49d36ac5d9721cfd9061c02461fcb47e012fb1b5
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include <string.h>
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42
43 #include <ctype.h>
44
45 /* Ask stabsread.h to define the vars it normally declares `extern'. */
46 #define EXTERN /**/
47 #include "stabsread.h" /* Our own declarations */
48 #undef EXTERN
49
50 /* The routines that read and process a complete stabs for a C struct or
51 C++ class pass lists of data member fields and lists of member function
52 fields in an instance of a field_info structure, as defined below.
53 This is part of some reorganization of low level C++ support and is
54 expected to eventually go away... (FIXME) */
55
56 struct field_info
57 {
58 struct nextfield
59 {
60 struct nextfield *next;
61
62 /* This is the raw visibility from the stab. It is not checked
63 for being one of the visibilities we recognize, so code which
64 examines this field better be able to deal. */
65 int visibility;
66
67 struct field field;
68 } *list;
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 } *fnlist;
74 };
75
76 static struct type *
77 dbx_alloc_type PARAMS ((int [2], struct objfile *));
78
79 static long read_huge_number PARAMS ((char **, int, int *));
80
81 static struct type *error_type PARAMS ((char **));
82
83 static void
84 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
85 struct objfile *));
86
87 static void
88 fix_common_block PARAMS ((struct symbol *, int));
89
90 static int
91 read_type_number PARAMS ((char **, int *));
92
93 static struct type *
94 read_range_type PARAMS ((char **, int [2], struct objfile *));
95
96 static struct type *
97 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
98
99 static struct type *
100 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
101
102 static struct type *
103 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
104
105 static struct type *
106 rs6000_builtin_type PARAMS ((int));
107
108 static int
109 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
122 struct objfile *));
123
124 static int
125 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
126
127 static int
128 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
129 struct objfile *));
130
131 static struct type *
132 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
133
134 static struct type *
135 read_array_type PARAMS ((char **, struct type *, struct objfile *));
136
137 static struct type **
138 read_args PARAMS ((char **, int, struct objfile *));
139
140 static int
141 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
142 struct objfile *));
143
144 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
145 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
146
147 /* Define this as 1 if a pcc declaration of a char or short argument
148 gives the correct address. Otherwise assume pcc gives the
149 address of the corresponding int, which is not the same on a
150 big-endian machine. */
151
152 #ifndef BELIEVE_PCC_PROMOTION
153 #define BELIEVE_PCC_PROMOTION 0
154 #endif
155
156 struct complaint invalid_cpp_abbrev_complaint =
157 {"invalid C++ abbreviation `%s'", 0, 0};
158
159 struct complaint invalid_cpp_type_complaint =
160 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
161
162 struct complaint member_fn_complaint =
163 {"member function type missing, got '%c'", 0, 0};
164
165 struct complaint const_vol_complaint =
166 {"const/volatile indicator missing, got '%c'", 0, 0};
167
168 struct complaint error_type_complaint =
169 {"debug info mismatch between compiler and debugger", 0, 0};
170
171 struct complaint invalid_member_complaint =
172 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
173
174 struct complaint range_type_base_complaint =
175 {"base type %d of range type is not defined", 0, 0};
176
177 struct complaint reg_value_complaint =
178 {"register number too large in symbol %s", 0, 0};
179
180 struct complaint vtbl_notfound_complaint =
181 {"virtual function table pointer not found when defining class `%s'", 0, 0};
182
183 struct complaint unrecognized_cplus_name_complaint =
184 {"Unknown C++ symbol name `%s'", 0, 0};
185
186 struct complaint rs6000_builtin_complaint =
187 {"Unknown builtin type %d", 0, 0};
188
189 struct complaint stabs_general_complaint =
190 {"%s", 0, 0};
191
192 /* Make a list of forward references which haven't been defined. */
193
194 static struct type **undef_types;
195 static int undef_types_allocated;
196 static int undef_types_length;
197
198 /* Check for and handle cretinous stabs symbol name continuation! */
199 #define STABS_CONTINUE(pp) \
200 do { \
201 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
202 *(pp) = next_symbol_text (); \
203 } while (0)
204 \f
205 /* FIXME: These probably should be our own types (like rs6000_builtin_type
206 has its own types) rather than builtin_type_*. */
207 static struct type **os9k_type_vector[] = {
208 0,
209 &builtin_type_int,
210 &builtin_type_char,
211 &builtin_type_long,
212 &builtin_type_short,
213 &builtin_type_unsigned_char,
214 &builtin_type_unsigned_short,
215 &builtin_type_unsigned_long,
216 &builtin_type_unsigned_int,
217 &builtin_type_float,
218 &builtin_type_double,
219 &builtin_type_void,
220 &builtin_type_long_double
221 };
222
223 static void os9k_init_type_vector PARAMS ((struct type **));
224
225 static void
226 os9k_init_type_vector(tv)
227 struct type **tv;
228 {
229 int i;
230 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
231 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
232 }
233
234 /* Look up a dbx type-number pair. Return the address of the slot
235 where the type for that number-pair is stored.
236 The number-pair is in TYPENUMS.
237
238 This can be used for finding the type associated with that pair
239 or for associating a new type with the pair. */
240
241 struct type **
242 dbx_lookup_type (typenums)
243 int typenums[2];
244 {
245 register int filenum = typenums[0];
246 register int index = typenums[1];
247 unsigned old_len;
248 register int real_filenum;
249 register struct header_file *f;
250 int f_orig_length;
251
252 if (filenum == -1) /* -1,-1 is for temporary types. */
253 return 0;
254
255 if (filenum < 0 || filenum >= n_this_object_header_files)
256 {
257 static struct complaint msg = {"\
258 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
259 0, 0};
260 complain (&msg, filenum, index, symnum);
261 goto error_return;
262 }
263
264 if (filenum == 0)
265 {
266 if (index < 0)
267 {
268 /* Caller wants address of address of type. We think
269 that negative (rs6k builtin) types will never appear as
270 "lvalues", (nor should they), so we stuff the real type
271 pointer into a temp, and return its address. If referenced,
272 this will do the right thing. */
273 static struct type *temp_type;
274
275 temp_type = rs6000_builtin_type(index);
276 return &temp_type;
277 }
278
279 /* Type is defined outside of header files.
280 Find it in this object file's type vector. */
281 if (index >= type_vector_length)
282 {
283 old_len = type_vector_length;
284 if (old_len == 0)
285 {
286 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
287 type_vector = (struct type **)
288 malloc (type_vector_length * sizeof (struct type *));
289 }
290 while (index >= type_vector_length)
291 {
292 type_vector_length *= 2;
293 }
294 type_vector = (struct type **)
295 xrealloc ((char *) type_vector,
296 (type_vector_length * sizeof (struct type *)));
297 memset (&type_vector[old_len], 0,
298 (type_vector_length - old_len) * sizeof (struct type *));
299
300 if (os9k_stabs)
301 /* Deal with OS9000 fundamental types. */
302 os9k_init_type_vector (type_vector);
303 }
304 return (&type_vector[index]);
305 }
306 else
307 {
308 real_filenum = this_object_header_files[filenum];
309
310 if (real_filenum >= n_header_files)
311 {
312 struct type *temp_type;
313 struct type **temp_type_p;
314
315 warning ("GDB internal error: bad real_filenum");
316
317 error_return:
318 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
319 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
320 *temp_type_p = temp_type;
321 return temp_type_p;
322 }
323
324 f = &header_files[real_filenum];
325
326 f_orig_length = f->length;
327 if (index >= f_orig_length)
328 {
329 while (index >= f->length)
330 {
331 f->length *= 2;
332 }
333 f->vector = (struct type **)
334 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
335 memset (&f->vector[f_orig_length], 0,
336 (f->length - f_orig_length) * sizeof (struct type *));
337 }
338 return (&f->vector[index]);
339 }
340 }
341
342 /* Make sure there is a type allocated for type numbers TYPENUMS
343 and return the type object.
344 This can create an empty (zeroed) type object.
345 TYPENUMS may be (-1, -1) to return a new type object that is not
346 put into the type vector, and so may not be referred to by number. */
347
348 static struct type *
349 dbx_alloc_type (typenums, objfile)
350 int typenums[2];
351 struct objfile *objfile;
352 {
353 register struct type **type_addr;
354
355 if (typenums[0] == -1)
356 {
357 return (alloc_type (objfile));
358 }
359
360 type_addr = dbx_lookup_type (typenums);
361
362 /* If we are referring to a type not known at all yet,
363 allocate an empty type for it.
364 We will fill it in later if we find out how. */
365 if (*type_addr == 0)
366 {
367 *type_addr = alloc_type (objfile);
368 }
369
370 return (*type_addr);
371 }
372
373 /* for all the stabs in a given stab vector, build appropriate types
374 and fix their symbols in given symbol vector. */
375
376 static void
377 patch_block_stabs (symbols, stabs, objfile)
378 struct pending *symbols;
379 struct pending_stabs *stabs;
380 struct objfile *objfile;
381 {
382 int ii;
383 char *name;
384 char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char*) strchr (name, ':');
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *)strchr(pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp-name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = (struct symbol *)
417 obstack_alloc (&objfile->symbol_obstack,
418 sizeof (struct symbol));
419
420 memset (sym, 0, sizeof (struct symbol));
421 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
422 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
423 SYMBOL_NAME (sym) =
424 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
425 pp += 2;
426 if (*(pp-1) == 'F' || *(pp-1) == 'f')
427 {
428 /* I don't think the linker does this with functions,
429 so as far as I know this is never executed.
430 But it doesn't hurt to check. */
431 SYMBOL_TYPE (sym) =
432 lookup_function_type (read_type (&pp, objfile));
433 }
434 else
435 {
436 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
437 }
438 add_symbol_to_list (sym, &global_symbols);
439 }
440 else
441 {
442 pp += 2;
443 if (*(pp-1) == 'F' || *(pp-1) == 'f')
444 {
445 SYMBOL_TYPE (sym) =
446 lookup_function_type (read_type (&pp, objfile));
447 }
448 else
449 {
450 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
451 }
452 }
453 }
454 }
455 }
456
457 \f
458 /* Read a number by which a type is referred to in dbx data,
459 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
460 Just a single number N is equivalent to (0,N).
461 Return the two numbers by storing them in the vector TYPENUMS.
462 TYPENUMS will then be used as an argument to dbx_lookup_type.
463
464 Returns 0 for success, -1 for error. */
465
466 static int
467 read_type_number (pp, typenums)
468 register char **pp;
469 register int *typenums;
470 {
471 int nbits;
472 if (**pp == '(')
473 {
474 (*pp)++;
475 typenums[0] = read_huge_number (pp, ',', &nbits);
476 if (nbits != 0) return -1;
477 typenums[1] = read_huge_number (pp, ')', &nbits);
478 if (nbits != 0) return -1;
479 }
480 else
481 {
482 typenums[0] = 0;
483 typenums[1] = read_huge_number (pp, 0, &nbits);
484 if (nbits != 0) return -1;
485 }
486 return 0;
487 }
488
489 \f
490 /* To handle GNU C++ typename abbreviation, we need to be able to
491 fill in a type's name as soon as space for that type is allocated.
492 `type_synonym_name' is the name of the type being allocated.
493 It is cleared as soon as it is used (lest all allocated types
494 get this name). */
495
496 static char *type_synonym_name;
497
498 #if !defined (REG_STRUCT_HAS_ADDR)
499 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
500 #endif
501
502 /* ARGSUSED */
503 struct symbol *
504 define_symbol (valu, string, desc, type, objfile)
505 CORE_ADDR valu;
506 char *string;
507 int desc;
508 int type;
509 struct objfile *objfile;
510 {
511 register struct symbol *sym;
512 char *p = (char *) strchr (string, ':');
513 int deftype;
514 int synonym = 0;
515 register int i;
516
517 /* We would like to eliminate nameless symbols, but keep their types.
518 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
519 to type 2, but, should not create a symbol to address that type. Since
520 the symbol will be nameless, there is no way any user can refer to it. */
521
522 int nameless;
523
524 /* Ignore syms with empty names. */
525 if (string[0] == 0)
526 return 0;
527
528 /* Ignore old-style symbols from cc -go */
529 if (p == 0)
530 return 0;
531
532 while (p[1] == ':')
533 {
534 p += 2;
535 p = strchr(p, ':');
536 }
537
538 /* If a nameless stab entry, all we need is the type, not the symbol.
539 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
540 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
541
542 sym = (struct symbol *)
543 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
544 memset (sym, 0, sizeof (struct symbol));
545
546 switch (type & N_TYPE)
547 {
548 case N_TEXT:
549 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
550 break;
551 case N_DATA:
552 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
553 break;
554 case N_BSS:
555 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
556 break;
557 }
558
559 if (processing_gcc_compilation)
560 {
561 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
562 number of bytes occupied by a type or object, which we ignore. */
563 SYMBOL_LINE(sym) = desc;
564 }
565 else
566 {
567 SYMBOL_LINE(sym) = 0; /* unknown */
568 }
569
570 if (string[0] == CPLUS_MARKER)
571 {
572 /* Special GNU C++ names. */
573 switch (string[1])
574 {
575 case 't':
576 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
577 &objfile -> symbol_obstack);
578 break;
579
580 case 'v': /* $vtbl_ptr_type */
581 /* Was: SYMBOL_NAME (sym) = "vptr"; */
582 goto normal;
583
584 case 'e':
585 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
586 &objfile -> symbol_obstack);
587 break;
588
589 case '_':
590 /* This was an anonymous type that was never fixed up. */
591 goto normal;
592
593 default:
594 complain (&unrecognized_cplus_name_complaint, string);
595 goto normal; /* Do *something* with it */
596 }
597 }
598 else
599 {
600 normal:
601 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
602 SYMBOL_NAME (sym) = (char *)
603 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
604 /* Open-coded memcpy--saves function call time. */
605 /* FIXME: Does it really? Try replacing with simple strcpy and
606 try it on an executable with a large symbol table. */
607 /* FIXME: considering that gcc can open code memcpy anyway, I
608 doubt it. xoxorich. */
609 {
610 register char *p1 = string;
611 register char *p2 = SYMBOL_NAME (sym);
612 while (p1 != p)
613 {
614 *p2++ = *p1++;
615 }
616 *p2++ = '\0';
617 }
618
619 /* If this symbol is from a C++ compilation, then attempt to cache the
620 demangled form for future reference. This is a typical time versus
621 space tradeoff, that was decided in favor of time because it sped up
622 C++ symbol lookups by a factor of about 20. */
623
624 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
625 }
626 p++;
627
628 /* Determine the type of name being defined. */
629 #if 0
630 /* Getting GDB to correctly skip the symbol on an undefined symbol
631 descriptor and not ever dump core is a very dodgy proposition if
632 we do things this way. I say the acorn RISC machine can just
633 fix their compiler. */
634 /* The Acorn RISC machine's compiler can put out locals that don't
635 start with "234=" or "(3,4)=", so assume anything other than the
636 deftypes we know how to handle is a local. */
637 if (!strchr ("cfFGpPrStTvVXCR", *p))
638 #else
639 if (isdigit (*p) || *p == '(' || *p == '-')
640 #endif
641 deftype = 'l';
642 else
643 deftype = *p++;
644
645 switch (deftype)
646 {
647 case 'c':
648 /* c is a special case, not followed by a type-number.
