gas/testsuite/
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48
49 #include <ctype.h>
50
51 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #define EXTERN
53 /**/
54 #include "stabsread.h" /* Our own declarations */
55 #undef EXTERN
56
57 extern void _initialize_stabsread (void);
58
59 /* The routines that read and process a complete stabs for a C struct or
60 C++ class pass lists of data member fields and lists of member function
61 fields in an instance of a field_info structure, as defined below.
62 This is part of some reorganization of low level C++ support and is
63 expected to eventually go away... (FIXME) */
64
65 struct field_info
66 {
67 struct nextfield
68 {
69 struct nextfield *next;
70
71 /* This is the raw visibility from the stab. It is not checked
72 for being one of the visibilities we recognize, so code which
73 examines this field better be able to deal. */
74 int visibility;
75
76 struct field field;
77 }
78 *list;
79 struct next_fnfieldlist
80 {
81 struct next_fnfieldlist *next;
82 struct fn_fieldlist fn_fieldlist;
83 }
84 *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, int);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("register number %d too large (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211
212 /* Look up a dbx type-number pair. Return the address of the slot
213 where the type for that number-pair is stored.
214 The number-pair is in TYPENUMS.
215
216 This can be used for finding the type associated with that pair
217 or for associating a new type with the pair. */
218
219 static struct type **
220 dbx_lookup_type (int typenums[2])
221 {
222 int filenum = typenums[0];
223 int index = typenums[1];
224 unsigned old_len;
225 int real_filenum;
226 struct header_file *f;
227 int f_orig_length;
228
229 if (filenum == -1) /* -1,-1 is for temporary types. */
230 return 0;
231
232 if (filenum < 0 || filenum >= n_this_object_header_files)
233 {
234 complaint (&symfile_complaints,
235 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
236 filenum, index, symnum);
237 goto error_return;
238 }
239
240 if (filenum == 0)
241 {
242 if (index < 0)
243 {
244 /* Caller wants address of address of type. We think
245 that negative (rs6k builtin) types will never appear as
246 "lvalues", (nor should they), so we stuff the real type
247 pointer into a temp, and return its address. If referenced,
248 this will do the right thing. */
249 static struct type *temp_type;
250
251 temp_type = rs6000_builtin_type (index);
252 return &temp_type;
253 }
254
255 /* Type is defined outside of header files.
256 Find it in this object file's type vector. */
257 if (index >= type_vector_length)
258 {
259 old_len = type_vector_length;
260 if (old_len == 0)
261 {
262 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
263 type_vector = (struct type **)
264 xmalloc (type_vector_length * sizeof (struct type *));
265 }
266 while (index >= type_vector_length)
267 {
268 type_vector_length *= 2;
269 }
270 type_vector = (struct type **)
271 xrealloc ((char *) type_vector,
272 (type_vector_length * sizeof (struct type *)));
273 memset (&type_vector[old_len], 0,
274 (type_vector_length - old_len) * sizeof (struct type *));
275 }
276 return (&type_vector[index]);
277 }
278 else
279 {
280 real_filenum = this_object_header_files[filenum];
281
282 if (real_filenum >= N_HEADER_FILES (current_objfile))
283 {
284 static struct type **temp_type_p;
285
286 warning (_("GDB internal error: bad real_filenum"));
287
288 error_return:
289 temp_type_p = &builtin_type_error;
290 return temp_type_p;
291 }
292
293 f = HEADER_FILES (current_objfile) + real_filenum;
294
295 f_orig_length = f->length;
296 if (index >= f_orig_length)
297 {
298 while (index >= f->length)
299 {
300 f->length *= 2;
301 }
302 f->vector = (struct type **)
303 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
304 memset (&f->vector[f_orig_length], 0,
305 (f->length - f_orig_length) * sizeof (struct type *));
306 }
307 return (&f->vector[index]);
308 }
309 }
310
311 /* Make sure there is a type allocated for type numbers TYPENUMS
312 and return the type object.
313 This can create an empty (zeroed) type object.
314 TYPENUMS may be (-1, -1) to return a new type object that is not
315 put into the type vector, and so may not be referred to by number. */
316
317 static struct type *
318 dbx_alloc_type (int typenums[2], struct objfile *objfile)
319 {
320 struct type **type_addr;
321
322 if (typenums[0] == -1)
323 {
324 return (alloc_type (objfile));
325 }
326
327 type_addr = dbx_lookup_type (typenums);
328
329 /* If we are referring to a type not known at all yet,
330 allocate an empty type for it.
331 We will fill it in later if we find out how. */
332 if (*type_addr == 0)
333 {
334 *type_addr = alloc_type (objfile);
335 }
336
337 return (*type_addr);
338 }
339
340 /* for all the stabs in a given stab vector, build appropriate types
341 and fix their symbols in given symbol vector. */
342
343 static void
344 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
345 struct objfile *objfile)
346 {
347 int ii;
348 char *name;
349 char *pp;
350 struct symbol *sym;
351
352 if (stabs)
353 {
354
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 while (pp[1] == ':')
363 {
364 pp += 2;
365 pp = (char *) strchr (pp, ':');
366 }
367 sym = find_symbol_in_list (symbols, name, pp - name);
368 if (!sym)
369 {
370 /* FIXME-maybe: it would be nice if we noticed whether
371 the variable was defined *anywhere*, not just whether
372 it is defined in this compilation unit. But neither
373 xlc or GCC seem to need such a definition, and until
374 we do psymtabs (so that the minimal symbols from all
375 compilation units are available now), I'm not sure
376 how to get the information. */
377
378 /* On xcoff, if a global is defined and never referenced,
379 ld will remove it from the executable. There is then
380 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
381 sym = (struct symbol *)
382 obstack_alloc (&objfile->objfile_obstack,
383 sizeof (struct symbol));
384
385 memset (sym, 0, sizeof (struct symbol));
386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
387 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
388 DEPRECATED_SYMBOL_NAME (sym) =
389 obsavestring (name, pp - name, &objfile->objfile_obstack);
390 pp += 2;
391 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
392 {
393 /* I don't think the linker does this with functions,
394 so as far as I know this is never executed.
395 But it doesn't hurt to check. */
396 SYMBOL_TYPE (sym) =
397 lookup_function_type (read_type (&pp, objfile));
398 }
399 else
400 {
401 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
402 }
403 add_symbol_to_list (sym, &global_symbols);
404 }
405 else
406 {
407 pp += 2;
408 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
409 {
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 }
418 }
419 }
420 }
421 \f
422
423 /* Read a number by which a type is referred to in dbx data,
424 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
425 Just a single number N is equivalent to (0,N).
426 Return the two numbers by storing them in the vector TYPENUMS.
427 TYPENUMS will then be used as an argument to dbx_lookup_type.
428
429 Returns 0 for success, -1 for error. */
430
431 static int
432 read_type_number (char **pp, int *typenums)
433 {
434 int nbits;
435 if (**pp == '(')
436 {
437 (*pp)++;
438 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
439 if (nbits != 0)
440 return -1;
441 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 }
445 else
446 {
447 typenums[0] = 0;
448 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
449 if (nbits != 0)
450 return -1;
451 }
452 return 0;
453 }
454 \f
455
456 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
457 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
458 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
459 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
460
461 /* Structure for storing pointers to reference definitions for fast lookup
462 during "process_later". */
463
464 struct ref_map
465 {
466 char *stabs;
467 CORE_ADDR value;
468 struct symbol *sym;
469 };
470
471 #define MAX_CHUNK_REFS 100
472 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
473 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
474
475 static struct ref_map *ref_map;
476
477 /* Ptr to free cell in chunk's linked list. */
478 static int ref_count = 0;
479
480 /* Number of chunks malloced. */
481 static int ref_chunk = 0;
482
483 /* This file maintains a cache of stabs aliases found in the symbol
484 table. If the symbol table changes, this cache must be cleared
485 or we are left holding onto data in invalid obstacks. */
486 void
487 stabsread_clear_cache (void)
488 {
489 ref_count = 0;
490 ref_chunk = 0;
491 }
492
493 /* Create array of pointers mapping refids to symbols and stab strings.
494 Add pointers to reference definition symbols and/or their values as we
495 find them, using their reference numbers as our index.
496 These will be used later when we resolve references. */
497 void
498 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
499 {
500 if (ref_count == 0)
501 ref_chunk = 0;
502 if (refnum >= ref_count)
503 ref_count = refnum + 1;
504 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
505 {
506 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
507 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
508 ref_map = (struct ref_map *)
509 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
510 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
511 ref_chunk += new_chunks;
512 }
513 ref_map[refnum].stabs = stabs;
514 ref_map[refnum].sym = sym;
515 ref_map[refnum].value = value;
516 }
517
518 /* Return defined sym for the reference REFNUM. */
519 struct symbol *
520 ref_search (int refnum)
521 {
522 if (refnum < 0 || refnum > ref_count)
523 return 0;
524 return ref_map[refnum].sym;
525 }
526
527 /* Parse a reference id in STRING and return the resulting
528 reference number. Move STRING beyond the reference id. */
529
530 static int
531 process_reference (char **string)
532 {
533 char *p;
534 int refnum = 0;
535
536 if (**string != '#')
537 return 0;
538
539 /* Advance beyond the initial '#'. */
540 p = *string + 1;
541
542 /* Read number as reference id. */
543 while (*p && isdigit (*p))
544 {
545 refnum = refnum * 10 + *p - '0';
546 p++;
547 }
548 *string = p;
549 return refnum;
550 }
551
552 /* If STRING defines a reference, store away a pointer to the reference
553 definition for later use. Return the reference number. */
554
555 int
556 symbol_reference_defined (char **string)
557 {
558 char *p = *string;
559 int refnum = 0;
560
561 refnum = process_reference (&p);
562
563 /* Defining symbols end in '=' */
564 if (*p == '=')
565 {
566 /* Symbol is being defined here. */
567 *string = p + 1;
568 return refnum;
569 }
570 else
571 {
572 /* Must be a reference. Either the symbol has already been defined,
573 or this is a forward reference to it. */
574 *string = p;
575 return -1;
576 }
577 }
578
579 struct symbol *
580 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
581 struct objfile *objfile)
582 {
583 struct symbol *sym;
584 char *p = (char *) find_name_end (string);
585 int deftype;
586 int synonym = 0;
587 int i;
588
589 /* We would like to eliminate nameless symbols, but keep their types.
590 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
591 to type 2, but, should not create a symbol to address that type. Since
592 the symbol will be nameless, there is no way any user can refer to it. */
593
594 int nameless;
595
596 /* Ignore syms with empty names. */
597 if (string[0] == 0)
598 return 0;
599
600 /* Ignore old-style symbols from cc -go */
601 if (p == 0)
602 return 0;
603
604 while (p[1] == ':')
605 {
606 p += 2;
607 p = strchr (p, ':');
608 }
609
610 /* If a nameless stab entry, all we need is the type, not the symbol.
611 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
612 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
613
614 current_symbol = sym = (struct symbol *)
615 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
616 memset (sym, 0, sizeof (struct symbol));
617
618 switch (type & N_TYPE)
619 {
620 case N_TEXT:
621 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
622 break;
623 case N_DATA:
624 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
625 break;
626 case N_BSS:
627 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
628 break;
629 }
630
631 if (processing_gcc_compilation)
632 {
633 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
634 number of bytes occupied by a type or object, which we ignore. */
635 SYMBOL_LINE (sym) = desc;
636 }
637 else
638 {
639 SYMBOL_LINE (sym) = 0; /* unknown */
640 }
641
642 if (is_cplus_marker (string[0]))
643 {
644 /* Special GNU C++ names. */
645 switch (string[1])
646 {
647 case 't':
648 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
649 &objfile->objfile_obstack);
650 break;
651
652 case 'v': /* $vtbl_ptr_type */
653 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
654 goto normal;
655
656 case 'e':
657 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
658 &objfile->objfile_obstack);
659 break;
660
661 case '_':
662 /* This was an anonymous type that was never fixed up. */
663 goto normal;
664
665 #ifdef STATIC_TRANSFORM_NAME
666 case 'X':
667 /* SunPRO (3.0 at least) static variable encoding. */
668 goto normal;
669 #endif
670
671 default:
672 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
673 string);
674 goto normal; /* Do *something* with it */
675 }
676 }
677 else
678 {
679 normal:
680 SYMBOL_LANGUAGE (sym) = current_subfile->language;
681 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
682 }
683 p++;
684
685 /* Determine the type of name being defined. */
686 #if 0
687 /* Getting GDB to correctly skip the symbol on an undefined symbol
688 descriptor and not ever dump core is a very dodgy proposition if
689 we do things this way. I say the acorn RISC machine can just
690 fix their compiler. */
691 /* The Acorn RISC machine's compiler can put out locals that don't
692 start with "234=" or "(3,4)=", so assume anything other than the
693 deftypes we know how to handle is a local. */
694 if (!strchr ("cfFGpPrStTvVXCR", *p))
695 #else
696 if (isdigit (*p) || *p == '(' || *p == '-')
697 #endif
698 deftype = 'l';
699 else
700 deftype = *p++;
701
702 switch (deftype)
703 {
704 case 'c':
705 /* c is a special case, not followed by a type-number.
706 SYMBOL:c=iVALUE for an integer constant symbol.
707 SYMBOL:c=rVALUE for a floating constant symbol.
708 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
709 e.g. "b:c=e6,0" for "const b = blob1"
710 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
711 if (*p != '=')
712 {
713 SYMBOL_CLASS (sym) = LOC_CONST;
714 SYMBOL_TYPE (sym) = error_type (&p, objfile);
715 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
716 add_symbol_to_list (sym, &file_symbols);
717 return sym;
718 }
719 ++p;
720 switch (*p++)
721 {
722 case 'r':
723 {
724 double d = atof (p);
725 gdb_byte *dbl_valu;
726
727 /* FIXME-if-picky-about-floating-accuracy: Should be using
728 target arithmetic to get the value. real.c in GCC
729 probably has the necessary code. */
730
731 /* FIXME: lookup_fundamental_type is a hack. We should be
732 creating a type especially for the type of float constants.
733 Problem is, what type should it be?
734
735 Also, what should the name of this type be? Should we
736 be using 'S' constants (see stabs.texinfo) instead? */
737
738 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
739 FT_DBL_PREC_FLOAT);
740 dbl_valu =
741 obstack_alloc (&objfile->objfile_obstack,
742 TYPE_LENGTH (SYMBOL_TYPE (sym)));
743 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
744 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
745 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
746 }
747 break;
748 case 'i':
749 {
750 /* Defining integer constants this way is kind of silly,
751 since 'e' constants allows the compiler to give not
752 only the value, but the type as well. C has at least
753 int, long, unsigned int, and long long as constant
754 types; other languages probably should have at least
755 unsigned as well as signed constants. */
756
757 /* We just need one int constant type for all objfiles.
758 It doesn't depend on languages or anything (arguably its
759 name should be a language-specific name for a type of
760 that size, but I'm inclined to say that if the compiler
761 wants a nice name for the type, it can use 'e'). */
762 static struct type *int_const_type;
763
764 /* Yes, this is as long as a *host* int. That is because we
765 use atoi. */
766 if (int_const_type == NULL)
767 int_const_type =
768 init_type (TYPE_CODE_INT,
769 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
770 "integer constant",
771 (struct objfile *) NULL);
772 SYMBOL_TYPE (sym) = int_const_type;
773 SYMBOL_VALUE (sym) = atoi (p);
774 SYMBOL_CLASS (sym) = LOC_CONST;
775 }
776 break;
777 case 'e':
778 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
779 can be represented as integral.
