2340 on 16 bit machine, and by 2 on 32 bit machine, forcing
2341 the sign bit out, and usable as a valid index into
2342 the array. Remove the sign bit here. */
2343 new_sublist->fn_field.voffset =
2344 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2345 if (nbits != 0)
2346 return 0;
2347
2348 STABS_CONTINUE (pp, objfile);
2349 if (**pp == ';' || **pp == '\0')
2350 {
2351 /* Must be g++ version 1. */
2352 new_sublist->fn_field.fcontext = 0;
2353 }
2354 else
2355 {
2356 /* Figure out from whence this virtual function came.
2357 It may belong to virtual function table of
2358 one of its baseclasses. */
2359 look_ahead_type = read_type (pp, objfile);
2360 if (**pp == ':')
2361 {
2362 /* g++ version 1 overloaded methods. */
2363 }
2364 else
2365 {
2366 new_sublist->fn_field.fcontext = look_ahead_type;
2367 if (**pp != ';')
2368 {
2369 return 0;
2370 }
2371 else
2372 {
2373 ++*pp;
2374 }
2375 look_ahead_type = NULL;
2376 }
2377 }
2378 break;
2379 }
2380 case '?':
2381 /* static member function. */
2382 {
2383 int slen = strlen (main_fn_name);
2384
2385 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2386
2387 /* For static member functions, we can't tell if they
2388 are stubbed, as they are put out as functions, and not as
2389 methods.
2390 GCC v2 emits the fully mangled name if
2391 dbxout.c:flag_minimal_debug is not set, so we have to
2392 detect a fully mangled physname here and set is_stub
2393 accordingly. Fully mangled physnames in v2 start with
2394 the member function name, followed by two underscores.
2395 GCC v3 currently always emits stubbed member functions,
2396 but with fully mangled physnames, which start with _Z. */
2397 if (!(strncmp (new_sublist->fn_field.physname,
2398 main_fn_name, slen) == 0
2399 && new_sublist->fn_field.physname[slen] == '_'
2400 && new_sublist->fn_field.physname[slen + 1] == '_'))
2401 {
2402 new_sublist->fn_field.is_stub = 1;
2403 }
2404 break;
2405 }
2406
2407 default:
2408 /* error */
2409 complaint (&symfile_complaints,
2410 _("member function type missing, got '%c'"), (*pp)[-1]);
2411 /* Fall through into normal member function. */
2412
2413 case '.':
2414 /* normal member function. */
2415 new_sublist->fn_field.voffset = 0;
2416 new_sublist->fn_field.fcontext = 0;
2417 break;
2418 }
2419
2420 new_sublist->next = sublist;
2421 sublist = new_sublist;
2422 length++;
2423 STABS_CONTINUE (pp, objfile);
2424 }
2425 while (**pp != ';' && **pp != '\0');
2426
2427 (*pp)++;
2428 STABS_CONTINUE (pp, objfile);
2429
2430 /* Skip GCC 3.X member functions which are duplicates of the callable
2431 constructor/destructor. */
2432 if (strcmp (main_fn_name, "__base_ctor") == 0
2433 || strcmp (main_fn_name, "__base_dtor") == 0
2434 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2435 {
2436 xfree (main_fn_name);
2437 }
2438 else
2439 {
2440 int has_stub = 0;
2441 int has_destructor = 0, has_other = 0;
2442 int is_v3 = 0;
2443 struct next_fnfield *tmp_sublist;
2444
2445 /* Various versions of GCC emit various mostly-useless
2446 strings in the name field for special member functions.
2447
2448 For stub methods, we need to defer correcting the name
2449 until we are ready to unstub the method, because the current
2450 name string is used by gdb_mangle_name. The only stub methods
2451 of concern here are GNU v2 operators; other methods have their
2452 names correct (see caveat below).
2453
2454 For non-stub methods, in GNU v3, we have a complete physname.
2455 Therefore we can safely correct the name now. This primarily
2456 affects constructors and destructors, whose name will be
2457 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2458 operators will also have incorrect names; for instance,
2459 "operator int" will be named "operator i" (i.e. the type is
2460 mangled).
2461
2462 For non-stub methods in GNU v2, we have no easy way to
2463 know if we have a complete physname or not. For most
2464 methods the result depends on the platform (if CPLUS_MARKER
2465 can be `$' or `.', it will use minimal debug information, or
2466 otherwise the full physname will be included).
2467
2468 Rather than dealing with this, we take a different approach.
2469 For v3 mangled names, we can use the full physname; for v2,
2470 we use cplus_demangle_opname (which is actually v2 specific),
2471 because the only interesting names are all operators - once again
2472 barring the caveat below. Skip this process if any method in the
2473 group is a stub, to prevent our fouling up the workings of
2474 gdb_mangle_name.
2475
2476 The caveat: GCC 2.95.x (and earlier?) put constructors and
2477 destructors in the same method group. We need to split this
2478 into two groups, because they should have different names.
2479 So for each method group we check whether it contains both
2480 routines whose physname appears to be a destructor (the physnames
2481 for and destructors are always provided, due to quirks in v2
2482 mangling) and routines whose physname does not appear to be a
2483 destructor. If so then we break up the list into two halves.
2484 Even if the constructors and destructors aren't in the same group
2485 the destructor will still lack the leading tilde, so that also
2486 needs to be fixed.
2487
2488 So, to summarize what we expect and handle here:
2489
2490 Given Given Real Real Action
2491 method name physname physname method name
2492
2493 __opi [none] __opi__3Foo operator int opname
2494 [now or later]
2495 Foo _._3Foo _._3Foo ~Foo separate and
2496 rename
2497 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2498 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2499 */
2500
2501 tmp_sublist = sublist;
2502 while (tmp_sublist != NULL)
2503 {
2504 if (tmp_sublist->fn_field.is_stub)
2505 has_stub = 1;
2506 if (tmp_sublist->fn_field.physname[0] == '_'
2507 && tmp_sublist->fn_field.physname[1] == 'Z')
2508 is_v3 = 1;
2509
2510 if (is_destructor_name (tmp_sublist->fn_field.physname))
2511 has_destructor++;
2512 else
2513 has_other++;
2514
2515 tmp_sublist = tmp_sublist->next;
2516 }
2517
2518 if (has_destructor && has_other)
2519 {
2520 struct next_fnfieldlist *destr_fnlist;
2521 struct next_fnfield *last_sublist;
2522
2523 /* Create a new fn_fieldlist for the destructors. */
2524
2525 destr_fnlist = (struct next_fnfieldlist *)
2526 xmalloc (sizeof (struct next_fnfieldlist));
2527 make_cleanup (xfree, destr_fnlist);
2528 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2529 destr_fnlist->fn_fieldlist.name
2530 = obconcat (&objfile->objfile_obstack, "", "~",
2531 new_fnlist->fn_fieldlist.name);
2532
2533 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2534 obstack_alloc (&objfile->objfile_obstack,
2535 sizeof (struct fn_field) * has_destructor);
2536 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2537 sizeof (struct fn_field) * has_destructor);
2538 tmp_sublist = sublist;
2539 last_sublist = NULL;
2540 i = 0;
2541 while (tmp_sublist != NULL)
2542 {
2543 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2544 {
2545 tmp_sublist = tmp_sublist->next;
2546 continue;
2547 }
2548
2549 destr_fnlist->fn_fieldlist.fn_fields[i++]
2550 = tmp_sublist->fn_field;
2551 if (last_sublist)
2552 last_sublist->next = tmp_sublist->next;
2553 else
2554 sublist = tmp_sublist->next;
2555 last_sublist = tmp_sublist;
2556 tmp_sublist = tmp_sublist->next;
2557 }
2558
2559 destr_fnlist->fn_fieldlist.length = has_destructor;
2560 destr_fnlist->next = fip->fnlist;
2561 fip->fnlist = destr_fnlist;
2562 nfn_fields++;
2563 total_length += has_destructor;
2564 length -= has_destructor;
2565 }
2566 else if (is_v3)
2567 {
2568 /* v3 mangling prevents the use of abbreviated physnames,
2569 so we can do this here. There are stubbed methods in v3
2570 only:
2571 - in -gstabs instead of -gstabs+
2572 - or for static methods, which are output as a function type
2573 instead of a method type. */
2574
2575 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2576 sublist->fn_field.physname);
2577 }
2578 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2579 {
2580 new_fnlist->fn_fieldlist.name =
2581 concat ("~", main_fn_name, (char *)NULL);
2582 xfree (main_fn_name);
2583 }
2584 else if (!has_stub)
2585 {
2586 char dem_opname[256];
2587 int ret;
2588 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2589 dem_opname, DMGL_ANSI);
2590 if (!ret)
2591 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2592 dem_opname, 0);
2593 if (ret)
2594 new_fnlist->fn_fieldlist.name
2595 = obsavestring (dem_opname, strlen (dem_opname),
2596 &objfile->objfile_obstack);
2597 }
2598
2599 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2600 obstack_alloc (&objfile->objfile_obstack,
2601 sizeof (struct fn_field) * length);
2602 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2603 sizeof (struct fn_field) * length);
2604 for (i = length; (i--, sublist); sublist = sublist->next)
2605 {
2606 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2607 }
2608
2609 new_fnlist->fn_fieldlist.length = length;
2610 new_fnlist->next = fip->fnlist;
2611 fip->fnlist = new_fnlist;
2612 nfn_fields++;
2613 total_length += length;
2614 }
2615 }
2616
2617 if (nfn_fields)
2618 {
2619 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2620 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2621 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2622 memset (TYPE_FN_FIELDLISTS (type), 0,
2623 sizeof (struct fn_fieldlist) * nfn_fields);
2624 TYPE_NFN_FIELDS (type) = nfn_fields;
2625 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2626 }
2627
2628 return 1;
2629 }
2630
2631 /* Special GNU C++ name.