649 SYMBOL:c=iVALUE for an integer constant symbol.
650 SYMBOL:c=rVALUE for a floating constant symbol.
651 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
652 e.g. "b:c=e6,0" for "const b = blob1"
653 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
654 if (*p != '=')
655 {
656 SYMBOL_CLASS (sym) = LOC_CONST;
657 SYMBOL_TYPE (sym) = error_type (&p);
658 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
659 add_symbol_to_list (sym, &file_symbols);
660 return sym;
661 }
662 ++p;
663 switch (*p++)
664 {
665 case 'r':
666 {
667 double d = atof (p);
668 char *dbl_valu;
669
670 /* FIXME-if-picky-about-floating-accuracy: Should be using
671 target arithmetic to get the value. real.c in GCC
672 probably has the necessary code. */
673
674 /* FIXME: lookup_fundamental_type is a hack. We should be
675 creating a type especially for the type of float constants.
676 Problem is, what type should it be?
677
678 Also, what should the name of this type be? Should we
679 be using 'S' constants (see stabs.texinfo) instead? */
680
681 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
682 FT_DBL_PREC_FLOAT);
683 dbl_valu = (char *)
684 obstack_alloc (&objfile -> symbol_obstack,
685 TYPE_LENGTH (SYMBOL_TYPE (sym)));
686 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
687 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
688 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
689 }
690 break;
691 case 'i':
692 {
693 /* Defining integer constants this way is kind of silly,
694 since 'e' constants allows the compiler to give not
695 only the value, but the type as well. C has at least
696 int, long, unsigned int, and long long as constant
697 types; other languages probably should have at least
698 unsigned as well as signed constants. */
699
700 /* We just need one int constant type for all objfiles.
701 It doesn't depend on languages or anything (arguably its
702 name should be a language-specific name for a type of
703 that size, but I'm inclined to say that if the compiler
704 wants a nice name for the type, it can use 'e'). */
705 static struct type *int_const_type;
706
707 /* Yes, this is as long as a *host* int. That is because we
708 use atoi. */
709 if (int_const_type == NULL)
710 int_const_type =
711 init_type (TYPE_CODE_INT,
712 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
713 "integer constant",
714 (struct objfile *)NULL);
715 SYMBOL_TYPE (sym) = int_const_type;
716 SYMBOL_VALUE (sym) = atoi (p);
717 SYMBOL_CLASS (sym) = LOC_CONST;
718 }
719 break;
720 case 'e':
721 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
722 can be represented as integral.
723 e.g. "b:c=e6,0" for "const b = blob1"
724 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
725 {
726 SYMBOL_CLASS (sym) = LOC_CONST;
727 SYMBOL_TYPE (sym) = read_type (&p, objfile);
728
729 if (*p != ',')
730 {
731 SYMBOL_TYPE (sym) = error_type (&p);
732 break;
733 }
734 ++p;
735
736 /* If the value is too big to fit in an int (perhaps because
737 it is unsigned), or something like that, we silently get
738 a bogus value. The type and everything else about it is
739 correct. Ideally, we should be using whatever we have
740 available for parsing unsigned and long long values,
741 however. */
742 SYMBOL_VALUE (sym) = atoi (p);
743 }
744 break;
745 default:
746 {
747 SYMBOL_CLASS (sym) = LOC_CONST;
748 SYMBOL_TYPE (sym) = error_type (&p);
749 }
750 }
751 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
752 add_symbol_to_list (sym, &file_symbols);
753 return sym;
754
755 case 'C':
756 /* The name of a caught exception. */
757 SYMBOL_TYPE (sym) = read_type (&p, objfile);
758 SYMBOL_CLASS (sym) = LOC_LABEL;
759 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
760 SYMBOL_VALUE_ADDRESS (sym) = valu;
761 add_symbol_to_list (sym, &local_symbols);
762 break;
763
764 case 'f':
765 /* A static function definition. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 SYMBOL_CLASS (sym) = LOC_BLOCK;
768 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
769 add_symbol_to_list (sym, &file_symbols);
770 /* fall into process_function_types. */
771
772 process_function_types:
773 /* Function result types are described as the result type in stabs.
774 We need to convert this to the function-returning-type-X type
775 in GDB. E.g. "int" is converted to "function returning int". */
776 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
777 {
778 #if 0
779 /* This code doesn't work -- it needs to realloc and can't. */
780 /* Attempt to set up to record a function prototype... */
781 struct type *new = alloc_type (objfile);
782
783 /* Generate a template for the type of this function. The
784 types of the arguments will be added as we read the symbol
785 table. */
786 *new = *lookup_function_type (SYMBOL_TYPE(sym));
787 SYMBOL_TYPE(sym) = new;
788 TYPE_OBJFILE (new) = objfile;
789 in_function_type = new;
790 #else
791 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
792 #endif
793 }
794 /* fall into process_prototype_types */
795
796 process_prototype_types:
797 /* Sun acc puts declared types of arguments here. We don't care
798 about their actual types (FIXME -- we should remember the whole
799 function prototype), but the list may define some new types
800 that we have to remember, so we must scan it now. */
801 while (*p == ';') {
802 p++;
803 read_type (&p, objfile);
804 }
805 break;
806
807 case 'F':
808 /* A global function definition. */
809 SYMBOL_TYPE (sym) = read_type (&p, objfile);
810 SYMBOL_CLASS (sym) = LOC_BLOCK;
811 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
812 add_symbol_to_list (sym, &global_symbols);
813 goto process_function_types;
814
815 case 'G':
816 /* For a class G (global) symbol, it appears that the
817 value is not correct. It is necessary to search for the
818 corresponding linker definition to find the value.
819 These definitions appear at the end of the namelist. */
820 SYMBOL_TYPE (sym) = read_type (&p, objfile);
821 i = hashname (SYMBOL_NAME (sym));
822 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
823 global_sym_chain[i] = sym;
824 SYMBOL_CLASS (sym) = LOC_STATIC;
825 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
826 add_symbol_to_list (sym, &global_symbols);
827 break;
828
829 /* This case is faked by a conditional above,
830 when there is no code letter in the dbx data.
831 Dbx data never actually contains 'l'. */
832 case 's':
833 case 'l':
834 SYMBOL_TYPE (sym) = read_type (&p, objfile);
835 SYMBOL_CLASS (sym) = LOC_LOCAL;
836 SYMBOL_VALUE (sym) = valu;
837 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
838 add_symbol_to_list (sym, &local_symbols);
839 break;
840
841 case 'p':
842 if (*p == 'F')
843 /* pF is a two-letter code that means a function parameter in Fortran.
844 The type-number specifies the type of the return value.
845 Translate it into a pointer-to-function type. */
846 {
847 p++;
848 SYMBOL_TYPE (sym)
849 = lookup_pointer_type
850 (lookup_function_type (read_type (&p, objfile)));
851 }
852 else
853 SYMBOL_TYPE (sym) = read_type (&p, objfile);
854
855 /* Normally this is a parameter, a LOC_ARG. On the i960, it
856 can also be a LOC_LOCAL_ARG depending on symbol type. */
857 #ifndef DBX_PARM_SYMBOL_CLASS
858 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
859 #endif
860
861 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
862 SYMBOL_VALUE (sym) = valu;
863 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
864 #if 0
865 /* This doesn't work yet. */
866 add_param_to_type (&in_function_type, sym);
867 #endif
868 add_symbol_to_list (sym, &local_symbols);
869
870 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
871 /* On little-endian machines, this crud is never necessary, and,
872 if the extra bytes contain garbage, is harmful. */
873 break;
874 #else /* Big endian. */
875 /* If it's gcc-compiled, if it says `short', believe it. */
876 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
877 break;
878
879 #if !BELIEVE_PCC_PROMOTION
880 {
881 /* This is the signed type which arguments get promoted to. */
882 static struct type *pcc_promotion_type;
883 /* This is the unsigned type which arguments get promoted to. */
884 static struct type *pcc_unsigned_promotion_type;
885
886 /* Call it "int" because this is mainly C lossage. */
887 if (pcc_promotion_type == NULL)
888 pcc_promotion_type =
889 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
890 0, "int", NULL);
891
892 if (pcc_unsigned_promotion_type == NULL)
893 pcc_unsigned_promotion_type =
894 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
895 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
896
897 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
898 /* This macro is defined on machines (e.g. sparc) where
899 we should believe the type of a PCC 'short' argument,
900 but shouldn't believe the address (the address is
901 the address of the corresponding int).
902
903 My guess is that this correction, as opposed to changing
904 the parameter to an 'int' (as done below, for PCC
905 on most machines), is the right thing to do
906 on all machines, but I don't want to risk breaking
907 something that already works. On most PCC machines,
908 the sparc problem doesn't come up because the calling
909 function has to zero the top bytes (not knowing whether
910 the called function wants an int or a short), so there
911 is little practical difference between an int and a short
912 (except perhaps what happens when the GDB user types
913 "print short_arg = 0x10000;").
914
915 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
916 actually produces the correct address (we don't need to fix it
917 up). I made this code adapt so that it will offset the symbol
918 if it was pointing at an int-aligned location and not
919 otherwise. This way you can use the same gdb for 4.0.x and
920 4.1 systems.
921
922 If the parameter is shorter than an int, and is integral
923 (e.g. char, short, or unsigned equivalent), and is claimed to
924 be passed on an integer boundary, don't believe it! Offset the
925 parameter's address to the tail-end of that integer. */
926
927 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
928 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
929 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
930 {
931 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
932 - TYPE_LENGTH (SYMBOL_TYPE (sym));
933 }
934 break;
935
936 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
937
938 /* If PCC says a parameter is a short or a char,
939 it is really an int. */
940 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
941 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
942 {
943 SYMBOL_TYPE (sym) =
944 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
945 ? pcc_unsigned_promotion_type
946 : pcc_promotion_type;
947 }
948 break;
949
950 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
951 }
952 #endif /* !BELIEVE_PCC_PROMOTION. */
953 #endif /* Big endian. */
954
955 case 'P':
956 /* acc seems to use P to delare the prototypes of functions that
957 are referenced by this file. gdb is not prepared to deal
958 with this extra information. FIXME, it ought to. */
959 if (type == N_FUN)
960 {
961 read_type (&p, objfile);
962 goto process_prototype_types;
963 }
964 /*FALLTHROUGH*/
965
966 case 'R':
967 /* Parameter which is in a register. */
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969 SYMBOL_CLASS (sym) = LOC_REGPARM;
970 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
971 if (SYMBOL_VALUE (sym) >= NUM_REGS)
972 {
973 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
974 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
975 }
976 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
977 add_symbol_to_list (sym, &local_symbols);
978 break;
979
980 case 'r':
981 /* Register variable (either global or local). */
982 SYMBOL_TYPE (sym) = read_type (&p, objfile);
983 SYMBOL_CLASS (sym) = LOC_REGISTER;
984 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
985 if (SYMBOL_VALUE (sym) >= NUM_REGS)
986 {
987 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
988 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
989 }
990 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
991 if (within_function)
992 {
993 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
994 name to represent an argument passed in a register.
995 GCC uses 'P' for the same case. So if we find such a symbol pair
996 we combine it into one 'P' symbol. For Sun cc we need to do this
997 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
998 the 'p' symbol even if it never saves the argument onto the stack.
999
1000 On most machines, we want to preserve both symbols, so that
1001 we can still get information about what is going on with the
1002 stack (VAX for computing args_printed, using stack slots instead
1003 of saved registers in backtraces, etc.).
1004
1005 Note that this code illegally combines
1006 main(argc) struct foo argc; { register struct foo argc; }
1007 but this case is considered pathological and causes a warning
1008 from a decent compiler. */
1009
1010 if (local_symbols
1011 && local_symbols->nsyms > 0
1012 #ifndef USE_REGISTER_NOT_ARG
1013 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1014 SYMBOL_TYPE (sym))
1015 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1016 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1017 #endif
1018 )
1019 {
1020 struct symbol *prev_sym;
1021 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1022 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1023 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1024 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1025 {
1026 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1027 /* Use the type from the LOC_REGISTER; that is the type
1028 that is actually in that register. */
1029 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1030 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1031 sym = prev_sym;
1032 break;
1033 }
1034 }
1035 add_symbol_to_list (sym, &local_symbols);
1036 }
1037 else
1038 add_symbol_to_list (sym, &file_symbols);
1039 break;
1040
1041 case 'S':
1042 /* Static symbol at top level of file */
1043 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1044 SYMBOL_CLASS (sym) = LOC_STATIC;
1045 SYMBOL_VALUE_ADDRESS (sym) = valu;
1046 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1047 add_symbol_to_list (sym, &file_symbols);
1048 break;
1049
1050 case 't':
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052
1053 /* For a nameless type, we don't want a create a symbol, thus we
1054 did not use `sym'. Return without further processing. */
1055 if (nameless) return NULL;
1056
1057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1060 /* C++ vagaries: we may have a type which is derived from
1061 a base type which did not have its name defined when the
1062 derived class was output. We fill in the derived class's
1063 base part member's name here in that case. */
1064 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1065 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1066 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1067 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1068 {
1069 int j;
1070 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1071 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1072 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1073 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1074 }
1075
1076 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1077 {
1078 /* gcc-2.6 or later (when using -fvtable-thunks)
1079 emits a unique named type for a vtable entry.