780 e.g. "b:c=e6,0" for "const b = blob1"
781 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
782 {
783 SYMBOL_CLASS (sym) = LOC_CONST;
784 SYMBOL_TYPE (sym) = read_type (&p, objfile);
785
786 if (*p != ',')
787 {
788 SYMBOL_TYPE (sym) = error_type (&p, objfile);
789 break;
790 }
791 ++p;
792
793 /* If the value is too big to fit in an int (perhaps because
794 it is unsigned), or something like that, we silently get
795 a bogus value. The type and everything else about it is
796 correct. Ideally, we should be using whatever we have
797 available for parsing unsigned and long long values,
798 however. */
799 SYMBOL_VALUE (sym) = atoi (p);
800 }
801 break;
802 default:
803 {
804 SYMBOL_CLASS (sym) = LOC_CONST;
805 SYMBOL_TYPE (sym) = error_type (&p, objfile);
806 }
807 }
808 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
809 add_symbol_to_list (sym, &file_symbols);
810 return sym;
811
812 case 'C':
813 /* The name of a caught exception. */
814 SYMBOL_TYPE (sym) = read_type (&p, objfile);
815 SYMBOL_CLASS (sym) = LOC_LABEL;
816 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
817 SYMBOL_VALUE_ADDRESS (sym) = valu;
818 add_symbol_to_list (sym, &local_symbols);
819 break;
820
821 case 'f':
822 /* A static function definition. */
823 SYMBOL_TYPE (sym) = read_type (&p, objfile);
824 SYMBOL_CLASS (sym) = LOC_BLOCK;
825 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
826 add_symbol_to_list (sym, &file_symbols);
827 /* fall into process_function_types. */
828
829 process_function_types:
830 /* Function result types are described as the result type in stabs.
831 We need to convert this to the function-returning-type-X type
832 in GDB. E.g. "int" is converted to "function returning int". */
833 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
834 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
835
836 /* All functions in C++ have prototypes. Stabs does not offer an
837 explicit way to identify prototyped or unprototyped functions,
838 but both GCC and Sun CC emit stabs for the "call-as" type rather
839 than the "declared-as" type for unprototyped functions, so
840 we treat all functions as if they were prototyped. This is used
841 primarily for promotion when calling the function from GDB. */
842 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
843
844 /* fall into process_prototype_types */
845
846 process_prototype_types:
847 /* Sun acc puts declared types of arguments here. */
848 if (*p == ';')
849 {
850 struct type *ftype = SYMBOL_TYPE (sym);
851 int nsemi = 0;
852 int nparams = 0;
853 char *p1 = p;
854
855 /* Obtain a worst case guess for the number of arguments
856 by counting the semicolons. */
857 while (*p1)
858 {
859 if (*p1++ == ';')
860 nsemi++;
861 }
862
863 /* Allocate parameter information fields and fill them in. */
864 TYPE_FIELDS (ftype) = (struct field *)
865 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
866 while (*p++ == ';')
867 {
868 struct type *ptype;
869
870 /* A type number of zero indicates the start of varargs.
871 FIXME: GDB currently ignores vararg functions. */
872 if (p[0] == '0' && p[1] == '\0')
873 break;
874 ptype = read_type (&p, objfile);
875
876 /* The Sun compilers mark integer arguments, which should
877 be promoted to the width of the calling conventions, with
878 a type which references itself. This type is turned into
879 a TYPE_CODE_VOID type by read_type, and we have to turn
880 it back into builtin_type_int here.
881 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
882 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
883 ptype = builtin_type_int;
884 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
885 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
886 }
887 TYPE_NFIELDS (ftype) = nparams;
888 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
889 }
890 break;
891
892 case 'F':
893 /* A global function definition. */
894 SYMBOL_TYPE (sym) = read_type (&p, objfile);
895 SYMBOL_CLASS (sym) = LOC_BLOCK;
896 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
897 add_symbol_to_list (sym, &global_symbols);
898 goto process_function_types;
899
900 case 'G':
901 /* For a class G (global) symbol, it appears that the
902 value is not correct. It is necessary to search for the
903 corresponding linker definition to find the value.
904 These definitions appear at the end of the namelist. */
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906 SYMBOL_CLASS (sym) = LOC_STATIC;
907 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
908 /* Don't add symbol references to global_sym_chain.
909 Symbol references don't have valid names and wont't match up with
910 minimal symbols when the global_sym_chain is relocated.
911 We'll fixup symbol references when we fixup the defining symbol. */
912 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
913 {
914 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
915 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
916 global_sym_chain[i] = sym;
917 }
918 add_symbol_to_list (sym, &global_symbols);
919 break;
920
921 /* This case is faked by a conditional above,
922 when there is no code letter in the dbx data.
923 Dbx data never actually contains 'l'. */
924 case 's':
925 case 'l':
926 SYMBOL_TYPE (sym) = read_type (&p, objfile);
927 SYMBOL_CLASS (sym) = LOC_LOCAL;
928 SYMBOL_VALUE (sym) = valu;
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &local_symbols);
931 break;
932
933 case 'p':
934 if (*p == 'F')
935 /* pF is a two-letter code that means a function parameter in Fortran.
936 The type-number specifies the type of the return value.
937 Translate it into a pointer-to-function type. */
938 {
939 p++;
940 SYMBOL_TYPE (sym)
941 = lookup_pointer_type
942 (lookup_function_type (read_type (&p, objfile)));
943 }
944 else
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946
947 SYMBOL_CLASS (sym) = LOC_ARG;
948 SYMBOL_VALUE (sym) = valu;
949 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
950 add_symbol_to_list (sym, &local_symbols);
951
952 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_BIG)
953 {
954 /* On little-endian machines, this crud is never necessary,
955 and, if the extra bytes contain garbage, is harmful. */
956 break;
957 }
958
959 /* If it's gcc-compiled, if it says `short', believe it. */
960 if (processing_gcc_compilation
961 || gdbarch_believe_pcc_promotion (current_gdbarch))
962 break;
963
964 if (!gdbarch_believe_pcc_promotion (current_gdbarch))
965 {
966 /* This is the signed type which arguments get promoted to. */
967 static struct type *pcc_promotion_type;
968 /* This is the unsigned type which arguments get promoted to. */
969 static struct type *pcc_unsigned_promotion_type;
970
971 /* Call it "int" because this is mainly C lossage. */
972 if (pcc_promotion_type == NULL)
973 pcc_promotion_type =
974 init_type (TYPE_CODE_INT,
975 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
976 0, "int", NULL);
977
978 if (pcc_unsigned_promotion_type == NULL)
979 pcc_unsigned_promotion_type =
980 init_type (TYPE_CODE_INT,
981 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
982 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
983
984 /* If PCC says a parameter is a short or a char, it is
985 really an int. */
986 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
987 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
988 {
989 SYMBOL_TYPE (sym) =
990 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
991 ? pcc_unsigned_promotion_type
992 : pcc_promotion_type;
993 }
994 break;
995 }
996
997 case 'P':
998 /* acc seems to use P to declare the prototypes of functions that
999 are referenced by this file. gdb is not prepared to deal
1000 with this extra information. FIXME, it ought to. */
1001 if (type == N_FUN)
1002 {
1003 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1004 goto process_prototype_types;
1005 }
1006 /*FALLTHROUGH */
1007
1008 case 'R':
1009 /* Parameter which is in a register. */
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 SYMBOL_CLASS (sym) = LOC_REGPARM;
1012 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1013 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1014 + gdbarch_num_pseudo_regs (current_gdbarch))
1015 {
1016 reg_value_complaint (SYMBOL_VALUE (sym),
1017 gdbarch_num_regs (current_gdbarch)
1018 + gdbarch_num_pseudo_regs (current_gdbarch),
1019 SYMBOL_PRINT_NAME (sym));
1020 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1021 /* Known safe, though useless */
1022 }
1023 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1024 add_symbol_to_list (sym, &local_symbols);
1025 break;
1026
1027 case 'r':
1028 /* Register variable (either global or local). */
1029 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1030 SYMBOL_CLASS (sym) = LOC_REGISTER;
1031 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1032 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1033 + gdbarch_num_pseudo_regs (current_gdbarch))
1034 {
1035 reg_value_complaint (SYMBOL_VALUE (sym),
1036 gdbarch_num_regs (current_gdbarch)
1037 + gdbarch_num_pseudo_regs (current_gdbarch),
1038 SYMBOL_PRINT_NAME (sym));
1039 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1040 /* Known safe, though useless */
1041 }
1042 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1043 if (within_function)
1044 {
1045 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1046 the same name to represent an argument passed in a
1047 register. GCC uses 'P' for the same case. So if we find
1048 such a symbol pair we combine it into one 'P' symbol.
1049 For Sun cc we need to do this regardless of
1050 stabs_argument_has_addr, because the compiler puts out
1051 the 'p' symbol even if it never saves the argument onto
1052 the stack.
1053
1054 On most machines, we want to preserve both symbols, so
1055 that we can still get information about what is going on
1056 with the stack (VAX for computing args_printed, using
1057 stack slots instead of saved registers in backtraces,
1058 etc.).
1059
1060 Note that this code illegally combines
1061 main(argc) struct foo argc; { register struct foo argc; }
1062 but this case is considered pathological and causes a warning
1063 from a decent compiler. */
1064
1065 if (local_symbols
1066 && local_symbols->nsyms > 0
1067 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1068 SYMBOL_TYPE (sym)))
1069 {
1070 struct symbol *prev_sym;
1071 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1072 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1073 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1074 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1075 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1076 {
1077 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1078 /* Use the type from the LOC_REGISTER; that is the type
1079 that is actually in that register. */
1080 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1081 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1082 sym = prev_sym;
1083 break;
1084 }
1085 }
1086 add_symbol_to_list (sym, &local_symbols);
1087 }
1088 else
1089 add_symbol_to_list (sym, &file_symbols);
1090 break;
1091
1092 case 'S':
1093 /* Static symbol at top level of file */
1094 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1095 SYMBOL_CLASS (sym) = LOC_STATIC;
1096 SYMBOL_VALUE_ADDRESS (sym) = valu;
1097 #ifdef STATIC_TRANSFORM_NAME
1098 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1099 {
1100 struct minimal_symbol *msym;
1101 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1102 if (msym != NULL)
1103 {
1104 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1105 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1106 }
1107 }
1108 #endif
1109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1110 add_symbol_to_list (sym, &file_symbols);
1111 break;
1112
1113 case 't':
1114 /* In Ada, there is no distinction between typedef and non-typedef;
1115 any type declaration implicitly has the equivalent of a typedef,
1116 and thus 't' is in fact equivalent to 'Tt'.
1117
1118 Therefore, for Ada units, we check the character immediately
1119 before the 't', and if we do not find a 'T', then make sure to
1120 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1121 will be stored in the VAR_DOMAIN). If the symbol was indeed
1122 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1123 elsewhere, so we don't need to take care of that.
1124
1125 This is important to do, because of forward references:
1126 The cleanup of undefined types stored in undef_types only uses
1127 STRUCT_DOMAIN symbols to perform the replacement. */
1128 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1129
1130 /* Typedef */
1131 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1132
1133 /* For a nameless type, we don't want a create a symbol, thus we
1134 did not use `sym'. Return without further processing. */
1135 if (nameless)
1136 return NULL;
1137
1138 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1139 SYMBOL_VALUE (sym) = valu;
1140 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1141 /* C++ vagaries: we may have a type which is derived from
1142 a base type which did not have its name defined when the
1143 derived class was output. We fill in the derived class's
1144 base part member's name here in that case. */
1145 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1146 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1147 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1148 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1149 {
1150 int j;
1151 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1152 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1153 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1154 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1155 }
1156
1157 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1158 {
1159 /* gcc-2.6 or later (when using -fvtable-thunks)
1160 emits a unique named type for a vtable entry.
1161 Some gdb code depends on that specific name. */
1162 extern const char vtbl_ptr_name[];
1163
1164 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1165 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1166 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1167 {
1168 /* If we are giving a name to a type such as "pointer to
1169 foo" or "function returning foo", we better not set
1170 the TYPE_NAME. If the program contains "typedef char
1171 *caddr_t;", we don't want all variables of type char
1172 * to print as caddr_t. This is not just a
1173 consequence of GDB's type management; PCC and GCC (at
1174 least through version 2.4) both output variables of
1175 either type char * or caddr_t with the type number
1176 defined in the 't' symbol for caddr_t. If a future
1177 compiler cleans this up it GDB is not ready for it
1178 yet, but if it becomes ready we somehow need to
1179 disable this check (without breaking the PCC/GCC2.4
1180 case).
1181
1182 Sigh.
1183
1184 Fortunately, this check seems not to be necessary
1185 for anything except pointers or functions. */
1186 /* ezannoni: 2000-10-26. This seems to apply for
1187 versions of gcc older than 2.8. This was the original
1188 problem: with the following code gdb would tell that
1189 the type for name1 is caddr_t, and func is char()
1190 typedef char *caddr_t;
1191 char *name2;
1192 struct x
1193 {
1194 char *name1;
1195 } xx;
1196 char *func()
1197 {
1198 }
1199 main () {}
1200 */
1201
1202 /* Pascal accepts names for pointer types. */
1203 if (current_subfile->language == language_pascal)
1204 {
1205 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1206 }
1207 }
1208 else
1209 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1210 }
1211
1212 add_symbol_to_list (sym, &file_symbols);
1213
1214 if (synonym)
1215 {
1216 /* Create the STRUCT_DOMAIN clone. */
1217 struct symbol *struct_sym = (struct symbol *)
1218 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1219
1220 *struct_sym = *sym;
1221 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1222 SYMBOL_VALUE (struct_sym) = valu;
1223 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1224 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1225 TYPE_NAME (SYMBOL_TYPE (sym))
1226 = obconcat (&objfile->objfile_obstack, "", "",
1227 DEPRECATED_SYMBOL_NAME (sym));
1228 add_symbol_to_list (struct_sym, &file_symbols);
1229 }
1230
1231 break;
1232
1233 case 'T':
1234 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1235 by 't' which means we are typedef'ing it as well. */
1236 synonym = *p == 't';
1237
1238 if (synonym)
1239 p++;
1240
1241 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1242
1243 /* For a nameless type, we don't want a create a symbol, thus we
1244 did not use `sym'. Return without further processing. */
1245 if (nameless)
1246 return NULL;
1247
1248 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1249 SYMBOL_VALUE (sym) = valu;
1250 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1251 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1252 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1253 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1254 add_symbol_to_list (sym, &file_symbols);
1255
1256 if (synonym)
1257 {
1258 /* Clone the sym and then modify it. */
1259 struct symbol *typedef_sym = (struct symbol *)
1260 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1261 *typedef_sym = *sym;
1262 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1263 SYMBOL_VALUE (typedef_sym) = valu;
1264 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1265 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1266 TYPE_NAME (SYMBOL_TYPE (sym))
1267 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1268 add_symbol_to_list (typedef_sym, &file_symbols);
1269 }
1270 break;
1271
1272 case 'V':
1273 /* Static symbol of local scope */
1274 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1275 SYMBOL_CLASS (sym) = LOC_STATIC;
1276 SYMBOL_VALUE_ADDRESS (sym) = valu;
1277 #ifdef STATIC_TRANSFORM_NAME
1278 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1279 {
1280 struct minimal_symbol *msym;
1281 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1282 if (msym != NULL)
1283 {
1284 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1285 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1286 }
1287 }
1288 #endif
1289 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1290 add_symbol_to_list (sym, &local_symbols);
1291 break;
1292
1293 case 'v':
1294 /* Reference parameter */
1295 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1296 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1297 SYMBOL_VALUE (sym) = valu;
1298 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1299 add_symbol_to_list (sym, &local_symbols);
1300 break;
1301
1302 case 'a':
1303 /* Reference parameter which is in a register. */
1304 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1305 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1306 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1307 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1308 + gdbarch_num_pseudo_regs (current_gdbarch))
1309 {
1310 reg_value_complaint (SYMBOL_VALUE (sym),
1311 gdbarch_num_regs (current_gdbarch)
1312 + gdbarch_num_pseudo_regs (current_gdbarch),
1313 SYMBOL_PRINT_NAME (sym));
1314 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1315 /* Known safe, though useless */
1316 }
1317 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1318 add_symbol_to_list (sym, &local_symbols);
1319 break;
1320
1321 case 'X':
1322 /* This is used by Sun FORTRAN for "function result value".
