Initialize gdb::optional empty payload to quiet false -Wmaybe-uninitialized warnings
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
50 #define EXTERN
51 /**/
52 #include "stabsread.h" /* Our own declarations */
53 #undef EXTERN
54
55 extern void _initialize_stabsread (void);
56
57 struct nextfield
58 {
59 struct nextfield *next;
60
61 /* This is the raw visibility from the stab. It is not checked
62 for being one of the visibilities we recognize, so code which
63 examines this field better be able to deal. */
64 int visibility;
65
66 struct field field;
67 };
68
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 };
74
75 /* The routines that read and process a complete stabs for a C struct or
76 C++ class pass lists of data member fields and lists of member function
77 fields in an instance of a field_info structure, as defined below.
78 This is part of some reorganization of low level C++ support and is
79 expected to eventually go away... (FIXME) */
80
81 struct field_info
82 {
83 struct nextfield *list;
84 struct next_fnfieldlist *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, CORE_ADDR);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("bad register number %d (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210
211 /* Vector of types defined so far, indexed by their type numbers.
212 (In newer sun systems, dbx uses a pair of numbers in parens,
213 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
214 Then these numbers must be translated through the type_translations
215 hash table to get the index into the type vector.) */
216
217 static struct type **type_vector;
218
219 /* Number of elements allocated for type_vector currently. */
220
221 static int type_vector_length;
222
223 /* Initial size of type vector. Is realloc'd larger if needed, and
224 realloc'd down to the size actually used, when completed. */
225
226 #define INITIAL_TYPE_VECTOR_LENGTH 160
227 \f
228
229 /* Look up a dbx type-number pair. Return the address of the slot
230 where the type for that number-pair is stored.
231 The number-pair is in TYPENUMS.
232
233 This can be used for finding the type associated with that pair
234 or for associating a new type with the pair. */
235
236 static struct type **
237 dbx_lookup_type (int typenums[2], struct objfile *objfile)
238 {
239 int filenum = typenums[0];
240 int index = typenums[1];
241 unsigned old_len;
242 int real_filenum;
243 struct header_file *f;
244 int f_orig_length;
245
246 if (filenum == -1) /* -1,-1 is for temporary types. */
247 return 0;
248
249 if (filenum < 0 || filenum >= n_this_object_header_files)
250 {
251 complaint (&symfile_complaints,
252 _("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
254 filenum, index, symnum);
255 goto error_return;
256 }
257
258 if (filenum == 0)
259 {
260 if (index < 0)
261 {
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
268
269 temp_type = rs6000_builtin_type (index, objfile);
270 return &temp_type;
271 }
272
273 /* Type is defined outside of header files.
274 Find it in this object file's type vector. */
275 if (index >= type_vector_length)
276 {
277 old_len = type_vector_length;
278 if (old_len == 0)
279 {
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
281 type_vector = XNEWVEC (struct type *, type_vector_length);
282 }
283 while (index >= type_vector_length)
284 {
285 type_vector_length *= 2;
286 }
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
292 }
293 return (&type_vector[index]);
294 }
295 else
296 {
297 real_filenum = this_object_header_files[filenum];
298
299 if (real_filenum >= N_HEADER_FILES (objfile))
300 {
301 static struct type *temp_type;
302
303 warning (_("GDB internal error: bad real_filenum"));
304
305 error_return:
306 temp_type = objfile_type (objfile)->builtin_error;
307 return &temp_type;
308 }
309
310 f = HEADER_FILES (objfile) + real_filenum;
311
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
314 {
315 while (index >= f->length)
316 {
317 f->length *= 2;
318 }
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
323 }
324 return (&f->vector[index]);
325 }
326 }
327
328 /* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
332 put into the type vector, and so may not be referred to by number. */
333
334 static struct type *
335 dbx_alloc_type (int typenums[2], struct objfile *objfile)
336 {
337 struct type **type_addr;
338
339 if (typenums[0] == -1)
340 {
341 return (alloc_type (objfile));
342 }
343
344 type_addr = dbx_lookup_type (typenums, objfile);
345
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
349 if (*type_addr == 0)
350 {
351 *type_addr = alloc_type (objfile);
352 }
353
354 return (*type_addr);
355 }
356
357 /* Allocate a floating-point type of size BITS. */
358
359 static struct type *
360 dbx_init_float_type (struct objfile *objfile, int bits)
361 {
362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
363 const struct floatformat **format;
364 struct type *type;
365
366 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
367 if (format)
368 type = init_float_type (objfile, bits, NULL, format);
369 else
370 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, NULL);
371
372 return type;
373 }
374
375 /* for all the stabs in a given stab vector, build appropriate types
376 and fix their symbols in given symbol vector. */
377
378 static void
379 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
380 struct objfile *objfile)
381 {
382 int ii;
383 char *name;
384 char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389 /* for all the stab entries, find their corresponding symbols and
390 patch their types! */
391
392 for (ii = 0; ii < stabs->count; ++ii)
393 {
394 name = stabs->stab[ii];
395 pp = (char *) strchr (name, ':');
396 gdb_assert (pp); /* Must find a ':' or game's over. */
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *) strchr (pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp - name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = allocate_symbol (objfile);
417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
418 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
419 SYMBOL_SET_LINKAGE_NAME
420 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
421 name, pp - name));
422 pp += 2;
423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
424 {
425 /* I don't think the linker does this with functions,
426 so as far as I know this is never executed.
427 But it doesn't hurt to check. */
428 SYMBOL_TYPE (sym) =
429 lookup_function_type (read_type (&pp, objfile));
430 }
431 else
432 {
433 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
434 }
435 add_symbol_to_list (sym, &global_symbols);
436 }
437 else
438 {
439 pp += 2;
440 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
441 {
442 SYMBOL_TYPE (sym) =
443 lookup_function_type (read_type (&pp, objfile));
444 }
445 else
446 {
447 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
448 }
449 }
450 }
451 }
452 }
453 \f
454
455 /* Read a number by which a type is referred to in dbx data,
456 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
457 Just a single number N is equivalent to (0,N).
458 Return the two numbers by storing them in the vector TYPENUMS.
459 TYPENUMS will then be used as an argument to dbx_lookup_type.
460
461 Returns 0 for success, -1 for error. */
462
463 static int
464 read_type_number (char **pp, int *typenums)
465 {
466 int nbits;
467
468 if (**pp == '(')
469 {
470 (*pp)++;
471 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
472 if (nbits != 0)
473 return -1;
474 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
475 if (nbits != 0)
476 return -1;
477 }
478 else
479 {
480 typenums[0] = 0;
481 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 }
485 return 0;
486 }
487 \f
488
489 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
490 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
491 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
492 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
493
494 /* Structure for storing pointers to reference definitions for fast lookup
495 during "process_later". */
496
497 struct ref_map
498 {
499 char *stabs;
500 CORE_ADDR value;
501 struct symbol *sym;
502 };
503
504 #define MAX_CHUNK_REFS 100
505 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
506 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
507
508 static struct ref_map *ref_map;
509
510 /* Ptr to free cell in chunk's linked list. */
511 static int ref_count = 0;
512
513 /* Number of chunks malloced. */
514 static int ref_chunk = 0;
515
516 /* This file maintains a cache of stabs aliases found in the symbol
517 table. If the symbol table changes, this cache must be cleared
518 or we are left holding onto data in invalid obstacks. */
519 void
520 stabsread_clear_cache (void)
521 {
522 ref_count = 0;
523 ref_chunk = 0;
524 }
525
526 /* Create array of pointers mapping refids to symbols and stab strings.
527 Add pointers to reference definition symbols and/or their values as we
528 find them, using their reference numbers as our index.
529 These will be used later when we resolve references. */
530 void
531 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
532 {
533 if (ref_count == 0)
534 ref_chunk = 0;
535 if (refnum >= ref_count)
536 ref_count = refnum + 1;
537 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
538 {
539 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
540 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
541
542 ref_map = (struct ref_map *)
543 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
544 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
545 new_chunks * REF_CHUNK_SIZE);
546 ref_chunk += new_chunks;
547 }
548 ref_map[refnum].stabs = stabs;
549 ref_map[refnum].sym = sym;
550 ref_map[refnum].value = value;
551 }
552
553 /* Return defined sym for the reference REFNUM. */
554 struct symbol *
555 ref_search (int refnum)
556 {
557 if (refnum < 0 || refnum > ref_count)
558 return 0;
559 return ref_map[refnum].sym;
560 }
561
562 /* Parse a reference id in STRING and return the resulting
563 reference number. Move STRING beyond the reference id. */
564
565 static int
566 process_reference (char **string)
567 {
568 char *p;
569 int refnum = 0;
570
571 if (**string != '#')
572 return 0;
573
574 /* Advance beyond the initial '#'. */
575 p = *string + 1;
576
577 /* Read number as reference id. */
578 while (*p && isdigit (*p))
579 {
580 refnum = refnum * 10 + *p - '0';
581 p++;
582 }
583 *string = p;
584 return refnum;
585 }
586
587 /* If STRING defines a reference, store away a pointer to the reference
588 definition for later use. Return the reference number. */
589
590 int
591 symbol_reference_defined (char **string)
592 {
593 char *p = *string;
594 int refnum = 0;
595
596 refnum = process_reference (&p);
597
598 /* Defining symbols end in '='. */
599 if (*p == '=')
600 {
601 /* Symbol is being defined here. */
602 *string = p + 1;
603 return refnum;
604 }
605 else
606 {
607 /* Must be a reference. Either the symbol has already been defined,
608 or this is a forward reference to it. */
609 *string = p;
610 return -1;
611 }
612 }
613
614 static int
615 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
616 {
617 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
618
619 if (regno < 0
620 || regno >= (gdbarch_num_regs (gdbarch)
621 + gdbarch_num_pseudo_regs (gdbarch)))
622 {
623 reg_value_complaint (regno,
624 gdbarch_num_regs (gdbarch)
625 + gdbarch_num_pseudo_regs (gdbarch),
626 SYMBOL_PRINT_NAME (sym));
627
628 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
629 }
630
631 return regno;
632 }
633
634 static const struct symbol_register_ops stab_register_funcs = {
635 stab_reg_to_regnum
636 };
637
638 /* The "aclass" indices for computed symbols. */
639
640 static int stab_register_index;
641 static int stab_regparm_index;
642
643 struct symbol *
644 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
645 struct objfile *objfile)
646 {
647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
648 struct symbol *sym;
649 char *p = (char *) find_name_end (string);
650 int deftype;
651 int synonym = 0;
652 int i;
653
654 /* We would like to eliminate nameless symbols, but keep their types.
655 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
656 to type 2, but, should not create a symbol to address that type. Since
657 the symbol will be nameless, there is no way any user can refer to it. */
658
659 int nameless;
660
661 /* Ignore syms with empty names. */
662 if (string[0] == 0)
663 return 0;
664
665 /* Ignore old-style symbols from cc -go. */
666 if (p == 0)
667 return 0;
668
669 while (p[1] == ':')
670 {
671 p += 2;
672 p = strchr (p, ':');
673 if (p == NULL)
674 {
675 complaint (&symfile_complaints,
676 _("Bad stabs string '%s'"), string);
677 return NULL;
678 }
679 }
680
681 /* If a nameless stab entry, all we need is the type, not the symbol.
682 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
683 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
684
685 current_symbol = sym = allocate_symbol (objfile);
686
687 if (processing_gcc_compilation)
688 {
689 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
690 number of bytes occupied by a type or object, which we ignore. */
691 SYMBOL_LINE (sym) = desc;
692 }
693 else
694 {
695 SYMBOL_LINE (sym) = 0; /* unknown */
696 }
697
698 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
699 &objfile->objfile_obstack);
700
701 if (is_cplus_marker (string[0]))
702 {
703 /* Special GNU C++ names. */
704 switch (string[1])
705 {
706 case 't':
707 SYMBOL_SET_LINKAGE_NAME (sym, "this");
708 break;
709
710 case 'v': /* $vtbl_ptr_type */
711 goto normal;
712
713 case 'e':
714 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
715 break;
716
717 case '_':
718 /* This was an anonymous type that was never fixed up. */
719 goto normal;
720
721 case 'X':
722 /* SunPRO (3.0 at least) static variable encoding. */
723 if (gdbarch_static_transform_name_p (gdbarch))
724 goto normal;
725 /* ... fall through ... */
726
727 default:
728 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
729 string);
730 goto normal; /* Do *something* with it. */
731 }
732 }
733 else
734 {
735 normal:
736 std::string new_name;
737
738 if (SYMBOL_LANGUAGE (sym) == language_cplus)
739 {
740 char *name = (char *) alloca (p - string + 1);
741
742 memcpy (name, string, p - string);
743 name[p - string] = '\0';
744 new_name = cp_canonicalize_string (name);
745 }
746 if (!new_name.empty ())
747 {
748 SYMBOL_SET_NAMES (sym,
749 new_name.c_str (), new_name.length (),
750 1, objfile);
751 }
752 else
753 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
754
755 if (SYMBOL_LANGUAGE (sym) == language_cplus)
756 cp_scan_for_anonymous_namespaces (sym, objfile);
757
758 }
759 p++;
760
761 /* Determine the type of name being defined. */
762 #if 0
763 /* Getting GDB to correctly skip the symbol on an undefined symbol
764 descriptor and not ever dump core is a very dodgy proposition if
765 we do things this way. I say the acorn RISC machine can just
766 fix their compiler. */
767 /* The Acorn RISC machine's compiler can put out locals that don't
768 start with "234=" or "(3,4)=", so assume anything other than the
769 deftypes we know how to handle is a local. */
770 if (!strchr ("cfFGpPrStTvVXCR", *p))
771 #else
772 if (isdigit (*p) || *p == '(' || *p == '-')
773 #endif
774 deftype = 'l';
775 else
776 deftype = *p++;
777
778 switch (deftype)
779 {
780 case 'c':
781 /* c is a special case, not followed by a type-number.
782 SYMBOL:c=iVALUE for an integer constant symbol.
783 SYMBOL:c=rVALUE for a floating constant symbol.
784 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
785 e.g. "b:c=e6,0" for "const b = blob1"
786 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
787 if (*p != '=')
788 {
789 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
790 SYMBOL_TYPE (sym) = error_type (&p, objfile);
791 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
792 add_symbol_to_list (sym, &file_symbols);
793 return sym;
794 }
795 ++p;
796 switch (*p++)
797 {
798 case 'r':
799 {
800 double d = atof (p);
801 gdb_byte *dbl_valu;
802 struct type *dbl_type;
803
804 /* FIXME-if-picky-about-floating-accuracy: Should be using
805 target arithmetic to get the value. real.c in GCC
806 probably has the necessary code. */
807
808 dbl_type = objfile_type (objfile)->builtin_double;
809 dbl_valu
810 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
811 TYPE_LENGTH (dbl_type));
812 store_typed_floating (dbl_valu, dbl_type, d);
813
814 SYMBOL_TYPE (sym) = dbl_type;
815 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
816 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
817 }
818 break;
819 case 'i':
820 {
821 /* Defining integer constants this way is kind of silly,
822 since 'e' constants allows the compiler to give not
823 only the value, but the type as well. C has at least
824 int, long, unsigned int, and long long as constant
825 types; other languages probably should have at least
826 unsigned as well as signed constants. */
827
828 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
829 SYMBOL_VALUE (sym) = atoi (p);
830 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
831 }
832 break;
833
834 case 'c':
835 {
836 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
837 SYMBOL_VALUE (sym) = atoi (p);
838 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
839 }
840 break;
841
842 case 's':
843 {
844 struct type *range_type;
845 int ind = 0;
846 char quote = *p++;
847 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
848 gdb_byte *string_value;
849
850 if (quote != '\'' && quote != '"')
851 {
852 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
853 SYMBOL_TYPE (sym) = error_type (&p, objfile);
854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
855 add_symbol_to_list (sym, &file_symbols);
856 return sym;
857 }
858
859 /* Find matching quote, rejecting escaped quotes. */
860 while (*p && *p != quote)
861 {
862 if (*p == '\\' && p[1] == quote)
863 {
864 string_local[ind] = (gdb_byte) quote;
865 ind++;
866 p += 2;
867 }
868 else if (*p)
869 {
870 string_local[ind] = (gdb_byte) (*p);
871 ind++;
872 p++;
873 }
874 }
875 if (*p != quote)
876 {
877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
878 SYMBOL_TYPE (sym) = error_type (&p, objfile);
879 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
880 add_symbol_to_list (sym, &file_symbols);
881 return sym;
882 }
883
884 /* NULL terminate the string. */
885 string_local[ind] = 0;
886 range_type
887 = create_static_range_type (NULL,
888 objfile_type (objfile)->builtin_int,
889 0, ind);
890 SYMBOL_TYPE (sym) = create_array_type (NULL,
891 objfile_type (objfile)->builtin_char,
892 range_type);
893 string_value
894 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
895 memcpy (string_value, string_local, ind + 1);
896 p++;
897
898 SYMBOL_VALUE_BYTES (sym) = string_value;
899 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
900 }
901 break;
902
903 case 'e':
904 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
905 can be represented as integral.
