2002-04-09 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Support routines for reading and decoding debugging information in
24 the "stabs" format. This format is used with many systems that use
25 the a.out object file format, as well as some systems that use
26 COFF or ELF where the stabs data is placed in a special section.
27 Avoid placing any object file format specific code in this file. */
28
29 #include "defs.h"
30 #include "gdb_string.h"
31 #include "bfd.h"
32 #include "obstack.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "expression.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "libaout.h"
40 #include "aout/aout64.h"
41 #include "gdb-stabs.h"
42 #include "buildsym.h"
43 #include "complaints.h"
44 #include "demangle.h"
45 #include "language.h"
46 #include "doublest.h"
47
48 #include <ctype.h>
49
50 /* Ask stabsread.h to define the vars it normally declares `extern'. */
51 #define EXTERN
52 /**/
53 #include "stabsread.h" /* Our own declarations */
54 #undef EXTERN
55
56 extern void _initialize_stabsread (void);
57
58 /* The routines that read and process a complete stabs for a C struct or
59 C++ class pass lists of data member fields and lists of member function
60 fields in an instance of a field_info structure, as defined below.
61 This is part of some reorganization of low level C++ support and is
62 expected to eventually go away... (FIXME) */
63
64 struct field_info
65 {
66 struct nextfield
67 {
68 struct nextfield *next;
69
70 /* This is the raw visibility from the stab. It is not checked
71 for being one of the visibilities we recognize, so code which
72 examines this field better be able to deal. */
73 int visibility;
74
75 struct field field;
76 }
77 *list;
78 struct next_fnfieldlist
79 {
80 struct next_fnfieldlist *next;
81 struct fn_fieldlist fn_fieldlist;
82 }
83 *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static char *get_substring (char **, int);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_range_type (char **, int[2], struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int
136 attach_fields_to_type (struct field_info *, struct type *, struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 struct objfile *);
140
141 static struct type *read_array_type (char **, struct type *,
142 struct objfile *);
143
144 static struct type **read_args (char **, int, struct objfile *);
145
146 static int
147 read_cpp_abbrev (struct field_info *, char **, struct type *,
148 struct objfile *);
149
150 /* new functions added for cfront support */
151
152 static int
153 copy_cfront_struct_fields (struct field_info *, struct type *,
154 struct objfile *);
155
156 static char *get_cfront_method_physname (char *);
157
158 static int
159 read_cfront_baseclasses (struct field_info *, char **,
160 struct type *, struct objfile *);
161
162 static int
163 read_cfront_static_fields (struct field_info *, char **,
164 struct type *, struct objfile *);
165 static int
166 read_cfront_member_functions (struct field_info *, char **,
167 struct type *, struct objfile *);
168
169 /* end new functions added for cfront support */
170
171 static void
172 add_live_range (struct objfile *, struct symbol *, CORE_ADDR, CORE_ADDR);
173
174 static int resolve_live_range (struct objfile *, struct symbol *, char *);
175
176 static int process_reference (char **string);
177
178 static CORE_ADDR ref_search_value (int refnum);
179
180 static int
181 resolve_symbol_reference (struct objfile *, struct symbol *, char *);
182
183 void stabsread_clear_cache (void);
184
185 static const char vptr_name[] =
186 {'_', 'v', 'p', 't', 'r', CPLUS_MARKER, '\0'};
187 static const char vb_name[] =
188 {'_', 'v', 'b', CPLUS_MARKER, '\0'};
189
190 /* Define this as 1 if a pcc declaration of a char or short argument
191 gives the correct address. Otherwise assume pcc gives the
192 address of the corresponding int, which is not the same on a
193 big-endian machine. */
194
195 #if !defined (BELIEVE_PCC_PROMOTION)
196 #define BELIEVE_PCC_PROMOTION 0
197 #endif
198 #if !defined (BELIEVE_PCC_PROMOTION_TYPE)
199 #define BELIEVE_PCC_PROMOTION_TYPE 0
200 #endif
201
202 static struct complaint invalid_cpp_abbrev_complaint =
203 {"invalid C++ abbreviation `%s'", 0, 0};
204
205 static struct complaint invalid_cpp_type_complaint =
206 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
207
208 static struct complaint member_fn_complaint =
209 {"member function type missing, got '%c'", 0, 0};
210
211 static struct complaint const_vol_complaint =
212 {"const/volatile indicator missing, got '%c'", 0, 0};
213
214 static struct complaint error_type_complaint =
215 {"couldn't parse type; debugger out of date?", 0, 0};
216
217 static struct complaint invalid_member_complaint =
218 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
219
220 static struct complaint range_type_base_complaint =
221 {"base type %d of range type is not defined", 0, 0};
222
223 static struct complaint reg_value_complaint =
224 {"register number %d too large (max %d) in symbol %s", 0, 0};
225
226 static struct complaint vtbl_notfound_complaint =
227 {"virtual function table pointer not found when defining class `%s'", 0, 0};
228
229 static struct complaint unrecognized_cplus_name_complaint =
230 {"Unknown C++ symbol name `%s'", 0, 0};
231
232 static struct complaint rs6000_builtin_complaint =
233 {"Unknown builtin type %d", 0, 0};
234
235 static struct complaint unresolved_sym_chain_complaint =
236 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
237
238 static struct complaint stabs_general_complaint =
239 {"%s", 0, 0};
240
241 static struct complaint lrs_general_complaint =
242 {"%s", 0, 0};
243
244 /* Make a list of forward references which haven't been defined. */
245
246 static struct type **undef_types;
247 static int undef_types_allocated;
248 static int undef_types_length;
249 static struct symbol *current_symbol = NULL;
250
251 /* Check for and handle cretinous stabs symbol name continuation! */
252 #define STABS_CONTINUE(pp,objfile) \
253 do { \
254 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
255 *(pp) = next_symbol_text (objfile); \
256 } while (0)
257 \f
258 /* FIXME: These probably should be our own types (like rs6000_builtin_type
259 has its own types) rather than builtin_type_*. */
260 static struct type **os9k_type_vector[] =
261 {
262 0,
263 &builtin_type_int,
264 &builtin_type_char,
265 &builtin_type_long,
266 &builtin_type_short,
267 &builtin_type_unsigned_char,
268 &builtin_type_unsigned_short,
269 &builtin_type_unsigned_long,
270 &builtin_type_unsigned_int,
271 &builtin_type_float,
272 &builtin_type_double,
273 &builtin_type_void,
274 &builtin_type_long_double
275 };
276
277 static void os9k_init_type_vector (struct type **);
278
279 static void
280 os9k_init_type_vector (struct type **tv)
281 {
282 unsigned int i;
283 for (i = 0; i < sizeof (os9k_type_vector) / sizeof (struct type **); i++)
284 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
285 }
286
287 /* Look up a dbx type-number pair. Return the address of the slot
288 where the type for that number-pair is stored.
289 The number-pair is in TYPENUMS.
290
291 This can be used for finding the type associated with that pair
292 or for associating a new type with the pair. */
293
294 struct type **
295 dbx_lookup_type (int typenums[2])
296 {
297 register int filenum = typenums[0];
298 register int index = typenums[1];
299 unsigned old_len;
300 register int real_filenum;
301 register struct header_file *f;
302 int f_orig_length;
303
304 if (filenum == -1) /* -1,-1 is for temporary types. */
305 return 0;
306
307 if (filenum < 0 || filenum >= n_this_object_header_files)
308 {
309 static struct complaint msg =
310 {"\
311 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
312 0, 0};
313 complain (&msg, filenum, index, symnum);
314 goto error_return;
315 }
316
317 if (filenum == 0)
318 {
319 if (index < 0)
320 {
321 /* Caller wants address of address of type. We think
322 that negative (rs6k builtin) types will never appear as
323 "lvalues", (nor should they), so we stuff the real type
324 pointer into a temp, and return its address. If referenced,
325 this will do the right thing. */
326 static struct type *temp_type;
327
328 temp_type = rs6000_builtin_type (index);
329 return &temp_type;
330 }
331
332 /* Type is defined outside of header files.
333 Find it in this object file's type vector. */
334 if (index >= type_vector_length)
335 {
336 old_len = type_vector_length;
337 if (old_len == 0)
338 {
339 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
340 type_vector = (struct type **)
341 xmalloc (type_vector_length * sizeof (struct type *));
342 }
343 while (index >= type_vector_length)
344 {
345 type_vector_length *= 2;
346 }
347 type_vector = (struct type **)
348 xrealloc ((char *) type_vector,
349 (type_vector_length * sizeof (struct type *)));
350 memset (&type_vector[old_len], 0,
351 (type_vector_length - old_len) * sizeof (struct type *));
352
353 if (os9k_stabs)
354 /* Deal with OS9000 fundamental types. */
355 os9k_init_type_vector (type_vector);
356 }
357 return (&type_vector[index]);
358 }
359 else
360 {
361 real_filenum = this_object_header_files[filenum];
362
363 if (real_filenum >= N_HEADER_FILES (current_objfile))
364 {
365 struct type *temp_type;
366 struct type **temp_type_p;
367
368 warning ("GDB internal error: bad real_filenum");
369
370 error_return:
371 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
372 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
373 *temp_type_p = temp_type;
374 return temp_type_p;
375 }
376
377 f = HEADER_FILES (current_objfile) + real_filenum;
378
379 f_orig_length = f->length;
380 if (index >= f_orig_length)
381 {
382 while (index >= f->length)
383 {
384 f->length *= 2;
385 }
386 f->vector = (struct type **)
387 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
388 memset (&f->vector[f_orig_length], 0,
389 (f->length - f_orig_length) * sizeof (struct type *));
390 }
391 return (&f->vector[index]);
392 }
393 }
394
395 /* Make sure there is a type allocated for type numbers TYPENUMS
396 and return the type object.
397 This can create an empty (zeroed) type object.
398 TYPENUMS may be (-1, -1) to return a new type object that is not
399 put into the type vector, and so may not be referred to by number. */
400
401 static struct type *
402 dbx_alloc_type (int typenums[2], struct objfile *objfile)
403 {
404 register struct type **type_addr;
405
406 if (typenums[0] == -1)
407 {
408 return (alloc_type (objfile));
409 }
410
411 type_addr = dbx_lookup_type (typenums);
412
413 /* If we are referring to a type not known at all yet,
414 allocate an empty type for it.
415 We will fill it in later if we find out how. */
416 if (*type_addr == 0)
417 {
418 *type_addr = alloc_type (objfile);
419 }
420
421 return (*type_addr);
422 }
423
424 /* for all the stabs in a given stab vector, build appropriate types
425 and fix their symbols in given symbol vector. */
426
427 static void
428 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
429 struct objfile *objfile)
430 {
431 int ii;
432 char *name;
433 char *pp;
434 struct symbol *sym;
435
436 if (stabs)
437 {
438
439 /* for all the stab entries, find their corresponding symbols and
440 patch their types! */
441
442 for (ii = 0; ii < stabs->count; ++ii)
443 {
444 name = stabs->stab[ii];
445 pp = (char *) strchr (name, ':');
446 while (pp[1] == ':')
447 {
448 pp += 2;
449 pp = (char *) strchr (pp, ':');
450 }
451 sym = find_symbol_in_list (symbols, name, pp - name);
452 if (!sym)
453 {
454 /* FIXME-maybe: it would be nice if we noticed whether
455 the variable was defined *anywhere*, not just whether
456 it is defined in this compilation unit. But neither
457 xlc or GCC seem to need such a definition, and until
458 we do psymtabs (so that the minimal symbols from all
459 compilation units are available now), I'm not sure
460 how to get the information. */
461
462 /* On xcoff, if a global is defined and never referenced,
463 ld will remove it from the executable. There is then
464 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
465 sym = (struct symbol *)
466 obstack_alloc (&objfile->symbol_obstack,
467 sizeof (struct symbol));
468
469 memset (sym, 0, sizeof (struct symbol));
470 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
471 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
472 SYMBOL_NAME (sym) =
473 obsavestring (name, pp - name, &objfile->symbol_obstack);
474 pp += 2;
475 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
476 {
477 /* I don't think the linker does this with functions,
478 so as far as I know this is never executed.
479 But it doesn't hurt to check. */
480 SYMBOL_TYPE (sym) =
481 lookup_function_type (read_type (&pp, objfile));
482 }
483 else
484 {
485 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
486 }
487 add_symbol_to_list (sym, &global_symbols);
488 }
489 else
490 {
491 pp += 2;
492 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
493 {
494 SYMBOL_TYPE (sym) =
495 lookup_function_type (read_type (&pp, objfile));
496 }
497 else
498 {
499 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
500 }
501 }
502 }
503 }
504 }
505 \f
506
507 /* Read a number by which a type is referred to in dbx data,
508 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
509 Just a single number N is equivalent to (0,N).
510 Return the two numbers by storing them in the vector TYPENUMS.
511 TYPENUMS will then be used as an argument to dbx_lookup_type.
512
513 Returns 0 for success, -1 for error. */
514
515 static int
516 read_type_number (register char **pp, register int *typenums)
517 {
518 int nbits;
519 if (**pp == '(')
520 {
521 (*pp)++;
522 typenums[0] = read_huge_number (pp, ',', &nbits);
523 if (nbits != 0)
524 return -1;
525 typenums[1] = read_huge_number (pp, ')', &nbits);
526 if (nbits != 0)
527 return -1;
528 }
529 else
530 {
531 typenums[0] = 0;
532 typenums[1] = read_huge_number (pp, 0, &nbits);
533 if (nbits != 0)
534 return -1;
535 }
536 return 0;
537 }
538 \f
539
540 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
541 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
542 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
543 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
544
545 #define CFRONT_VISIBILITY_PRIVATE '2' /* Stabs character for private field */
546 #define CFRONT_VISIBILITY_PUBLIC '1' /* Stabs character for public field */
547
548 /* This code added to support parsing of ARM/Cfront stabs strings */
549
550 /* Get substring from string up to char c, advance string pointer past
551 suibstring. */
552
553 static char *
554 get_substring (char **p, int c)
555 {
556 char *str;
557 str = *p;
558 *p = strchr (*p, c);
559 if (*p)
560 {
561 **p = 0;
562 (*p)++;
563 }
564 else
565 str = 0;
566 return str;
567 }
568
569 /* Physname gets strcat'd onto sname in order to recreate the mangled
570 name (see funtion gdb_mangle_name in gdbtypes.c). For cfront, make
571 the physname look like that of g++ - take out the initial mangling
572 eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
573
574 static char *
575 get_cfront_method_physname (char *fname)
576 {
577 int len = 0;
578 /* FIXME would like to make this generic for g++ too, but
579 that is already handled in read_member_funcctions */
580 char *p = fname;
581
582 /* search ahead to find the start of the mangled suffix */
583 if (*p == '_' && *(p + 1) == '_') /* compiler generated; probably a ctor/dtor */
584 p += 2;
585 while (p && (unsigned) ((p + 1) - fname) < strlen (fname) && *(p + 1) != '_')
586 p = strchr (p, '_');
587 if (!(p && *p == '_' && *(p + 1) == '_'))
588 error ("Invalid mangled function name %s", fname);
589 p += 2; /* advance past '__' */
590
591 /* struct name length and name of type should come next; advance past it */
592 while (isdigit (*p))
593 {
594 len = len * 10 + (*p - '0');
595 p++;
596 }
597 p += len;
598
599 return p;
600 }
601
602 /* Read base classes within cfront class definition.