1323 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1324 that Pascal uses it too, but when I tried it Pascal used
1325 "x:3" (local symbol) instead. */
1326 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1327 SYMBOL_CLASS (sym) = LOC_LOCAL;
1328 SYMBOL_VALUE (sym) = valu;
1329 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1330 add_symbol_to_list (sym, &local_symbols);
1331 break;
1332
1333 default:
1334 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1335 SYMBOL_CLASS (sym) = LOC_CONST;
1336 SYMBOL_VALUE (sym) = 0;
1337 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1338 add_symbol_to_list (sym, &file_symbols);
1339 break;
1340 }
1341
1342 /* Some systems pass variables of certain types by reference instead
1343 of by value, i.e. they will pass the address of a structure (in a
1344 register or on the stack) instead of the structure itself. */
1345
1346 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1347 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1348 {
1349 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1350 variables passed in a register). */
1351 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1352 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1353 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1354 and subsequent arguments on SPARC, for example). */
1355 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1356 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1357 }
1358
1359 return sym;
1360 }
1361
1362 /* Skip rest of this symbol and return an error type.
1363
1364 General notes on error recovery: error_type always skips to the
1365 end of the symbol (modulo cretinous dbx symbol name continuation).
1366 Thus code like this:
1367
1368 if (*(*pp)++ != ';')
1369 return error_type (pp, objfile);
1370
1371 is wrong because if *pp starts out pointing at '\0' (typically as the
1372 result of an earlier error), it will be incremented to point to the
1373 start of the next symbol, which might produce strange results, at least
1374 if you run off the end of the string table. Instead use
1375
1376 if (**pp != ';')
1377 return error_type (pp, objfile);
1378 ++*pp;
1379
1380 or
1381
1382 if (**pp != ';')
1383 foo = error_type (pp, objfile);
1384 else
1385 ++*pp;
1386
1387 And in case it isn't obvious, the point of all this hair is so the compiler
1388 can define new types and new syntaxes, and old versions of the
1389 debugger will be able to read the new symbol tables. */
1390
1391 static struct type *
1392 error_type (char **pp, struct objfile *objfile)
1393 {
1394 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1395 while (1)
1396 {
1397 /* Skip to end of symbol. */
1398 while (**pp != '\0')
1399 {
1400 (*pp)++;
1401 }
1402
1403 /* Check for and handle cretinous dbx symbol name continuation! */
1404 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1405 {
1406 *pp = next_symbol_text (objfile);
1407 }
1408 else
1409 {
1410 break;
1411 }
1412 }
1413 return (builtin_type_error);
1414 }
1415 \f
1416
1417 /* Read type information or a type definition; return the type. Even
1418 though this routine accepts either type information or a type
1419 definition, the distinction is relevant--some parts of stabsread.c
1420 assume that type information starts with a digit, '-', or '(' in
1421 deciding whether to call read_type. */
1422
1423 static struct type *
1424 read_type (char **pp, struct objfile *objfile)
1425 {
1426 struct type *type = 0;
1427 struct type *type1;
1428 int typenums[2];
1429 char type_descriptor;
1430
1431 /* Size in bits of type if specified by a type attribute, or -1 if
1432 there is no size attribute. */
1433 int type_size = -1;
1434
1435 /* Used to distinguish string and bitstring from char-array and set. */
1436 int is_string = 0;
1437
1438 /* Used to distinguish vector from array. */
1439 int is_vector = 0;
1440
1441 /* Read type number if present. The type number may be omitted.
1442 for instance in a two-dimensional array declared with type
1443 "ar1;1;10;ar1;1;10;4". */
1444 if ((**pp >= '0' && **pp <= '9')
1445 || **pp == '('
1446 || **pp == '-')
1447 {
1448 if (read_type_number (pp, typenums) != 0)
1449 return error_type (pp, objfile);
1450
1451 if (**pp != '=')
1452 {
1453 /* Type is not being defined here. Either it already
1454 exists, or this is a forward reference to it.
1455 dbx_alloc_type handles both cases. */
1456 type = dbx_alloc_type (typenums, objfile);
1457
1458 /* If this is a forward reference, arrange to complain if it
1459 doesn't get patched up by the time we're done
1460 reading. */
1461 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1462 add_undefined_type (type, typenums);
1463
1464 return type;
1465 }
1466
1467 /* Type is being defined here. */
1468 /* Skip the '='.
1469 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1470 (*pp) += 2;
1471 }
1472 else
1473 {
1474 /* 'typenums=' not present, type is anonymous. Read and return
1475 the definition, but don't put it in the type vector. */
1476 typenums[0] = typenums[1] = -1;
1477 (*pp)++;
1478 }
1479
1480 again:
1481 type_descriptor = (*pp)[-1];
1482 switch (type_descriptor)
1483 {
1484 case 'x':
1485 {
1486 enum type_code code;
1487
1488 /* Used to index through file_symbols. */
1489 struct pending *ppt;
1490 int i;
1491
1492 /* Name including "struct", etc. */
1493 char *type_name;
1494
1495 {
1496 char *from, *to, *p, *q1, *q2;
1497
1498 /* Set the type code according to the following letter. */
1499 switch ((*pp)[0])
1500 {
1501 case 's':
1502 code = TYPE_CODE_STRUCT;
1503 break;
1504 case 'u':
1505 code = TYPE_CODE_UNION;
1506 break;
1507 case 'e':
1508 code = TYPE_CODE_ENUM;
1509 break;
1510 default:
1511 {
1512 /* Complain and keep going, so compilers can invent new
1513 cross-reference types. */
1514 complaint (&symfile_complaints,
1515 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1516 code = TYPE_CODE_STRUCT;
1517 break;
1518 }
1519 }
1520
1521 q1 = strchr (*pp, '<');
1522 p = strchr (*pp, ':');
1523 if (p == NULL)
1524 return error_type (pp, objfile);
1525 if (q1 && p > q1 && p[1] == ':')
1526 {
1527 int nesting_level = 0;
1528 for (q2 = q1; *q2; q2++)
1529 {
1530 if (*q2 == '<')
1531 nesting_level++;
1532 else if (*q2 == '>')
1533 nesting_level--;
1534 else if (*q2 == ':' && nesting_level == 0)
1535 break;
1536 }
1537 p = q2;
1538 if (*p != ':')
1539 return error_type (pp, objfile);
1540 }
1541 to = type_name =
1542 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1543
1544 /* Copy the name. */
1545 from = *pp + 1;
1546 while (from < p)
1547 *to++ = *from++;
1548 *to = '\0';
1549
1550 /* Set the pointer ahead of the name which we just read, and
1551 the colon. */
1552 *pp = from + 1;
1553 }
1554
1555 /* If this type has already been declared, then reuse the same
1556 type, rather than allocating a new one. This saves some
1557 memory. */
1558
1559 for (ppt = file_symbols; ppt; ppt = ppt->next)
1560 for (i = 0; i < ppt->nsyms; i++)
1561 {
1562 struct symbol *sym = ppt->symbol[i];
1563
1564 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1565 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1566 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1567 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1568 {
1569 obstack_free (&objfile->objfile_obstack, type_name);
1570 type = SYMBOL_TYPE (sym);
1571 if (typenums[0] != -1)
1572 *dbx_lookup_type (typenums) = type;
1573 return type;
1574 }
1575 }
1576
1577 /* Didn't find the type to which this refers, so we must
1578 be dealing with a forward reference. Allocate a type
1579 structure for it, and keep track of it so we can
1580 fill in the rest of the fields when we get the full
1581 type. */
1582 type = dbx_alloc_type (typenums, objfile);
1583 TYPE_CODE (type) = code;
1584 TYPE_TAG_NAME (type) = type_name;
1585 INIT_CPLUS_SPECIFIC (type);
1586 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1587
1588 add_undefined_type (type, typenums);
1589 return type;
1590 }
1591
1592 case '-': /* RS/6000 built-in type */
1593 case '0':
1594 case '1':
1595 case '2':
1596 case '3':
1597 case '4':
1598 case '5':
1599 case '6':
1600 case '7':
1601 case '8':
1602 case '9':
1603 case '(':
1604 (*pp)--;
1605
1606 /* We deal with something like t(1,2)=(3,4)=... which
1607 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1608
1609 /* Allocate and enter the typedef type first.
1610 This handles recursive types. */
1611 type = dbx_alloc_type (typenums, objfile);
1612 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1613 {
1614 struct type *xtype = read_type (pp, objfile);
1615 if (type == xtype)
1616 {
1617 /* It's being defined as itself. That means it is "void". */
1618 TYPE_CODE (type) = TYPE_CODE_VOID;
1619 TYPE_LENGTH (type) = 1;
1620 }
1621 else if (type_size >= 0 || is_string)
1622 {
1623 /* This is the absolute wrong way to construct types. Every
1624 other debug format has found a way around this problem and
1625 the related problems with unnecessarily stubbed types;
1626 someone motivated should attempt to clean up the issue
1627 here as well. Once a type pointed to has been created it
1628 should not be modified.
1629
1630 Well, it's not *absolutely* wrong. Constructing recursive
1631 types (trees, linked lists) necessarily entails modifying
1632 types after creating them. Constructing any loop structure
1633 entails side effects. The Dwarf 2 reader does handle this
1634 more gracefully (it never constructs more than once
1635 instance of a type object, so it doesn't have to copy type
1636 objects wholesale), but it still mutates type objects after
1637 other folks have references to them.
1638
1639 Keep in mind that this circularity/mutation issue shows up
1640 at the source language level, too: C's "incomplete types",
1641 for example. So the proper cleanup, I think, would be to
1642 limit GDB's type smashing to match exactly those required
1643 by the source language. So GDB could have a
1644 "complete_this_type" function, but never create unnecessary
1645 copies of a type otherwise. */
1646 replace_type (type, xtype);
1647 TYPE_NAME (type) = NULL;
1648 TYPE_TAG_NAME (type) = NULL;
1649 }
1650 else
1651 {
1652 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1653 TYPE_TARGET_TYPE (type) = xtype;
1654 }
1655 }
1656 break;
1657
1658 /* In the following types, we must be sure to overwrite any existing
1659 type that the typenums refer to, rather than allocating a new one
1660 and making the typenums point to the new one. This is because there
1661 may already be pointers to the existing type (if it had been
1662 forward-referenced), and we must change it to a pointer, function,
1663 reference, or whatever, *in-place*. */
1664
1665 case '*': /* Pointer to another type */
1666 type1 = read_type (pp, objfile);
1667 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1668 break;
1669
1670 case '&': /* Reference to another type */
1671 type1 = read_type (pp, objfile);
1672 type = make_reference_type (type1, dbx_lookup_type (typenums));
1673 break;
1674
1675 case 'f': /* Function returning another type */
1676 type1 = read_type (pp, objfile);
1677 type = make_function_type (type1, dbx_lookup_type (typenums));
1678 break;
1679
1680 case 'g': /* Prototyped function. (Sun) */
1681 {
1682 /* Unresolved questions:
1683
1684 - According to Sun's ``STABS Interface Manual'', for 'f'
1685 and 'F' symbol descriptors, a `0' in the argument type list
1686 indicates a varargs function. But it doesn't say how 'g'
1687 type descriptors represent that info. Someone with access
1688 to Sun's toolchain should try it out.
1689
1690 - According to the comment in define_symbol (search for
1691 `process_prototype_types:'), Sun emits integer arguments as
1692 types which ref themselves --- like `void' types. Do we
1693 have to deal with that here, too? Again, someone with
1694 access to Sun's toolchain should try it out and let us
1695 know. */
1696
1697 const char *type_start = (*pp) - 1;
1698 struct type *return_type = read_type (pp, objfile);
1699 struct type *func_type
1700 = make_function_type (return_type, dbx_lookup_type (typenums));
1701 struct type_list {
1702 struct type *type;
1703 struct type_list *next;
1704 } *arg_types = 0;
1705 int num_args = 0;
1706
1707 while (**pp && **pp != '#')
1708 {
1709 struct type *arg_type = read_type (pp, objfile);
1710 struct type_list *new = alloca (sizeof (*new));
1711 new->type = arg_type;
1712 new->next = arg_types;
1713 arg_types = new;
1714 num_args++;
1715 }
1716 if (**pp == '#')
1717 ++*pp;
1718 else
1719 {
1720 complaint (&symfile_complaints,
1721 _("Prototyped function type didn't end arguments with `#':\n%s"),
1722 type_start);
1723 }
1724
1725 /* If there is just one argument whose type is `void', then
1726 that's just an empty argument list. */
1727 if (arg_types
1728 && ! arg_types->next
1729 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1730 num_args = 0;
1731
1732 TYPE_FIELDS (func_type)
1733 = (struct field *) TYPE_ALLOC (func_type,
1734 num_args * sizeof (struct field));
1735 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1736 {
1737 int i;
1738 struct type_list *t;
1739
1740 /* We stuck each argument type onto the front of the list
1741 when we read it, so the list is reversed. Build the
1742 fields array right-to-left. */
1743 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1744 TYPE_FIELD_TYPE (func_type, i) = t->type;
1745 }
1746 TYPE_NFIELDS (func_type) = num_args;
1747 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1748
1749 type = func_type;
1750 break;
1751 }
1752
1753 case 'k': /* Const qualifier on some type (Sun) */
1754 type = read_type (pp, objfile);
1755 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1756 dbx_lookup_type (typenums));
1757 break;
1758
1759 case 'B': /* Volatile qual on some type (Sun) */
1760 type = read_type (pp, objfile);
1761 type = make_cv_type (TYPE_CONST (type), 1, type,
1762 dbx_lookup_type (typenums));
1763 break;
1764
1765 case '@':
1766 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1767 { /* Member (class & variable) type */
1768 /* FIXME -- we should be doing smash_to_XXX types here. */
1769
1770 struct type *domain = read_type (pp, objfile);
1771 struct type *memtype;
1772
1773 if (**pp != ',')
1774 /* Invalid member type data format. */
1775 return error_type (pp, objfile);
1776 ++*pp;
1777
1778 memtype = read_type (pp, objfile);
1779 type = dbx_alloc_type (typenums, objfile);
1780 smash_to_memberptr_type (type, domain, memtype);
1781 }
1782 else
1783 /* type attribute */
1784 {
1785 char *attr = *pp;
1786 /* Skip to the semicolon. */
1787 while (**pp != ';' && **pp != '\0')
1788 ++(*pp);
1789 if (**pp == '\0')
1790 return error_type (pp, objfile);
1791 else
1792 ++ * pp; /* Skip the semicolon. */
1793
1794 switch (*attr)
1795 {
1796 case 's': /* Size attribute */
1797 type_size = atoi (attr + 1);
1798 if (type_size <= 0)
1799 type_size = -1;
1800 break;
1801
1802 case 'S': /* String attribute */
1803 /* FIXME: check to see if following type is array? */
1804 is_string = 1;
1805 break;
1806
1807 case 'V': /* Vector attribute */
1808 /* FIXME: check to see if following type is array? */
1809 is_vector = 1;
1810 break;
1811
1812 default:
1813 /* Ignore unrecognized type attributes, so future compilers
1814 can invent new ones. */
1815 break;
1816 }
1817 ++*pp;
1818 goto again;
1819 }
1820 break;
1821
1822 case '#': /* Method (class & fn) type */
1823 if ((*pp)[0] == '#')
1824 {
1825 /* We'll get the parameter types from the name. */
1826 struct type *return_type;
1827
1828 (*pp)++;
1829 return_type = read_type (pp, objfile);
1830 if (*(*pp)++ != ';')
1831 complaint (&symfile_complaints,
1832 _("invalid (minimal) member type data format at symtab pos %d."),
1833 symnum);
1834 type = allocate_stub_method (return_type);
1835 if (typenums[0] != -1)
1836 *dbx_lookup_type (typenums) = type;
1837 }
1838 else
1839 {
1840 struct type *domain = read_type (pp, objfile);
1841 struct type *return_type;
1842 struct field *args;
1843 int nargs, varargs;
1844
1845 if (**pp != ',')
1846 /* Invalid member type data format. */
1847 return error_type (pp, objfile);
1848 else
1849 ++(*pp);
1850
1851 return_type = read_type (pp, objfile);
1852 args = read_args (pp, ';', objfile, &nargs, &varargs);
1853 if (args == NULL)
1854 return error_type (pp, objfile);
1855 type = dbx_alloc_type (typenums, objfile);
1856 smash_to_method_type (type, domain, return_type, args,
1857 nargs, varargs);
1858 }
1859 break;
1860
1861 case 'r': /* Range type */
1862 type = read_range_type (pp, typenums, type_size, objfile);
1863 if (typenums[0] != -1)
1864 *dbx_lookup_type (typenums) = type;
1865 break;
1866
1867 case 'b':
1868 {
1869 /* Sun ACC builtin int type */
1870 type = read_sun_builtin_type (pp, typenums, objfile);
1871 if (typenums[0] != -1)
1872 *dbx_lookup_type (typenums) = type;
1873 }
1874 break;
1875
1876 case 'R': /* Sun ACC builtin float type */
1877 type = read_sun_floating_type (pp, typenums, objfile);
1878 if (typenums[0] != -1)
1879 *dbx_lookup_type (typenums) = type;
1880 break;
1881
1882 case 'e': /* Enumeration type */
1883 type = dbx_alloc_type (typenums, objfile);
1884 type = read_enum_type (pp, type, objfile);
1885 if (typenums[0] != -1)
1886 *dbx_lookup_type (typenums) = type;
1887 break;
1888
1889 case 's': /* Struct type */
1890 case 'u': /* Union type */
1891 {
1892 enum type_code type_code = TYPE_CODE_UNDEF;
1893 type = dbx_alloc_type (typenums, objfile);
1894 switch (type_descriptor)
1895 {
1896 case 's':
1897 type_code = TYPE_CODE_STRUCT;
1898 break;
1899 case 'u':
1900 type_code = TYPE_CODE_UNION;
1901 break;
1902 }
1903 type = read_struct_type (pp, type, type_code, objfile);
1904 break;
1905 }
1906
1907 case 'a': /* Array type */
1908 if (**pp != 'r')
1909 return error_type (pp, objfile);
1910 ++*pp;
1911
1912 type = dbx_alloc_type (typenums, objfile);
1913 type = read_array_type (pp, type, objfile);
1914 if (is_string)
1915 TYPE_CODE (type) = TYPE_CODE_STRING;
1916 if (is_vector)
1917 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1918 break;
1919
1920 case 'S': /* Set or bitstring type */
1921 type1 = read_type (pp, objfile);
1922 type = create_set_type ((struct type *) NULL, type1);
1923 if (is_string)
1924 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1925 if (typenums[0] != -1)
1926 *dbx_lookup_type (typenums) = type;
1927 break;
1928
1929 default:
1930 --*pp; /* Go back to the symbol in error */
1931 /* Particularly important if it was \0! */
1932 return error_type (pp, objfile);
1933 }
1934
1935 if (type == 0)
1936 {
1937 warning (_("GDB internal error, type is NULL in stabsread.c."));
1938 return error_type (pp, objfile);
1939 }
1940
1941 /* Size specified in a type attribute overrides any other size. */
1942 if (type_size != -1)
1943 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1944
1945 return type;
1946 }
1947 \f
1948 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1949 Return the proper type node for a given builtin type number. */
1950
1951 static struct type *
1952 rs6000_builtin_type (int typenum)
1953 {
1954 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1955 #define NUMBER_RECOGNIZED 34
1956 /* This includes an empty slot for type number -0. */
1957 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1958 struct type *rettype = NULL;
1959
1960 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1961 {
1962 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1963 return builtin_type_error;
1964 }
1965 if (negative_types[-typenum] != NULL)
1966 return negative_types[-typenum];
1967
1968 #if TARGET_CHAR_BIT != 8
1969 #error This code wrong for TARGET_CHAR_BIT not 8
1970 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1971 that if that ever becomes not true, the correct fix will be to
1972 make the size in the struct type to be in bits, not in units of
1973 TARGET_CHAR_BIT. */
1974 #endif
1975
1976 switch (-typenum)
1977 {
1978 case 1:
1979 /* The size of this and all the other types are fixed, defined
1980 by the debugging format. If there is a type called "int" which
1981 is other than 32 bits, then it should use a new negative type
1982 number (or avoid negative type numbers for that case).