2632
2633 Returns 1 for success, 0 for failure. "failure" means that we can't
2634 keep parsing and it's time for error_type(). */
2635
2636 static int
2637 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2638 struct objfile *objfile)
2639 {
2640 char *p;
2641 char *name;
2642 char cpp_abbrev;
2643 struct type *context;
2644
2645 p = *pp;
2646 if (*++p == 'v')
2647 {
2648 name = NULL;
2649 cpp_abbrev = *++p;
2650
2651 *pp = p + 1;
2652
2653 /* At this point, *pp points to something like "22:23=*22...",
2654 where the type number before the ':' is the "context" and
2655 everything after is a regular type definition. Lookup the
2656 type, find it's name, and construct the field name. */
2657
2658 context = read_type (pp, objfile);
2659
2660 switch (cpp_abbrev)
2661 {
2662 case 'f': /* $vf -- a virtual function table pointer */
2663 name = type_name_no_tag (context);
2664 if (name == NULL)
2665 {
2666 name = "";
2667 }
2668 fip->list->field.name =
2669 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2670 break;
2671
2672 case 'b': /* $vb -- a virtual bsomethingorother */
2673 name = type_name_no_tag (context);
2674 if (name == NULL)
2675 {
2676 complaint (&symfile_complaints,
2677 _("C++ abbreviated type name unknown at symtab pos %d"),
2678 symnum);
2679 name = "FOO";
2680 }
2681 fip->list->field.name =
2682 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2683 break;
2684
2685 default:
2686 invalid_cpp_abbrev_complaint (*pp);
2687 fip->list->field.name =
2688 obconcat (&objfile->objfile_obstack,
2689 "INVALID_CPLUSPLUS_ABBREV", "", "");
2690 break;
2691 }
2692
2693 /* At this point, *pp points to the ':'. Skip it and read the
2694 field type. */
2695
2696 p = ++(*pp);
2697 if (p[-1] != ':')
2698 {
2699 invalid_cpp_abbrev_complaint (*pp);
2700 return 0;
2701 }
2702 fip->list->field.type = read_type (pp, objfile);
2703 if (**pp == ',')
2704 (*pp)++; /* Skip the comma. */
2705 else
2706 return 0;
2707
2708 {
2709 int nbits;
2710 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2711 0);
2712 if (nbits != 0)
2713 return 0;
2714 }
2715 /* This field is unpacked. */
2716 FIELD_BITSIZE (fip->list->field) = 0;
2717 fip->list->visibility = VISIBILITY_PRIVATE;
2718 }
2719 else
2720 {
2721 invalid_cpp_abbrev_complaint (*pp);
2722 /* We have no idea what syntax an unrecognized abbrev would have, so
2723 better return 0. If we returned 1, we would need to at least advance
2724 *pp to avoid an infinite loop. */
2725 return 0;
2726 }
2727 return 1;
2728 }
2729
2730 static void
2731 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2732 struct type *type, struct objfile *objfile)
2733 {
2734 fip->list->field.name =
2735 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2736 *pp = p + 1;
2737
2738 /* This means we have a visibility for a field coming. */
2739 if (**pp == '/')
2740 {
2741 (*pp)++;
2742 fip->list->visibility = *(*pp)++;
2743 }
2744 else
2745 {
2746 /* normal dbx-style format, no explicit visibility */
2747 fip->list->visibility = VISIBILITY_PUBLIC;
2748 }
2749
2750 fip->list->field.type = read_type (pp, objfile);
2751 if (**pp == ':')
2752 {
2753 p = ++(*pp);
2754 #if 0
2755 /* Possible future hook for nested types. */
2756 if (**pp == '!')
2757 {
2758 fip->list->field.bitpos = (long) -2; /* nested type */
2759 p = ++(*pp);
2760 }
2761 else
2762 ...;
2763 #endif
2764 while (*p != ';')
2765 {
2766 p++;
2767 }
2768 /* Static class member. */
2769 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2770 *pp = p + 1;
2771 return;
2772 }
2773 else if (**pp != ',')
2774 {
2775 /* Bad structure-type format. */
2776 stabs_general_complaint ("bad structure-type format");
2777 return;
2778 }
2779
2780 (*pp)++; /* Skip the comma. */
2781
2782 {
2783 int nbits;
2784 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2785 if (nbits != 0)
2786 {
2787 stabs_general_complaint ("bad structure-type format");
2788 return;
2789 }
2790 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2791 if (nbits != 0)
2792 {
2793 stabs_general_complaint ("bad structure-type format");
2794 return;
2795 }
2796 }
2797
2798 if (FIELD_BITPOS (fip->list->field) == 0
2799 && FIELD_BITSIZE (fip->list->field) == 0)
2800 {
2801 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2802 it is a field which has been optimized out. The correct stab for
2803 this case is to use VISIBILITY_IGNORE, but that is a recent
2804 invention. (2) It is a 0-size array. For example
2805 union { int num; char str[0]; } foo. Printing _("<no value>" for
2806 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2807 will continue to work, and a 0-size array as a whole doesn't
2808 have any contents to print.
2809
2810 I suspect this probably could also happen with gcc -gstabs (not
2811 -gstabs+) for static fields, and perhaps other C++ extensions.
2812 Hopefully few people use -gstabs with gdb, since it is intended
2813 for dbx compatibility. */
2814
2815 /* Ignore this field. */
2816 fip->list->visibility = VISIBILITY_IGNORE;
2817 }
2818 else
2819 {
2820 /* Detect an unpacked field and mark it as such.
2821 dbx gives a bit size for all fields.
2822 Note that forward refs cannot be packed,
2823 and treat enums as if they had the width of ints. */
2824
2825 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2826
2827 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2828 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2829 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2830 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2831 {
2832 FIELD_BITSIZE (fip->list->field) = 0;
2833 }
2834 if ((FIELD_BITSIZE (fip->list->field)
2835 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2836 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2837 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2838 )
2839 &&
2840 FIELD_BITPOS (fip->list->field) % 8 == 0)
2841 {
2842 FIELD_BITSIZE (fip->list->field) = 0;
2843 }
2844 }
2845 }
2846
2847
2848 /* Read struct or class data fields. They have the form:
2849
2850 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2851
2852 At the end, we see a semicolon instead of a field.
2853
2854 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2855 a static field.
2856
2857 The optional VISIBILITY is one of:
2858
2859 '/0' (VISIBILITY_PRIVATE)
2860 '/1' (VISIBILITY_PROTECTED)
2861 '/2' (VISIBILITY_PUBLIC)
2862 '/9' (VISIBILITY_IGNORE)
2863
2864 or nothing, for C style fields with public visibility.