603 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
604 ^^^^^^^^^^^^^^^^^^
605
606 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
607 ^
608 */
609
610 static int
611 read_cfront_baseclasses (struct field_info *fip, char **pp, struct type *type,
612 struct objfile *objfile)
613 {
614 static struct complaint msg_unknown =
615 {"\
616 Unsupported token in stabs string %s.\n",
617 0, 0};
618 static struct complaint msg_notfound =
619 {"\
620 Unable to find base type for %s.\n",
621 0, 0};
622 int bnum = 0;
623 char *p;
624 int i;
625 struct nextfield *new;
626
627 if (**pp == ';') /* no base classes; return */
628 {
629 ++(*pp);
630 return 1;
631 }
632
633 /* first count base classes so we can allocate space before parsing */
634 for (p = *pp; p && *p && *p != ';'; p++)
635 {
636 if (*p == ' ')
637 bnum++;
638 }
639 bnum++; /* add one more for last one */
640
641 /* now parse the base classes until we get to the start of the methods
642 (code extracted and munged from read_baseclasses) */
643 ALLOCATE_CPLUS_STRUCT_TYPE (type);
644 TYPE_N_BASECLASSES (type) = bnum;
645
646 /* allocate space */
647 {
648 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
649 char *pointer;
650
651 pointer = (char *) TYPE_ALLOC (type, num_bytes);
652 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
653 }
654 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
655
656 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
657 {
658 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
659 make_cleanup (xfree, new);
660 memset (new, 0, sizeof (struct nextfield));
661 new->next = fip->list;
662 fip->list = new;
663 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
664
665 STABS_CONTINUE (pp, objfile);
666
667 /* virtual? eg: v2@Bvir */
668 if (**pp == 'v')
669 {
670 SET_TYPE_FIELD_VIRTUAL (type, i);
671 ++(*pp);
672 }
673
674 /* access? eg: 2@Bvir */
675 /* Note: protected inheritance not supported in cfront */
676 switch (*(*pp)++)
677 {
678 case CFRONT_VISIBILITY_PRIVATE:
679 new->visibility = VISIBILITY_PRIVATE;
680 break;
681 case CFRONT_VISIBILITY_PUBLIC:
682 new->visibility = VISIBILITY_PUBLIC;
683 break;
684 default:
685 /* Bad visibility format. Complain and treat it as
686 public. */
687 {
688 static struct complaint msg =
689 {
690 "Unknown visibility `%c' for baseclass", 0, 0};
691 complain (&msg, new->visibility);
692 new->visibility = VISIBILITY_PUBLIC;
693 }
694 }
695
696 /* "@" comes next - eg: @Bvir */
697 if (**pp != '@')
698 {
699 complain (&msg_unknown, *pp);
700 return 1;
701 }
702 ++(*pp);
703
704
705 /* Set the bit offset of the portion of the object corresponding
706 to this baseclass. Always zero in the absence of
707 multiple inheritance. */
708 /* Unable to read bit position from stabs;
709 Assuming no multiple inheritance for now FIXME! */
710 /* We may have read this in the structure definition;
711 now we should fixup the members to be the actual base classes */
712 FIELD_BITPOS (new->field) = 0;
713
714 /* Get the base class name and type */
715 {
716 char *bname; /* base class name */
717 struct symbol *bsym; /* base class */
718 char *p1, *p2;
719 p1 = strchr (*pp, ' ');
720 p2 = strchr (*pp, ';');
721 if (p1 < p2)
722 bname = get_substring (pp, ' ');
723 else
724 bname = get_substring (pp, ';');
725 if (!bname || !*bname)
726 {
727 complain (&msg_unknown, *pp);
728 return 1;
729 }
730 /* FIXME! attach base info to type */
731 bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0); /*demangled_name */
732 if (bsym)
733 {
734 new->field.type = SYMBOL_TYPE (bsym);
735 new->field.name = type_name_no_tag (new->field.type);
736 }
737 else
738 {
739 complain (&msg_notfound, *pp);
740 return 1;
741 }
742 }
743
744 /* If more base classes to parse, loop again.
745 We ate the last ' ' or ';' in get_substring,
746 so on exit we will have skipped the trailing ';' */
747 /* if invalid, return 0; add code to detect - FIXME! */
748 }
749 return 1;
750 }
751
752 /* read cfront member functions.
753 pp points to string starting with list of functions
754 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
755 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
756 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
757 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
758 */
759
760 static int
761 read_cfront_member_functions (struct field_info *fip, char **pp,
762 struct type *type, struct objfile *objfile)
763 {
764 /* This code extracted from read_member_functions
765 so as to do the similar thing for our funcs */
766
767 int nfn_fields = 0;
768 int length = 0;
769 /* Total number of member functions defined in this class. If the class
770 defines two `f' functions, and one `g' function, then this will have
771 the value 3. */
772 int total_length = 0;
773 int i;
774 struct next_fnfield
775 {
776 struct next_fnfield *next;
777 struct fn_field fn_field;
778 }
779 *sublist;
780 struct type *look_ahead_type;
781 struct next_fnfieldlist *new_fnlist;
782 struct next_fnfield *new_sublist;
783 char *main_fn_name;
784 char *fname;
785 struct symbol *ref_func = 0;
786
787 /* Process each list until we find the end of the member functions.
788 eg: p = "__ct__1AFv foo__1AFv ;;;" */
789
790 STABS_CONTINUE (pp, objfile); /* handle \\ */
791
792 while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
793 {
794 int is_static = 0;
795 int sublist_count = 0;
796 char *pname;
797 if (fname[0] == '*') /* static member */
798 {
799 is_static = 1;
800 sublist_count++;
801 fname++;
802 }
803 ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0); /* demangled name */
804 if (!ref_func)
805 {
806 static struct complaint msg =
807 {"\
808 Unable to find function symbol for %s\n",
809 0, 0};
810 complain (&msg, fname);
811 continue;
812 }
813 sublist = NULL;
814 look_ahead_type = NULL;
815 length = 0;
816
817 new_fnlist = (struct next_fnfieldlist *)
818 xmalloc (sizeof (struct next_fnfieldlist));
819 make_cleanup (xfree, new_fnlist);
820 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
821
822 /* The following is code to work around cfront generated stabs.
823 The stabs contains full mangled name for each field.
824 We try to demangle the name and extract the field name out of it. */
825 {
826 char *dem, *dem_p, *dem_args;
827 int dem_len;
828 dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
829 if (dem != NULL)
830 {
831 dem_p = strrchr (dem, ':');
832 if (dem_p != 0 && *(dem_p - 1) == ':')
833 dem_p++;
834 /* get rid of args */
835 dem_args = strchr (dem_p, '(');
836 if (dem_args == NULL)
837 dem_len = strlen (dem_p);
838 else
839 dem_len = dem_args - dem_p;
840 main_fn_name =
841 obsavestring (dem_p, dem_len, &objfile->type_obstack);
842 }
843 else
844 {
845 main_fn_name =
846 obsavestring (fname, strlen (fname), &objfile->type_obstack);
847 }
848 } /* end of code for cfront work around */
849
850 new_fnlist->fn_fieldlist.name = main_fn_name;
851
852 /*-------------------------------------------------*/
853 /* Set up the sublists
854 Sublists are stuff like args, static, visibility, etc.
855 so in ARM, we have to set that info some other way.
856 Multiple sublists happen if overloading
857 eg: foo::26=##1;:;2A.;
858 In g++, we'd loop here thru all the sublists... */
859
860 new_sublist =
861 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
862 make_cleanup (xfree, new_sublist);
863 memset (new_sublist, 0, sizeof (struct next_fnfield));
864
865 /* eat 1; from :;2A.; */
866 new_sublist->fn_field.type = SYMBOL_TYPE (ref_func); /* normally takes a read_type */
867 /* Make this type look like a method stub for gdb */
868 TYPE_FLAGS (new_sublist->fn_field.type) |= TYPE_FLAG_STUB;
869 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
870
871 /* If this is just a stub, then we don't have the real name here. */
872 if (TYPE_STUB (new_sublist->fn_field.type))
873 {
874 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
875 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
876 new_sublist->fn_field.is_stub = 1;
877 }
878
879 /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
880 physname gets strcat'd in order to recreate the onto mangled name */
881 pname = get_cfront_method_physname (fname);
882 new_sublist->fn_field.physname = savestring (pname, strlen (pname));
883
884
885 /* Set this member function's visibility fields.
886 Unable to distinguish access from stabs definition!
887 Assuming public for now. FIXME!
888 (for private, set new_sublist->fn_field.is_private = 1,
889 for public, set new_sublist->fn_field.is_protected = 1) */
890
891 /* Unable to distinguish const/volatile from stabs definition!
892 Assuming normal for now. FIXME! */
893
894 new_sublist->fn_field.is_const = 0;
895 new_sublist->fn_field.is_volatile = 0; /* volatile not implemented in cfront */
896
897 /* Set virtual/static function info
898 How to get vtable offsets ?
899 Assuming normal for now FIXME!!
900 For vtables, figure out from whence this virtual function came.
901 It may belong to virtual function table of
902 one of its baseclasses.
903 set:
904 new_sublist -> fn_field.voffset = vtable offset,
905 new_sublist -> fn_field.fcontext = look_ahead_type;
906 where look_ahead_type is type of baseclass */
907 if (is_static)
908 new_sublist->fn_field.voffset = VOFFSET_STATIC;
909 else /* normal member function. */
910 new_sublist->fn_field.voffset = 0;
911 new_sublist->fn_field.fcontext = 0;
912
913
914 /* Prepare new sublist */
915 new_sublist->next = sublist;
916 sublist = new_sublist;
917 length++;
918
919 /* In g++, we loop thu sublists - now we set from functions. */
920 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
921 obstack_alloc (&objfile->type_obstack,
922 sizeof (struct fn_field) * length);
923 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
924 sizeof (struct fn_field) * length);
925 for (i = length; (i--, sublist); sublist = sublist->next)
926 {
927 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
928 }
929
930 new_fnlist->fn_fieldlist.length = length;
931 new_fnlist->next = fip->fnlist;
932 fip->fnlist = new_fnlist;
933 nfn_fields++;
934 total_length += length;
935 STABS_CONTINUE (pp, objfile); /* handle \\ */
936 } /* end of loop */
937
938 if (nfn_fields)
939 {
940 /* type should already have space */
941 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
942 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
943 memset (TYPE_FN_FIELDLISTS (type), 0,
944 sizeof (struct fn_fieldlist) * nfn_fields);
945 TYPE_NFN_FIELDS (type) = nfn_fields;
946 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
947 }
948
949 /* end of scope for reading member func */
950
951 /* eg: ";;" */
952
953 /* Skip trailing ';' and bump count of number of fields seen */
954 if (**pp == ';')
955 (*pp)++;
956 else
957 return 0;
958 return 1;
959 }
960
961 /* This routine fixes up partial cfront types that were created
962 while parsing the stabs. The main need for this function is
963 to add information such as methods to classes.
964 Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
965 int
966 resolve_cfront_continuation (struct objfile *objfile, struct symbol *sym,
967 char *p)
968 {
969 struct symbol *ref_sym = 0;
970 char *sname;
971 /* snarfed from read_struct_type */
972 struct field_info fi;
973 struct type *type;
974 struct cleanup *back_to;
975
976 /* Need to make sure that fi isn't gunna conflict with struct
977 in case struct already had some fnfs */
978 fi.list = NULL;
979 fi.fnlist = NULL;
980 back_to = make_cleanup (null_cleanup, 0);
981
982 /* We only accept structs, classes and unions at the moment.
983 Other continuation types include t (typedef), r (long dbl), ...
984 We may want to add support for them as well;
985 right now they are handled by duplicating the symbol information
986 into the type information (see define_symbol) */
987 if (*p != 's' /* structs */
988 && *p != 'c' /* class */
989 && *p != 'u') /* union */
990 return 0; /* only handle C++ types */
991 p++;
992
993 /* Get symbol typs name and validate
994 eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
995 sname = get_substring (&p, ';');
996 if (!sname || strcmp (sname, SYMBOL_NAME (sym)))
997 error ("Internal error: base symbol type name does not match\n");
998
999 /* Find symbol's internal gdb reference using demangled_name.
1000 This is the real sym that we want;
1001 sym was a temp hack to make debugger happy */
1002 ref_sym = lookup_symbol (SYMBOL_NAME (sym), 0, STRUCT_NAMESPACE, 0, 0);
1003 type = SYMBOL_TYPE (ref_sym);
1004
1005
1006 /* Now read the baseclasses, if any, read the regular C struct or C++
1007 class member fields, attach the fields to the type, read the C++
1008 member functions, attach them to the type, and then read any tilde
1009 field (baseclass specifier for the class holding the main vtable). */
1010
1011 if (!read_cfront_baseclasses (&fi, &p, type, objfile)
1012 /* g++ does this next, but cfront already did this:
1013 || !read_struct_fields (&fi, &p, type, objfile) */
1014 || !copy_cfront_struct_fields (&fi, type, objfile)
1015 || !read_cfront_member_functions (&fi, &p, type, objfile)
1016 || !read_cfront_static_fields (&fi, &p, type, objfile)
1017 || !attach_fields_to_type (&fi, type, objfile)
1018 || !attach_fn_fields_to_type (&fi, type)
1019 /* g++ does this next, but cfront doesn't seem to have this:
1020 || !read_tilde_fields (&fi, &p, type, objfile) */
1021 )
1022 {
1023 type = error_type (&p, objfile);
1024 }
1025
1026 do_cleanups (back_to);
1027 return 0;
1028 }
1029 /* End of code added to support parsing of ARM/Cfront stabs strings */
1030
1031
1032 /* This routine fixes up symbol references/aliases to point to the original
1033 symbol definition. Returns 0 on failure, non-zero on success. */
1034
1035 static int
1036 resolve_symbol_reference (struct objfile *objfile, struct symbol *sym, char *p)
1037 {
1038 int refnum;
1039 struct symbol *ref_sym = 0;
1040 struct alias_list *alias;
1041
1042 /* If this is not a symbol reference return now. */
1043 if (*p != '#')
1044 return 0;
1045
1046 /* Use "#<num>" as the name; we'll fix the name later.
1047 We stored the original symbol name as "#<id>=<name>"
1048 so we can now search for "#<id>" to resolving the reference.
1049 We'll fix the names later by removing the "#<id>" or "#<id>=" */
1050
1051 /*---------------------------------------------------------*/
1052 /* Get the reference id number, and
1053 advance p past the names so we can parse the rest.
1054 eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
1055 /*---------------------------------------------------------*/
1056
1057 /* This gets reference name from string. sym may not have a name. */
1058
1059 /* Get the reference number associated with the reference id in the
1060 gdb stab string. From that reference number, get the main/primary
1061 symbol for this alias. */
1062 refnum = process_reference (&p);
1063 ref_sym = ref_search (refnum);
1064 if (!ref_sym)
1065 {
1066 complain (&lrs_general_complaint, "symbol for reference not found");
1067 return 0;
1068 }
1069
1070 /* Parse the stab of the referencing symbol
1071 now that we have the referenced symbol.
1072 Add it as a new symbol and a link back to the referenced symbol.
1073 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1074
1075
1076 /* If the stab symbol table and string contain:
1077 RSYM 0 5 00000000 868 #15=z:r(0,1)
1078 LBRAC 0 0 00000000 899 #5=
1079 SLINE 0 16 00000003 923 #6=
1080 Then the same symbols can be later referenced by:
1081 RSYM 0 5 00000000 927 #15:r(0,1);l(#5,#6)
1082 This is used in live range splitting to:
1083 1) specify that a symbol (#15) is actually just a new storage
1084 class for a symbol (#15=z) which was previously defined.