906 e.g. "b:c=e6,0" for "const b = blob1"
907 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
908 {
909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
910 SYMBOL_TYPE (sym) = read_type (&p, objfile);
911
912 if (*p != ',')
913 {
914 SYMBOL_TYPE (sym) = error_type (&p, objfile);
915 break;
916 }
917 ++p;
918
919 /* If the value is too big to fit in an int (perhaps because
920 it is unsigned), or something like that, we silently get
921 a bogus value. The type and everything else about it is
922 correct. Ideally, we should be using whatever we have
923 available for parsing unsigned and long long values,
924 however. */
925 SYMBOL_VALUE (sym) = atoi (p);
926 }
927 break;
928 default:
929 {
930 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
931 SYMBOL_TYPE (sym) = error_type (&p, objfile);
932 }
933 }
934 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
935 add_symbol_to_list (sym, &file_symbols);
936 return sym;
937
938 case 'C':
939 /* The name of a caught exception. */
940 SYMBOL_TYPE (sym) = read_type (&p, objfile);
941 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
942 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
943 SYMBOL_VALUE_ADDRESS (sym) = valu;
944 add_symbol_to_list (sym, &local_symbols);
945 break;
946
947 case 'f':
948 /* A static function definition. */
949 SYMBOL_TYPE (sym) = read_type (&p, objfile);
950 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
951 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
952 add_symbol_to_list (sym, &file_symbols);
953 /* fall into process_function_types. */
954
955 process_function_types:
956 /* Function result types are described as the result type in stabs.
957 We need to convert this to the function-returning-type-X type
958 in GDB. E.g. "int" is converted to "function returning int". */
959 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
960 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
961
962 /* All functions in C++ have prototypes. Stabs does not offer an
963 explicit way to identify prototyped or unprototyped functions,
964 but both GCC and Sun CC emit stabs for the "call-as" type rather
965 than the "declared-as" type for unprototyped functions, so
966 we treat all functions as if they were prototyped. This is used
967 primarily for promotion when calling the function from GDB. */
968 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
969
970 /* fall into process_prototype_types. */
971
972 process_prototype_types:
973 /* Sun acc puts declared types of arguments here. */
974 if (*p == ';')
975 {
976 struct type *ftype = SYMBOL_TYPE (sym);
977 int nsemi = 0;
978 int nparams = 0;
979 char *p1 = p;
980
981 /* Obtain a worst case guess for the number of arguments
982 by counting the semicolons. */
983 while (*p1)
984 {
985 if (*p1++ == ';')
986 nsemi++;
987 }
988
989 /* Allocate parameter information fields and fill them in. */
990 TYPE_FIELDS (ftype) = (struct field *)
991 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
992 while (*p++ == ';')
993 {
994 struct type *ptype;
995
996 /* A type number of zero indicates the start of varargs.
997 FIXME: GDB currently ignores vararg functions. */
998 if (p[0] == '0' && p[1] == '\0')
999 break;
1000 ptype = read_type (&p, objfile);
1001
1002 /* The Sun compilers mark integer arguments, which should
1003 be promoted to the width of the calling conventions, with
1004 a type which references itself. This type is turned into
1005 a TYPE_CODE_VOID type by read_type, and we have to turn
1006 it back into builtin_int here.
1007 FIXME: Do we need a new builtin_promoted_int_arg ? */
1008 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1009 ptype = objfile_type (objfile)->builtin_int;
1010 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1011 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1012 }
1013 TYPE_NFIELDS (ftype) = nparams;
1014 TYPE_PROTOTYPED (ftype) = 1;
1015 }
1016 break;
1017
1018 case 'F':
1019 /* A global function definition. */
1020 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1021 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1023 add_symbol_to_list (sym, &global_symbols);
1024 goto process_function_types;
1025
1026 case 'G':
1027 /* For a class G (global) symbol, it appears that the
1028 value is not correct. It is necessary to search for the
1029 corresponding linker definition to find the value.
1030 These definitions appear at the end of the namelist. */
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034 /* Don't add symbol references to global_sym_chain.
1035 Symbol references don't have valid names and wont't match up with
1036 minimal symbols when the global_sym_chain is relocated.
1037 We'll fixup symbol references when we fixup the defining symbol. */
1038 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1039 {
1040 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1041 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1042 global_sym_chain[i] = sym;
1043 }
1044 add_symbol_to_list (sym, &global_symbols);
1045 break;
1046
1047 /* This case is faked by a conditional above,
1048 when there is no code letter in the dbx data.
1049 Dbx data never actually contains 'l'. */
1050 case 's':
1051 case 'l':
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1054 SYMBOL_VALUE (sym) = valu;
1055 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1056 add_symbol_to_list (sym, &local_symbols);
1057 break;
1058
1059 case 'p':
1060 if (*p == 'F')
1061 /* pF is a two-letter code that means a function parameter in Fortran.
1062 The type-number specifies the type of the return value.
1063 Translate it into a pointer-to-function type. */
1064 {
1065 p++;
1066 SYMBOL_TYPE (sym)
1067 = lookup_pointer_type
1068 (lookup_function_type (read_type (&p, objfile)));
1069 }
1070 else
1071 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1072
1073 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1074 SYMBOL_VALUE (sym) = valu;
1075 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1076 SYMBOL_IS_ARGUMENT (sym) = 1;
1077 add_symbol_to_list (sym, &local_symbols);
1078
1079 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1080 {
1081 /* On little-endian machines, this crud is never necessary,
1082 and, if the extra bytes contain garbage, is harmful. */
1083 break;
1084 }
1085
1086 /* If it's gcc-compiled, if it says `short', believe it. */
1087 if (processing_gcc_compilation
1088 || gdbarch_believe_pcc_promotion (gdbarch))
1089 break;
1090
1091 if (!gdbarch_believe_pcc_promotion (gdbarch))
1092 {
1093 /* If PCC says a parameter is a short or a char, it is
1094 really an int. */
1095 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1096 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1097 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1098 {
1099 SYMBOL_TYPE (sym) =
1100 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1101 ? objfile_type (objfile)->builtin_unsigned_int
1102 : objfile_type (objfile)->builtin_int;
1103 }
1104 break;
1105 }
1106
1107 case 'P':
1108 /* acc seems to use P to declare the prototypes of functions that
1109 are referenced by this file. gdb is not prepared to deal
1110 with this extra information. FIXME, it ought to. */
1111 if (type == N_FUN)
1112 {
1113 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1114 goto process_prototype_types;
1115 }
1116 /*FALLTHROUGH */
1117
1118 case 'R':
1119 /* Parameter which is in a register. */
1120 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1121 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1122 SYMBOL_IS_ARGUMENT (sym) = 1;
1123 SYMBOL_VALUE (sym) = valu;
1124 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1125 add_symbol_to_list (sym, &local_symbols);
1126 break;
1127
1128 case 'r':
1129 /* Register variable (either global or local). */
1130 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1131 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1132 SYMBOL_VALUE (sym) = valu;
1133 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1134 if (within_function)
1135 {
1136 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1137 the same name to represent an argument passed in a
1138 register. GCC uses 'P' for the same case. So if we find
1139 such a symbol pair we combine it into one 'P' symbol.
1140 For Sun cc we need to do this regardless of
1141 stabs_argument_has_addr, because the compiler puts out
1142 the 'p' symbol even if it never saves the argument onto
1143 the stack.
1144
1145 On most machines, we want to preserve both symbols, so
1146 that we can still get information about what is going on
1147 with the stack (VAX for computing args_printed, using
1148 stack slots instead of saved registers in backtraces,
1149 etc.).
1150
1151 Note that this code illegally combines
1152 main(argc) struct foo argc; { register struct foo argc; }
1153 but this case is considered pathological and causes a warning
1154 from a decent compiler. */
1155
1156 if (local_symbols
1157 && local_symbols->nsyms > 0
1158 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1159 {
1160 struct symbol *prev_sym;
1161
1162 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1163 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1164 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1165 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1166 SYMBOL_LINKAGE_NAME (sym)) == 0)
1167 {
1168 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1169 /* Use the type from the LOC_REGISTER; that is the type
1170 that is actually in that register. */
1171 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1172 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1173 sym = prev_sym;
1174 break;
1175 }
1176 }
1177 add_symbol_to_list (sym, &local_symbols);
1178 }
1179 else
1180 add_symbol_to_list (sym, &file_symbols);
1181 break;
1182
1183 case 'S':
1184 /* Static symbol at top level of file. */
1185 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1186 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1187 SYMBOL_VALUE_ADDRESS (sym) = valu;
1188 if (gdbarch_static_transform_name_p (gdbarch)
1189 && gdbarch_static_transform_name (gdbarch,
1190 SYMBOL_LINKAGE_NAME (sym))
1191 != SYMBOL_LINKAGE_NAME (sym))
1192 {
1193 struct bound_minimal_symbol msym;
1194
1195 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1196 NULL, objfile);
1197 if (msym.minsym != NULL)
1198 {
1199 const char *new_name = gdbarch_static_transform_name
1200 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1201
1202 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1203 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1204 }
1205 }
1206 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1207 add_symbol_to_list (sym, &file_symbols);
1208 break;
1209
1210 case 't':
1211 /* In Ada, there is no distinction between typedef and non-typedef;
1212 any type declaration implicitly has the equivalent of a typedef,
1213 and thus 't' is in fact equivalent to 'Tt'.
1214
1215 Therefore, for Ada units, we check the character immediately
1216 before the 't', and if we do not find a 'T', then make sure to
1217 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1218 will be stored in the VAR_DOMAIN). If the symbol was indeed
1219 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1220 elsewhere, so we don't need to take care of that.
1221
1222 This is important to do, because of forward references:
1223 The cleanup of undefined types stored in undef_types only uses
1224 STRUCT_DOMAIN symbols to perform the replacement. */
1225 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1226
1227 /* Typedef */
1228 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1229
1230 /* For a nameless type, we don't want a create a symbol, thus we
1231 did not use `sym'. Return without further processing. */
1232 if (nameless)
1233 return NULL;
1234
1235 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1236 SYMBOL_VALUE (sym) = valu;
1237 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1238 /* C++ vagaries: we may have a type which is derived from
1239 a base type which did not have its name defined when the
1240 derived class was output. We fill in the derived class's
1241 base part member's name here in that case. */
1242 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1243 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1244 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1245 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1246 {
1247 int j;
1248
1249 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1250 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1251 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1252 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1253 }
1254
1255 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1256 {
1257 /* gcc-2.6 or later (when using -fvtable-thunks)
1258 emits a unique named type for a vtable entry.
1259 Some gdb code depends on that specific name. */
1260 extern const char vtbl_ptr_name[];
1261
1262 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1263 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1264 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1265 {
1266 /* If we are giving a name to a type such as "pointer to
1267 foo" or "function returning foo", we better not set
1268 the TYPE_NAME. If the program contains "typedef char
1269 *caddr_t;", we don't want all variables of type char
1270 * to print as caddr_t. This is not just a
1271 consequence of GDB's type management; PCC and GCC (at
1272 least through version 2.4) both output variables of
1273 either type char * or caddr_t with the type number
1274 defined in the 't' symbol for caddr_t. If a future
1275 compiler cleans this up it GDB is not ready for it
1276 yet, but if it becomes ready we somehow need to
1277 disable this check (without breaking the PCC/GCC2.4
1278 case).
1279
1280 Sigh.
1281
1282 Fortunately, this check seems not to be necessary
1283 for anything except pointers or functions. */
1284 /* ezannoni: 2000-10-26. This seems to apply for
1285 versions of gcc older than 2.8. This was the original
1286 problem: with the following code gdb would tell that
1287 the type for name1 is caddr_t, and func is char().
1288
1289 typedef char *caddr_t;
1290 char *name2;
1291 struct x
1292 {
1293 char *name1;
1294 } xx;
1295 char *func()
1296 {
1297 }
1298 main () {}
1299 */
1300
1301 /* Pascal accepts names for pointer types. */
1302 if (current_subfile->language == language_pascal)
1303 {
1304 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1305 }
1306 }
1307 else
1308 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1309 }
1310
1311 add_symbol_to_list (sym, &file_symbols);
1312
1313 if (synonym)
1314 {
1315 /* Create the STRUCT_DOMAIN clone. */
1316 struct symbol *struct_sym = allocate_symbol (objfile);
1317
1318 *struct_sym = *sym;
1319 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1320 SYMBOL_VALUE (struct_sym) = valu;
1321 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1322 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1323 TYPE_NAME (SYMBOL_TYPE (sym))
1324 = obconcat (&objfile->objfile_obstack,
1325 SYMBOL_LINKAGE_NAME (sym),
1326 (char *) NULL);
1327 add_symbol_to_list (struct_sym, &file_symbols);
1328 }
1329
1330 break;
1331
1332 case 'T':
1333 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1334 by 't' which means we are typedef'ing it as well. */
1335 synonym = *p == 't';
1336
1337 if (synonym)
1338 p++;
1339
1340 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1341
1342 /* For a nameless type, we don't want a create a symbol, thus we
1343 did not use `sym'. Return without further processing. */
1344 if (nameless)
1345 return NULL;
1346
1347 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1348 SYMBOL_VALUE (sym) = valu;
1349 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1350 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1351 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1352 = obconcat (&objfile->objfile_obstack,
1353 SYMBOL_LINKAGE_NAME (sym),
1354 (char *) NULL);
1355 add_symbol_to_list (sym, &file_symbols);
1356
1357 if (synonym)
1358 {
1359 /* Clone the sym and then modify it. */
1360 struct symbol *typedef_sym = allocate_symbol (objfile);
1361
1362 *typedef_sym = *sym;
1363 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1364 SYMBOL_VALUE (typedef_sym) = valu;
1365 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1366 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1367 TYPE_NAME (SYMBOL_TYPE (sym))
1368 = obconcat (&objfile->objfile_obstack,
1369 SYMBOL_LINKAGE_NAME (sym),
1370 (char *) NULL);
1371 add_symbol_to_list (typedef_sym, &file_symbols);
1372 }
1373 break;
1374
1375 case 'V':
1376 /* Static symbol of local scope. */
1377 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1378 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1379 SYMBOL_VALUE_ADDRESS (sym) = valu;
1380 if (gdbarch_static_transform_name_p (gdbarch)
1381 && gdbarch_static_transform_name (gdbarch,
1382 SYMBOL_LINKAGE_NAME (sym))
1383 != SYMBOL_LINKAGE_NAME (sym))
1384 {
1385 struct bound_minimal_symbol msym;
1386
1387 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1388 NULL, objfile);
1389 if (msym.minsym != NULL)
1390 {
1391 const char *new_name = gdbarch_static_transform_name
1392 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1393
1394 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1395 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1396 }
1397 }
1398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1399 add_symbol_to_list (sym, &local_symbols);
1400 break;
1401
1402 case 'v':
1403 /* Reference parameter */
1404 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1405 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1406 SYMBOL_IS_ARGUMENT (sym) = 1;
1407 SYMBOL_VALUE (sym) = valu;
1408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1409 add_symbol_to_list (sym, &local_symbols);
1410 break;
1411
1412 case 'a':
1413 /* Reference parameter which is in a register. */
1414 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1415 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1416 SYMBOL_IS_ARGUMENT (sym) = 1;
1417 SYMBOL_VALUE (sym) = valu;
1418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1419 add_symbol_to_list (sym, &local_symbols);
1420 break;
1421
1422 case 'X':
1423 /* This is used by Sun FORTRAN for "function result value".
1424 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1425 that Pascal uses it too, but when I tried it Pascal used
1426 "x:3" (local symbol) instead. */
1427 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1428 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1429 SYMBOL_VALUE (sym) = valu;
1430 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1431 add_symbol_to_list (sym, &local_symbols);
1432 break;
1433
1434 default:
1435 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1436 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1437 SYMBOL_VALUE (sym) = 0;
1438 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1439 add_symbol_to_list (sym, &file_symbols);
1440 break;
1441 }
1442
1443 /* Some systems pass variables of certain types by reference instead
1444 of by value, i.e. they will pass the address of a structure (in a
1445 register or on the stack) instead of the structure itself. */
1446
1447 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1448 && SYMBOL_IS_ARGUMENT (sym))
1449 {
1450 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1451 variables passed in a register). */
1452 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1453 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1454 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1455 and subsequent arguments on SPARC, for example). */
1456 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1457 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1458 }
1459
1460 return sym;
1461 }
1462
1463 /* Skip rest of this symbol and return an error type.