2865
2866 Returns 1 for success, 0 for failure. */
2867
2868 static int
2869 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2870 struct objfile *objfile)
2871 {
2872 char *p;
2873 struct nextfield *new;
2874
2875 /* We better set p right now, in case there are no fields at all... */
2876
2877 p = *pp;
2878
2879 /* Read each data member type until we find the terminating ';' at the end of
2880 the data member list, or break for some other reason such as finding the
2881 start of the member function list. */
2882 /* Stab string for structure/union does not end with two ';' in
2883 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2884
2885 while (**pp != ';' && **pp != '\0')
2886 {
2887 STABS_CONTINUE (pp, objfile);
2888 /* Get space to record the next field's data. */
2889 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2890 make_cleanup (xfree, new);
2891 memset (new, 0, sizeof (struct nextfield));
2892 new->next = fip->list;
2893 fip->list = new;
2894
2895 /* Get the field name. */
2896 p = *pp;
2897
2898 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2899 unless the CPLUS_MARKER is followed by an underscore, in
2900 which case it is just the name of an anonymous type, which we
2901 should handle like any other type name. */
2902
2903 if (is_cplus_marker (p[0]) && p[1] != '_')
2904 {
2905 if (!read_cpp_abbrev (fip, pp, type, objfile))
2906 return 0;
2907 continue;
2908 }
2909
2910 /* Look for the ':' that separates the field name from the field
2911 values. Data members are delimited by a single ':', while member
2912 functions are delimited by a pair of ':'s. When we hit the member
2913 functions (if any), terminate scan loop and return. */
2914
2915 while (*p != ':' && *p != '\0')
2916 {
2917 p++;
2918 }
2919 if (*p == '\0')
2920 return 0;
2921
2922 /* Check to see if we have hit the member functions yet. */
2923 if (p[1] == ':')
2924 {
2925 break;
2926 }
2927 read_one_struct_field (fip, pp, p, type, objfile);
2928 }
2929 if (p[0] == ':' && p[1] == ':')
2930 {
2931 /* (the deleted) chill the list of fields: the last entry (at
2932 the head) is a partially constructed entry which we now
2933 scrub. */
2934 fip->list = fip->list->next;
2935 }
2936 return 1;
2937 }
2938 /* *INDENT-OFF* */
2939 /* The stabs for C++ derived classes contain baseclass information which
2940 is marked by a '!' character after the total size. This function is
2941 called when we encounter the baseclass marker, and slurps up all the
2942 baseclass information.
2943
2944 Immediately following the '!' marker is the number of base classes that
2945 the class is derived from, followed by information for each base class.
2946 For each base class, there are two visibility specifiers, a bit offset
2947 to the base class information within the derived class, a reference to
2948 the type for the base class, and a terminating semicolon.
2949
2950 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2951 ^^ ^ ^ ^ ^ ^ ^
2952 Baseclass information marker __________________|| | | | | | |
2953 Number of baseclasses __________________________| | | | | | |
2954 Visibility specifiers (2) ________________________| | | | | |
2955 Offset in bits from start of class _________________| | | | |
2956 Type number for base class ___________________________| | | |
2957 Visibility specifiers (2) _______________________________| | |
2958 Offset in bits from start of class ________________________| |
2959 Type number of base class ____________________________________|
2960
2961 Return 1 for success, 0 for (error-type-inducing) failure. */
2962 /* *INDENT-ON* */
2963
2964
2965
2966 static int
2967 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2968 struct objfile *objfile)
2969 {
2970 int i;
2971 struct nextfield *new;
2972
2973 if (**pp != '!')
2974 {
2975 return 1;
2976 }
2977 else
2978 {
2979 /* Skip the '!' baseclass information marker. */
2980 (*pp)++;
2981 }
2982
2983 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2984 {
2985 int nbits;
2986 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2987 if (nbits != 0)
2988 return 0;
2989 }
2990
2991 #if 0
2992 /* Some stupid compilers have trouble with the following, so break
2993 it up into simpler expressions. */
2994 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2995 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2996 #else
2997 {
2998 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2999 char *pointer;
3000
3001 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3002 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3003 }
3004 #endif /* 0 */
3005
3006 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3007
3008 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3009 {
3010 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3011 make_cleanup (xfree, new);
3012 memset (new, 0, sizeof (struct nextfield));
3013 new->next = fip->list;
3014 fip->list = new;
3015 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3016
3017 STABS_CONTINUE (pp, objfile);
3018 switch (**pp)
3019 {
3020 case '0':
3021 /* Nothing to do. */
3022 break;
3023 case '1':
3024 SET_TYPE_FIELD_VIRTUAL (type, i);
3025 break;
3026 default:
3027 /* Unknown character. Complain and treat it as non-virtual. */
3028 {
3029 complaint (&symfile_complaints,
3030 _("Unknown virtual character `%c' for baseclass"), **pp);
3031 }
3032 }
3033 ++(*pp);
3034
3035 new->visibility = *(*pp)++;
3036 switch (new->visibility)
3037 {
3038 case VISIBILITY_PRIVATE:
3039 case VISIBILITY_PROTECTED:
3040 case VISIBILITY_PUBLIC:
3041 break;
3042 default:
3043 /* Bad visibility format. Complain and treat it as
3044 public. */
3045 {
3046 complaint (&symfile_complaints,
3047 _("Unknown visibility `%c' for baseclass"),
3048 new->visibility);
3049 new->visibility = VISIBILITY_PUBLIC;
3050 }
3051 }
3052
3053 {
3054 int nbits;
3055
3056 /* The remaining value is the bit offset of the portion of the object
3057 corresponding to this baseclass. Always zero in the absence of
3058 multiple inheritance. */
3059
3060 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3061 if (nbits != 0)
3062 return 0;
3063 }
3064
3065 /* The last piece of baseclass information is the type of the
3066 base class. Read it, and remember it's type name as this
3067 field's name. */
3068
3069 new->field.type = read_type (pp, objfile);
3070 new->field.name = type_name_no_tag (new->field.type);
3071
3072 /* skip trailing ';' and bump count of number of fields seen */
3073 if (**pp == ';')
3074 (*pp)++;
3075 else
3076 return 0;
3077 }
3078 return 1;
3079 }
3080
3081 /* The tail end of stabs for C++ classes that contain a virtual function
3082 pointer contains a tilde, a %, and a type number.
3083 The type number refers to the base class (possibly this class itself) which
3084 contains the vtable pointer for the current class.
3085
3086 This function is called when we have parsed all the method declarations,
3087 so we can look for the vptr base class info. */
3088
3089 static int
3090 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3091 struct objfile *objfile)
3092 {
3093 char *p;
3094
3095 STABS_CONTINUE (pp, objfile);
3096
3097 /* If we are positioned at a ';', then skip it. */
3098 if (**pp == ';')
3099 {
3100 (*pp)++;
3101 }
3102
3103 if (**pp == '~')
3104 {
3105 (*pp)++;
3106
3107 if (**pp == '=' || **pp == '+' || **pp == '-')
3108 {
3109 /* Obsolete flags that used to indicate the presence
3110 of constructors and/or destructors. */
3111 (*pp)++;
3112 }
3113
3114 /* Read either a '%' or the final ';'. */
3115 if (*(*pp)++ == '%')
3116 {
3117 /* The next number is the type number of the base class
3118 (possibly our own class) which supplies the vtable for
3119 this class. Parse it out, and search that class to find
3120 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3121 and TYPE_VPTR_FIELDNO. */
3122
3123 struct type *t;
3124 int i;
3125
3126 t = read_type (pp, objfile);
3127 p = (*pp)++;
3128 while (*p != '\0' && *p != ';')
3129 {
3130 p++;
3131 }
3132 if (*p == '\0')
3133 {
3134 /* Premature end of symbol. */
3135 return 0;
3136 }
3137
3138 TYPE_VPTR_BASETYPE (type) = t;
3139 if (type == t) /* Our own class provides vtbl ptr */
3140 {
3141 for (i = TYPE_NFIELDS (t) - 1;
3142 i >= TYPE_N_BASECLASSES (t);
3143 --i)
3144 {
3145 char *name = TYPE_FIELD_NAME (t, i);
3146 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3147 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3148 {
3149 TYPE_VPTR_FIELDNO (type) = i;
3150 goto gotit;
3151 }
3152 }
3153 /* Virtual function table field not found. */
3154 complaint (&symfile_complaints,
3155 _("virtual function table pointer not found when defining class `%s'"),
3156 TYPE_NAME (type));
3157 return 0;
3158 }
3159 else
3160 {
3161 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3162 }
3163
3164 gotit:
3165 *pp = p + 1;
3166 }
3167 }
3168 return 1;
3169 }
3170
3171 static int
3172 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3173 {
3174 int n;
3175
3176 for (n = TYPE_NFN_FIELDS (type);
3177 fip->fnlist != NULL;
3178 fip->fnlist = fip->fnlist->next)
3179 {
3180 --n; /* Circumvent Sun3 compiler bug */
3181 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3182 }
3183 return 1;
3184 }
3185
3186 /* Create the vector of fields, and record how big it is.
