Use "bool" in more spots in TUI
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static void fix_common_block (struct symbol *, CORE_ADDR);
111
112 static int read_type_number (const char **, int *);
113
114 static struct type *read_type (const char **, struct objfile *);
115
116 static struct type *read_range_type (const char **, int[2],
117 int, struct objfile *);
118
119 static struct type *read_sun_builtin_type (const char **,
120 int[2], struct objfile *);
121
122 static struct type *read_sun_floating_type (const char **, int[2],
123 struct objfile *);
124
125 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126
127 static struct type *rs6000_builtin_type (int, struct objfile *);
128
129 static int
130 read_member_functions (struct stab_field_info *, const char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_struct_fields (struct stab_field_info *, const char **, struct type *,
135 struct objfile *);
136
137 static int
138 read_baseclasses (struct stab_field_info *, const char **, struct type *,
139 struct objfile *);
140
141 static int
142 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
143 struct objfile *);
144
145 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146
147 static int attach_fields_to_type (struct stab_field_info *, struct type *,
148 struct objfile *);
149
150 static struct type *read_struct_type (const char **, struct type *,
151 enum type_code,
152 struct objfile *);
153
154 static struct type *read_array_type (const char **, struct type *,
155 struct objfile *);
156
157 static struct field *read_args (const char **, int, struct objfile *,
158 int *, int *);
159
160 static void add_undefined_type (struct type *, int[2]);
161
162 static int
163 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
164 struct objfile *);
165
166 static const char *find_name_end (const char *name);
167
168 static int process_reference (const char **string);
169
170 void stabsread_clear_cache (void);
171
172 static const char vptr_name[] = "_vptr$";
173 static const char vb_name[] = "_vb$";
174
175 static void
176 invalid_cpp_abbrev_complaint (const char *arg1)
177 {
178 complaint (_("invalid C++ abbreviation `%s'"), arg1);
179 }
180
181 static void
182 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 {
184 complaint (_("bad register number %d (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint ("%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221
222 /* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
227
228 static struct type **type_vector;
229
230 /* Number of elements allocated for type_vector currently. */
231
232 static int type_vector_length;
233
234 /* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
236
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 \f
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 static struct type **
248 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 {
250 int filenum = typenums[0];
251 int index = typenums[1];
252 unsigned old_len;
253 int real_filenum;
254 struct header_file *f;
255 int f_orig_length;
256
257 if (filenum == -1) /* -1,-1 is for temporary types. */
258 return 0;
259
260 if (filenum < 0 || filenum >= n_this_object_header_files)
261 {
262 complaint (_("Invalid symbol data: type number "
263 "(%d,%d) out of range at symtab pos %d."),
264 filenum, index, symnum);
265 goto error_return;
266 }
267
268 if (filenum == 0)
269 {
270 if (index < 0)
271 {
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type *temp_type;
278
279 temp_type = rs6000_builtin_type (index, objfile);
280 return &temp_type;
281 }
282
283 /* Type is defined outside of header files.
284 Find it in this object file's type vector. */
285 if (index >= type_vector_length)
286 {
287 old_len = type_vector_length;
288 if (old_len == 0)
289 {
290 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
291 type_vector = XNEWVEC (struct type *, type_vector_length);
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302 }
303 return (&type_vector[index]);
304 }
305 else
306 {
307 real_filenum = this_object_header_files[filenum];
308
309 if (real_filenum >= N_HEADER_FILES (objfile))
310 {
311 static struct type *temp_type;
312
313 warning (_("GDB internal error: bad real_filenum"));
314
315 error_return:
316 temp_type = objfile_type (objfile)->builtin_error;
317 return &temp_type;
318 }
319
320 f = HEADER_FILES (objfile) + real_filenum;
321
322 f_orig_length = f->length;
323 if (index >= f_orig_length)
324 {
325 while (index >= f->length)
326 {
327 f->length *= 2;
328 }
329 f->vector = (struct type **)
330 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 memset (&f->vector[f_orig_length], 0,
332 (f->length - f_orig_length) * sizeof (struct type *));
333 }
334 return (&f->vector[index]);
335 }
336 }
337
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
342 put into the type vector, and so may not be referred to by number. */
343
344 static struct type *
345 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 {
347 struct type **type_addr;
348
349 if (typenums[0] == -1)
350 {
351 return (alloc_type (objfile));
352 }
353
354 type_addr = dbx_lookup_type (typenums, objfile);
355
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
359 if (*type_addr == 0)
360 {
361 *type_addr = alloc_type (objfile);
362 }
363
364 return (*type_addr);
365 }
366
367 /* Allocate a floating-point type of size BITS. */
368
369 static struct type *
370 dbx_init_float_type (struct objfile *objfile, int bits)
371 {
372 struct gdbarch *gdbarch = get_objfile_arch (objfile);
373 const struct floatformat **format;
374 struct type *type;
375
376 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 if (format)
378 type = init_float_type (objfile, bits, NULL, format);
379 else
380 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
381
382 return type;
383 }
384
385 /* for all the stabs in a given stab vector, build appropriate types
386 and fix their symbols in given symbol vector. */
387
388 static void
389 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 struct objfile *objfile)
391 {
392 int ii;
393 char *name;
394 const char *pp;
395 struct symbol *sym;
396
397 if (stabs)
398 {
399 /* for all the stab entries, find their corresponding symbols and
400 patch their types! */
401
402 for (ii = 0; ii < stabs->count; ++ii)
403 {
404 name = stabs->stab[ii];
405 pp = (char *) strchr (name, ':');
406 gdb_assert (pp); /* Must find a ':' or game's over. */
407 while (pp[1] == ':')
408 {
409 pp += 2;
410 pp = (char *) strchr (pp, ':');
411 }
412 sym = find_symbol_in_list (symbols, name, pp - name);
413 if (!sym)
414 {
415 /* FIXME-maybe: it would be nice if we noticed whether
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
422
423 /* On xcoff, if a global is defined and never referenced,
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
426 sym = allocate_symbol (objfile);
427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
428 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
429 sym->set_linkage_name
430 (obstack_strndup (&objfile->objfile_obstack, name, pp - name));
431 pp += 2;
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, get_global_symbols ());
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462 \f
463
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (const char **pp, int *typenums)
474 {
475 int nbits;
476
477 if (**pp == '(')
478 {
479 (*pp)++;
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
484 if (nbits != 0)
485 return -1;
486 }
487 else
488 {
489 typenums[0] = 0;
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
491 if (nbits != 0)
492 return -1;
493 }
494 return 0;
495 }
496 \f
497
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
505
506 struct ref_map
507 {
508 const char *stabs;
509 CORE_ADDR value;
510 struct symbol *sym;
511 };
512
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
517 static struct ref_map *ref_map;
518
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
521
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
524
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
528 void
529 stabsread_clear_cache (void)
530 {
531 ref_count = 0;
532 ref_chunk = 0;
533 }
534
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
539 void
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
541 {
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560 }
561
562 /* Return defined sym for the reference REFNUM. */
563 struct symbol *
564 ref_search (int refnum)
565 {
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569 }
570
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
574 static int
575 process_reference (const char **string)
576 {
577 const char *p;
578 int refnum = 0;
579
580 if (**string != '#')
581 return 0;
582
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594 }
595
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599 int
600 symbol_reference_defined (const char **string)
601 {
602 const char *p = *string;
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
607 /* Defining symbols end in '='. */
608 if (*p == '=')
609 {
610 /* Symbol is being defined here. */
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621 }
622
623 static int
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 {
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629 {
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 sym->print_name ());
632
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
634 }
635
636 return regno;
637 }
638
639 static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641 };
642
643 /* The "aclass" indices for computed symbols. */
644
645 static int stab_register_index;
646 static int stab_regparm_index;
647
648 struct symbol *
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
651 {
652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
653 struct symbol *sym;
654 const char *p = find_name_end (string);
655 int deftype;
656 int synonym = 0;
657 int i;
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
670 /* Ignore old-style symbols from cc -go. */
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
676 p += 2;
677 p = strchr (p, ':');
678 if (p == NULL)
679 {
680 complaint (
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
690 current_symbol = sym = allocate_symbol (objfile);
691
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
697 }
698 else
699 {
700 SYMBOL_LINE (sym) = 0; /* unknown */
701 }
702
703 sym->set_language (get_current_subfile ()->language,
704 &objfile->objfile_obstack);
705
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
711 case 't':
712 sym->set_linkage_name ("this");
713 break;
714
715 case 'v': /* $vtbl_ptr_type */
716 goto normal;
717
718 case 'e':
719 sym->set_linkage_name ("eh_throw");
720 break;
721
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
725
726 case 'X':
727 /* SunPRO (3.0 at least) static variable encoding. */
728 if (gdbarch_static_transform_name_p (gdbarch))
729 goto normal;
730 /* fall through */
731
732 default:
733 complaint (_("Unknown C++ symbol name `%s'"),
734 string);
735 goto normal; /* Do *something* with it. */
736 }
737 }
738 else
739 {
740 normal:
741 std::string new_name;
742
743 if (sym->language () == language_cplus)
744 {
745 char *name = (char *) alloca (p - string + 1);
746
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
750 }
751 if (!new_name.empty ())
752 sym->compute_and_set_names (new_name, true, objfile->per_bfd);
753 else
754 sym->compute_and_set_names (gdb::string_view (string, p - string), true,
755 objfile->per_bfd);
756
757 if (sym->language () == language_cplus)
758 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
759 objfile);
760
761 }
762 p++;
763
764 /* Determine the type of name being defined. */
765 #if 0
766 /* Getting GDB to correctly skip the symbol on an undefined symbol
767 descriptor and not ever dump core is a very dodgy proposition if
768 we do things this way. I say the acorn RISC machine can just
769 fix their compiler. */
770 /* The Acorn RISC machine's compiler can put out locals that don't
771 start with "234=" or "(3,4)=", so assume anything other than the
772 deftypes we know how to handle is a local. */
773 if (!strchr ("cfFGpPrStTvVXCR", *p))
774 #else
775 if (isdigit (*p) || *p == '(' || *p == '-')
776 #endif
777 deftype = 'l';
778 else
779 deftype = *p++;
780
781 switch (deftype)
782 {
783 case 'c':
784 /* c is a special case, not followed by a type-number.
785 SYMBOL:c=iVALUE for an integer constant symbol.
786 SYMBOL:c=rVALUE for a floating constant symbol.
787 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
788 e.g. "b:c=e6,0" for "const b = blob1"
789 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
790 if (*p != '=')
791 {
792 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
793 SYMBOL_TYPE (sym) = error_type (&p, objfile);
794 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
795 add_symbol_to_list (sym, get_file_symbols ());
796 return sym;
797 }
798 ++p;
799 switch (*p++)
800 {
801 case 'r':
802 {
803 gdb_byte *dbl_valu;
804 struct type *dbl_type;
805
806 dbl_type = objfile_type (objfile)->builtin_double;
807 dbl_valu
808 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
809 TYPE_LENGTH (dbl_type));
810
811 target_float_from_string (dbl_valu, dbl_type, std::string (p));
812
813 SYMBOL_TYPE (sym) = dbl_type;
814 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
815 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
816 }
817 break;
818 case 'i':
819 {
820 /* Defining integer constants this way is kind of silly,
821 since 'e' constants allows the compiler to give not
822 only the value, but the type as well. C has at least
823 int, long, unsigned int, and long long as constant
824 types; other languages probably should have at least
825 unsigned as well as signed constants. */
826
827 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
828 SYMBOL_VALUE (sym) = atoi (p);
829 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
830 }
831 break;
832
833 case 'c':
834 {
835 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
836 SYMBOL_VALUE (sym) = atoi (p);
837 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
838 }
839 break;
840
841 case 's':
842 {
843 struct type *range_type;
844 int ind = 0;
845 char quote = *p++;
846 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
847 gdb_byte *string_value;
848
849 if (quote != '\'' && quote != '"')
850 {
851 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
852 SYMBOL_TYPE (sym) = error_type (&p, objfile);
853 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
854 add_symbol_to_list (sym, get_file_symbols ());
855 return sym;
856 }
857
858 /* Find matching quote, rejecting escaped quotes. */
859 while (*p && *p != quote)
860 {
861 if (*p == '\\' && p[1] == quote)
862 {
863 string_local[ind] = (gdb_byte) quote;
864 ind++;
865 p += 2;
866 }
867 else if (*p)
868 {
869 string_local[ind] = (gdb_byte) (*p);
870 ind++;
871 p++;
872 }
873 }
874 if (*p != quote)
875 {
876 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
877 SYMBOL_TYPE (sym) = error_type (&p, objfile);
878 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
879 add_symbol_to_list (sym, get_file_symbols ());
880 return sym;
881 }
882
883 /* NULL terminate the string. */
884 string_local[ind] = 0;
885 range_type
886 = create_static_range_type (NULL,
887 objfile_type (objfile)->builtin_int,
888 0, ind);
889 SYMBOL_TYPE (sym) = create_array_type (NULL,
890 objfile_type (objfile)->builtin_char,
891 range_type);
892 string_value
893 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
894 memcpy (string_value, string_local, ind + 1);
895 p++;
896
897 SYMBOL_VALUE_BYTES (sym) = string_value;
898 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
899 }
900 break;
901
902 case 'e':
903 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
904 can be represented as integral.
905 e.g. "b:c=e6,0" for "const b = blob1"
906 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
907 {
908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910
911 if (*p != ',')
912 {
913 SYMBOL_TYPE (sym) = error_type (&p, objfile);
914 break;
915 }
916 ++p;
917
918 /* If the value is too big to fit in an int (perhaps because
919 it is unsigned), or something like that, we silently get
920 a bogus value. The type and everything else about it is
921 correct. Ideally, we should be using whatever we have
922 available for parsing unsigned and long long values,
923 however. */
924 SYMBOL_VALUE (sym) = atoi (p);
925 }
926 break;
927 default:
928 {
929 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
930 SYMBOL_TYPE (sym) = error_type (&p, objfile);
931 }
932 }
933 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
934 add_symbol_to_list (sym, get_file_symbols ());
935 return sym;
936
937 case 'C':
938 /* The name of a caught exception. */
939 SYMBOL_TYPE (sym) = read_type (&p, objfile);
940 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
941 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
942 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
943 add_symbol_to_list (sym, get_local_symbols ());
944 break;
945
946 case 'f':
947 /* A static function definition. */
948 SYMBOL_TYPE (sym) = read_type (&p, objfile);
949 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
950 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
951 add_symbol_to_list (sym, get_file_symbols ());
952 /* fall into process_function_types. */
953
954 process_function_types:
955 /* Function result types are described as the result type in stabs.
956 We need to convert this to the function-returning-type-X type
957 in GDB. E.g. "int" is converted to "function returning int". */
958 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
959 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
960
961 /* All functions in C++ have prototypes. Stabs does not offer an
962 explicit way to identify prototyped or unprototyped functions,
963 but both GCC and Sun CC emit stabs for the "call-as" type rather
964 than the "declared-as" type for unprototyped functions, so
965 we treat all functions as if they were prototyped. This is used
966 primarily for promotion when calling the function from GDB. */
967 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
968
969 /* fall into process_prototype_types. */
970
971 process_prototype_types:
972 /* Sun acc puts declared types of arguments here. */
973 if (*p == ';')
974 {
975 struct type *ftype = SYMBOL_TYPE (sym);
976 int nsemi = 0;
977 int nparams = 0;
978 const char *p1 = p;
979
980 /* Obtain a worst case guess for the number of arguments
981 by counting the semicolons. */
982 while (*p1)
983 {
984 if (*p1++ == ';')
985 nsemi++;
986 }
987
988 /* Allocate parameter information fields and fill them in. */
989 TYPE_FIELDS (ftype) = (struct field *)
990 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
991 while (*p++ == ';')
992 {
993 struct type *ptype;
994
995 /* A type number of zero indicates the start of varargs.
996 FIXME: GDB currently ignores vararg functions. */
997 if (p[0] == '0' && p[1] == '\0')
998 break;
999 ptype = read_type (&p, objfile);
1000
1001 /* The Sun compilers mark integer arguments, which should
1002 be promoted to the width of the calling conventions, with
1003 a type which references itself. This type is turned into
1004 a TYPE_CODE_VOID type by read_type, and we have to turn
1005 it back into builtin_int here.