1085 2) specify that the beginning and ending ranges for a symbol
1086 (#15) are the values of the beginning (#5) and ending (#6)
1087 symbols. */
1088
1089 /* Read number as reference id.
1090 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1091 /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
1092 in case of "l(0,0)"? */
1093
1094 /*--------------------------------------------------*/
1095 /* Add this symbol to the reference list. */
1096 /*--------------------------------------------------*/
1097
1098 alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
1099 sizeof (struct alias_list));
1100 if (!alias)
1101 {
1102 complain (&lrs_general_complaint, "Unable to allocate alias list memory");
1103 return 0;
1104 }
1105
1106 alias->next = 0;
1107 alias->sym = sym;
1108
1109 if (!SYMBOL_ALIASES (ref_sym))
1110 {
1111 SYMBOL_ALIASES (ref_sym) = alias;
1112 }
1113 else
1114 {
1115 struct alias_list *temp;
1116
1117 /* Get to the end of the list. */
1118 for (temp = SYMBOL_ALIASES (ref_sym);
1119 temp->next;
1120 temp = temp->next)
1121 ;
1122 temp->next = alias;
1123 }
1124
1125 /* Want to fix up name so that other functions (eg. valops)
1126 will correctly print the name.
1127 Don't add_symbol_to_list so that lookup_symbol won't find it.
1128 nope... needed for fixups. */
1129 SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
1130
1131 /* Done! */
1132 return 1;
1133 }
1134
1135 /* Structure for storing pointers to reference definitions for fast lookup
1136 during "process_later". */
1137
1138 struct ref_map
1139 {
1140 char *stabs;
1141 CORE_ADDR value;
1142 struct symbol *sym;
1143 };
1144
1145 #define MAX_CHUNK_REFS 100
1146 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
1147 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
1148
1149 static struct ref_map *ref_map;
1150
1151 /* Ptr to free cell in chunk's linked list. */
1152 static int ref_count = 0;
1153
1154 /* Number of chunks malloced. */
1155 static int ref_chunk = 0;
1156
1157 /* This file maintains a cache of stabs aliases found in the symbol
1158 table. If the symbol table changes, this cache must be cleared
1159 or we are left holding onto data in invalid obstacks. */
1160 void
1161 stabsread_clear_cache (void)
1162 {
1163 ref_count = 0;
1164 ref_chunk = 0;
1165 }
1166
1167 /* Create array of pointers mapping refids to symbols and stab strings.
1168 Add pointers to reference definition symbols and/or their values as we
1169 find them, using their reference numbers as our index.
1170 These will be used later when we resolve references. */
1171 void
1172 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
1173 {
1174 if (ref_count == 0)
1175 ref_chunk = 0;
1176 if (refnum >= ref_count)
1177 ref_count = refnum + 1;
1178 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
1179 {
1180 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
1181 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
1182 ref_map = (struct ref_map *)
1183 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
1184 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
1185 ref_chunk += new_chunks;
1186 }
1187 ref_map[refnum].stabs = stabs;
1188 ref_map[refnum].sym = sym;
1189 ref_map[refnum].value = value;
1190 }
1191
1192 /* Return defined sym for the reference REFNUM. */
1193 struct symbol *
1194 ref_search (int refnum)
1195 {
1196 if (refnum < 0 || refnum > ref_count)
1197 return 0;
1198 return ref_map[refnum].sym;
1199 }
1200
1201 /* Return value for the reference REFNUM. */
1202
1203 static CORE_ADDR
1204 ref_search_value (int refnum)
1205 {
1206 if (refnum < 0 || refnum > ref_count)
1207 return 0;
1208 return ref_map[refnum].value;
1209 }
1210
1211 /* Parse a reference id in STRING and return the resulting
1212 reference number. Move STRING beyond the reference id. */
1213
1214 static int
1215 process_reference (char **string)
1216 {
1217 char *p;
1218 int refnum = 0;
1219
1220 if (**string != '#')
1221 return 0;
1222
1223 /* Advance beyond the initial '#'. */
1224 p = *string + 1;
1225
1226 /* Read number as reference id. */
1227 while (*p && isdigit (*p))
1228 {
1229 refnum = refnum * 10 + *p - '0';
1230 p++;
1231 }
1232 *string = p;
1233 return refnum;
1234 }
1235
1236 /* If STRING defines a reference, store away a pointer to the reference
1237 definition for later use. Return the reference number. */
1238
1239 int
1240 symbol_reference_defined (char **string)
1241 {
1242 char *p = *string;
1243 int refnum = 0;
1244
1245 refnum = process_reference (&p);
1246
1247 /* Defining symbols end in '=' */
1248 if (*p == '=')
1249 {
1250 /* Symbol is being defined here. */
1251 *string = p + 1;
1252 return refnum;
1253 }
1254 else
1255 {
1256 /* Must be a reference. Either the symbol has already been defined,
1257 or this is a forward reference to it. */
1258 *string = p;
1259 return -1;
1260 }
1261 }
1262
1263 /* ARGSUSED */
1264 struct symbol *
1265 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
1266 struct objfile *objfile)
1267 {
1268 register struct symbol *sym;
1269 char *p = (char *) strchr (string, ':');
1270 int deftype;
1271 int synonym = 0;
1272 register int i;
1273
1274 /* We would like to eliminate nameless symbols, but keep their types.
1275 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1276 to type 2, but, should not create a symbol to address that type. Since
1277 the symbol will be nameless, there is no way any user can refer to it. */
1278
1279 int nameless;
1280
1281 /* Ignore syms with empty names. */
1282 if (string[0] == 0)
1283 return 0;
1284
1285 /* Ignore old-style symbols from cc -go */
1286 if (p == 0)
1287 return 0;
1288
1289 while (p[1] == ':')
1290 {
1291 p += 2;
1292 p = strchr (p, ':');
1293 }
1294
1295 /* If a nameless stab entry, all we need is the type, not the symbol.
1296 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
1297 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
1298
1299 current_symbol = sym = (struct symbol *)
1300 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1301 memset (sym, 0, sizeof (struct symbol));
1302
1303 switch (type & N_TYPE)
1304 {
1305 case N_TEXT:
1306 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
1307 break;
1308 case N_DATA:
1309 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
1310 break;
1311 case N_BSS:
1312 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
1313 break;
1314 }
1315
1316 if (processing_gcc_compilation)
1317 {
1318 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1319 number of bytes occupied by a type or object, which we ignore. */
1320 SYMBOL_LINE (sym) = desc;
1321 }
1322 else
1323 {
1324 SYMBOL_LINE (sym) = 0; /* unknown */
1325 }
1326
1327 if (is_cplus_marker (string[0]))
1328 {
1329 /* Special GNU C++ names. */
1330 switch (string[1])
1331 {
1332 case 't':
1333 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1334 &objfile->symbol_obstack);
1335 break;
1336
1337 case 'v': /* $vtbl_ptr_type */
1338 /* Was: SYMBOL_NAME (sym) = "vptr"; */
1339 goto normal;
1340
1341 case 'e':
1342 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1343 &objfile->symbol_obstack);
1344 break;
1345
1346 case '_':
1347 /* This was an anonymous type that was never fixed up. */
1348 goto normal;
1349
1350 #ifdef STATIC_TRANSFORM_NAME
1351 case 'X':
1352 /* SunPRO (3.0 at least) static variable encoding. */
1353 goto normal;
1354 #endif
1355
1356 default:
1357 complain (&unrecognized_cplus_name_complaint, string);
1358 goto normal; /* Do *something* with it */
1359 }
1360 }
1361 else if (string[0] == '#')
1362 {
1363 /* Special GNU C extension for referencing symbols. */
1364 char *s;
1365 int refnum, nlen;
1366
1367 /* If STRING defines a new reference id, then add it to the
1368 reference map. Else it must be referring to a previously
1369 defined symbol, so add it to the alias list of the previously
1370 defined symbol. */
1371 s = string;
1372 refnum = symbol_reference_defined (&s);
1373 if (refnum >= 0)
1374 ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
1375 else if (!resolve_symbol_reference (objfile, sym, string))
1376 return NULL;
1377
1378 /* S..P contains the name of the symbol. We need to store
1379 the correct name into SYMBOL_NAME. */
1380 nlen = p - s;
1381 if (refnum >= 0)
1382 {
1383 if (nlen > 0)
1384 {
1385 SYMBOL_NAME (sym) = (char *)
1386 obstack_alloc (&objfile->symbol_obstack, nlen);
1387 strncpy (SYMBOL_NAME (sym), s, nlen);
1388 SYMBOL_NAME (sym)[nlen] = '\0';
1389 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1390 }
1391 else
1392 /* FIXME! Want SYMBOL_NAME (sym) = 0;
1393 Get error if leave name 0. So give it something. */
1394 {
1395 nlen = p - string;
1396 SYMBOL_NAME (sym) = (char *)
1397 obstack_alloc (&objfile->symbol_obstack, nlen);
1398 strncpy (SYMBOL_NAME (sym), string, nlen);
1399 SYMBOL_NAME (sym)[nlen] = '\0';
1400 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1401 }
1402 }
1403 /* Advance STRING beyond the reference id. */
1404 string = s;
1405 }
1406 else
1407 {
1408 normal:
1409 SYMBOL_LANGUAGE (sym) = current_subfile->language;
1410 SYMBOL_NAME (sym) = (char *)
1411 obstack_alloc (&objfile->symbol_obstack, ((p - string) + 1));
1412 /* Open-coded memcpy--saves function call time. */
1413 /* FIXME: Does it really? Try replacing with simple strcpy and
1414 try it on an executable with a large symbol table. */
1415 /* FIXME: considering that gcc can open code memcpy anyway, I
1416 doubt it. xoxorich. */
1417 {
1418 register char *p1 = string;
1419 register char *p2 = SYMBOL_NAME (sym);
1420 while (p1 != p)
1421 {
1422 *p2++ = *p1++;
1423 }
1424 *p2++ = '\0';
1425 }
1426
1427 /* If this symbol is from a C++ compilation, then attempt to cache the
1428 demangled form for future reference. This is a typical time versus
1429 space tradeoff, that was decided in favor of time because it sped up
1430 C++ symbol lookups by a factor of about 20. */
1431
1432 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1433 }
1434 p++;
1435
1436 /* Determine the type of name being defined. */
1437 #if 0
1438 /* Getting GDB to correctly skip the symbol on an undefined symbol
1439 descriptor and not ever dump core is a very dodgy proposition if
1440 we do things this way. I say the acorn RISC machine can just
1441 fix their compiler. */
1442 /* The Acorn RISC machine's compiler can put out locals that don't
1443 start with "234=" or "(3,4)=", so assume anything other than the
1444 deftypes we know how to handle is a local. */
1445 if (!strchr ("cfFGpPrStTvVXCR", *p))
1446 #else
1447 if (isdigit (*p) || *p == '(' || *p == '-')
1448 #endif
1449 deftype = 'l';
1450 else
1451 deftype = *p++;
1452
1453 switch (deftype)
1454 {
1455 case 'c':
1456 /* c is a special case, not followed by a type-number.
1457 SYMBOL:c=iVALUE for an integer constant symbol.
1458 SYMBOL:c=rVALUE for a floating constant symbol.
1459 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1460 e.g. "b:c=e6,0" for "const b = blob1"
1461 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1462 if (*p != '=')
1463 {
1464 SYMBOL_CLASS (sym) = LOC_CONST;
1465 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1466 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1467 add_symbol_to_list (sym, &file_symbols);
1468 return sym;
1469 }
1470 ++p;
1471 switch (*p++)
1472 {
1473 case 'r':
1474 {
1475 double d = atof (p);
1476 char *dbl_valu;
1477
1478 /* FIXME-if-picky-about-floating-accuracy: Should be using
1479 target arithmetic to get the value. real.c in GCC
1480 probably has the necessary code. */
1481
1482 /* FIXME: lookup_fundamental_type is a hack. We should be
1483 creating a type especially for the type of float constants.
1484 Problem is, what type should it be?
1485
1486 Also, what should the name of this type be? Should we
1487 be using 'S' constants (see stabs.texinfo) instead? */
1488
1489 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1490 FT_DBL_PREC_FLOAT);
1491 dbl_valu = (char *)
1492 obstack_alloc (&objfile->symbol_obstack,
1493 TYPE_LENGTH (SYMBOL_TYPE (sym)));
1494 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
1495 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1496 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1497 }
1498 break;
1499 case 'i':
1500 {
1501 /* Defining integer constants this way is kind of silly,
1502 since 'e' constants allows the compiler to give not
1503 only the value, but the type as well. C has at least
1504 int, long, unsigned int, and long long as constant
1505 types; other languages probably should have at least
1506 unsigned as well as signed constants. */
1507
1508 /* We just need one int constant type for all objfiles.
1509 It doesn't depend on languages or anything (arguably its
1510 name should be a language-specific name for a type of
1511 that size, but I'm inclined to say that if the compiler
1512 wants a nice name for the type, it can use 'e'). */
1513 static struct type *int_const_type;
1514
1515 /* Yes, this is as long as a *host* int. That is because we
1516 use atoi. */
1517 if (int_const_type == NULL)
1518 int_const_type =
1519 init_type (TYPE_CODE_INT,
1520 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
1521 "integer constant",
1522 (struct objfile *) NULL);
1523 SYMBOL_TYPE (sym) = int_const_type;
1524 SYMBOL_VALUE (sym) = atoi (p);
1525 SYMBOL_CLASS (sym) = LOC_CONST;
1526 }
1527 break;
1528 case 'e':
1529 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
1530 can be represented as integral.
1531 e.g. "b:c=e6,0" for "const b = blob1"
1532 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1533 {
1534 SYMBOL_CLASS (sym) = LOC_CONST;
1535 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1536
1537 if (*p != ',')
1538 {
1539 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1540 break;
1541 }
1542 ++p;
1543
1544 /* If the value is too big to fit in an int (perhaps because
1545 it is unsigned), or something like that, we silently get
1546 a bogus value. The type and everything else about it is
1547 correct. Ideally, we should be using whatever we have
1548 available for parsing unsigned and long long values,
1549 however. */
1550 SYMBOL_VALUE (sym) = atoi (p);
1551 }
1552 break;
1553 default:
1554 {
1555 SYMBOL_CLASS (sym) = LOC_CONST;
1556 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1557 }
1558 }
1559 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1560 add_symbol_to_list (sym, &file_symbols);
1561 return sym;
1562
1563 case 'C':
1564 /* The name of a caught exception. */
1565 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1566 SYMBOL_CLASS (sym) = LOC_LABEL;
1567 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1568 SYMBOL_VALUE_ADDRESS (sym) = valu;
1569 add_symbol_to_list (sym, &local_symbols);
1570 break;
1571
1572 case 'f':
1573 /* A static function definition. */
1574 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1575 SYMBOL_CLASS (sym) = LOC_BLOCK;
1576 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1577 add_symbol_to_list (sym, &file_symbols);
1578 /* fall into process_function_types. */
1579
1580 process_function_types:
1581 /* Function result types are described as the result type in stabs.