3187 We need this info to record proper virtual function table information
3188 for this class's virtual functions. */
3189
3190 static int
3191 attach_fields_to_type (struct field_info *fip, struct type *type,
3192 struct objfile *objfile)
3193 {
3194 int nfields = 0;
3195 int non_public_fields = 0;
3196 struct nextfield *scan;
3197
3198 /* Count up the number of fields that we have, as well as taking note of
3199 whether or not there are any non-public fields, which requires us to
3200 allocate and build the private_field_bits and protected_field_bits
3201 bitfields. */
3202
3203 for (scan = fip->list; scan != NULL; scan = scan->next)
3204 {
3205 nfields++;
3206 if (scan->visibility != VISIBILITY_PUBLIC)
3207 {
3208 non_public_fields++;
3209 }
3210 }
3211
3212 /* Now we know how many fields there are, and whether or not there are any
3213 non-public fields. Record the field count, allocate space for the
3214 array of fields, and create blank visibility bitfields if necessary. */
3215
3216 TYPE_NFIELDS (type) = nfields;
3217 TYPE_FIELDS (type) = (struct field *)
3218 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3219 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3220
3221 if (non_public_fields)
3222 {
3223 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3224
3225 TYPE_FIELD_PRIVATE_BITS (type) =
3226 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3227 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3228
3229 TYPE_FIELD_PROTECTED_BITS (type) =
3230 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3231 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3232
3233 TYPE_FIELD_IGNORE_BITS (type) =
3234 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3235 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3236 }
3237
3238 /* Copy the saved-up fields into the field vector. Start from the head
3239 of the list, adding to the tail of the field array, so that they end
3240 up in the same order in the array in which they were added to the list. */
3241
3242 while (nfields-- > 0)
3243 {
3244 TYPE_FIELD (type, nfields) = fip->list->field;
3245 switch (fip->list->visibility)
3246 {
3247 case VISIBILITY_PRIVATE:
3248 SET_TYPE_FIELD_PRIVATE (type, nfields);
3249 break;
3250
3251 case VISIBILITY_PROTECTED:
3252 SET_TYPE_FIELD_PROTECTED (type, nfields);
3253 break;
3254
3255 case VISIBILITY_IGNORE:
3256 SET_TYPE_FIELD_IGNORE (type, nfields);
3257 break;
3258
3259 case VISIBILITY_PUBLIC:
3260 break;
3261
3262 default:
3263 /* Unknown visibility. Complain and treat it as public. */
3264 {
3265 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3266 fip->list->visibility);
3267 }
3268 break;
3269 }
3270 fip->list = fip->list->next;
3271 }
3272 return 1;
3273 }
3274
3275
3276 /* Complain that the compiler has emitted more than one definition for the
3277 structure type TYPE. */
3278 static void
3279 complain_about_struct_wipeout (struct type *type)
3280 {
3281 char *name = "";
3282 char *kind = "";
3283
3284 if (TYPE_TAG_NAME (type))
3285 {
3286 name = TYPE_TAG_NAME (type);
3287 switch (TYPE_CODE (type))
3288 {
3289 case TYPE_CODE_STRUCT: kind = "struct "; break;
3290 case TYPE_CODE_UNION: kind = "union "; break;
3291 case TYPE_CODE_ENUM: kind = "enum "; break;
3292 default: kind = "";
3293 }
3294 }
3295 else if (TYPE_NAME (type))
3296 {
3297 name = TYPE_NAME (type);
3298 kind = "";
3299 }
3300 else
3301 {
3302 name = "<unknown>";
3303 kind = "";
3304 }
3305
3306 complaint (&symfile_complaints,
3307 _("struct/union type gets multiply defined: %s%s"), kind, name);
3308 }
3309
3310
3311 /* Read the description of a structure (or union type) and return an object
3312 describing the type.
3313
3314 PP points to a character pointer that points to the next unconsumed token
3315 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3316 *PP will point to "4a:1,0,32;;".
3317
3318 TYPE points to an incomplete type that needs to be filled in.
3319
3320 OBJFILE points to the current objfile from which the stabs information is
3321 being read. (Note that it is redundant in that TYPE also contains a pointer
3322 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3323 */
3324
3325 static struct type *
3326 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3327 struct objfile *objfile)
3328 {
3329 struct cleanup *back_to;
3330 struct field_info fi;
3331
3332 fi.list = NULL;
3333 fi.fnlist = NULL;
3334
3335 /* When describing struct/union/class types in stabs, G++ always drops
3336 all qualifications from the name. So if you've got:
3337 struct A { ... struct B { ... }; ... };
3338 then G++ will emit stabs for `struct A::B' that call it simply
3339 `struct B'. Obviously, if you've got a real top-level definition for
3340 `struct B', or other nested definitions, this is going to cause
3341 problems.
3342
3343 Obviously, GDB can't fix this by itself, but it can at least avoid
3344 scribbling on existing structure type objects when new definitions
3345 appear. */
3346 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3347 || TYPE_STUB (type)))
3348 {
3349 complain_about_struct_wipeout (type);
3350
3351 /* It's probably best to return the type unchanged. */
3352 return type;
3353 }
3354
3355 back_to = make_cleanup (null_cleanup, 0);
3356
3357 INIT_CPLUS_SPECIFIC (type);
3358 TYPE_CODE (type) = type_code;
3359 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3360
3361 /* First comes the total size in bytes. */
3362
3363 {
3364 int nbits;
3365 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3366 if (nbits != 0)
3367 return error_type (pp, objfile);
3368 }
3369
3370 /* Now read the baseclasses, if any, read the regular C struct or C++
3371 class member fields, attach the fields to the type, read the C++
3372 member functions, attach them to the type, and then read any tilde
3373 field (baseclass specifier for the class holding the main vtable). */
3374
3375 if (!read_baseclasses (&fi, pp, type, objfile)
3376 || !read_struct_fields (&fi, pp, type, objfile)
3377 || !attach_fields_to_type (&fi, type, objfile)
3378 || !read_member_functions (&fi, pp, type, objfile)
3379 || !attach_fn_fields_to_type (&fi, type)
3380 || !read_tilde_fields (&fi, pp, type, objfile))
3381 {
3382 type = error_type (pp, objfile);
3383 }
3384
3385 do_cleanups (back_to);
3386 return (type);
3387 }
3388
3389 /* Read a definition of an array type,
3390 and create and return a suitable type object.
3391 Also creates a range type which represents the bounds of that
3392 array. */
3393
3394 static struct type *
3395 read_array_type (char **pp, struct type *type,
3396 struct objfile *objfile)
3397 {
3398 struct type *index_type, *element_type, *range_type;
3399 int lower, upper;
3400 int adjustable = 0;
3401 int nbits;
3402
3403 /* Format of an array type:
3404 "ar<index type>;lower;upper;<array_contents_type>".
3405 OS9000: "arlower,upper;<array_contents_type>".
3406
3407 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3408 for these, produce a type like float[][]. */
3409
3410 {
3411 index_type = read_type (pp, objfile);
3412 if (**pp != ';')
3413 /* Improper format of array type decl. */
3414 return error_type (pp, objfile);
3415 ++*pp;
3416 }
3417
3418 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3419 {
3420 (*pp)++;
3421 adjustable = 1;
3422 }
3423 lower = read_huge_number (pp, ';', &nbits, 0);
3424
3425 if (nbits != 0)
3426 return error_type (pp, objfile);
3427
3428 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3429 {
3430 (*pp)++;
3431 adjustable = 1;
3432 }
3433 upper = read_huge_number (pp, ';', &nbits, 0);
3434 if (nbits != 0)
3435 return error_type (pp, objfile);
3436
3437 element_type = read_type (pp, objfile);
3438
3439 if (adjustable)
3440 {
3441 lower = 0;
3442 upper = -1;
3443 }
3444
3445 range_type =
3446 create_range_type ((struct type *) NULL, index_type, lower, upper);
3447 type = create_array_type (type, element_type, range_type);
3448
3449 return type;
3450 }
3451
3452
3453 /* Read a definition of an enumeration type,
3454 and create and return a suitable type object.