1006 FIXME: Do we need a new builtin_promoted_int_arg ? */
1007 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1008 ptype = objfile_type (objfile)->builtin_int;
1009 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1010 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1011 }
1012 TYPE_NFIELDS (ftype) = nparams;
1013 TYPE_PROTOTYPED (ftype) = 1;
1014 }
1015 break;
1016
1017 case 'F':
1018 /* A global function definition. */
1019 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1020 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1021 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1022 add_symbol_to_list (sym, get_global_symbols ());
1023 goto process_function_types;
1024
1025 case 'G':
1026 /* For a class G (global) symbol, it appears that the
1027 value is not correct. It is necessary to search for the
1028 corresponding linker definition to find the value.
1029 These definitions appear at the end of the namelist. */
1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1031 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1032 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1033 /* Don't add symbol references to global_sym_chain.
1034 Symbol references don't have valid names and wont't match up with
1035 minimal symbols when the global_sym_chain is relocated.
1036 We'll fixup symbol references when we fixup the defining symbol. */
1037 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1038 {
1039 i = hashname (sym->linkage_name ());
1040 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1041 global_sym_chain[i] = sym;
1042 }
1043 add_symbol_to_list (sym, get_global_symbols ());
1044 break;
1045
1046 /* This case is faked by a conditional above,
1047 when there is no code letter in the dbx data.
1048 Dbx data never actually contains 'l'. */
1049 case 's':
1050 case 'l':
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1053 SYMBOL_VALUE (sym) = valu;
1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1055 add_symbol_to_list (sym, get_local_symbols ());
1056 break;
1057
1058 case 'p':
1059 if (*p == 'F')
1060 /* pF is a two-letter code that means a function parameter in Fortran.
1061 The type-number specifies the type of the return value.
1062 Translate it into a pointer-to-function type. */
1063 {
1064 p++;
1065 SYMBOL_TYPE (sym)
1066 = lookup_pointer_type
1067 (lookup_function_type (read_type (&p, objfile)));
1068 }
1069 else
1070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1071
1072 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1073 SYMBOL_VALUE (sym) = valu;
1074 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1075 SYMBOL_IS_ARGUMENT (sym) = 1;
1076 add_symbol_to_list (sym, get_local_symbols ());
1077
1078 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1079 {
1080 /* On little-endian machines, this crud is never necessary,
1081 and, if the extra bytes contain garbage, is harmful. */
1082 break;
1083 }
1084
1085 /* If it's gcc-compiled, if it says `short', believe it. */
1086 if (processing_gcc_compilation
1087 || gdbarch_believe_pcc_promotion (gdbarch))
1088 break;
1089
1090 if (!gdbarch_believe_pcc_promotion (gdbarch))
1091 {
1092 /* If PCC says a parameter is a short or a char, it is
1093 really an int. */
1094 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1095 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1096 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1097 {
1098 SYMBOL_TYPE (sym) =
1099 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1100 ? objfile_type (objfile)->builtin_unsigned_int
1101 : objfile_type (objfile)->builtin_int;
1102 }
1103 break;
1104 }
1105 /* Fall through. */
1106
1107 case 'P':
1108 /* acc seems to use P to declare the prototypes of functions that
1109 are referenced by this file. gdb is not prepared to deal
1110 with this extra information. FIXME, it ought to. */
1111 if (type == N_FUN)
1112 {
1113 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1114 goto process_prototype_types;
1115 }
1116 /*FALLTHROUGH */
1117
1118 case 'R':
1119 /* Parameter which is in a register. */
1120 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1121 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1122 SYMBOL_IS_ARGUMENT (sym) = 1;
1123 SYMBOL_VALUE (sym) = valu;
1124 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1125 add_symbol_to_list (sym, get_local_symbols ());
1126 break;
1127
1128 case 'r':
1129 /* Register variable (either global or local). */
1130 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1131 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1132 SYMBOL_VALUE (sym) = valu;
1133 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1134 if (within_function)
1135 {
1136 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1137 the same name to represent an argument passed in a
1138 register. GCC uses 'P' for the same case. So if we find
1139 such a symbol pair we combine it into one 'P' symbol.
1140 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1141 the 'p' symbol even if it never saves the argument onto
1142 the stack.
1143
1144 On most machines, we want to preserve both symbols, so
1145 that we can still get information about what is going on
1146 with the stack (VAX for computing args_printed, using
1147 stack slots instead of saved registers in backtraces,
1148 etc.).
1149
1150 Note that this code illegally combines
1151 main(argc) struct foo argc; { register struct foo argc; }
1152 but this case is considered pathological and causes a warning
1153 from a decent compiler. */
1154
1155 struct pending *local_symbols = *get_local_symbols ();
1156 if (local_symbols
1157 && local_symbols->nsyms > 0
1158 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1159 {
1160 struct symbol *prev_sym;
1161
1162 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1163 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1164 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1165 && strcmp (prev_sym->linkage_name (),
1166 sym->linkage_name ()) == 0)
1167 {
1168 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1169 /* Use the type from the LOC_REGISTER; that is the type
1170 that is actually in that register. */
1171 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1172 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1173 sym = prev_sym;
1174 break;
1175 }
1176 }
1177 add_symbol_to_list (sym, get_local_symbols ());
1178 }
1179 else
1180 add_symbol_to_list (sym, get_file_symbols ());
1181 break;
1182
1183 case 'S':
1184 /* Static symbol at top level of file. */
1185 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1186 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1187 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1188 if (gdbarch_static_transform_name_p (gdbarch)
1189 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1190 != sym->linkage_name ())
1191 {
1192 struct bound_minimal_symbol msym;
1193
1194 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
1195 if (msym.minsym != NULL)
1196 {
1197 const char *new_name = gdbarch_static_transform_name
1198 (gdbarch, sym->linkage_name ());
1199
1200 sym->set_linkage_name (new_name);
1201 SET_SYMBOL_VALUE_ADDRESS (sym,
1202 BMSYMBOL_VALUE_ADDRESS (msym));
1203 }
1204 }
1205 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1206 add_symbol_to_list (sym, get_file_symbols ());
1207 break;
1208
1209 case 't':
1210 /* In Ada, there is no distinction between typedef and non-typedef;
1211 any type declaration implicitly has the equivalent of a typedef,
1212 and thus 't' is in fact equivalent to 'Tt'.
1213
1214 Therefore, for Ada units, we check the character immediately
1215 before the 't', and if we do not find a 'T', then make sure to
1216 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1217 will be stored in the VAR_DOMAIN). If the symbol was indeed
1218 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1219 elsewhere, so we don't need to take care of that.
1220
1221 This is important to do, because of forward references:
1222 The cleanup of undefined types stored in undef_types only uses
1223 STRUCT_DOMAIN symbols to perform the replacement. */
1224 synonym = (sym->language () == language_ada && p[-2] != 'T');
1225
1226 /* Typedef */
1227 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1228
1229 /* For a nameless type, we don't want a create a symbol, thus we
1230 did not use `sym'. Return without further processing. */
1231 if (nameless)
1232 return NULL;
1233
1234 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1235 SYMBOL_VALUE (sym) = valu;
1236 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1237 /* C++ vagaries: we may have a type which is derived from
1238 a base type which did not have its name defined when the
1239 derived class was output. We fill in the derived class's
1240 base part member's name here in that case. */
1241 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1242 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1244 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1245 {
1246 int j;
1247
1248 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1249 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1250 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1251 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1252 }
1253
1254 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1255 {
1256 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1257 && strcmp (sym->linkage_name (), vtbl_ptr_name))
1258 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1259 {
1260 /* If we are giving a name to a type such as "pointer to
1261 foo" or "function returning foo", we better not set
1262 the TYPE_NAME. If the program contains "typedef char
1263 *caddr_t;", we don't want all variables of type char
1264 * to print as caddr_t. This is not just a
1265 consequence of GDB's type management; PCC and GCC (at
1266 least through version 2.4) both output variables of
1267 either type char * or caddr_t with the type number
1268 defined in the 't' symbol for caddr_t. If a future
1269 compiler cleans this up it GDB is not ready for it
1270 yet, but if it becomes ready we somehow need to
1271 disable this check (without breaking the PCC/GCC2.4
1272 case).
1273
1274 Sigh.
1275
1276 Fortunately, this check seems not to be necessary
1277 for anything except pointers or functions. */
1278 /* ezannoni: 2000-10-26. This seems to apply for
1279 versions of gcc older than 2.8. This was the original
1280 problem: with the following code gdb would tell that
1281 the type for name1 is caddr_t, and func is char().
1282
1283 typedef char *caddr_t;
1284 char *name2;
1285 struct x
1286 {
1287 char *name1;
1288 } xx;
1289 char *func()
1290 {
1291 }
1292 main () {}
1293 */
1294
1295 /* Pascal accepts names for pointer types. */
1296 if (get_current_subfile ()->language == language_pascal)
1297 {
1298 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->linkage_name ();
1299 }
1300 }
1301 else
1302 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->linkage_name ();
1303 }
1304
1305 add_symbol_to_list (sym, get_file_symbols ());
1306
1307 if (synonym)
1308 {
1309 /* Create the STRUCT_DOMAIN clone. */
1310 struct symbol *struct_sym = allocate_symbol (objfile);
1311
1312 *struct_sym = *sym;
1313 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1314 SYMBOL_VALUE (struct_sym) = valu;
1315 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1316 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1317 TYPE_NAME (SYMBOL_TYPE (sym))
1318 = obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1319 (char *) NULL);
1320 add_symbol_to_list (struct_sym, get_file_symbols ());
1321 }
1322
1323 break;
1324
1325 case 'T':
1326 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1327 by 't' which means we are typedef'ing it as well. */
1328 synonym = *p == 't';
1329
1330 if (synonym)
1331 p++;
1332
1333 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1334
1335 /* For a nameless type, we don't want a create a symbol, thus we
1336 did not use `sym'. Return without further processing. */
1337 if (nameless)
1338 return NULL;
1339
1340 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1341 SYMBOL_VALUE (sym) = valu;
1342 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1343 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1344 TYPE_NAME (SYMBOL_TYPE (sym))
1345 = obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1346 (char *) NULL);
1347 add_symbol_to_list (sym, get_file_symbols ());
1348
1349 if (synonym)
1350 {
1351 /* Clone the sym and then modify it. */
1352 struct symbol *typedef_sym = allocate_symbol (objfile);
1353
1354 *typedef_sym = *sym;
1355 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1356 SYMBOL_VALUE (typedef_sym) = valu;
1357 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1358 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1359 TYPE_NAME (SYMBOL_TYPE (sym))
1360 = obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1361 (char *) NULL);
1362 add_symbol_to_list (typedef_sym, get_file_symbols ());
1363 }
1364 break;
1365
1366 case 'V':
1367 /* Static symbol of local scope. */
1368 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1369 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1370 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1371 if (gdbarch_static_transform_name_p (gdbarch)
1372 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1373 != sym->linkage_name ())
1374 {
1375 struct bound_minimal_symbol msym;
1376
1377 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
1378 if (msym.minsym != NULL)
1379 {
1380 const char *new_name = gdbarch_static_transform_name
1381 (gdbarch, sym->linkage_name ());
1382
1383 sym->set_linkage_name (new_name);
1384 SET_SYMBOL_VALUE_ADDRESS (sym, BMSYMBOL_VALUE_ADDRESS (msym));
1385 }
1386 }
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, get_local_symbols ());
1389 break;
1390
1391 case 'v':
1392 /* Reference parameter */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1395 SYMBOL_IS_ARGUMENT (sym) = 1;
1396 SYMBOL_VALUE (sym) = valu;
1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1398 add_symbol_to_list (sym, get_local_symbols ());
1399 break;
1400
1401 case 'a':
1402 /* Reference parameter which is in a register. */
1403 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1404 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1405 SYMBOL_IS_ARGUMENT (sym) = 1;
1406 SYMBOL_VALUE (sym) = valu;
1407 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1408 add_symbol_to_list (sym, get_local_symbols ());
1409 break;
1410
1411 case 'X':
1412 /* This is used by Sun FORTRAN for "function result value".
1413 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1414 that Pascal uses it too, but when I tried it Pascal used
1415 "x:3" (local symbol) instead. */
1416 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1417 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1418 SYMBOL_VALUE (sym) = valu;
1419 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1420 add_symbol_to_list (sym, get_local_symbols ());
1421 break;
1422
1423 default:
1424 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1425 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1426 SYMBOL_VALUE (sym) = 0;
1427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1428 add_symbol_to_list (sym, get_file_symbols ());
1429 break;
1430 }
1431
1432 /* Some systems pass variables of certain types by reference instead
1433 of by value, i.e. they will pass the address of a structure (in a
1434 register or on the stack) instead of the structure itself. */
1435
1436 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1437 && SYMBOL_IS_ARGUMENT (sym))
1438 {
1439 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1440 variables passed in a register). */
1441 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1442 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1443 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1444 and subsequent arguments on SPARC, for example). */
1445 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1446 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1447 }
1448
1449 return sym;
1450 }
1451
1452 /* Skip rest of this symbol and return an error type.
1453
1454 General notes on error recovery: error_type always skips to the
1455 end of the symbol (modulo cretinous dbx symbol name continuation).
1456 Thus code like this:
1457
1458 if (*(*pp)++ != ';')
1459 return error_type (pp, objfile);
1460
1461 is wrong because if *pp starts out pointing at '\0' (typically as the
1462 result of an earlier error), it will be incremented to point to the
1463 start of the next symbol, which might produce strange results, at least
1464 if you run off the end of the string table. Instead use
1465
1466 if (**pp != ';')
1467 return error_type (pp, objfile);
1468 ++*pp;
1469
1470 or
1471
1472 if (**pp != ';')
1473 foo = error_type (pp, objfile);
1474 else
1475 ++*pp;
1476
1477 And in case it isn't obvious, the point of all this hair is so the compiler
1478 can define new types and new syntaxes, and old versions of the
1479 debugger will be able to read the new symbol tables. */
1480
1481 static struct type *
1482 error_type (const char **pp, struct objfile *objfile)
1483 {
1484 complaint (_("couldn't parse type; debugger out of date?"));
1485 while (1)
1486 {
1487 /* Skip to end of symbol. */
1488 while (**pp != '\0')
1489 {
1490 (*pp)++;
1491 }
1492
1493 /* Check for and handle cretinous dbx symbol name continuation! */
1494 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1495 {
1496 *pp = next_symbol_text (objfile);
1497 }
1498 else
1499 {
1500 break;
1501 }
1502 }
1503 return objfile_type (objfile)->builtin_error;
1504 }
1505 \f
1506
1507 /* Read type information or a type definition; return the type. Even
1508 though this routine accepts either type information or a type
1509 definition, the distinction is relevant--some parts of stabsread.c
1510 assume that type information starts with a digit, '-', or '(' in
1511 deciding whether to call read_type. */
1512
1513 static struct type *
1514 read_type (const char **pp, struct objfile *objfile)
1515 {
1516 struct type *type = 0;
1517 struct type *type1;
1518 int typenums[2];
1519 char type_descriptor;
1520
1521 /* Size in bits of type if specified by a type attribute, or -1 if
1522 there is no size attribute. */
1523 int type_size = -1;
1524
1525 /* Used to distinguish string and bitstring from char-array and set. */
1526 int is_string = 0;
1527
1528 /* Used to distinguish vector from array. */
1529 int is_vector = 0;
1530
1531 /* Read type number if present. The type number may be omitted.
1532 for instance in a two-dimensional array declared with type
1533 "ar1;1;10;ar1;1;10;4". */
1534 if ((**pp >= '0' && **pp <= '9')
1535 || **pp == '('
1536 || **pp == '-')
1537 {
1538 if (read_type_number (pp, typenums) != 0)
1539 return error_type (pp, objfile);
1540
1541 if (**pp != '=')
1542 {
1543 /* Type is not being defined here. Either it already
1544 exists, or this is a forward reference to it.