1582 We need to convert this to the function-returning-type-X type
1583 in GDB. E.g. "int" is converted to "function returning int". */
1584 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
1585 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
1586
1587 /* All functions in C++ have prototypes. */
1588 if (SYMBOL_LANGUAGE (sym) == language_cplus)
1589 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
1590
1591 /* fall into process_prototype_types */
1592
1593 process_prototype_types:
1594 /* Sun acc puts declared types of arguments here. */
1595 if (*p == ';')
1596 {
1597 struct type *ftype = SYMBOL_TYPE (sym);
1598 int nsemi = 0;
1599 int nparams = 0;
1600 char *p1 = p;
1601
1602 /* Obtain a worst case guess for the number of arguments
1603 by counting the semicolons. */
1604 while (*p1)
1605 {
1606 if (*p1++ == ';')
1607 nsemi++;
1608 }
1609
1610 /* Allocate parameter information fields and fill them in. */
1611 TYPE_FIELDS (ftype) = (struct field *)
1612 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
1613 while (*p++ == ';')
1614 {
1615 struct type *ptype;
1616
1617 /* A type number of zero indicates the start of varargs.
1618 FIXME: GDB currently ignores vararg functions. */
1619 if (p[0] == '0' && p[1] == '\0')
1620 break;
1621 ptype = read_type (&p, objfile);
1622
1623 /* The Sun compilers mark integer arguments, which should
1624 be promoted to the width of the calling conventions, with
1625 a type which references itself. This type is turned into
1626 a TYPE_CODE_VOID type by read_type, and we have to turn
1627 it back into builtin_type_int here.
1628 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
1629 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1630 ptype = builtin_type_int;
1631 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1632 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1633 }
1634 TYPE_NFIELDS (ftype) = nparams;
1635 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
1636 }
1637 break;
1638
1639 case 'F':
1640 /* A global function definition. */
1641 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1642 SYMBOL_CLASS (sym) = LOC_BLOCK;
1643 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1644 add_symbol_to_list (sym, &global_symbols);
1645 goto process_function_types;
1646
1647 case 'G':
1648 /* For a class G (global) symbol, it appears that the
1649 value is not correct. It is necessary to search for the
1650 corresponding linker definition to find the value.
1651 These definitions appear at the end of the namelist. */
1652 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1653 SYMBOL_CLASS (sym) = LOC_STATIC;
1654 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1655 /* Don't add symbol references to global_sym_chain.
1656 Symbol references don't have valid names and wont't match up with
1657 minimal symbols when the global_sym_chain is relocated.
1658 We'll fixup symbol references when we fixup the defining symbol. */
1659 if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
1660 {
1661 i = hashname (SYMBOL_NAME (sym));
1662 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1663 global_sym_chain[i] = sym;
1664 }
1665 add_symbol_to_list (sym, &global_symbols);
1666 break;
1667
1668 /* This case is faked by a conditional above,
1669 when there is no code letter in the dbx data.
1670 Dbx data never actually contains 'l'. */
1671 case 's':
1672 case 'l':
1673 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1674 SYMBOL_CLASS (sym) = LOC_LOCAL;
1675 SYMBOL_VALUE (sym) = valu;
1676 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1677 add_symbol_to_list (sym, &local_symbols);
1678 break;
1679
1680 case 'p':
1681 if (*p == 'F')
1682 /* pF is a two-letter code that means a function parameter in Fortran.
1683 The type-number specifies the type of the return value.
1684 Translate it into a pointer-to-function type. */
1685 {
1686 p++;
1687 SYMBOL_TYPE (sym)
1688 = lookup_pointer_type
1689 (lookup_function_type (read_type (&p, objfile)));
1690 }
1691 else
1692 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1693
1694 /* Normally this is a parameter, a LOC_ARG. On the i960, it
1695 can also be a LOC_LOCAL_ARG depending on symbol type. */
1696 #ifndef DBX_PARM_SYMBOL_CLASS
1697 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
1698 #endif
1699
1700 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
1701 SYMBOL_VALUE (sym) = valu;
1702 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1703 add_symbol_to_list (sym, &local_symbols);
1704
1705 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
1706 {
1707 /* On little-endian machines, this crud is never necessary,
1708 and, if the extra bytes contain garbage, is harmful. */
1709 break;
1710 }
1711
1712 /* If it's gcc-compiled, if it says `short', believe it. */
1713 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1714 break;
1715
1716 if (!BELIEVE_PCC_PROMOTION)
1717 {
1718 /* This is the signed type which arguments get promoted to. */
1719 static struct type *pcc_promotion_type;
1720 /* This is the unsigned type which arguments get promoted to. */
1721 static struct type *pcc_unsigned_promotion_type;
1722
1723 /* Call it "int" because this is mainly C lossage. */
1724 if (pcc_promotion_type == NULL)
1725 pcc_promotion_type =
1726 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1727 0, "int", NULL);
1728
1729 if (pcc_unsigned_promotion_type == NULL)
1730 pcc_unsigned_promotion_type =
1731 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1732 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
1733
1734 if (BELIEVE_PCC_PROMOTION_TYPE)
1735 {
1736 /* This is defined on machines (e.g. sparc) where we
1737 should believe the type of a PCC 'short' argument,
1738 but shouldn't believe the address (the address is the
1739 address of the corresponding int).
1740
1741 My guess is that this correction, as opposed to
1742 changing the parameter to an 'int' (as done below,
1743 for PCC on most machines), is the right thing to do
1744 on all machines, but I don't want to risk breaking
1745 something that already works. On most PCC machines,
1746 the sparc problem doesn't come up because the calling
1747 function has to zero the top bytes (not knowing
1748 whether the called function wants an int or a short),
1749 so there is little practical difference between an
1750 int and a short (except perhaps what happens when the
1751 GDB user types "print short_arg = 0x10000;").
1752
1753 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1754 compiler actually produces the correct address (we
1755 don't need to fix it up). I made this code adapt so
1756 that it will offset the symbol if it was pointing at
1757 an int-aligned location and not otherwise. This way
1758 you can use the same gdb for 4.0.x and 4.1 systems.
1759
1760 If the parameter is shorter than an int, and is
1761 integral (e.g. char, short, or unsigned equivalent),
1762 and is claimed to be passed on an integer boundary,
1763 don't believe it! Offset the parameter's address to
1764 the tail-end of that integer. */
1765
1766 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1767 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1768 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1769 {
1770 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1771 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1772 }
1773 break;
1774 }
1775 else
1776 {
1777 /* If PCC says a parameter is a short or a char,
1778 it is really an int. */
1779 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1780 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1781 {
1782 SYMBOL_TYPE (sym) =
1783 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1784 ? pcc_unsigned_promotion_type
1785 : pcc_promotion_type;
1786 }
1787 break;
1788 }
1789 }
1790
1791 case 'P':
1792 /* acc seems to use P to declare the prototypes of functions that
1793 are referenced by this file. gdb is not prepared to deal
1794 with this extra information. FIXME, it ought to. */
1795 if (type == N_FUN)
1796 {
1797 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1798 goto process_prototype_types;
1799 }
1800 /*FALLTHROUGH */
1801
1802 case 'R':
1803 /* Parameter which is in a register. */
1804 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1805 SYMBOL_CLASS (sym) = LOC_REGPARM;
1806 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1807 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1808 {
1809 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
1810 NUM_REGS + NUM_PSEUDO_REGS,
1811 SYMBOL_SOURCE_NAME (sym));
1812 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1813 }
1814 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1815 add_symbol_to_list (sym, &local_symbols);
1816 break;
1817
1818 case 'r':
1819 /* Register variable (either global or local). */
1820 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1821 SYMBOL_CLASS (sym) = LOC_REGISTER;
1822 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1823 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1824 {
1825 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
1826 NUM_REGS + NUM_PSEUDO_REGS,
1827 SYMBOL_SOURCE_NAME (sym));
1828 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1829 }
1830 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1831 if (within_function)
1832 {
1833 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
1834 name to represent an argument passed in a register.
1835 GCC uses 'P' for the same case. So if we find such a symbol pair
1836 we combine it into one 'P' symbol. For Sun cc we need to do this
1837 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
1838 the 'p' symbol even if it never saves the argument onto the stack.
1839
1840 On most machines, we want to preserve both symbols, so that
1841 we can still get information about what is going on with the
1842 stack (VAX for computing args_printed, using stack slots instead
1843 of saved registers in backtraces, etc.).
1844
1845 Note that this code illegally combines
1846 main(argc) struct foo argc; { register struct foo argc; }
1847 but this case is considered pathological and causes a warning
1848 from a decent compiler. */
1849
1850 if (local_symbols
1851 && local_symbols->nsyms > 0
1852 #ifndef USE_REGISTER_NOT_ARG
1853 && REG_STRUCT_HAS_ADDR_P ()
1854 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1855 SYMBOL_TYPE (sym))
1856 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1857 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1858 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1859 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1860 #endif
1861 )
1862 {
1863 struct symbol *prev_sym;
1864 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1865 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1866 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1867 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME (sym)))
1868 {
1869 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1870 /* Use the type from the LOC_REGISTER; that is the type
1871 that is actually in that register. */
1872 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1873 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1874 sym = prev_sym;
1875 break;
1876 }
1877 }
1878 add_symbol_to_list (sym, &local_symbols);
1879 }
1880 else
1881 add_symbol_to_list (sym, &file_symbols);
1882 break;
1883
1884 case 'S':
1885 /* Static symbol at top level of file */
1886 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1887 SYMBOL_CLASS (sym) = LOC_STATIC;
1888 SYMBOL_VALUE_ADDRESS (sym) = valu;
1889 #ifdef STATIC_TRANSFORM_NAME
1890 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
1891 {
1892 struct minimal_symbol *msym;
1893 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1894 if (msym != NULL)
1895 {
1896 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1897 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1898 }
1899 }
1900 #endif
1901 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1902 add_symbol_to_list (sym, &file_symbols);
1903 break;
1904
1905 case 't':
1906 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1907
1908 /* For a nameless type, we don't want a create a symbol, thus we
1909 did not use `sym'. Return without further processing. */
1910 if (nameless)
1911 return NULL;
1912
1913 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1914 SYMBOL_VALUE (sym) = valu;
1915 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1916 /* C++ vagaries: we may have a type which is derived from
1917 a base type which did not have its name defined when the
1918 derived class was output. We fill in the derived class's
1919 base part member's name here in that case. */
1920 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1921 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1922 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1923 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1924 {
1925 int j;
1926 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1927 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1928 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1929 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1930 }
1931
1932 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1933 {
1934 /* gcc-2.6 or later (when using -fvtable-thunks)
1935 emits a unique named type for a vtable entry.
1936 Some gdb code depends on that specific name. */
1937 extern const char vtbl_ptr_name[];
1938
1939 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1940 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1941 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1942 {
1943 /* If we are giving a name to a type such as "pointer to
1944 foo" or "function returning foo", we better not set
1945 the TYPE_NAME. If the program contains "typedef char
1946 *caddr_t;", we don't want all variables of type char
1947 * to print as caddr_t. This is not just a
1948 consequence of GDB's type management; PCC and GCC (at
1949 least through version 2.4) both output variables of
1950 either type char * or caddr_t with the type number
1951 defined in the 't' symbol for caddr_t. If a future
1952 compiler cleans this up it GDB is not ready for it
1953 yet, but if it becomes ready we somehow need to
1954 disable this check (without breaking the PCC/GCC2.4
1955 case).
1956
1957 Sigh.
1958
1959 Fortunately, this check seems not to be necessary
1960 for anything except pointers or functions. */
1961 /* ezannoni: 2000-10-26. This seems to apply for
1962 versions of gcc older than 2.8. This was the original
1963 problem: with the following code gdb would tell that
1964 the type for name1 is caddr_t, and func is char()
1965 typedef char *caddr_t;
1966 char *name2;
1967 struct x
1968 {
1969 char *name1;
1970 } xx;
1971 char *func()
1972 {
1973 }
1974 main () {}
1975 */
1976
1977 /* Pascal accepts names for pointer types. */
1978 if (current_subfile->language == language_pascal)
1979 {
1980 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1981 }
1982 }
1983 else
1984 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1985 }
1986
1987 add_symbol_to_list (sym, &file_symbols);
1988 break;
1989
1990 case 'T':
1991 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1992 by 't' which means we are typedef'ing it as well. */
1993 synonym = *p == 't';
1994
1995 if (synonym)
1996 p++;
1997 /* The semantics of C++ state that "struct foo { ... }" also defines
1998 a typedef for "foo". Unfortunately, cfront never makes the typedef
1999 when translating C++ into C. We make the typedef here so that
2000 "ptype foo" works as expected for cfront translated code. */
2001 else if (current_subfile->language == language_cplus)
2002 synonym = 1;
2003
2004 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2005
2006 /* For a nameless type, we don't want a create a symbol, thus we
2007 did not use `sym'. Return without further processing. */
2008 if (nameless)
2009 return NULL;
2010
2011 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2012 SYMBOL_VALUE (sym) = valu;
2013 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2014 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
2015 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
2016 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2017 add_symbol_to_list (sym, &file_symbols);
2018
2019 if (synonym)
2020 {
2021 /* Clone the sym and then modify it. */
2022 register struct symbol *typedef_sym = (struct symbol *)
2023 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
2024 *typedef_sym = *sym;
2025 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
2026 SYMBOL_VALUE (typedef_sym) = valu;
2027 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
2028 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
2029 TYPE_NAME (SYMBOL_TYPE (sym))
2030 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2031 add_symbol_to_list (typedef_sym, &file_symbols);
2032 }
2033 break;
2034
2035 case 'V':
2036 /* Static symbol of local scope */
2037 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2038 SYMBOL_CLASS (sym) = LOC_STATIC;
2039 SYMBOL_VALUE_ADDRESS (sym) = valu;
2040 #ifdef STATIC_TRANSFORM_NAME
2041 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
2042 {
2043 struct minimal_symbol *msym;
2044 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
2045 if (msym != NULL)
2046 {
2047 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
2048 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
2049 }
2050 }
2051 #endif
2052 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2053 if (os9k_stabs)
2054 add_symbol_to_list (sym, &global_symbols);
2055 else
2056 add_symbol_to_list (sym, &local_symbols);
2057 break;
2058
2059 case 'v':
2060 /* Reference parameter */
2061 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2062 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2063 SYMBOL_VALUE (sym) = valu;
2064 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2065 add_symbol_to_list (sym, &local_symbols);
2066 break;
2067
2068 case 'a':
2069 /* Reference parameter which is in a register. */
2070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2071 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2072 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
2073 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
2074 {
2075 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
2076 NUM_REGS + NUM_PSEUDO_REGS,
2077 SYMBOL_SOURCE_NAME (sym));
2078 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
2079 }
2080 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2081 add_symbol_to_list (sym, &local_symbols);
2082 break;
2083
2084 case 'X':
2085 /* This is used by Sun FORTRAN for "function result value".
2086 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
2087 that Pascal uses it too, but when I tried it Pascal used
2088 "x:3" (local symbol) instead. */
2089 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2090 SYMBOL_CLASS (sym) = LOC_LOCAL;
2091 SYMBOL_VALUE (sym) = valu;
2092 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2093 add_symbol_to_list (sym, &local_symbols);
2094 break;
2095
2096 /* New code added to support cfront stabs strings.
2097 Note: case 'P' already handled above */
2098 case 'Z':
2099 /* Cfront type continuation coming up!
2100 Find the original definition and add to it.
2101 We'll have to do this for the typedef too,
2102 since we cloned the symbol to define a type in read_type.
2103 Stabs info examples:
2104 __1C :Ztl
2105 foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
2106 C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
2107 where C is the name of the class.
2108 Unfortunately, we can't lookup the original symbol yet 'cuz
2109 we haven't finished reading all the symbols.