3455 Also defines the symbols that represent the values of the type. */
3456
3457 static struct type *
3458 read_enum_type (char **pp, struct type *type,
3459 struct objfile *objfile)
3460 {
3461 char *p;
3462 char *name;
3463 long n;
3464 struct symbol *sym;
3465 int nsyms = 0;
3466 struct pending **symlist;
3467 struct pending *osyms, *syms;
3468 int o_nsyms;
3469 int nbits;
3470 int unsigned_enum = 1;
3471
3472 #if 0
3473 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3474 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3475 to do? For now, force all enum values to file scope. */
3476 if (within_function)
3477 symlist = &local_symbols;
3478 else
3479 #endif
3480 symlist = &file_symbols;
3481 osyms = *symlist;
3482 o_nsyms = osyms ? osyms->nsyms : 0;
3483
3484 /* The aix4 compiler emits an extra field before the enum members;
3485 my guess is it's a type of some sort. Just ignore it. */
3486 if (**pp == '-')
3487 {
3488 /* Skip over the type. */
3489 while (**pp != ':')
3490 (*pp)++;
3491
3492 /* Skip over the colon. */
3493 (*pp)++;
3494 }
3495
3496 /* Read the value-names and their values.
3497 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3498 A semicolon or comma instead of a NAME means the end. */
3499 while (**pp && **pp != ';' && **pp != ',')
3500 {
3501 STABS_CONTINUE (pp, objfile);
3502 p = *pp;
3503 while (*p != ':')
3504 p++;
3505 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3506 *pp = p + 1;
3507 n = read_huge_number (pp, ',', &nbits, 0);
3508 if (nbits != 0)
3509 return error_type (pp, objfile);
3510
3511 sym = (struct symbol *)
3512 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3513 memset (sym, 0, sizeof (struct symbol));
3514 DEPRECATED_SYMBOL_NAME (sym) = name;
3515 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3516 SYMBOL_CLASS (sym) = LOC_CONST;
3517 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3518 SYMBOL_VALUE (sym) = n;
3519 if (n < 0)
3520 unsigned_enum = 0;
3521 add_symbol_to_list (sym, symlist);
3522 nsyms++;
3523 }
3524
3525 if (**pp == ';')
3526 (*pp)++; /* Skip the semicolon. */
3527
3528 /* Now fill in the fields of the type-structure. */
3529
3530 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3531 TYPE_CODE (type) = TYPE_CODE_ENUM;
3532 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3533 if (unsigned_enum)
3534 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3535 TYPE_NFIELDS (type) = nsyms;
3536 TYPE_FIELDS (type) = (struct field *)
3537 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3538 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3539
3540 /* Find the symbols for the values and put them into the type.
3541 The symbols can be found in the symlist that we put them on
3542 to cause them to be defined. osyms contains the old value
3543 of that symlist; everything up to there was defined by us. */
3544 /* Note that we preserve the order of the enum constants, so
3545 that in something like "enum {FOO, LAST_THING=FOO}" we print
3546 FOO, not LAST_THING. */
3547
3548 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3549 {
3550 int last = syms == osyms ? o_nsyms : 0;
3551 int j = syms->nsyms;
3552 for (; --j >= last; --n)
3553 {
3554 struct symbol *xsym = syms->symbol[j];
3555 SYMBOL_TYPE (xsym) = type;
3556 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3557 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3558 TYPE_FIELD_BITSIZE (type, n) = 0;
3559 }
3560 if (syms == osyms)
3561 break;
3562 }
3563
3564 return type;
3565 }
3566
3567 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3568 typedefs in every file (for int, long, etc):
3569
3570 type = b <signed> <width> <format type>; <offset>; <nbits>
3571 signed = u or s.
3572 optional format type = c or b for char or boolean.
3573 offset = offset from high order bit to start bit of type.
3574 width is # bytes in object of this type, nbits is # bits in type.
3575
3576 The width/offset stuff appears to be for small objects stored in
3577 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3578 FIXME. */
3579
3580 static struct type *
3581 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3582 {
3583 int type_bits;
3584 int nbits;
3585 int signed_type;
3586 enum type_code code = TYPE_CODE_INT;
3587
3588 switch (**pp)
3589 {
3590 case 's':
3591 signed_type = 1;
3592 break;
3593 case 'u':
3594 signed_type = 0;
3595 break;
3596 default:
3597 return error_type (pp, objfile);
3598 }
3599 (*pp)++;
3600
3601 /* For some odd reason, all forms of char put a c here. This is strange
3602 because no other type has this honor. We can safely ignore this because
3603 we actually determine 'char'acterness by the number of bits specified in
3604 the descriptor.
3605 Boolean forms, e.g Fortran logical*X, put a b here. */
3606
3607 if (**pp == 'c')
3608 (*pp)++;
3609 else if (**pp == 'b')
3610 {
3611 code = TYPE_CODE_BOOL;
3612 (*pp)++;
3613 }
3614
3615 /* The first number appears to be the number of bytes occupied
3616 by this type, except that unsigned short is 4 instead of 2.
3617 Since this information is redundant with the third number,
3618 we will ignore it. */
3619 read_huge_number (pp, ';', &nbits, 0);
3620 if (nbits != 0)
3621 return error_type (pp, objfile);
3622
3623 /* The second number is always 0, so ignore it too. */
3624 read_huge_number (pp, ';', &nbits, 0);
3625 if (nbits != 0)
3626 return error_type (pp, objfile);
3627
3628 /* The third number is the number of bits for this type. */
3629 type_bits = read_huge_number (pp, 0, &nbits, 0);
3630 if (nbits != 0)
3631 return error_type (pp, objfile);
3632 /* The type *should* end with a semicolon. If it are embedded
3633 in a larger type the semicolon may be the only way to know where
3634 the type ends. If this type is at the end of the stabstring we
3635 can deal with the omitted semicolon (but we don't have to like
3636 it). Don't bother to complain(), Sun's compiler omits the semicolon
3637 for "void". */
3638 if (**pp == ';')
3639 ++(*pp);
3640
3641 if (type_bits == 0)
3642 return init_type (TYPE_CODE_VOID, 1,
3643 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3644 objfile);
3645 else
3646 return init_type (code,
3647 type_bits / TARGET_CHAR_BIT,
3648 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3649 objfile);
3650 }
3651
3652 static struct type *
3653 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3654 {
3655 int nbits;
3656 int details;
3657 int nbytes;
3658 struct type *rettype;
3659
3660 /* The first number has more details about the type, for example
3661 FN_COMPLEX. */
3662 details = read_huge_number (pp, ';', &nbits, 0);
3663 if (nbits != 0)
3664 return error_type (pp, objfile);
3665
3666 /* The second number is the number of bytes occupied by this type */
3667 nbytes = read_huge_number (pp, ';', &nbits, 0);
3668 if (nbits != 0)
3669 return error_type (pp, objfile);
3670
3671 if (details == NF_COMPLEX || details == NF_COMPLEX16
3672 || details == NF_COMPLEX32)
3673 {
3674 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3675 TYPE_TARGET_TYPE (rettype)
3676 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3677 return rettype;
3678 }
3679
3680 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3681 }
3682
3683 /* Read a number from the string pointed to by *PP.
3684 The value of *PP is advanced over the number.
3685 If END is nonzero, the character that ends the
3686 number must match END, or an error happens;
3687 and that character is skipped if it does match.