1545 dbx_alloc_type handles both cases. */
1546 type = dbx_alloc_type (typenums, objfile);
1547
1548 /* If this is a forward reference, arrange to complain if it
1549 doesn't get patched up by the time we're done
1550 reading. */
1551 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1552 add_undefined_type (type, typenums);
1553
1554 return type;
1555 }
1556
1557 /* Type is being defined here. */
1558 /* Skip the '='.
1559 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1560 (*pp) += 2;
1561 }
1562 else
1563 {
1564 /* 'typenums=' not present, type is anonymous. Read and return
1565 the definition, but don't put it in the type vector. */
1566 typenums[0] = typenums[1] = -1;
1567 (*pp)++;
1568 }
1569
1570 again:
1571 type_descriptor = (*pp)[-1];
1572 switch (type_descriptor)
1573 {
1574 case 'x':
1575 {
1576 enum type_code code;
1577
1578 /* Used to index through file_symbols. */
1579 struct pending *ppt;
1580 int i;
1581
1582 /* Name including "struct", etc. */
1583 char *type_name;
1584
1585 {
1586 const char *from, *p, *q1, *q2;
1587
1588 /* Set the type code according to the following letter. */
1589 switch ((*pp)[0])
1590 {
1591 case 's':
1592 code = TYPE_CODE_STRUCT;
1593 break;
1594 case 'u':
1595 code = TYPE_CODE_UNION;
1596 break;
1597 case 'e':
1598 code = TYPE_CODE_ENUM;
1599 break;
1600 default:
1601 {
1602 /* Complain and keep going, so compilers can invent new
1603 cross-reference types. */
1604 complaint (_("Unrecognized cross-reference type `%c'"),
1605 (*pp)[0]);
1606 code = TYPE_CODE_STRUCT;
1607 break;
1608 }
1609 }
1610
1611 q1 = strchr (*pp, '<');
1612 p = strchr (*pp, ':');
1613 if (p == NULL)
1614 return error_type (pp, objfile);
1615 if (q1 && p > q1 && p[1] == ':')
1616 {
1617 int nesting_level = 0;
1618
1619 for (q2 = q1; *q2; q2++)
1620 {
1621 if (*q2 == '<')
1622 nesting_level++;
1623 else if (*q2 == '>')
1624 nesting_level--;
1625 else if (*q2 == ':' && nesting_level == 0)
1626 break;
1627 }
1628 p = q2;
1629 if (*p != ':')
1630 return error_type (pp, objfile);
1631 }
1632 type_name = NULL;
1633 if (get_current_subfile ()->language == language_cplus)
1634 {
1635 char *name = (char *) alloca (p - *pp + 1);
1636
1637 memcpy (name, *pp, p - *pp);
1638 name[p - *pp] = '\0';
1639
1640 std::string new_name = cp_canonicalize_string (name);
1641 if (!new_name.empty ())
1642 type_name = obstack_strdup (&objfile->objfile_obstack,
1643 new_name);
1644 }
1645 if (type_name == NULL)
1646 {
1647 char *to = type_name = (char *)
1648 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1649
1650 /* Copy the name. */
1651 from = *pp + 1;
1652 while (from < p)
1653 *to++ = *from++;
1654 *to = '\0';
1655 }
1656
1657 /* Set the pointer ahead of the name which we just read, and
1658 the colon. */
1659 *pp = p + 1;
1660 }
1661
1662 /* If this type has already been declared, then reuse the same
1663 type, rather than allocating a new one. This saves some
1664 memory. */
1665
1666 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1667 for (i = 0; i < ppt->nsyms; i++)
1668 {
1669 struct symbol *sym = ppt->symbol[i];
1670
1671 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1672 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1673 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1674 && strcmp (sym->linkage_name (), type_name) == 0)
1675 {
1676 obstack_free (&objfile->objfile_obstack, type_name);
1677 type = SYMBOL_TYPE (sym);
1678 if (typenums[0] != -1)
1679 *dbx_lookup_type (typenums, objfile) = type;
1680 return type;
1681 }
1682 }
1683
1684 /* Didn't find the type to which this refers, so we must
1685 be dealing with a forward reference. Allocate a type
1686 structure for it, and keep track of it so we can
1687 fill in the rest of the fields when we get the full
1688 type. */
1689 type = dbx_alloc_type (typenums, objfile);
1690 TYPE_CODE (type) = code;
1691 TYPE_NAME (type) = type_name;
1692 INIT_CPLUS_SPECIFIC (type);
1693 TYPE_STUB (type) = 1;
1694
1695 add_undefined_type (type, typenums);
1696 return type;
1697 }
1698
1699 case '-': /* RS/6000 built-in type */
1700 case '0':
1701 case '1':
1702 case '2':
1703 case '3':
1704 case '4':
1705 case '5':
1706 case '6':
1707 case '7':
1708 case '8':
1709 case '9':
1710 case '(':
1711 (*pp)--;
1712
1713 /* We deal with something like t(1,2)=(3,4)=... which
1714 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1715
1716 /* Allocate and enter the typedef type first.
1717 This handles recursive types. */
1718 type = dbx_alloc_type (typenums, objfile);
1719 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1720 {
1721 struct type *xtype = read_type (pp, objfile);
1722
1723 if (type == xtype)
1724 {
1725 /* It's being defined as itself. That means it is "void". */
1726 TYPE_CODE (type) = TYPE_CODE_VOID;
1727 TYPE_LENGTH (type) = 1;
1728 }
1729 else if (type_size >= 0 || is_string)
1730 {
1731 /* This is the absolute wrong way to construct types. Every
1732 other debug format has found a way around this problem and
1733 the related problems with unnecessarily stubbed types;
1734 someone motivated should attempt to clean up the issue
1735 here as well. Once a type pointed to has been created it
1736 should not be modified.
1737
1738 Well, it's not *absolutely* wrong. Constructing recursive
1739 types (trees, linked lists) necessarily entails modifying
1740 types after creating them. Constructing any loop structure
1741 entails side effects. The Dwarf 2 reader does handle this
1742 more gracefully (it never constructs more than once
1743 instance of a type object, so it doesn't have to copy type
1744 objects wholesale), but it still mutates type objects after
1745 other folks have references to them.
1746
1747 Keep in mind that this circularity/mutation issue shows up
1748 at the source language level, too: C's "incomplete types",
1749 for example. So the proper cleanup, I think, would be to
1750 limit GDB's type smashing to match exactly those required
1751 by the source language. So GDB could have a
1752 "complete_this_type" function, but never create unnecessary
1753 copies of a type otherwise. */
1754 replace_type (type, xtype);
1755 TYPE_NAME (type) = NULL;
1756 }
1757 else
1758 {
1759 TYPE_TARGET_STUB (type) = 1;
1760 TYPE_TARGET_TYPE (type) = xtype;
1761 }
1762 }
1763 break;
1764
1765 /* In the following types, we must be sure to overwrite any existing
1766 type that the typenums refer to, rather than allocating a new one
1767 and making the typenums point to the new one. This is because there
1768 may already be pointers to the existing type (if it had been
1769 forward-referenced), and we must change it to a pointer, function,
1770 reference, or whatever, *in-place*. */
1771
1772 case '*': /* Pointer to another type */
1773 type1 = read_type (pp, objfile);
1774 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1775 break;
1776
1777 case '&': /* Reference to another type */
1778 type1 = read_type (pp, objfile);
1779 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1780 TYPE_CODE_REF);
1781 break;
1782
1783 case 'f': /* Function returning another type */
1784 type1 = read_type (pp, objfile);
1785 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1786 break;
1787
1788 case 'g': /* Prototyped function. (Sun) */
1789 {
1790 /* Unresolved questions:
1791
1792 - According to Sun's ``STABS Interface Manual'', for 'f'
1793 and 'F' symbol descriptors, a `0' in the argument type list
1794 indicates a varargs function. But it doesn't say how 'g'
1795 type descriptors represent that info. Someone with access
1796 to Sun's toolchain should try it out.
1797
1798 - According to the comment in define_symbol (search for
1799 `process_prototype_types:'), Sun emits integer arguments as
1800 types which ref themselves --- like `void' types. Do we
1801 have to deal with that here, too? Again, someone with
1802 access to Sun's toolchain should try it out and let us
1803 know. */
1804
1805 const char *type_start = (*pp) - 1;
1806 struct type *return_type = read_type (pp, objfile);
1807 struct type *func_type
1808 = make_function_type (return_type,
1809 dbx_lookup_type (typenums, objfile));
1810 struct type_list {
1811 struct type *type;
1812 struct type_list *next;
1813 } *arg_types = 0;
1814 int num_args = 0;
1815
1816 while (**pp && **pp != '#')
1817 {
1818 struct type *arg_type = read_type (pp, objfile);
1819 struct type_list *newobj = XALLOCA (struct type_list);
1820 newobj->type = arg_type;
1821 newobj->next = arg_types;
1822 arg_types = newobj;
1823 num_args++;
1824 }
1825 if (**pp == '#')
1826 ++*pp;
1827 else
1828 {
1829 complaint (_("Prototyped function type didn't "
1830 "end arguments with `#':\n%s"),
1831 type_start);
1832 }
1833
1834 /* If there is just one argument whose type is `void', then
1835 that's just an empty argument list. */
1836 if (arg_types
1837 && ! arg_types->next
1838 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1839 num_args = 0;
1840
1841 TYPE_FIELDS (func_type)
1842 = (struct field *) TYPE_ALLOC (func_type,
1843 num_args * sizeof (struct field));
1844 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1845 {
1846 int i;
1847 struct type_list *t;
1848
1849 /* We stuck each argument type onto the front of the list
1850 when we read it, so the list is reversed. Build the
1851 fields array right-to-left. */
1852 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1853 TYPE_FIELD_TYPE (func_type, i) = t->type;
1854 }
1855 TYPE_NFIELDS (func_type) = num_args;
1856 TYPE_PROTOTYPED (func_type) = 1;
1857
1858 type = func_type;
1859 break;
1860 }
1861
1862 case 'k': /* Const qualifier on some type (Sun) */
1863 type = read_type (pp, objfile);
1864 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1865 dbx_lookup_type (typenums, objfile));
1866 break;
1867
1868 case 'B': /* Volatile qual on some type (Sun) */
1869 type = read_type (pp, objfile);
1870 type = make_cv_type (TYPE_CONST (type), 1, type,
1871 dbx_lookup_type (typenums, objfile));
1872 break;
1873
1874 case '@':
1875 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1876 { /* Member (class & variable) type */
1877 /* FIXME -- we should be doing smash_to_XXX types here. */
1878
1879 struct type *domain = read_type (pp, objfile);
1880 struct type *memtype;
1881
1882 if (**pp != ',')
1883 /* Invalid member type data format. */
1884 return error_type (pp, objfile);
1885 ++*pp;
1886
1887 memtype = read_type (pp, objfile);
1888 type = dbx_alloc_type (typenums, objfile);
1889 smash_to_memberptr_type (type, domain, memtype);
1890 }
1891 else
1892 /* type attribute */
1893 {
1894 const char *attr = *pp;
1895
1896 /* Skip to the semicolon. */
1897 while (**pp != ';' && **pp != '\0')
1898 ++(*pp);
1899 if (**pp == '\0')
1900 return error_type (pp, objfile);
1901 else
1902 ++ * pp; /* Skip the semicolon. */
1903
1904 switch (*attr)
1905 {
1906 case 's': /* Size attribute */
1907 type_size = atoi (attr + 1);
1908 if (type_size <= 0)
1909 type_size = -1;
1910 break;
1911
1912 case 'S': /* String attribute */
1913 /* FIXME: check to see if following type is array? */
1914 is_string = 1;
1915 break;
1916
1917 case 'V': /* Vector attribute */
1918 /* FIXME: check to see if following type is array? */
1919 is_vector = 1;
1920 break;
1921
1922 default:
1923 /* Ignore unrecognized type attributes, so future compilers
1924 can invent new ones. */
1925 break;
1926 }
1927 ++*pp;
1928 goto again;
1929 }
1930 break;
1931
1932 case '#': /* Method (class & fn) type */
1933 if ((*pp)[0] == '#')
1934 {
1935 /* We'll get the parameter types from the name. */
1936 struct type *return_type;
1937
1938 (*pp)++;
1939 return_type = read_type (pp, objfile);
1940 if (*(*pp)++ != ';')
1941 complaint (_("invalid (minimal) member type "
1942 "data format at symtab pos %d."),
1943 symnum);
1944 type = allocate_stub_method (return_type);
1945 if (typenums[0] != -1)
1946 *dbx_lookup_type (typenums, objfile) = type;
1947 }
1948 else
1949 {
1950 struct type *domain = read_type (pp, objfile);
1951 struct type *return_type;
1952 struct field *args;
1953 int nargs, varargs;
1954
1955 if (**pp != ',')
1956 /* Invalid member type data format. */
1957 return error_type (pp, objfile);
1958 else
1959 ++(*pp);
1960
1961 return_type = read_type (pp, objfile);
1962 args = read_args (pp, ';', objfile, &nargs, &varargs);
1963 if (args == NULL)
1964 return error_type (pp, objfile);
1965 type = dbx_alloc_type (typenums, objfile);
1966 smash_to_method_type (type, domain, return_type, args,
1967 nargs, varargs);
1968 }
1969 break;
1970
1971 case 'r': /* Range type */
1972 type = read_range_type (pp, typenums, type_size, objfile);
1973 if (typenums[0] != -1)
1974 *dbx_lookup_type (typenums, objfile) = type;
1975 break;
1976
1977 case 'b':
1978 {
1979 /* Sun ACC builtin int type */
1980 type = read_sun_builtin_type (pp, typenums, objfile);
1981 if (typenums[0] != -1)
1982 *dbx_lookup_type (typenums, objfile) = type;
1983 }
1984 break;
1985
1986 case 'R': /* Sun ACC builtin float type */
1987 type = read_sun_floating_type (pp, typenums, objfile);
1988 if (typenums[0] != -1)
1989 *dbx_lookup_type (typenums, objfile) = type;
1990 break;
1991
1992 case 'e': /* Enumeration type */
1993 type = dbx_alloc_type (typenums, objfile);
1994 type = read_enum_type (pp, type, objfile);
1995 if (typenums[0] != -1)
1996 *dbx_lookup_type (typenums, objfile) = type;
1997 break;
1998
1999 case 's': /* Struct type */
2000 case 'u': /* Union type */
2001 {
2002 enum type_code type_code = TYPE_CODE_UNDEF;
2003 type = dbx_alloc_type (typenums, objfile);
2004 switch (type_descriptor)
2005 {
2006 case 's':
2007 type_code = TYPE_CODE_STRUCT;
2008 break;
2009 case 'u':
2010 type_code = TYPE_CODE_UNION;
2011 break;
2012 }
2013 type = read_struct_type (pp, type, type_code, objfile);
2014 break;
2015 }
2016
2017 case 'a': /* Array type */
2018 if (**pp != 'r')
2019 return error_type (pp, objfile);
2020 ++*pp;
2021
2022 type = dbx_alloc_type (typenums, objfile);
2023 type = read_array_type (pp, type, objfile);
2024 if (is_string)
2025 TYPE_CODE (type) = TYPE_CODE_STRING;
2026 if (is_vector)
2027 make_vector_type (type);
2028 break;
2029
2030 case 'S': /* Set type */
2031 type1 = read_type (pp, objfile);
2032 type = create_set_type (NULL, type1);
2033 if (typenums[0] != -1)
2034 *dbx_lookup_type (typenums, objfile) = type;
2035 break;
2036
2037 default:
2038 --*pp; /* Go back to the symbol in error. */
2039 /* Particularly important if it was \0! */
2040 return error_type (pp, objfile);
2041 }
2042
2043 if (type == 0)
2044 {
2045 warning (_("GDB internal error, type is NULL in stabsread.c."));
2046 return error_type (pp, objfile);
2047 }
2048
2049 /* Size specified in a type attribute overrides any other size. */
2050 if (type_size != -1)
2051 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2052
2053 return type;
2054 }
2055 \f
2056 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2057 Return the proper type node for a given builtin type number. */
2058
2059 static const struct objfile_key<struct type *,
2060 gdb::noop_deleter<struct type *>>
2061 rs6000_builtin_type_data;
2062
2063 static struct type *
2064 rs6000_builtin_type (int typenum, struct objfile *objfile)
2065 {
2066 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2067
2068 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2069 #define NUMBER_RECOGNIZED 34
2070 struct type *rettype = NULL;
2071
2072 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2073 {
2074 complaint (_("Unknown builtin type %d"), typenum);
2075 return objfile_type (objfile)->builtin_error;
2076 }
2077
2078 if (!negative_types)
2079 {
2080 /* This includes an empty slot for type number -0. */
2081 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2082 NUMBER_RECOGNIZED + 1, struct type *);
2083 rs6000_builtin_type_data.set (objfile, negative_types);
2084 }
2085
2086 if (negative_types[-typenum] != NULL)
2087 return negative_types[-typenum];
2088
2089 #if TARGET_CHAR_BIT != 8
2090 #error This code wrong for TARGET_CHAR_BIT not 8
2091 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2092 that if that ever becomes not true, the correct fix will be to
2093 make the size in the struct type to be in bits, not in units of
2094 TARGET_CHAR_BIT. */
2095 #endif
2096
2097 switch (-typenum)
2098 {
2099 case 1:
2100 /* The size of this and all the other types are fixed, defined
2101 by the debugging format. If there is a type called "int" which
2102 is other than 32 bits, then it should use a new negative type
2103 number (or avoid negative type numbers for that case).