1983 See stabs.texinfo. */
1984 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1985 break;
1986 case 2:
1987 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1988 break;
1989 case 3:
1990 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1991 break;
1992 case 4:
1993 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1994 break;
1995 case 5:
1996 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1997 "unsigned char", NULL);
1998 break;
1999 case 6:
2000 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2001 break;
2002 case 7:
2003 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2004 "unsigned short", NULL);
2005 break;
2006 case 8:
2007 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2008 "unsigned int", NULL);
2009 break;
2010 case 9:
2011 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2012 "unsigned", NULL);
2013 case 10:
2014 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2015 "unsigned long", NULL);
2016 break;
2017 case 11:
2018 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2019 break;
2020 case 12:
2021 /* IEEE single precision (32 bit). */
2022 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2023 break;
2024 case 13:
2025 /* IEEE double precision (64 bit). */
2026 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2027 break;
2028 case 14:
2029 /* This is an IEEE double on the RS/6000, and different machines with
2030 different sizes for "long double" should use different negative
2031 type numbers. See stabs.texinfo. */
2032 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2033 break;
2034 case 15:
2035 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2036 break;
2037 case 16:
2038 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2039 "boolean", NULL);
2040 break;
2041 case 17:
2042 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2043 break;
2044 case 18:
2045 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2046 break;
2047 case 19:
2048 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2049 break;
2050 case 20:
2051 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2052 "character", NULL);
2053 break;
2054 case 21:
2055 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2056 "logical*1", NULL);
2057 break;
2058 case 22:
2059 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2060 "logical*2", NULL);
2061 break;
2062 case 23:
2063 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2064 "logical*4", NULL);
2065 break;
2066 case 24:
2067 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2068 "logical", NULL);
2069 break;
2070 case 25:
2071 /* Complex type consisting of two IEEE single precision values. */
2072 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2073 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2074 NULL);
2075 break;
2076 case 26:
2077 /* Complex type consisting of two IEEE double precision values. */
2078 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2079 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2080 NULL);
2081 break;
2082 case 27:
2083 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2084 break;
2085 case 28:
2086 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2087 break;
2088 case 29:
2089 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2090 break;
2091 case 30:
2092 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2093 break;
2094 case 31:
2095 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2096 break;
2097 case 32:
2098 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2099 "unsigned long long", NULL);
2100 break;
2101 case 33:
2102 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2103 "logical*8", NULL);
2104 break;
2105 case 34:
2106 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2107 break;
2108 }
2109 negative_types[-typenum] = rettype;
2110 return rettype;
2111 }
2112 \f
2113 /* This page contains subroutines of read_type. */
2114
2115 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2116
2117 static void
2118 update_method_name_from_physname (char **old_name, char *physname)
2119 {
2120 char *method_name;
2121
2122 method_name = method_name_from_physname (physname);
2123
2124 if (method_name == NULL)
2125 {
2126 complaint (&symfile_complaints,
2127 _("Method has bad physname %s\n"), physname);
2128 return;
2129 }
2130
2131 if (strcmp (*old_name, method_name) != 0)
2132 {
2133 xfree (*old_name);
2134 *old_name = method_name;
2135 }
2136 else
2137 xfree (method_name);
2138 }
2139
2140 /* Read member function stabs info for C++ classes. The form of each member
2141 function data is:
2142
2143 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2144
2145 An example with two member functions is:
2146
2147 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2148
2149 For the case of overloaded operators, the format is op$::*.funcs, where
2150 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2151 name (such as `+=') and `.' marks the end of the operator name.
2152
2153 Returns 1 for success, 0 for failure. */
2154
2155 static int
2156 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2157 struct objfile *objfile)
2158 {
2159 int nfn_fields = 0;
2160 int length = 0;
2161 /* Total number of member functions defined in this class. If the class
2162 defines two `f' functions, and one `g' function, then this will have
2163 the value 3. */
2164 int total_length = 0;
2165 int i;
2166 struct next_fnfield
2167 {
2168 struct next_fnfield *next;
2169 struct fn_field fn_field;
2170 }
2171 *sublist;
2172 struct type *look_ahead_type;
2173 struct next_fnfieldlist *new_fnlist;
2174 struct next_fnfield *new_sublist;
2175 char *main_fn_name;
2176 char *p;
2177
2178 /* Process each list until we find something that is not a member function
2179 or find the end of the functions. */
2180
2181 while (**pp != ';')
2182 {
2183 /* We should be positioned at the start of the function name.
2184 Scan forward to find the first ':' and if it is not the
2185 first of a "::" delimiter, then this is not a member function. */
2186 p = *pp;
2187 while (*p != ':')
2188 {
2189 p++;
2190 }
2191 if (p[1] != ':')
2192 {
2193 break;
2194 }
2195
2196 sublist = NULL;
2197 look_ahead_type = NULL;
2198 length = 0;
2199
2200 new_fnlist = (struct next_fnfieldlist *)
2201 xmalloc (sizeof (struct next_fnfieldlist));
2202 make_cleanup (xfree, new_fnlist);
2203 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2204
2205 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2206 {
2207 /* This is a completely wierd case. In order to stuff in the
2208 names that might contain colons (the usual name delimiter),
2209 Mike Tiemann defined a different name format which is
2210 signalled if the identifier is "op$". In that case, the
2211 format is "op$::XXXX." where XXXX is the name. This is
2212 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2213 /* This lets the user type "break operator+".
2214 We could just put in "+" as the name, but that wouldn't
2215 work for "*". */
2216 static char opname[32] = "op$";
2217 char *o = opname + 3;
2218
2219 /* Skip past '::'. */
2220 *pp = p + 2;
2221
2222 STABS_CONTINUE (pp, objfile);
2223 p = *pp;
2224 while (*p != '.')
2225 {
2226 *o++ = *p++;
2227 }
2228 main_fn_name = savestring (opname, o - opname);
2229 /* Skip past '.' */
2230 *pp = p + 1;
2231 }
2232 else
2233 {
2234 main_fn_name = savestring (*pp, p - *pp);
2235 /* Skip past '::'. */
2236 *pp = p + 2;
2237 }
2238 new_fnlist->fn_fieldlist.name = main_fn_name;
2239
2240 do
2241 {
2242 new_sublist =
2243 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2244 make_cleanup (xfree, new_sublist);
2245 memset (new_sublist, 0, sizeof (struct next_fnfield));
2246
2247 /* Check for and handle cretinous dbx symbol name continuation! */
2248 if (look_ahead_type == NULL)
2249 {
2250 /* Normal case. */
2251 STABS_CONTINUE (pp, objfile);
2252
2253 new_sublist->fn_field.type = read_type (pp, objfile);
2254 if (**pp != ':')
2255 {
2256 /* Invalid symtab info for member function. */
2257 return 0;
2258 }
2259 }
2260 else
2261 {
2262 /* g++ version 1 kludge */
2263 new_sublist->fn_field.type = look_ahead_type;
2264 look_ahead_type = NULL;
2265 }
2266
2267 (*pp)++;
2268 p = *pp;
2269 while (*p != ';')
2270 {
2271 p++;
2272 }
2273
2274 /* If this is just a stub, then we don't have the real name here. */
2275
2276 if (TYPE_STUB (new_sublist->fn_field.type))
2277 {
2278 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2279 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2280 new_sublist->fn_field.is_stub = 1;
2281 }
2282 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2283 *pp = p + 1;
2284
2285 /* Set this member function's visibility fields. */
2286 switch (*(*pp)++)
2287 {
2288 case VISIBILITY_PRIVATE:
2289 new_sublist->fn_field.is_private = 1;
2290 break;
2291 case VISIBILITY_PROTECTED:
2292 new_sublist->fn_field.is_protected = 1;
2293 break;
2294 }
2295
2296 STABS_CONTINUE (pp, objfile);
2297 switch (**pp)
2298 {
2299 case 'A': /* Normal functions. */
2300 new_sublist->fn_field.is_const = 0;
2301 new_sublist->fn_field.is_volatile = 0;
2302 (*pp)++;
2303 break;
2304 case 'B': /* `const' member functions. */
2305 new_sublist->fn_field.is_const = 1;
2306 new_sublist->fn_field.is_volatile = 0;
2307 (*pp)++;
2308 break;
2309 case 'C': /* `volatile' member function. */
2310 new_sublist->fn_field.is_const = 0;
2311 new_sublist->fn_field.is_volatile = 1;
2312 (*pp)++;
2313 break;
2314 case 'D': /* `const volatile' member function. */
2315 new_sublist->fn_field.is_const = 1;
2316 new_sublist->fn_field.is_volatile = 1;
2317 (*pp)++;
2318 break;
2319 case '*': /* File compiled with g++ version 1 -- no info */
2320 case '?':
2321 case '.':
2322 break;
2323 default:
2324 complaint (&symfile_complaints,
2325 _("const/volatile indicator missing, got '%c'"), **pp);
2326 break;
2327 }
2328
2329 switch (*(*pp)++)
2330 {
2331 case '*':
2332 {
2333 int nbits;
2334 /* virtual member function, followed by index.
2335 The sign bit is set to distinguish pointers-to-methods
2336 from virtual function indicies. Since the array is
2337 in words, the quantity must be shifted left by 1
2338 on 16 bit machine, and by 2 on 32 bit machine, forcing
2339 the sign bit out, and usable as a valid index into
2340 the array. Remove the sign bit here. */
2341 new_sublist->fn_field.voffset =
2342 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2343 if (nbits != 0)
2344 return 0;
2345
2346 STABS_CONTINUE (pp, objfile);
2347 if (**pp == ';' || **pp == '\0')
2348 {
2349 /* Must be g++ version 1. */
2350 new_sublist->fn_field.fcontext = 0;
2351 }
2352 else
2353 {
2354 /* Figure out from whence this virtual function came.
2355 It may belong to virtual function table of
2356 one of its baseclasses. */
2357 look_ahead_type = read_type (pp, objfile);
2358 if (**pp == ':')
2359 {
2360 /* g++ version 1 overloaded methods. */
2361 }
2362 else
2363 {
2364 new_sublist->fn_field.fcontext = look_ahead_type;
2365 if (**pp != ';')
2366 {
2367 return 0;
2368 }
2369 else
2370 {
2371 ++*pp;
2372 }
2373 look_ahead_type = NULL;
2374 }
2375 }
2376 break;
2377 }
2378 case '?':
2379 /* static member function. */
2380 {
2381 int slen = strlen (main_fn_name);
2382
2383 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2384
2385 /* For static member functions, we can't tell if they
2386 are stubbed, as they are put out as functions, and not as
2387 methods.
2388 GCC v2 emits the fully mangled name if
2389 dbxout.c:flag_minimal_debug is not set, so we have to
2390 detect a fully mangled physname here and set is_stub
2391 accordingly. Fully mangled physnames in v2 start with
2392 the member function name, followed by two underscores.