1080 Some gdb code depends on that specific name. */
1081 extern const char vtbl_ptr_name[];
1082
1083 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1084 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1085 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1086 {
1087 /* If we are giving a name to a type such as "pointer to
1088 foo" or "function returning foo", we better not set
1089 the TYPE_NAME. If the program contains "typedef char
1090 *caddr_t;", we don't want all variables of type char
1091 * to print as caddr_t. This is not just a
1092 consequence of GDB's type management; PCC and GCC (at
1093 least through version 2.4) both output variables of
1094 either type char * or caddr_t with the type number
1095 defined in the 't' symbol for caddr_t. If a future
1096 compiler cleans this up it GDB is not ready for it
1097 yet, but if it becomes ready we somehow need to
1098 disable this check (without breaking the PCC/GCC2.4
1099 case).
1100
1101 Sigh.
1102
1103 Fortunately, this check seems not to be necessary
1104 for anything except pointers or functions. */
1105 }
1106 else
1107 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1108 }
1109
1110 add_symbol_to_list (sym, &file_symbols);
1111 break;
1112
1113 case 'T':
1114 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1115 by 't' which means we are typedef'ing it as well. */
1116 synonym = *p == 't';
1117
1118 if (synonym)
1119 {
1120 p++;
1121 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1122 strlen (SYMBOL_NAME (sym)),
1123 &objfile -> symbol_obstack);
1124 }
1125 /* The semantics of C++ state that "struct foo { ... }" also defines
1126 a typedef for "foo". Unfortunately, cfront never makes the typedef
1127 when translating C++ into C. We make the typedef here so that
1128 "ptype foo" works as expected for cfront translated code. */
1129 else if (current_subfile->language == language_cplus)
1130 {
1131 synonym = 1;
1132 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1133 strlen (SYMBOL_NAME (sym)),
1134 &objfile -> symbol_obstack);
1135 }
1136
1137 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1138
1139 /* For a nameless type, we don't want a create a symbol, thus we
1140 did not use `sym'. Return without further processing. */
1141 if (nameless) return NULL;
1142
1143 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1144 SYMBOL_VALUE (sym) = valu;
1145 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1146 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1147 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1148 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1149 add_symbol_to_list (sym, &file_symbols);
1150
1151 if (synonym)
1152 {
1153 /* Clone the sym and then modify it. */
1154 register struct symbol *typedef_sym = (struct symbol *)
1155 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1156 *typedef_sym = *sym;
1157 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1158 SYMBOL_VALUE (typedef_sym) = valu;
1159 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1160 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1161 TYPE_NAME (SYMBOL_TYPE (sym))
1162 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1163 add_symbol_to_list (typedef_sym, &file_symbols);
1164 }
1165 break;
1166
1167 case 'V':
1168 /* Static symbol of local scope */
1169 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1170 SYMBOL_CLASS (sym) = LOC_STATIC;
1171 SYMBOL_VALUE_ADDRESS (sym) = valu;
1172 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1173 if (os9k_stabs)
1174 add_symbol_to_list (sym, &global_symbols);
1175 else
1176 add_symbol_to_list (sym, &local_symbols);
1177 break;
1178
1179 case 'v':
1180 /* Reference parameter */
1181 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1182 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1183 SYMBOL_VALUE (sym) = valu;
1184 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1185 add_symbol_to_list (sym, &local_symbols);
1186 break;
1187
1188 case 'X':
1189 /* This is used by Sun FORTRAN for "function result value".
1190 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1191 that Pascal uses it too, but when I tried it Pascal used
1192 "x:3" (local symbol) instead. */
1193 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1194 SYMBOL_CLASS (sym) = LOC_LOCAL;
1195 SYMBOL_VALUE (sym) = valu;
1196 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1197 add_symbol_to_list (sym, &local_symbols);
1198 break;
1199
1200 default:
1201 SYMBOL_TYPE (sym) = error_type (&p);
1202 SYMBOL_CLASS (sym) = LOC_CONST;
1203 SYMBOL_VALUE (sym) = 0;
1204 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1205 add_symbol_to_list (sym, &file_symbols);
1206 break;
1207 }
1208
1209 /* When passing structures to a function, some systems sometimes pass
1210 the address in a register, not the structure itself.
1211
1212 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1213 to LOC_REGPARM_ADDR for structures and unions. */
1214
1215 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1216 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1217 SYMBOL_TYPE (sym))
1218 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1219 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1220 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1221
1222 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1223 subsequent arguments on the sparc, for example). */
1224 if (SYMBOL_CLASS (sym) == LOC_ARG
1225 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1226 SYMBOL_TYPE (sym))
1227 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1228 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1229 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1230
1231 return sym;
1232 }
1233
1234 \f
1235 /* Skip rest of this symbol and return an error type.
1236
1237 General notes on error recovery: error_type always skips to the
1238 end of the symbol (modulo cretinous dbx symbol name continuation).
1239 Thus code like this:
1240
1241 if (*(*pp)++ != ';')
1242 return error_type (pp);
1243
1244 is wrong because if *pp starts out pointing at '\0' (typically as the
1245 result of an earlier error), it will be incremented to point to the
1246 start of the next symbol, which might produce strange results, at least
1247 if you run off the end of the string table. Instead use
1248
1249 if (**pp != ';')
1250 return error_type (pp);
1251 ++*pp;
1252
1253 or
1254
1255 if (**pp != ';')
1256 foo = error_type (pp);
1257 else
1258 ++*pp;
1259
1260 And in case it isn't obvious, the point of all this hair is so the compiler
1261 can define new types and new syntaxes, and old versions of the
1262 debugger will be able to read the new symbol tables. */
1263
1264 static struct type *
1265 error_type (pp)
1266 char **pp;
1267 {
1268 complain (&error_type_complaint);
1269 while (1)
1270 {
1271 /* Skip to end of symbol. */
1272 while (**pp != '\0')
1273 {
1274 (*pp)++;
1275 }
1276
1277 /* Check for and handle cretinous dbx symbol name continuation! */
1278 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1279 {
1280 *pp = next_symbol_text ();
1281 }
1282 else
1283 {
1284 break;
1285 }
1286 }
1287 return (builtin_type_error);
1288 }
1289
1290 \f
1291 /* Read type information or a type definition; return the type. Even
1292 though this routine accepts either type information or a type
1293 definition, the distinction is relevant--some parts of stabsread.c
1294 assume that type information starts with a digit, '-', or '(' in
1295 deciding whether to call read_type. */
1296
1297 struct type *
1298 read_type (pp, objfile)
1299 register char **pp;
1300 struct objfile *objfile;
1301 {
1302 register struct type *type = 0;
1303 struct type *type1;
1304 int typenums[2];
1305 int xtypenums[2];
1306 char type_descriptor;
1307
1308 /* Size in bits of type if specified by a type attribute, or -1 if
1309 there is no size attribute. */
1310 int type_size = -1;
1311
1312 /* Used to distinguish string and bitstring from char-array and set. */
1313 int is_string = 0;
1314
1315 /* Read type number if present. The type number may be omitted.
1316 for instance in a two-dimensional array declared with type
1317 "ar1;1;10;ar1;1;10;4". */
1318 if ((**pp >= '0' && **pp <= '9')
1319 || **pp == '('
1320 || **pp == '-')
1321 {
1322 if (read_type_number (pp, typenums) != 0)
1323 return error_type (pp);
1324
1325 /* Type is not being defined here. Either it already exists,
1326 or this is a forward reference to it. dbx_alloc_type handles
1327 both cases. */
1328 if (**pp != '=')
1329 return dbx_alloc_type (typenums, objfile);
1330
1331 /* Type is being defined here. */
1332 /* Skip the '='. */
1333 ++(*pp);
1334
1335 while (**pp == '@')
1336 {
1337 char *p = *pp + 1;
1338 /* It might be a type attribute or a member type. */
1339 if (isdigit (*p) || *p == '(' || *p == '-')
1340 /* Member type. */
1341 break;
1342 else
1343 {
1344 /* Type attributes. */
1345 char *attr = p;
1346
1347 /* Skip to the semicolon. */
1348 while (*p != ';' && *p != '\0')
1349 ++p;
1350 *pp = p;
1351 if (*p == '\0')
1352 return error_type (pp);
1353 else
1354 /* Skip the semicolon. */
1355 ++*pp;
1356
1357 switch (*attr)
1358 {
1359 case 's':
1360 type_size = atoi (attr + 1);
1361 if (type_size <= 0)
1362 type_size = -1;
1363 break;
1364
1365 case 'S':
1366 is_string = 1;
1367 break;
1368
1369 default:
1370 /* Ignore unrecognized type attributes, so future compilers
1371 can invent new ones. */
1372 break;
1373 }
1374 }
1375 }
1376 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1377 ++(*pp);
1378 }
1379 else
1380 {
1381 /* 'typenums=' not present, type is anonymous. Read and return
1382 the definition, but don't put it in the type vector. */
1383 typenums[0] = typenums[1] = -1;
1384 (*pp)++;
1385 }
1386
1387 type_descriptor = (*pp)[-1];
1388 switch (type_descriptor)
1389 {
1390 case 'x':
1391 {
1392 enum type_code code;
1393
1394 /* Used to index through file_symbols. */
1395 struct pending *ppt;
1396 int i;
1397
1398 /* Name including "struct", etc. */
1399 char *type_name;
1400
1401 {
1402 char *from, *to, *p, *q1, *q2;
1403
1404 /* Set the type code according to the following letter. */
1405 switch ((*pp)[0])
1406 {
1407 case 's':
1408 code = TYPE_CODE_STRUCT;
1409 break;
1410 case 'u':
1411 code = TYPE_CODE_UNION;
1412 break;
1413 case 'e':
1414 code = TYPE_CODE_ENUM;
1415 break;
1416 default:
1417 {
1418 /* Complain and keep going, so compilers can invent new
1419 cross-reference types. */
1420 static struct complaint msg =
1421 {"Unrecognized cross-reference type `%c'", 0, 0};
1422 complain (&msg, (*pp)[0]);
1423 code = TYPE_CODE_STRUCT;
1424 break;
1425 }
1426 }
1427
1428 q1 = strchr(*pp, '<');
1429 p = strchr(*pp, ':');
1430 if (p == NULL)
1431 return error_type (pp);
1432 while (q1 && p > q1 && p[1] == ':')
1433 {
1434 q2 = strchr(q1, '>');
1435 if (!q2 || q2 < p)
1436 break;
1437 p += 2;
1438 p = strchr(p, ':');
1439 if (p == NULL)
1440 return error_type (pp);
1441 }
1442 to = type_name =
1443 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1444
1445 /* Copy the name. */
1446 from = *pp + 1;
1447 while (from < p)
1448 *to++ = *from++;
1449 *to = '\0';
1450
1451 /* Set the pointer ahead of the name which we just read, and
1452 the colon. */
1453 *pp = from + 1;
1454 }
1455
1456 /* Now check to see whether the type has already been
1457 declared. This was written for arrays of cross-referenced
1458 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1459 sure it is not necessary anymore. But it might be a good
1460 idea, to save a little memory. */
1461
1462 for (ppt = file_symbols; ppt; ppt = ppt->next)
1463 for (i = 0; i < ppt->nsyms; i++)
1464 {
1465 struct symbol *sym = ppt->symbol[i];
1466
1467 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1468 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1469 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1470 && STREQ (SYMBOL_NAME (sym), type_name))
1471 {
1472 obstack_free (&objfile -> type_obstack, type_name);
1473 type = SYMBOL_TYPE (sym);
1474 return type;
1475 }
1476 }
1477
1478 /* Didn't find the type to which this refers, so we must
1479 be dealing with a forward reference. Allocate a type
1480 structure for it, and keep track of it so we can
1481 fill in the rest of the fields when we get the full
1482 type. */
1483 type = dbx_alloc_type (typenums, objfile);
1484 TYPE_CODE (type) = code;
1485 TYPE_TAG_NAME (type) = type_name;
1486 INIT_CPLUS_SPECIFIC(type);
1487 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1488
1489 add_undefined_type (type);
1490 return type;
1491 }
1492
1493 case '-': /* RS/6000 built-in type */
1494 case '0':
1495 case '1':
1496 case '2':
1497 case '3':
1498 case '4':
1499 case '5':
1500 case '6':
1501 case '7':
1502 case '8':
1503 case '9':
1504 case '(':
1505
1506 {
1507 char *pp_saved;
1508
1509 (*pp)--;
1510 pp_saved = *pp;
1511
1512 /* Peek ahead at the number to detect void. */
1513 if (read_type_number (pp, xtypenums) != 0)
1514 return error_type (pp);
1515
1516 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1517 /* It's being defined as itself. That means it is "void". */
1518 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1519 else
1520 {
1521 struct type *xtype;
1522
1523 /* Go back to the number and have read_type get it. This means
1524 that we can deal with something like t(1,2)=(3,4)=... which
1525 the Lucid compiler uses. */
1526 *pp = pp_saved;
1527 xtype = read_type (pp, objfile);
1528
1529 /* The type is being defined to another type. So we copy the type.