1464
1465 General notes on error recovery: error_type always skips to the
1466 end of the symbol (modulo cretinous dbx symbol name continuation).
1467 Thus code like this:
1468
1469 if (*(*pp)++ != ';')
1470 return error_type (pp, objfile);
1471
1472 is wrong because if *pp starts out pointing at '\0' (typically as the
1473 result of an earlier error), it will be incremented to point to the
1474 start of the next symbol, which might produce strange results, at least
1475 if you run off the end of the string table. Instead use
1476
1477 if (**pp != ';')
1478 return error_type (pp, objfile);
1479 ++*pp;
1480
1481 or
1482
1483 if (**pp != ';')
1484 foo = error_type (pp, objfile);
1485 else
1486 ++*pp;
1487
1488 And in case it isn't obvious, the point of all this hair is so the compiler
1489 can define new types and new syntaxes, and old versions of the
1490 debugger will be able to read the new symbol tables. */
1491
1492 static struct type *
1493 error_type (char **pp, struct objfile *objfile)
1494 {
1495 complaint (&symfile_complaints,
1496 _("couldn't parse type; debugger out of date?"));
1497 while (1)
1498 {
1499 /* Skip to end of symbol. */
1500 while (**pp != '\0')
1501 {
1502 (*pp)++;
1503 }
1504
1505 /* Check for and handle cretinous dbx symbol name continuation! */
1506 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1507 {
1508 *pp = next_symbol_text (objfile);
1509 }
1510 else
1511 {
1512 break;
1513 }
1514 }
1515 return objfile_type (objfile)->builtin_error;
1516 }
1517 \f
1518
1519 /* Read type information or a type definition; return the type. Even
1520 though this routine accepts either type information or a type
1521 definition, the distinction is relevant--some parts of stabsread.c
1522 assume that type information starts with a digit, '-', or '(' in
1523 deciding whether to call read_type. */
1524
1525 static struct type *
1526 read_type (char **pp, struct objfile *objfile)
1527 {
1528 struct type *type = 0;
1529 struct type *type1;
1530 int typenums[2];
1531 char type_descriptor;
1532
1533 /* Size in bits of type if specified by a type attribute, or -1 if
1534 there is no size attribute. */
1535 int type_size = -1;
1536
1537 /* Used to distinguish string and bitstring from char-array and set. */
1538 int is_string = 0;
1539
1540 /* Used to distinguish vector from array. */
1541 int is_vector = 0;
1542
1543 /* Read type number if present. The type number may be omitted.
1544 for instance in a two-dimensional array declared with type
1545 "ar1;1;10;ar1;1;10;4". */
1546 if ((**pp >= '0' && **pp <= '9')
1547 || **pp == '('
1548 || **pp == '-')
1549 {
1550 if (read_type_number (pp, typenums) != 0)
1551 return error_type (pp, objfile);
1552
1553 if (**pp != '=')
1554 {
1555 /* Type is not being defined here. Either it already
1556 exists, or this is a forward reference to it.
1557 dbx_alloc_type handles both cases. */
1558 type = dbx_alloc_type (typenums, objfile);
1559
1560 /* If this is a forward reference, arrange to complain if it
1561 doesn't get patched up by the time we're done
1562 reading. */
1563 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1564 add_undefined_type (type, typenums);
1565
1566 return type;
1567 }
1568
1569 /* Type is being defined here. */
1570 /* Skip the '='.
1571 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1572 (*pp) += 2;
1573 }
1574 else
1575 {
1576 /* 'typenums=' not present, type is anonymous. Read and return
1577 the definition, but don't put it in the type vector. */
1578 typenums[0] = typenums[1] = -1;
1579 (*pp)++;
1580 }
1581
1582 again:
1583 type_descriptor = (*pp)[-1];
1584 switch (type_descriptor)
1585 {
1586 case 'x':
1587 {
1588 enum type_code code;
1589
1590 /* Used to index through file_symbols. */
1591 struct pending *ppt;
1592 int i;
1593
1594 /* Name including "struct", etc. */
1595 char *type_name;
1596
1597 {
1598 char *from, *to, *p, *q1, *q2;
1599
1600 /* Set the type code according to the following letter. */
1601 switch ((*pp)[0])
1602 {
1603 case 's':
1604 code = TYPE_CODE_STRUCT;
1605 break;
1606 case 'u':
1607 code = TYPE_CODE_UNION;
1608 break;
1609 case 'e':
1610 code = TYPE_CODE_ENUM;
1611 break;
1612 default:
1613 {
1614 /* Complain and keep going, so compilers can invent new
1615 cross-reference types. */
1616 complaint (&symfile_complaints,
1617 _("Unrecognized cross-reference type `%c'"),
1618 (*pp)[0]);
1619 code = TYPE_CODE_STRUCT;
1620 break;
1621 }
1622 }
1623
1624 q1 = strchr (*pp, '<');
1625 p = strchr (*pp, ':');
1626 if (p == NULL)
1627 return error_type (pp, objfile);
1628 if (q1 && p > q1 && p[1] == ':')
1629 {
1630 int nesting_level = 0;
1631
1632 for (q2 = q1; *q2; q2++)
1633 {
1634 if (*q2 == '<')
1635 nesting_level++;
1636 else if (*q2 == '>')
1637 nesting_level--;
1638 else if (*q2 == ':' && nesting_level == 0)
1639 break;
1640 }
1641 p = q2;
1642 if (*p != ':')
1643 return error_type (pp, objfile);
1644 }
1645 type_name = NULL;
1646 if (current_subfile->language == language_cplus)
1647 {
1648 char *name = (char *) alloca (p - *pp + 1);
1649
1650 memcpy (name, *pp, p - *pp);
1651 name[p - *pp] = '\0';
1652
1653 std::string new_name = cp_canonicalize_string (name);
1654 if (!new_name.empty ())
1655 {
1656 type_name
1657 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1658 new_name.c_str (),
1659 new_name.length ());
1660 }
1661 }
1662 if (type_name == NULL)
1663 {
1664 to = type_name = (char *)
1665 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1666
1667 /* Copy the name. */
1668 from = *pp + 1;
1669 while (from < p)
1670 *to++ = *from++;
1671 *to = '\0';
1672 }
1673
1674 /* Set the pointer ahead of the name which we just read, and
1675 the colon. */
1676 *pp = p + 1;
1677 }
1678
1679 /* If this type has already been declared, then reuse the same
1680 type, rather than allocating a new one. This saves some
1681 memory. */
1682
1683 for (ppt = file_symbols; ppt; ppt = ppt->next)
1684 for (i = 0; i < ppt->nsyms; i++)
1685 {
1686 struct symbol *sym = ppt->symbol[i];
1687
1688 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1689 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1690 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1691 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1692 {
1693 obstack_free (&objfile->objfile_obstack, type_name);
1694 type = SYMBOL_TYPE (sym);
1695 if (typenums[0] != -1)
1696 *dbx_lookup_type (typenums, objfile) = type;
1697 return type;
1698 }
1699 }
1700
1701 /* Didn't find the type to which this refers, so we must
1702 be dealing with a forward reference. Allocate a type
1703 structure for it, and keep track of it so we can
1704 fill in the rest of the fields when we get the full
1705 type. */
1706 type = dbx_alloc_type (typenums, objfile);
1707 TYPE_CODE (type) = code;
1708 TYPE_TAG_NAME (type) = type_name;
1709 INIT_CPLUS_SPECIFIC (type);
1710 TYPE_STUB (type) = 1;
1711
1712 add_undefined_type (type, typenums);
1713 return type;
1714 }
1715
1716 case '-': /* RS/6000 built-in type */
1717 case '0':
1718 case '1':
1719 case '2':
1720 case '3':
1721 case '4':
1722 case '5':
1723 case '6':
1724 case '7':
1725 case '8':
1726 case '9':
1727 case '(':
1728 (*pp)--;
1729
1730 /* We deal with something like t(1,2)=(3,4)=... which
1731 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1732
1733 /* Allocate and enter the typedef type first.
1734 This handles recursive types. */
1735 type = dbx_alloc_type (typenums, objfile);
1736 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1737 {
1738 struct type *xtype = read_type (pp, objfile);
1739
1740 if (type == xtype)
1741 {
1742 /* It's being defined as itself. That means it is "void". */
1743 TYPE_CODE (type) = TYPE_CODE_VOID;
1744 TYPE_LENGTH (type) = 1;
1745 }
1746 else if (type_size >= 0 || is_string)
1747 {
1748 /* This is the absolute wrong way to construct types. Every
1749 other debug format has found a way around this problem and
1750 the related problems with unnecessarily stubbed types;
1751 someone motivated should attempt to clean up the issue
1752 here as well. Once a type pointed to has been created it
1753 should not be modified.
1754
1755 Well, it's not *absolutely* wrong. Constructing recursive
1756 types (trees, linked lists) necessarily entails modifying
1757 types after creating them. Constructing any loop structure
1758 entails side effects. The Dwarf 2 reader does handle this
1759 more gracefully (it never constructs more than once
1760 instance of a type object, so it doesn't have to copy type
1761 objects wholesale), but it still mutates type objects after
1762 other folks have references to them.
1763
1764 Keep in mind that this circularity/mutation issue shows up
1765 at the source language level, too: C's "incomplete types",
1766 for example. So the proper cleanup, I think, would be to
1767 limit GDB's type smashing to match exactly those required
1768 by the source language. So GDB could have a
1769 "complete_this_type" function, but never create unnecessary
1770 copies of a type otherwise. */
1771 replace_type (type, xtype);
1772 TYPE_NAME (type) = NULL;
1773 TYPE_TAG_NAME (type) = NULL;
1774 }
1775 else
1776 {
1777 TYPE_TARGET_STUB (type) = 1;
1778 TYPE_TARGET_TYPE (type) = xtype;
1779 }
1780 }
1781 break;
1782
1783 /* In the following types, we must be sure to overwrite any existing
1784 type that the typenums refer to, rather than allocating a new one
1785 and making the typenums point to the new one. This is because there
1786 may already be pointers to the existing type (if it had been
1787 forward-referenced), and we must change it to a pointer, function,
1788 reference, or whatever, *in-place*. */
1789
1790 case '*': /* Pointer to another type */
1791 type1 = read_type (pp, objfile);
1792 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1793 break;
1794
1795 case '&': /* Reference to another type */
1796 type1 = read_type (pp, objfile);
1797 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1798 TYPE_CODE_REF);
1799 break;
1800
1801 case 'f': /* Function returning another type */
1802 type1 = read_type (pp, objfile);
1803 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1804 break;
1805
1806 case 'g': /* Prototyped function. (Sun) */
1807 {
1808 /* Unresolved questions:
1809
1810 - According to Sun's ``STABS Interface Manual'', for 'f'
1811 and 'F' symbol descriptors, a `0' in the argument type list
1812 indicates a varargs function. But it doesn't say how 'g'
1813 type descriptors represent that info. Someone with access
1814 to Sun's toolchain should try it out.
1815
1816 - According to the comment in define_symbol (search for
1817 `process_prototype_types:'), Sun emits integer arguments as
1818 types which ref themselves --- like `void' types. Do we
1819 have to deal with that here, too? Again, someone with
1820 access to Sun's toolchain should try it out and let us
1821 know. */
1822
1823 const char *type_start = (*pp) - 1;
1824 struct type *return_type = read_type (pp, objfile);
1825 struct type *func_type
1826 = make_function_type (return_type,
1827 dbx_lookup_type (typenums, objfile));
1828 struct type_list {
1829 struct type *type;
1830 struct type_list *next;
1831 } *arg_types = 0;
1832 int num_args = 0;
1833
1834 while (**pp && **pp != '#')
1835 {
1836 struct type *arg_type = read_type (pp, objfile);
1837 struct type_list *newobj = XALLOCA (struct type_list);
1838 newobj->type = arg_type;
1839 newobj->next = arg_types;
1840 arg_types = newobj;
1841 num_args++;
1842 }
1843 if (**pp == '#')
1844 ++*pp;
1845 else
1846 {
1847 complaint (&symfile_complaints,
1848 _("Prototyped function type didn't "
1849 "end arguments with `#':\n%s"),
1850 type_start);
1851 }
1852
1853 /* If there is just one argument whose type is `void', then
1854 that's just an empty argument list. */
1855 if (arg_types
1856 && ! arg_types->next
1857 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1858 num_args = 0;
1859
1860 TYPE_FIELDS (func_type)
1861 = (struct field *) TYPE_ALLOC (func_type,
1862 num_args * sizeof (struct field));
1863 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1864 {
1865 int i;
1866 struct type_list *t;
1867
1868 /* We stuck each argument type onto the front of the list
1869 when we read it, so the list is reversed. Build the
1870 fields array right-to-left. */
1871 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1872 TYPE_FIELD_TYPE (func_type, i) = t->type;
1873 }
1874 TYPE_NFIELDS (func_type) = num_args;
1875 TYPE_PROTOTYPED (func_type) = 1;
1876
1877 type = func_type;
1878 break;
1879 }
1880
1881 case 'k': /* Const qualifier on some type (Sun) */
1882 type = read_type (pp, objfile);
1883 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1884 dbx_lookup_type (typenums, objfile));
1885 break;
1886
1887 case 'B': /* Volatile qual on some type (Sun) */
1888 type = read_type (pp, objfile);
1889 type = make_cv_type (TYPE_CONST (type), 1, type,
1890 dbx_lookup_type (typenums, objfile));
1891 break;
1892
1893 case '@':
1894 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1895 { /* Member (class & variable) type */
1896 /* FIXME -- we should be doing smash_to_XXX types here. */
1897
1898 struct type *domain = read_type (pp, objfile);
1899 struct type *memtype;
1900
1901 if (**pp != ',')
1902 /* Invalid member type data format. */
1903 return error_type (pp, objfile);
1904 ++*pp;
1905
1906 memtype = read_type (pp, objfile);
1907 type = dbx_alloc_type (typenums, objfile);
1908 smash_to_memberptr_type (type, domain, memtype);
1909 }
1910 else
1911 /* type attribute */
1912 {
1913 char *attr = *pp;
1914
1915 /* Skip to the semicolon. */
1916 while (**pp != ';' && **pp != '\0')
1917 ++(*pp);
1918 if (**pp == '\0')
1919 return error_type (pp, objfile);
1920 else
1921 ++ * pp; /* Skip the semicolon. */
1922
1923 switch (*attr)
1924 {
1925 case 's': /* Size attribute */
1926 type_size = atoi (attr + 1);
1927 if (type_size <= 0)
1928 type_size = -1;
1929 break;
1930
1931 case 'S': /* String attribute */
1932 /* FIXME: check to see if following type is array? */
1933 is_string = 1;
1934 break;
1935
1936 case 'V': /* Vector attribute */
1937 /* FIXME: check to see if following type is array? */
1938 is_vector = 1;
1939 break;
1940
1941 default:
1942 /* Ignore unrecognized type attributes, so future compilers
1943 can invent new ones. */
1944 break;
1945 }
1946 ++*pp;
1947 goto again;
1948 }
1949 break;
1950
1951 case '#': /* Method (class & fn) type */
1952 if ((*pp)[0] == '#')
1953 {
1954 /* We'll get the parameter types from the name. */
1955 struct type *return_type;
1956
1957 (*pp)++;
1958 return_type = read_type (pp, objfile);
1959 if (*(*pp)++ != ';')
1960 complaint (&symfile_complaints,
1961 _("invalid (minimal) member type "
1962 "data format at symtab pos %d."),
1963 symnum);
1964 type = allocate_stub_method (return_type);
1965 if (typenums[0] != -1)
1966 *dbx_lookup_type (typenums, objfile) = type;
1967 }
1968 else
1969 {
1970 struct type *domain = read_type (pp, objfile);
1971 struct type *return_type;
1972 struct field *args;
1973 int nargs, varargs;
1974
1975 if (**pp != ',')
1976 /* Invalid member type data format. */
1977 return error_type (pp, objfile);
1978 else
1979 ++(*pp);
1980
1981 return_type = read_type (pp, objfile);
1982 args = read_args (pp, ';', objfile, &nargs, &varargs);
1983 if (args == NULL)
1984 return error_type (pp, objfile);
1985 type = dbx_alloc_type (typenums, objfile);
1986 smash_to_method_type (type, domain, return_type, args,
1987 nargs, varargs);
1988 }
1989 break;
1990
1991 case 'r': /* Range type */
1992 type = read_range_type (pp, typenums, type_size, objfile);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums, objfile) = type;
1995 break;
1996
1997 case 'b':
1998 {
1999 /* Sun ACC builtin int type */
2000 type = read_sun_builtin_type (pp, typenums, objfile);
2001 if (typenums[0] != -1)
2002 *dbx_lookup_type (typenums, objfile) = type;
2003 }
2004 break;
2005
2006 case 'R': /* Sun ACC builtin float type */
2007 type = read_sun_floating_type (pp, typenums, objfile);
2008 if (typenums[0] != -1)
2009 *dbx_lookup_type (typenums, objfile) = type;
2010 break;
2011
2012 case 'e': /* Enumeration type */
2013 type = dbx_alloc_type (typenums, objfile);
2014 type = read_enum_type (pp, type, objfile);
2015 if (typenums[0] != -1)
2016 *dbx_lookup_type (typenums, objfile) = type;
2017 break;
2018
2019 case 's': /* Struct type */
2020 case 'u': /* Union type */
2021 {
2022 enum type_code type_code = TYPE_CODE_UNDEF;
2023 type = dbx_alloc_type (typenums, objfile);
2024 switch (type_descriptor)
2025 {
2026 case 's':
2027 type_code = TYPE_CODE_STRUCT;
2028 break;
2029 case 'u':
2030 type_code = TYPE_CODE_UNION;
2031 break;
2032 }
2033 type = read_struct_type (pp, type, type_code, objfile);
2034 break;
2035 }
2036
2037 case 'a': /* Array type */
2038 if (**pp != 'r')
2039 return error_type (pp, objfile);
2040 ++*pp;
2041
2042 type = dbx_alloc_type (typenums, objfile);
2043 type = read_array_type (pp, type, objfile);
2044 if (is_string)
2045 TYPE_CODE (type) = TYPE_CODE_STRING;
2046 if (is_vector)
2047 make_vector_type (type);
2048 break;
2049
2050 case 'S': /* Set type */
2051 type1 = read_type (pp, objfile);
2052 type = create_set_type ((struct type *) NULL, type1);
2053 if (typenums[0] != -1)
2054 *dbx_lookup_type (typenums, objfile) = type;
2055 break;
2056
2057 default:
2058 --*pp; /* Go back to the symbol in error. */
2059 /* Particularly important if it was \0! */
2060 return error_type (pp, objfile);
2061 }
2062
2063 if (type == 0)
2064 {
2065 warning (_("GDB internal error, type is NULL in stabsread.c."));
2066 return error_type (pp, objfile);
2067 }
2068
2069 /* Size specified in a type attribute overrides any other size. */
2070 if (type_size != -1)
2071 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2072
2073 return type;
2074 }
2075 \f
2076 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2077 Return the proper type node for a given builtin type number. */
2078
2079 static const struct objfile_data *rs6000_builtin_type_data;
2080
2081 static struct type *
2082 rs6000_builtin_type (int typenum, struct objfile *objfile)
2083 {
2084 struct type **negative_types
2085 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2086
2087 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2088 #define NUMBER_RECOGNIZED 34
2089 struct type *rettype = NULL;
2090
2091 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2092 {
2093 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2094 return objfile_type (objfile)->builtin_error;
2095 }
2096
2097 if (!negative_types)
2098 {
2099 /* This includes an empty slot for type number -0. */
2100 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2101 NUMBER_RECOGNIZED + 1, struct type *);
2102 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2103 }
2104
2105 if (negative_types[-typenum] != NULL)
2106 return negative_types[-typenum];
2107
2108 #if TARGET_CHAR_BIT != 8
2109 #error This code wrong for TARGET_CHAR_BIT not 8
2110 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2111 that if that ever becomes not true, the correct fix will be to
2112 make the size in the struct type to be in bits, not in units of
2113 TARGET_CHAR_BIT. */
2114 #endif
2115
2116 switch (-typenum)
2117 {
2118 case 1:
2119 /* The size of this and all the other types are fixed, defined
2120 by the debugging format. If there is a type called "int" which
2121 is other than 32 bits, then it should use a new negative type
2122 number (or avoid negative type numbers for that case).