2104 See stabs.texinfo. */
2105 rettype = init_integer_type (objfile, 32, 0, "int");
2106 break;
2107 case 2:
2108 rettype = init_integer_type (objfile, 8, 0, "char");
2109 TYPE_NOSIGN (rettype) = 1;
2110 break;
2111 case 3:
2112 rettype = init_integer_type (objfile, 16, 0, "short");
2113 break;
2114 case 4:
2115 rettype = init_integer_type (objfile, 32, 0, "long");
2116 break;
2117 case 5:
2118 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2119 break;
2120 case 6:
2121 rettype = init_integer_type (objfile, 8, 0, "signed char");
2122 break;
2123 case 7:
2124 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2125 break;
2126 case 8:
2127 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2128 break;
2129 case 9:
2130 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2131 break;
2132 case 10:
2133 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2134 break;
2135 case 11:
2136 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2137 break;
2138 case 12:
2139 /* IEEE single precision (32 bit). */
2140 rettype = init_float_type (objfile, 32, "float",
2141 floatformats_ieee_single);
2142 break;
2143 case 13:
2144 /* IEEE double precision (64 bit). */
2145 rettype = init_float_type (objfile, 64, "double",
2146 floatformats_ieee_double);
2147 break;
2148 case 14:
2149 /* This is an IEEE double on the RS/6000, and different machines with
2150 different sizes for "long double" should use different negative
2151 type numbers. See stabs.texinfo. */
2152 rettype = init_float_type (objfile, 64, "long double",
2153 floatformats_ieee_double);
2154 break;
2155 case 15:
2156 rettype = init_integer_type (objfile, 32, 0, "integer");
2157 break;
2158 case 16:
2159 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2160 break;
2161 case 17:
2162 rettype = init_float_type (objfile, 32, "short real",
2163 floatformats_ieee_single);
2164 break;
2165 case 18:
2166 rettype = init_float_type (objfile, 64, "real",
2167 floatformats_ieee_double);
2168 break;
2169 case 19:
2170 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2171 break;
2172 case 20:
2173 rettype = init_character_type (objfile, 8, 1, "character");
2174 break;
2175 case 21:
2176 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2177 break;
2178 case 22:
2179 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2180 break;
2181 case 23:
2182 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2183 break;
2184 case 24:
2185 rettype = init_boolean_type (objfile, 32, 1, "logical");
2186 break;
2187 case 25:
2188 /* Complex type consisting of two IEEE single precision values. */
2189 rettype = init_complex_type (objfile, "complex",
2190 rs6000_builtin_type (12, objfile));
2191 break;
2192 case 26:
2193 /* Complex type consisting of two IEEE double precision values. */
2194 rettype = init_complex_type (objfile, "double complex",
2195 rs6000_builtin_type (13, objfile));
2196 break;
2197 case 27:
2198 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2199 break;
2200 case 28:
2201 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2202 break;
2203 case 29:
2204 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2205 break;
2206 case 30:
2207 rettype = init_character_type (objfile, 16, 0, "wchar");
2208 break;
2209 case 31:
2210 rettype = init_integer_type (objfile, 64, 0, "long long");
2211 break;
2212 case 32:
2213 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2214 break;
2215 case 33:
2216 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2217 break;
2218 case 34:
2219 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2220 break;
2221 }
2222 negative_types[-typenum] = rettype;
2223 return rettype;
2224 }
2225 \f
2226 /* This page contains subroutines of read_type. */
2227
2228 /* Wrapper around method_name_from_physname to flag a complaint
2229 if there is an error. */
2230
2231 static char *
2232 stabs_method_name_from_physname (const char *physname)
2233 {
2234 char *method_name;
2235
2236 method_name = method_name_from_physname (physname);
2237
2238 if (method_name == NULL)
2239 {
2240 complaint (_("Method has bad physname %s\n"), physname);
2241 return NULL;
2242 }
2243
2244 return method_name;
2245 }
2246
2247 /* Read member function stabs info for C++ classes. The form of each member
2248 function data is:
2249
2250 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2251
2252 An example with two member functions is:
2253
2254 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2255
2256 For the case of overloaded operators, the format is op$::*.funcs, where
2257 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2258 name (such as `+=') and `.' marks the end of the operator name.
2259
2260 Returns 1 for success, 0 for failure. */
2261
2262 static int
2263 read_member_functions (struct stab_field_info *fip, const char **pp,
2264 struct type *type, struct objfile *objfile)
2265 {
2266 int nfn_fields = 0;
2267 int length = 0;
2268 int i;
2269 struct next_fnfield
2270 {
2271 struct next_fnfield *next;
2272 struct fn_field fn_field;
2273 }
2274 *sublist;
2275 struct type *look_ahead_type;
2276 struct next_fnfieldlist *new_fnlist;
2277 struct next_fnfield *new_sublist;
2278 char *main_fn_name;
2279 const char *p;
2280
2281 /* Process each list until we find something that is not a member function
2282 or find the end of the functions. */
2283
2284 while (**pp != ';')
2285 {
2286 /* We should be positioned at the start of the function name.
2287 Scan forward to find the first ':' and if it is not the
2288 first of a "::" delimiter, then this is not a member function. */
2289 p = *pp;
2290 while (*p != ':')
2291 {
2292 p++;
2293 }
2294 if (p[1] != ':')
2295 {
2296 break;
2297 }
2298
2299 sublist = NULL;
2300 look_ahead_type = NULL;
2301 length = 0;
2302
2303 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2304
2305 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2306 {
2307 /* This is a completely wierd case. In order to stuff in the
2308 names that might contain colons (the usual name delimiter),
2309 Mike Tiemann defined a different name format which is
2310 signalled if the identifier is "op$". In that case, the
2311 format is "op$::XXXX." where XXXX is the name. This is
2312 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2313 /* This lets the user type "break operator+".
2314 We could just put in "+" as the name, but that wouldn't
2315 work for "*". */
2316 static char opname[32] = "op$";
2317 char *o = opname + 3;
2318
2319 /* Skip past '::'. */
2320 *pp = p + 2;
2321
2322 STABS_CONTINUE (pp, objfile);
2323 p = *pp;
2324 while (*p != '.')
2325 {
2326 *o++ = *p++;
2327 }
2328 main_fn_name = savestring (opname, o - opname);
2329 /* Skip past '.' */
2330 *pp = p + 1;
2331 }
2332 else
2333 {
2334 main_fn_name = savestring (*pp, p - *pp);
2335 /* Skip past '::'. */
2336 *pp = p + 2;
2337 }
2338 new_fnlist->fn_fieldlist.name = main_fn_name;
2339
2340 do
2341 {
2342 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2343
2344 /* Check for and handle cretinous dbx symbol name continuation! */
2345 if (look_ahead_type == NULL)
2346 {
2347 /* Normal case. */
2348 STABS_CONTINUE (pp, objfile);
2349
2350 new_sublist->fn_field.type = read_type (pp, objfile);
2351 if (**pp != ':')
2352 {
2353 /* Invalid symtab info for member function. */
2354 return 0;
2355 }
2356 }
2357 else
2358 {
2359 /* g++ version 1 kludge */
2360 new_sublist->fn_field.type = look_ahead_type;
2361 look_ahead_type = NULL;
2362 }
2363
2364 (*pp)++;
2365 p = *pp;
2366 while (*p != ';')
2367 {
2368 p++;
2369 }
2370
2371 /* These are methods, not functions. */
2372 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2373 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2374 else
2375 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2376 == TYPE_CODE_METHOD);
2377
2378 /* If this is just a stub, then we don't have the real name here. */
2379 if (TYPE_STUB (new_sublist->fn_field.type))
2380 {
2381 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2382 set_type_self_type (new_sublist->fn_field.type, type);
2383 new_sublist->fn_field.is_stub = 1;
2384 }
2385
2386 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2387 *pp = p + 1;
2388
2389 /* Set this member function's visibility fields. */
2390 switch (*(*pp)++)
2391 {
2392 case VISIBILITY_PRIVATE:
2393 new_sublist->fn_field.is_private = 1;
2394 break;
2395 case VISIBILITY_PROTECTED:
2396 new_sublist->fn_field.is_protected = 1;
2397 break;
2398 }
2399
2400 STABS_CONTINUE (pp, objfile);
2401 switch (**pp)
2402 {
2403 case 'A': /* Normal functions. */
2404 new_sublist->fn_field.is_const = 0;
2405 new_sublist->fn_field.is_volatile = 0;
2406 (*pp)++;
2407 break;
2408 case 'B': /* `const' member functions. */
2409 new_sublist->fn_field.is_const = 1;
2410 new_sublist->fn_field.is_volatile = 0;
2411 (*pp)++;
2412 break;
2413 case 'C': /* `volatile' member function. */
2414 new_sublist->fn_field.is_const = 0;
2415 new_sublist->fn_field.is_volatile = 1;
2416 (*pp)++;
2417 break;
2418 case 'D': /* `const volatile' member function. */
2419 new_sublist->fn_field.is_const = 1;
2420 new_sublist->fn_field.is_volatile = 1;
2421 (*pp)++;
2422 break;
2423 case '*': /* File compiled with g++ version 1 --
2424 no info. */
2425 case '?':
2426 case '.':
2427 break;
2428 default:
2429 complaint (_("const/volatile indicator missing, got '%c'"),
2430 **pp);
2431 break;
2432 }
2433
2434 switch (*(*pp)++)
2435 {
2436 case '*':
2437 {
2438 int nbits;
2439 /* virtual member function, followed by index.
2440 The sign bit is set to distinguish pointers-to-methods
2441 from virtual function indicies. Since the array is
2442 in words, the quantity must be shifted left by 1
2443 on 16 bit machine, and by 2 on 32 bit machine, forcing
2444 the sign bit out, and usable as a valid index into
2445 the array. Remove the sign bit here. */
2446 new_sublist->fn_field.voffset =
2447 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2448 if (nbits != 0)
2449 return 0;
2450
2451 STABS_CONTINUE (pp, objfile);
2452 if (**pp == ';' || **pp == '\0')
2453 {
2454 /* Must be g++ version 1. */
2455 new_sublist->fn_field.fcontext = 0;
2456 }
2457 else
2458 {
2459 /* Figure out from whence this virtual function came.
2460 It may belong to virtual function table of
2461 one of its baseclasses. */
2462 look_ahead_type = read_type (pp, objfile);
2463 if (**pp == ':')
2464 {
2465 /* g++ version 1 overloaded methods. */
2466 }
2467 else
2468 {
2469 new_sublist->fn_field.fcontext = look_ahead_type;
2470 if (**pp != ';')
2471 {
2472 return 0;
2473 }
2474 else
2475 {
2476 ++*pp;
2477 }
2478 look_ahead_type = NULL;
2479 }
2480 }
2481 break;
2482 }
2483 case '?':
2484 /* static member function. */
2485 {
2486 int slen = strlen (main_fn_name);
2487
2488 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2489
2490 /* For static member functions, we can't tell if they
2491 are stubbed, as they are put out as functions, and not as
2492 methods.
2493 GCC v2 emits the fully mangled name if
2494 dbxout.c:flag_minimal_debug is not set, so we have to
2495 detect a fully mangled physname here and set is_stub
2496 accordingly. Fully mangled physnames in v2 start with
2497 the member function name, followed by two underscores.
2498 GCC v3 currently always emits stubbed member functions,
2499 but with fully mangled physnames, which start with _Z. */
2500 if (!(strncmp (new_sublist->fn_field.physname,
2501 main_fn_name, slen) == 0
2502 && new_sublist->fn_field.physname[slen] == '_'
2503 && new_sublist->fn_field.physname[slen + 1] == '_'))
2504 {
2505 new_sublist->fn_field.is_stub = 1;
2506 }
2507 break;
2508 }
2509
2510 default:
2511 /* error */
2512 complaint (_("member function type missing, got '%c'"),
2513 (*pp)[-1]);
2514 /* Normal member function. */
2515 /* Fall through. */
2516
2517 case '.':
2518 /* normal member function. */
2519 new_sublist->fn_field.voffset = 0;
2520 new_sublist->fn_field.fcontext = 0;
2521 break;
2522 }
2523
2524 new_sublist->next = sublist;
2525 sublist = new_sublist;
2526 length++;
2527 STABS_CONTINUE (pp, objfile);
2528 }
2529 while (**pp != ';' && **pp != '\0');
2530
2531 (*pp)++;
2532 STABS_CONTINUE (pp, objfile);
2533
2534 /* Skip GCC 3.X member functions which are duplicates of the callable
2535 constructor/destructor. */
2536 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2537 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2538 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2539 {
2540 xfree (main_fn_name);
2541 }
2542 else
2543 {
2544 int has_destructor = 0, has_other = 0;
2545 int is_v3 = 0;
2546 struct next_fnfield *tmp_sublist;
2547
2548 /* Various versions of GCC emit various mostly-useless
2549 strings in the name field for special member functions.
2550
2551 For stub methods, we need to defer correcting the name
2552 until we are ready to unstub the method, because the current
2553 name string is used by gdb_mangle_name. The only stub methods
2554 of concern here are GNU v2 operators; other methods have their
2555 names correct (see caveat below).
2556
2557 For non-stub methods, in GNU v3, we have a complete physname.
2558 Therefore we can safely correct the name now. This primarily
2559 affects constructors and destructors, whose name will be
2560 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2561 operators will also have incorrect names; for instance,
2562 "operator int" will be named "operator i" (i.e. the type is
2563 mangled).
2564
2565 For non-stub methods in GNU v2, we have no easy way to
2566 know if we have a complete physname or not. For most
2567 methods the result depends on the platform (if CPLUS_MARKER
2568 can be `$' or `.', it will use minimal debug information, or
2569 otherwise the full physname will be included).
2570
2571 Rather than dealing with this, we take a different approach.
2572 For v3 mangled names, we can use the full physname; for v2,
2573 we use cplus_demangle_opname (which is actually v2 specific),
2574 because the only interesting names are all operators - once again
2575 barring the caveat below. Skip this process if any method in the
2576 group is a stub, to prevent our fouling up the workings of
2577 gdb_mangle_name.
2578
2579 The caveat: GCC 2.95.x (and earlier?) put constructors and
2580 destructors in the same method group. We need to split this
2581 into two groups, because they should have different names.
2582 So for each method group we check whether it contains both
2583 routines whose physname appears to be a destructor (the physnames
2584 for and destructors are always provided, due to quirks in v2
2585 mangling) and routines whose physname does not appear to be a
2586 destructor. If so then we break up the list into two halves.
2587 Even if the constructors and destructors aren't in the same group
2588 the destructor will still lack the leading tilde, so that also
2589 needs to be fixed.