2393 GCC v3 currently always emits stubbed member functions,
2394 but with fully mangled physnames, which start with _Z. */
2395 if (!(strncmp (new_sublist->fn_field.physname,
2396 main_fn_name, slen) == 0
2397 && new_sublist->fn_field.physname[slen] == '_'
2398 && new_sublist->fn_field.physname[slen + 1] == '_'))
2399 {
2400 new_sublist->fn_field.is_stub = 1;
2401 }
2402 break;
2403 }
2404
2405 default:
2406 /* error */
2407 complaint (&symfile_complaints,
2408 _("member function type missing, got '%c'"), (*pp)[-1]);
2409 /* Fall through into normal member function. */
2410
2411 case '.':
2412 /* normal member function. */
2413 new_sublist->fn_field.voffset = 0;
2414 new_sublist->fn_field.fcontext = 0;
2415 break;
2416 }
2417
2418 new_sublist->next = sublist;
2419 sublist = new_sublist;
2420 length++;
2421 STABS_CONTINUE (pp, objfile);
2422 }
2423 while (**pp != ';' && **pp != '\0');
2424
2425 (*pp)++;
2426 STABS_CONTINUE (pp, objfile);
2427
2428 /* Skip GCC 3.X member functions which are duplicates of the callable
2429 constructor/destructor. */
2430 if (strcmp (main_fn_name, "__base_ctor") == 0
2431 || strcmp (main_fn_name, "__base_dtor") == 0
2432 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2433 {
2434 xfree (main_fn_name);
2435 }
2436 else
2437 {
2438 int has_stub = 0;
2439 int has_destructor = 0, has_other = 0;
2440 int is_v3 = 0;
2441 struct next_fnfield *tmp_sublist;
2442
2443 /* Various versions of GCC emit various mostly-useless
2444 strings in the name field for special member functions.
2445
2446 For stub methods, we need to defer correcting the name
2447 until we are ready to unstub the method, because the current
2448 name string is used by gdb_mangle_name. The only stub methods
2449 of concern here are GNU v2 operators; other methods have their
2450 names correct (see caveat below).
2451
2452 For non-stub methods, in GNU v3, we have a complete physname.
2453 Therefore we can safely correct the name now. This primarily
2454 affects constructors and destructors, whose name will be
2455 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2456 operators will also have incorrect names; for instance,
2457 "operator int" will be named "operator i" (i.e. the type is
2458 mangled).
2459
2460 For non-stub methods in GNU v2, we have no easy way to
2461 know if we have a complete physname or not. For most
2462 methods the result depends on the platform (if CPLUS_MARKER
2463 can be `$' or `.', it will use minimal debug information, or
2464 otherwise the full physname will be included).
2465
2466 Rather than dealing with this, we take a different approach.
2467 For v3 mangled names, we can use the full physname; for v2,
2468 we use cplus_demangle_opname (which is actually v2 specific),
2469 because the only interesting names are all operators - once again
2470 barring the caveat below. Skip this process if any method in the
2471 group is a stub, to prevent our fouling up the workings of
2472 gdb_mangle_name.
2473
2474 The caveat: GCC 2.95.x (and earlier?) put constructors and
2475 destructors in the same method group. We need to split this
2476 into two groups, because they should have different names.
2477 So for each method group we check whether it contains both
2478 routines whose physname appears to be a destructor (the physnames
2479 for and destructors are always provided, due to quirks in v2
2480 mangling) and routines whose physname does not appear to be a
2481 destructor. If so then we break up the list into two halves.
2482 Even if the constructors and destructors aren't in the same group
2483 the destructor will still lack the leading tilde, so that also
2484 needs to be fixed.
2485
2486 So, to summarize what we expect and handle here:
2487
2488 Given Given Real Real Action
2489 method name physname physname method name
2490
2491 __opi [none] __opi__3Foo operator int opname
2492 [now or later]
2493 Foo _._3Foo _._3Foo ~Foo separate and
2494 rename
2495 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2496 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2497 */
2498
2499 tmp_sublist = sublist;
2500 while (tmp_sublist != NULL)
2501 {
2502 if (tmp_sublist->fn_field.is_stub)
2503 has_stub = 1;
2504 if (tmp_sublist->fn_field.physname[0] == '_'
2505 && tmp_sublist->fn_field.physname[1] == 'Z')
2506 is_v3 = 1;
2507
2508 if (is_destructor_name (tmp_sublist->fn_field.physname))
2509 has_destructor++;
2510 else
2511 has_other++;
2512
2513 tmp_sublist = tmp_sublist->next;
2514 }
2515
2516 if (has_destructor && has_other)
2517 {
2518 struct next_fnfieldlist *destr_fnlist;
2519 struct next_fnfield *last_sublist;
2520
2521 /* Create a new fn_fieldlist for the destructors. */
2522
2523 destr_fnlist = (struct next_fnfieldlist *)
2524 xmalloc (sizeof (struct next_fnfieldlist));
2525 make_cleanup (xfree, destr_fnlist);
2526 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2527 destr_fnlist->fn_fieldlist.name
2528 = obconcat (&objfile->objfile_obstack, "", "~",
2529 new_fnlist->fn_fieldlist.name);
2530
2531 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2532 obstack_alloc (&objfile->objfile_obstack,
2533 sizeof (struct fn_field) * has_destructor);
2534 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2535 sizeof (struct fn_field) * has_destructor);
2536 tmp_sublist = sublist;
2537 last_sublist = NULL;
2538 i = 0;
2539 while (tmp_sublist != NULL)
2540 {
2541 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2542 {
2543 tmp_sublist = tmp_sublist->next;
2544 continue;
2545 }
2546
2547 destr_fnlist->fn_fieldlist.fn_fields[i++]
2548 = tmp_sublist->fn_field;
2549 if (last_sublist)
2550 last_sublist->next = tmp_sublist->next;
2551 else
2552 sublist = tmp_sublist->next;
2553 last_sublist = tmp_sublist;
2554 tmp_sublist = tmp_sublist->next;
2555 }
2556
2557 destr_fnlist->fn_fieldlist.length = has_destructor;
2558 destr_fnlist->next = fip->fnlist;
2559 fip->fnlist = destr_fnlist;
2560 nfn_fields++;
2561 total_length += has_destructor;
2562 length -= has_destructor;
2563 }
2564 else if (is_v3)
2565 {
2566 /* v3 mangling prevents the use of abbreviated physnames,
2567 so we can do this here. There are stubbed methods in v3
2568 only:
2569 - in -gstabs instead of -gstabs+
2570 - or for static methods, which are output as a function type
2571 instead of a method type. */
2572
2573 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2574 sublist->fn_field.physname);
2575 }
2576 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2577 {
2578 new_fnlist->fn_fieldlist.name =
2579 concat ("~", main_fn_name, (char *)NULL);
2580 xfree (main_fn_name);
2581 }
2582 else if (!has_stub)
2583 {
2584 char dem_opname[256];
2585 int ret;
2586 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2587 dem_opname, DMGL_ANSI);
2588 if (!ret)
2589 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2590 dem_opname, 0);
2591 if (ret)
2592 new_fnlist->fn_fieldlist.name
2593 = obsavestring (dem_opname, strlen (dem_opname),
2594 &objfile->objfile_obstack);
2595 }
2596
2597 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2598 obstack_alloc (&objfile->objfile_obstack,
2599 sizeof (struct fn_field) * length);
2600 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2601 sizeof (struct fn_field) * length);
2602 for (i = length; (i--, sublist); sublist = sublist->next)
2603 {
2604 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2605 }
2606
2607 new_fnlist->fn_fieldlist.length = length;
2608 new_fnlist->next = fip->fnlist;
2609 fip->fnlist = new_fnlist;
2610 nfn_fields++;
2611 total_length += length;
2612 }
2613 }
2614
2615 if (nfn_fields)
2616 {
2617 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2618 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2619 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2620 memset (TYPE_FN_FIELDLISTS (type), 0,
2621 sizeof (struct fn_fieldlist) * nfn_fields);
2622 TYPE_NFN_FIELDS (type) = nfn_fields;
2623 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2624 }
2625
2626 return 1;
2627 }
2628
2629 /* Special GNU C++ name.
2630
2631 Returns 1 for success, 0 for failure. "failure" means that we can't
2632 keep parsing and it's time for error_type(). */
2633
2634 static int
2635 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2636 struct objfile *objfile)
2637 {
2638 char *p;
2639 char *name;
2640 char cpp_abbrev;
2641 struct type *context;
2642
2643 p = *pp;
2644 if (*++p == 'v')
2645 {
2646 name = NULL;
2647 cpp_abbrev = *++p;
2648
2649 *pp = p + 1;
2650
2651 /* At this point, *pp points to something like "22:23=*22...",
2652 where the type number before the ':' is the "context" and
2653 everything after is a regular type definition. Lookup the
2654 type, find it's name, and construct the field name. */
2655
2656 context = read_type (pp, objfile);
2657
2658 switch (cpp_abbrev)
2659 {
2660 case 'f': /* $vf -- a virtual function table pointer */
2661 name = type_name_no_tag (context);
2662 if (name == NULL)
2663 {
2664 name = "";
2665 }
2666 fip->list->field.name =
2667 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2668 break;
2669
2670 case 'b': /* $vb -- a virtual bsomethingorother */
2671 name = type_name_no_tag (context);
2672 if (name == NULL)
2673 {
2674 complaint (&symfile_complaints,
2675 _("C++ abbreviated type name unknown at symtab pos %d"),
2676 symnum);
2677 name = "FOO";
2678 }
2679 fip->list->field.name =
2680 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2681 break;
2682
2683 default:
2684 invalid_cpp_abbrev_complaint (*pp);
2685 fip->list->field.name =
2686 obconcat (&objfile->objfile_obstack,
2687 "INVALID_CPLUSPLUS_ABBREV", "", "");
2688 break;
2689 }
2690
2691 /* At this point, *pp points to the ':'. Skip it and read the
2692 field type. */
2693
2694 p = ++(*pp);
2695 if (p[-1] != ':')
2696 {
2697 invalid_cpp_abbrev_complaint (*pp);
2698 return 0;
2699 }
2700 fip->list->field.type = read_type (pp, objfile);
2701 if (**pp == ',')
2702 (*pp)++; /* Skip the comma. */
2703 else
2704 return 0;
2705
2706 {
2707 int nbits;
2708 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2709 0);
2710 if (nbits != 0)
2711 return 0;
2712 }
2713 /* This field is unpacked. */
2714 FIELD_BITSIZE (fip->list->field) = 0;
2715 fip->list->visibility = VISIBILITY_PRIVATE;
2716 }
2717 else
2718 {
2719 invalid_cpp_abbrev_complaint (*pp);
2720 /* We have no idea what syntax an unrecognized abbrev would have, so
2721 better return 0. If we returned 1, we would need to at least advance
2722 *pp to avoid an infinite loop. */
2723 return 0;
2724 }
2725 return 1;
2726 }
2727
2728 static void
2729 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2730 struct type *type, struct objfile *objfile)
2731 {
2732 fip->list->field.name =
2733 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2734 *pp = p + 1;
2735
2736 /* This means we have a visibility for a field coming. */
2737 if (**pp == '/')
2738 {
2739 (*pp)++;
2740 fip->list->visibility = *(*pp)++;
2741 }
2742 else
2743 {
2744 /* normal dbx-style format, no explicit visibility */
2745 fip->list->visibility = VISIBILITY_PUBLIC;
2746 }
2747
2748 fip->list->field.type = read_type (pp, objfile);
2749 if (**pp == ':')
2750 {
2751 p = ++(*pp);
2752 #if 0
2753 /* Possible future hook for nested types. */
2754 if (**pp == '!')
2755 {
2756 fip->list->field.bitpos = (long) -2; /* nested type */
2757 p = ++(*pp);
2758 }
2759 else
2760 ...;
2761 #endif
2762 while (*p != ';')
2763 {
2764 p++;
2765 }
2766 /* Static class member. */
2767 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2768 *pp = p + 1;
2769 return;
2770 }
2771 else if (**pp != ',')
2772 {
2773 /* Bad structure-type format. */
2774 stabs_general_complaint ("bad structure-type format");
2775 return;
2776 }
2777
2778 (*pp)++; /* Skip the comma. */
2779
2780 {
2781 int nbits;
2782 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2783 if (nbits != 0)
2784 {
2785 stabs_general_complaint ("bad structure-type format");
2786 return;
2787 }
2788 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2789 if (nbits != 0)
2790 {
2791 stabs_general_complaint ("bad structure-type format");
2792 return;
2793 }
2794 }
2795
2796 if (FIELD_BITPOS (fip->list->field) == 0
2797 && FIELD_BITSIZE (fip->list->field) == 0)
2798 {
2799 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2800 it is a field which has been optimized out. The correct stab for
2801 this case is to use VISIBILITY_IGNORE, but that is a recent
2802 invention. (2) It is a 0-size array. For example
2803 union { int num; char str[0]; } foo. Printing _("<no value>" for
2804 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2805 will continue to work, and a 0-size array as a whole doesn't
2806 have any contents to print.
2807
2808 I suspect this probably could also happen with gcc -gstabs (not
2809 -gstabs+) for static fields, and perhaps other C++ extensions.
2810 Hopefully few people use -gstabs with gdb, since it is intended
2811 for dbx compatibility. */
2812
2813 /* Ignore this field. */
2814 fip->list->visibility = VISIBILITY_IGNORE;
2815 }
2816 else
2817 {
2818 /* Detect an unpacked field and mark it as such.
2819 dbx gives a bit size for all fields.
2820 Note that forward refs cannot be packed,
2821 and treat enums as if they had the width of ints. */
2822
2823 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2824
2825 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2826 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2827 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2828 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2829 {
2830 FIELD_BITSIZE (fip->list->field) = 0;
2831 }
2832 if ((FIELD_BITSIZE (fip->list->field)
2833 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2834 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2835 && FIELD_BITSIZE (fip->list->field)
2836 == gdbarch_int_bit (current_gdbarch))
2837 )
2838 &&
2839 FIELD_BITPOS (fip->list->field) % 8 == 0)
2840 {
2841 FIELD_BITSIZE (fip->list->field) = 0;
2842 }
2843 }
2844 }
2845
2846
2847 /* Read struct or class data fields. They have the form:
2848
2849 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2850
2851 At the end, we see a semicolon instead of a field.
2852
2853 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2854 a static field.
2855
2856 The optional VISIBILITY is one of:
2857
2858 '/0' (VISIBILITY_PRIVATE)
2859 '/1' (VISIBILITY_PROTECTED)
2860 '/2' (VISIBILITY_PUBLIC)
2861 '/9' (VISIBILITY_IGNORE)
2862
2863 or nothing, for C style fields with public visibility.
2864
2865 Returns 1 for success, 0 for failure. */
2866
2867 static int
2868 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2869 struct objfile *objfile)
2870 {
2871 char *p;
2872 struct nextfield *new;
2873
2874 /* We better set p right now, in case there are no fields at all... */
2875
2876 p = *pp;
2877
2878 /* Read each data member type until we find the terminating ';' at the end of
2879 the data member list, or break for some other reason such as finding the
2880 start of the member function list. */
2881 /* Stab string for structure/union does not end with two ';' in
2882 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2883
2884 while (**pp != ';' && **pp != '\0')
2885 {
2886 STABS_CONTINUE (pp, objfile);
2887 /* Get space to record the next field's data. */
2888 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2889 make_cleanup (xfree, new);
2890 memset (new, 0, sizeof (struct nextfield));
2891 new->next = fip->list;
2892 fip->list = new;
2893
2894 /* Get the field name. */
2895 p = *pp;
2896
2897 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2898 unless the CPLUS_MARKER is followed by an underscore, in
2899 which case it is just the name of an anonymous type, which we
2900 should handle like any other type name. */
2901
2902 if (is_cplus_marker (p[0]) && p[1] != '_')
2903 {
2904 if (!read_cpp_abbrev (fip, pp, type, objfile))
2905 return 0;
2906 continue;
2907 }
2908
2909 /* Look for the ':' that separates the field name from the field
2910 values. Data members are delimited by a single ':', while member
2911 functions are delimited by a pair of ':'s. When we hit the member
2912 functions (if any), terminate scan loop and return. */
2913
2914 while (*p != ':' && *p != '\0')
2915 {
2916 p++;
2917 }
2918 if (*p == '\0')
2919 return 0;
2920
2921 /* Check to see if we have hit the member functions yet. */
2922 if (p[1] == ':')
2923 {
2924 break;
2925 }
2926 read_one_struct_field (fip, pp, p, type, objfile);
2927 }
2928 if (p[0] == ':' && p[1] == ':')
2929 {
2930 /* (the deleted) chill the list of fields: the last entry (at
2931 the head) is a partially constructed entry which we now
2932 scrub. */
2933 fip->list = fip->list->next;
2934 }
2935 return 1;
2936 }
2937 /* *INDENT-OFF* */
2938 /* The stabs for C++ derived classes contain baseclass information which
2939 is marked by a '!' character after the total size. This function is
2940 called when we encounter the baseclass marker, and slurps up all the
2941 baseclass information.