2123 See stabs.texinfo. */
2124 rettype = init_integer_type (objfile, 32, 0, "int");
2125 break;
2126 case 2:
2127 rettype = init_integer_type (objfile, 8, 0, "char");
2128 TYPE_NOSIGN (rettype) = 1;
2129 break;
2130 case 3:
2131 rettype = init_integer_type (objfile, 16, 0, "short");
2132 break;
2133 case 4:
2134 rettype = init_integer_type (objfile, 32, 0, "long");
2135 break;
2136 case 5:
2137 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2138 break;
2139 case 6:
2140 rettype = init_integer_type (objfile, 8, 0, "signed char");
2141 break;
2142 case 7:
2143 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2144 break;
2145 case 8:
2146 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2147 break;
2148 case 9:
2149 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2150 break;
2151 case 10:
2152 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2153 break;
2154 case 11:
2155 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
2156 break;
2157 case 12:
2158 /* IEEE single precision (32 bit). */
2159 rettype = init_float_type (objfile, 32, "float",
2160 floatformats_ieee_single);
2161 break;
2162 case 13:
2163 /* IEEE double precision (64 bit). */
2164 rettype = init_float_type (objfile, 64, "double",
2165 floatformats_ieee_double);
2166 break;
2167 case 14:
2168 /* This is an IEEE double on the RS/6000, and different machines with
2169 different sizes for "long double" should use different negative
2170 type numbers. See stabs.texinfo. */
2171 rettype = init_float_type (objfile, 64, "long double",
2172 floatformats_ieee_double);
2173 break;
2174 case 15:
2175 rettype = init_integer_type (objfile, 32, 0, "integer");
2176 break;
2177 case 16:
2178 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2179 break;
2180 case 17:
2181 rettype = init_float_type (objfile, 32, "short real",
2182 floatformats_ieee_single);
2183 break;
2184 case 18:
2185 rettype = init_float_type (objfile, 64, "real",
2186 floatformats_ieee_double);
2187 break;
2188 case 19:
2189 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2190 break;
2191 case 20:
2192 rettype = init_character_type (objfile, 8, 1, "character");
2193 break;
2194 case 21:
2195 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2196 break;
2197 case 22:
2198 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2199 break;
2200 case 23:
2201 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2202 break;
2203 case 24:
2204 rettype = init_boolean_type (objfile, 32, 1, "logical");
2205 break;
2206 case 25:
2207 /* Complex type consisting of two IEEE single precision values. */
2208 rettype = init_complex_type (objfile, "complex",
2209 rs6000_builtin_type (12, objfile));
2210 break;
2211 case 26:
2212 /* Complex type consisting of two IEEE double precision values. */
2213 rettype = init_complex_type (objfile, "double complex",
2214 rs6000_builtin_type (13, objfile));
2215 break;
2216 case 27:
2217 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2218 break;
2219 case 28:
2220 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2221 break;
2222 case 29:
2223 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2224 break;
2225 case 30:
2226 rettype = init_character_type (objfile, 16, 0, "wchar");
2227 break;
2228 case 31:
2229 rettype = init_integer_type (objfile, 64, 0, "long long");
2230 break;
2231 case 32:
2232 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2233 break;
2234 case 33:
2235 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2236 break;
2237 case 34:
2238 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2239 break;
2240 }
2241 negative_types[-typenum] = rettype;
2242 return rettype;
2243 }
2244 \f
2245 /* This page contains subroutines of read_type. */
2246
2247 /* Wrapper around method_name_from_physname to flag a complaint
2248 if there is an error. */
2249
2250 static char *
2251 stabs_method_name_from_physname (const char *physname)
2252 {
2253 char *method_name;
2254
2255 method_name = method_name_from_physname (physname);
2256
2257 if (method_name == NULL)
2258 {
2259 complaint (&symfile_complaints,
2260 _("Method has bad physname %s\n"), physname);
2261 return NULL;
2262 }
2263
2264 return method_name;
2265 }
2266
2267 /* Read member function stabs info for C++ classes. The form of each member
2268 function data is:
2269
2270 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2271
2272 An example with two member functions is:
2273
2274 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2275
2276 For the case of overloaded operators, the format is op$::*.funcs, where
2277 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2278 name (such as `+=') and `.' marks the end of the operator name.
2279
2280 Returns 1 for success, 0 for failure. */
2281
2282 static int
2283 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2284 struct objfile *objfile)
2285 {
2286 int nfn_fields = 0;
2287 int length = 0;
2288 int i;
2289 struct next_fnfield
2290 {
2291 struct next_fnfield *next;
2292 struct fn_field fn_field;
2293 }
2294 *sublist;
2295 struct type *look_ahead_type;
2296 struct next_fnfieldlist *new_fnlist;
2297 struct next_fnfield *new_sublist;
2298 char *main_fn_name;
2299 char *p;
2300
2301 /* Process each list until we find something that is not a member function
2302 or find the end of the functions. */
2303
2304 while (**pp != ';')
2305 {
2306 /* We should be positioned at the start of the function name.
2307 Scan forward to find the first ':' and if it is not the
2308 first of a "::" delimiter, then this is not a member function. */
2309 p = *pp;
2310 while (*p != ':')
2311 {
2312 p++;
2313 }
2314 if (p[1] != ':')
2315 {
2316 break;
2317 }
2318
2319 sublist = NULL;
2320 look_ahead_type = NULL;
2321 length = 0;
2322
2323 new_fnlist = XCNEW (struct next_fnfieldlist);
2324 make_cleanup (xfree, new_fnlist);
2325
2326 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2327 {
2328 /* This is a completely wierd case. In order to stuff in the
2329 names that might contain colons (the usual name delimiter),
2330 Mike Tiemann defined a different name format which is
2331 signalled if the identifier is "op$". In that case, the
2332 format is "op$::XXXX." where XXXX is the name. This is
2333 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2334 /* This lets the user type "break operator+".
2335 We could just put in "+" as the name, but that wouldn't
2336 work for "*". */
2337 static char opname[32] = "op$";
2338 char *o = opname + 3;
2339
2340 /* Skip past '::'. */
2341 *pp = p + 2;
2342
2343 STABS_CONTINUE (pp, objfile);
2344 p = *pp;
2345 while (*p != '.')
2346 {
2347 *o++ = *p++;
2348 }
2349 main_fn_name = savestring (opname, o - opname);
2350 /* Skip past '.' */
2351 *pp = p + 1;
2352 }
2353 else
2354 {
2355 main_fn_name = savestring (*pp, p - *pp);
2356 /* Skip past '::'. */
2357 *pp = p + 2;
2358 }
2359 new_fnlist->fn_fieldlist.name = main_fn_name;
2360
2361 do
2362 {
2363 new_sublist = XCNEW (struct next_fnfield);
2364 make_cleanup (xfree, new_sublist);
2365
2366 /* Check for and handle cretinous dbx symbol name continuation! */
2367 if (look_ahead_type == NULL)
2368 {
2369 /* Normal case. */
2370 STABS_CONTINUE (pp, objfile);
2371
2372 new_sublist->fn_field.type = read_type (pp, objfile);
2373 if (**pp != ':')
2374 {
2375 /* Invalid symtab info for member function. */
2376 return 0;
2377 }
2378 }
2379 else
2380 {
2381 /* g++ version 1 kludge */
2382 new_sublist->fn_field.type = look_ahead_type;
2383 look_ahead_type = NULL;
2384 }
2385
2386 (*pp)++;
2387 p = *pp;
2388 while (*p != ';')
2389 {
2390 p++;
2391 }
2392
2393 /* These are methods, not functions. */
2394 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2395 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2396 else
2397 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2398 == TYPE_CODE_METHOD);
2399
2400 /* If this is just a stub, then we don't have the real name here. */
2401 if (TYPE_STUB (new_sublist->fn_field.type))
2402 {
2403 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2404 set_type_self_type (new_sublist->fn_field.type, type);
2405 new_sublist->fn_field.is_stub = 1;
2406 }
2407
2408 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2409 *pp = p + 1;
2410
2411 /* Set this member function's visibility fields. */
2412 switch (*(*pp)++)
2413 {
2414 case VISIBILITY_PRIVATE:
2415 new_sublist->fn_field.is_private = 1;
2416 break;
2417 case VISIBILITY_PROTECTED:
2418 new_sublist->fn_field.is_protected = 1;
2419 break;
2420 }
2421
2422 STABS_CONTINUE (pp, objfile);
2423 switch (**pp)
2424 {
2425 case 'A': /* Normal functions. */
2426 new_sublist->fn_field.is_const = 0;
2427 new_sublist->fn_field.is_volatile = 0;
2428 (*pp)++;
2429 break;
2430 case 'B': /* `const' member functions. */
2431 new_sublist->fn_field.is_const = 1;
2432 new_sublist->fn_field.is_volatile = 0;
2433 (*pp)++;
2434 break;
2435 case 'C': /* `volatile' member function. */
2436 new_sublist->fn_field.is_const = 0;
2437 new_sublist->fn_field.is_volatile = 1;
2438 (*pp)++;
2439 break;
2440 case 'D': /* `const volatile' member function. */
2441 new_sublist->fn_field.is_const = 1;
2442 new_sublist->fn_field.is_volatile = 1;
2443 (*pp)++;
2444 break;
2445 case '*': /* File compiled with g++ version 1 --
2446 no info. */
2447 case '?':
2448 case '.':
2449 break;
2450 default:
2451 complaint (&symfile_complaints,
2452 _("const/volatile indicator missing, got '%c'"),
2453 **pp);
2454 break;
2455 }
2456
2457 switch (*(*pp)++)
2458 {
2459 case '*':
2460 {
2461 int nbits;
2462 /* virtual member function, followed by index.
2463 The sign bit is set to distinguish pointers-to-methods
2464 from virtual function indicies. Since the array is
2465 in words, the quantity must be shifted left by 1
2466 on 16 bit machine, and by 2 on 32 bit machine, forcing
2467 the sign bit out, and usable as a valid index into
2468 the array. Remove the sign bit here. */
2469 new_sublist->fn_field.voffset =
2470 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2471 if (nbits != 0)
2472 return 0;
2473
2474 STABS_CONTINUE (pp, objfile);
2475 if (**pp == ';' || **pp == '\0')
2476 {
2477 /* Must be g++ version 1. */
2478 new_sublist->fn_field.fcontext = 0;
2479 }
2480 else
2481 {
2482 /* Figure out from whence this virtual function came.
2483 It may belong to virtual function table of
2484 one of its baseclasses. */
2485 look_ahead_type = read_type (pp, objfile);
2486 if (**pp == ':')
2487 {
2488 /* g++ version 1 overloaded methods. */
2489 }
2490 else
2491 {
2492 new_sublist->fn_field.fcontext = look_ahead_type;
2493 if (**pp != ';')
2494 {
2495 return 0;
2496 }
2497 else
2498 {
2499 ++*pp;
2500 }
2501 look_ahead_type = NULL;
2502 }
2503 }
2504 break;
2505 }
2506 case '?':
2507 /* static member function. */
2508 {
2509 int slen = strlen (main_fn_name);
2510
2511 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2512
2513 /* For static member functions, we can't tell if they
2514 are stubbed, as they are put out as functions, and not as
2515 methods.
2516 GCC v2 emits the fully mangled name if
2517 dbxout.c:flag_minimal_debug is not set, so we have to
2518 detect a fully mangled physname here and set is_stub
2519 accordingly. Fully mangled physnames in v2 start with
2520 the member function name, followed by two underscores.
2521 GCC v3 currently always emits stubbed member functions,
2522 but with fully mangled physnames, which start with _Z. */
2523 if (!(strncmp (new_sublist->fn_field.physname,
2524 main_fn_name, slen) == 0
2525 && new_sublist->fn_field.physname[slen] == '_'
2526 && new_sublist->fn_field.physname[slen + 1] == '_'))
2527 {
2528 new_sublist->fn_field.is_stub = 1;
2529 }
2530 break;
2531 }
2532
2533 default:
2534 /* error */
2535 complaint (&symfile_complaints,
2536 _("member function type missing, got '%c'"),
2537 (*pp)[-1]);
2538 /* Fall through into normal member function. */
2539
2540 case '.':
2541 /* normal member function. */
2542 new_sublist->fn_field.voffset = 0;
2543 new_sublist->fn_field.fcontext = 0;
2544 break;
2545 }
2546
2547 new_sublist->next = sublist;
2548 sublist = new_sublist;
2549 length++;
2550 STABS_CONTINUE (pp, objfile);
2551 }
2552 while (**pp != ';' && **pp != '\0');
2553
2554 (*pp)++;
2555 STABS_CONTINUE (pp, objfile);
2556
2557 /* Skip GCC 3.X member functions which are duplicates of the callable
2558 constructor/destructor. */
2559 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2560 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2561 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2562 {
2563 xfree (main_fn_name);
2564 }
2565 else
2566 {
2567 int has_stub = 0;
2568 int has_destructor = 0, has_other = 0;
2569 int is_v3 = 0;
2570 struct next_fnfield *tmp_sublist;
2571
2572 /* Various versions of GCC emit various mostly-useless
2573 strings in the name field for special member functions.