2590
2591 So, to summarize what we expect and handle here:
2592
2593 Given Given Real Real Action
2594 method name physname physname method name
2595
2596 __opi [none] __opi__3Foo operator int opname
2597 [now or later]
2598 Foo _._3Foo _._3Foo ~Foo separate and
2599 rename
2600 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2601 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2602 */
2603
2604 tmp_sublist = sublist;
2605 while (tmp_sublist != NULL)
2606 {
2607 if (tmp_sublist->fn_field.physname[0] == '_'
2608 && tmp_sublist->fn_field.physname[1] == 'Z')
2609 is_v3 = 1;
2610
2611 if (is_destructor_name (tmp_sublist->fn_field.physname))
2612 has_destructor++;
2613 else
2614 has_other++;
2615
2616 tmp_sublist = tmp_sublist->next;
2617 }
2618
2619 if (has_destructor && has_other)
2620 {
2621 struct next_fnfieldlist *destr_fnlist;
2622 struct next_fnfield *last_sublist;
2623
2624 /* Create a new fn_fieldlist for the destructors. */
2625
2626 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2627 struct next_fnfieldlist);
2628
2629 destr_fnlist->fn_fieldlist.name
2630 = obconcat (&objfile->objfile_obstack, "~",
2631 new_fnlist->fn_fieldlist.name, (char *) NULL);
2632
2633 destr_fnlist->fn_fieldlist.fn_fields =
2634 XOBNEWVEC (&objfile->objfile_obstack,
2635 struct fn_field, has_destructor);
2636 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2637 sizeof (struct fn_field) * has_destructor);
2638 tmp_sublist = sublist;
2639 last_sublist = NULL;
2640 i = 0;
2641 while (tmp_sublist != NULL)
2642 {
2643 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2644 {
2645 tmp_sublist = tmp_sublist->next;
2646 continue;
2647 }
2648
2649 destr_fnlist->fn_fieldlist.fn_fields[i++]
2650 = tmp_sublist->fn_field;
2651 if (last_sublist)
2652 last_sublist->next = tmp_sublist->next;
2653 else
2654 sublist = tmp_sublist->next;
2655 last_sublist = tmp_sublist;
2656 tmp_sublist = tmp_sublist->next;
2657 }
2658
2659 destr_fnlist->fn_fieldlist.length = has_destructor;
2660 destr_fnlist->next = fip->fnlist;
2661 fip->fnlist = destr_fnlist;
2662 nfn_fields++;
2663 length -= has_destructor;
2664 }
2665 else if (is_v3)
2666 {
2667 /* v3 mangling prevents the use of abbreviated physnames,
2668 so we can do this here. There are stubbed methods in v3
2669 only:
2670 - in -gstabs instead of -gstabs+
2671 - or for static methods, which are output as a function type
2672 instead of a method type. */
2673 char *new_method_name =
2674 stabs_method_name_from_physname (sublist->fn_field.physname);
2675
2676 if (new_method_name != NULL
2677 && strcmp (new_method_name,
2678 new_fnlist->fn_fieldlist.name) != 0)
2679 {
2680 new_fnlist->fn_fieldlist.name = new_method_name;
2681 xfree (main_fn_name);
2682 }
2683 else
2684 xfree (new_method_name);
2685 }
2686 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2687 {
2688 new_fnlist->fn_fieldlist.name =
2689 obconcat (&objfile->objfile_obstack,
2690 "~", main_fn_name, (char *)NULL);
2691 xfree (main_fn_name);
2692 }
2693
2694 new_fnlist->fn_fieldlist.fn_fields
2695 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2696 for (i = length; (i--, sublist); sublist = sublist->next)
2697 {
2698 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2699 }
2700
2701 new_fnlist->fn_fieldlist.length = length;
2702 new_fnlist->next = fip->fnlist;
2703 fip->fnlist = new_fnlist;
2704 nfn_fields++;
2705 }
2706 }
2707
2708 if (nfn_fields)
2709 {
2710 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2711 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2712 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2713 memset (TYPE_FN_FIELDLISTS (type), 0,
2714 sizeof (struct fn_fieldlist) * nfn_fields);
2715 TYPE_NFN_FIELDS (type) = nfn_fields;
2716 }
2717
2718 return 1;
2719 }
2720
2721 /* Special GNU C++ name.
2722
2723 Returns 1 for success, 0 for failure. "failure" means that we can't
2724 keep parsing and it's time for error_type(). */
2725
2726 static int
2727 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2728 struct type *type, struct objfile *objfile)
2729 {
2730 const char *p;
2731 const char *name;
2732 char cpp_abbrev;
2733 struct type *context;
2734
2735 p = *pp;
2736 if (*++p == 'v')
2737 {
2738 name = NULL;
2739 cpp_abbrev = *++p;
2740
2741 *pp = p + 1;
2742
2743 /* At this point, *pp points to something like "22:23=*22...",
2744 where the type number before the ':' is the "context" and
2745 everything after is a regular type definition. Lookup the
2746 type, find it's name, and construct the field name. */
2747
2748 context = read_type (pp, objfile);
2749
2750 switch (cpp_abbrev)
2751 {
2752 case 'f': /* $vf -- a virtual function table pointer */
2753 name = TYPE_NAME (context);
2754 if (name == NULL)
2755 {
2756 name = "";
2757 }
2758 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2759 vptr_name, name, (char *) NULL);
2760 break;
2761
2762 case 'b': /* $vb -- a virtual bsomethingorother */
2763 name = TYPE_NAME (context);
2764 if (name == NULL)
2765 {
2766 complaint (_("C++ abbreviated type name "
2767 "unknown at symtab pos %d"),
2768 symnum);
2769 name = "FOO";
2770 }
2771 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2772 name, (char *) NULL);
2773 break;
2774
2775 default:
2776 invalid_cpp_abbrev_complaint (*pp);
2777 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2778 "INVALID_CPLUSPLUS_ABBREV",
2779 (char *) NULL);
2780 break;
2781 }
2782
2783 /* At this point, *pp points to the ':'. Skip it and read the
2784 field type. */
2785
2786 p = ++(*pp);
2787 if (p[-1] != ':')
2788 {
2789 invalid_cpp_abbrev_complaint (*pp);
2790 return 0;
2791 }
2792 fip->list->field.type = read_type (pp, objfile);
2793 if (**pp == ',')
2794 (*pp)++; /* Skip the comma. */
2795 else
2796 return 0;
2797
2798 {
2799 int nbits;
2800
2801 SET_FIELD_BITPOS (fip->list->field,
2802 read_huge_number (pp, ';', &nbits, 0));
2803 if (nbits != 0)
2804 return 0;
2805 }
2806 /* This field is unpacked. */
2807 FIELD_BITSIZE (fip->list->field) = 0;
2808 fip->list->visibility = VISIBILITY_PRIVATE;
2809 }
2810 else
2811 {
2812 invalid_cpp_abbrev_complaint (*pp);
2813 /* We have no idea what syntax an unrecognized abbrev would have, so
2814 better return 0. If we returned 1, we would need to at least advance
2815 *pp to avoid an infinite loop. */
2816 return 0;
2817 }
2818 return 1;
2819 }
2820
2821 static void
2822 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2823 const char *p, struct type *type,
2824 struct objfile *objfile)
2825 {
2826 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2827
2828 fip->list->field.name
2829 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
2830 *pp = p + 1;
2831
2832 /* This means we have a visibility for a field coming. */
2833 if (**pp == '/')
2834 {
2835 (*pp)++;
2836 fip->list->visibility = *(*pp)++;
2837 }
2838 else
2839 {
2840 /* normal dbx-style format, no explicit visibility */
2841 fip->list->visibility = VISIBILITY_PUBLIC;
2842 }
2843
2844 fip->list->field.type = read_type (pp, objfile);
2845 if (**pp == ':')
2846 {
2847 p = ++(*pp);
2848 #if 0
2849 /* Possible future hook for nested types. */
2850 if (**pp == '!')
2851 {
2852 fip->list->field.bitpos = (long) -2; /* nested type */
2853 p = ++(*pp);
2854 }
2855 else
2856 ...;
2857 #endif
2858 while (*p != ';')
2859 {
2860 p++;
2861 }
2862 /* Static class member. */
2863 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2864 *pp = p + 1;
2865 return;
2866 }
2867 else if (**pp != ',')
2868 {
2869 /* Bad structure-type format. */
2870 stabs_general_complaint ("bad structure-type format");
2871 return;
2872 }
2873
2874 (*pp)++; /* Skip the comma. */
2875
2876 {
2877 int nbits;
2878
2879 SET_FIELD_BITPOS (fip->list->field,
2880 read_huge_number (pp, ',', &nbits, 0));
2881 if (nbits != 0)
2882 {
2883 stabs_general_complaint ("bad structure-type format");
2884 return;
2885 }
2886 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2887 if (nbits != 0)
2888 {
2889 stabs_general_complaint ("bad structure-type format");
2890 return;
2891 }
2892 }
2893
2894 if (FIELD_BITPOS (fip->list->field) == 0
2895 && FIELD_BITSIZE (fip->list->field) == 0)
2896 {
2897 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2898 it is a field which has been optimized out. The correct stab for
2899 this case is to use VISIBILITY_IGNORE, but that is a recent
2900 invention. (2) It is a 0-size array. For example
2901 union { int num; char str[0]; } foo. Printing _("<no value>" for
2902 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2903 will continue to work, and a 0-size array as a whole doesn't
2904 have any contents to print.
2905
2906 I suspect this probably could also happen with gcc -gstabs (not
2907 -gstabs+) for static fields, and perhaps other C++ extensions.
2908 Hopefully few people use -gstabs with gdb, since it is intended
2909 for dbx compatibility. */
2910
2911 /* Ignore this field. */
2912 fip->list->visibility = VISIBILITY_IGNORE;
2913 }
2914 else
2915 {
2916 /* Detect an unpacked field and mark it as such.
2917 dbx gives a bit size for all fields.
2918 Note that forward refs cannot be packed,
2919 and treat enums as if they had the width of ints. */
2920
2921 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2922
2923 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2924 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2925 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2926 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2927 {
2928 FIELD_BITSIZE (fip->list->field) = 0;
2929 }
2930 if ((FIELD_BITSIZE (fip->list->field)
2931 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2932 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2933 && FIELD_BITSIZE (fip->list->field)
2934 == gdbarch_int_bit (gdbarch))
2935 )
2936 &&
2937 FIELD_BITPOS (fip->list->field) % 8 == 0)
2938 {
2939 FIELD_BITSIZE (fip->list->field) = 0;
2940 }
2941 }
2942 }
2943
2944
2945 /* Read struct or class data fields. They have the form:
2946
2947 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2948
2949 At the end, we see a semicolon instead of a field.
2950
2951 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2952 a static field.
2953
2954 The optional VISIBILITY is one of:
2955
2956 '/0' (VISIBILITY_PRIVATE)
2957 '/1' (VISIBILITY_PROTECTED)
2958 '/2' (VISIBILITY_PUBLIC)
2959 '/9' (VISIBILITY_IGNORE)
2960
2961 or nothing, for C style fields with public visibility.
2962
2963 Returns 1 for success, 0 for failure. */
2964
2965 static int
2966 read_struct_fields (struct stab_field_info *fip, const char **pp,
2967 struct type *type, struct objfile *objfile)
2968 {
2969 const char *p;
2970 struct nextfield *newobj;
2971
2972 /* We better set p right now, in case there are no fields at all... */
2973
2974 p = *pp;
2975
2976 /* Read each data member type until we find the terminating ';' at the end of
2977 the data member list, or break for some other reason such as finding the
2978 start of the member function list. */
2979 /* Stab string for structure/union does not end with two ';' in
2980 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2981
2982 while (**pp != ';' && **pp != '\0')
2983 {
2984 STABS_CONTINUE (pp, objfile);
2985 /* Get space to record the next field's data. */
2986 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
2987
2988 newobj->next = fip->list;
2989 fip->list = newobj;
2990
2991 /* Get the field name. */
2992 p = *pp;
2993
2994 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2995 unless the CPLUS_MARKER is followed by an underscore, in
2996 which case it is just the name of an anonymous type, which we
2997 should handle like any other type name. */
2998
2999 if (is_cplus_marker (p[0]) && p[1] != '_')
3000 {
3001 if (!read_cpp_abbrev (fip, pp, type, objfile))
3002 return 0;
3003 continue;
3004 }
3005
3006 /* Look for the ':' that separates the field name from the field
3007 values. Data members are delimited by a single ':', while member
3008 functions are delimited by a pair of ':'s. When we hit the member
3009 functions (if any), terminate scan loop and return. */
3010
3011 while (*p != ':' && *p != '\0')
3012 {
3013 p++;
3014 }
3015 if (*p == '\0')
3016 return 0;
3017
3018 /* Check to see if we have hit the member functions yet. */
3019 if (p[1] == ':')
3020 {
3021 break;
3022 }
3023 read_one_struct_field (fip, pp, p, type, objfile);
3024 }
3025 if (p[0] == ':' && p[1] == ':')
3026 {
3027 /* (the deleted) chill the list of fields: the last entry (at
3028 the head) is a partially constructed entry which we now
3029 scrub. */
3030 fip->list = fip->list->next;
3031 }
3032 return 1;
3033 }
3034 /* *INDENT-OFF* */
3035 /* The stabs for C++ derived classes contain baseclass information which
3036 is marked by a '!' character after the total size. This function is
3037 called when we encounter the baseclass marker, and slurps up all the
3038 baseclass information.
3039
3040 Immediately following the '!' marker is the number of base classes that
3041 the class is derived from, followed by information for each base class.
3042 For each base class, there are two visibility specifiers, a bit offset
3043 to the base class information within the derived class, a reference to
3044 the type for the base class, and a terminating semicolon.
3045
3046 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3047 ^^ ^ ^ ^ ^ ^ ^
3048 Baseclass information marker __________________|| | | | | | |
3049 Number of baseclasses __________________________| | | | | | |
3050 Visibility specifiers (2) ________________________| | | | | |
3051 Offset in bits from start of class _________________| | | | |
3052 Type number for base class ___________________________| | | |
3053 Visibility specifiers (2) _______________________________| | |
3054 Offset in bits from start of class ________________________| |
3055 Type number of base class ____________________________________|
3056
3057 Return 1 for success, 0 for (error-type-inducing) failure. */
3058 /* *INDENT-ON* */
3059
3060
3061
3062 static int
3063 read_baseclasses (struct stab_field_info *fip, const char **pp,
3064 struct type *type, struct objfile *objfile)
3065 {
3066 int i;
3067 struct nextfield *newobj;
3068
3069 if (**pp != '!')
3070 {
3071 return 1;
3072 }
3073 else
3074 {
3075 /* Skip the '!' baseclass information marker. */
3076 (*pp)++;
3077 }
3078
3079 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3080 {
3081 int nbits;
3082
3083 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3084 if (nbits != 0)
3085 return 0;
3086 }
3087
3088 #if 0
3089 /* Some stupid compilers have trouble with the following, so break
3090 it up into simpler expressions. */
3091 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3092 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3093 #else
3094 {
3095 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3096 char *pointer;
3097
3098 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3099 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3100 }
3101 #endif /* 0 */
3102
3103 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3104
3105 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3106 {
3107 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3108
3109 newobj->next = fip->list;
3110 fip->list = newobj;
3111 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3112 field! */
3113
3114 STABS_CONTINUE (pp, objfile);
3115 switch (**pp)
3116 {
3117 case '0':
3118 /* Nothing to do. */
3119 break;
3120 case '1':
3121 SET_TYPE_FIELD_VIRTUAL (type, i);
3122 break;
3123 default:
3124 /* Unknown character. Complain and treat it as non-virtual. */
3125 {
3126 complaint (_("Unknown virtual character `%c' for baseclass"),
3127 **pp);
3128 }
3129 }
3130 ++(*pp);
3131
3132 newobj->visibility = *(*pp)++;
3133 switch (newobj->visibility)
3134 {
3135 case VISIBILITY_PRIVATE:
3136 case VISIBILITY_PROTECTED:
3137 case VISIBILITY_PUBLIC:
3138 break;
3139 default:
3140 /* Bad visibility format. Complain and treat it as
3141 public. */
3142 {
3143 complaint (_("Unknown visibility `%c' for baseclass"),
3144 newobj->visibility);
3145 newobj->visibility = VISIBILITY_PUBLIC;
3146 }
3147 }
3148
3149 {
3150 int nbits;
3151
3152 /* The remaining value is the bit offset of the portion of the object
3153 corresponding to this baseclass. Always zero in the absence of
3154 multiple inheritance. */
3155
3156 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3157 if (nbits != 0)
3158 return 0;
3159 }
3160
3161 /* The last piece of baseclass information is the type of the
3162 base class. Read it, and remember it's type name as this
3163 field's name. */
3164
3165 newobj->field.type = read_type (pp, objfile);
3166 newobj->field.name = TYPE_NAME (newobj->field.type);
3167
3168 /* Skip trailing ';' and bump count of number of fields seen. */
3169 if (**pp == ';')
3170 (*pp)++;
3171 else
3172 return 0;
3173 }
3174 return 1;
3175 }
3176
3177 /* The tail end of stabs for C++ classes that contain a virtual function
3178 pointer contains a tilde, a %, and a type number.