1530 This loses if we copy a C++ class and so we lose track of how
1531 the names are mangled (but g++ doesn't output stabs like this
1532 now anyway). */
1533
1534 type = alloc_type (objfile);
1535 memcpy (type, xtype, sizeof (struct type));
1536
1537 /* The idea behind clearing the names is that the only purpose
1538 for defining a type to another type is so that the name of
1539 one can be different. So we probably don't need to worry much
1540 about the case where the compiler doesn't give a name to the
1541 new type. */
1542 TYPE_NAME (type) = NULL;
1543 TYPE_TAG_NAME (type) = NULL;
1544 }
1545 if (typenums[0] != -1)
1546 *dbx_lookup_type (typenums) = type;
1547 break;
1548 }
1549
1550 /* In the following types, we must be sure to overwrite any existing
1551 type that the typenums refer to, rather than allocating a new one
1552 and making the typenums point to the new one. This is because there
1553 may already be pointers to the existing type (if it had been
1554 forward-referenced), and we must change it to a pointer, function,
1555 reference, or whatever, *in-place*. */
1556
1557 case '*':
1558 type1 = read_type (pp, objfile);
1559 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1560 break;
1561
1562 case '&': /* Reference to another type */
1563 type1 = read_type (pp, objfile);
1564 type = make_reference_type (type1, dbx_lookup_type (typenums));
1565 break;
1566
1567 case 'f': /* Function returning another type */
1568 if (os9k_stabs && **pp == '(')
1569 {
1570 /* Function prototype; parse it.
1571 We must conditionalize this on os9k_stabs because otherwise
1572 it could be confused with a Sun-style (1,3) typenumber
1573 (I think). */
1574 struct type *t;
1575 ++*pp;
1576 while (**pp != ')')
1577 {
1578 t = read_type(pp, objfile);
1579 if (**pp == ',') ++*pp;
1580 }
1581 }
1582 type1 = read_type (pp, objfile);
1583 type = make_function_type (type1, dbx_lookup_type (typenums));
1584 break;
1585
1586 case 'k': /* Const qualifier on some type (Sun) */
1587 case 'c': /* Const qualifier on some type (OS9000) */
1588 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1589 only accept 'c' in the os9k_stabs case. */
1590 if (type_descriptor == 'c' && !os9k_stabs)
1591 return error_type (pp);
1592 type = read_type (pp, objfile);
1593 /* FIXME! For now, we ignore const and volatile qualifiers. */
1594 break;
1595
1596 case 'B': /* Volatile qual on some type (Sun) */
1597 case 'i': /* Volatile qual on some type (OS9000) */
1598 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1599 only accept 'i' in the os9k_stabs case. */
1600 if (type_descriptor == 'i' && !os9k_stabs)
1601 return error_type (pp);
1602 type = read_type (pp, objfile);
1603 /* FIXME! For now, we ignore const and volatile qualifiers. */
1604 break;
1605
1606 /* FIXME -- we should be doing smash_to_XXX types here. */
1607 case '@': /* Member (class & variable) type */
1608 {
1609 struct type *domain = read_type (pp, objfile);
1610 struct type *memtype;
1611
1612 if (**pp != ',')
1613 /* Invalid member type data format. */
1614 return error_type (pp);
1615 ++*pp;
1616
1617 memtype = read_type (pp, objfile);
1618 type = dbx_alloc_type (typenums, objfile);
1619 smash_to_member_type (type, domain, memtype);
1620 }
1621 break;
1622
1623 case '#': /* Method (class & fn) type */
1624 if ((*pp)[0] == '#')
1625 {
1626 /* We'll get the parameter types from the name. */
1627 struct type *return_type;
1628
1629 (*pp)++;
1630 return_type = read_type (pp, objfile);
1631 if (*(*pp)++ != ';')
1632 complain (&invalid_member_complaint, symnum);
1633 type = allocate_stub_method (return_type);
1634 if (typenums[0] != -1)
1635 *dbx_lookup_type (typenums) = type;
1636 }
1637 else
1638 {
1639 struct type *domain = read_type (pp, objfile);
1640 struct type *return_type;
1641 struct type **args;
1642
1643 if (**pp != ',')
1644 /* Invalid member type data format. */
1645 return error_type (pp);
1646 else
1647 ++(*pp);
1648
1649 return_type = read_type (pp, objfile);
1650 args = read_args (pp, ';', objfile);
1651 type = dbx_alloc_type (typenums, objfile);
1652 smash_to_method_type (type, domain, return_type, args);
1653 }
1654 break;
1655
1656 case 'r': /* Range type */
1657 type = read_range_type (pp, typenums, objfile);
1658 if (typenums[0] != -1)
1659 *dbx_lookup_type (typenums) = type;
1660 break;
1661
1662 case 'b':
1663 if (os9k_stabs)
1664 /* Const and volatile qualified type. */
1665 type = read_type (pp, objfile);
1666 else
1667 {
1668 /* Sun ACC builtin int type */
1669 type = read_sun_builtin_type (pp, typenums, objfile);
1670 if (typenums[0] != -1)
1671 *dbx_lookup_type (typenums) = type;
1672 }
1673 break;
1674
1675 case 'R': /* Sun ACC builtin float type */
1676 type = read_sun_floating_type (pp, typenums, objfile);
1677 if (typenums[0] != -1)
1678 *dbx_lookup_type (typenums) = type;
1679 break;
1680
1681 case 'e': /* Enumeration type */
1682 type = dbx_alloc_type (typenums, objfile);
1683 type = read_enum_type (pp, type, objfile);
1684 if (typenums[0] != -1)
1685 *dbx_lookup_type (typenums) = type;
1686 break;
1687
1688 case 's': /* Struct type */
1689 case 'u': /* Union type */
1690 type = dbx_alloc_type (typenums, objfile);
1691 if (!TYPE_NAME (type))
1692 {
1693 TYPE_NAME (type) = type_synonym_name;
1694 }
1695 type_synonym_name = NULL;
1696 switch (type_descriptor)
1697 {
1698 case 's':
1699 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1700 break;
1701 case 'u':
1702 TYPE_CODE (type) = TYPE_CODE_UNION;
1703 break;
1704 }
1705 type = read_struct_type (pp, type, objfile);
1706 break;
1707
1708 case 'a': /* Array type */
1709 if (**pp != 'r')
1710 return error_type (pp);
1711 ++*pp;
1712
1713 type = dbx_alloc_type (typenums, objfile);
1714 type = read_array_type (pp, type, objfile);
1715 if (is_string)
1716 TYPE_CODE (type) = TYPE_CODE_STRING;
1717 break;
1718
1719 case 'S':
1720 type1 = read_type (pp, objfile);
1721 type = create_set_type ((struct type*) NULL, type1);
1722 if (TYPE_FLAGS (type1) & TYPE_FLAG_STUB)
1723 {
1724 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1725 add_undefined_type (type);
1726 }
1727 if (is_string)
1728 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1729 if (typenums[0] != -1)
1730 *dbx_lookup_type (typenums) = type;
1731 break;
1732
1733 default:
1734 --*pp; /* Go back to the symbol in error */
1735 /* Particularly important if it was \0! */
1736 return error_type (pp);
1737 }
1738
1739 if (type == 0)
1740 {
1741 warning ("GDB internal error, type is NULL in stabsread.c\n");
1742 return error_type (pp);
1743 }
1744
1745 /* Size specified in a type attribute overrides any other size. */
1746 if (type_size != -1)
1747 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1748
1749 return type;
1750 }
1751 \f
1752 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1753 Return the proper type node for a given builtin type number. */
1754
1755 static struct type *
1756 rs6000_builtin_type (typenum)
1757 int typenum;
1758 {
1759 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1760 #define NUMBER_RECOGNIZED 30
1761 /* This includes an empty slot for type number -0. */
1762 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1763 struct type *rettype = NULL;
1764
1765 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1766 {
1767 complain (&rs6000_builtin_complaint, typenum);
1768 return builtin_type_error;
1769 }
1770 if (negative_types[-typenum] != NULL)
1771 return negative_types[-typenum];
1772
1773 #if TARGET_CHAR_BIT != 8
1774 #error This code wrong for TARGET_CHAR_BIT not 8
1775 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1776 that if that ever becomes not true, the correct fix will be to
1777 make the size in the struct type to be in bits, not in units of
1778 TARGET_CHAR_BIT. */
1779 #endif
1780
1781 switch (-typenum)
1782 {
1783 case 1:
1784 /* The size of this and all the other types are fixed, defined
1785 by the debugging format. If there is a type called "int" which
1786 is other than 32 bits, then it should use a new negative type
1787 number (or avoid negative type numbers for that case).
1788 See stabs.texinfo. */
1789 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1790 break;
1791 case 2:
1792 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1793 break;
1794 case 3:
1795 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1796 break;
1797 case 4:
1798 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1799 break;
1800 case 5:
1801 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1802 "unsigned char", NULL);
1803 break;
1804 case 6:
1805 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1806 break;
1807 case 7:
1808 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1809 "unsigned short", NULL);
1810 break;
1811 case 8:
1812 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1813 "unsigned int", NULL);
1814 break;
1815 case 9:
1816 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1817 "unsigned", NULL);
1818 case 10:
1819 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1820 "unsigned long", NULL);
1821 break;
1822 case 11:
1823 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1824 break;
1825 case 12:
1826 /* IEEE single precision (32 bit). */
1827 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1828 break;
1829 case 13:
1830 /* IEEE double precision (64 bit). */
1831 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1832 break;
1833 case 14:
1834 /* This is an IEEE double on the RS/6000, and different machines with
1835 different sizes for "long double" should use different negative
1836 type numbers. See stabs.texinfo. */
1837 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1838 break;
1839 case 15:
1840 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1841 break;
1842 case 16:
1843 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1844 break;
1845 case 17:
1846 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1847 break;
1848 case 18:
1849 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1850 break;
1851 case 19:
1852 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1853 break;
1854 case 20:
1855 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1856 "character", NULL);
1857 break;
1858 case 21:
1859 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1860 "logical*1", NULL);
1861 break;
1862 case 22:
1863 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1864 "logical*2", NULL);
1865 break;
1866 case 23:
1867 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1868 "logical*4", NULL);
1869 break;
1870 case 24:
1871 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1872 "logical", NULL);
1873 break;
1874 case 25:
1875 /* Complex type consisting of two IEEE single precision values. */
1876 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1877 break;
1878 case 26:
1879 /* Complex type consisting of two IEEE double precision values. */
1880 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1881 break;
1882 case 27:
1883 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1884 break;
1885 case 28:
1886 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1887 break;
1888 case 29:
1889 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1890 break;
1891 case 30:
1892 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1893 break;
1894 }
1895 negative_types[-typenum] = rettype;
1896 return rettype;
1897 }
1898 \f
1899 /* This page contains subroutines of read_type. */
1900
1901 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1902 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1903 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1904 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1905
1906 /* Read member function stabs info for C++ classes. The form of each member
1907 function data is:
1908
1909 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1910
1911 An example with two member functions is:
1912
1913 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1914
1915 For the case of overloaded operators, the format is op$::*.funcs, where
1916 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1917 name (such as `+=') and `.' marks the end of the operator name.
1918
1919 Returns 1 for success, 0 for failure. */
1920
1921 static int
1922 read_member_functions (fip, pp, type, objfile)
1923 struct field_info *fip;
1924 char **pp;
1925 struct type *type;
1926 struct objfile *objfile;
1927 {
1928 int nfn_fields = 0;
1929 int length = 0;
1930 /* Total number of member functions defined in this class. If the class
1931 defines two `f' functions, and one `g' function, then this will have
1932 the value 3. */
1933 int total_length = 0;
1934 int i;
1935 struct next_fnfield
1936 {
1937 struct next_fnfield *next;
1938 struct fn_field fn_field;
1939 } *sublist;
1940 struct type *look_ahead_type;
1941 struct next_fnfieldlist *new_fnlist;
1942 struct next_fnfield *new_sublist;
1943 char *main_fn_name;
1944 register char *p;
1945
1946 /* Process each list until we find something that is not a member function
1947 or find the end of the functions. */
1948
1949 while (**pp != ';')
1950 {
1951 /* We should be positioned at the start of the function name.
1952 Scan forward to find the first ':' and if it is not the
1953 first of a "::" delimiter, then this is not a member function. */
1954 p = *pp;
1955 while (*p != ':')
1956 {
1957 p++;
1958 }
1959 if (p[1] != ':')
1960 {
1961 break;
1962 }
1963
1964 sublist = NULL;
1965 look_ahead_type = NULL;
1966 length = 0;
1967
1968 new_fnlist = (struct next_fnfieldlist *)
1969 xmalloc (sizeof (struct next_fnfieldlist));
1970 make_cleanup (free, new_fnlist);
1971 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1972
1973 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1974 {
1975 /* This is a completely wierd case. In order to stuff in the
1976 names that might contain colons (the usual name delimiter),
1977 Mike Tiemann defined a different name format which is
1978 signalled if the identifier is "op$". In that case, the
1979 format is "op$::XXXX." where XXXX is the name. This is
1980 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1981 /* This lets the user type "break operator+".
1982 We could just put in "+" as the name, but that wouldn't
1983 work for "*". */
1984 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1985 char *o = opname + 3;
1986
1987 /* Skip past '::'. */
1988 *pp = p + 2;
1989
1990 STABS_CONTINUE (pp);
1991 p = *pp;
1992 while (*p != '.')