2574
2575 For stub methods, we need to defer correcting the name
2576 until we are ready to unstub the method, because the current
2577 name string is used by gdb_mangle_name. The only stub methods
2578 of concern here are GNU v2 operators; other methods have their
2579 names correct (see caveat below).
2580
2581 For non-stub methods, in GNU v3, we have a complete physname.
2582 Therefore we can safely correct the name now. This primarily
2583 affects constructors and destructors, whose name will be
2584 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2585 operators will also have incorrect names; for instance,
2586 "operator int" will be named "operator i" (i.e. the type is
2587 mangled).
2588
2589 For non-stub methods in GNU v2, we have no easy way to
2590 know if we have a complete physname or not. For most
2591 methods the result depends on the platform (if CPLUS_MARKER
2592 can be `$' or `.', it will use minimal debug information, or
2593 otherwise the full physname will be included).
2594
2595 Rather than dealing with this, we take a different approach.
2596 For v3 mangled names, we can use the full physname; for v2,
2597 we use cplus_demangle_opname (which is actually v2 specific),
2598 because the only interesting names are all operators - once again
2599 barring the caveat below. Skip this process if any method in the
2600 group is a stub, to prevent our fouling up the workings of
2601 gdb_mangle_name.
2602
2603 The caveat: GCC 2.95.x (and earlier?) put constructors and
2604 destructors in the same method group. We need to split this
2605 into two groups, because they should have different names.
2606 So for each method group we check whether it contains both
2607 routines whose physname appears to be a destructor (the physnames
2608 for and destructors are always provided, due to quirks in v2
2609 mangling) and routines whose physname does not appear to be a
2610 destructor. If so then we break up the list into two halves.
2611 Even if the constructors and destructors aren't in the same group
2612 the destructor will still lack the leading tilde, so that also
2613 needs to be fixed.
2614
2615 So, to summarize what we expect and handle here:
2616
2617 Given Given Real Real Action
2618 method name physname physname method name
2619
2620 __opi [none] __opi__3Foo operator int opname
2621 [now or later]
2622 Foo _._3Foo _._3Foo ~Foo separate and
2623 rename
2624 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2625 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2626 */
2627
2628 tmp_sublist = sublist;
2629 while (tmp_sublist != NULL)
2630 {
2631 if (tmp_sublist->fn_field.is_stub)
2632 has_stub = 1;
2633 if (tmp_sublist->fn_field.physname[0] == '_'
2634 && tmp_sublist->fn_field.physname[1] == 'Z')
2635 is_v3 = 1;
2636
2637 if (is_destructor_name (tmp_sublist->fn_field.physname))
2638 has_destructor++;
2639 else
2640 has_other++;
2641
2642 tmp_sublist = tmp_sublist->next;
2643 }
2644
2645 if (has_destructor && has_other)
2646 {
2647 struct next_fnfieldlist *destr_fnlist;
2648 struct next_fnfield *last_sublist;
2649
2650 /* Create a new fn_fieldlist for the destructors. */
2651
2652 destr_fnlist = XCNEW (struct next_fnfieldlist);
2653 make_cleanup (xfree, destr_fnlist);
2654
2655 destr_fnlist->fn_fieldlist.name
2656 = obconcat (&objfile->objfile_obstack, "~",
2657 new_fnlist->fn_fieldlist.name, (char *) NULL);
2658
2659 destr_fnlist->fn_fieldlist.fn_fields =
2660 XOBNEWVEC (&objfile->objfile_obstack,
2661 struct fn_field, has_destructor);
2662 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2663 sizeof (struct fn_field) * has_destructor);
2664 tmp_sublist = sublist;
2665 last_sublist = NULL;
2666 i = 0;
2667 while (tmp_sublist != NULL)
2668 {
2669 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2670 {
2671 tmp_sublist = tmp_sublist->next;
2672 continue;
2673 }
2674
2675 destr_fnlist->fn_fieldlist.fn_fields[i++]
2676 = tmp_sublist->fn_field;
2677 if (last_sublist)
2678 last_sublist->next = tmp_sublist->next;
2679 else
2680 sublist = tmp_sublist->next;
2681 last_sublist = tmp_sublist;
2682 tmp_sublist = tmp_sublist->next;
2683 }
2684
2685 destr_fnlist->fn_fieldlist.length = has_destructor;
2686 destr_fnlist->next = fip->fnlist;
2687 fip->fnlist = destr_fnlist;
2688 nfn_fields++;
2689 length -= has_destructor;
2690 }
2691 else if (is_v3)
2692 {
2693 /* v3 mangling prevents the use of abbreviated physnames,
2694 so we can do this here. There are stubbed methods in v3
2695 only:
2696 - in -gstabs instead of -gstabs+
2697 - or for static methods, which are output as a function type
2698 instead of a method type. */
2699 char *new_method_name =
2700 stabs_method_name_from_physname (sublist->fn_field.physname);
2701
2702 if (new_method_name != NULL
2703 && strcmp (new_method_name,
2704 new_fnlist->fn_fieldlist.name) != 0)
2705 {
2706 new_fnlist->fn_fieldlist.name = new_method_name;
2707 xfree (main_fn_name);
2708 }
2709 else
2710 xfree (new_method_name);
2711 }
2712 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2713 {
2714 new_fnlist->fn_fieldlist.name =
2715 obconcat (&objfile->objfile_obstack,
2716 "~", main_fn_name, (char *)NULL);
2717 xfree (main_fn_name);
2718 }
2719 else if (!has_stub)
2720 {
2721 char dem_opname[256];
2722 int ret;
2723
2724 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2725 dem_opname, DMGL_ANSI);
2726 if (!ret)
2727 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2728 dem_opname, 0);
2729 if (ret)
2730 new_fnlist->fn_fieldlist.name
2731 = ((const char *)
2732 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2733 strlen (dem_opname)));
2734 xfree (main_fn_name);
2735 }
2736
2737 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2738 obstack_alloc (&objfile->objfile_obstack,
2739 sizeof (struct fn_field) * length);
2740 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2741 sizeof (struct fn_field) * length);
2742 for (i = length; (i--, sublist); sublist = sublist->next)
2743 {
2744 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2745 }
2746
2747 new_fnlist->fn_fieldlist.length = length;
2748 new_fnlist->next = fip->fnlist;
2749 fip->fnlist = new_fnlist;
2750 nfn_fields++;
2751 }
2752 }
2753
2754 if (nfn_fields)
2755 {
2756 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2757 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2758 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2759 memset (TYPE_FN_FIELDLISTS (type), 0,
2760 sizeof (struct fn_fieldlist) * nfn_fields);
2761 TYPE_NFN_FIELDS (type) = nfn_fields;
2762 }
2763
2764 return 1;
2765 }
2766
2767 /* Special GNU C++ name.
2768
2769 Returns 1 for success, 0 for failure. "failure" means that we can't
2770 keep parsing and it's time for error_type(). */
2771
2772 static int
2773 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2774 struct objfile *objfile)
2775 {
2776 char *p;
2777 const char *name;
2778 char cpp_abbrev;
2779 struct type *context;
2780
2781 p = *pp;
2782 if (*++p == 'v')
2783 {
2784 name = NULL;
2785 cpp_abbrev = *++p;
2786
2787 *pp = p + 1;
2788
2789 /* At this point, *pp points to something like "22:23=*22...",
2790 where the type number before the ':' is the "context" and
2791 everything after is a regular type definition. Lookup the
2792 type, find it's name, and construct the field name. */
2793
2794 context = read_type (pp, objfile);
2795
2796 switch (cpp_abbrev)
2797 {
2798 case 'f': /* $vf -- a virtual function table pointer */
2799 name = type_name_no_tag (context);
2800 if (name == NULL)
2801 {
2802 name = "";
2803 }
2804 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2805 vptr_name, name, (char *) NULL);
2806 break;
2807
2808 case 'b': /* $vb -- a virtual bsomethingorother */
2809 name = type_name_no_tag (context);
2810 if (name == NULL)
2811 {
2812 complaint (&symfile_complaints,
2813 _("C++ abbreviated type name "
2814 "unknown at symtab pos %d"),
2815 symnum);
2816 name = "FOO";
2817 }
2818 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2819 name, (char *) NULL);
2820 break;
2821
2822 default:
2823 invalid_cpp_abbrev_complaint (*pp);
2824 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2825 "INVALID_CPLUSPLUS_ABBREV",
2826 (char *) NULL);
2827 break;
2828 }
2829
2830 /* At this point, *pp points to the ':'. Skip it and read the
2831 field type. */
2832
2833 p = ++(*pp);
2834 if (p[-1] != ':')
2835 {
2836 invalid_cpp_abbrev_complaint (*pp);
2837 return 0;
2838 }
2839 fip->list->field.type = read_type (pp, objfile);
2840 if (**pp == ',')
2841 (*pp)++; /* Skip the comma. */
2842 else
2843 return 0;
2844
2845 {
2846 int nbits;
2847
2848 SET_FIELD_BITPOS (fip->list->field,
2849 read_huge_number (pp, ';', &nbits, 0));
2850 if (nbits != 0)
2851 return 0;
2852 }
2853 /* This field is unpacked. */
2854 FIELD_BITSIZE (fip->list->field) = 0;
2855 fip->list->visibility = VISIBILITY_PRIVATE;
2856 }
2857 else
2858 {
2859 invalid_cpp_abbrev_complaint (*pp);
2860 /* We have no idea what syntax an unrecognized abbrev would have, so
2861 better return 0. If we returned 1, we would need to at least advance
2862 *pp to avoid an infinite loop. */
2863 return 0;
2864 }
2865 return 1;
2866 }
2867
2868 static void
2869 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2870 struct type *type, struct objfile *objfile)
2871 {
2872 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2873
2874 fip->list->field.name
2875 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2876 *pp = p + 1;
2877
2878 /* This means we have a visibility for a field coming. */
2879 if (**pp == '/')
2880 {
2881 (*pp)++;
2882 fip->list->visibility = *(*pp)++;
2883 }
2884 else
2885 {
2886 /* normal dbx-style format, no explicit visibility */
2887 fip->list->visibility = VISIBILITY_PUBLIC;
2888 }
2889
2890 fip->list->field.type = read_type (pp, objfile);
2891 if (**pp == ':')
2892 {
2893 p = ++(*pp);
2894 #if 0
2895 /* Possible future hook for nested types. */
2896 if (**pp == '!')
2897 {
2898 fip->list->field.bitpos = (long) -2; /* nested type */
2899 p = ++(*pp);
2900 }
2901 else
2902 ...;
2903 #endif
2904 while (*p != ';')
2905 {
2906 p++;
2907 }
2908 /* Static class member. */
2909 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2910 *pp = p + 1;
2911 return;
2912 }
2913 else if (**pp != ',')
2914 {
2915 /* Bad structure-type format. */
2916 stabs_general_complaint ("bad structure-type format");
2917 return;
2918 }
2919
2920 (*pp)++; /* Skip the comma. */
2921
2922 {
2923 int nbits;
2924
2925 SET_FIELD_BITPOS (fip->list->field,
2926 read_huge_number (pp, ',', &nbits, 0));
2927 if (nbits != 0)
2928 {
2929 stabs_general_complaint ("bad structure-type format");
2930 return;
2931 }
2932 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2933 if (nbits != 0)
2934 {
2935 stabs_general_complaint ("bad structure-type format");
2936 return;
2937 }
2938 }
2939
2940 if (FIELD_BITPOS (fip->list->field) == 0
2941 && FIELD_BITSIZE (fip->list->field) == 0)
2942 {
2943 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2944 it is a field which has been optimized out. The correct stab for
2945 this case is to use VISIBILITY_IGNORE, but that is a recent
2946 invention. (2) It is a 0-size array. For example
2947 union { int num; char str[0]; } foo. Printing _("<no value>" for
2948 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2949 will continue to work, and a 0-size array as a whole doesn't
2950 have any contents to print.
2951
2952 I suspect this probably could also happen with gcc -gstabs (not
2953 -gstabs+) for static fields, and perhaps other C++ extensions.
2954 Hopefully few people use -gstabs with gdb, since it is intended
2955 for dbx compatibility. */
2956
2957 /* Ignore this field. */
2958 fip->list->visibility = VISIBILITY_IGNORE;
2959 }
2960 else
2961 {
2962 /* Detect an unpacked field and mark it as such.
2963 dbx gives a bit size for all fields.
2964 Note that forward refs cannot be packed,
2965 and treat enums as if they had the width of ints. */
2966
2967 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2968
2969 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2970 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2971 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2972 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2973 {
2974 FIELD_BITSIZE (fip->list->field) = 0;
2975 }
2976 if ((FIELD_BITSIZE (fip->list->field)
2977 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2978 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2979 && FIELD_BITSIZE (fip->list->field)
2980 == gdbarch_int_bit (gdbarch))
2981 )
2982 &&
2983 FIELD_BITPOS (fip->list->field) % 8 == 0)
2984 {
2985 FIELD_BITSIZE (fip->list->field) = 0;
2986 }
2987 }
2988 }
2989
2990
2991 /* Read struct or class data fields. They have the form:
2992
2993 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2994
2995 At the end, we see a semicolon instead of a field.
2996
2997 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2998 a static field.
2999
3000 The optional VISIBILITY is one of:
3001
3002 '/0' (VISIBILITY_PRIVATE)
3003 '/1' (VISIBILITY_PROTECTED)
3004 '/2' (VISIBILITY_PUBLIC)
3005 '/9' (VISIBILITY_IGNORE)
3006
3007 or nothing, for C style fields with public visibility.
3008
3009 Returns 1 for success, 0 for failure. */
3010
3011 static int
3012 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3013 struct objfile *objfile)
3014 {
3015 char *p;
3016 struct nextfield *newobj;
3017
3018 /* We better set p right now, in case there are no fields at all... */
3019
3020 p = *pp;
3021
3022 /* Read each data member type until we find the terminating ';' at the end of
3023 the data member list, or break for some other reason such as finding the
3024 start of the member function list. */
3025 /* Stab string for structure/union does not end with two ';' in
3026 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3027
3028 while (**pp != ';' && **pp != '\0')
3029 {
3030 STABS_CONTINUE (pp, objfile);
3031 /* Get space to record the next field's data. */
3032 newobj = XCNEW (struct nextfield);
3033 make_cleanup (xfree, newobj);
3034
3035 newobj->next = fip->list;
3036 fip->list = newobj;
3037
3038 /* Get the field name. */
3039 p = *pp;
3040
3041 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3042 unless the CPLUS_MARKER is followed by an underscore, in
3043 which case it is just the name of an anonymous type, which we
3044 should handle like any other type name. */
3045
3046 if (is_cplus_marker (p[0]) && p[1] != '_')
3047 {
3048 if (!read_cpp_abbrev (fip, pp, type, objfile))
3049 return 0;
3050 continue;
3051 }
3052
3053 /* Look for the ':' that separates the field name from the field
3054 values. Data members are delimited by a single ':', while member
3055 functions are delimited by a pair of ':'s. When we hit the member
3056 functions (if any), terminate scan loop and return. */
3057
3058 while (*p != ':' && *p != '\0')
3059 {
3060 p++;
3061 }
3062 if (*p == '\0')
3063 return 0;
3064
3065 /* Check to see if we have hit the member functions yet. */
3066 if (p[1] == ':')
3067 {
3068 break;
3069 }
3070 read_one_struct_field (fip, pp, p, type, objfile);
3071 }
3072 if (p[0] == ':' && p[1] == ':')
3073 {
3074 /* (the deleted) chill the list of fields: the last entry (at
3075 the head) is a partially constructed entry which we now
3076 scrub. */
3077 fip->list = fip->list->next;
3078 }
3079 return 1;
3080 }
3081 /* *INDENT-OFF* */
3082 /* The stabs for C++ derived classes contain baseclass information which
3083 is marked by a '!' character after the total size. This function is
3084 called when we encounter the baseclass marker, and slurps up all the
3085 baseclass information.
3086
3087 Immediately following the '!' marker is the number of base classes that
3088 the class is derived from, followed by information for each base class.
3089 For each base class, there are two visibility specifiers, a bit offset
3090 to the base class information within the derived class, a reference to
3091 the type for the base class, and a terminating semicolon.
3092
3093 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3094 ^^ ^ ^ ^ ^ ^ ^
3095 Baseclass information marker __________________|| | | | | | |
3096 Number of baseclasses __________________________| | | | | | |
3097 Visibility specifiers (2) ________________________| | | | | |
3098 Offset in bits from start of class _________________| | | | |
3099 Type number for base class ___________________________| | | |
3100 Visibility specifiers (2) _______________________________| | |
3101 Offset in bits from start of class ________________________| |
3102 Type number of base class ____________________________________|
3103
3104 Return 1 for success, 0 for (error-type-inducing) failure. */
3105 /* *INDENT-ON* */
3106
3107
3108
3109 static int
3110 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3111 struct objfile *objfile)
3112 {
3113 int i;
3114 struct nextfield *newobj;
3115
3116 if (**pp != '!')