3179 The type number refers to the base class (possibly this class itself) which
3180 contains the vtable pointer for the current class.
3181
3182 This function is called when we have parsed all the method declarations,
3183 so we can look for the vptr base class info. */
3184
3185 static int
3186 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3187 struct type *type, struct objfile *objfile)
3188 {
3189 const char *p;
3190
3191 STABS_CONTINUE (pp, objfile);
3192
3193 /* If we are positioned at a ';', then skip it. */
3194 if (**pp == ';')
3195 {
3196 (*pp)++;
3197 }
3198
3199 if (**pp == '~')
3200 {
3201 (*pp)++;
3202
3203 if (**pp == '=' || **pp == '+' || **pp == '-')
3204 {
3205 /* Obsolete flags that used to indicate the presence
3206 of constructors and/or destructors. */
3207 (*pp)++;
3208 }
3209
3210 /* Read either a '%' or the final ';'. */
3211 if (*(*pp)++ == '%')
3212 {
3213 /* The next number is the type number of the base class
3214 (possibly our own class) which supplies the vtable for
3215 this class. Parse it out, and search that class to find
3216 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3217 and TYPE_VPTR_FIELDNO. */
3218
3219 struct type *t;
3220 int i;
3221
3222 t = read_type (pp, objfile);
3223 p = (*pp)++;
3224 while (*p != '\0' && *p != ';')
3225 {
3226 p++;
3227 }
3228 if (*p == '\0')
3229 {
3230 /* Premature end of symbol. */
3231 return 0;
3232 }
3233
3234 set_type_vptr_basetype (type, t);
3235 if (type == t) /* Our own class provides vtbl ptr. */
3236 {
3237 for (i = TYPE_NFIELDS (t) - 1;
3238 i >= TYPE_N_BASECLASSES (t);
3239 --i)
3240 {
3241 const char *name = TYPE_FIELD_NAME (t, i);
3242
3243 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3244 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3245 {
3246 set_type_vptr_fieldno (type, i);
3247 goto gotit;
3248 }
3249 }
3250 /* Virtual function table field not found. */
3251 complaint (_("virtual function table pointer "
3252 "not found when defining class `%s'"),
3253 TYPE_NAME (type));
3254 return 0;
3255 }
3256 else
3257 {
3258 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3259 }
3260
3261 gotit:
3262 *pp = p + 1;
3263 }
3264 }
3265 return 1;
3266 }
3267
3268 static int
3269 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3270 {
3271 int n;
3272
3273 for (n = TYPE_NFN_FIELDS (type);
3274 fip->fnlist != NULL;
3275 fip->fnlist = fip->fnlist->next)
3276 {
3277 --n; /* Circumvent Sun3 compiler bug. */
3278 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3279 }
3280 return 1;
3281 }
3282
3283 /* Create the vector of fields, and record how big it is.
3284 We need this info to record proper virtual function table information
3285 for this class's virtual functions. */
3286
3287 static int
3288 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3289 struct objfile *objfile)
3290 {
3291 int nfields = 0;
3292 int non_public_fields = 0;
3293 struct nextfield *scan;
3294
3295 /* Count up the number of fields that we have, as well as taking note of
3296 whether or not there are any non-public fields, which requires us to
3297 allocate and build the private_field_bits and protected_field_bits
3298 bitfields. */
3299
3300 for (scan = fip->list; scan != NULL; scan = scan->next)
3301 {
3302 nfields++;
3303 if (scan->visibility != VISIBILITY_PUBLIC)
3304 {
3305 non_public_fields++;
3306 }
3307 }
3308
3309 /* Now we know how many fields there are, and whether or not there are any
3310 non-public fields. Record the field count, allocate space for the
3311 array of fields, and create blank visibility bitfields if necessary. */
3312
3313 TYPE_NFIELDS (type) = nfields;
3314 TYPE_FIELDS (type) = (struct field *)
3315 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3316 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3317
3318 if (non_public_fields)
3319 {
3320 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3321
3322 TYPE_FIELD_PRIVATE_BITS (type) =
3323 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3324 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3325
3326 TYPE_FIELD_PROTECTED_BITS (type) =
3327 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3328 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3329
3330 TYPE_FIELD_IGNORE_BITS (type) =
3331 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3332 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3333 }
3334
3335 /* Copy the saved-up fields into the field vector. Start from the
3336 head of the list, adding to the tail of the field array, so that
3337 they end up in the same order in the array in which they were
3338 added to the list. */
3339
3340 while (nfields-- > 0)
3341 {
3342 TYPE_FIELD (type, nfields) = fip->list->field;
3343 switch (fip->list->visibility)
3344 {
3345 case VISIBILITY_PRIVATE:
3346 SET_TYPE_FIELD_PRIVATE (type, nfields);
3347 break;
3348
3349 case VISIBILITY_PROTECTED:
3350 SET_TYPE_FIELD_PROTECTED (type, nfields);
3351 break;
3352
3353 case VISIBILITY_IGNORE:
3354 SET_TYPE_FIELD_IGNORE (type, nfields);
3355 break;
3356
3357 case VISIBILITY_PUBLIC:
3358 break;
3359
3360 default:
3361 /* Unknown visibility. Complain and treat it as public. */
3362 {
3363 complaint (_("Unknown visibility `%c' for field"),
3364 fip->list->visibility);
3365 }
3366 break;
3367 }
3368 fip->list = fip->list->next;
3369 }
3370 return 1;
3371 }
3372
3373
3374 /* Complain that the compiler has emitted more than one definition for the
3375 structure type TYPE. */
3376 static void
3377 complain_about_struct_wipeout (struct type *type)
3378 {
3379 const char *name = "";
3380 const char *kind = "";
3381
3382 if (TYPE_NAME (type))
3383 {
3384 name = TYPE_NAME (type);
3385 switch (TYPE_CODE (type))
3386 {
3387 case TYPE_CODE_STRUCT: kind = "struct "; break;
3388 case TYPE_CODE_UNION: kind = "union "; break;
3389 case TYPE_CODE_ENUM: kind = "enum "; break;
3390 default: kind = "";
3391 }
3392 }
3393 else
3394 {
3395 name = "<unknown>";
3396 kind = "";
3397 }
3398
3399 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3400 }
3401
3402 /* Set the length for all variants of a same main_type, which are
3403 connected in the closed chain.
3404
3405 This is something that needs to be done when a type is defined *after*
3406 some cross references to this type have already been read. Consider
3407 for instance the following scenario where we have the following two
3408 stabs entries:
3409
3410 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3411 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3412
3413 A stubbed version of type dummy is created while processing the first
3414 stabs entry. The length of that type is initially set to zero, since
3415 it is unknown at this point. Also, a "constant" variation of type
3416 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3417 the stabs line).
3418
3419 The second stabs entry allows us to replace the stubbed definition
3420 with the real definition. However, we still need to adjust the length
3421 of the "constant" variation of that type, as its length was left
3422 untouched during the main type replacement... */
3423
3424 static void
3425 set_length_in_type_chain (struct type *type)
3426 {
3427 struct type *ntype = TYPE_CHAIN (type);
3428
3429 while (ntype != type)
3430 {
3431 if (TYPE_LENGTH(ntype) == 0)
3432 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3433 else
3434 complain_about_struct_wipeout (ntype);
3435 ntype = TYPE_CHAIN (ntype);
3436 }
3437 }
3438
3439 /* Read the description of a structure (or union type) and return an object
3440 describing the type.
3441
3442 PP points to a character pointer that points to the next unconsumed token
3443 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3444 *PP will point to "4a:1,0,32;;".
3445
3446 TYPE points to an incomplete type that needs to be filled in.
3447
3448 OBJFILE points to the current objfile from which the stabs information is
3449 being read. (Note that it is redundant in that TYPE also contains a pointer
3450 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3451 */
3452
3453 static struct type *
3454 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3455 struct objfile *objfile)
3456 {
3457 struct stab_field_info fi;
3458
3459 /* When describing struct/union/class types in stabs, G++ always drops
3460 all qualifications from the name. So if you've got:
3461 struct A { ... struct B { ... }; ... };
3462 then G++ will emit stabs for `struct A::B' that call it simply
3463 `struct B'. Obviously, if you've got a real top-level definition for
3464 `struct B', or other nested definitions, this is going to cause
3465 problems.
3466
3467 Obviously, GDB can't fix this by itself, but it can at least avoid
3468 scribbling on existing structure type objects when new definitions
3469 appear. */
3470 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3471 || TYPE_STUB (type)))
3472 {
3473 complain_about_struct_wipeout (type);
3474
3475 /* It's probably best to return the type unchanged. */
3476 return type;
3477 }
3478
3479 INIT_CPLUS_SPECIFIC (type);
3480 TYPE_CODE (type) = type_code;
3481 TYPE_STUB (type) = 0;
3482
3483 /* First comes the total size in bytes. */
3484
3485 {
3486 int nbits;
3487
3488 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3489 if (nbits != 0)
3490 return error_type (pp, objfile);
3491 set_length_in_type_chain (type);
3492 }
3493
3494 /* Now read the baseclasses, if any, read the regular C struct or C++
3495 class member fields, attach the fields to the type, read the C++
3496 member functions, attach them to the type, and then read any tilde
3497 field (baseclass specifier for the class holding the main vtable). */
3498
3499 if (!read_baseclasses (&fi, pp, type, objfile)
3500 || !read_struct_fields (&fi, pp, type, objfile)
3501 || !attach_fields_to_type (&fi, type, objfile)
3502 || !read_member_functions (&fi, pp, type, objfile)
3503 || !attach_fn_fields_to_type (&fi, type)
3504 || !read_tilde_fields (&fi, pp, type, objfile))
3505 {
3506 type = error_type (pp, objfile);
3507 }
3508
3509 return (type);
3510 }
3511
3512 /* Read a definition of an array type,
3513 and create and return a suitable type object.
3514 Also creates a range type which represents the bounds of that
3515 array. */
3516
3517 static struct type *
3518 read_array_type (const char **pp, struct type *type,
3519 struct objfile *objfile)
3520 {
3521 struct type *index_type, *element_type, *range_type;
3522 int lower, upper;
3523 int adjustable = 0;
3524 int nbits;
3525
3526 /* Format of an array type:
3527 "ar<index type>;lower;upper;<array_contents_type>".
3528 OS9000: "arlower,upper;<array_contents_type>".
3529
3530 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3531 for these, produce a type like float[][]. */
3532
3533 {
3534 index_type = read_type (pp, objfile);
3535 if (**pp != ';')
3536 /* Improper format of array type decl. */
3537 return error_type (pp, objfile);
3538 ++*pp;
3539 }
3540
3541 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3542 {
3543 (*pp)++;
3544 adjustable = 1;
3545 }
3546 lower = read_huge_number (pp, ';', &nbits, 0);
3547
3548 if (nbits != 0)
3549 return error_type (pp, objfile);
3550
3551 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3552 {
3553 (*pp)++;
3554 adjustable = 1;
3555 }
3556 upper = read_huge_number (pp, ';', &nbits, 0);
3557 if (nbits != 0)
3558 return error_type (pp, objfile);
3559
3560 element_type = read_type (pp, objfile);
3561
3562 if (adjustable)
3563 {
3564 lower = 0;
3565 upper = -1;
3566 }
3567
3568 range_type =
3569 create_static_range_type (NULL, index_type, lower, upper);
3570 type = create_array_type (type, element_type, range_type);
3571
3572 return type;
3573 }
3574
3575
3576 /* Read a definition of an enumeration type,
3577 and create and return a suitable type object.
3578 Also defines the symbols that represent the values of the type. */
3579
3580 static struct type *
3581 read_enum_type (const char **pp, struct type *type,
3582 struct objfile *objfile)
3583 {
3584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3585 const char *p;
3586 char *name;
3587 long n;
3588 struct symbol *sym;
3589 int nsyms = 0;
3590 struct pending **symlist;
3591 struct pending *osyms, *syms;
3592 int o_nsyms;
3593 int nbits;
3594 int unsigned_enum = 1;
3595
3596 #if 0
3597 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3598 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3599 to do? For now, force all enum values to file scope. */
3600 if (within_function)
3601 symlist = get_local_symbols ();
3602 else
3603 #endif
3604 symlist = get_file_symbols ();
3605 osyms = *symlist;
3606 o_nsyms = osyms ? osyms->nsyms : 0;
3607
3608 /* The aix4 compiler emits an extra field before the enum members;
3609 my guess is it's a type of some sort. Just ignore it. */
3610 if (**pp == '-')
3611 {
3612 /* Skip over the type. */
3613 while (**pp != ':')
3614 (*pp)++;
3615
3616 /* Skip over the colon. */
3617 (*pp)++;
3618 }
3619
3620 /* Read the value-names and their values.
3621 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3622 A semicolon or comma instead of a NAME means the end. */
3623 while (**pp && **pp != ';' && **pp != ',')
3624 {
3625 STABS_CONTINUE (pp, objfile);
3626 p = *pp;
3627 while (*p != ':')
3628 p++;
3629 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3630 *pp = p + 1;
3631 n = read_huge_number (pp, ',', &nbits, 0);
3632 if (nbits != 0)
3633 return error_type (pp, objfile);
3634
3635 sym = allocate_symbol (objfile);
3636 sym->set_linkage_name (name);
3637 sym->set_language (get_current_subfile ()->language,
3638 &objfile->objfile_obstack);
3639 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3640 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3641 SYMBOL_VALUE (sym) = n;
3642 if (n < 0)
3643 unsigned_enum = 0;
3644 add_symbol_to_list (sym, symlist);
3645 nsyms++;
3646 }
3647
3648 if (**pp == ';')
3649 (*pp)++; /* Skip the semicolon. */
3650
3651 /* Now fill in the fields of the type-structure. */
3652
3653 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3654 set_length_in_type_chain (type);
3655 TYPE_CODE (type) = TYPE_CODE_ENUM;
3656 TYPE_STUB (type) = 0;
3657 if (unsigned_enum)
3658 TYPE_UNSIGNED (type) = 1;
3659 TYPE_NFIELDS (type) = nsyms;
3660 TYPE_FIELDS (type) = (struct field *)
3661 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3662 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3663
3664 /* Find the symbols for the values and put them into the type.
3665 The symbols can be found in the symlist that we put them on
3666 to cause them to be defined. osyms contains the old value
3667 of that symlist; everything up to there was defined by us. */
3668 /* Note that we preserve the order of the enum constants, so
3669 that in something like "enum {FOO, LAST_THING=FOO}" we print
3670 FOO, not LAST_THING. */
3671
3672 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3673 {
3674 int last = syms == osyms ? o_nsyms : 0;
3675 int j = syms->nsyms;
3676
3677 for (; --j >= last; --n)
3678 {
3679 struct symbol *xsym = syms->symbol[j];
3680
3681 SYMBOL_TYPE (xsym) = type;
3682 TYPE_FIELD_NAME (type, n) = xsym->linkage_name ();
3683 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3684 TYPE_FIELD_BITSIZE (type, n) = 0;
3685 }
3686 if (syms == osyms)
3687 break;
3688 }
3689
3690 return type;
3691 }
3692
3693 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3694 typedefs in every file (for int, long, etc):
3695
3696 type = b <signed> <width> <format type>; <offset>; <nbits>
3697 signed = u or s.