1993 {
1994 *o++ = *p++;
1995 }
1996 main_fn_name = savestring (opname, o - opname);
1997 /* Skip past '.' */
1998 *pp = p + 1;
1999 }
2000 else
2001 {
2002 main_fn_name = savestring (*pp, p - *pp);
2003 /* Skip past '::'. */
2004 *pp = p + 2;
2005 }
2006 new_fnlist -> fn_fieldlist.name = main_fn_name;
2007
2008 do
2009 {
2010 new_sublist =
2011 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2012 make_cleanup (free, new_sublist);
2013 memset (new_sublist, 0, sizeof (struct next_fnfield));
2014
2015 /* Check for and handle cretinous dbx symbol name continuation! */
2016 if (look_ahead_type == NULL)
2017 {
2018 /* Normal case. */
2019 STABS_CONTINUE (pp);
2020
2021 new_sublist -> fn_field.type = read_type (pp, objfile);
2022 if (**pp != ':')
2023 {
2024 /* Invalid symtab info for member function. */
2025 return 0;
2026 }
2027 }
2028 else
2029 {
2030 /* g++ version 1 kludge */
2031 new_sublist -> fn_field.type = look_ahead_type;
2032 look_ahead_type = NULL;
2033 }
2034
2035 (*pp)++;
2036 p = *pp;
2037 while (*p != ';')
2038 {
2039 p++;
2040 }
2041
2042 /* If this is just a stub, then we don't have the real name here. */
2043
2044 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2045 {
2046 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2047 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2048 new_sublist -> fn_field.is_stub = 1;
2049 }
2050 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2051 *pp = p + 1;
2052
2053 /* Set this member function's visibility fields. */
2054 switch (*(*pp)++)
2055 {
2056 case VISIBILITY_PRIVATE:
2057 new_sublist -> fn_field.is_private = 1;
2058 break;
2059 case VISIBILITY_PROTECTED:
2060 new_sublist -> fn_field.is_protected = 1;
2061 break;
2062 }
2063
2064 STABS_CONTINUE (pp);
2065 switch (**pp)
2066 {
2067 case 'A': /* Normal functions. */
2068 new_sublist -> fn_field.is_const = 0;
2069 new_sublist -> fn_field.is_volatile = 0;
2070 (*pp)++;
2071 break;
2072 case 'B': /* `const' member functions. */
2073 new_sublist -> fn_field.is_const = 1;
2074 new_sublist -> fn_field.is_volatile = 0;
2075 (*pp)++;
2076 break;
2077 case 'C': /* `volatile' member function. */
2078 new_sublist -> fn_field.is_const = 0;
2079 new_sublist -> fn_field.is_volatile = 1;
2080 (*pp)++;
2081 break;
2082 case 'D': /* `const volatile' member function. */
2083 new_sublist -> fn_field.is_const = 1;
2084 new_sublist -> fn_field.is_volatile = 1;
2085 (*pp)++;
2086 break;
2087 case '*': /* File compiled with g++ version 1 -- no info */
2088 case '?':
2089 case '.':
2090 break;
2091 default:
2092 complain (&const_vol_complaint, **pp);
2093 break;
2094 }
2095
2096 switch (*(*pp)++)
2097 {
2098 case '*':
2099 {
2100 int nbits;
2101 /* virtual member function, followed by index.
2102 The sign bit is set to distinguish pointers-to-methods
2103 from virtual function indicies. Since the array is
2104 in words, the quantity must be shifted left by 1
2105 on 16 bit machine, and by 2 on 32 bit machine, forcing
2106 the sign bit out, and usable as a valid index into
2107 the array. Remove the sign bit here. */
2108 new_sublist -> fn_field.voffset =
2109 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2110 if (nbits != 0)
2111 return 0;
2112
2113 STABS_CONTINUE (pp);
2114 if (**pp == ';' || **pp == '\0')
2115 {
2116 /* Must be g++ version 1. */
2117 new_sublist -> fn_field.fcontext = 0;
2118 }
2119 else
2120 {
2121 /* Figure out from whence this virtual function came.
2122 It may belong to virtual function table of
2123 one of its baseclasses. */
2124 look_ahead_type = read_type (pp, objfile);
2125 if (**pp == ':')
2126 {
2127 /* g++ version 1 overloaded methods. */
2128 }
2129 else
2130 {
2131 new_sublist -> fn_field.fcontext = look_ahead_type;
2132 if (**pp != ';')
2133 {
2134 return 0;
2135 }
2136 else
2137 {
2138 ++*pp;
2139 }
2140 look_ahead_type = NULL;
2141 }
2142 }
2143 break;
2144 }
2145 case '?':
2146 /* static member function. */
2147 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2148 if (strncmp (new_sublist -> fn_field.physname,
2149 main_fn_name, strlen (main_fn_name)))
2150 {
2151 new_sublist -> fn_field.is_stub = 1;
2152 }
2153 break;
2154
2155 default:
2156 /* error */
2157 complain (&member_fn_complaint, (*pp)[-1]);
2158 /* Fall through into normal member function. */
2159
2160 case '.':
2161 /* normal member function. */
2162 new_sublist -> fn_field.voffset = 0;
2163 new_sublist -> fn_field.fcontext = 0;
2164 break;
2165 }
2166
2167 new_sublist -> next = sublist;
2168 sublist = new_sublist;
2169 length++;
2170 STABS_CONTINUE (pp);
2171 }
2172 while (**pp != ';' && **pp != '\0');
2173
2174 (*pp)++;
2175
2176 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2177 obstack_alloc (&objfile -> type_obstack,
2178 sizeof (struct fn_field) * length);
2179 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2180 sizeof (struct fn_field) * length);
2181 for (i = length; (i--, sublist); sublist = sublist -> next)
2182 {
2183 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2184 }
2185
2186 new_fnlist -> fn_fieldlist.length = length;
2187 new_fnlist -> next = fip -> fnlist;
2188 fip -> fnlist = new_fnlist;
2189 nfn_fields++;
2190 total_length += length;
2191 STABS_CONTINUE (pp);
2192 }
2193
2194 if (nfn_fields)
2195 {
2196 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2197 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2198 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2199 memset (TYPE_FN_FIELDLISTS (type), 0,
2200 sizeof (struct fn_fieldlist) * nfn_fields);
2201 TYPE_NFN_FIELDS (type) = nfn_fields;
2202 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2203 }
2204
2205 return 1;
2206 }
2207
2208 /* Special GNU C++ name.
2209
2210 Returns 1 for success, 0 for failure. "failure" means that we can't
2211 keep parsing and it's time for error_type(). */
2212
2213 static int
2214 read_cpp_abbrev (fip, pp, type, objfile)
2215 struct field_info *fip;
2216 char **pp;
2217 struct type *type;
2218 struct objfile *objfile;
2219 {
2220 register char *p;
2221 char *name;
2222 char cpp_abbrev;
2223 struct type *context;
2224
2225 p = *pp;
2226 if (*++p == 'v')
2227 {
2228 name = NULL;
2229 cpp_abbrev = *++p;
2230
2231 *pp = p + 1;
2232
2233 /* At this point, *pp points to something like "22:23=*22...",
2234 where the type number before the ':' is the "context" and
2235 everything after is a regular type definition. Lookup the
2236 type, find it's name, and construct the field name. */
2237
2238 context = read_type (pp, objfile);
2239
2240 switch (cpp_abbrev)
2241 {
2242 case 'f': /* $vf -- a virtual function table pointer */
2243 fip->list->field.name =
2244 obconcat (&objfile->type_obstack, vptr_name, "", "");
2245 break;
2246
2247 case 'b': /* $vb -- a virtual bsomethingorother */
2248 name = type_name_no_tag (context);
2249 if (name == NULL)
2250 {
2251 complain (&invalid_cpp_type_complaint, symnum);
2252 name = "FOO";
2253 }
2254 fip->list->field.name =
2255 obconcat (&objfile->type_obstack, vb_name, name, "");
2256 break;
2257
2258 default:
2259 complain (&invalid_cpp_abbrev_complaint, *pp);
2260 fip->list->field.name =
2261 obconcat (&objfile->type_obstack,
2262 "INVALID_CPLUSPLUS_ABBREV", "", "");
2263 break;
2264 }
2265
2266 /* At this point, *pp points to the ':'. Skip it and read the
2267 field type. */
2268
2269 p = ++(*pp);
2270 if (p[-1] != ':')
2271 {
2272 complain (&invalid_cpp_abbrev_complaint, *pp);
2273 return 0;
2274 }
2275 fip->list->field.type = read_type (pp, objfile);
2276 if (**pp == ',')
2277 (*pp)++; /* Skip the comma. */
2278 else
2279 return 0;
2280
2281 {
2282 int nbits;
2283 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2284 if (nbits != 0)
2285 return 0;
2286 }
2287 /* This field is unpacked. */
2288 fip->list->field.bitsize = 0;
2289 fip->list->visibility = VISIBILITY_PRIVATE;
2290 }
2291 else
2292 {
2293 complain (&invalid_cpp_abbrev_complaint, *pp);
2294 /* We have no idea what syntax an unrecognized abbrev would have, so
2295 better return 0. If we returned 1, we would need to at least advance
2296 *pp to avoid an infinite loop. */
2297 return 0;
2298 }
2299 return 1;
2300 }
2301
2302 static void
2303 read_one_struct_field (fip, pp, p, type, objfile)
2304 struct field_info *fip;
2305 char **pp;
2306 char *p;
2307 struct type *type;
2308 struct objfile *objfile;
2309 {
2310 fip -> list -> field.name =
2311 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2312 *pp = p + 1;
2313
2314 /* This means we have a visibility for a field coming. */
2315 if (**pp == '/')
2316 {
2317 (*pp)++;
2318 fip -> list -> visibility = *(*pp)++;
2319 }
2320 else
2321 {
2322 /* normal dbx-style format, no explicit visibility */
2323 fip -> list -> visibility = VISIBILITY_PUBLIC;
2324 }
2325
2326 fip -> list -> field.type = read_type (pp, objfile);
2327 if (**pp == ':')
2328 {
2329 p = ++(*pp);
2330 #if 0
2331 /* Possible future hook for nested types. */
2332 if (**pp == '!')
2333 {
2334 fip -> list -> field.bitpos = (long)-2; /* nested type */
2335 p = ++(*pp);
2336 }
2337 else
2338 #endif
2339 {
2340 /* Static class member. */
2341 fip -> list -> field.bitpos = (long) -1;
2342 }
2343 while (*p != ';')
2344 {
2345 p++;
2346 }
2347 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2348 *pp = p + 1;
2349 return;
2350 }
2351 else if (**pp != ',')
2352 {
2353 /* Bad structure-type format. */
2354 complain (&stabs_general_complaint, "bad structure-type format");
2355 return;
2356 }
2357
2358 (*pp)++; /* Skip the comma. */
2359
2360 {
2361 int nbits;
2362 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2363 if (nbits != 0)
2364 {
2365 complain (&stabs_general_complaint, "bad structure-type format");
2366 return;
2367 }
2368 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2369 if (nbits != 0)
2370 {
2371 complain (&stabs_general_complaint, "bad structure-type format");
2372 return;
2373 }
2374 }
2375
2376 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2377 {
2378 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2379 it is a field which has been optimized out. The correct stab for
2380 this case is to use VISIBILITY_IGNORE, but that is a recent
2381 invention. (2) It is a 0-size array. For example
2382 union { int num; char str[0]; } foo. Printing "<no value>" for
2383 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2384 will continue to work, and a 0-size array as a whole doesn't
2385 have any contents to print.
2386
2387 I suspect this probably could also happen with gcc -gstabs (not
2388 -gstabs+) for static fields, and perhaps other C++ extensions.
2389 Hopefully few people use -gstabs with gdb, since it is intended
2390 for dbx compatibility. */
2391
2392 /* Ignore this field. */
2393 fip -> list-> visibility = VISIBILITY_IGNORE;
2394 }
2395 else
2396 {
2397 /* Detect an unpacked field and mark it as such.
2398 dbx gives a bit size for all fields.
2399 Note that forward refs cannot be packed,
2400 and treat enums as if they had the width of ints. */
2401
2402 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2403 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2404 {
2405 fip -> list -> field.bitsize = 0;
2406 }
2407 if ((fip -> list -> field.bitsize
2408 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2409 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2410 && (fip -> list -> field.bitsize
2411 == TARGET_INT_BIT)
2412 )
2413 )
2414 &&
2415 fip -> list -> field.bitpos % 8 == 0)
2416 {
2417 fip -> list -> field.bitsize = 0;
2418 }
2419 }
2420 }
2421
2422
2423 /* Read struct or class data fields. They have the form:
2424
2425 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2426
2427 At the end, we see a semicolon instead of a field.
2428
2429 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2430 a static field.
2431
2432 The optional VISIBILITY is one of:
2433
2434 '/0' (VISIBILITY_PRIVATE)
2435 '/1' (VISIBILITY_PROTECTED)
2436 '/2' (VISIBILITY_PUBLIC)
2437 '/9' (VISIBILITY_IGNORE)
2438
2439 or nothing, for C style fields with public visibility.
2440
2441 Returns 1 for success, 0 for failure. */
2442
2443 static int
2444 read_struct_fields (fip, pp, type, objfile)
2445 struct field_info *fip;
2446 char **pp;
2447 struct type *type;
2448 struct objfile *objfile;
2449 {
2450 register char *p;
2451 struct nextfield *new;
2452
2453 /* We better set p right now, in case there are no fields at all... */
2454
2455 p = *pp;
2456
2457 /* Read each data member type until we find the terminating ';' at the end of
2458 the data member list, or break for some other reason such as finding the
2459 start of the member function list. */
2460
2461 while (**pp != ';')
2462 {
2463 if (os9k_stabs && **pp == ',') break;
2464 STABS_CONTINUE (pp);
2465 /* Get space to record the next field's data. */
2466 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2467 make_cleanup (free, new);
2468 memset (new, 0, sizeof (struct nextfield));
2469 new -> next = fip -> list;
2470 fip -> list = new;
2471
2472 /* Get the field name. */
2473 p = *pp;
2474
2475 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2476 unless the CPLUS_MARKER is followed by an underscore, in
2477 which case it is just the name of an anonymous type, which we
2478 should handle like any other type name. We accept either '$'
2479 or '.', because a field name can never contain one of these
2480 characters except as a CPLUS_MARKER (we probably should be
2481 doing that in most parts of GDB). */
2482
2483 if ((*p == '$' || *p == '.') && p[1] != '_')
2484 {
2485 if (!read_cpp_abbrev (fip, pp, type, objfile))
2486 return 0;
2487 continue;
2488 }
2489
2490 /* Look for the ':' that separates the field name from the field
2491 values. Data members are delimited by a single ':', while member
2492 functions are delimited by a pair of ':'s. When we hit the member
2493 functions (if any), terminate scan loop and return. */
2494
2495 while (*p != ':' && *p != '\0')
2496 {
2497 p++;
2498 }
2499 if (*p == '\0')
2500 return 0;
2501
2502 /* Check to see if we have hit the member functions yet. */
2503 if (p[1] == ':')
2504 {
2505 break;
2506 }
2507 read_one_struct_field (fip, pp, p, type, objfile);
2508 }
2509 if (p[0] == ':' && p[1] == ':')
2510 {
2511 /* chill the list of fields: the last entry (at the head) is a
2512 partially constructed entry which we now scrub. */
2513 fip -> list = fip -> list -> next;
2514 }
2515 return 1;
2516 }
2517
2518 /* The stabs for C++ derived classes contain baseclass information which
2519 is marked by a '!' character after the total size. This function is
2520 called when we encounter the baseclass marker, and slurps up all the
2521 baseclass information.