2942
2943 Immediately following the '!' marker is the number of base classes that
2944 the class is derived from, followed by information for each base class.
2945 For each base class, there are two visibility specifiers, a bit offset
2946 to the base class information within the derived class, a reference to
2947 the type for the base class, and a terminating semicolon.
2948
2949 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2950 ^^ ^ ^ ^ ^ ^ ^
2951 Baseclass information marker __________________|| | | | | | |
2952 Number of baseclasses __________________________| | | | | | |
2953 Visibility specifiers (2) ________________________| | | | | |
2954 Offset in bits from start of class _________________| | | | |
2955 Type number for base class ___________________________| | | |
2956 Visibility specifiers (2) _______________________________| | |
2957 Offset in bits from start of class ________________________| |
2958 Type number of base class ____________________________________|
2959
2960 Return 1 for success, 0 for (error-type-inducing) failure. */
2961 /* *INDENT-ON* */
2962
2963
2964
2965 static int
2966 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2967 struct objfile *objfile)
2968 {
2969 int i;
2970 struct nextfield *new;
2971
2972 if (**pp != '!')
2973 {
2974 return 1;
2975 }
2976 else
2977 {
2978 /* Skip the '!' baseclass information marker. */
2979 (*pp)++;
2980 }
2981
2982 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2983 {
2984 int nbits;
2985 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2986 if (nbits != 0)
2987 return 0;
2988 }
2989
2990 #if 0
2991 /* Some stupid compilers have trouble with the following, so break
2992 it up into simpler expressions. */
2993 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2994 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2995 #else
2996 {
2997 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2998 char *pointer;
2999
3000 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3001 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3002 }
3003 #endif /* 0 */
3004
3005 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3006
3007 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3008 {
3009 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3010 make_cleanup (xfree, new);
3011 memset (new, 0, sizeof (struct nextfield));
3012 new->next = fip->list;
3013 fip->list = new;
3014 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3015
3016 STABS_CONTINUE (pp, objfile);
3017 switch (**pp)
3018 {
3019 case '0':
3020 /* Nothing to do. */
3021 break;
3022 case '1':
3023 SET_TYPE_FIELD_VIRTUAL (type, i);
3024 break;
3025 default:
3026 /* Unknown character. Complain and treat it as non-virtual. */
3027 {
3028 complaint (&symfile_complaints,
3029 _("Unknown virtual character `%c' for baseclass"), **pp);
3030 }
3031 }
3032 ++(*pp);
3033
3034 new->visibility = *(*pp)++;
3035 switch (new->visibility)
3036 {
3037 case VISIBILITY_PRIVATE:
3038 case VISIBILITY_PROTECTED:
3039 case VISIBILITY_PUBLIC:
3040 break;
3041 default:
3042 /* Bad visibility format. Complain and treat it as
3043 public. */
3044 {
3045 complaint (&symfile_complaints,
3046 _("Unknown visibility `%c' for baseclass"),
3047 new->visibility);
3048 new->visibility = VISIBILITY_PUBLIC;
3049 }
3050 }
3051
3052 {
3053 int nbits;
3054
3055 /* The remaining value is the bit offset of the portion of the object
3056 corresponding to this baseclass. Always zero in the absence of
3057 multiple inheritance. */
3058
3059 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3060 if (nbits != 0)
3061 return 0;
3062 }
3063
3064 /* The last piece of baseclass information is the type of the
3065 base class. Read it, and remember it's type name as this
3066 field's name. */
3067
3068 new->field.type = read_type (pp, objfile);
3069 new->field.name = type_name_no_tag (new->field.type);
3070
3071 /* skip trailing ';' and bump count of number of fields seen */
3072 if (**pp == ';')
3073 (*pp)++;
3074 else
3075 return 0;
3076 }
3077 return 1;
3078 }
3079
3080 /* The tail end of stabs for C++ classes that contain a virtual function
3081 pointer contains a tilde, a %, and a type number.
3082 The type number refers to the base class (possibly this class itself) which
3083 contains the vtable pointer for the current class.
3084
3085 This function is called when we have parsed all the method declarations,
3086 so we can look for the vptr base class info. */
3087
3088 static int
3089 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3090 struct objfile *objfile)
3091 {
3092 char *p;
3093
3094 STABS_CONTINUE (pp, objfile);
3095
3096 /* If we are positioned at a ';', then skip it. */
3097 if (**pp == ';')
3098 {
3099 (*pp)++;
3100 }
3101
3102 if (**pp == '~')
3103 {
3104 (*pp)++;
3105
3106 if (**pp == '=' || **pp == '+' || **pp == '-')
3107 {
3108 /* Obsolete flags that used to indicate the presence
3109 of constructors and/or destructors. */
3110 (*pp)++;
3111 }
3112
3113 /* Read either a '%' or the final ';'. */
3114 if (*(*pp)++ == '%')
3115 {
3116 /* The next number is the type number of the base class
3117 (possibly our own class) which supplies the vtable for
3118 this class. Parse it out, and search that class to find
3119 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3120 and TYPE_VPTR_FIELDNO. */
3121
3122 struct type *t;
3123 int i;
3124
3125 t = read_type (pp, objfile);
3126 p = (*pp)++;
3127 while (*p != '\0' && *p != ';')
3128 {
3129 p++;
3130 }
3131 if (*p == '\0')
3132 {
3133 /* Premature end of symbol. */
3134 return 0;
3135 }
3136
3137 TYPE_VPTR_BASETYPE (type) = t;
3138 if (type == t) /* Our own class provides vtbl ptr */
3139 {
3140 for (i = TYPE_NFIELDS (t) - 1;
3141 i >= TYPE_N_BASECLASSES (t);
3142 --i)
3143 {
3144 char *name = TYPE_FIELD_NAME (t, i);
3145 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3146 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3147 {
3148 TYPE_VPTR_FIELDNO (type) = i;
3149 goto gotit;
3150 }
3151 }
3152 /* Virtual function table field not found. */
3153 complaint (&symfile_complaints,
3154 _("virtual function table pointer not found when defining class `%s'"),
3155 TYPE_NAME (type));
3156 return 0;
3157 }
3158 else
3159 {
3160 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3161 }
3162
3163 gotit:
3164 *pp = p + 1;
3165 }
3166 }
3167 return 1;
3168 }
3169
3170 static int
3171 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3172 {
3173 int n;
3174
3175 for (n = TYPE_NFN_FIELDS (type);
3176 fip->fnlist != NULL;
3177 fip->fnlist = fip->fnlist->next)
3178 {
3179 --n; /* Circumvent Sun3 compiler bug */
3180 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3181 }
3182 return 1;
3183 }
3184
3185 /* Create the vector of fields, and record how big it is.
3186 We need this info to record proper virtual function table information
3187 for this class's virtual functions. */
3188
3189 static int
3190 attach_fields_to_type (struct field_info *fip, struct type *type,
3191 struct objfile *objfile)
3192 {
3193 int nfields = 0;
3194 int non_public_fields = 0;
3195 struct nextfield *scan;
3196
3197 /* Count up the number of fields that we have, as well as taking note of
3198 whether or not there are any non-public fields, which requires us to
3199 allocate and build the private_field_bits and protected_field_bits
3200 bitfields. */
3201
3202 for (scan = fip->list; scan != NULL; scan = scan->next)
3203 {
3204 nfields++;
3205 if (scan->visibility != VISIBILITY_PUBLIC)
3206 {
3207 non_public_fields++;
3208 }
3209 }
3210
3211 /* Now we know how many fields there are, and whether or not there are any
3212 non-public fields. Record the field count, allocate space for the
3213 array of fields, and create blank visibility bitfields if necessary. */
3214
3215 TYPE_NFIELDS (type) = nfields;
3216 TYPE_FIELDS (type) = (struct field *)
3217 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3218 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3219
3220 if (non_public_fields)
3221 {
3222 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3223
3224 TYPE_FIELD_PRIVATE_BITS (type) =
3225 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3226 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3227
3228 TYPE_FIELD_PROTECTED_BITS (type) =
3229 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3230 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3231
3232 TYPE_FIELD_IGNORE_BITS (type) =
3233 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3234 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3235 }
3236
3237 /* Copy the saved-up fields into the field vector. Start from the head
3238 of the list, adding to the tail of the field array, so that they end
3239 up in the same order in the array in which they were added to the list. */
3240
3241 while (nfields-- > 0)
3242 {
3243 TYPE_FIELD (type, nfields) = fip->list->field;
3244 switch (fip->list->visibility)
3245 {
3246 case VISIBILITY_PRIVATE:
3247 SET_TYPE_FIELD_PRIVATE (type, nfields);
3248 break;
3249
3250 case VISIBILITY_PROTECTED:
3251 SET_TYPE_FIELD_PROTECTED (type, nfields);
3252 break;
3253
3254 case VISIBILITY_IGNORE:
3255 SET_TYPE_FIELD_IGNORE (type, nfields);
3256 break;
3257
3258 case VISIBILITY_PUBLIC:
3259 break;
3260
3261 default:
3262 /* Unknown visibility. Complain and treat it as public. */
3263 {
3264 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3265 fip->list->visibility);
3266 }
3267 break;
3268 }
3269 fip->list = fip->list->next;
3270 }
3271 return 1;
3272 }
3273
3274
3275 /* Complain that the compiler has emitted more than one definition for the
3276 structure type TYPE. */
3277 static void
3278 complain_about_struct_wipeout (struct type *type)
3279 {
3280 char *name = "";
3281 char *kind = "";
3282
3283 if (TYPE_TAG_NAME (type))
3284 {
3285 name = TYPE_TAG_NAME (type);
3286 switch (TYPE_CODE (type))
3287 {
3288 case TYPE_CODE_STRUCT: kind = "struct "; break;
3289 case TYPE_CODE_UNION: kind = "union "; break;
3290 case TYPE_CODE_ENUM: kind = "enum "; break;
3291 default: kind = "";
3292 }
3293 }
3294 else if (TYPE_NAME (type))
3295 {
3296 name = TYPE_NAME (type);
3297 kind = "";
3298 }
3299 else
3300 {
3301 name = "<unknown>";
3302 kind = "";
3303 }
3304
3305 complaint (&symfile_complaints,
3306 _("struct/union type gets multiply defined: %s%s"), kind, name);
3307 }
3308
3309
3310 /* Read the description of a structure (or union type) and return an object
3311 describing the type.
3312
3313 PP points to a character pointer that points to the next unconsumed token
3314 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3315 *PP will point to "4a:1,0,32;;".
3316
3317 TYPE points to an incomplete type that needs to be filled in.
3318
3319 OBJFILE points to the current objfile from which the stabs information is
3320 being read. (Note that it is redundant in that TYPE also contains a pointer
3321 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3322 */
3323
3324 static struct type *
3325 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3326 struct objfile *objfile)
3327 {
3328 struct cleanup *back_to;
3329 struct field_info fi;
3330
3331 fi.list = NULL;
3332 fi.fnlist = NULL;
3333
3334 /* When describing struct/union/class types in stabs, G++ always drops
3335 all qualifications from the name. So if you've got:
3336 struct A { ... struct B { ... }; ... };
3337 then G++ will emit stabs for `struct A::B' that call it simply
3338 `struct B'. Obviously, if you've got a real top-level definition for
3339 `struct B', or other nested definitions, this is going to cause
3340 problems.
3341
3342 Obviously, GDB can't fix this by itself, but it can at least avoid
3343 scribbling on existing structure type objects when new definitions
3344 appear. */
3345 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3346 || TYPE_STUB (type)))
3347 {
3348 complain_about_struct_wipeout (type);
3349
3350 /* It's probably best to return the type unchanged. */
3351 return type;
3352 }
3353
3354 back_to = make_cleanup (null_cleanup, 0);
3355
3356 INIT_CPLUS_SPECIFIC (type);
3357 TYPE_CODE (type) = type_code;
3358 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3359
3360 /* First comes the total size in bytes. */
3361
3362 {
3363 int nbits;
3364 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3365 if (nbits != 0)
3366 return error_type (pp, objfile);
3367 }
3368
3369 /* Now read the baseclasses, if any, read the regular C struct or C++
3370 class member fields, attach the fields to the type, read the C++
3371 member functions, attach them to the type, and then read any tilde
3372 field (baseclass specifier for the class holding the main vtable). */
3373
3374 if (!read_baseclasses (&fi, pp, type, objfile)
3375 || !read_struct_fields (&fi, pp, type, objfile)
3376 || !attach_fields_to_type (&fi, type, objfile)
3377 || !read_member_functions (&fi, pp, type, objfile)
3378 || !attach_fn_fields_to_type (&fi, type)
3379 || !read_tilde_fields (&fi, pp, type, objfile))
3380 {
3381 type = error_type (pp, objfile);
3382 }
3383
3384 do_cleanups (back_to);
3385 return (type);
3386 }
3387
3388 /* Read a definition of an array type,
3389 and create and return a suitable type object.
3390 Also creates a range type which represents the bounds of that
3391 array. */
3392
3393 static struct type *
3394 read_array_type (char **pp, struct type *type,
3395 struct objfile *objfile)
3396 {
3397 struct type *index_type, *element_type, *range_type;
3398 int lower, upper;
3399 int adjustable = 0;
3400 int nbits;
3401
3402 /* Format of an array type:
3403 "ar<index type>;lower;upper;<array_contents_type>".
3404 OS9000: "arlower,upper;<array_contents_type>".
3405
3406 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3407 for these, produce a type like float[][]. */
3408
3409 {
3410 index_type = read_type (pp, objfile);
3411 if (**pp != ';')
3412 /* Improper format of array type decl. */
3413 return error_type (pp, objfile);
3414 ++*pp;
3415 }
3416
3417 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3418 {
3419 (*pp)++;
3420 adjustable = 1;
3421 }
3422 lower = read_huge_number (pp, ';', &nbits, 0);
3423
3424 if (nbits != 0)
3425 return error_type (pp, objfile);
3426
3427 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3428 {
3429 (*pp)++;
3430 adjustable = 1;
3431 }
3432 upper = read_huge_number (pp, ';', &nbits, 0);
3433 if (nbits != 0)
3434 return error_type (pp, objfile);
3435
3436 element_type = read_type (pp, objfile);
3437
3438 if (adjustable)
3439 {
3440 lower = 0;
3441 upper = -1;
3442 }
3443
3444 range_type =
3445 create_range_type ((struct type *) NULL, index_type, lower, upper);
3446 type = create_array_type (type, element_type, range_type);
3447
3448 return type;
3449 }
3450
3451
3452 /* Read a definition of an enumeration type,
3453 and create and return a suitable type object.
3454 Also defines the symbols that represent the values of the type. */
3455
3456 static struct type *
3457 read_enum_type (char **pp, struct type *type,
3458 struct objfile *objfile)
3459 {
3460 char *p;
3461 char *name;
3462 long n;
3463 struct symbol *sym;
3464 int nsyms = 0;
3465 struct pending **symlist;
3466 struct pending *osyms, *syms;
3467 int o_nsyms;
3468 int nbits;
3469 int unsigned_enum = 1;
3470
3471 #if 0
3472 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3473 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3474 to do? For now, force all enum values to file scope. */
3475 if (within_function)
3476 symlist = &local_symbols;
3477 else
3478 #endif
3479 symlist = &file_symbols;
3480 osyms = *symlist;
3481 o_nsyms = osyms ? osyms->nsyms : 0;
3482
3483 /* The aix4 compiler emits an extra field before the enum members;
3484 my guess is it's a type of some sort. Just ignore it. */
3485 if (**pp == '-')
3486 {
3487 /* Skip over the type. */
3488 while (**pp != ':')
3489 (*pp)++;
3490
3491 /* Skip over the colon. */
3492 (*pp)++;
3493 }
3494
3495 /* Read the value-names and their values.