3698 optional format type = c or b for char or boolean.
3699 offset = offset from high order bit to start bit of type.
3700 width is # bytes in object of this type, nbits is # bits in type.
3701
3702 The width/offset stuff appears to be for small objects stored in
3703 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3704 FIXME. */
3705
3706 static struct type *
3707 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3708 {
3709 int type_bits;
3710 int nbits;
3711 int unsigned_type;
3712 int boolean_type = 0;
3713
3714 switch (**pp)
3715 {
3716 case 's':
3717 unsigned_type = 0;
3718 break;
3719 case 'u':
3720 unsigned_type = 1;
3721 break;
3722 default:
3723 return error_type (pp, objfile);
3724 }
3725 (*pp)++;
3726
3727 /* For some odd reason, all forms of char put a c here. This is strange
3728 because no other type has this honor. We can safely ignore this because
3729 we actually determine 'char'acterness by the number of bits specified in
3730 the descriptor.
3731 Boolean forms, e.g Fortran logical*X, put a b here. */
3732
3733 if (**pp == 'c')
3734 (*pp)++;
3735 else if (**pp == 'b')
3736 {
3737 boolean_type = 1;
3738 (*pp)++;
3739 }
3740
3741 /* The first number appears to be the number of bytes occupied
3742 by this type, except that unsigned short is 4 instead of 2.
3743 Since this information is redundant with the third number,
3744 we will ignore it. */
3745 read_huge_number (pp, ';', &nbits, 0);
3746 if (nbits != 0)
3747 return error_type (pp, objfile);
3748
3749 /* The second number is always 0, so ignore it too. */
3750 read_huge_number (pp, ';', &nbits, 0);
3751 if (nbits != 0)
3752 return error_type (pp, objfile);
3753
3754 /* The third number is the number of bits for this type. */
3755 type_bits = read_huge_number (pp, 0, &nbits, 0);
3756 if (nbits != 0)
3757 return error_type (pp, objfile);
3758 /* The type *should* end with a semicolon. If it are embedded
3759 in a larger type the semicolon may be the only way to know where
3760 the type ends. If this type is at the end of the stabstring we
3761 can deal with the omitted semicolon (but we don't have to like
3762 it). Don't bother to complain(), Sun's compiler omits the semicolon
3763 for "void". */
3764 if (**pp == ';')
3765 ++(*pp);
3766
3767 if (type_bits == 0)
3768 {
3769 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3770 TARGET_CHAR_BIT, NULL);
3771 if (unsigned_type)
3772 TYPE_UNSIGNED (type) = 1;
3773 return type;
3774 }
3775
3776 if (boolean_type)
3777 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3778 else
3779 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3780 }
3781
3782 static struct type *
3783 read_sun_floating_type (const char **pp, int typenums[2],
3784 struct objfile *objfile)
3785 {
3786 int nbits;
3787 int details;
3788 int nbytes;
3789 struct type *rettype;
3790
3791 /* The first number has more details about the type, for example
3792 FN_COMPLEX. */
3793 details = read_huge_number (pp, ';', &nbits, 0);
3794 if (nbits != 0)
3795 return error_type (pp, objfile);
3796
3797 /* The second number is the number of bytes occupied by this type. */
3798 nbytes = read_huge_number (pp, ';', &nbits, 0);
3799 if (nbits != 0)
3800 return error_type (pp, objfile);
3801
3802 nbits = nbytes * TARGET_CHAR_BIT;
3803
3804 if (details == NF_COMPLEX || details == NF_COMPLEX16
3805 || details == NF_COMPLEX32)
3806 {
3807 rettype = dbx_init_float_type (objfile, nbits / 2);
3808 return init_complex_type (objfile, NULL, rettype);
3809 }
3810
3811 return dbx_init_float_type (objfile, nbits);
3812 }
3813
3814 /* Read a number from the string pointed to by *PP.
3815 The value of *PP is advanced over the number.
3816 If END is nonzero, the character that ends the
3817 number must match END, or an error happens;
3818 and that character is skipped if it does match.
3819 If END is zero, *PP is left pointing to that character.
3820
3821 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3822 the number is represented in an octal representation, assume that
3823 it is represented in a 2's complement representation with a size of
3824 TWOS_COMPLEMENT_BITS.
3825
3826 If the number fits in a long, set *BITS to 0 and return the value.
3827 If not, set *BITS to be the number of bits in the number and return 0.
3828
3829 If encounter garbage, set *BITS to -1 and return 0. */
3830
3831 static long
3832 read_huge_number (const char **pp, int end, int *bits,
3833 int twos_complement_bits)
3834 {
3835 const char *p = *pp;
3836 int sign = 1;
3837 int sign_bit = 0;
3838 long n = 0;
3839 int radix = 10;
3840 char overflow = 0;
3841 int nbits = 0;
3842 int c;
3843 long upper_limit;
3844 int twos_complement_representation = 0;
3845
3846 if (*p == '-')
3847 {
3848 sign = -1;
3849 p++;
3850 }
3851
3852 /* Leading zero means octal. GCC uses this to output values larger
3853 than an int (because that would be hard in decimal). */
3854 if (*p == '0')
3855 {
3856 radix = 8;
3857 p++;
3858 }
3859
3860 /* Skip extra zeros. */
3861 while (*p == '0')
3862 p++;
3863
3864 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3865 {
3866 /* Octal, possibly signed. Check if we have enough chars for a
3867 negative number. */
3868
3869 size_t len;
3870 const char *p1 = p;
3871
3872 while ((c = *p1) >= '0' && c < '8')
3873 p1++;
3874
3875 len = p1 - p;
3876 if (len > twos_complement_bits / 3
3877 || (twos_complement_bits % 3 == 0
3878 && len == twos_complement_bits / 3))
3879 {
3880 /* Ok, we have enough characters for a signed value, check
3881 for signedness by testing if the sign bit is set. */
3882 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3883 c = *p - '0';
3884 if (c & (1 << sign_bit))
3885 {
3886 /* Definitely signed. */
3887 twos_complement_representation = 1;
3888 sign = -1;
3889 }
3890 }
3891 }
3892
3893 upper_limit = LONG_MAX / radix;
3894
3895 while ((c = *p++) >= '0' && c < ('0' + radix))
3896 {
3897 if (n <= upper_limit)
3898 {
3899 if (twos_complement_representation)
3900 {
3901 /* Octal, signed, twos complement representation. In
3902 this case, n is the corresponding absolute value. */
3903 if (n == 0)
3904 {
3905 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3906
3907 n = -sn;
3908 }
3909 else
3910 {
3911 n *= radix;
3912 n -= c - '0';
3913 }
3914 }
3915 else
3916 {
3917 /* unsigned representation */
3918 n *= radix;
3919 n += c - '0'; /* FIXME this overflows anyway. */
3920 }
3921 }
3922 else
3923 overflow = 1;
3924
3925 /* This depends on large values being output in octal, which is
3926 what GCC does. */
3927 if (radix == 8)
3928 {
3929 if (nbits == 0)
3930 {
3931 if (c == '0')
3932 /* Ignore leading zeroes. */
3933 ;
3934 else if (c == '1')
3935 nbits = 1;
3936 else if (c == '2' || c == '3')
3937 nbits = 2;
3938 else
3939 nbits = 3;
3940 }
3941 else
3942 nbits += 3;
3943 }
3944 }
3945 if (end)
3946 {
3947 if (c && c != end)
3948 {
3949 if (bits != NULL)
3950 *bits = -1;
3951 return 0;
3952 }
3953 }
3954 else
3955 --p;
3956
3957 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3958 {
3959 /* We were supposed to parse a number with maximum
3960 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3961 if (bits != NULL)
3962 *bits = -1;
3963 return 0;
3964 }
3965
3966 *pp = p;
3967 if (overflow)
3968 {
3969 if (nbits == 0)
3970 {
3971 /* Large decimal constants are an error (because it is hard to
3972 count how many bits are in them). */
3973 if (bits != NULL)
3974 *bits = -1;
3975 return 0;
3976 }
3977
3978 /* -0x7f is the same as 0x80. So deal with it by adding one to
3979 the number of bits. Two's complement represention octals
3980 can't have a '-' in front. */
3981 if (sign == -1 && !twos_complement_representation)
3982 ++nbits;
3983 if (bits)
3984 *bits = nbits;
3985 }
3986 else
3987 {
3988 if (bits)
3989 *bits = 0;
3990 return n * sign;
3991 }
3992 /* It's *BITS which has the interesting information. */
3993 return 0;
3994 }
3995
3996 static struct type *
3997 read_range_type (const char **pp, int typenums[2], int type_size,
3998 struct objfile *objfile)
3999 {
4000 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4001 const char *orig_pp = *pp;
4002 int rangenums[2];
4003 long n2, n3;
4004 int n2bits, n3bits;
4005 int self_subrange;
4006 struct type *result_type;
4007 struct type *index_type = NULL;
4008
4009 /* First comes a type we are a subrange of.
4010 In C it is usually 0, 1 or the type being defined. */
4011 if (read_type_number (pp, rangenums) != 0)
4012 return error_type (pp, objfile);
4013 self_subrange = (rangenums[0] == typenums[0] &&
4014 rangenums[1] == typenums[1]);
4015
4016 if (**pp == '=')
4017 {
4018 *pp = orig_pp;
4019 index_type = read_type (pp, objfile);
4020 }
4021
4022 /* A semicolon should now follow; skip it. */
4023 if (**pp == ';')
4024 (*pp)++;
4025
4026 /* The remaining two operands are usually lower and upper bounds
4027 of the range. But in some special cases they mean something else. */
4028 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4029 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4030
4031 if (n2bits == -1 || n3bits == -1)
4032 return error_type (pp, objfile);
4033
4034 if (index_type)
4035 goto handle_true_range;
4036
4037 /* If limits are huge, must be large integral type. */
4038 if (n2bits != 0 || n3bits != 0)
4039 {
4040 char got_signed = 0;
4041 char got_unsigned = 0;
4042 /* Number of bits in the type. */
4043 int nbits = 0;
4044
4045 /* If a type size attribute has been specified, the bounds of
4046 the range should fit in this size. If the lower bounds needs
4047 more bits than the upper bound, then the type is signed. */
4048 if (n2bits <= type_size && n3bits <= type_size)
4049 {
4050 if (n2bits == type_size && n2bits > n3bits)
4051 got_signed = 1;
4052 else
4053 got_unsigned = 1;
4054 nbits = type_size;
4055 }
4056 /* Range from 0 to <large number> is an unsigned large integral type. */
4057 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4058 {
4059 got_unsigned = 1;
4060 nbits = n3bits;
4061 }
4062 /* Range from <large number> to <large number>-1 is a large signed
4063 integral type. Take care of the case where <large number> doesn't
4064 fit in a long but <large number>-1 does. */
4065 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4066 || (n2bits != 0 && n3bits == 0
4067 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4068 && n3 == LONG_MAX))
4069 {
4070 got_signed = 1;
4071 nbits = n2bits;
4072 }
4073
4074 if (got_signed || got_unsigned)
4075 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4076 else
4077 return error_type (pp, objfile);
4078 }
4079
4080 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4081 if (self_subrange && n2 == 0 && n3 == 0)
4082 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4083
4084 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4085 is the width in bytes.
4086
4087 Fortran programs appear to use this for complex types also. To
4088 distinguish between floats and complex, g77 (and others?) seem
4089 to use self-subranges for the complexes, and subranges of int for
4090 the floats.
4091
4092 Also note that for complexes, g77 sets n2 to the size of one of
4093 the member floats, not the whole complex beast. My guess is that
4094 this was to work well with pre-COMPLEX versions of gdb. */
4095
4096 if (n3 == 0 && n2 > 0)
4097 {
4098 struct type *float_type
4099 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4100
4101 if (self_subrange)
4102 return init_complex_type (objfile, NULL, float_type);
4103 else
4104 return float_type;
4105 }
4106
4107 /* If the upper bound is -1, it must really be an unsigned integral. */
4108
4109 else if (n2 == 0 && n3 == -1)
4110 {
4111 int bits = type_size;
4112
4113 if (bits <= 0)
4114 {
4115 /* We don't know its size. It is unsigned int or unsigned
4116 long. GCC 2.3.3 uses this for long long too, but that is
4117 just a GDB 3.5 compatibility hack. */
4118 bits = gdbarch_int_bit (gdbarch);
4119 }
4120
4121 return init_integer_type (objfile, bits, 1, NULL);
4122 }
4123
4124 /* Special case: char is defined (Who knows why) as a subrange of
4125 itself with range 0-127. */
4126 else if (self_subrange && n2 == 0 && n3 == 127)
4127 {
4128 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4129 0, NULL);
4130 TYPE_NOSIGN (type) = 1;
4131 return type;
4132 }
4133 /* We used to do this only for subrange of self or subrange of int. */
4134 else if (n2 == 0)
4135 {
4136 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4137 "unsigned long", and we already checked for that,
4138 so don't need to test for it here. */
4139
4140 if (n3 < 0)
4141 /* n3 actually gives the size. */
4142 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4143
4144 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4145 unsigned n-byte integer. But do require n to be a power of
4146 two; we don't want 3- and 5-byte integers flying around. */
4147 {
4148 int bytes;
4149 unsigned long bits;
4150
4151 bits = n3;
4152 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4153 bits >>= 8;
4154 if (bits == 0
4155 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4156 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4157 }
4158 }
4159 /* I think this is for Convex "long long". Since I don't know whether
4160 Convex sets self_subrange, I also accept that particular size regardless
4161 of self_subrange. */
4162 else if (n3 == 0 && n2 < 0
4163 && (self_subrange
4164 || n2 == -gdbarch_long_long_bit
4165 (gdbarch) / TARGET_CHAR_BIT))
4166 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4167 else if (n2 == -n3 - 1)
4168 {
4169 if (n3 == 0x7f)
4170 return init_integer_type (objfile, 8, 0, NULL);
4171 if (n3 == 0x7fff)
4172 return init_integer_type (objfile, 16, 0, NULL);
4173 if (n3 == 0x7fffffff)
4174 return init_integer_type (objfile, 32, 0, NULL);
4175 }
4176
4177 /* We have a real range type on our hands. Allocate space and
4178 return a real pointer. */
4179 handle_true_range:
4180
4181 if (self_subrange)
4182 index_type = objfile_type (objfile)->builtin_int;
4183 else
4184 index_type = *dbx_lookup_type (rangenums, objfile);
4185 if (index_type == NULL)
4186 {
4187 /* Does this actually ever happen? Is that why we are worrying
4188 about dealing with it rather than just calling error_type? */
4189
4190 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4191
4192 index_type = objfile_type (objfile)->builtin_int;
4193 }
4194
4195 result_type
4196 = create_static_range_type (NULL, index_type, n2, n3);
4197 return (result_type);
4198 }
4199
4200 /* Read in an argument list. This is a list of types, separated by commas
4201 and terminated with END. Return the list of types read in, or NULL
4202 if there is an error. */
4203
4204 static struct field *
4205 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4206 int *varargsp)
4207 {
4208 /* FIXME! Remove this arbitrary limit! */
4209 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4210 int n = 0, i;
4211 struct field *rval;
4212
4213 while (**pp != end)
4214 {
4215 if (**pp != ',')
4216 /* Invalid argument list: no ','. */
4217 return NULL;
4218 (*pp)++;
4219 STABS_CONTINUE (pp, objfile);
4220 types[n++] = read_type (pp, objfile);
4221 }
4222 (*pp)++; /* get past `end' (the ':' character). */
4223
4224 if (n == 0)
4225 {
4226 /* We should read at least the THIS parameter here. Some broken stabs
4227 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4228 have been present ";-16,(0,43)" reference instead. This way the
4229 excessive ";" marker prematurely stops the parameters parsing. */
4230
4231 complaint (_("Invalid (empty) method arguments"));
4232 *varargsp = 0;
4233 }
4234 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4235 *varargsp = 1;
4236 else
4237 {
4238 n--;
4239 *varargsp = 0;
4240 }
4241
4242 rval = XCNEWVEC (struct field, n);
4243 for (i = 0; i < n; i++)
4244 rval[i].type = types[i];
4245 *nargsp = n;
4246 return rval;
4247 }
4248 \f
4249 /* Common block handling. */
4250
4251 /* List of symbols declared since the last BCOMM. This list is a tail
4252 of local_symbols. When ECOMM is seen, the symbols on the list
4253 are noted so their proper addresses can be filled in later,
4254 using the common block base address gotten from the assembler
4255 stabs. */
4256
4257 static struct pending *common_block;
4258 static int common_block_i;
4259
4260 /* Name of the current common block. We get it from the BCOMM instead of the
4261 ECOMM to match IBM documentation (even though IBM puts the name both places
4262 like everyone else). */
4263 static char *common_block_name;
4264
4265 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4266 to remain after this function returns. */
4267
4268 void
4269 common_block_start (const char *name, struct objfile *objfile)
4270 {
4271 if (common_block_name != NULL)
4272 {
4273 complaint (_("Invalid symbol data: common block within common block"));
4274 }
4275 common_block = *get_local_symbols ();
4276 common_block_i = common_block ? common_block->nsyms : 0;
4277 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4278 }
4279
4280 /* Process a N_ECOMM symbol. */
4281
4282 void
4283 common_block_end (struct objfile *objfile)
4284 {
4285 /* Symbols declared since the BCOMM are to have the common block
4286 start address added in when we know it. common_block and
4287 common_block_i point to the first symbol after the BCOMM in
4288 the local_symbols list; copy the list and hang it off the
4289 symbol for the common block name for later fixup. */
4290 int i;
4291 struct symbol *sym;
4292 struct pending *newobj = 0;
4293 struct pending *next;
4294 int j;
4295
4296 if (common_block_name == NULL)
4297 {
4298 complaint (_("ECOMM symbol unmatched by BCOMM"));
4299 return;
4300 }
4301
4302 sym = allocate_symbol (objfile);
4303 /* Note: common_block_name already saved on objfile_obstack. */
4304 sym->set_linkage_name (common_block_name);
4305 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4306
4307 /* Now we copy all the symbols which have been defined since the BCOMM. */
4308
4309 /* Copy all the struct pendings before common_block. */
4310 for (next = *get_local_symbols ();
4311 next != NULL && next != common_block;
4312 next = next->next)
4313 {
4314 for (j = 0; j < next->nsyms; j++)
4315 add_symbol_to_list (next->symbol[j], &newobj);
4316 }
4317
4318 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4319 NULL, it means copy all the local symbols (which we already did
4320 above). */
4321
4322 if (common_block != NULL)
4323 for (j = common_block_i; j < common_block->nsyms; j++)
4324 add_symbol_to_list (common_block->symbol[j], &newobj);
4325
4326 SYMBOL_TYPE (sym) = (struct type *) newobj;
4327
4328 /* Should we be putting local_symbols back to what it was?