2110 Instead, we save it for processing later */
2111 process_later (sym, p, resolve_cfront_continuation);
2112 SYMBOL_TYPE (sym) = error_type (&p, objfile); /* FIXME! change later */
2113 SYMBOL_CLASS (sym) = LOC_CONST;
2114 SYMBOL_VALUE (sym) = 0;
2115 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2116 /* Don't add to list - we'll delete it later when
2117 we add the continuation to the real sym */
2118 return sym;
2119 /* End of new code added to support cfront stabs strings */
2120
2121 default:
2122 SYMBOL_TYPE (sym) = error_type (&p, objfile);
2123 SYMBOL_CLASS (sym) = LOC_CONST;
2124 SYMBOL_VALUE (sym) = 0;
2125 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2126 add_symbol_to_list (sym, &file_symbols);
2127 break;
2128 }
2129
2130 /* When passing structures to a function, some systems sometimes pass
2131 the address in a register, not the structure itself. */
2132
2133 if (REG_STRUCT_HAS_ADDR_P ()
2134 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
2135 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
2136 {
2137 struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
2138
2139 if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
2140 || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
2141 || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
2142 || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
2143 {
2144 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
2145 LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
2146 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
2147 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2148 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
2149 and subsequent arguments on the sparc, for example). */
2150 else if (SYMBOL_CLASS (sym) == LOC_ARG)
2151 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2152 }
2153 }
2154
2155 /* Is there more to parse? For example LRS/alias information? */
2156 while (*p && *p == ';')
2157 {
2158 p++;
2159 if (*p && p[0] == 'l' && p[1] == '(')
2160 {
2161 /* GNU extensions for live range splitting may be appended to
2162 the end of the stab string. eg. "l(#1,#2);l(#3,#5)" */
2163
2164 /* Resolve the live range and add it to SYM's live range list. */
2165 if (!resolve_live_range (objfile, sym, p))
2166 return NULL;
2167
2168 /* Find end of live range info. */
2169 p = strchr (p, ')');
2170 if (!*p || *p != ')')
2171 {
2172 complain (&lrs_general_complaint, "live range format not recognized");
2173 return NULL;
2174 }
2175 p++;
2176 }
2177 }
2178 return sym;
2179 }
2180
2181 /* Add the live range found in P to the symbol SYM in objfile OBJFILE. Returns
2182 non-zero on success, zero otherwise. */
2183
2184 static int
2185 resolve_live_range (struct objfile *objfile, struct symbol *sym, char *p)
2186 {
2187 int refnum;
2188 CORE_ADDR start, end;
2189
2190 /* Sanity check the beginning of the stabs string. */
2191 if (!*p || *p != 'l')
2192 {
2193 complain (&lrs_general_complaint, "live range string 1");
2194 return 0;
2195 }
2196 p++;
2197
2198 if (!*p || *p != '(')
2199 {
2200 complain (&lrs_general_complaint, "live range string 2");
2201 return 0;
2202 }
2203 p++;
2204
2205 /* Get starting value of range and advance P past the reference id.
2206
2207 ?!? In theory, the process_reference should never fail, but we should
2208 catch that case just in case the compiler scrogged the stabs. */
2209 refnum = process_reference (&p);
2210 start = ref_search_value (refnum);
2211 if (!start)
2212 {
2213 complain (&lrs_general_complaint, "Live range symbol not found 1");
2214 return 0;
2215 }
2216
2217 if (!*p || *p != ',')
2218 {
2219 complain (&lrs_general_complaint, "live range string 3");
2220 return 0;
2221 }
2222 p++;
2223
2224 /* Get ending value of range and advance P past the reference id.
2225
2226 ?!? In theory, the process_reference should never fail, but we should
2227 catch that case just in case the compiler scrogged the stabs. */
2228 refnum = process_reference (&p);
2229 end = ref_search_value (refnum);
2230 if (!end)
2231 {
2232 complain (&lrs_general_complaint, "Live range symbol not found 2");
2233 return 0;
2234 }
2235
2236 if (!*p || *p != ')')
2237 {
2238 complain (&lrs_general_complaint, "live range string 4");
2239 return 0;
2240 }
2241
2242 /* Now that we know the bounds of the range, add it to the
2243 symbol. */
2244 add_live_range (objfile, sym, start, end);
2245
2246 return 1;
2247 }
2248
2249 /* Add a new live range defined by START and END to the symbol SYM
2250 in objfile OBJFILE. */
2251
2252 static void
2253 add_live_range (struct objfile *objfile, struct symbol *sym, CORE_ADDR start,
2254 CORE_ADDR end)
2255 {
2256 struct range_list *r, *rs;
2257
2258 if (start >= end)
2259 {
2260 complain (&lrs_general_complaint, "end of live range follows start");
2261 return;
2262 }
2263
2264 /* Alloc new live range structure. */
2265 r = (struct range_list *)
2266 obstack_alloc (&objfile->type_obstack,
2267 sizeof (struct range_list));
2268 r->start = start;
2269 r->end = end;
2270 r->next = 0;
2271
2272 /* Append this range to the symbol's range list. */
2273 if (!SYMBOL_RANGES (sym))
2274 SYMBOL_RANGES (sym) = r;
2275 else
2276 {
2277 /* Get the last range for the symbol. */
2278 for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
2279 ;
2280 rs->next = r;
2281 }
2282 }
2283 \f
2284
2285 /* Skip rest of this symbol and return an error type.
2286
2287 General notes on error recovery: error_type always skips to the
2288 end of the symbol (modulo cretinous dbx symbol name continuation).
2289 Thus code like this:
2290
2291 if (*(*pp)++ != ';')
2292 return error_type (pp, objfile);
2293
2294 is wrong because if *pp starts out pointing at '\0' (typically as the
2295 result of an earlier error), it will be incremented to point to the
2296 start of the next symbol, which might produce strange results, at least
2297 if you run off the end of the string table. Instead use
2298
2299 if (**pp != ';')
2300 return error_type (pp, objfile);
2301 ++*pp;
2302
2303 or
2304
2305 if (**pp != ';')
2306 foo = error_type (pp, objfile);
2307 else
2308 ++*pp;
2309
2310 And in case it isn't obvious, the point of all this hair is so the compiler
2311 can define new types and new syntaxes, and old versions of the
2312 debugger will be able to read the new symbol tables. */
2313
2314 static struct type *
2315 error_type (char **pp, struct objfile *objfile)
2316 {
2317 complain (&error_type_complaint);
2318 while (1)
2319 {
2320 /* Skip to end of symbol. */
2321 while (**pp != '\0')
2322 {
2323 (*pp)++;
2324 }
2325
2326 /* Check for and handle cretinous dbx symbol name continuation! */
2327 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
2328 {
2329 *pp = next_symbol_text (objfile);
2330 }
2331 else
2332 {
2333 break;
2334 }
2335 }
2336 return (builtin_type_error);
2337 }
2338 \f
2339
2340 /* Read type information or a type definition; return the type. Even
2341 though this routine accepts either type information or a type
2342 definition, the distinction is relevant--some parts of stabsread.c
2343 assume that type information starts with a digit, '-', or '(' in
2344 deciding whether to call read_type. */
2345
2346 struct type *
2347 read_type (register char **pp, struct objfile *objfile)
2348 {
2349 register struct type *type = 0;
2350 struct type *type1;
2351 int typenums[2];
2352 char type_descriptor;
2353
2354 /* Size in bits of type if specified by a type attribute, or -1 if
2355 there is no size attribute. */
2356 int type_size = -1;
2357
2358 /* Used to distinguish string and bitstring from char-array and set. */
2359 int is_string = 0;
2360
2361 /* Read type number if present. The type number may be omitted.
2362 for instance in a two-dimensional array declared with type
2363 "ar1;1;10;ar1;1;10;4". */
2364 if ((**pp >= '0' && **pp <= '9')
2365 || **pp == '('
2366 || **pp == '-')
2367 {
2368 if (read_type_number (pp, typenums) != 0)
2369 return error_type (pp, objfile);
2370
2371 /* Type is not being defined here. Either it already exists,
2372 or this is a forward reference to it. dbx_alloc_type handles
2373 both cases. */
2374 if (**pp != '=')
2375 return dbx_alloc_type (typenums, objfile);
2376
2377 /* Type is being defined here. */
2378 /* Skip the '='.
2379 Also skip the type descriptor - we get it below with (*pp)[-1]. */
2380 (*pp) += 2;
2381 }
2382 else
2383 {
2384 /* 'typenums=' not present, type is anonymous. Read and return
2385 the definition, but don't put it in the type vector. */
2386 typenums[0] = typenums[1] = -1;
2387 (*pp)++;
2388 }
2389
2390 again:
2391 type_descriptor = (*pp)[-1];
2392 switch (type_descriptor)
2393 {
2394 case 'x':
2395 {
2396 enum type_code code;
2397
2398 /* Used to index through file_symbols. */
2399 struct pending *ppt;
2400 int i;
2401
2402 /* Name including "struct", etc. */
2403 char *type_name;
2404
2405 {
2406 char *from, *to, *p, *q1, *q2;
2407
2408 /* Set the type code according to the following letter. */
2409 switch ((*pp)[0])
2410 {
2411 case 's':
2412 code = TYPE_CODE_STRUCT;
2413 break;
2414 case 'u':
2415 code = TYPE_CODE_UNION;
2416 break;
2417 case 'e':
2418 code = TYPE_CODE_ENUM;
2419 break;
2420 default:
2421 {
2422 /* Complain and keep going, so compilers can invent new
2423 cross-reference types. */
2424 static struct complaint msg =
2425 {"Unrecognized cross-reference type `%c'", 0, 0};
2426 complain (&msg, (*pp)[0]);
2427 code = TYPE_CODE_STRUCT;
2428 break;
2429 }
2430 }
2431
2432 q1 = strchr (*pp, '<');
2433 p = strchr (*pp, ':');
2434 if (p == NULL)
2435 return error_type (pp, objfile);
2436 if (q1 && p > q1 && p[1] == ':')
2437 {
2438 int nesting_level = 0;
2439 for (q2 = q1; *q2; q2++)
2440 {
2441 if (*q2 == '<')
2442 nesting_level++;
2443 else if (*q2 == '>')
2444 nesting_level--;
2445 else if (*q2 == ':' && nesting_level == 0)
2446 break;
2447 }
2448 p = q2;
2449 if (*p != ':')
2450 return error_type (pp, objfile);
2451 }
2452 to = type_name =
2453 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
2454
2455 /* Copy the name. */
2456 from = *pp + 1;
2457 while (from < p)
2458 *to++ = *from++;
2459 *to = '\0';
2460
2461 /* Set the pointer ahead of the name which we just read, and
2462 the colon. */
2463 *pp = from + 1;
2464 }
2465
2466 /* Now check to see whether the type has already been
2467 declared. This was written for arrays of cross-referenced
2468 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
2469 sure it is not necessary anymore. But it might be a good
2470 idea, to save a little memory. */
2471
2472 for (ppt = file_symbols; ppt; ppt = ppt->next)
2473 for (i = 0; i < ppt->nsyms; i++)
2474 {
2475 struct symbol *sym = ppt->symbol[i];
2476
2477 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2478 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
2479 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
2480 && STREQ (SYMBOL_NAME (sym), type_name))
2481 {
2482 obstack_free (&objfile->type_obstack, type_name);
2483 type = SYMBOL_TYPE (sym);
2484 return type;
2485 }
2486 }
2487
2488 /* Didn't find the type to which this refers, so we must
2489 be dealing with a forward reference. Allocate a type
2490 structure for it, and keep track of it so we can
2491 fill in the rest of the fields when we get the full
2492 type. */
2493 type = dbx_alloc_type (typenums, objfile);
2494 TYPE_CODE (type) = code;
2495 TYPE_TAG_NAME (type) = type_name;
2496 INIT_CPLUS_SPECIFIC (type);
2497 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
2498
2499 add_undefined_type (type);
2500 return type;
2501 }
2502
2503 case '-': /* RS/6000 built-in type */
2504 case '0':
2505 case '1':
2506 case '2':
2507 case '3':
2508 case '4':
2509 case '5':
2510 case '6':
2511 case '7':
2512 case '8':
2513 case '9':
2514 case '(':
2515 (*pp)--;
2516
2517 /* We deal with something like t(1,2)=(3,4)=... which
2518 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
2519
2520 /* Allocate and enter the typedef type first.
2521 This handles recursive types. */
2522 type = dbx_alloc_type (typenums, objfile);
2523 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
2524 {
2525 struct type *xtype = read_type (pp, objfile);
2526 if (type == xtype)
2527 {
2528 /* It's being defined as itself. That means it is "void". */
2529 TYPE_CODE (type) = TYPE_CODE_VOID;
2530 TYPE_LENGTH (type) = 1;
2531 }
2532 else if (type_size >= 0 || is_string)
2533 {
2534 /* This is the absolute wrong way to construct types. Every
2535 other debug format has found a way around this problem and
2536 the related problems with unnecessarily stubbed types;
2537 someone motivated should attempt to clean up the issue
2538 here as well. Once a type pointed to has been created it
2539 should not be modified. */
2540 replace_type (type, xtype);
2541 TYPE_NAME (type) = NULL;
2542 TYPE_TAG_NAME (type) = NULL;
2543 }
2544 else
2545 {
2546 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2547 TYPE_TARGET_TYPE (type) = xtype;
2548 }
2549 }
2550 break;
2551
2552 /* In the following types, we must be sure to overwrite any existing
2553 type that the typenums refer to, rather than allocating a new one
2554 and making the typenums point to the new one. This is because there
2555 may already be pointers to the existing type (if it had been
2556 forward-referenced), and we must change it to a pointer, function,
2557 reference, or whatever, *in-place*. */
2558
2559 case '*':
2560 type1 = read_type (pp, objfile);
2561 type = make_pointer_type (type1, dbx_lookup_type (typenums));
2562 break;
2563
2564 case '&': /* Reference to another type */
2565 type1 = read_type (pp, objfile);
2566 type = make_reference_type (type1, dbx_lookup_type (typenums));
2567 break;
2568
2569 case 'f': /* Function returning another type */
2570 if (os9k_stabs && **pp == '(')
2571 {
2572 /* Function prototype; parse it.
2573 We must conditionalize this on os9k_stabs because otherwise
2574 it could be confused with a Sun-style (1,3) typenumber
2575 (I think). */
2576 struct type *t;
2577 ++*pp;
2578 while (**pp != ')')
2579 {
2580 t = read_type (pp, objfile);
2581 if (**pp == ',')
2582 ++ * pp;
2583 }
2584 }
2585 type1 = read_type (pp, objfile);
2586 type = make_function_type (type1, dbx_lookup_type (typenums));
2587 break;
2588
2589 case 'g': /* Prototyped function. (Sun) */
2590 {
2591 /* Unresolved questions:
2592
2593 - According to Sun's ``STABS Interface Manual'', for 'f'
2594 and 'F' symbol descriptors, a `0' in the argument type list
2595 indicates a varargs function. But it doesn't say how 'g'
2596 type descriptors represent that info. Someone with access
2597 to Sun's toolchain should try it out.