3688 If END is zero, *PP is left pointing to that character.
3689
3690 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3691 the number is represented in an octal representation, assume that
3692 it is represented in a 2's complement representation with a size of
3693 TWOS_COMPLEMENT_BITS.
3694
3695 If the number fits in a long, set *BITS to 0 and return the value.
3696 If not, set *BITS to be the number of bits in the number and return 0.
3697
3698 If encounter garbage, set *BITS to -1 and return 0. */
3699
3700 static long
3701 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3702 {
3703 char *p = *pp;
3704 int sign = 1;
3705 int sign_bit;
3706 long n = 0;
3707 long sn = 0;
3708 int radix = 10;
3709 char overflow = 0;
3710 int nbits = 0;
3711 int c;
3712 long upper_limit;
3713 int twos_complement_representation = radix == 8 && twos_complement_bits > 0;
3714
3715 if (*p == '-')
3716 {
3717 sign = -1;
3718 p++;
3719 }
3720
3721 /* Leading zero means octal. GCC uses this to output values larger
3722 than an int (because that would be hard in decimal). */
3723 if (*p == '0')
3724 {
3725 radix = 8;
3726 p++;
3727 }
3728
3729 upper_limit = LONG_MAX / radix;
3730
3731 while ((c = *p++) >= '0' && c < ('0' + radix))
3732 {
3733 if (n <= upper_limit)
3734 {
3735 if (twos_complement_representation)
3736 {
3737 /* Octal, signed, twos complement representation. In this case,
3738 sn is the signed value, n is the corresponding absolute
3739 value. signed_bit is the position of the sign bit in the
3740 first three bits. */
3741 if (sn == 0)
3742 {
3743 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3744 sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3745 }
3746 else
3747 {
3748 sn *= radix;
3749 sn += c - '0';
3750 }
3751
3752 if (sn < 0)
3753 n = -sn;
3754 }
3755 else
3756 {
3757 /* unsigned representation */
3758 n *= radix;
3759 n += c - '0'; /* FIXME this overflows anyway */
3760 }
3761 }
3762 else
3763 overflow = 1;
3764
3765 /* This depends on large values being output in octal, which is
3766 what GCC does. */
3767 if (radix == 8)
3768 {
3769 if (nbits == 0)
3770 {
3771 if (c == '0')
3772 /* Ignore leading zeroes. */
3773 ;
3774 else if (c == '1')
3775 nbits = 1;
3776 else if (c == '2' || c == '3')
3777 nbits = 2;
3778 else
3779 nbits = 3;
3780 }
3781 else
3782 nbits += 3;
3783 }
3784 }
3785 if (end)
3786 {
3787 if (c && c != end)
3788 {
3789 if (bits != NULL)
3790 *bits = -1;
3791 return 0;
3792 }
3793 }
3794 else
3795 --p;
3796
3797 *pp = p;
3798 if (overflow)
3799 {
3800 if (nbits == 0)
3801 {
3802 /* Large decimal constants are an error (because it is hard to
3803 count how many bits are in them). */
3804 if (bits != NULL)
3805 *bits = -1;
3806 return 0;
3807 }
3808
3809 /* -0x7f is the same as 0x80. So deal with it by adding one to
3810 the number of bits. */
3811 if (sign == -1)
3812 ++nbits;
3813 if (bits)
3814 *bits = nbits;
3815 }
3816 else
3817 {
3818 if (bits)
3819 *bits = 0;
3820 if (twos_complement_representation)
3821 return sn;
3822 else
3823 return n * sign;
3824 }
3825 /* It's *BITS which has the interesting information. */
3826 return 0;
3827 }
3828
3829 static struct type *
3830 read_range_type (char **pp, int typenums[2], int type_size,
3831 struct objfile *objfile)
3832 {
3833 char *orig_pp = *pp;
3834 int rangenums[2];
3835 long n2, n3;
3836 int n2bits, n3bits;
3837 int self_subrange;
3838 struct type *result_type;
3839 struct type *index_type = NULL;
3840
3841 /* First comes a type we are a subrange of.
3842 In C it is usually 0, 1 or the type being defined. */
3843 if (read_type_number (pp, rangenums) != 0)
3844 return error_type (pp, objfile);
3845 self_subrange = (rangenums[0] == typenums[0] &&
3846 rangenums[1] == typenums[1]);
3847
3848 if (**pp == '=')
3849 {
3850 *pp = orig_pp;
3851 index_type = read_type (pp, objfile);
3852 }
3853
3854 /* A semicolon should now follow; skip it. */
3855 if (**pp == ';')
3856 (*pp)++;
3857
3858 /* The remaining two operands are usually lower and upper bounds
3859 of the range. But in some special cases they mean something else. */
3860 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3861 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3862
3863 if (n2bits == -1 || n3bits == -1)
3864 return error_type (pp, objfile);
3865
3866 if (index_type)
3867 goto handle_true_range;
3868
3869 /* If limits are huge, must be large integral type. */
3870 if (n2bits != 0 || n3bits != 0)
3871 {
3872 char got_signed = 0;
3873 char got_unsigned = 0;
3874 /* Number of bits in the type. */
3875 int nbits = 0;
3876
3877 /* If a type size attribute has been specified, the bounds of
3878 the range should fit in this size. If the lower bounds needs
3879 more bits than the upper bound, then the type is signed. */
3880 if (n2bits <= type_size && n3bits <= type_size)
3881 {
3882 if (n2bits == type_size && n2bits > n3bits)
3883 got_signed = 1;
3884 else
3885 got_unsigned = 1;
3886 nbits = type_size;
3887 }
3888 /* Range from 0 to <large number> is an unsigned large integral type. */
3889 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3890 {
3891 got_unsigned = 1;
3892 nbits = n3bits;
3893 }
3894 /* Range from <large number> to <large number>-1 is a large signed
3895 integral type. Take care of the case where <large number> doesn't
3896 fit in a long but <large number>-1 does. */
3897 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3898 || (n2bits != 0 && n3bits == 0
3899 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3900 && n3 == LONG_MAX))
3901 {
3902 got_signed = 1;
3903 nbits = n2bits;
3904 }
3905
3906 if (got_signed || got_unsigned)
3907 {
3908 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3909 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3910 objfile);
3911 }
3912 else
3913 return error_type (pp, objfile);
3914 }
3915
3916 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3917 if (self_subrange && n2 == 0 && n3 == 0)
3918 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3919
3920 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3921 is the width in bytes.
3922
3923 Fortran programs appear to use this for complex types also. To
3924 distinguish between floats and complex, g77 (and others?) seem
3925 to use self-subranges for the complexes, and subranges of int for
3926 the floats.