4329 Does it matter? */
4330
4331 i = hashname (sym->linkage_name ());
4332 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4333 global_sym_chain[i] = sym;
4334 common_block_name = NULL;
4335 }
4336
4337 /* Add a common block's start address to the offset of each symbol
4338 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4339 the common block name). */
4340
4341 static void
4342 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4343 {
4344 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4345
4346 for (; next; next = next->next)
4347 {
4348 int j;
4349
4350 for (j = next->nsyms - 1; j >= 0; j--)
4351 SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
4352 SYMBOL_VALUE_ADDRESS (next->symbol[j])
4353 + valu);
4354 }
4355 }
4356 \f
4357
4358
4359 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4360 See add_undefined_type for more details. */
4361
4362 static void
4363 add_undefined_type_noname (struct type *type, int typenums[2])
4364 {
4365 struct nat nat;
4366
4367 nat.typenums[0] = typenums [0];
4368 nat.typenums[1] = typenums [1];
4369 nat.type = type;
4370
4371 if (noname_undefs_length == noname_undefs_allocated)
4372 {
4373 noname_undefs_allocated *= 2;
4374 noname_undefs = (struct nat *)
4375 xrealloc ((char *) noname_undefs,
4376 noname_undefs_allocated * sizeof (struct nat));
4377 }
4378 noname_undefs[noname_undefs_length++] = nat;
4379 }
4380
4381 /* Add TYPE to the UNDEF_TYPES vector.
4382 See add_undefined_type for more details. */
4383
4384 static void
4385 add_undefined_type_1 (struct type *type)
4386 {
4387 if (undef_types_length == undef_types_allocated)
4388 {
4389 undef_types_allocated *= 2;
4390 undef_types = (struct type **)
4391 xrealloc ((char *) undef_types,
4392 undef_types_allocated * sizeof (struct type *));
4393 }
4394 undef_types[undef_types_length++] = type;
4395 }
4396
4397 /* What about types defined as forward references inside of a small lexical
4398 scope? */
4399 /* Add a type to the list of undefined types to be checked through
4400 once this file has been read in.
4401
4402 In practice, we actually maintain two such lists: The first list
4403 (UNDEF_TYPES) is used for types whose name has been provided, and
4404 concerns forward references (eg 'xs' or 'xu' forward references);
4405 the second list (NONAME_UNDEFS) is used for types whose name is
4406 unknown at creation time, because they were referenced through
4407 their type number before the actual type was declared.
4408 This function actually adds the given type to the proper list. */
4409
4410 static void
4411 add_undefined_type (struct type *type, int typenums[2])
4412 {
4413 if (TYPE_NAME (type) == NULL)
4414 add_undefined_type_noname (type, typenums);
4415 else
4416 add_undefined_type_1 (type);
4417 }
4418
4419 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4420
4421 static void
4422 cleanup_undefined_types_noname (struct objfile *objfile)
4423 {
4424 int i;
4425
4426 for (i = 0; i < noname_undefs_length; i++)
4427 {
4428 struct nat nat = noname_undefs[i];
4429 struct type **type;
4430
4431 type = dbx_lookup_type (nat.typenums, objfile);
4432 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4433 {
4434 /* The instance flags of the undefined type are still unset,
4435 and needs to be copied over from the reference type.
4436 Since replace_type expects them to be identical, we need
4437 to set these flags manually before hand. */
4438 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4439 replace_type (nat.type, *type);
4440 }
4441 }
4442
4443 noname_undefs_length = 0;
4444 }
4445
4446 /* Go through each undefined type, see if it's still undefined, and fix it
4447 up if possible. We have two kinds of undefined types:
4448
4449 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4450 Fix: update array length using the element bounds
4451 and the target type's length.
4452 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4453 yet defined at the time a pointer to it was made.
4454 Fix: Do a full lookup on the struct/union tag. */
4455
4456 static void
4457 cleanup_undefined_types_1 (void)
4458 {
4459 struct type **type;
4460
4461 /* Iterate over every undefined type, and look for a symbol whose type
4462 matches our undefined type. The symbol matches if:
4463 1. It is a typedef in the STRUCT domain;
4464 2. It has the same name, and same type code;
4465 3. The instance flags are identical.
4466
4467 It is important to check the instance flags, because we have seen
4468 examples where the debug info contained definitions such as:
4469
4470 "foo_t:t30=B31=xefoo_t:"
4471
4472 In this case, we have created an undefined type named "foo_t" whose
4473 instance flags is null (when processing "xefoo_t"), and then created
4474 another type with the same name, but with different instance flags
4475 ('B' means volatile). I think that the definition above is wrong,
4476 since the same type cannot be volatile and non-volatile at the same
4477 time, but we need to be able to cope with it when it happens. The
4478 approach taken here is to treat these two types as different. */
4479
4480 for (type = undef_types; type < undef_types + undef_types_length; type++)
4481 {
4482 switch (TYPE_CODE (*type))
4483 {
4484
4485 case TYPE_CODE_STRUCT:
4486 case TYPE_CODE_UNION:
4487 case TYPE_CODE_ENUM:
4488 {
4489 /* Check if it has been defined since. Need to do this here
4490 as well as in check_typedef to deal with the (legitimate in
4491 C though not C++) case of several types with the same name
4492 in different source files. */
4493 if (TYPE_STUB (*type))
4494 {
4495 struct pending *ppt;
4496 int i;
4497 /* Name of the type, without "struct" or "union". */
4498 const char *type_name = TYPE_NAME (*type);
4499
4500 if (type_name == NULL)
4501 {
4502 complaint (_("need a type name"));
4503 break;
4504 }
4505 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4506 {
4507 for (i = 0; i < ppt->nsyms; i++)
4508 {
4509 struct symbol *sym = ppt->symbol[i];
4510
4511 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4512 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4513 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4514 TYPE_CODE (*type))
4515 && (TYPE_INSTANCE_FLAGS (*type) ==
4516 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4517 && strcmp (sym->linkage_name (), type_name) == 0)
4518 replace_type (*type, SYMBOL_TYPE (sym));
4519 }
4520 }
4521 }
4522 }
4523 break;
4524
4525 default:
4526 {
4527 complaint (_("forward-referenced types left unresolved, "
4528 "type code %d."),
4529 TYPE_CODE (*type));
4530 }
4531 break;
4532 }
4533 }
4534
4535 undef_types_length = 0;
4536 }
4537
4538 /* Try to fix all the undefined types we encountered while processing
4539 this unit. */
4540
4541 void
4542 cleanup_undefined_stabs_types (struct objfile *objfile)
4543 {
4544 cleanup_undefined_types_1 ();
4545 cleanup_undefined_types_noname (objfile);
4546 }
4547
4548 /* See stabsread.h. */
4549
4550 void
4551 scan_file_globals (struct objfile *objfile)
4552 {
4553 int hash;
4554 struct symbol *sym, *prev;
4555 struct objfile *resolve_objfile;
4556
4557 /* SVR4 based linkers copy referenced global symbols from shared
4558 libraries to the main executable.
4559 If we are scanning the symbols for a shared library, try to resolve
4560 them from the minimal symbols of the main executable first. */
4561
4562 if (symfile_objfile && objfile != symfile_objfile)
4563 resolve_objfile = symfile_objfile;
4564 else
4565 resolve_objfile = objfile;
4566
4567 while (1)
4568 {
4569 /* Avoid expensive loop through all minimal symbols if there are
4570 no unresolved symbols. */
4571 for (hash = 0; hash < HASHSIZE; hash++)
4572 {
4573 if (global_sym_chain[hash])
4574 break;
4575 }
4576 if (hash >= HASHSIZE)
4577 return;
4578
4579 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4580 {
4581 QUIT;
4582
4583 /* Skip static symbols. */
4584 switch (MSYMBOL_TYPE (msymbol))
4585 {
4586 case mst_file_text:
4587 case mst_file_data:
4588 case mst_file_bss:
4589 continue;
4590 default:
4591 break;
4592 }
4593
4594 prev = NULL;
4595
4596 /* Get the hash index and check all the symbols
4597 under that hash index. */
4598
4599 hash = hashname (msymbol->linkage_name ());
4600
4601 for (sym = global_sym_chain[hash]; sym;)
4602 {
4603 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4604 {
4605 /* Splice this symbol out of the hash chain and
4606 assign the value we have to it. */
4607 if (prev)
4608 {
4609 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4610 }
4611 else
4612 {
4613 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4614 }
4615
4616 /* Check to see whether we need to fix up a common block. */
4617 /* Note: this code might be executed several times for
4618 the same symbol if there are multiple references. */
4619 if (sym)
4620 {
4621 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4622 {
4623 fix_common_block (sym,
4624 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4625 msymbol));
4626 }
4627 else
4628 {
4629 SET_SYMBOL_VALUE_ADDRESS
4630 (sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4631 msymbol));
4632 }
4633 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4634 }
4635
4636 if (prev)
4637 {
4638 sym = SYMBOL_VALUE_CHAIN (prev);
4639 }
4640 else
4641 {
4642 sym = global_sym_chain[hash];
4643 }
4644 }
4645 else
4646 {
4647 prev = sym;
4648 sym = SYMBOL_VALUE_CHAIN (sym);
4649 }
4650 }
4651 }
4652 if (resolve_objfile == objfile)
4653 break;
4654 resolve_objfile = objfile;
4655 }
4656
4657 /* Change the storage class of any remaining unresolved globals to
4658 LOC_UNRESOLVED and remove them from the chain. */
4659 for (hash = 0; hash < HASHSIZE; hash++)
4660 {
4661 sym = global_sym_chain[hash];
4662 while (sym)
4663 {
4664 prev = sym;
4665 sym = SYMBOL_VALUE_CHAIN (sym);
4666
4667 /* Change the symbol address from the misleading chain value
4668 to address zero. */
4669 SET_SYMBOL_VALUE_ADDRESS (prev, 0);
4670
4671 /* Complain about unresolved common block symbols. */
4672 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4673 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4674 else
4675 complaint (_("%s: common block `%s' from "
4676 "global_sym_chain unresolved"),
4677 objfile_name (objfile), prev->print_name ());
4678 }
4679 }
4680 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4681 }
4682
4683 /* Initialize anything that needs initializing when starting to read
4684 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4685 to a psymtab. */
4686
4687 void
4688 stabsread_init (void)
4689 {
4690 }
4691
4692 /* Initialize anything that needs initializing when a completely new
4693 symbol file is specified (not just adding some symbols from another
4694 file, e.g. a shared library). */
4695
4696 void
4697 stabsread_new_init (void)
4698 {
4699 /* Empty the hash table of global syms looking for values. */
4700 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4701 }
4702
4703 /* Initialize anything that needs initializing at the same time as
4704 start_symtab() is called. */
4705
4706 void
4707 start_stabs (void)
4708 {
4709 global_stabs = NULL; /* AIX COFF */
4710 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4711 n_this_object_header_files = 1;
4712 type_vector_length = 0;
4713 type_vector = (struct type **) 0;
4714 within_function = 0;
4715
4716 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4717 common_block_name = NULL;
4718 }
4719
4720 /* Call after end_symtab(). */
4721
4722 void
4723 end_stabs (void)
4724 {
4725 if (type_vector)
4726 {
4727 xfree (type_vector);
4728 }
4729 type_vector = 0;
4730 type_vector_length = 0;
4731 previous_stab_code = 0;
4732 }
4733
4734 void
4735 finish_global_stabs (struct objfile *objfile)
4736 {
4737 if (global_stabs)
4738 {
4739 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4740 xfree (global_stabs);
4741 global_stabs = NULL;
4742 }
4743 }
4744
4745 /* Find the end of the name, delimited by a ':', but don't match
4746 ObjC symbols which look like -[Foo bar::]:bla. */
4747 static const char *
4748 find_name_end (const char *name)
4749 {
4750 const char *s = name;
4751
4752 if (s[0] == '-' || *s == '+')
4753 {
4754 /* Must be an ObjC method symbol. */
4755 if (s[1] != '[')
4756 {
4757 error (_("invalid symbol name \"%s\""), name);
4758 }
4759 s = strchr (s, ']');
4760 if (s == NULL)
4761 {
4762 error (_("invalid symbol name \"%s\""), name);
4763 }
4764 return strchr (s, ':');
4765 }
4766 else
4767 {
4768 return strchr (s, ':');
4769 }
4770 }
4771
4772 /* See stabsread.h. */
4773
4774 int
4775 hashname (const char *name)
4776 {
4777 return fast_hash (name, strlen (name)) % HASHSIZE;
4778 }
4779
4780 /* Initializer for this module. */
4781
4782 void
4783 _initialize_stabsread (void)
4784 {
4785 undef_types_allocated = 20;
4786 undef_types_length = 0;
4787 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4788
4789 noname_undefs_allocated = 20;
4790 noname_undefs_length = 0;
4791 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4792
4793 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4794 &stab_register_funcs);
4795 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4796 &stab_register_funcs);
4797 }
This page took 0.147324 seconds and 4 git commands to generate.