3117 {
3118 return 1;
3119 }
3120 else
3121 {
3122 /* Skip the '!' baseclass information marker. */
3123 (*pp)++;
3124 }
3125
3126 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3127 {
3128 int nbits;
3129
3130 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3131 if (nbits != 0)
3132 return 0;
3133 }
3134
3135 #if 0
3136 /* Some stupid compilers have trouble with the following, so break
3137 it up into simpler expressions. */
3138 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3139 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3140 #else
3141 {
3142 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3143 char *pointer;
3144
3145 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3146 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3147 }
3148 #endif /* 0 */
3149
3150 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3151
3152 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3153 {
3154 newobj = XCNEW (struct nextfield);
3155 make_cleanup (xfree, newobj);
3156
3157 newobj->next = fip->list;
3158 fip->list = newobj;
3159 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3160 field! */
3161
3162 STABS_CONTINUE (pp, objfile);
3163 switch (**pp)
3164 {
3165 case '0':
3166 /* Nothing to do. */
3167 break;
3168 case '1':
3169 SET_TYPE_FIELD_VIRTUAL (type, i);
3170 break;
3171 default:
3172 /* Unknown character. Complain and treat it as non-virtual. */
3173 {
3174 complaint (&symfile_complaints,
3175 _("Unknown virtual character `%c' for baseclass"),
3176 **pp);
3177 }
3178 }
3179 ++(*pp);
3180
3181 newobj->visibility = *(*pp)++;
3182 switch (newobj->visibility)
3183 {
3184 case VISIBILITY_PRIVATE:
3185 case VISIBILITY_PROTECTED:
3186 case VISIBILITY_PUBLIC:
3187 break;
3188 default:
3189 /* Bad visibility format. Complain and treat it as
3190 public. */
3191 {
3192 complaint (&symfile_complaints,
3193 _("Unknown visibility `%c' for baseclass"),
3194 newobj->visibility);
3195 newobj->visibility = VISIBILITY_PUBLIC;
3196 }
3197 }
3198
3199 {
3200 int nbits;
3201
3202 /* The remaining value is the bit offset of the portion of the object
3203 corresponding to this baseclass. Always zero in the absence of
3204 multiple inheritance. */
3205
3206 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3207 if (nbits != 0)
3208 return 0;
3209 }
3210
3211 /* The last piece of baseclass information is the type of the
3212 base class. Read it, and remember it's type name as this
3213 field's name. */
3214
3215 newobj->field.type = read_type (pp, objfile);
3216 newobj->field.name = type_name_no_tag (newobj->field.type);
3217
3218 /* Skip trailing ';' and bump count of number of fields seen. */
3219 if (**pp == ';')
3220 (*pp)++;
3221 else
3222 return 0;
3223 }
3224 return 1;
3225 }
3226
3227 /* The tail end of stabs for C++ classes that contain a virtual function
3228 pointer contains a tilde, a %, and a type number.
3229 The type number refers to the base class (possibly this class itself) which
3230 contains the vtable pointer for the current class.
3231
3232 This function is called when we have parsed all the method declarations,
3233 so we can look for the vptr base class info. */
3234
3235 static int
3236 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3237 struct objfile *objfile)
3238 {
3239 char *p;
3240
3241 STABS_CONTINUE (pp, objfile);
3242
3243 /* If we are positioned at a ';', then skip it. */
3244 if (**pp == ';')
3245 {
3246 (*pp)++;
3247 }
3248
3249 if (**pp == '~')
3250 {
3251 (*pp)++;
3252
3253 if (**pp == '=' || **pp == '+' || **pp == '-')
3254 {
3255 /* Obsolete flags that used to indicate the presence
3256 of constructors and/or destructors. */
3257 (*pp)++;
3258 }
3259
3260 /* Read either a '%' or the final ';'. */
3261 if (*(*pp)++ == '%')
3262 {
3263 /* The next number is the type number of the base class
3264 (possibly our own class) which supplies the vtable for
3265 this class. Parse it out, and search that class to find
3266 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3267 and TYPE_VPTR_FIELDNO. */
3268
3269 struct type *t;
3270 int i;
3271
3272 t = read_type (pp, objfile);
3273 p = (*pp)++;
3274 while (*p != '\0' && *p != ';')
3275 {
3276 p++;
3277 }
3278 if (*p == '\0')
3279 {
3280 /* Premature end of symbol. */
3281 return 0;
3282 }
3283
3284 set_type_vptr_basetype (type, t);
3285 if (type == t) /* Our own class provides vtbl ptr. */
3286 {
3287 for (i = TYPE_NFIELDS (t) - 1;
3288 i >= TYPE_N_BASECLASSES (t);
3289 --i)
3290 {
3291 const char *name = TYPE_FIELD_NAME (t, i);
3292
3293 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3294 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3295 {
3296 set_type_vptr_fieldno (type, i);
3297 goto gotit;
3298 }
3299 }
3300 /* Virtual function table field not found. */
3301 complaint (&symfile_complaints,
3302 _("virtual function table pointer "
3303 "not found when defining class `%s'"),
3304 TYPE_NAME (type));
3305 return 0;
3306 }
3307 else
3308 {
3309 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3310 }
3311
3312 gotit:
3313 *pp = p + 1;
3314 }
3315 }
3316 return 1;
3317 }
3318
3319 static int
3320 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3321 {
3322 int n;
3323
3324 for (n = TYPE_NFN_FIELDS (type);
3325 fip->fnlist != NULL;
3326 fip->fnlist = fip->fnlist->next)
3327 {
3328 --n; /* Circumvent Sun3 compiler bug. */
3329 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3330 }
3331 return 1;
3332 }
3333
3334 /* Create the vector of fields, and record how big it is.
3335 We need this info to record proper virtual function table information
3336 for this class's virtual functions. */
3337
3338 static int
3339 attach_fields_to_type (struct field_info *fip, struct type *type,
3340 struct objfile *objfile)
3341 {
3342 int nfields = 0;
3343 int non_public_fields = 0;
3344 struct nextfield *scan;
3345
3346 /* Count up the number of fields that we have, as well as taking note of
3347 whether or not there are any non-public fields, which requires us to
3348 allocate and build the private_field_bits and protected_field_bits
3349 bitfields. */
3350
3351 for (scan = fip->list; scan != NULL; scan = scan->next)
3352 {
3353 nfields++;
3354 if (scan->visibility != VISIBILITY_PUBLIC)
3355 {
3356 non_public_fields++;
3357 }
3358 }
3359
3360 /* Now we know how many fields there are, and whether or not there are any
3361 non-public fields. Record the field count, allocate space for the
3362 array of fields, and create blank visibility bitfields if necessary. */
3363
3364 TYPE_NFIELDS (type) = nfields;
3365 TYPE_FIELDS (type) = (struct field *)
3366 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3367 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3368
3369 if (non_public_fields)
3370 {
3371 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3372
3373 TYPE_FIELD_PRIVATE_BITS (type) =
3374 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3375 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3376
3377 TYPE_FIELD_PROTECTED_BITS (type) =
3378 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3379 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3380
3381 TYPE_FIELD_IGNORE_BITS (type) =
3382 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3383 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3384 }
3385
3386 /* Copy the saved-up fields into the field vector. Start from the
3387 head of the list, adding to the tail of the field array, so that
3388 they end up in the same order in the array in which they were
3389 added to the list. */
3390
3391 while (nfields-- > 0)
3392 {
3393 TYPE_FIELD (type, nfields) = fip->list->field;
3394 switch (fip->list->visibility)
3395 {
3396 case VISIBILITY_PRIVATE:
3397 SET_TYPE_FIELD_PRIVATE (type, nfields);
3398 break;
3399
3400 case VISIBILITY_PROTECTED:
3401 SET_TYPE_FIELD_PROTECTED (type, nfields);
3402 break;
3403
3404 case VISIBILITY_IGNORE:
3405 SET_TYPE_FIELD_IGNORE (type, nfields);
3406 break;
3407
3408 case VISIBILITY_PUBLIC:
3409 break;
3410
3411 default:
3412 /* Unknown visibility. Complain and treat it as public. */
3413 {
3414 complaint (&symfile_complaints,
3415 _("Unknown visibility `%c' for field"),
3416 fip->list->visibility);
3417 }
3418 break;
3419 }
3420 fip->list = fip->list->next;
3421 }
3422 return 1;
3423 }
3424
3425
3426 /* Complain that the compiler has emitted more than one definition for the
3427 structure type TYPE. */
3428 static void
3429 complain_about_struct_wipeout (struct type *type)
3430 {
3431 const char *name = "";
3432 const char *kind = "";
3433
3434 if (TYPE_TAG_NAME (type))
3435 {
3436 name = TYPE_TAG_NAME (type);
3437 switch (TYPE_CODE (type))
3438 {
3439 case TYPE_CODE_STRUCT: kind = "struct "; break;
3440 case TYPE_CODE_UNION: kind = "union "; break;
3441 case TYPE_CODE_ENUM: kind = "enum "; break;
3442 default: kind = "";
3443 }
3444 }
3445 else if (TYPE_NAME (type))
3446 {
3447 name = TYPE_NAME (type);
3448 kind = "";
3449 }
3450 else
3451 {
3452 name = "<unknown>";
3453 kind = "";
3454 }
3455
3456 complaint (&symfile_complaints,
3457 _("struct/union type gets multiply defined: %s%s"), kind, name);
3458 }
3459
3460 /* Set the length for all variants of a same main_type, which are
3461 connected in the closed chain.
3462
3463 This is something that needs to be done when a type is defined *after*
3464 some cross references to this type have already been read. Consider
3465 for instance the following scenario where we have the following two
3466 stabs entries:
3467
3468 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3469 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3470
3471 A stubbed version of type dummy is created while processing the first
3472 stabs entry. The length of that type is initially set to zero, since
3473 it is unknown at this point. Also, a "constant" variation of type
3474 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3475 the stabs line).
3476
3477 The second stabs entry allows us to replace the stubbed definition
3478 with the real definition. However, we still need to adjust the length
3479 of the "constant" variation of that type, as its length was left
3480 untouched during the main type replacement... */
3481
3482 static void
3483 set_length_in_type_chain (struct type *type)
3484 {
3485 struct type *ntype = TYPE_CHAIN (type);
3486
3487 while (ntype != type)
3488 {
3489 if (TYPE_LENGTH(ntype) == 0)
3490 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3491 else
3492 complain_about_struct_wipeout (ntype);
3493 ntype = TYPE_CHAIN (ntype);
3494 }
3495 }
3496
3497 /* Read the description of a structure (or union type) and return an object
3498 describing the type.
3499
3500 PP points to a character pointer that points to the next unconsumed token
3501 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3502 *PP will point to "4a:1,0,32;;".
3503
3504 TYPE points to an incomplete type that needs to be filled in.
3505
3506 OBJFILE points to the current objfile from which the stabs information is
3507 being read. (Note that it is redundant in that TYPE also contains a pointer
3508 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3509 */
3510
3511 static struct type *
3512 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3513 struct objfile *objfile)
3514 {
3515 struct cleanup *back_to;
3516 struct field_info fi;
3517
3518 fi.list = NULL;
3519 fi.fnlist = NULL;
3520
3521 /* When describing struct/union/class types in stabs, G++ always drops
3522 all qualifications from the name. So if you've got:
3523 struct A { ... struct B { ... }; ... };
3524 then G++ will emit stabs for `struct A::B' that call it simply
3525 `struct B'. Obviously, if you've got a real top-level definition for
3526 `struct B', or other nested definitions, this is going to cause
3527 problems.
3528
3529 Obviously, GDB can't fix this by itself, but it can at least avoid
3530 scribbling on existing structure type objects when new definitions
3531 appear. */
3532 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3533 || TYPE_STUB (type)))
3534 {
3535 complain_about_struct_wipeout (type);
3536
3537 /* It's probably best to return the type unchanged. */
3538 return type;
3539 }
3540
3541 back_to = make_cleanup (null_cleanup, 0);
3542
3543 INIT_CPLUS_SPECIFIC (type);
3544 TYPE_CODE (type) = type_code;
3545 TYPE_STUB (type) = 0;
3546
3547 /* First comes the total size in bytes. */
3548
3549 {
3550 int nbits;
3551
3552 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3553 if (nbits != 0)
3554 {
3555 do_cleanups (back_to);
3556 return error_type (pp, objfile);
3557 }
3558 set_length_in_type_chain (type);
3559 }
3560
3561 /* Now read the baseclasses, if any, read the regular C struct or C++
3562 class member fields, attach the fields to the type, read the C++
3563 member functions, attach them to the type, and then read any tilde
3564 field (baseclass specifier for the class holding the main vtable). */
3565
3566 if (!read_baseclasses (&fi, pp, type, objfile)
3567 || !read_struct_fields (&fi, pp, type, objfile)
3568 || !attach_fields_to_type (&fi, type, objfile)
3569 || !read_member_functions (&fi, pp, type, objfile)
3570 || !attach_fn_fields_to_type (&fi, type)
3571 || !read_tilde_fields (&fi, pp, type, objfile))
3572 {
3573 type = error_type (pp, objfile);
3574 }
3575
3576 do_cleanups (back_to);
3577 return (type);
3578 }
3579
3580 /* Read a definition of an array type,
3581 and create and return a suitable type object.
3582 Also creates a range type which represents the bounds of that
3583 array. */
3584
3585 static struct type *
3586 read_array_type (char **pp, struct type *type,
3587 struct objfile *objfile)
3588 {
3589 struct type *index_type, *element_type, *range_type;
3590 int lower, upper;
3591 int adjustable = 0;
3592 int nbits;
3593
3594 /* Format of an array type:
3595 "ar<index type>;lower;upper;<array_contents_type>".
3596 OS9000: "arlower,upper;<array_contents_type>".
3597
3598 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3599 for these, produce a type like float[][]. */
3600
3601 {
3602 index_type = read_type (pp, objfile);
3603 if (**pp != ';')
3604 /* Improper format of array type decl. */
3605 return error_type (pp, objfile);
3606 ++*pp;
3607 }
3608
3609 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3610 {
3611 (*pp)++;
3612 adjustable = 1;
3613 }
3614 lower = read_huge_number (pp, ';', &nbits, 0);
3615
3616 if (nbits != 0)
3617 return error_type (pp, objfile);
3618
3619 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3620 {
3621 (*pp)++;
3622 adjustable = 1;
3623 }
3624 upper = read_huge_number (pp, ';', &nbits, 0);
3625 if (nbits != 0)
3626 return error_type (pp, objfile);
3627
3628 element_type = read_type (pp, objfile);
3629
3630 if (adjustable)
3631 {
3632 lower = 0;
3633 upper = -1;
3634 }
3635
3636 range_type =
3637 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3638 type = create_array_type (type, element_type, range_type);
3639
3640 return type;
3641 }
3642
3643
3644 /* Read a definition of an enumeration type,
3645 and create and return a suitable type object.
3646 Also defines the symbols that represent the values of the type. */
3647
3648 static struct type *
3649 read_enum_type (char **pp, struct type *type,
3650 struct objfile *objfile)
3651 {
3652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3653 char *p;
3654 char *name;
3655 long n;
3656 struct symbol *sym;
3657 int nsyms = 0;
3658 struct pending **symlist;
3659 struct pending *osyms, *syms;
3660 int o_nsyms;
3661 int nbits;
3662 int unsigned_enum = 1;
3663
3664 #if 0
3665 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3666 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3667 to do? For now, force all enum values to file scope. */
3668 if (within_function)
3669 symlist = &local_symbols;
3670 else
3671 #endif
3672 symlist = &file_symbols;
3673 osyms = *symlist;
3674 o_nsyms = osyms ? osyms->nsyms : 0;
3675
3676 /* The aix4 compiler emits an extra field before the enum members;
3677 my guess is it's a type of some sort. Just ignore it. */
3678 if (**pp == '-')
3679 {
3680 /* Skip over the type. */
3681 while (**pp != ':')
3682 (*pp)++;
3683
3684 /* Skip over the colon. */
3685 (*pp)++;
3686 }
3687
3688 /* Read the value-names and their values.