2522
2523 Immediately following the '!' marker is the number of base classes that
2524 the class is derived from, followed by information for each base class.
2525 For each base class, there are two visibility specifiers, a bit offset
2526 to the base class information within the derived class, a reference to
2527 the type for the base class, and a terminating semicolon.
2528
2529 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2530 ^^ ^ ^ ^ ^ ^ ^
2531 Baseclass information marker __________________|| | | | | | |
2532 Number of baseclasses __________________________| | | | | | |
2533 Visibility specifiers (2) ________________________| | | | | |
2534 Offset in bits from start of class _________________| | | | |
2535 Type number for base class ___________________________| | | |
2536 Visibility specifiers (2) _______________________________| | |
2537 Offset in bits from start of class ________________________| |
2538 Type number of base class ____________________________________|
2539
2540 Return 1 for success, 0 for (error-type-inducing) failure. */
2541
2542 static int
2543 read_baseclasses (fip, pp, type, objfile)
2544 struct field_info *fip;
2545 char **pp;
2546 struct type *type;
2547 struct objfile *objfile;
2548 {
2549 int i;
2550 struct nextfield *new;
2551
2552 if (**pp != '!')
2553 {
2554 return 1;
2555 }
2556 else
2557 {
2558 /* Skip the '!' baseclass information marker. */
2559 (*pp)++;
2560 }
2561
2562 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2563 {
2564 int nbits;
2565 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2566 if (nbits != 0)
2567 return 0;
2568 }
2569
2570 #if 0
2571 /* Some stupid compilers have trouble with the following, so break
2572 it up into simpler expressions. */
2573 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2574 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2575 #else
2576 {
2577 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2578 char *pointer;
2579
2580 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2581 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2582 }
2583 #endif /* 0 */
2584
2585 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2586
2587 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2588 {
2589 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2590 make_cleanup (free, new);
2591 memset (new, 0, sizeof (struct nextfield));
2592 new -> next = fip -> list;
2593 fip -> list = new;
2594 new -> field.bitsize = 0; /* this should be an unpacked field! */
2595
2596 STABS_CONTINUE (pp);
2597 switch (**pp)
2598 {
2599 case '0':
2600 /* Nothing to do. */
2601 break;
2602 case '1':
2603 SET_TYPE_FIELD_VIRTUAL (type, i);
2604 break;
2605 default:
2606 /* Unknown character. Complain and treat it as non-virtual. */
2607 {
2608 static struct complaint msg = {
2609 "Unknown virtual character `%c' for baseclass", 0, 0};
2610 complain (&msg, **pp);
2611 }
2612 }
2613 ++(*pp);
2614
2615 new -> visibility = *(*pp)++;
2616 switch (new -> visibility)
2617 {
2618 case VISIBILITY_PRIVATE:
2619 case VISIBILITY_PROTECTED:
2620 case VISIBILITY_PUBLIC:
2621 break;
2622 default:
2623 /* Bad visibility format. Complain and treat it as
2624 public. */
2625 {
2626 static struct complaint msg = {
2627 "Unknown visibility `%c' for baseclass", 0, 0};
2628 complain (&msg, new -> visibility);
2629 new -> visibility = VISIBILITY_PUBLIC;
2630 }
2631 }
2632
2633 {
2634 int nbits;
2635
2636 /* The remaining value is the bit offset of the portion of the object
2637 corresponding to this baseclass. Always zero in the absence of
2638 multiple inheritance. */
2639
2640 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2641 if (nbits != 0)
2642 return 0;
2643 }
2644
2645 /* The last piece of baseclass information is the type of the
2646 base class. Read it, and remember it's type name as this
2647 field's name. */
2648
2649 new -> field.type = read_type (pp, objfile);
2650 new -> field.name = type_name_no_tag (new -> field.type);
2651
2652 /* skip trailing ';' and bump count of number of fields seen */
2653 if (**pp == ';')
2654 (*pp)++;
2655 else
2656 return 0;
2657 }
2658 return 1;
2659 }
2660
2661 /* The tail end of stabs for C++ classes that contain a virtual function
2662 pointer contains a tilde, a %, and a type number.
2663 The type number refers to the base class (possibly this class itself) which
2664 contains the vtable pointer for the current class.
2665
2666 This function is called when we have parsed all the method declarations,
2667 so we can look for the vptr base class info. */
2668
2669 static int
2670 read_tilde_fields (fip, pp, type, objfile)
2671 struct field_info *fip;
2672 char **pp;
2673 struct type *type;
2674 struct objfile *objfile;
2675 {
2676 register char *p;
2677
2678 STABS_CONTINUE (pp);
2679
2680 /* If we are positioned at a ';', then skip it. */
2681 if (**pp == ';')
2682 {
2683 (*pp)++;
2684 }
2685
2686 if (**pp == '~')
2687 {
2688 (*pp)++;
2689
2690 if (**pp == '=' || **pp == '+' || **pp == '-')
2691 {
2692 /* Obsolete flags that used to indicate the presence
2693 of constructors and/or destructors. */
2694 (*pp)++;
2695 }
2696
2697 /* Read either a '%' or the final ';'. */
2698 if (*(*pp)++ == '%')
2699 {
2700 /* The next number is the type number of the base class
2701 (possibly our own class) which supplies the vtable for
2702 this class. Parse it out, and search that class to find
2703 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2704 and TYPE_VPTR_FIELDNO. */
2705
2706 struct type *t;
2707 int i;
2708
2709 t = read_type (pp, objfile);
2710 p = (*pp)++;
2711 while (*p != '\0' && *p != ';')
2712 {
2713 p++;
2714 }
2715 if (*p == '\0')
2716 {
2717 /* Premature end of symbol. */
2718 return 0;
2719 }
2720
2721 TYPE_VPTR_BASETYPE (type) = t;
2722 if (type == t) /* Our own class provides vtbl ptr */
2723 {
2724 for (i = TYPE_NFIELDS (t) - 1;
2725 i >= TYPE_N_BASECLASSES (t);
2726 --i)
2727 {
2728 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2729 sizeof (vptr_name) - 1))
2730 {
2731 TYPE_VPTR_FIELDNO (type) = i;
2732 goto gotit;
2733 }
2734 }
2735 /* Virtual function table field not found. */
2736 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2737 return 0;
2738 }
2739 else
2740 {
2741 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2742 }
2743
2744 gotit:
2745 *pp = p + 1;
2746 }
2747 }
2748 return 1;
2749 }
2750
2751 static int
2752 attach_fn_fields_to_type (fip, type)
2753 struct field_info *fip;
2754 register struct type *type;
2755 {
2756 register int n;
2757
2758 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2759 {
2760 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2761 {
2762 /* @@ Memory leak on objfile -> type_obstack? */
2763 return 0;
2764 }
2765 TYPE_NFN_FIELDS_TOTAL (type) +=
2766 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2767 }
2768
2769 for (n = TYPE_NFN_FIELDS (type);
2770 fip -> fnlist != NULL;
2771 fip -> fnlist = fip -> fnlist -> next)
2772 {
2773 --n; /* Circumvent Sun3 compiler bug */
2774 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2775 }
2776 return 1;
2777 }
2778
2779 /* Create the vector of fields, and record how big it is.
2780 We need this info to record proper virtual function table information
2781 for this class's virtual functions. */
2782
2783 static int
2784 attach_fields_to_type (fip, type, objfile)
2785 struct field_info *fip;
2786 register struct type *type;
2787 struct objfile *objfile;
2788 {
2789 register int nfields = 0;
2790 register int non_public_fields = 0;
2791 register struct nextfield *scan;
2792
2793 /* Count up the number of fields that we have, as well as taking note of
2794 whether or not there are any non-public fields, which requires us to
2795 allocate and build the private_field_bits and protected_field_bits
2796 bitfields. */
2797
2798 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2799 {
2800 nfields++;
2801 if (scan -> visibility != VISIBILITY_PUBLIC)
2802 {
2803 non_public_fields++;
2804 }
2805 }
2806
2807 /* Now we know how many fields there are, and whether or not there are any
2808 non-public fields. Record the field count, allocate space for the
2809 array of fields, and create blank visibility bitfields if necessary. */
2810
2811 TYPE_NFIELDS (type) = nfields;
2812 TYPE_FIELDS (type) = (struct field *)
2813 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2814 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2815
2816 if (non_public_fields)
2817 {
2818 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2819
2820 TYPE_FIELD_PRIVATE_BITS (type) =
2821 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2822 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2823
2824 TYPE_FIELD_PROTECTED_BITS (type) =
2825 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2826 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2827
2828 TYPE_FIELD_IGNORE_BITS (type) =
2829 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2830 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2831 }
2832
2833 /* Copy the saved-up fields into the field vector. Start from the head
2834 of the list, adding to the tail of the field array, so that they end
2835 up in the same order in the array in which they were added to the list. */
2836
2837 while (nfields-- > 0)
2838 {
2839 TYPE_FIELD (type, nfields) = fip -> list -> field;
2840 switch (fip -> list -> visibility)
2841 {
2842 case VISIBILITY_PRIVATE:
2843 SET_TYPE_FIELD_PRIVATE (type, nfields);
2844 break;
2845
2846 case VISIBILITY_PROTECTED:
2847 SET_TYPE_FIELD_PROTECTED (type, nfields);
2848 break;
2849
2850 case VISIBILITY_IGNORE:
2851 SET_TYPE_FIELD_IGNORE (type, nfields);
2852 break;
2853
2854 case VISIBILITY_PUBLIC:
2855 break;
2856
2857 default:
2858 /* Unknown visibility. Complain and treat it as public. */
2859 {
2860 static struct complaint msg = {
2861 "Unknown visibility `%c' for field", 0, 0};
2862 complain (&msg, fip -> list -> visibility);
2863 }
2864 break;
2865 }
2866 fip -> list = fip -> list -> next;
2867 }
2868 return 1;
2869 }
2870
2871 /* Read the description of a structure (or union type) and return an object
2872 describing the type.
2873
2874 PP points to a character pointer that points to the next unconsumed token
2875 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2876 *PP will point to "4a:1,0,32;;".
2877
2878 TYPE points to an incomplete type that needs to be filled in.
2879
2880 OBJFILE points to the current objfile from which the stabs information is
2881 being read. (Note that it is redundant in that TYPE also contains a pointer
2882 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2883 */
2884
2885 static struct type *
2886 read_struct_type (pp, type, objfile)
2887 char **pp;
2888 struct type *type;
2889 struct objfile *objfile;
2890 {
2891 struct cleanup *back_to;
2892 struct field_info fi;
2893
2894 fi.list = NULL;
2895 fi.fnlist = NULL;
2896
2897 back_to = make_cleanup (null_cleanup, 0);
2898
2899 INIT_CPLUS_SPECIFIC (type);
2900 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2901
2902 /* First comes the total size in bytes. */
2903
2904 {
2905 int nbits;
2906 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2907 if (nbits != 0)
2908 return error_type (pp);
2909 }
2910
2911 /* Now read the baseclasses, if any, read the regular C struct or C++
2912 class member fields, attach the fields to the type, read the C++
2913 member functions, attach them to the type, and then read any tilde
2914 field (baseclass specifier for the class holding the main vtable). */
2915
2916 if (!read_baseclasses (&fi, pp, type, objfile)
2917 || !read_struct_fields (&fi, pp, type, objfile)
2918 || !attach_fields_to_type (&fi, type, objfile)
2919 || !read_member_functions (&fi, pp, type, objfile)
2920 || !attach_fn_fields_to_type (&fi, type)
2921 || !read_tilde_fields (&fi, pp, type, objfile))
2922 {
2923 do_cleanups (back_to);
2924 return (error_type (pp));
2925 }
2926
2927 do_cleanups (back_to);
2928 return (type);
2929 }
2930
2931 /* Read a definition of an array type,
2932 and create and return a suitable type object.
2933 Also creates a range type which represents the bounds of that
2934 array. */
2935
2936 static struct type *
2937 read_array_type (pp, type, objfile)
2938 register char **pp;
2939 register struct type *type;
2940 struct objfile *objfile;
2941 {
2942 struct type *index_type, *element_type, *range_type;
2943 int lower, upper;
2944 int adjustable = 0;
2945 int nbits;
2946
2947 /* Format of an array type:
2948 "ar<index type>;lower;upper;<array_contents_type>".
2949 OS9000: "arlower,upper;<array_contents_type>".
2950
2951 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2952 for these, produce a type like float[][]. */
2953
2954 if (os9k_stabs)
2955 index_type = builtin_type_int;
2956 else
2957 {
2958 index_type = read_type (pp, objfile);
2959 if (**pp != ';')
2960 /* Improper format of array type decl. */
2961 return error_type (pp);
2962 ++*pp;
2963 }
2964
2965 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2966 {
2967 (*pp)++;
2968 adjustable = 1;
2969 }
2970 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
2971 if (nbits != 0)
2972 return error_type (pp);
2973
2974 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2975 {
2976 (*pp)++;
2977 adjustable = 1;
2978 }
2979 upper = read_huge_number (pp, ';', &nbits);
2980 if (nbits != 0)
2981 return error_type (pp);
2982
2983 element_type = read_type (pp, objfile);
2984
2985 if (adjustable)
2986 {
2987 lower = 0;
2988 upper = -1;
2989 }
2990
2991 range_type =
2992 create_range_type ((struct type *) NULL, index_type, lower, upper);
2993 type = create_array_type (type, element_type, range_type);
2994
2995 /* If we have an array whose element type is not yet known, but whose
2996 bounds *are* known, record it to be adjusted at the end of the file. */
2997
2998 if ((TYPE_FLAGS (element_type) & TYPE_FLAG_STUB) && !adjustable)
2999 {
3000 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
3001 add_undefined_type (type);
3002 }
3003
3004 return type;
3005 }
3006
3007
3008 /* Read a definition of an enumeration type,
3009 and create and return a suitable type object.