3496 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3497 A semicolon or comma instead of a NAME means the end. */
3498 while (**pp && **pp != ';' && **pp != ',')
3499 {
3500 STABS_CONTINUE (pp, objfile);
3501 p = *pp;
3502 while (*p != ':')
3503 p++;
3504 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3505 *pp = p + 1;
3506 n = read_huge_number (pp, ',', &nbits, 0);
3507 if (nbits != 0)
3508 return error_type (pp, objfile);
3509
3510 sym = (struct symbol *)
3511 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3512 memset (sym, 0, sizeof (struct symbol));
3513 DEPRECATED_SYMBOL_NAME (sym) = name;
3514 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3515 SYMBOL_CLASS (sym) = LOC_CONST;
3516 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3517 SYMBOL_VALUE (sym) = n;
3518 if (n < 0)
3519 unsigned_enum = 0;
3520 add_symbol_to_list (sym, symlist);
3521 nsyms++;
3522 }
3523
3524 if (**pp == ';')
3525 (*pp)++; /* Skip the semicolon. */
3526
3527 /* Now fill in the fields of the type-structure. */
3528
3529 TYPE_LENGTH (type) = gdbarch_int_bit (current_gdbarch) / HOST_CHAR_BIT;
3530 TYPE_CODE (type) = TYPE_CODE_ENUM;
3531 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3532 if (unsigned_enum)
3533 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3534 TYPE_NFIELDS (type) = nsyms;
3535 TYPE_FIELDS (type) = (struct field *)
3536 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3537 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3538
3539 /* Find the symbols for the values and put them into the type.
3540 The symbols can be found in the symlist that we put them on
3541 to cause them to be defined. osyms contains the old value
3542 of that symlist; everything up to there was defined by us. */
3543 /* Note that we preserve the order of the enum constants, so
3544 that in something like "enum {FOO, LAST_THING=FOO}" we print
3545 FOO, not LAST_THING. */
3546
3547 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3548 {
3549 int last = syms == osyms ? o_nsyms : 0;
3550 int j = syms->nsyms;
3551 for (; --j >= last; --n)
3552 {
3553 struct symbol *xsym = syms->symbol[j];
3554 SYMBOL_TYPE (xsym) = type;
3555 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3556 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3557 TYPE_FIELD_BITSIZE (type, n) = 0;
3558 }
3559 if (syms == osyms)
3560 break;
3561 }
3562
3563 return type;
3564 }
3565
3566 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3567 typedefs in every file (for int, long, etc):
3568
3569 type = b <signed> <width> <format type>; <offset>; <nbits>
3570 signed = u or s.
3571 optional format type = c or b for char or boolean.
3572 offset = offset from high order bit to start bit of type.
3573 width is # bytes in object of this type, nbits is # bits in type.
3574
3575 The width/offset stuff appears to be for small objects stored in
3576 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3577 FIXME. */
3578
3579 static struct type *
3580 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3581 {
3582 int type_bits;
3583 int nbits;
3584 int signed_type;
3585 enum type_code code = TYPE_CODE_INT;
3586
3587 switch (**pp)
3588 {
3589 case 's':
3590 signed_type = 1;
3591 break;
3592 case 'u':
3593 signed_type = 0;
3594 break;
3595 default:
3596 return error_type (pp, objfile);
3597 }
3598 (*pp)++;
3599
3600 /* For some odd reason, all forms of char put a c here. This is strange
3601 because no other type has this honor. We can safely ignore this because
3602 we actually determine 'char'acterness by the number of bits specified in
3603 the descriptor.
3604 Boolean forms, e.g Fortran logical*X, put a b here. */
3605
3606 if (**pp == 'c')
3607 (*pp)++;
3608 else if (**pp == 'b')
3609 {
3610 code = TYPE_CODE_BOOL;
3611 (*pp)++;
3612 }
3613
3614 /* The first number appears to be the number of bytes occupied
3615 by this type, except that unsigned short is 4 instead of 2.
3616 Since this information is redundant with the third number,
3617 we will ignore it. */
3618 read_huge_number (pp, ';', &nbits, 0);
3619 if (nbits != 0)
3620 return error_type (pp, objfile);
3621
3622 /* The second number is always 0, so ignore it too. */
3623 read_huge_number (pp, ';', &nbits, 0);
3624 if (nbits != 0)
3625 return error_type (pp, objfile);
3626
3627 /* The third number is the number of bits for this type. */
3628 type_bits = read_huge_number (pp, 0, &nbits, 0);
3629 if (nbits != 0)
3630 return error_type (pp, objfile);
3631 /* The type *should* end with a semicolon. If it are embedded
3632 in a larger type the semicolon may be the only way to know where
3633 the type ends. If this type is at the end of the stabstring we
3634 can deal with the omitted semicolon (but we don't have to like
3635 it). Don't bother to complain(), Sun's compiler omits the semicolon
3636 for "void". */
3637 if (**pp == ';')
3638 ++(*pp);
3639
3640 if (type_bits == 0)
3641 return init_type (TYPE_CODE_VOID, 1,
3642 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3643 objfile);
3644 else
3645 return init_type (code,
3646 type_bits / TARGET_CHAR_BIT,
3647 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3648 objfile);
3649 }
3650
3651 static struct type *
3652 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3653 {
3654 int nbits;
3655 int details;
3656 int nbytes;
3657 struct type *rettype;
3658
3659 /* The first number has more details about the type, for example
3660 FN_COMPLEX. */
3661 details = read_huge_number (pp, ';', &nbits, 0);
3662 if (nbits != 0)
3663 return error_type (pp, objfile);
3664
3665 /* The second number is the number of bytes occupied by this type */
3666 nbytes = read_huge_number (pp, ';', &nbits, 0);
3667 if (nbits != 0)
3668 return error_type (pp, objfile);
3669
3670 if (details == NF_COMPLEX || details == NF_COMPLEX16
3671 || details == NF_COMPLEX32)
3672 {
3673 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3674 TYPE_TARGET_TYPE (rettype)
3675 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3676 return rettype;
3677 }
3678
3679 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3680 }
3681
3682 /* Read a number from the string pointed to by *PP.
3683 The value of *PP is advanced over the number.
3684 If END is nonzero, the character that ends the
3685 number must match END, or an error happens;
3686 and that character is skipped if it does match.
3687 If END is zero, *PP is left pointing to that character.
3688
3689 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3690 the number is represented in an octal representation, assume that
3691 it is represented in a 2's complement representation with a size of
3692 TWOS_COMPLEMENT_BITS.
3693
3694 If the number fits in a long, set *BITS to 0 and return the value.
3695 If not, set *BITS to be the number of bits in the number and return 0.
3696
3697 If encounter garbage, set *BITS to -1 and return 0. */
3698
3699 static long
3700 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3701 {
3702 char *p = *pp;
3703 int sign = 1;
3704 int sign_bit;
3705 long n = 0;
3706 long sn = 0;
3707 int radix = 10;
3708 char overflow = 0;
3709 int nbits = 0;
3710 int c;
3711 long upper_limit;
3712 int twos_complement_representation;
3713
3714 if (*p == '-')
3715 {
3716 sign = -1;
3717 p++;
3718 }
3719
3720 /* Leading zero means octal. GCC uses this to output values larger
3721 than an int (because that would be hard in decimal). */
3722 if (*p == '0')
3723 {
3724 radix = 8;
3725 p++;
3726 }
3727
3728 twos_complement_representation = radix == 8 && twos_complement_bits > 0;
3729 upper_limit = LONG_MAX / radix;
3730
3731 while ((c = *p++) >= '0' && c < ('0' + radix))
3732 {
3733 if (n <= upper_limit)
3734 {
3735 if (twos_complement_representation)
3736 {
3737 /* Octal, signed, twos complement representation. In this case,
3738 sn is the signed value, n is the corresponding absolute
3739 value. signed_bit is the position of the sign bit in the
3740 first three bits. */
3741 if (sn == 0)
3742 {
3743 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3744 sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3745 }
3746 else
3747 {
3748 sn *= radix;
3749 sn += c - '0';
3750 }
3751
3752 if (sn < 0)
3753 n = -sn;
3754 }
3755 else
3756 {
3757 /* unsigned representation */
3758 n *= radix;
3759 n += c - '0'; /* FIXME this overflows anyway */
3760 }
3761 }
3762 else
3763 overflow = 1;
3764
3765 /* This depends on large values being output in octal, which is
3766 what GCC does. */
3767 if (radix == 8)
3768 {
3769 if (nbits == 0)
3770 {
3771 if (c == '0')
3772 /* Ignore leading zeroes. */
3773 ;
3774 else if (c == '1')
3775 nbits = 1;
3776 else if (c == '2' || c == '3')
3777 nbits = 2;
3778 else
3779 nbits = 3;
3780 }
3781 else
3782 nbits += 3;
3783 }
3784 }
3785 if (end)
3786 {
3787 if (c && c != end)
3788 {
3789 if (bits != NULL)
3790 *bits = -1;
3791 return 0;
3792 }
3793 }
3794 else
3795 --p;
3796
3797 *pp = p;
3798 if (overflow)
3799 {
3800 if (nbits == 0)
3801 {
3802 /* Large decimal constants are an error (because it is hard to
3803 count how many bits are in them). */
3804 if (bits != NULL)
3805 *bits = -1;
3806 return 0;
3807 }
3808
3809 /* -0x7f is the same as 0x80. So deal with it by adding one to
3810 the number of bits. */
3811 if (sign == -1)
3812 ++nbits;
3813 if (bits)
3814 *bits = nbits;
3815 }
3816 else
3817 {
3818 if (bits)
3819 *bits = 0;
3820 if (twos_complement_representation)
3821 return sn;
3822 else
3823 return n * sign;
3824 }
3825 /* It's *BITS which has the interesting information. */
3826 return 0;
3827 }
3828
3829 static struct type *
3830 read_range_type (char **pp, int typenums[2], int type_size,
3831 struct objfile *objfile)
3832 {
3833 char *orig_pp = *pp;
3834 int rangenums[2];
3835 long n2, n3;
3836 int n2bits, n3bits;
3837 int self_subrange;
3838 struct type *result_type;
3839 struct type *index_type = NULL;
3840
3841 /* First comes a type we are a subrange of.
3842 In C it is usually 0, 1 or the type being defined. */
3843 if (read_type_number (pp, rangenums) != 0)
3844 return error_type (pp, objfile);
3845 self_subrange = (rangenums[0] == typenums[0] &&
3846 rangenums[1] == typenums[1]);
3847
3848 if (**pp == '=')
3849 {
3850 *pp = orig_pp;
3851 index_type = read_type (pp, objfile);
3852 }
3853
3854 /* A semicolon should now follow; skip it. */
3855 if (**pp == ';')
3856 (*pp)++;
3857
3858 /* The remaining two operands are usually lower and upper bounds
3859 of the range. But in some special cases they mean something else. */
3860 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3861 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3862
3863 if (n2bits == -1 || n3bits == -1)
3864 return error_type (pp, objfile);
3865
3866 if (index_type)
3867 goto handle_true_range;
3868
3869 /* If limits are huge, must be large integral type. */
3870 if (n2bits != 0 || n3bits != 0)
3871 {
3872 char got_signed = 0;
3873 char got_unsigned = 0;
3874 /* Number of bits in the type. */
3875 int nbits = 0;
3876
3877 /* If a type size attribute has been specified, the bounds of
3878 the range should fit in this size. If the lower bounds needs
3879 more bits than the upper bound, then the type is signed. */
3880 if (n2bits <= type_size && n3bits <= type_size)
3881 {
3882 if (n2bits == type_size && n2bits > n3bits)
3883 got_signed = 1;
3884 else
3885 got_unsigned = 1;
3886 nbits = type_size;
3887 }
3888 /* Range from 0 to <large number> is an unsigned large integral type. */
3889 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3890 {
3891 got_unsigned = 1;
3892 nbits = n3bits;
3893 }
3894 /* Range from <large number> to <large number>-1 is a large signed
3895 integral type. Take care of the case where <large number> doesn't
3896 fit in a long but <large number>-1 does. */
3897 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3898 || (n2bits != 0 && n3bits == 0
3899 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3900 && n3 == LONG_MAX))
3901 {
3902 got_signed = 1;
3903 nbits = n2bits;
3904 }
3905
3906 if (got_signed || got_unsigned)
3907 {
3908 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3909 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3910 objfile);
3911 }
3912 else
3913 return error_type (pp, objfile);
3914 }
3915
3916 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3917 if (self_subrange && n2 == 0 && n3 == 0)
3918 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3919
3920 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3921 is the width in bytes.
3922
3923 Fortran programs appear to use this for complex types also. To
3924 distinguish between floats and complex, g77 (and others?) seem
3925 to use self-subranges for the complexes, and subranges of int for
3926 the floats.