2598
2599 - According to the comment in define_symbol (search for
2600 `process_prototype_types:'), Sun emits integer arguments as
2601 types which ref themselves --- like `void' types. Do we
2602 have to deal with that here, too? Again, someone with
2603 access to Sun's toolchain should try it out and let us
2604 know. */
2605
2606 const char *type_start = (*pp) - 1;
2607 struct type *return_type = read_type (pp, objfile);
2608 struct type *func_type
2609 = make_function_type (return_type, dbx_lookup_type (typenums));
2610 struct type_list {
2611 struct type *type;
2612 struct type_list *next;
2613 } *arg_types = 0;
2614 int num_args = 0;
2615
2616 while (**pp && **pp != '#')
2617 {
2618 struct type *arg_type = read_type (pp, objfile);
2619 struct type_list *new = alloca (sizeof (*new));
2620 new->type = arg_type;
2621 new->next = arg_types;
2622 arg_types = new;
2623 num_args++;
2624 }
2625 if (**pp == '#')
2626 ++*pp;
2627 else
2628 {
2629 static struct complaint msg = {
2630 "Prototyped function type didn't end arguments with `#':\n%s",
2631 0, 0
2632 };
2633 complain (&msg, type_start);
2634 }
2635
2636 /* If there is just one argument whose type is `void', then
2637 that's just an empty argument list. */
2638 if (arg_types
2639 && ! arg_types->next
2640 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
2641 num_args = 0;
2642
2643 TYPE_FIELDS (func_type)
2644 = (struct field *) TYPE_ALLOC (func_type,
2645 num_args * sizeof (struct field));
2646 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
2647 {
2648 int i;
2649 struct type_list *t;
2650
2651 /* We stuck each argument type onto the front of the list
2652 when we read it, so the list is reversed. Build the
2653 fields array right-to-left. */
2654 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
2655 TYPE_FIELD_TYPE (func_type, i) = t->type;
2656 }
2657 TYPE_NFIELDS (func_type) = num_args;
2658 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
2659
2660 type = func_type;
2661 break;
2662 }
2663
2664 case 'k': /* Const qualifier on some type (Sun) */
2665 case 'c': /* Const qualifier on some type (OS9000) */
2666 /* Because 'c' means other things to AIX and 'k' is perfectly good,
2667 only accept 'c' in the os9k_stabs case. */
2668 if (type_descriptor == 'c' && !os9k_stabs)
2669 return error_type (pp, objfile);
2670 type = read_type (pp, objfile);
2671 type = make_cv_type (1, TYPE_VOLATILE (type), type,
2672 dbx_lookup_type (typenums));
2673 break;
2674
2675 case 'B': /* Volatile qual on some type (Sun) */
2676 case 'i': /* Volatile qual on some type (OS9000) */
2677 /* Because 'i' means other things to AIX and 'B' is perfectly good,
2678 only accept 'i' in the os9k_stabs case. */
2679 if (type_descriptor == 'i' && !os9k_stabs)
2680 return error_type (pp, objfile);
2681 type = read_type (pp, objfile);
2682 type = make_cv_type (TYPE_CONST (type), 1, type,
2683 dbx_lookup_type (typenums));
2684 break;
2685
2686 case '@':
2687 if (isdigit (**pp) || **pp == '(' || **pp == '-')
2688 { /* Member (class & variable) type */
2689 /* FIXME -- we should be doing smash_to_XXX types here. */
2690
2691 struct type *domain = read_type (pp, objfile);
2692 struct type *memtype;
2693
2694 if (**pp != ',')
2695 /* Invalid member type data format. */
2696 return error_type (pp, objfile);
2697 ++*pp;
2698
2699 memtype = read_type (pp, objfile);
2700 type = dbx_alloc_type (typenums, objfile);
2701 smash_to_member_type (type, domain, memtype);
2702 }
2703 else
2704 /* type attribute */
2705 {
2706 char *attr = *pp;
2707 /* Skip to the semicolon. */
2708 while (**pp != ';' && **pp != '\0')
2709 ++(*pp);
2710 if (**pp == '\0')
2711 return error_type (pp, objfile);
2712 else
2713 ++ * pp; /* Skip the semicolon. */
2714
2715 switch (*attr)
2716 {
2717 case 's':
2718 type_size = atoi (attr + 1);
2719 if (type_size <= 0)
2720 type_size = -1;
2721 break;
2722
2723 case 'S':
2724 is_string = 1;
2725 break;
2726
2727 default:
2728 /* Ignore unrecognized type attributes, so future compilers
2729 can invent new ones. */
2730 break;
2731 }
2732 ++*pp;
2733 goto again;
2734 }
2735 break;
2736
2737 case '#': /* Method (class & fn) type */
2738 if ((*pp)[0] == '#')
2739 {
2740 /* We'll get the parameter types from the name. */
2741 struct type *return_type;
2742
2743 (*pp)++;
2744 return_type = read_type (pp, objfile);
2745 if (*(*pp)++ != ';')
2746 complain (&invalid_member_complaint, symnum);
2747 type = allocate_stub_method (return_type);
2748 if (typenums[0] != -1)
2749 *dbx_lookup_type (typenums) = type;
2750 }
2751 else
2752 {
2753 struct type *domain = read_type (pp, objfile);
2754 struct type *return_type;
2755 struct type **args;
2756
2757 if (**pp != ',')
2758 /* Invalid member type data format. */
2759 return error_type (pp, objfile);
2760 else
2761 ++(*pp);
2762
2763 return_type = read_type (pp, objfile);
2764 args = read_args (pp, ';', objfile);
2765 type = dbx_alloc_type (typenums, objfile);
2766 smash_to_method_type (type, domain, return_type, args);
2767 }
2768 break;
2769
2770 case 'r': /* Range type */
2771 type = read_range_type (pp, typenums, objfile);
2772 if (typenums[0] != -1)
2773 *dbx_lookup_type (typenums) = type;
2774 break;
2775
2776 case 'b':
2777 if (os9k_stabs)
2778 /* Const and volatile qualified type. */
2779 type = read_type (pp, objfile);
2780 else
2781 {
2782 /* Sun ACC builtin int type */
2783 type = read_sun_builtin_type (pp, typenums, objfile);
2784 if (typenums[0] != -1)
2785 *dbx_lookup_type (typenums) = type;
2786 }
2787 break;
2788
2789 case 'R': /* Sun ACC builtin float type */
2790 type = read_sun_floating_type (pp, typenums, objfile);
2791 if (typenums[0] != -1)
2792 *dbx_lookup_type (typenums) = type;
2793 break;
2794
2795 case 'e': /* Enumeration type */
2796 type = dbx_alloc_type (typenums, objfile);
2797 type = read_enum_type (pp, type, objfile);
2798 if (typenums[0] != -1)
2799 *dbx_lookup_type (typenums) = type;
2800 break;
2801
2802 case 's': /* Struct type */
2803 case 'u': /* Union type */
2804 type = dbx_alloc_type (typenums, objfile);
2805 switch (type_descriptor)
2806 {
2807 case 's':
2808 TYPE_CODE (type) = TYPE_CODE_STRUCT;
2809 break;
2810 case 'u':
2811 TYPE_CODE (type) = TYPE_CODE_UNION;
2812 break;
2813 }
2814 type = read_struct_type (pp, type, objfile);
2815 break;
2816
2817 case 'a': /* Array type */
2818 if (**pp != 'r')
2819 return error_type (pp, objfile);
2820 ++*pp;
2821
2822 type = dbx_alloc_type (typenums, objfile);
2823 type = read_array_type (pp, type, objfile);
2824 if (is_string)
2825 TYPE_CODE (type) = TYPE_CODE_STRING;
2826 break;
2827
2828 case 'S':
2829 type1 = read_type (pp, objfile);
2830 type = create_set_type ((struct type *) NULL, type1);
2831 if (is_string)
2832 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2833 if (typenums[0] != -1)
2834 *dbx_lookup_type (typenums) = type;
2835 break;
2836
2837 default:
2838 --*pp; /* Go back to the symbol in error */
2839 /* Particularly important if it was \0! */
2840 return error_type (pp, objfile);
2841 }
2842
2843 if (type == 0)
2844 {
2845 warning ("GDB internal error, type is NULL in stabsread.c\n");
2846 return error_type (pp, objfile);
2847 }
2848
2849 /* Size specified in a type attribute overrides any other size. */
2850 if (type_size != -1)
2851 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2852
2853 return type;
2854 }
2855 \f
2856 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2857 Return the proper type node for a given builtin type number. */
2858
2859 static struct type *
2860 rs6000_builtin_type (int typenum)
2861 {
2862 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2863 #define NUMBER_RECOGNIZED 34
2864 /* This includes an empty slot for type number -0. */
2865 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
2866 struct type *rettype = NULL;
2867
2868 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2869 {
2870 complain (&rs6000_builtin_complaint, typenum);
2871 return builtin_type_error;
2872 }
2873 if (negative_types[-typenum] != NULL)
2874 return negative_types[-typenum];
2875
2876 #if TARGET_CHAR_BIT != 8
2877 #error This code wrong for TARGET_CHAR_BIT not 8
2878 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2879 that if that ever becomes not true, the correct fix will be to
2880 make the size in the struct type to be in bits, not in units of
2881 TARGET_CHAR_BIT. */
2882 #endif
2883
2884 switch (-typenum)
2885 {
2886 case 1:
2887 /* The size of this and all the other types are fixed, defined
2888 by the debugging format. If there is a type called "int" which
2889 is other than 32 bits, then it should use a new negative type
2890 number (or avoid negative type numbers for that case).
2891 See stabs.texinfo. */
2892 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
2893 break;
2894 case 2:
2895 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
2896 break;
2897 case 3:
2898 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2899 break;
2900 case 4:
2901 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2902 break;
2903 case 5:
2904 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2905 "unsigned char", NULL);
2906 break;
2907 case 6:
2908 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2909 break;
2910 case 7:
2911 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2912 "unsigned short", NULL);
2913 break;
2914 case 8:
2915 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2916 "unsigned int", NULL);
2917 break;
2918 case 9:
2919 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2920 "unsigned", NULL);
2921 case 10:
2922 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2923 "unsigned long", NULL);
2924 break;
2925 case 11:
2926 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2927 break;
2928 case 12:
2929 /* IEEE single precision (32 bit). */
2930 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2931 break;
2932 case 13:
2933 /* IEEE double precision (64 bit). */
2934 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2935 break;
2936 case 14:
2937 /* This is an IEEE double on the RS/6000, and different machines with
2938 different sizes for "long double" should use different negative
2939 type numbers. See stabs.texinfo. */
2940 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2941 break;
2942 case 15:
2943 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2944 break;
2945 case 16:
2946 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2947 "boolean", NULL);
2948 break;
2949 case 17:
2950 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2951 break;
2952 case 18:
2953 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2954 break;
2955 case 19:
2956 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2957 break;
2958 case 20:
2959 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2960 "character", NULL);
2961 break;
2962 case 21:
2963 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2964 "logical*1", NULL);
2965 break;
2966 case 22:
2967 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2968 "logical*2", NULL);
2969 break;
2970 case 23:
2971 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2972 "logical*4", NULL);
2973 break;
2974 case 24:
2975 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2976 "logical", NULL);
2977 break;
2978 case 25:
2979 /* Complex type consisting of two IEEE single precision values. */
2980 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2981 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2982 NULL);
2983 break;
2984 case 26:
2985 /* Complex type consisting of two IEEE double precision values. */
2986 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2987 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2988 NULL);
2989 break;
2990 case 27:
2991 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2992 break;
2993 case 28:
2994 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2995 break;
2996 case 29:
2997 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2998 break;
2999 case 30:
3000 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
3001 break;
3002 case 31:
3003 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
3004 break;
3005 case 32:
3006 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
3007 "unsigned long long", NULL);
3008 break;
3009 case 33:
3010 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
3011 "logical*8", NULL);
3012 break;
3013 case 34:
3014 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
3015 break;
3016 }
3017 negative_types[-typenum] = rettype;
3018 return rettype;
3019 }
3020 \f
3021 /* This page contains subroutines of read_type. */
3022
3023 /* Read member function stabs info for C++ classes. The form of each member
3024 function data is:
3025
3026 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
3027
3028 An example with two member functions is:
3029
3030 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
3031
3032 For the case of overloaded operators, the format is op$::*.funcs, where
3033 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
3034 name (such as `+=') and `.' marks the end of the operator name.
3035
3036 Returns 1 for success, 0 for failure. */
3037
3038 static int
3039 read_member_functions (struct field_info *fip, char **pp, struct type *type,
3040 struct objfile *objfile)
3041 {
3042 int nfn_fields = 0;
3043 int length = 0;
3044 /* Total number of member functions defined in this class. If the class
3045 defines two `f' functions, and one `g' function, then this will have
3046 the value 3. */
3047 int total_length = 0;
3048 int i;
3049 struct next_fnfield
3050 {
3051 struct next_fnfield *next;
3052 struct fn_field fn_field;
3053 }
3054 *sublist;
3055 struct type *look_ahead_type;
3056 struct next_fnfieldlist *new_fnlist;
3057 struct next_fnfield *new_sublist;
3058 char *main_fn_name;
3059 register char *p;
3060
3061 /* Process each list until we find something that is not a member function
3062 or find the end of the functions. */
3063
3064 while (**pp != ';')
3065 {
3066 /* We should be positioned at the start of the function name.
3067 Scan forward to find the first ':' and if it is not the
3068 first of a "::" delimiter, then this is not a member function. */
3069 p = *pp;
3070 while (*p != ':')
3071 {
3072 p++;
3073 }
3074 if (p[1] != ':')
3075 {
3076 break;
3077 }
3078
3079 sublist = NULL;
3080 look_ahead_type = NULL;
3081 length = 0;
3082
3083 new_fnlist = (struct next_fnfieldlist *)
3084 xmalloc (sizeof (struct next_fnfieldlist));
3085 make_cleanup (xfree, new_fnlist);
3086 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
3087
3088 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
3089 {
3090 /* This is a completely wierd case. In order to stuff in the
3091 names that might contain colons (the usual name delimiter),
3092 Mike Tiemann defined a different name format which is
3093 signalled if the identifier is "op$". In that case, the
3094 format is "op$::XXXX." where XXXX is the name. This is
3095 used for names like "+" or "=". YUUUUUUUK! FIXME! */
3096 /* This lets the user type "break operator+".
3097 We could just put in "+" as the name, but that wouldn't
3098 work for "*". */
3099 static char opname[32] =
3100 {'o', 'p', CPLUS_MARKER};
3101 char *o = opname + 3;
3102
3103 /* Skip past '::'. */
3104 *pp = p + 2;
3105
3106 STABS_CONTINUE (pp, objfile);
3107 p = *pp;
3108 while (*p != '.')