3010 Also defines the symbols that represent the values of the type. */
3011
3012 static struct type *
3013 read_enum_type (pp, type, objfile)
3014 register char **pp;
3015 register struct type *type;
3016 struct objfile *objfile;
3017 {
3018 register char *p;
3019 char *name;
3020 register long n;
3021 register struct symbol *sym;
3022 int nsyms = 0;
3023 struct pending **symlist;
3024 struct pending *osyms, *syms;
3025 int o_nsyms;
3026 int nbits;
3027
3028 #if 0
3029 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3030 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3031 to do? For now, force all enum values to file scope. */
3032 if (within_function)
3033 symlist = &local_symbols;
3034 else
3035 #endif
3036 symlist = &file_symbols;
3037 osyms = *symlist;
3038 o_nsyms = osyms ? osyms->nsyms : 0;
3039
3040 if (os9k_stabs)
3041 {
3042 /* Size. Perhaps this does not have to be conditionalized on
3043 os9k_stabs (assuming the name of an enum constant can't start
3044 with a digit). */
3045 read_huge_number (pp, 0, &nbits);
3046 if (nbits != 0)
3047 return error_type (pp);
3048 }
3049
3050 /* Read the value-names and their values.
3051 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3052 A semicolon or comma instead of a NAME means the end. */
3053 while (**pp && **pp != ';' && **pp != ',')
3054 {
3055 STABS_CONTINUE (pp);
3056 p = *pp;
3057 while (*p != ':') p++;
3058 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3059 *pp = p + 1;
3060 n = read_huge_number (pp, ',', &nbits);
3061 if (nbits != 0)
3062 return error_type (pp);
3063
3064 sym = (struct symbol *)
3065 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3066 memset (sym, 0, sizeof (struct symbol));
3067 SYMBOL_NAME (sym) = name;
3068 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3069 SYMBOL_CLASS (sym) = LOC_CONST;
3070 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3071 SYMBOL_VALUE (sym) = n;
3072 add_symbol_to_list (sym, symlist);
3073 nsyms++;
3074 }
3075
3076 if (**pp == ';')
3077 (*pp)++; /* Skip the semicolon. */
3078
3079 /* Now fill in the fields of the type-structure. */
3080
3081 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3082 TYPE_CODE (type) = TYPE_CODE_ENUM;
3083 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3084 TYPE_NFIELDS (type) = nsyms;
3085 TYPE_FIELDS (type) = (struct field *)
3086 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3087 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3088
3089 /* Find the symbols for the values and put them into the type.
3090 The symbols can be found in the symlist that we put them on
3091 to cause them to be defined. osyms contains the old value
3092 of that symlist; everything up to there was defined by us. */
3093 /* Note that we preserve the order of the enum constants, so
3094 that in something like "enum {FOO, LAST_THING=FOO}" we print
3095 FOO, not LAST_THING. */
3096
3097 for (syms = *symlist, n = 0; syms; syms = syms->next)
3098 {
3099 int j = 0;
3100 if (syms == osyms)
3101 j = o_nsyms;
3102 for (; j < syms->nsyms; j++,n++)
3103 {
3104 struct symbol *xsym = syms->symbol[j];
3105 SYMBOL_TYPE (xsym) = type;
3106 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3107 TYPE_FIELD_VALUE (type, n) = 0;
3108 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3109 TYPE_FIELD_BITSIZE (type, n) = 0;
3110 }
3111 if (syms == osyms)
3112 break;
3113 }
3114
3115 return type;
3116 }
3117
3118 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3119 typedefs in every file (for int, long, etc):
3120
3121 type = b <signed> <width>; <offset>; <nbits>
3122 signed = u or s. Possible c in addition to u or s (for char?).
3123 offset = offset from high order bit to start bit of type.
3124 width is # bytes in object of this type, nbits is # bits in type.
3125
3126 The width/offset stuff appears to be for small objects stored in
3127 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3128 FIXME. */
3129
3130 static struct type *
3131 read_sun_builtin_type (pp, typenums, objfile)
3132 char **pp;
3133 int typenums[2];
3134 struct objfile *objfile;
3135 {
3136 int type_bits;
3137 int nbits;
3138 int signed_type;
3139
3140 switch (**pp)
3141 {
3142 case 's':
3143 signed_type = 1;
3144 break;
3145 case 'u':
3146 signed_type = 0;
3147 break;
3148 default:
3149 return error_type (pp);
3150 }
3151 (*pp)++;
3152
3153 /* For some odd reason, all forms of char put a c here. This is strange
3154 because no other type has this honor. We can safely ignore this because
3155 we actually determine 'char'acterness by the number of bits specified in
3156 the descriptor. */
3157
3158 if (**pp == 'c')
3159 (*pp)++;
3160
3161 /* The first number appears to be the number of bytes occupied
3162 by this type, except that unsigned short is 4 instead of 2.
3163 Since this information is redundant with the third number,
3164 we will ignore it. */
3165 read_huge_number (pp, ';', &nbits);
3166 if (nbits != 0)
3167 return error_type (pp);
3168
3169 /* The second number is always 0, so ignore it too. */
3170 read_huge_number (pp, ';', &nbits);
3171 if (nbits != 0)
3172 return error_type (pp);
3173
3174 /* The third number is the number of bits for this type. */
3175 type_bits = read_huge_number (pp, 0, &nbits);
3176 if (nbits != 0)
3177 return error_type (pp);
3178 /* The type *should* end with a semicolon. If it are embedded
3179 in a larger type the semicolon may be the only way to know where
3180 the type ends. If this type is at the end of the stabstring we
3181 can deal with the omitted semicolon (but we don't have to like
3182 it). Don't bother to complain(), Sun's compiler omits the semicolon
3183 for "void". */
3184 if (**pp == ';')
3185 ++(*pp);
3186
3187 if (type_bits == 0)
3188 return init_type (TYPE_CODE_VOID, 1,
3189 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3190 objfile);
3191 else
3192 return init_type (TYPE_CODE_INT,
3193 type_bits / TARGET_CHAR_BIT,
3194 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3195 objfile);
3196 }
3197
3198 static struct type *
3199 read_sun_floating_type (pp, typenums, objfile)
3200 char **pp;
3201 int typenums[2];
3202 struct objfile *objfile;
3203 {
3204 int nbits;
3205 int details;
3206 int nbytes;
3207
3208 /* The first number has more details about the type, for example
3209 FN_COMPLEX. */
3210 details = read_huge_number (pp, ';', &nbits);
3211 if (nbits != 0)
3212 return error_type (pp);
3213
3214 /* The second number is the number of bytes occupied by this type */
3215 nbytes = read_huge_number (pp, ';', &nbits);
3216 if (nbits != 0)
3217 return error_type (pp);
3218
3219 if (details == NF_COMPLEX || details == NF_COMPLEX16
3220 || details == NF_COMPLEX32)
3221 /* This is a type we can't handle, but we do know the size.
3222 We also will be able to give it a name. */
3223 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3224
3225 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3226 }
3227
3228 /* Read a number from the string pointed to by *PP.
3229 The value of *PP is advanced over the number.
3230 If END is nonzero, the character that ends the
3231 number must match END, or an error happens;
3232 and that character is skipped if it does match.
3233 If END is zero, *PP is left pointing to that character.
3234
3235 If the number fits in a long, set *BITS to 0 and return the value.
3236 If not, set *BITS to be the number of bits in the number and return 0.
3237
3238 If encounter garbage, set *BITS to -1 and return 0. */
3239
3240 static long
3241 read_huge_number (pp, end, bits)
3242 char **pp;
3243 int end;
3244 int *bits;
3245 {
3246 char *p = *pp;
3247 int sign = 1;
3248 long n = 0;
3249 int radix = 10;
3250 char overflow = 0;
3251 int nbits = 0;
3252 int c;
3253 long upper_limit;
3254
3255 if (*p == '-')
3256 {
3257 sign = -1;
3258 p++;
3259 }
3260
3261 /* Leading zero means octal. GCC uses this to output values larger
3262 than an int (because that would be hard in decimal). */
3263 if (*p == '0')
3264 {
3265 radix = 8;
3266 p++;
3267 }
3268
3269 if (os9k_stabs)
3270 upper_limit = ULONG_MAX / radix;
3271 else
3272 upper_limit = LONG_MAX / radix;
3273
3274 while ((c = *p++) >= '0' && c < ('0' + radix))
3275 {
3276 if (n <= upper_limit)
3277 {
3278 n *= radix;
3279 n += c - '0'; /* FIXME this overflows anyway */
3280 }
3281 else
3282 overflow = 1;
3283
3284 /* This depends on large values being output in octal, which is
3285 what GCC does. */
3286 if (radix == 8)
3287 {
3288 if (nbits == 0)
3289 {
3290 if (c == '0')
3291 /* Ignore leading zeroes. */
3292 ;
3293 else if (c == '1')
3294 nbits = 1;
3295 else if (c == '2' || c == '3')
3296 nbits = 2;
3297 else
3298 nbits = 3;
3299 }
3300 else
3301 nbits += 3;
3302 }
3303 }
3304 if (end)
3305 {
3306 if (c && c != end)
3307 {
3308 if (bits != NULL)
3309 *bits = -1;
3310 return 0;
3311 }
3312 }
3313 else
3314 --p;
3315
3316 *pp = p;
3317 if (overflow)
3318 {
3319 if (nbits == 0)
3320 {
3321 /* Large decimal constants are an error (because it is hard to
3322 count how many bits are in them). */
3323 if (bits != NULL)
3324 *bits = -1;
3325 return 0;
3326 }
3327
3328 /* -0x7f is the same as 0x80. So deal with it by adding one to
3329 the number of bits. */
3330 if (sign == -1)
3331 ++nbits;
3332 if (bits)
3333 *bits = nbits;
3334 }
3335 else
3336 {
3337 if (bits)
3338 *bits = 0;
3339 return n * sign;
3340 }
3341 /* It's *BITS which has the interesting information. */
3342 return 0;
3343 }
3344
3345 static struct type *
3346 read_range_type (pp, typenums, objfile)
3347 char **pp;
3348 int typenums[2];
3349 struct objfile *objfile;
3350 {
3351 int rangenums[2];
3352 long n2, n3;
3353 int n2bits, n3bits;
3354 int self_subrange;
3355 struct type *result_type;
3356 struct type *index_type;
3357
3358 /* First comes a type we are a subrange of.
3359 In C it is usually 0, 1 or the type being defined. */
3360 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3361 not just a type number. */
3362 if (read_type_number (pp, rangenums) != 0)
3363 return error_type (pp);
3364 self_subrange = (rangenums[0] == typenums[0] &&
3365 rangenums[1] == typenums[1]);
3366
3367 /* A semicolon should now follow; skip it. */
3368 if (**pp == ';')
3369 (*pp)++;
3370
3371 /* The remaining two operands are usually lower and upper bounds
3372 of the range. But in some special cases they mean something else. */
3373 n2 = read_huge_number (pp, ';', &n2bits);
3374 n3 = read_huge_number (pp, ';', &n3bits);
3375
3376 if (n2bits == -1 || n3bits == -1)
3377 return error_type (pp);
3378
3379 /* If limits are huge, must be large integral type. */
3380 if (n2bits != 0 || n3bits != 0)
3381 {
3382 char got_signed = 0;
3383 char got_unsigned = 0;
3384 /* Number of bits in the type. */
3385 int nbits = 0;
3386
3387 /* Range from 0 to <large number> is an unsigned large integral type. */
3388 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3389 {
3390 got_unsigned = 1;
3391 nbits = n3bits;
3392 }
3393 /* Range from <large number> to <large number>-1 is a large signed
3394 integral type. Take care of the case where <large number> doesn't
3395 fit in a long but <large number>-1 does. */
3396 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3397 || (n2bits != 0 && n3bits == 0
3398 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3399 && n3 == LONG_MAX))
3400 {
3401 got_signed = 1;
3402 nbits = n2bits;
3403 }
3404
3405 if (got_signed || got_unsigned)
3406 {
3407 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3408 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3409 objfile);
3410 }
3411 else
3412 return error_type (pp);
3413 }
3414
3415 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3416 if (self_subrange && n2 == 0 && n3 == 0)
3417 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3418
3419 /* If n3 is zero and n2 is not, we want a floating type,
3420 and n2 is the width in bytes.
3421
3422 Fortran programs appear to use this for complex types also,
3423 and they give no way to distinguish between double and single-complex!