3927
3928 Also note that for complexes, g77 sets n2 to the size of one of
3929 the member floats, not the whole complex beast. My guess is that
3930 this was to work well with pre-COMPLEX versions of gdb. */
3931
3932 if (n3 == 0 && n2 > 0)
3933 {
3934 struct type *float_type
3935 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3936
3937 if (self_subrange)
3938 {
3939 struct type *complex_type =
3940 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3941 TYPE_TARGET_TYPE (complex_type) = float_type;
3942 return complex_type;
3943 }
3944 else
3945 return float_type;
3946 }
3947
3948 /* If the upper bound is -1, it must really be an unsigned int. */
3949
3950 else if (n2 == 0 && n3 == -1)
3951 {
3952 /* It is unsigned int or unsigned long. */
3953 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3954 compatibility hack. */
3955 return init_type (TYPE_CODE_INT,
3956 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
3957 TYPE_FLAG_UNSIGNED, NULL, objfile);
3958 }
3959
3960 /* Special case: char is defined (Who knows why) as a subrange of
3961 itself with range 0-127. */
3962 else if (self_subrange && n2 == 0 && n3 == 127)
3963 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3964
3965 /* We used to do this only for subrange of self or subrange of int. */
3966 else if (n2 == 0)
3967 {
3968 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3969 "unsigned long", and we already checked for that,
3970 so don't need to test for it here. */
3971
3972 if (n3 < 0)
3973 /* n3 actually gives the size. */
3974 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3975 NULL, objfile);
3976
3977 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3978 unsigned n-byte integer. But do require n to be a power of
3979 two; we don't want 3- and 5-byte integers flying around. */
3980 {
3981 int bytes;
3982 unsigned long bits;
3983
3984 bits = n3;
3985 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3986 bits >>= 8;
3987 if (bits == 0
3988 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3989 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3990 objfile);
3991 }
3992 }
3993 /* I think this is for Convex "long long". Since I don't know whether
3994 Convex sets self_subrange, I also accept that particular size regardless
3995 of self_subrange. */
3996 else if (n3 == 0 && n2 < 0
3997 && (self_subrange
3998 || n2 == -gdbarch_long_long_bit
3999 (current_gdbarch) / TARGET_CHAR_BIT))
4000 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4001 else if (n2 == -n3 - 1)
4002 {
4003 if (n3 == 0x7f)
4004 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4005 if (n3 == 0x7fff)
4006 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4007 if (n3 == 0x7fffffff)
4008 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4009 }
4010
4011 /* We have a real range type on our hands. Allocate space and
4012 return a real pointer. */
4013 handle_true_range:
4014
4015 if (self_subrange)
4016 index_type = builtin_type_int;
4017 else
4018 index_type = *dbx_lookup_type (rangenums);
4019 if (index_type == NULL)
4020 {
4021 /* Does this actually ever happen? Is that why we are worrying
4022 about dealing with it rather than just calling error_type? */
4023
4024 static struct type *range_type_index;
4025
4026 complaint (&symfile_complaints,
4027 _("base type %d of range type is not defined"), rangenums[1]);
4028 if (range_type_index == NULL)
4029 range_type_index =
4030 init_type (TYPE_CODE_INT,
4031 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
4032 0, "range type index type", NULL);
4033 index_type = range_type_index;
4034 }
4035
4036 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4037 return (result_type);
4038 }
4039
4040 /* Read in an argument list. This is a list of types, separated by commas
4041 and terminated with END. Return the list of types read in, or NULL
4042 if there is an error. */
4043
4044 static struct field *
4045 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4046 int *varargsp)
4047 {
4048 /* FIXME! Remove this arbitrary limit! */
4049 struct type *types[1024]; /* allow for fns of 1023 parameters */
4050 int n = 0, i;
4051 struct field *rval;
4052
4053 while (**pp != end)
4054 {
4055 if (**pp != ',')
4056 /* Invalid argument list: no ','. */
4057 return NULL;
4058 (*pp)++;
4059 STABS_CONTINUE (pp, objfile);
4060 types[n++] = read_type (pp, objfile);
4061 }
4062 (*pp)++; /* get past `end' (the ':' character) */
4063
4064 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4065 *varargsp = 1;
4066 else
4067 {
4068 n--;
4069 *varargsp = 0;
4070 }
4071
4072 rval = (struct field *) xmalloc (n * sizeof (struct field));
4073 memset (rval, 0, n * sizeof (struct field));
4074 for (i = 0; i < n; i++)
4075 rval[i].type = types[i];
4076 *nargsp = n;
4077 return rval;
4078 }
4079 \f
4080 /* Common block handling. */
4081
4082 /* List of symbols declared since the last BCOMM. This list is a tail
4083 of local_symbols. When ECOMM is seen, the symbols on the list
4084 are noted so their proper addresses can be filled in later,
4085 using the common block base address gotten from the assembler
4086 stabs. */
4087
4088 static struct pending *common_block;
4089 static int common_block_i;
4090
4091 /* Name of the current common block. We get it from the BCOMM instead of the
4092 ECOMM to match IBM documentation (even though IBM puts the name both places
4093 like everyone else). */
4094 static char *common_block_name;
4095
4096 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4097 to remain after this function returns. */
4098
4099 void
4100 common_block_start (char *name, struct objfile *objfile)
4101 {
4102 if (common_block_name != NULL)
4103 {
4104 complaint (&symfile_complaints,
4105 _("Invalid symbol data: common block within common block"));
4106 }
4107 common_block = local_symbols;
4108 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4109 common_block_name = obsavestring (name, strlen (name),
4110 &objfile->objfile_obstack);
4111 }
4112
4113 /* Process a N_ECOMM symbol. */
4114
4115 void
4116 common_block_end (struct objfile *objfile)
4117 {
4118 /* Symbols declared since the BCOMM are to have the common block
4119 start address added in when we know it. common_block and
4120 common_block_i point to the first symbol after the BCOMM in
4121 the local_symbols list; copy the list and hang it off the
4122 symbol for the common block name for later fixup. */
4123 int i;
4124 struct symbol *sym;
4125 struct pending *new = 0;
4126 struct pending *next;
4127 int j;
4128
4129 if (common_block_name == NULL)
4130 {
4131 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4132 return;
4133 }
4134
4135 sym = (struct symbol *)
4136 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4137 memset (sym, 0, sizeof (struct symbol));
4138 /* Note: common_block_name already saved on objfile_obstack */
4139 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4140 SYMBOL_CLASS (sym) = LOC_BLOCK;
4141
4142 /* Now we copy all the symbols which have been defined since the BCOMM. */
4143
4144 /* Copy all the struct pendings before common_block. */
4145 for (next = local_symbols;
4146 next != NULL && next != common_block;
4147 next = next->next)
4148 {
4149 for (j = 0; j < next->nsyms; j++)
4150 add_symbol_to_list (next->symbol[j], &new);
4151 }
4152
4153 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4154 NULL, it means copy all the local symbols (which we already did
4155 above). */
4156
4157 if (common_block != NULL)
4158 for (j = common_block_i; j < common_block->nsyms; j++)
4159 add_symbol_to_list (common_block->symbol[j], &new);
4160
4161 SYMBOL_TYPE (sym) = (struct type *) new;
4162
4163 /* Should we be putting local_symbols back to what it was?
4164 Does it matter? */
4165
4166 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4167 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4168 global_sym_chain[i] = sym;
4169 common_block_name = NULL;
4170 }
4171
4172 /* Add a common block's start address to the offset of each symbol
4173 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4174 the common block name). */
4175
4176 static void
4177 fix_common_block (struct symbol *sym, int valu)
4178 {
4179 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4180 for (; next; next = next->next)
4181 {
4182 int j;
4183 for (j = next->nsyms - 1; j >= 0; j--)
4184 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4185 }
4186 }
4187 \f
4188
4189
4190 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4191 See add_undefined_type for more details. */
4192
4193 static void
4194 add_undefined_type_noname (struct type *type, int typenums[2])
4195 {
4196 struct nat nat;
4197
4198 nat.typenums[0] = typenums [0];
4199 nat.typenums[1] = typenums [1];
4200 nat.type = type;
4201
4202 if (noname_undefs_length == noname_undefs_allocated)
4203 {
4204 noname_undefs_allocated *= 2;
4205 noname_undefs = (struct nat *)
4206 xrealloc ((char *) noname_undefs,
4207 noname_undefs_allocated * sizeof (struct nat));
4208 }
4209 noname_undefs[noname_undefs_length++] = nat;
4210 }
4211
4212 /* Add TYPE to the UNDEF_TYPES vector.
4213 See add_undefined_type for more details. */
4214
4215 static void
4216 add_undefined_type_1 (struct type *type)
4217 {
4218 if (undef_types_length == undef_types_allocated)
4219 {
4220 undef_types_allocated *= 2;
4221 undef_types = (struct type **)
4222 xrealloc ((char *) undef_types,
4223 undef_types_allocated * sizeof (struct type *));
4224 }
4225 undef_types[undef_types_length++] = type;
4226 }
4227
4228 /* What about types defined as forward references inside of a small lexical
4229 scope? */
4230 /* Add a type to the list of undefined types to be checked through
4231 once this file has been read in.
4232
4233 In practice, we actually maintain two such lists: The first list
4234 (UNDEF_TYPES) is used for types whose name has been provided, and
4235 concerns forward references (eg 'xs' or 'xu' forward references);
4236 the second list (NONAME_UNDEFS) is used for types whose name is
4237 unknown at creation time, because they were referenced through
4238 their type number before the actual type was declared.
4239 This function actually adds the given type to the proper list. */
4240
4241 static void
4242 add_undefined_type (struct type *type, int typenums[2])
4243 {
4244 if (TYPE_TAG_NAME (type) == NULL)
4245 add_undefined_type_noname (type, typenums);
4246 else
4247 add_undefined_type_1 (type);
4248 }
4249
4250 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4251
4252 void
4253 cleanup_undefined_types_noname (void)
4254 {
4255 int i;
4256
4257 for (i = 0; i < noname_undefs_length; i++)
4258 {
4259 struct nat nat = noname_undefs[i];
4260 struct type **type;
4261
4262 type = dbx_lookup_type (nat.typenums);
4263 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4264 replace_type (nat.type, *type);
4265 }
4266
4267 noname_undefs_length = 0;
4268 }
4269
4270 /* Go through each undefined type, see if it's still undefined, and fix it
4271 up if possible. We have two kinds of undefined types:
4272
4273 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4274 Fix: update array length using the element bounds
4275 and the target type's length.
4276 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4277 yet defined at the time a pointer to it was made.
4278 Fix: Do a full lookup on the struct/union tag. */
4279
4280 void
4281 cleanup_undefined_types_1 (void)
4282 {
4283 struct type **type;
4284
4285 for (type = undef_types; type < undef_types + undef_types_length; type++)
4286 {
4287 switch (TYPE_CODE (*type))
4288 {
4289
4290 case TYPE_CODE_STRUCT:
4291 case TYPE_CODE_UNION:
4292 case TYPE_CODE_ENUM:
4293 {
4294 /* Check if it has been defined since. Need to do this here
4295 as well as in check_typedef to deal with the (legitimate in
4296 C though not C++) case of several types with the same name
4297 in different source files. */
4298 if (TYPE_STUB (*type))
4299 {
4300 struct pending *ppt;
4301 int i;
4302 /* Name of the type, without "struct" or "union" */
4303 char *typename = TYPE_TAG_NAME (*type);
4304
4305 if (typename == NULL)
4306 {
4307 complaint (&symfile_complaints, _("need a type name"));
4308 break;
4309 }
4310 for (ppt = file_symbols; ppt; ppt = ppt->next)
4311 {
4312 for (i = 0; i < ppt->nsyms; i++)
4313 {
4314 struct symbol *sym = ppt->symbol[i];
4315
4316 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4317 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4318 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4319 TYPE_CODE (*type))
4320 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4321 replace_type (*type, SYMBOL_TYPE (sym));
4322 }
4323 }
4324 }
4325 }
4326 break;
4327
4328 default:
4329 {
4330 complaint (&symfile_complaints,
4331 _("forward-referenced types left unresolved, "
4332 "type code %d."),
4333 TYPE_CODE (*type));
4334 }
4335 break;
4336 }
4337 }
4338
4339 undef_types_length = 0;
4340 }
4341
4342 /* Try to fix all the undefined types we ecountered while processing
4343 this unit. */
4344
4345 void
4346 cleanup_undefined_types (void)
4347 {
4348 cleanup_undefined_types_1 ();
4349 cleanup_undefined_types_noname ();
4350 }
4351
4352 /* Scan through all of the global symbols defined in the object file,
4353 assigning values to the debugging symbols that need to be assigned
4354 to. Get these symbols from the minimal symbol table. */
4355
4356 void
4357 scan_file_globals (struct objfile *objfile)
4358 {
4359 int hash;
4360 struct minimal_symbol *msymbol;
4361 struct symbol *sym, *prev;
4362 struct objfile *resolve_objfile;
4363
4364 /* SVR4 based linkers copy referenced global symbols from shared
4365 libraries to the main executable.
4366 If we are scanning the symbols for a shared library, try to resolve
4367 them from the minimal symbols of the main executable first. */
4368
4369 if (symfile_objfile && objfile != symfile_objfile)
4370 resolve_objfile = symfile_objfile;
4371 else
4372 resolve_objfile = objfile;
4373
4374 while (1)
4375 {
4376 /* Avoid expensive loop through all minimal symbols if there are
4377 no unresolved symbols. */
4378 for (hash = 0; hash < HASHSIZE; hash++)
4379 {
4380 if (global_sym_chain[hash])
4381 break;
4382 }
4383 if (hash >= HASHSIZE)
4384 return;
4385
4386 for (msymbol = resolve_objfile->msymbols;
4387 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4388 msymbol++)
4389 {
4390 QUIT;
4391
4392 /* Skip static symbols. */
4393 switch (MSYMBOL_TYPE (msymbol))
4394 {
4395 case mst_file_text:
4396 case mst_file_data:
4397 case mst_file_bss:
4398 continue;
4399 default:
4400 break;
4401 }
4402
4403 prev = NULL;
4404
4405 /* Get the hash index and check all the symbols
4406 under that hash index. */
4407
4408 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4409
4410 for (sym = global_sym_chain[hash]; sym;)
4411 {
4412 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4413 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4414 {
4415 /* Splice this symbol out of the hash chain and
4416 assign the value we have to it. */
4417 if (prev)
4418 {
4419 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4420 }
4421 else
4422 {
4423 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4424 }
4425
4426 /* Check to see whether we need to fix up a common block. */
4427 /* Note: this code might be executed several times for
4428 the same symbol if there are multiple references. */
4429 if (sym)
4430 {
4431 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4432 {
4433 fix_common_block (sym,
4434 SYMBOL_VALUE_ADDRESS (msymbol));
4435 }
4436 else
4437 {
4438 SYMBOL_VALUE_ADDRESS (sym)
4439 = SYMBOL_VALUE_ADDRESS (msymbol);
4440 }
4441 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4442 }
4443
4444 if (prev)
4445 {
4446 sym = SYMBOL_VALUE_CHAIN (prev);
4447 }
4448 else
4449 {
4450 sym = global_sym_chain[hash];
4451 }
4452 }
4453 else
4454 {
4455 prev = sym;
4456 sym = SYMBOL_VALUE_CHAIN (sym);
4457 }
4458 }
4459 }
4460 if (resolve_objfile == objfile)
4461 break;
4462 resolve_objfile = objfile;
4463 }
4464
4465 /* Change the storage class of any remaining unresolved globals to
4466 LOC_UNRESOLVED and remove them from the chain. */
4467 for (hash = 0; hash < HASHSIZE; hash++)
4468 {
4469 sym = global_sym_chain[hash];
4470 while (sym)
4471 {
4472 prev = sym;
4473 sym = SYMBOL_VALUE_CHAIN (sym);
4474
4475 /* Change the symbol address from the misleading chain value
4476 to address zero. */
4477 SYMBOL_VALUE_ADDRESS (prev) = 0;
4478
4479 /* Complain about unresolved common block symbols. */
4480 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4481 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4482 else
4483 complaint (&symfile_complaints,
4484 _("%s: common block `%s' from global_sym_chain unresolved"),
4485 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4486 }
4487 }
4488 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4489 }
4490
4491 /* Initialize anything that needs initializing when starting to read
4492 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4493 to a psymtab. */
4494
4495 void
4496 stabsread_init (void)
4497 {
4498 }
4499
4500 /* Initialize anything that needs initializing when a completely new
4501 symbol file is specified (not just adding some symbols from another
4502 file, e.g. a shared library). */
4503
4504 void
4505 stabsread_new_init (void)
4506 {
4507 /* Empty the hash table of global syms looking for values. */
4508 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4509 }
4510
4511 /* Initialize anything that needs initializing at the same time as
4512 start_symtab() is called. */
4513
4514 void
4515 start_stabs (void)
4516 {
4517 global_stabs = NULL; /* AIX COFF */
4518 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4519 n_this_object_header_files = 1;
4520 type_vector_length = 0;
4521 type_vector = (struct type **) 0;
4522
4523 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4524 common_block_name = NULL;
4525 }
4526
4527 /* Call after end_symtab() */
4528
4529 void
4530 end_stabs (void)
4531 {
4532 if (type_vector)
4533 {
4534 xfree (type_vector);
4535 }
4536 type_vector = 0;
4537 type_vector_length = 0;
4538 previous_stab_code = 0;
4539 }
4540
4541 void
4542 finish_global_stabs (struct objfile *objfile)
4543 {
4544 if (global_stabs)
4545 {
4546 patch_block_stabs (global_symbols, global_stabs, objfile);
4547 xfree (global_stabs);
4548 global_stabs = NULL;
4549 }
4550 }
4551
4552 /* Find the end of the name, delimited by a ':', but don't match
4553 ObjC symbols which look like -[Foo bar::]:bla. */
4554 static char *
4555 find_name_end (char *name)
4556 {
4557 char *s = name;
4558 if (s[0] == '-' || *s == '+')
4559 {
4560 /* Must be an ObjC method symbol. */
4561 if (s[1] != '[')
4562 {
4563 error (_("invalid symbol name \"%s\""), name);
4564 }
4565 s = strchr (s, ']');
4566 if (s == NULL)
4567 {
4568 error (_("invalid symbol name \"%s\""), name);
4569 }
4570 return strchr (s, ':');
4571 }
4572 else
4573 {
4574 return strchr (s, ':');
4575 }
4576 }
4577
4578 /* Initializer for this module */
4579
4580 void
4581 _initialize_stabsread (void)
4582 {
4583 undef_types_allocated = 20;
4584 undef_types_length = 0;
4585 undef_types = (struct type **)
4586 xmalloc (undef_types_allocated * sizeof (struct type *));
4587
4588 noname_undefs_allocated = 20;
4589 noname_undefs_length = 0;
4590 noname_undefs = (struct nat *)
4591 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4592 }
This page took 0.157358 seconds and 4 git commands to generate.