3927
3928 Also note that for complexes, g77 sets n2 to the size of one of
3929 the member floats, not the whole complex beast. My guess is that
3930 this was to work well with pre-COMPLEX versions of gdb. */
3931
3932 if (n3 == 0 && n2 > 0)
3933 {
3934 struct type *float_type
3935 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3936
3937 if (self_subrange)
3938 {
3939 struct type *complex_type =
3940 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3941 TYPE_TARGET_TYPE (complex_type) = float_type;
3942 return complex_type;
3943 }
3944 else
3945 return float_type;
3946 }
3947
3948 /* If the upper bound is -1, it must really be an unsigned int. */
3949
3950 else if (n2 == 0 && n3 == -1)
3951 {
3952 /* It is unsigned int or unsigned long. */
3953 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3954 compatibility hack. */
3955 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3956 TYPE_FLAG_UNSIGNED, NULL, objfile);
3957 }
3958
3959 /* Special case: char is defined (Who knows why) as a subrange of
3960 itself with range 0-127. */
3961 else if (self_subrange && n2 == 0 && n3 == 127)
3962 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3963
3964 /* We used to do this only for subrange of self or subrange of int. */
3965 else if (n2 == 0)
3966 {
3967 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3968 "unsigned long", and we already checked for that,
3969 so don't need to test for it here. */
3970
3971 if (n3 < 0)
3972 /* n3 actually gives the size. */
3973 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3974 NULL, objfile);
3975
3976 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3977 unsigned n-byte integer. But do require n to be a power of
3978 two; we don't want 3- and 5-byte integers flying around. */
3979 {
3980 int bytes;
3981 unsigned long bits;
3982
3983 bits = n3;
3984 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3985 bits >>= 8;
3986 if (bits == 0
3987 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3988 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3989 objfile);
3990 }
3991 }
3992 /* I think this is for Convex "long long". Since I don't know whether
3993 Convex sets self_subrange, I also accept that particular size regardless
3994 of self_subrange. */
3995 else if (n3 == 0 && n2 < 0
3996 && (self_subrange
3997 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3998 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3999 else if (n2 == -n3 - 1)
4000 {
4001 if (n3 == 0x7f)
4002 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4003 if (n3 == 0x7fff)
4004 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4005 if (n3 == 0x7fffffff)
4006 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4007 }
4008
4009 /* We have a real range type on our hands. Allocate space and
4010 return a real pointer. */
4011 handle_true_range:
4012
4013 if (self_subrange)
4014 index_type = builtin_type_int;
4015 else
4016 index_type = *dbx_lookup_type (rangenums);
4017 if (index_type == NULL)
4018 {
4019 /* Does this actually ever happen? Is that why we are worrying
4020 about dealing with it rather than just calling error_type? */
4021
4022 static struct type *range_type_index;
4023
4024 complaint (&symfile_complaints,
4025 _("base type %d of range type is not defined"), rangenums[1]);
4026 if (range_type_index == NULL)
4027 range_type_index =
4028 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4029 0, "range type index type", NULL);
4030 index_type = range_type_index;
4031 }
4032
4033 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4034 return (result_type);
4035 }
4036
4037 /* Read in an argument list. This is a list of types, separated by commas
4038 and terminated with END. Return the list of types read in, or NULL
4039 if there is an error. */
4040
4041 static struct field *
4042 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4043 int *varargsp)
4044 {
4045 /* FIXME! Remove this arbitrary limit! */
4046 struct type *types[1024]; /* allow for fns of 1023 parameters */
4047 int n = 0, i;
4048 struct field *rval;
4049
4050 while (**pp != end)
4051 {
4052 if (**pp != ',')
4053 /* Invalid argument list: no ','. */
4054 return NULL;
4055 (*pp)++;
4056 STABS_CONTINUE (pp, objfile);
4057 types[n++] = read_type (pp, objfile);
4058 }
4059 (*pp)++; /* get past `end' (the ':' character) */
4060
4061 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4062 *varargsp = 1;
4063 else
4064 {
4065 n--;
4066 *varargsp = 0;
4067 }
4068
4069 rval = (struct field *) xmalloc (n * sizeof (struct field));
4070 memset (rval, 0, n * sizeof (struct field));
4071 for (i = 0; i < n; i++)
4072 rval[i].type = types[i];
4073 *nargsp = n;
4074 return rval;
4075 }
4076 \f
4077 /* Common block handling. */
4078
4079 /* List of symbols declared since the last BCOMM. This list is a tail
4080 of local_symbols. When ECOMM is seen, the symbols on the list
4081 are noted so their proper addresses can be filled in later,
4082 using the common block base address gotten from the assembler
4083 stabs. */
4084
4085 static struct pending *common_block;
4086 static int common_block_i;
4087
4088 /* Name of the current common block. We get it from the BCOMM instead of the
4089 ECOMM to match IBM documentation (even though IBM puts the name both places
4090 like everyone else). */
4091 static char *common_block_name;
4092
4093 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4094 to remain after this function returns. */
4095
4096 void
4097 common_block_start (char *name, struct objfile *objfile)
4098 {
4099 if (common_block_name != NULL)
4100 {
4101 complaint (&symfile_complaints,
4102 _("Invalid symbol data: common block within common block"));
4103 }
4104 common_block = local_symbols;
4105 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4106 common_block_name = obsavestring (name, strlen (name),
4107 &objfile->objfile_obstack);
4108 }
4109
4110 /* Process a N_ECOMM symbol. */
4111
4112 void
4113 common_block_end (struct objfile *objfile)
4114 {
4115 /* Symbols declared since the BCOMM are to have the common block
4116 start address added in when we know it. common_block and
4117 common_block_i point to the first symbol after the BCOMM in
4118 the local_symbols list; copy the list and hang it off the
4119 symbol for the common block name for later fixup. */
4120 int i;
4121 struct symbol *sym;
4122 struct pending *new = 0;
4123 struct pending *next;
4124 int j;
4125
4126 if (common_block_name == NULL)
4127 {
4128 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4129 return;
4130 }
4131
4132 sym = (struct symbol *)
4133 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4134 memset (sym, 0, sizeof (struct symbol));
4135 /* Note: common_block_name already saved on objfile_obstack */
4136 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4137 SYMBOL_CLASS (sym) = LOC_BLOCK;
4138
4139 /* Now we copy all the symbols which have been defined since the BCOMM. */
4140
4141 /* Copy all the struct pendings before common_block. */
4142 for (next = local_symbols;
4143 next != NULL && next != common_block;
4144 next = next->next)
4145 {
4146 for (j = 0; j < next->nsyms; j++)
4147 add_symbol_to_list (next->symbol[j], &new);
4148 }
4149
4150 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4151 NULL, it means copy all the local symbols (which we already did
4152 above). */
4153
4154 if (common_block != NULL)
4155 for (j = common_block_i; j < common_block->nsyms; j++)
4156 add_symbol_to_list (common_block->symbol[j], &new);
4157
4158 SYMBOL_TYPE (sym) = (struct type *) new;
4159
4160 /* Should we be putting local_symbols back to what it was?
4161 Does it matter? */
4162
4163 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4164 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4165 global_sym_chain[i] = sym;
4166 common_block_name = NULL;
4167 }
4168
4169 /* Add a common block's start address to the offset of each symbol
4170 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4171 the common block name). */
4172
4173 static void
4174 fix_common_block (struct symbol *sym, int valu)
4175 {
4176 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4177 for (; next; next = next->next)
4178 {
4179 int j;
4180 for (j = next->nsyms - 1; j >= 0; j--)
4181 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4182 }
4183 }
4184 \f
4185
4186
4187 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4188 See add_undefined_type for more details. */
4189
4190 static void
4191 add_undefined_type_noname (struct type *type, int typenums[2])
4192 {
4193 struct nat nat;
4194
4195 nat.typenums[0] = typenums [0];
4196 nat.typenums[1] = typenums [1];
4197 nat.type = type;
4198
4199 if (noname_undefs_length == noname_undefs_allocated)
4200 {
4201 noname_undefs_allocated *= 2;
4202 noname_undefs = (struct nat *)
4203 xrealloc ((char *) noname_undefs,
4204 noname_undefs_allocated * sizeof (struct nat));
4205 }
4206 noname_undefs[noname_undefs_length++] = nat;
4207 }
4208
4209 /* Add TYPE to the UNDEF_TYPES vector.
4210 See add_undefined_type for more details. */
4211
4212 static void
4213 add_undefined_type_1 (struct type *type)
4214 {
4215 if (undef_types_length == undef_types_allocated)
4216 {
4217 undef_types_allocated *= 2;
4218 undef_types = (struct type **)
4219 xrealloc ((char *) undef_types,
4220 undef_types_allocated * sizeof (struct type *));
4221 }
4222 undef_types[undef_types_length++] = type;
4223 }
4224
4225 /* What about types defined as forward references inside of a small lexical
4226 scope? */
4227 /* Add a type to the list of undefined types to be checked through
4228 once this file has been read in.
4229
4230 In practice, we actually maintain two such lists: The first list
4231 (UNDEF_TYPES) is used for types whose name has been provided, and
4232 concerns forward references (eg 'xs' or 'xu' forward references);
4233 the second list (NONAME_UNDEFS) is used for types whose name is
4234 unknown at creation time, because they were referenced through
4235 their type number before the actual type was declared.
4236 This function actually adds the given type to the proper list. */
4237
4238 static void
4239 add_undefined_type (struct type *type, int typenums[2])
4240 {
4241 if (TYPE_TAG_NAME (type) == NULL)
4242 add_undefined_type_noname (type, typenums);
4243 else
4244 add_undefined_type_1 (type);
4245 }
4246
4247 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4248
4249 void
4250 cleanup_undefined_types_noname (void)
4251 {
4252 int i;
4253
4254 for (i = 0; i < noname_undefs_length; i++)
4255 {
4256 struct nat nat = noname_undefs[i];
4257 struct type **type;
4258
4259 type = dbx_lookup_type (nat.typenums);
4260 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4261 replace_type (nat.type, *type);
4262 }
4263
4264 noname_undefs_length = 0;
4265 }
4266
4267 /* Go through each undefined type, see if it's still undefined, and fix it
4268 up if possible. We have two kinds of undefined types:
4269
4270 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4271 Fix: update array length using the element bounds
4272 and the target type's length.
4273 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4274 yet defined at the time a pointer to it was made.