3689 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3690 A semicolon or comma instead of a NAME means the end. */
3691 while (**pp && **pp != ';' && **pp != ',')
3692 {
3693 STABS_CONTINUE (pp, objfile);
3694 p = *pp;
3695 while (*p != ':')
3696 p++;
3697 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3698 *pp = p + 1;
3699 n = read_huge_number (pp, ',', &nbits, 0);
3700 if (nbits != 0)
3701 return error_type (pp, objfile);
3702
3703 sym = allocate_symbol (objfile);
3704 SYMBOL_SET_LINKAGE_NAME (sym, name);
3705 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3706 &objfile->objfile_obstack);
3707 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3708 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3709 SYMBOL_VALUE (sym) = n;
3710 if (n < 0)
3711 unsigned_enum = 0;
3712 add_symbol_to_list (sym, symlist);
3713 nsyms++;
3714 }
3715
3716 if (**pp == ';')
3717 (*pp)++; /* Skip the semicolon. */
3718
3719 /* Now fill in the fields of the type-structure. */
3720
3721 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3722 set_length_in_type_chain (type);
3723 TYPE_CODE (type) = TYPE_CODE_ENUM;
3724 TYPE_STUB (type) = 0;
3725 if (unsigned_enum)
3726 TYPE_UNSIGNED (type) = 1;
3727 TYPE_NFIELDS (type) = nsyms;
3728 TYPE_FIELDS (type) = (struct field *)
3729 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3730 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3731
3732 /* Find the symbols for the values and put them into the type.
3733 The symbols can be found in the symlist that we put them on
3734 to cause them to be defined. osyms contains the old value
3735 of that symlist; everything up to there was defined by us. */
3736 /* Note that we preserve the order of the enum constants, so
3737 that in something like "enum {FOO, LAST_THING=FOO}" we print
3738 FOO, not LAST_THING. */
3739
3740 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3741 {
3742 int last = syms == osyms ? o_nsyms : 0;
3743 int j = syms->nsyms;
3744
3745 for (; --j >= last; --n)
3746 {
3747 struct symbol *xsym = syms->symbol[j];
3748
3749 SYMBOL_TYPE (xsym) = type;
3750 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3751 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3752 TYPE_FIELD_BITSIZE (type, n) = 0;
3753 }
3754 if (syms == osyms)
3755 break;
3756 }
3757
3758 return type;
3759 }
3760
3761 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3762 typedefs in every file (for int, long, etc):
3763
3764 type = b <signed> <width> <format type>; <offset>; <nbits>
3765 signed = u or s.
3766 optional format type = c or b for char or boolean.
3767 offset = offset from high order bit to start bit of type.
3768 width is # bytes in object of this type, nbits is # bits in type.
3769
3770 The width/offset stuff appears to be for small objects stored in
3771 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3772 FIXME. */
3773
3774 static struct type *
3775 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3776 {
3777 int type_bits;
3778 int nbits;
3779 int unsigned_type;
3780 int boolean_type = 0;
3781
3782 switch (**pp)
3783 {
3784 case 's':
3785 unsigned_type = 0;
3786 break;
3787 case 'u':
3788 unsigned_type = 1;
3789 break;
3790 default:
3791 return error_type (pp, objfile);
3792 }
3793 (*pp)++;
3794
3795 /* For some odd reason, all forms of char put a c here. This is strange
3796 because no other type has this honor. We can safely ignore this because
3797 we actually determine 'char'acterness by the number of bits specified in
3798 the descriptor.
3799 Boolean forms, e.g Fortran logical*X, put a b here. */
3800
3801 if (**pp == 'c')
3802 (*pp)++;
3803 else if (**pp == 'b')
3804 {
3805 boolean_type = 1;
3806 (*pp)++;
3807 }
3808
3809 /* The first number appears to be the number of bytes occupied
3810 by this type, except that unsigned short is 4 instead of 2.
3811 Since this information is redundant with the third number,
3812 we will ignore it. */
3813 read_huge_number (pp, ';', &nbits, 0);
3814 if (nbits != 0)
3815 return error_type (pp, objfile);
3816
3817 /* The second number is always 0, so ignore it too. */
3818 read_huge_number (pp, ';', &nbits, 0);
3819 if (nbits != 0)
3820 return error_type (pp, objfile);
3821
3822 /* The third number is the number of bits for this type. */
3823 type_bits = read_huge_number (pp, 0, &nbits, 0);
3824 if (nbits != 0)
3825 return error_type (pp, objfile);
3826 /* The type *should* end with a semicolon. If it are embedded
3827 in a larger type the semicolon may be the only way to know where
3828 the type ends. If this type is at the end of the stabstring we
3829 can deal with the omitted semicolon (but we don't have to like
3830 it). Don't bother to complain(), Sun's compiler omits the semicolon
3831 for "void". */
3832 if (**pp == ';')
3833 ++(*pp);
3834
3835 if (type_bits == 0)
3836 {
3837 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3838 if (unsigned_type)
3839 TYPE_UNSIGNED (type) = 1;
3840 return type;
3841 }
3842
3843 if (boolean_type)
3844 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3845 else
3846 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3847 }
3848
3849 static struct type *
3850 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3851 {
3852 int nbits;
3853 int details;
3854 int nbytes;
3855 struct type *rettype;
3856
3857 /* The first number has more details about the type, for example
3858 FN_COMPLEX. */
3859 details = read_huge_number (pp, ';', &nbits, 0);
3860 if (nbits != 0)
3861 return error_type (pp, objfile);
3862
3863 /* The second number is the number of bytes occupied by this type. */
3864 nbytes = read_huge_number (pp, ';', &nbits, 0);
3865 if (nbits != 0)
3866 return error_type (pp, objfile);
3867
3868 nbits = nbytes * TARGET_CHAR_BIT;
3869
3870 if (details == NF_COMPLEX || details == NF_COMPLEX16
3871 || details == NF_COMPLEX32)
3872 {
3873 rettype = dbx_init_float_type (objfile, nbits / 2);
3874 return init_complex_type (objfile, NULL, rettype);
3875 }
3876
3877 return dbx_init_float_type (objfile, nbits);
3878 }
3879
3880 /* Read a number from the string pointed to by *PP.
3881 The value of *PP is advanced over the number.
3882 If END is nonzero, the character that ends the
3883 number must match END, or an error happens;
3884 and that character is skipped if it does match.
3885 If END is zero, *PP is left pointing to that character.
3886
3887 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3888 the number is represented in an octal representation, assume that
3889 it is represented in a 2's complement representation with a size of
3890 TWOS_COMPLEMENT_BITS.
3891
3892 If the number fits in a long, set *BITS to 0 and return the value.
3893 If not, set *BITS to be the number of bits in the number and return 0.
3894
3895 If encounter garbage, set *BITS to -1 and return 0. */
3896
3897 static long
3898 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3899 {
3900 char *p = *pp;
3901 int sign = 1;
3902 int sign_bit = 0;
3903 long n = 0;
3904 int radix = 10;
3905 char overflow = 0;
3906 int nbits = 0;
3907 int c;
3908 long upper_limit;
3909 int twos_complement_representation = 0;
3910
3911 if (*p == '-')
3912 {
3913 sign = -1;
3914 p++;
3915 }
3916
3917 /* Leading zero means octal. GCC uses this to output values larger
3918 than an int (because that would be hard in decimal). */
3919 if (*p == '0')
3920 {
3921 radix = 8;
3922 p++;
3923 }
3924
3925 /* Skip extra zeros. */
3926 while (*p == '0')
3927 p++;
3928
3929 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3930 {
3931 /* Octal, possibly signed. Check if we have enough chars for a
3932 negative number. */
3933
3934 size_t len;
3935 char *p1 = p;
3936
3937 while ((c = *p1) >= '0' && c < '8')
3938 p1++;
3939
3940 len = p1 - p;
3941 if (len > twos_complement_bits / 3
3942 || (twos_complement_bits % 3 == 0
3943 && len == twos_complement_bits / 3))
3944 {
3945 /* Ok, we have enough characters for a signed value, check
3946 for signness by testing if the sign bit is set. */
3947 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3948 c = *p - '0';
3949 if (c & (1 << sign_bit))
3950 {
3951 /* Definitely signed. */
3952 twos_complement_representation = 1;
3953 sign = -1;
3954 }
3955 }
3956 }
3957
3958 upper_limit = LONG_MAX / radix;
3959
3960 while ((c = *p++) >= '0' && c < ('0' + radix))
3961 {
3962 if (n <= upper_limit)
3963 {
3964 if (twos_complement_representation)
3965 {
3966 /* Octal, signed, twos complement representation. In
3967 this case, n is the corresponding absolute value. */
3968 if (n == 0)
3969 {
3970 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3971
3972 n = -sn;
3973 }
3974 else
3975 {
3976 n *= radix;
3977 n -= c - '0';
3978 }
3979 }
3980 else
3981 {
3982 /* unsigned representation */
3983 n *= radix;
3984 n += c - '0'; /* FIXME this overflows anyway. */
3985 }
3986 }
3987 else
3988 overflow = 1;
3989
3990 /* This depends on large values being output in octal, which is
3991 what GCC does. */
3992 if (radix == 8)
3993 {
3994 if (nbits == 0)
3995 {
3996 if (c == '0')
3997 /* Ignore leading zeroes. */
3998 ;
3999 else if (c == '1')
4000 nbits = 1;
4001 else if (c == '2' || c == '3')
4002 nbits = 2;
4003 else
4004 nbits = 3;
4005 }
4006 else
4007 nbits += 3;
4008 }
4009 }
4010 if (end)
4011 {
4012 if (c && c != end)
4013 {
4014 if (bits != NULL)
4015 *bits = -1;
4016 return 0;
4017 }
4018 }
4019 else
4020 --p;
4021
4022 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4023 {
4024 /* We were supposed to parse a number with maximum
4025 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4026 if (bits != NULL)
4027 *bits = -1;
4028 return 0;
4029 }
4030
4031 *pp = p;
4032 if (overflow)
4033 {
4034 if (nbits == 0)
4035 {
4036 /* Large decimal constants are an error (because it is hard to
4037 count how many bits are in them). */
4038 if (bits != NULL)
4039 *bits = -1;
4040 return 0;
4041 }
4042
4043 /* -0x7f is the same as 0x80. So deal with it by adding one to
4044 the number of bits. Two's complement represention octals
4045 can't have a '-' in front. */
4046 if (sign == -1 && !twos_complement_representation)
4047 ++nbits;
4048 if (bits)
4049 *bits = nbits;
4050 }
4051 else
4052 {
4053 if (bits)
4054 *bits = 0;
4055 return n * sign;
4056 }
4057 /* It's *BITS which has the interesting information. */
4058 return 0;
4059 }
4060
4061 static struct type *
4062 read_range_type (char **pp, int typenums[2], int type_size,
4063 struct objfile *objfile)
4064 {
4065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4066 char *orig_pp = *pp;
4067 int rangenums[2];
4068 long n2, n3;
4069 int n2bits, n3bits;
4070 int self_subrange;
4071 struct type *result_type;
4072 struct type *index_type = NULL;
4073
4074 /* First comes a type we are a subrange of.
4075 In C it is usually 0, 1 or the type being defined. */
4076 if (read_type_number (pp, rangenums) != 0)
4077 return error_type (pp, objfile);
4078 self_subrange = (rangenums[0] == typenums[0] &&
4079 rangenums[1] == typenums[1]);
4080
4081 if (**pp == '=')
4082 {
4083 *pp = orig_pp;
4084 index_type = read_type (pp, objfile);
4085 }
4086
4087 /* A semicolon should now follow; skip it. */
4088 if (**pp == ';')
4089 (*pp)++;
4090
4091 /* The remaining two operands are usually lower and upper bounds
4092 of the range. But in some special cases they mean something else. */
4093 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4094 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4095
4096 if (n2bits == -1 || n3bits == -1)
4097 return error_type (pp, objfile);
4098
4099 if (index_type)
4100 goto handle_true_range;
4101
4102 /* If limits are huge, must be large integral type. */
4103 if (n2bits != 0 || n3bits != 0)
4104 {
4105 char got_signed = 0;
4106 char got_unsigned = 0;
4107 /* Number of bits in the type. */
4108 int nbits = 0;
4109
4110 /* If a type size attribute has been specified, the bounds of
4111 the range should fit in this size. If the lower bounds needs
4112 more bits than the upper bound, then the type is signed. */
4113 if (n2bits <= type_size && n3bits <= type_size)
4114 {
4115 if (n2bits == type_size && n2bits > n3bits)
4116 got_signed = 1;
4117 else
4118 got_unsigned = 1;
4119 nbits = type_size;
4120 }
4121 /* Range from 0 to <large number> is an unsigned large integral type. */
4122 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4123 {
4124 got_unsigned = 1;
4125 nbits = n3bits;
4126 }
4127 /* Range from <large number> to <large number>-1 is a large signed
4128 integral type. Take care of the case where <large number> doesn't
4129 fit in a long but <large number>-1 does. */
4130 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4131 || (n2bits != 0 && n3bits == 0
4132 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4133 && n3 == LONG_MAX))
4134 {
4135 got_signed = 1;
4136 nbits = n2bits;
4137 }
4138
4139 if (got_signed || got_unsigned)
4140 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4141 else
4142 return error_type (pp, objfile);
4143 }
4144
4145 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4146 if (self_subrange && n2 == 0 && n3 == 0)
4147 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
4148
4149 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4150 is the width in bytes.
4151
4152 Fortran programs appear to use this for complex types also. To
4153 distinguish between floats and complex, g77 (and others?) seem
4154 to use self-subranges for the complexes, and subranges of int for
4155 the floats.