3424
3425 GDB does not have complex types.
3426
3427 Just return the complex as a float of that size. It won't work right
3428 for the complex values, but at least it makes the file loadable. */
3429
3430 if (n3 == 0 && n2 > 0)
3431 {
3432 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3433 }
3434
3435 /* If the upper bound is -1, it must really be an unsigned int. */
3436
3437 else if (n2 == 0 && n3 == -1)
3438 {
3439 /* It is unsigned int or unsigned long. */
3440 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3441 compatibility hack. */
3442 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3443 TYPE_FLAG_UNSIGNED, NULL, objfile);
3444 }
3445
3446 /* Special case: char is defined (Who knows why) as a subrange of
3447 itself with range 0-127. */
3448 else if (self_subrange && n2 == 0 && n3 == 127)
3449 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3450
3451 /* We used to do this only for subrange of self or subrange of int. */
3452 else if (n2 == 0)
3453 {
3454 if (n3 < 0)
3455 /* n3 actually gives the size. */
3456 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3457 NULL, objfile);
3458 if (n3 == 0xff)
3459 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3460 if (n3 == 0xffff)
3461 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3462
3463 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3464 "unsigned long", and we already checked for that,
3465 so don't need to test for it here. */
3466 }
3467 /* I think this is for Convex "long long". Since I don't know whether
3468 Convex sets self_subrange, I also accept that particular size regardless
3469 of self_subrange. */
3470 else if (n3 == 0 && n2 < 0
3471 && (self_subrange
3472 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3473 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3474 else if (n2 == -n3 -1)
3475 {
3476 if (n3 == 0x7f)
3477 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3478 if (n3 == 0x7fff)
3479 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3480 if (n3 == 0x7fffffff)
3481 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3482 }
3483
3484 /* We have a real range type on our hands. Allocate space and
3485 return a real pointer. */
3486
3487 /* At this point I don't have the faintest idea how to deal with
3488 a self_subrange type; I'm going to assume that this is used
3489 as an idiom, and that all of them are special cases. So . . . */
3490 if (self_subrange)
3491 return error_type (pp);
3492
3493 index_type = *dbx_lookup_type (rangenums);
3494 if (index_type == NULL)
3495 {
3496 /* Does this actually ever happen? Is that why we are worrying
3497 about dealing with it rather than just calling error_type? */
3498
3499 static struct type *range_type_index;
3500
3501 complain (&range_type_base_complaint, rangenums[1]);
3502 if (range_type_index == NULL)
3503 range_type_index =
3504 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3505 0, "range type index type", NULL);
3506 index_type = range_type_index;
3507 }
3508
3509 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3510 return (result_type);
3511 }
3512
3513 /* Read in an argument list. This is a list of types, separated by commas
3514 and terminated with END. Return the list of types read in, or (struct type
3515 **)-1 if there is an error. */
3516
3517 static struct type **
3518 read_args (pp, end, objfile)
3519 char **pp;
3520 int end;
3521 struct objfile *objfile;
3522 {
3523 /* FIXME! Remove this arbitrary limit! */
3524 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3525 int n = 0;
3526
3527 while (**pp != end)
3528 {
3529 if (**pp != ',')
3530 /* Invalid argument list: no ','. */
3531 return (struct type **)-1;
3532 (*pp)++;
3533 STABS_CONTINUE (pp);
3534 types[n++] = read_type (pp, objfile);
3535 }
3536 (*pp)++; /* get past `end' (the ':' character) */
3537
3538 if (n == 1)
3539 {
3540 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3541 }
3542 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3543 {
3544 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3545 memset (rval + n, 0, sizeof (struct type *));
3546 }
3547 else
3548 {
3549 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3550 }
3551 memcpy (rval, types, n * sizeof (struct type *));
3552 return rval;
3553 }
3554 \f
3555 /* Common block handling. */
3556
3557 /* List of symbols declared since the last BCOMM. This list is a tail
3558 of local_symbols. When ECOMM is seen, the symbols on the list
3559 are noted so their proper addresses can be filled in later,
3560 using the common block base address gotten from the assembler
3561 stabs. */
3562
3563 static struct pending *common_block;
3564 static int common_block_i;
3565
3566 /* Name of the current common block. We get it from the BCOMM instead of the
3567 ECOMM to match IBM documentation (even though IBM puts the name both places
3568 like everyone else). */
3569 static char *common_block_name;
3570
3571 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3572 to remain after this function returns. */
3573
3574 void
3575 common_block_start (name, objfile)
3576 char *name;
3577 struct objfile *objfile;
3578 {
3579 if (common_block_name != NULL)
3580 {
3581 static struct complaint msg = {
3582 "Invalid symbol data: common block within common block",
3583 0, 0};
3584 complain (&msg);
3585 }
3586 common_block = local_symbols;
3587 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3588 common_block_name = obsavestring (name, strlen (name),
3589 &objfile -> symbol_obstack);
3590 }
3591
3592 /* Process a N_ECOMM symbol. */
3593
3594 void
3595 common_block_end (objfile)
3596 struct objfile *objfile;
3597 {
3598 /* Symbols declared since the BCOMM are to have the common block
3599 start address added in when we know it. common_block and
3600 common_block_i point to the first symbol after the BCOMM in
3601 the local_symbols list; copy the list and hang it off the
3602 symbol for the common block name for later fixup. */
3603 int i;
3604 struct symbol *sym;
3605 struct pending *new = 0;
3606 struct pending *next;
3607 int j;
3608
3609 if (common_block_name == NULL)
3610 {
3611 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3612 complain (&msg);
3613 return;
3614 }
3615
3616 sym = (struct symbol *)
3617 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3618 memset (sym, 0, sizeof (struct symbol));
3619 SYMBOL_NAME (sym) = common_block_name;
3620 SYMBOL_CLASS (sym) = LOC_BLOCK;
3621
3622 /* Now we copy all the symbols which have been defined since the BCOMM. */
3623
3624 /* Copy all the struct pendings before common_block. */
3625 for (next = local_symbols;
3626 next != NULL && next != common_block;
3627 next = next->next)
3628 {
3629 for (j = 0; j < next->nsyms; j++)
3630 add_symbol_to_list (next->symbol[j], &new);
3631 }
3632
3633 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3634 NULL, it means copy all the local symbols (which we already did
3635 above). */
3636
3637 if (common_block != NULL)
3638 for (j = common_block_i; j < common_block->nsyms; j++)
3639 add_symbol_to_list (common_block->symbol[j], &new);
3640
3641 SYMBOL_TYPE (sym) = (struct type *) new;
3642
3643 /* Should we be putting local_symbols back to what it was?
3644 Does it matter? */
3645
3646 i = hashname (SYMBOL_NAME (sym));
3647 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3648 global_sym_chain[i] = sym;
3649 common_block_name = NULL;
3650 }
3651
3652 /* Add a common block's start address to the offset of each symbol
3653 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3654 the common block name). */
3655
3656 static void
3657 fix_common_block (sym, valu)
3658 struct symbol *sym;
3659 int valu;
3660 {
3661 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3662 for ( ; next; next = next->next)
3663 {
3664 register int j;
3665 for (j = next->nsyms - 1; j >= 0; j--)
3666 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3667 }
3668 }
3669
3670
3671 \f
3672 /* What about types defined as forward references inside of a small lexical
3673 scope? */
3674 /* Add a type to the list of undefined types to be checked through
3675 once this file has been read in. */
3676
3677 void
3678 add_undefined_type (type)
3679 struct type *type;
3680 {
3681 if (undef_types_length == undef_types_allocated)
3682 {
3683 undef_types_allocated *= 2;
3684 undef_types = (struct type **)
3685 xrealloc ((char *) undef_types,
3686 undef_types_allocated * sizeof (struct type *));
3687 }
3688 undef_types[undef_types_length++] = type;
3689 }
3690
3691 /* Go through each undefined type, see if it's still undefined, and fix it
3692 up if possible. We have two kinds of undefined types:
3693
3694 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3695 Fix: update array length using the element bounds
3696 and the target type's length.
3697 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3698 yet defined at the time a pointer to it was made.
3699 Fix: Do a full lookup on the struct/union tag. */
3700 void
3701 cleanup_undefined_types ()
3702 {
3703 struct type **type;
3704
3705 for (type = undef_types; type < undef_types + undef_types_length; type++)
3706 {
3707 switch (TYPE_CODE (*type))
3708 {
3709
3710 case TYPE_CODE_STRUCT:
3711 case TYPE_CODE_UNION:
3712 case TYPE_CODE_ENUM:
3713 {
3714 /* Check if it has been defined since. Need to do this here
3715 as well as in check_stub_type to deal with the (legitimate in
3716 C though not C++) case of several types with the same name
3717 in different source files. */
3718 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3719 {
3720 struct pending *ppt;
3721 int i;
3722 /* Name of the type, without "struct" or "union" */
3723 char *typename = TYPE_TAG_NAME (*type);
3724
3725 if (typename == NULL)
3726 {
3727 static struct complaint msg = {"need a type name", 0, 0};
3728 complain (&msg);
3729 break;
3730 }
3731 for (ppt = file_symbols; ppt; ppt = ppt->next)
3732 {
3733 for (i = 0; i < ppt->nsyms; i++)
3734 {
3735 struct symbol *sym = ppt->symbol[i];
3736
3737 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3738 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3739 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3740 TYPE_CODE (*type))
3741 && STREQ (SYMBOL_NAME (sym), typename))
3742 {
3743 memcpy (*type, SYMBOL_TYPE (sym),
3744 sizeof (struct type));
3745 }
3746 }
3747 }
3748 }
3749 }
3750 break;
3751
3752 case TYPE_CODE_ARRAY:
3753 {
3754 /* This is a kludge which is here for historical reasons
3755 because I suspect that check_stub_type does not get
3756 called everywhere it needs to be called for arrays. Even
3757 with this kludge, those places are broken for the case
3758 where the stub type is defined in another compilation
3759 unit, but this kludge at least deals with it for the case
3760 in which it is the same compilation unit.
3761
3762 Don't try to do this by calling check_stub_type; it might
3763 cause symbols to be read in lookup_symbol, and the symbol
3764 reader is not reentrant. */
3765
3766 struct type *range_type;
3767 int lower, upper;
3768
3769 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3770 goto badtype;
3771 if (TYPE_NFIELDS (*type) != 1)
3772 goto badtype;
3773 range_type = TYPE_FIELD_TYPE (*type, 0);
3774 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3775 goto badtype;
3776
3777 /* Now recompute the length of the array type, based on its
3778 number of elements and the target type's length. */
3779 lower = TYPE_FIELD_BITPOS (range_type, 0);
3780 upper = TYPE_FIELD_BITPOS (range_type, 1);
3781 TYPE_LENGTH (*type) = (upper - lower + 1)
3782 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3783
3784 /* If the target type is not a stub, we could be clearing
3785 TYPE_FLAG_TARGET_STUB for *type. */
3786 }
3787 break;
3788
3789 default:
3790 badtype:
3791 {
3792 static struct complaint msg = {"\
3793 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3794 complain (&msg, TYPE_CODE (*type));
3795 }
3796 break;
3797 }
3798 }
3799
3800 undef_types_length = 0;
3801 }
3802
3803 /* Scan through all of the global symbols defined in the object file,
3804 assigning values to the debugging symbols that need to be assigned
3805 to. Get these symbols from the minimal symbol table. */
3806
3807 void
3808 scan_file_globals (objfile)
3809 struct objfile *objfile;
3810 {
3811 int hash;
3812 struct minimal_symbol *msymbol;
3813 struct symbol *sym, *prev;
3814
3815 if (objfile->msymbols == 0) /* Beware the null file. */
3816 return;
3817
3818 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3819 {
3820 QUIT;
3821
3822 /* Skip static symbols. */
3823 switch (MSYMBOL_TYPE (msymbol))
3824 {
3825 case mst_file_text:
3826 case mst_file_data:
3827 case mst_file_bss:
3828 continue;
3829 }
3830
3831 prev = NULL;
3832
3833 /* Get the hash index and check all the symbols
3834 under that hash index. */
3835
3836 hash = hashname (SYMBOL_NAME (msymbol));
3837
3838 for (sym = global_sym_chain[hash]; sym;)
3839 {
3840 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3841 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3842 {
3843 /* Splice this symbol out of the hash chain and
3844 assign the value we have to it. */
3845 if (prev)
3846 {
3847 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3848 }
3849 else
3850 {
3851 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3852 }
3853
3854 /* Check to see whether we need to fix up a common block. */
3855 /* Note: this code might be executed several times for
3856 the same symbol if there are multiple references. */
3857
3858 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3859 {
3860 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3861 }
3862 else
3863 {
3864 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3865 }
3866
3867 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3868
3869 if (prev)
3870 {
3871 sym = SYMBOL_VALUE_CHAIN (prev);
3872 }
3873 else
3874 {
3875 sym = global_sym_chain[hash];
3876 }
3877 }
3878 else
3879 {
3880 prev = sym;
3881 sym = SYMBOL_VALUE_CHAIN (sym);
3882 }
3883 }
3884 }
3885 }
3886
3887 /* Initialize anything that needs initializing when starting to read
3888 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3889 to a psymtab. */
3890
3891 void
3892 stabsread_init ()
3893 {
3894 }
3895
3896 /* Initialize anything that needs initializing when a completely new
3897 symbol file is specified (not just adding some symbols from another
3898 file, e.g. a shared library). */
3899
3900 void
3901 stabsread_new_init ()
3902 {
3903 /* Empty the hash table of global syms looking for values. */
3904 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3905 }
3906
3907 /* Initialize anything that needs initializing at the same time as
3908 start_symtab() is called. */
3909
3910 void start_stabs ()
3911 {
3912 global_stabs = NULL; /* AIX COFF */
3913 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3914 n_this_object_header_files = 1;
3915 type_vector_length = 0;
3916 type_vector = (struct type **) 0;
3917
3918 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3919 common_block_name = NULL;
3920
3921 os9k_stabs = 0;
3922 }
3923
3924 /* Call after end_symtab() */
3925
3926 void end_stabs ()
3927 {
3928 if (type_vector)
3929 {
3930 free ((char *) type_vector);
3931 }
3932 type_vector = 0;
3933 type_vector_length = 0;
3934 previous_stab_code = 0;
3935 }
3936
3937 void
3938 finish_global_stabs (objfile)
3939 struct objfile *objfile;
3940 {
3941 if (global_stabs)
3942 {
3943 patch_block_stabs (global_symbols, global_stabs, objfile);
3944 free ((PTR) global_stabs);
3945 global_stabs = NULL;
3946 }
3947 }
3948
3949 /* Initializer for this module */
3950
3951 void
3952 _initialize_stabsread ()
3953 {
3954 undef_types_allocated = 20;
3955 undef_types_length = 0;
3956 undef_types = (struct type **)
3957 xmalloc (undef_types_allocated * sizeof (struct type *));
3958 }
This page took 0.110538 seconds and 4 git commands to generate.