3109 {
3110 *o++ = *p++;
3111 }
3112 main_fn_name = savestring (opname, o - opname);
3113 /* Skip past '.' */
3114 *pp = p + 1;
3115 }
3116 else
3117 {
3118 main_fn_name = savestring (*pp, p - *pp);
3119 /* Skip past '::'. */
3120 *pp = p + 2;
3121 }
3122 new_fnlist->fn_fieldlist.name = main_fn_name;
3123
3124 do
3125 {
3126 new_sublist =
3127 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
3128 make_cleanup (xfree, new_sublist);
3129 memset (new_sublist, 0, sizeof (struct next_fnfield));
3130
3131 /* Check for and handle cretinous dbx symbol name continuation! */
3132 if (look_ahead_type == NULL)
3133 {
3134 /* Normal case. */
3135 STABS_CONTINUE (pp, objfile);
3136
3137 new_sublist->fn_field.type = read_type (pp, objfile);
3138 if (**pp != ':')
3139 {
3140 /* Invalid symtab info for member function. */
3141 return 0;
3142 }
3143 }
3144 else
3145 {
3146 /* g++ version 1 kludge */
3147 new_sublist->fn_field.type = look_ahead_type;
3148 look_ahead_type = NULL;
3149 }
3150
3151 (*pp)++;
3152 p = *pp;
3153 while (*p != ';')
3154 {
3155 p++;
3156 }
3157
3158 /* If this is just a stub, then we don't have the real name here. */
3159
3160 if (TYPE_STUB (new_sublist->fn_field.type))
3161 {
3162 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
3163 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
3164 new_sublist->fn_field.is_stub = 1;
3165 }
3166 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
3167 *pp = p + 1;
3168
3169 /* Set this member function's visibility fields. */
3170 switch (*(*pp)++)
3171 {
3172 case VISIBILITY_PRIVATE:
3173 new_sublist->fn_field.is_private = 1;
3174 break;
3175 case VISIBILITY_PROTECTED:
3176 new_sublist->fn_field.is_protected = 1;
3177 break;
3178 }
3179
3180 STABS_CONTINUE (pp, objfile);
3181 switch (**pp)
3182 {
3183 case 'A': /* Normal functions. */
3184 new_sublist->fn_field.is_const = 0;
3185 new_sublist->fn_field.is_volatile = 0;
3186 (*pp)++;
3187 break;
3188 case 'B': /* `const' member functions. */
3189 new_sublist->fn_field.is_const = 1;
3190 new_sublist->fn_field.is_volatile = 0;
3191 (*pp)++;
3192 break;
3193 case 'C': /* `volatile' member function. */
3194 new_sublist->fn_field.is_const = 0;
3195 new_sublist->fn_field.is_volatile = 1;
3196 (*pp)++;
3197 break;
3198 case 'D': /* `const volatile' member function. */
3199 new_sublist->fn_field.is_const = 1;
3200 new_sublist->fn_field.is_volatile = 1;
3201 (*pp)++;
3202 break;
3203 case '*': /* File compiled with g++ version 1 -- no info */
3204 case '?':
3205 case '.':
3206 break;
3207 default:
3208 complain (&const_vol_complaint, **pp);
3209 break;
3210 }
3211
3212 switch (*(*pp)++)
3213 {
3214 case '*':
3215 {
3216 int nbits;
3217 /* virtual member function, followed by index.
3218 The sign bit is set to distinguish pointers-to-methods
3219 from virtual function indicies. Since the array is
3220 in words, the quantity must be shifted left by 1
3221 on 16 bit machine, and by 2 on 32 bit machine, forcing
3222 the sign bit out, and usable as a valid index into
3223 the array. Remove the sign bit here. */
3224 new_sublist->fn_field.voffset =
3225 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
3226 if (nbits != 0)
3227 return 0;
3228
3229 STABS_CONTINUE (pp, objfile);
3230 if (**pp == ';' || **pp == '\0')
3231 {
3232 /* Must be g++ version 1. */
3233 new_sublist->fn_field.fcontext = 0;
3234 }
3235 else
3236 {
3237 /* Figure out from whence this virtual function came.
3238 It may belong to virtual function table of
3239 one of its baseclasses. */
3240 look_ahead_type = read_type (pp, objfile);
3241 if (**pp == ':')
3242 {
3243 /* g++ version 1 overloaded methods. */
3244 }
3245 else
3246 {
3247 new_sublist->fn_field.fcontext = look_ahead_type;
3248 if (**pp != ';')
3249 {
3250 return 0;
3251 }
3252 else
3253 {
3254 ++*pp;
3255 }
3256 look_ahead_type = NULL;
3257 }
3258 }
3259 break;
3260 }
3261 case '?':
3262 /* static member function. */
3263 {
3264 int slen = strlen (main_fn_name);
3265
3266 new_sublist->fn_field.voffset = VOFFSET_STATIC;
3267
3268 /* For static member functions, we can't tell if they
3269 are stubbed, as they are put out as functions, and not as
3270 methods.
3271 GCC v2 emits the fully mangled name if
3272 dbxout.c:flag_minimal_debug is not set, so we have to
3273 detect a fully mangled physname here and set is_stub
3274 accordingly. Fully mangled physnames in v2 start with
3275 the member function name, followed by two underscores.
3276 GCC v3 currently always emits stubbed member functions,
3277 but with fully mangled physnames, which start with _Z. */
3278 if (!(strncmp (new_sublist->fn_field.physname,
3279 main_fn_name, slen) == 0
3280 && new_sublist->fn_field.physname[slen] == '_'
3281 && new_sublist->fn_field.physname[slen + 1] == '_'))
3282 {
3283 new_sublist->fn_field.is_stub = 1;
3284 }
3285 break;
3286 }
3287
3288 default:
3289 /* error */
3290 complain (&member_fn_complaint, (*pp)[-1]);
3291 /* Fall through into normal member function. */
3292
3293 case '.':
3294 /* normal member function. */
3295 new_sublist->fn_field.voffset = 0;
3296 new_sublist->fn_field.fcontext = 0;
3297 break;
3298 }
3299
3300 new_sublist->next = sublist;
3301 sublist = new_sublist;
3302 length++;
3303 STABS_CONTINUE (pp, objfile);
3304 }
3305 while (**pp != ';' && **pp != '\0');
3306
3307 (*pp)++;
3308 STABS_CONTINUE (pp, objfile);
3309
3310 /* Skip GCC 3.X member functions which are duplicates of the callable
3311 constructor/destructor. */
3312 if (strcmp (main_fn_name, "__base_ctor") == 0
3313 || strcmp (main_fn_name, "__base_dtor") == 0
3314 || strcmp (main_fn_name, "__deleting_dtor") == 0)
3315 {
3316 xfree (main_fn_name);
3317 }
3318 else
3319 {
3320 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
3321 obstack_alloc (&objfile->type_obstack,
3322 sizeof (struct fn_field) * length);
3323 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
3324 sizeof (struct fn_field) * length);
3325 for (i = length; (i--, sublist); sublist = sublist->next)
3326 {
3327 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
3328 }
3329
3330 new_fnlist->fn_fieldlist.length = length;
3331 new_fnlist->next = fip->fnlist;
3332 fip->fnlist = new_fnlist;
3333 nfn_fields++;
3334 total_length += length;
3335 }
3336 }
3337
3338 if (nfn_fields)
3339 {
3340 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3341 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3342 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
3343 memset (TYPE_FN_FIELDLISTS (type), 0,
3344 sizeof (struct fn_fieldlist) * nfn_fields);
3345 TYPE_NFN_FIELDS (type) = nfn_fields;
3346 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3347 }
3348
3349 return 1;
3350 }
3351
3352 /* Special GNU C++ name.
3353
3354 Returns 1 for success, 0 for failure. "failure" means that we can't
3355 keep parsing and it's time for error_type(). */
3356
3357 static int
3358 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
3359 struct objfile *objfile)
3360 {
3361 register char *p;
3362 char *name;
3363 char cpp_abbrev;
3364 struct type *context;
3365
3366 p = *pp;
3367 if (*++p == 'v')
3368 {
3369 name = NULL;
3370 cpp_abbrev = *++p;
3371
3372 *pp = p + 1;
3373
3374 /* At this point, *pp points to something like "22:23=*22...",
3375 where the type number before the ':' is the "context" and
3376 everything after is a regular type definition. Lookup the
3377 type, find it's name, and construct the field name. */
3378
3379 context = read_type (pp, objfile);
3380
3381 switch (cpp_abbrev)
3382 {
3383 case 'f': /* $vf -- a virtual function table pointer */
3384 name = type_name_no_tag (context);
3385 if (name == NULL)
3386 {
3387 name = "";
3388 }
3389 fip->list->field.name =
3390 obconcat (&objfile->type_obstack, vptr_name, name, "");
3391 break;
3392
3393 case 'b': /* $vb -- a virtual bsomethingorother */
3394 name = type_name_no_tag (context);
3395 if (name == NULL)
3396 {
3397 complain (&invalid_cpp_type_complaint, symnum);
3398 name = "FOO";
3399 }
3400 fip->list->field.name =
3401 obconcat (&objfile->type_obstack, vb_name, name, "");
3402 break;
3403
3404 default:
3405 complain (&invalid_cpp_abbrev_complaint, *pp);
3406 fip->list->field.name =
3407 obconcat (&objfile->type_obstack,
3408 "INVALID_CPLUSPLUS_ABBREV", "", "");
3409 break;
3410 }
3411
3412 /* At this point, *pp points to the ':'. Skip it and read the
3413 field type. */
3414
3415 p = ++(*pp);
3416 if (p[-1] != ':')
3417 {
3418 complain (&invalid_cpp_abbrev_complaint, *pp);
3419 return 0;
3420 }
3421 fip->list->field.type = read_type (pp, objfile);
3422 if (**pp == ',')
3423 (*pp)++; /* Skip the comma. */
3424 else
3425 return 0;
3426
3427 {
3428 int nbits;
3429 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
3430 if (nbits != 0)
3431 return 0;
3432 }
3433 /* This field is unpacked. */
3434 FIELD_BITSIZE (fip->list->field) = 0;
3435 fip->list->visibility = VISIBILITY_PRIVATE;
3436 }
3437 else
3438 {
3439 complain (&invalid_cpp_abbrev_complaint, *pp);
3440 /* We have no idea what syntax an unrecognized abbrev would have, so
3441 better return 0. If we returned 1, we would need to at least advance
3442 *pp to avoid an infinite loop. */
3443 return 0;
3444 }
3445 return 1;
3446 }
3447
3448 static void
3449 read_one_struct_field (struct field_info *fip, char **pp, char *p,
3450 struct type *type, struct objfile *objfile)
3451 {
3452 /* The following is code to work around cfront generated stabs.
3453 The stabs contains full mangled name for each field.
3454 We try to demangle the name and extract the field name out of it.
3455 */
3456 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
3457 {
3458 char save_p;
3459 char *dem, *dem_p;
3460 save_p = *p;
3461 *p = '\0';
3462 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
3463 if (dem != NULL)
3464 {
3465 dem_p = strrchr (dem, ':');
3466 if (dem_p != 0 && *(dem_p - 1) == ':')
3467 dem_p++;
3468 FIELD_NAME (fip->list->field) =
3469 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
3470 }
3471 else
3472 {
3473 FIELD_NAME (fip->list->field) =
3474 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3475 }
3476 *p = save_p;
3477 }
3478 /* end of code for cfront work around */
3479
3480 else
3481 fip->list->field.name =
3482 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3483 *pp = p + 1;
3484
3485 /* This means we have a visibility for a field coming. */
3486 if (**pp == '/')
3487 {
3488 (*pp)++;
3489 fip->list->visibility = *(*pp)++;
3490 }
3491 else
3492 {
3493 /* normal dbx-style format, no explicit visibility */
3494 fip->list->visibility = VISIBILITY_PUBLIC;
3495 }
3496
3497 fip->list->field.type = read_type (pp, objfile);
3498 if (**pp == ':')
3499 {
3500 p = ++(*pp);
3501 #if 0
3502 /* Possible future hook for nested types. */
3503 if (**pp == '!')
3504 {
3505 fip->list->field.bitpos = (long) -2; /* nested type */
3506 p = ++(*pp);
3507 }
3508 else
3509 ...;
3510 #endif
3511 while (*p != ';')
3512 {
3513 p++;
3514 }
3515 /* Static class member. */
3516 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
3517 *pp = p + 1;
3518 return;
3519 }
3520 else if (**pp != ',')
3521 {
3522 /* Bad structure-type format. */
3523 complain (&stabs_general_complaint, "bad structure-type format");
3524 return;
3525 }
3526
3527 (*pp)++; /* Skip the comma. */
3528
3529 {
3530 int nbits;
3531 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
3532 if (nbits != 0)
3533 {
3534 complain (&stabs_general_complaint, "bad structure-type format");
3535 return;
3536 }
3537 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
3538 if (nbits != 0)
3539 {
3540 complain (&stabs_general_complaint, "bad structure-type format");
3541 return;
3542 }
3543 }
3544
3545 if (FIELD_BITPOS (fip->list->field) == 0
3546 && FIELD_BITSIZE (fip->list->field) == 0)
3547 {
3548 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
3549 it is a field which has been optimized out. The correct stab for
3550 this case is to use VISIBILITY_IGNORE, but that is a recent
3551 invention. (2) It is a 0-size array. For example
3552 union { int num; char str[0]; } foo. Printing "<no value>" for
3553 str in "p foo" is OK, since foo.str (and thus foo.str[3])
3554 will continue to work, and a 0-size array as a whole doesn't
3555 have any contents to print.
3556
3557 I suspect this probably could also happen with gcc -gstabs (not
3558 -gstabs+) for static fields, and perhaps other C++ extensions.
3559 Hopefully few people use -gstabs with gdb, since it is intended
3560 for dbx compatibility. */
3561
3562 /* Ignore this field. */
3563 fip->list->visibility = VISIBILITY_IGNORE;
3564 }
3565 else
3566 {
3567 /* Detect an unpacked field and mark it as such.
3568 dbx gives a bit size for all fields.
3569 Note that forward refs cannot be packed,
3570 and treat enums as if they had the width of ints. */
3571
3572 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
3573
3574 if (TYPE_CODE (field_type) != TYPE_CODE_INT
3575 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
3576 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
3577 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
3578 {
3579 FIELD_BITSIZE (fip->list->field) = 0;
3580 }
3581 if ((FIELD_BITSIZE (fip->list->field)
3582 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
3583 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
3584 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
3585 )
3586 &&
3587 FIELD_BITPOS (fip->list->field) % 8 == 0)
3588 {
3589 FIELD_BITSIZE (fip->list->field) = 0;
3590 }
3591 }
3592 }
3593
3594
3595 /* Read struct or class data fields. They have the form:
3596
3597 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
3598
3599 At the end, we see a semicolon instead of a field.
3600
3601 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3602 a static field.
3603
3604 The optional VISIBILITY is one of:
3605
3606 '/0' (VISIBILITY_PRIVATE)
3607 '/1' (VISIBILITY_PROTECTED)
3608 '/2' (VISIBILITY_PUBLIC)
3609 '/9' (VISIBILITY_IGNORE)
3610
3611 or nothing, for C style fields with public visibility.
3612
3613 Returns 1 for success, 0 for failure. */
3614
3615 static int
3616 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3617 struct objfile *objfile)
3618 {
3619 register char *p;
3620 struct nextfield *new;
3621
3622 /* We better set p right now, in case there are no fields at all... */
3623
3624 p = *pp;
3625
3626 /* Read each data member type until we find the terminating ';' at the end of
3627 the data member list, or break for some other reason such as finding the
3628 start of the member function list. */
3629 /* Stab string for structure/union does not end with two ';' in
3630 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3631
3632 while (**pp != ';' && **pp != '\0')
3633 {
3634 if (os9k_stabs && **pp == ',')
3635 break;
3636 STABS_CONTINUE (pp, objfile);
3637 /* Get space to record the next field's data. */
3638 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3639 make_cleanup (xfree, new);
3640 memset (new, 0, sizeof (struct nextfield));
3641 new->next = fip->list;
3642 fip->list = new;
3643
3644 /* Get the field name. */
3645 p = *pp;
3646
3647 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3648 unless the CPLUS_MARKER is followed by an underscore, in
3649 which case it is just the name of an anonymous type, which we
3650 should handle like any other type name. */
3651
3652 if (is_cplus_marker (p[0]) && p[1] != '_')
3653 {
3654 if (!read_cpp_abbrev (fip, pp, type, objfile))
3655 return 0;
3656 continue;
3657 }
3658
3659 /* Look for the ':' that separates the field name from the field
3660 values. Data members are delimited by a single ':', while member
3661 functions are delimited by a pair of ':'s. When we hit the member
3662 functions (if any), terminate scan loop and return. */
3663
3664 while (*p != ':' && *p != '\0')
3665 {
3666 p++;
3667 }
3668 if (*p == '\0')
3669 return 0;
3670
3671 /* Check to see if we have hit the member functions yet. */
3672 if (p[1] == ':')
3673 {
3674 break;
3675 }
3676 read_one_struct_field (fip, pp, p, type, objfile);
3677 }
3678 if (p[0] == ':' && p[1] == ':')
3679 {
3680 /* chill the list of fields: the last entry (at the head) is a
3681 partially constructed entry which we now scrub. */
3682 fip->list = fip->list->next;
3683 }
3684 return 1;
3685 }
3686 /* *INDENT-OFF* */
3687 /* The stabs for C++ derived classes contain baseclass information which
3688 is marked by a '!' character after the total size. This function is
3689 called when we encounter the baseclass marker, and slurps up all the
3690 baseclass information.