4156
4157 Also note that for complexes, g77 sets n2 to the size of one of
4158 the member floats, not the whole complex beast. My guess is that
4159 this was to work well with pre-COMPLEX versions of gdb. */
4160
4161 if (n3 == 0 && n2 > 0)
4162 {
4163 struct type *float_type
4164 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4165
4166 if (self_subrange)
4167 return init_complex_type (objfile, NULL, float_type);
4168 else
4169 return float_type;
4170 }
4171
4172 /* If the upper bound is -1, it must really be an unsigned integral. */
4173
4174 else if (n2 == 0 && n3 == -1)
4175 {
4176 int bits = type_size;
4177
4178 if (bits <= 0)
4179 {
4180 /* We don't know its size. It is unsigned int or unsigned
4181 long. GCC 2.3.3 uses this for long long too, but that is
4182 just a GDB 3.5 compatibility hack. */
4183 bits = gdbarch_int_bit (gdbarch);
4184 }
4185
4186 return init_integer_type (objfile, bits, 1, NULL);
4187 }
4188
4189 /* Special case: char is defined (Who knows why) as a subrange of
4190 itself with range 0-127. */
4191 else if (self_subrange && n2 == 0 && n3 == 127)
4192 {
4193 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4194 TYPE_NOSIGN (type) = 1;
4195 return type;
4196 }
4197 /* We used to do this only for subrange of self or subrange of int. */
4198 else if (n2 == 0)
4199 {
4200 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4201 "unsigned long", and we already checked for that,
4202 so don't need to test for it here. */
4203
4204 if (n3 < 0)
4205 /* n3 actually gives the size. */
4206 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4207
4208 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4209 unsigned n-byte integer. But do require n to be a power of
4210 two; we don't want 3- and 5-byte integers flying around. */
4211 {
4212 int bytes;
4213 unsigned long bits;
4214
4215 bits = n3;
4216 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4217 bits >>= 8;
4218 if (bits == 0
4219 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4220 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4221 }
4222 }
4223 /* I think this is for Convex "long long". Since I don't know whether
4224 Convex sets self_subrange, I also accept that particular size regardless
4225 of self_subrange. */
4226 else if (n3 == 0 && n2 < 0
4227 && (self_subrange
4228 || n2 == -gdbarch_long_long_bit
4229 (gdbarch) / TARGET_CHAR_BIT))
4230 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4231 else if (n2 == -n3 - 1)
4232 {
4233 if (n3 == 0x7f)
4234 return init_integer_type (objfile, 8, 0, NULL);
4235 if (n3 == 0x7fff)
4236 return init_integer_type (objfile, 16, 0, NULL);
4237 if (n3 == 0x7fffffff)
4238 return init_integer_type (objfile, 32, 0, NULL);
4239 }
4240
4241 /* We have a real range type on our hands. Allocate space and
4242 return a real pointer. */
4243 handle_true_range:
4244
4245 if (self_subrange)
4246 index_type = objfile_type (objfile)->builtin_int;
4247 else
4248 index_type = *dbx_lookup_type (rangenums, objfile);
4249 if (index_type == NULL)
4250 {
4251 /* Does this actually ever happen? Is that why we are worrying
4252 about dealing with it rather than just calling error_type? */
4253
4254 complaint (&symfile_complaints,
4255 _("base type %d of range type is not defined"), rangenums[1]);
4256
4257 index_type = objfile_type (objfile)->builtin_int;
4258 }
4259
4260 result_type
4261 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4262 return (result_type);
4263 }
4264
4265 /* Read in an argument list. This is a list of types, separated by commas
4266 and terminated with END. Return the list of types read in, or NULL
4267 if there is an error. */
4268
4269 static struct field *
4270 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4271 int *varargsp)
4272 {
4273 /* FIXME! Remove this arbitrary limit! */
4274 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4275 int n = 0, i;
4276 struct field *rval;
4277
4278 while (**pp != end)
4279 {
4280 if (**pp != ',')
4281 /* Invalid argument list: no ','. */
4282 return NULL;
4283 (*pp)++;
4284 STABS_CONTINUE (pp, objfile);
4285 types[n++] = read_type (pp, objfile);
4286 }
4287 (*pp)++; /* get past `end' (the ':' character). */
4288
4289 if (n == 0)
4290 {
4291 /* We should read at least the THIS parameter here. Some broken stabs
4292 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4293 have been present ";-16,(0,43)" reference instead. This way the
4294 excessive ";" marker prematurely stops the parameters parsing. */
4295
4296 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4297 *varargsp = 0;
4298 }
4299 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4300 *varargsp = 1;
4301 else
4302 {
4303 n--;
4304 *varargsp = 0;
4305 }
4306
4307 rval = XCNEWVEC (struct field, n);
4308 for (i = 0; i < n; i++)
4309 rval[i].type = types[i];
4310 *nargsp = n;
4311 return rval;
4312 }
4313 \f
4314 /* Common block handling. */
4315
4316 /* List of symbols declared since the last BCOMM. This list is a tail
4317 of local_symbols. When ECOMM is seen, the symbols on the list
4318 are noted so their proper addresses can be filled in later,
4319 using the common block base address gotten from the assembler
4320 stabs. */
4321
4322 static struct pending *common_block;
4323 static int common_block_i;
4324
4325 /* Name of the current common block. We get it from the BCOMM instead of the
4326 ECOMM to match IBM documentation (even though IBM puts the name both places
4327 like everyone else). */
4328 static char *common_block_name;
4329
4330 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4331 to remain after this function returns. */
4332
4333 void
4334 common_block_start (char *name, struct objfile *objfile)
4335 {
4336 if (common_block_name != NULL)
4337 {
4338 complaint (&symfile_complaints,
4339 _("Invalid symbol data: common block within common block"));
4340 }
4341 common_block = local_symbols;
4342 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4343 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4344 strlen (name));
4345 }
4346
4347 /* Process a N_ECOMM symbol. */
4348
4349 void
4350 common_block_end (struct objfile *objfile)
4351 {
4352 /* Symbols declared since the BCOMM are to have the common block
4353 start address added in when we know it. common_block and
4354 common_block_i point to the first symbol after the BCOMM in
4355 the local_symbols list; copy the list and hang it off the
4356 symbol for the common block name for later fixup. */
4357 int i;
4358 struct symbol *sym;
4359 struct pending *newobj = 0;
4360 struct pending *next;
4361 int j;
4362
4363 if (common_block_name == NULL)
4364 {
4365 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4366 return;
4367 }
4368
4369 sym = allocate_symbol (objfile);
4370 /* Note: common_block_name already saved on objfile_obstack. */
4371 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4372 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4373
4374 /* Now we copy all the symbols which have been defined since the BCOMM. */
4375
4376 /* Copy all the struct pendings before common_block. */
4377 for (next = local_symbols;
4378 next != NULL && next != common_block;
4379 next = next->next)
4380 {
4381 for (j = 0; j < next->nsyms; j++)
4382 add_symbol_to_list (next->symbol[j], &newobj);
4383 }
4384
4385 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4386 NULL, it means copy all the local symbols (which we already did
4387 above). */
4388
4389 if (common_block != NULL)
4390 for (j = common_block_i; j < common_block->nsyms; j++)
4391 add_symbol_to_list (common_block->symbol[j], &newobj);
4392
4393 SYMBOL_TYPE (sym) = (struct type *) newobj;
4394
4395 /* Should we be putting local_symbols back to what it was?
4396 Does it matter? */
4397
4398 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4399 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4400 global_sym_chain[i] = sym;
4401 common_block_name = NULL;
4402 }
4403
4404 /* Add a common block's start address to the offset of each symbol
4405 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4406 the common block name). */
4407
4408 static void
4409 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4410 {
4411 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4412
4413 for (; next; next = next->next)
4414 {
4415 int j;
4416
4417 for (j = next->nsyms - 1; j >= 0; j--)
4418 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4419 }
4420 }
4421 \f
4422
4423
4424 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4425 See add_undefined_type for more details. */
4426
4427 static void
4428 add_undefined_type_noname (struct type *type, int typenums[2])
4429 {
4430 struct nat nat;
4431
4432 nat.typenums[0] = typenums [0];
4433 nat.typenums[1] = typenums [1];
4434 nat.type = type;
4435
4436 if (noname_undefs_length == noname_undefs_allocated)
4437 {
4438 noname_undefs_allocated *= 2;
4439 noname_undefs = (struct nat *)
4440 xrealloc ((char *) noname_undefs,
4441 noname_undefs_allocated * sizeof (struct nat));
4442 }
4443 noname_undefs[noname_undefs_length++] = nat;
4444 }
4445
4446 /* Add TYPE to the UNDEF_TYPES vector.
4447 See add_undefined_type for more details. */
4448
4449 static void
4450 add_undefined_type_1 (struct type *type)
4451 {
4452 if (undef_types_length == undef_types_allocated)
4453 {
4454 undef_types_allocated *= 2;
4455 undef_types = (struct type **)
4456 xrealloc ((char *) undef_types,
4457 undef_types_allocated * sizeof (struct type *));
4458 }
4459 undef_types[undef_types_length++] = type;
4460 }
4461
4462 /* What about types defined as forward references inside of a small lexical
4463 scope? */
4464 /* Add a type to the list of undefined types to be checked through
4465 once this file has been read in.
4466
4467 In practice, we actually maintain two such lists: The first list
4468 (UNDEF_TYPES) is used for types whose name has been provided, and
4469 concerns forward references (eg 'xs' or 'xu' forward references);
4470 the second list (NONAME_UNDEFS) is used for types whose name is
4471 unknown at creation time, because they were referenced through
4472 their type number before the actual type was declared.
4473 This function actually adds the given type to the proper list. */
4474
4475 static void
4476 add_undefined_type (struct type *type, int typenums[2])
4477 {
4478 if (TYPE_TAG_NAME (type) == NULL)
4479 add_undefined_type_noname (type, typenums);
4480 else
4481 add_undefined_type_1 (type);
4482 }
4483
4484 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4485
4486 static void
4487 cleanup_undefined_types_noname (struct objfile *objfile)
4488 {
4489 int i;
4490
4491 for (i = 0; i < noname_undefs_length; i++)
4492 {
4493 struct nat nat = noname_undefs[i];
4494 struct type **type;
4495
4496 type = dbx_lookup_type (nat.typenums, objfile);
4497 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4498 {
4499 /* The instance flags of the undefined type are still unset,
4500 and needs to be copied over from the reference type.
4501 Since replace_type expects them to be identical, we need
4502 to set these flags manually before hand. */
4503 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4504 replace_type (nat.type, *type);
4505 }
4506 }
4507
4508 noname_undefs_length = 0;
4509 }
4510
4511 /* Go through each undefined type, see if it's still undefined, and fix it
4512 up if possible. We have two kinds of undefined types:
4513
4514 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4515 Fix: update array length using the element bounds
4516 and the target type's length.
4517 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4518 yet defined at the time a pointer to it was made.
4519 Fix: Do a full lookup on the struct/union tag. */
4520
4521 static void
4522 cleanup_undefined_types_1 (void)
4523 {
4524 struct type **type;
4525
4526 /* Iterate over every undefined type, and look for a symbol whose type
4527 matches our undefined type. The symbol matches if:
4528 1. It is a typedef in the STRUCT domain;
4529 2. It has the same name, and same type code;
4530 3. The instance flags are identical.
4531
4532 It is important to check the instance flags, because we have seen
4533 examples where the debug info contained definitions such as:
4534
4535 "foo_t:t30=B31=xefoo_t:"
4536
4537 In this case, we have created an undefined type named "foo_t" whose
4538 instance flags is null (when processing "xefoo_t"), and then created
4539 another type with the same name, but with different instance flags
4540 ('B' means volatile). I think that the definition above is wrong,
4541 since the same type cannot be volatile and non-volatile at the same
4542 time, but we need to be able to cope with it when it happens. The
4543 approach taken here is to treat these two types as different. */
4544
4545 for (type = undef_types; type < undef_types + undef_types_length; type++)
4546 {
4547 switch (TYPE_CODE (*type))
4548 {
4549
4550 case TYPE_CODE_STRUCT:
4551 case TYPE_CODE_UNION:
4552 case TYPE_CODE_ENUM:
4553 {
4554 /* Check if it has been defined since. Need to do this here
4555 as well as in check_typedef to deal with the (legitimate in
4556 C though not C++) case of several types with the same name
4557 in different source files. */
4558 if (TYPE_STUB (*type))
4559 {
4560 struct pending *ppt;
4561 int i;
4562 /* Name of the type, without "struct" or "union". */
4563 const char *type_name = TYPE_TAG_NAME (*type);
4564
4565 if (type_name == NULL)
4566 {
4567 complaint (&symfile_complaints, _("need a type name"));
4568 break;
4569 }
4570 for (ppt = file_symbols; ppt; ppt = ppt->next)
4571 {
4572 for (i = 0; i < ppt->nsyms; i++)
4573 {
4574 struct symbol *sym = ppt->symbol[i];
4575
4576 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4577 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4578 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4579 TYPE_CODE (*type))
4580 && (TYPE_INSTANCE_FLAGS (*type) ==
4581 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4582 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4583 type_name) == 0)
4584 replace_type (*type, SYMBOL_TYPE (sym));
4585 }
4586 }
4587 }
4588 }
4589 break;
4590
4591 default:
4592 {
4593 complaint (&symfile_complaints,
4594 _("forward-referenced types left unresolved, "
4595 "type code %d."),
4596 TYPE_CODE (*type));
4597 }
4598 break;
4599 }
4600 }
4601
4602 undef_types_length = 0;
4603 }
4604
4605 /* Try to fix all the undefined types we ecountered while processing
4606 this unit. */
4607
4608 void
4609 cleanup_undefined_stabs_types (struct objfile *objfile)
4610 {
4611 cleanup_undefined_types_1 ();
4612 cleanup_undefined_types_noname (objfile);
4613 }
4614
4615 /* Scan through all of the global symbols defined in the object file,
4616 assigning values to the debugging symbols that need to be assigned
4617 to. Get these symbols from the minimal symbol table. */
4618
4619 void
4620 scan_file_globals (struct objfile *objfile)
4621 {
4622 int hash;
4623 struct minimal_symbol *msymbol;
4624 struct symbol *sym, *prev;
4625 struct objfile *resolve_objfile;
4626
4627 /* SVR4 based linkers copy referenced global symbols from shared
4628 libraries to the main executable.
4629 If we are scanning the symbols for a shared library, try to resolve
4630 them from the minimal symbols of the main executable first. */
4631
4632 if (symfile_objfile && objfile != symfile_objfile)
4633 resolve_objfile = symfile_objfile;
4634 else
4635 resolve_objfile = objfile;
4636
4637 while (1)
4638 {
4639 /* Avoid expensive loop through all minimal symbols if there are
4640 no unresolved symbols. */
4641 for (hash = 0; hash < HASHSIZE; hash++)
4642 {
4643 if (global_sym_chain[hash])
4644 break;
4645 }
4646 if (hash >= HASHSIZE)
4647 return;
4648
4649 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4650 {
4651 QUIT;
4652
4653 /* Skip static symbols. */
4654 switch (MSYMBOL_TYPE (msymbol))
4655 {
4656 case mst_file_text:
4657 case mst_file_data:
4658 case mst_file_bss:
4659 continue;
4660 default:
4661 break;
4662 }
4663
4664 prev = NULL;
4665
4666 /* Get the hash index and check all the symbols
4667 under that hash index. */
4668
4669 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4670
4671 for (sym = global_sym_chain[hash]; sym;)
4672 {
4673 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4674 SYMBOL_LINKAGE_NAME (sym)) == 0)
4675 {
4676 /* Splice this symbol out of the hash chain and
4677 assign the value we have to it. */
4678 if (prev)
4679 {
4680 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4681 }
4682 else
4683 {
4684 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4685 }
4686
4687 /* Check to see whether we need to fix up a common block. */
4688 /* Note: this code might be executed several times for
4689 the same symbol if there are multiple references. */
4690 if (sym)
4691 {
4692 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4693 {
4694 fix_common_block (sym,
4695 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4696 msymbol));
4697 }
4698 else
4699 {
4700 SYMBOL_VALUE_ADDRESS (sym)
4701 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4702 }
4703 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4704 }
4705
4706 if (prev)
4707 {
4708 sym = SYMBOL_VALUE_CHAIN (prev);
4709 }
4710 else
4711 {
4712 sym = global_sym_chain[hash];
4713 }
4714 }
4715 else
4716 {
4717 prev = sym;
4718 sym = SYMBOL_VALUE_CHAIN (sym);
4719 }
4720 }
4721 }
4722 if (resolve_objfile == objfile)
4723 break;
4724 resolve_objfile = objfile;
4725 }
4726
4727 /* Change the storage class of any remaining unresolved globals to
4728 LOC_UNRESOLVED and remove them from the chain. */
4729 for (hash = 0; hash < HASHSIZE; hash++)
4730 {
4731 sym = global_sym_chain[hash];
4732 while (sym)
4733 {
4734 prev = sym;
4735 sym = SYMBOL_VALUE_CHAIN (sym);
4736
4737 /* Change the symbol address from the misleading chain value
4738 to address zero. */
4739 SYMBOL_VALUE_ADDRESS (prev) = 0;
4740
4741 /* Complain about unresolved common block symbols. */
4742 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4743 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4744 else
4745 complaint (&symfile_complaints,
4746 _("%s: common block `%s' from "
4747 "global_sym_chain unresolved"),
4748 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4749 }
4750 }
4751 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4752 }
4753
4754 /* Initialize anything that needs initializing when starting to read
4755 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4756 to a psymtab. */
4757
4758 void
4759 stabsread_init (void)
4760 {
4761 }
4762
4763 /* Initialize anything that needs initializing when a completely new
4764 symbol file is specified (not just adding some symbols from another
4765 file, e.g. a shared library). */
4766
4767 void
4768 stabsread_new_init (void)
4769 {
4770 /* Empty the hash table of global syms looking for values. */
4771 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4772 }
4773
4774 /* Initialize anything that needs initializing at the same time as
4775 start_symtab() is called. */
4776
4777 void
4778 start_stabs (void)
4779 {
4780 global_stabs = NULL; /* AIX COFF */
4781 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4782 n_this_object_header_files = 1;
4783 type_vector_length = 0;
4784 type_vector = (struct type **) 0;
4785
4786 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4787 common_block_name = NULL;
4788 }
4789
4790 /* Call after end_symtab(). */
4791
4792 void
4793 end_stabs (void)
4794 {
4795 if (type_vector)
4796 {
4797 xfree (type_vector);
4798 }
4799 type_vector = 0;
4800 type_vector_length = 0;
4801 previous_stab_code = 0;
4802 }
4803
4804 void
4805 finish_global_stabs (struct objfile *objfile)
4806 {
4807 if (global_stabs)
4808 {
4809 patch_block_stabs (global_symbols, global_stabs, objfile);
4810 xfree (global_stabs);
4811 global_stabs = NULL;
4812 }
4813 }
4814
4815 /* Find the end of the name, delimited by a ':', but don't match
4816 ObjC symbols which look like -[Foo bar::]:bla. */
4817 static char *
4818 find_name_end (char *name)
4819 {
4820 char *s = name;
4821
4822 if (s[0] == '-' || *s == '+')
4823 {
4824 /* Must be an ObjC method symbol. */
4825 if (s[1] != '[')
4826 {
4827 error (_("invalid symbol name \"%s\""), name);
4828 }
4829 s = strchr (s, ']');
4830 if (s == NULL)
4831 {
4832 error (_("invalid symbol name \"%s\""), name);
4833 }
4834 return strchr (s, ':');
4835 }
4836 else
4837 {
4838 return strchr (s, ':');
4839 }
4840 }
4841
4842 /* Initializer for this module. */
4843
4844 void
4845 _initialize_stabsread (void)
4846 {
4847 rs6000_builtin_type_data = register_objfile_data ();
4848
4849 undef_types_allocated = 20;
4850 undef_types_length = 0;
4851 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4852
4853 noname_undefs_allocated = 20;
4854 noname_undefs_length = 0;
4855 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4856
4857 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4858 &stab_register_funcs);
4859 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4860 &stab_register_funcs);
4861 }
This page took 0.204568 seconds and 4 git commands to generate.