4275 Fix: Do a full lookup on the struct/union tag. */
4276
4277 void
4278 cleanup_undefined_types_1 (void)
4279 {
4280 struct type **type;
4281
4282 for (type = undef_types; type < undef_types + undef_types_length; type++)
4283 {
4284 switch (TYPE_CODE (*type))
4285 {
4286
4287 case TYPE_CODE_STRUCT:
4288 case TYPE_CODE_UNION:
4289 case TYPE_CODE_ENUM:
4290 {
4291 /* Check if it has been defined since. Need to do this here
4292 as well as in check_typedef to deal with the (legitimate in
4293 C though not C++) case of several types with the same name
4294 in different source files. */
4295 if (TYPE_STUB (*type))
4296 {
4297 struct pending *ppt;
4298 int i;
4299 /* Name of the type, without "struct" or "union" */
4300 char *typename = TYPE_TAG_NAME (*type);
4301
4302 if (typename == NULL)
4303 {
4304 complaint (&symfile_complaints, _("need a type name"));
4305 break;
4306 }
4307 for (ppt = file_symbols; ppt; ppt = ppt->next)
4308 {
4309 for (i = 0; i < ppt->nsyms; i++)
4310 {
4311 struct symbol *sym = ppt->symbol[i];
4312
4313 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4314 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4315 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4316 TYPE_CODE (*type))
4317 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4318 replace_type (*type, SYMBOL_TYPE (sym));
4319 }
4320 }
4321 }
4322 }
4323 break;
4324
4325 default:
4326 {
4327 complaint (&symfile_complaints,
4328 _("forward-referenced types left unresolved, "
4329 "type code %d."),
4330 TYPE_CODE (*type));
4331 }
4332 break;
4333 }
4334 }
4335
4336 undef_types_length = 0;
4337 }
4338
4339 /* Try to fix all the undefined types we ecountered while processing
4340 this unit. */
4341
4342 void
4343 cleanup_undefined_types (void)
4344 {
4345 cleanup_undefined_types_1 ();
4346 cleanup_undefined_types_noname ();
4347 }
4348
4349 /* Scan through all of the global symbols defined in the object file,
4350 assigning values to the debugging symbols that need to be assigned
4351 to. Get these symbols from the minimal symbol table. */
4352
4353 void
4354 scan_file_globals (struct objfile *objfile)
4355 {
4356 int hash;
4357 struct minimal_symbol *msymbol;
4358 struct symbol *sym, *prev;
4359 struct objfile *resolve_objfile;
4360
4361 /* SVR4 based linkers copy referenced global symbols from shared
4362 libraries to the main executable.
4363 If we are scanning the symbols for a shared library, try to resolve
4364 them from the minimal symbols of the main executable first. */
4365
4366 if (symfile_objfile && objfile != symfile_objfile)
4367 resolve_objfile = symfile_objfile;
4368 else
4369 resolve_objfile = objfile;
4370
4371 while (1)
4372 {
4373 /* Avoid expensive loop through all minimal symbols if there are
4374 no unresolved symbols. */
4375 for (hash = 0; hash < HASHSIZE; hash++)
4376 {
4377 if (global_sym_chain[hash])
4378 break;
4379 }
4380 if (hash >= HASHSIZE)
4381 return;
4382
4383 for (msymbol = resolve_objfile->msymbols;
4384 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4385 msymbol++)
4386 {
4387 QUIT;
4388
4389 /* Skip static symbols. */
4390 switch (MSYMBOL_TYPE (msymbol))
4391 {
4392 case mst_file_text:
4393 case mst_file_data:
4394 case mst_file_bss:
4395 continue;
4396 default:
4397 break;
4398 }
4399
4400 prev = NULL;
4401
4402 /* Get the hash index and check all the symbols
4403 under that hash index. */
4404
4405 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4406
4407 for (sym = global_sym_chain[hash]; sym;)
4408 {
4409 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4410 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4411 {
4412 /* Splice this symbol out of the hash chain and
4413 assign the value we have to it. */
4414 if (prev)
4415 {
4416 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4417 }
4418 else
4419 {
4420 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4421 }
4422
4423 /* Check to see whether we need to fix up a common block. */
4424 /* Note: this code might be executed several times for
4425 the same symbol if there are multiple references. */
4426 if (sym)
4427 {
4428 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4429 {
4430 fix_common_block (sym,
4431 SYMBOL_VALUE_ADDRESS (msymbol));
4432 }
4433 else
4434 {
4435 SYMBOL_VALUE_ADDRESS (sym)
4436 = SYMBOL_VALUE_ADDRESS (msymbol);
4437 }
4438 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4439 }
4440
4441 if (prev)
4442 {
4443 sym = SYMBOL_VALUE_CHAIN (prev);
4444 }
4445 else
4446 {
4447 sym = global_sym_chain[hash];
4448 }
4449 }
4450 else
4451 {
4452 prev = sym;
4453 sym = SYMBOL_VALUE_CHAIN (sym);
4454 }
4455 }
4456 }
4457 if (resolve_objfile == objfile)
4458 break;
4459 resolve_objfile = objfile;
4460 }
4461
4462 /* Change the storage class of any remaining unresolved globals to
4463 LOC_UNRESOLVED and remove them from the chain. */
4464 for (hash = 0; hash < HASHSIZE; hash++)
4465 {
4466 sym = global_sym_chain[hash];
4467 while (sym)
4468 {
4469 prev = sym;
4470 sym = SYMBOL_VALUE_CHAIN (sym);
4471
4472 /* Change the symbol address from the misleading chain value
4473 to address zero. */
4474 SYMBOL_VALUE_ADDRESS (prev) = 0;
4475
4476 /* Complain about unresolved common block symbols. */
4477 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4478 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4479 else
4480 complaint (&symfile_complaints,
4481 _("%s: common block `%s' from global_sym_chain unresolved"),
4482 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4483 }
4484 }
4485 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4486 }
4487
4488 /* Initialize anything that needs initializing when starting to read
4489 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4490 to a psymtab. */
4491
4492 void
4493 stabsread_init (void)
4494 {
4495 }
4496
4497 /* Initialize anything that needs initializing when a completely new
4498 symbol file is specified (not just adding some symbols from another
4499 file, e.g. a shared library). */
4500
4501 void
4502 stabsread_new_init (void)
4503 {
4504 /* Empty the hash table of global syms looking for values. */
4505 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4506 }
4507
4508 /* Initialize anything that needs initializing at the same time as
4509 start_symtab() is called. */
4510
4511 void
4512 start_stabs (void)
4513 {
4514 global_stabs = NULL; /* AIX COFF */
4515 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4516 n_this_object_header_files = 1;
4517 type_vector_length = 0;
4518 type_vector = (struct type **) 0;
4519
4520 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4521 common_block_name = NULL;
4522 }
4523
4524 /* Call after end_symtab() */
4525
4526 void
4527 end_stabs (void)
4528 {
4529 if (type_vector)
4530 {
4531 xfree (type_vector);
4532 }
4533 type_vector = 0;
4534 type_vector_length = 0;
4535 previous_stab_code = 0;
4536 }
4537
4538 void
4539 finish_global_stabs (struct objfile *objfile)
4540 {
4541 if (global_stabs)
4542 {
4543 patch_block_stabs (global_symbols, global_stabs, objfile);
4544 xfree (global_stabs);
4545 global_stabs = NULL;
4546 }
4547 }
4548
4549 /* Find the end of the name, delimited by a ':', but don't match
4550 ObjC symbols which look like -[Foo bar::]:bla. */
4551 static char *
4552 find_name_end (char *name)
4553 {
4554 char *s = name;
4555 if (s[0] == '-' || *s == '+')
4556 {
4557 /* Must be an ObjC method symbol. */
4558 if (s[1] != '[')
4559 {
4560 error (_("invalid symbol name \"%s\""), name);
4561 }
4562 s = strchr (s, ']');
4563 if (s == NULL)
4564 {
4565 error (_("invalid symbol name \"%s\""), name);
4566 }
4567 return strchr (s, ':');
4568 }
4569 else
4570 {
4571 return strchr (s, ':');
4572 }
4573 }
4574
4575 /* Initializer for this module */
4576
4577 void
4578 _initialize_stabsread (void)
4579 {
4580 undef_types_allocated = 20;
4581 undef_types_length = 0;
4582 undef_types = (struct type **)
4583 xmalloc (undef_types_allocated * sizeof (struct type *));
4584
4585 noname_undefs_allocated = 20;
4586 noname_undefs_length = 0;
4587 noname_undefs = (struct nat *)
4588 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4589 }
This page took 0.240153 seconds and 4 git commands to generate.