3691
3692 Immediately following the '!' marker is the number of base classes that
3693 the class is derived from, followed by information for each base class.
3694 For each base class, there are two visibility specifiers, a bit offset
3695 to the base class information within the derived class, a reference to
3696 the type for the base class, and a terminating semicolon.
3697
3698 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3699 ^^ ^ ^ ^ ^ ^ ^
3700 Baseclass information marker __________________|| | | | | | |
3701 Number of baseclasses __________________________| | | | | | |
3702 Visibility specifiers (2) ________________________| | | | | |
3703 Offset in bits from start of class _________________| | | | |
3704 Type number for base class ___________________________| | | |
3705 Visibility specifiers (2) _______________________________| | |
3706 Offset in bits from start of class ________________________| |
3707 Type number of base class ____________________________________|
3708
3709 Return 1 for success, 0 for (error-type-inducing) failure. */
3710 /* *INDENT-ON* */
3711
3712
3713
3714 static int
3715 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3716 struct objfile *objfile)
3717 {
3718 int i;
3719 struct nextfield *new;
3720
3721 if (**pp != '!')
3722 {
3723 return 1;
3724 }
3725 else
3726 {
3727 /* Skip the '!' baseclass information marker. */
3728 (*pp)++;
3729 }
3730
3731 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3732 {
3733 int nbits;
3734 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
3735 if (nbits != 0)
3736 return 0;
3737 }
3738
3739 #if 0
3740 /* Some stupid compilers have trouble with the following, so break
3741 it up into simpler expressions. */
3742 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3743 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3744 #else
3745 {
3746 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3747 char *pointer;
3748
3749 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3750 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3751 }
3752 #endif /* 0 */
3753
3754 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3755
3756 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3757 {
3758 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3759 make_cleanup (xfree, new);
3760 memset (new, 0, sizeof (struct nextfield));
3761 new->next = fip->list;
3762 fip->list = new;
3763 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3764
3765 STABS_CONTINUE (pp, objfile);
3766 switch (**pp)
3767 {
3768 case '0':
3769 /* Nothing to do. */
3770 break;
3771 case '1':
3772 SET_TYPE_FIELD_VIRTUAL (type, i);
3773 break;
3774 default:
3775 /* Unknown character. Complain and treat it as non-virtual. */
3776 {
3777 static struct complaint msg =
3778 {
3779 "Unknown virtual character `%c' for baseclass", 0, 0};
3780 complain (&msg, **pp);
3781 }
3782 }
3783 ++(*pp);
3784
3785 new->visibility = *(*pp)++;
3786 switch (new->visibility)
3787 {
3788 case VISIBILITY_PRIVATE:
3789 case VISIBILITY_PROTECTED:
3790 case VISIBILITY_PUBLIC:
3791 break;
3792 default:
3793 /* Bad visibility format. Complain and treat it as
3794 public. */
3795 {
3796 static struct complaint msg =
3797 {
3798 "Unknown visibility `%c' for baseclass", 0, 0
3799 };
3800 complain (&msg, new->visibility);
3801 new->visibility = VISIBILITY_PUBLIC;
3802 }
3803 }
3804
3805 {
3806 int nbits;
3807
3808 /* The remaining value is the bit offset of the portion of the object
3809 corresponding to this baseclass. Always zero in the absence of
3810 multiple inheritance. */
3811
3812 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3813 if (nbits != 0)
3814 return 0;
3815 }
3816
3817 /* The last piece of baseclass information is the type of the
3818 base class. Read it, and remember it's type name as this
3819 field's name. */
3820
3821 new->field.type = read_type (pp, objfile);
3822 new->field.name = type_name_no_tag (new->field.type);
3823
3824 /* skip trailing ';' and bump count of number of fields seen */
3825 if (**pp == ';')
3826 (*pp)++;
3827 else
3828 return 0;
3829 }
3830 return 1;
3831 }
3832
3833 /* The tail end of stabs for C++ classes that contain a virtual function
3834 pointer contains a tilde, a %, and a type number.
3835 The type number refers to the base class (possibly this class itself) which
3836 contains the vtable pointer for the current class.
3837
3838 This function is called when we have parsed all the method declarations,
3839 so we can look for the vptr base class info. */
3840
3841 static int
3842 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3843 struct objfile *objfile)
3844 {
3845 register char *p;
3846
3847 STABS_CONTINUE (pp, objfile);
3848
3849 /* If we are positioned at a ';', then skip it. */
3850 if (**pp == ';')
3851 {
3852 (*pp)++;
3853 }
3854
3855 if (**pp == '~')
3856 {
3857 (*pp)++;
3858
3859 if (**pp == '=' || **pp == '+' || **pp == '-')
3860 {
3861 /* Obsolete flags that used to indicate the presence
3862 of constructors and/or destructors. */
3863 (*pp)++;
3864 }
3865
3866 /* Read either a '%' or the final ';'. */
3867 if (*(*pp)++ == '%')
3868 {
3869 /* The next number is the type number of the base class
3870 (possibly our own class) which supplies the vtable for
3871 this class. Parse it out, and search that class to find
3872 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3873 and TYPE_VPTR_FIELDNO. */
3874
3875 struct type *t;
3876 int i;
3877
3878 t = read_type (pp, objfile);
3879 p = (*pp)++;
3880 while (*p != '\0' && *p != ';')
3881 {
3882 p++;
3883 }
3884 if (*p == '\0')
3885 {
3886 /* Premature end of symbol. */
3887 return 0;
3888 }
3889
3890 TYPE_VPTR_BASETYPE (type) = t;
3891 if (type == t) /* Our own class provides vtbl ptr */
3892 {
3893 for (i = TYPE_NFIELDS (t) - 1;
3894 i >= TYPE_N_BASECLASSES (t);
3895 --i)
3896 {
3897 if (!strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
3898 sizeof (vptr_name) - 1))
3899 {
3900 TYPE_VPTR_FIELDNO (type) = i;
3901 goto gotit;
3902 }
3903 }
3904 /* Virtual function table field not found. */
3905 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
3906 return 0;
3907 }
3908 else
3909 {
3910 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3911 }
3912
3913 gotit:
3914 *pp = p + 1;
3915 }
3916 }
3917 return 1;
3918 }
3919
3920 static int
3921 attach_fn_fields_to_type (struct field_info *fip, register struct type *type)
3922 {
3923 register int n;
3924
3925 for (n = TYPE_NFN_FIELDS (type);
3926 fip->fnlist != NULL;
3927 fip->fnlist = fip->fnlist->next)
3928 {
3929 --n; /* Circumvent Sun3 compiler bug */
3930 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3931 }
3932 return 1;
3933 }
3934
3935 /* read cfront class static data.
3936 pp points to string starting with the list of static data
3937 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
3938 ^^^^^^^^
3939
3940 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
3941 ^
3942 */
3943
3944 static int
3945 read_cfront_static_fields (struct field_info *fip, char **pp, struct type *type,
3946 struct objfile *objfile)
3947 {
3948 struct nextfield *new;
3949 struct type *stype;
3950 char *sname;
3951 struct symbol *ref_static = 0;
3952
3953 if (**pp == ';') /* no static data; return */
3954 {
3955 ++(*pp);
3956 return 1;
3957 }
3958
3959 /* Process each field in the list until we find the terminating ";" */
3960
3961 /* eg: p = "as__1A ;;;" */
3962 STABS_CONTINUE (pp, objfile); /* handle \\ */
3963 while (**pp != ';' && (sname = get_substring (pp, ' '), sname))
3964 {
3965 ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0); /*demangled_name */
3966 if (!ref_static)
3967 {
3968 static struct complaint msg =
3969 {"\
3970 Unable to find symbol for static data field %s\n",
3971 0, 0};
3972 complain (&msg, sname);
3973 continue;
3974 }
3975 stype = SYMBOL_TYPE (ref_static);
3976
3977 /* allocate a new fip */
3978 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3979 make_cleanup (xfree, new);
3980 memset (new, 0, sizeof (struct nextfield));
3981 new->next = fip->list;
3982 fip->list = new;
3983
3984 /* set visibility */
3985 /* FIXME! no way to tell visibility from stabs??? */
3986 new->visibility = VISIBILITY_PUBLIC;
3987
3988 /* set field info into fip */
3989 fip->list->field.type = stype;
3990
3991 /* set bitpos & bitsize */
3992 SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
3993
3994 /* set name field */
3995 /* The following is code to work around cfront generated stabs.
3996 The stabs contains full mangled name for each field.
3997 We try to demangle the name and extract the field name out of it.
3998 */
3999 if (ARM_DEMANGLING)
4000 {
4001 char *dem, *dem_p;
4002 dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
4003 if (dem != NULL)
4004 {
4005 dem_p = strrchr (dem, ':');
4006 if (dem_p != 0 && *(dem_p - 1) == ':')
4007 dem_p++;
4008 fip->list->field.name =
4009 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
4010 }
4011 else
4012 {
4013 fip->list->field.name =
4014 obsavestring (sname, strlen (sname), &objfile->type_obstack);
4015 }
4016 } /* end of code for cfront work around */
4017 } /* loop again for next static field */
4018 return 1;
4019 }
4020
4021 /* Copy structure fields to fip so attach_fields_to_type will work.
4022 type has already been created with the initial instance data fields.
4023 Now we want to be able to add the other members to the class,
4024 so we want to add them back to the fip and reattach them again
4025 once we have collected all the class members. */
4026
4027 static int
4028 copy_cfront_struct_fields (struct field_info *fip, struct type *type,
4029 struct objfile *objfile)
4030 {
4031 int nfields = TYPE_NFIELDS (type);
4032 int i;
4033 struct nextfield *new;
4034
4035 /* Copy the fields into the list of fips and reset the types
4036 to remove the old fields */
4037
4038 for (i = 0; i < nfields; i++)
4039 {
4040 /* allocate a new fip */
4041 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4042 make_cleanup (xfree, new);
4043 memset (new, 0, sizeof (struct nextfield));
4044 new->next = fip->list;
4045 fip->list = new;
4046
4047 /* copy field info into fip */
4048 new->field = TYPE_FIELD (type, i);
4049 /* set visibility */
4050 if (TYPE_FIELD_PROTECTED (type, i))
4051 new->visibility = VISIBILITY_PROTECTED;
4052 else if (TYPE_FIELD_PRIVATE (type, i))
4053 new->visibility = VISIBILITY_PRIVATE;
4054 else
4055 new->visibility = VISIBILITY_PUBLIC;
4056 }
4057 /* Now delete the fields from the type since we will be
4058 allocing new space once we get the rest of the fields
4059 in attach_fields_to_type.
4060 The pointer TYPE_FIELDS(type) is left dangling but should
4061 be freed later by objstack_free */
4062 TYPE_FIELDS (type) = 0;
4063 TYPE_NFIELDS (type) = 0;
4064
4065 return 1;
4066 }
4067
4068 /* Create the vector of fields, and record how big it is.
4069 We need this info to record proper virtual function table information
4070 for this class's virtual functions. */
4071
4072 static int
4073 attach_fields_to_type (struct field_info *fip, register struct type *type,
4074 struct objfile *objfile)
4075 {
4076 register int nfields = 0;
4077 register int non_public_fields = 0;
4078 register struct nextfield *scan;
4079
4080 /* Count up the number of fields that we have, as well as taking note of
4081 whether or not there are any non-public fields, which requires us to
4082 allocate and build the private_field_bits and protected_field_bits
4083 bitfields. */
4084
4085 for (scan = fip->list; scan != NULL; scan = scan->next)
4086 {
4087 nfields++;
4088 if (scan->visibility != VISIBILITY_PUBLIC)
4089 {
4090 non_public_fields++;
4091 }
4092 }
4093
4094 /* Now we know how many fields there are, and whether or not there are any
4095 non-public fields. Record the field count, allocate space for the
4096 array of fields, and create blank visibility bitfields if necessary. */
4097
4098 TYPE_NFIELDS (type) = nfields;
4099 TYPE_FIELDS (type) = (struct field *)
4100 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4101 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4102
4103 if (non_public_fields)
4104 {
4105 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4106
4107 TYPE_FIELD_PRIVATE_BITS (type) =
4108 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4109 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4110
4111 TYPE_FIELD_PROTECTED_BITS (type) =
4112 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4113 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4114
4115 TYPE_FIELD_IGNORE_BITS (type) =
4116 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4117 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4118 }
4119
4120 /* Copy the saved-up fields into the field vector. Start from the head
4121 of the list, adding to the tail of the field array, so that they end
4122 up in the same order in the array in which they were added to the list. */
4123
4124 while (nfields-- > 0)
4125 {
4126 TYPE_FIELD (type, nfields) = fip->list->field;
4127 switch (fip->list->visibility)
4128 {
4129 case VISIBILITY_PRIVATE:
4130 SET_TYPE_FIELD_PRIVATE (type, nfields);
4131 break;
4132
4133 case VISIBILITY_PROTECTED:
4134 SET_TYPE_FIELD_PROTECTED (type, nfields);
4135 break;
4136
4137 case VISIBILITY_IGNORE:
4138 SET_TYPE_FIELD_IGNORE (type, nfields);
4139 break;
4140
4141 case VISIBILITY_PUBLIC:
4142 break;
4143
4144 default:
4145 /* Unknown visibility. Complain and treat it as public. */
4146 {
4147 static struct complaint msg =
4148 {
4149 "Unknown visibility `%c' for field", 0, 0};
4150 complain (&msg, fip->list->visibility);
4151 }
4152 break;
4153 }
4154 fip->list = fip->list->next;
4155 }
4156 return 1;
4157 }
4158
4159 /* Read the description of a structure (or union type) and return an object
4160 describing the type.
4161
4162 PP points to a character pointer that points to the next unconsumed token
4163 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
4164 *PP will point to "4a:1,0,32;;".
4165
4166 TYPE points to an incomplete type that needs to be filled in.
4167
4168 OBJFILE points to the current objfile from which the stabs information is
4169 being read. (Note that it is redundant in that TYPE also contains a pointer
4170 to this same objfile, so it might be a good idea to eliminate it. FIXME).
4171 */
4172
4173 static struct type *
4174 read_struct_type (char **pp, struct type *type, struct objfile *objfile)
4175 {
4176 struct cleanup *back_to;
4177 struct field_info fi;
4178
4179 fi.list = NULL;
4180 fi.fnlist = NULL;
4181
4182 back_to = make_cleanup (null_cleanup, 0);
4183
4184 INIT_CPLUS_SPECIFIC (type);
4185 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4186
4187 /* First comes the total size in bytes. */
4188
4189 {
4190 int nbits;
4191 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
4192 if (nbits != 0)
4193 return error_type (pp, objfile);
4194 }
4195
4196 /* Now read the baseclasses, if any, read the regular C struct or C++
4197 class member fields, attach the fields to the type, read the C++
4198 member functions, attach them to the type, and then read any tilde
4199 field (baseclass specifier for the class holding the main vtable). */
4200
4201 if (!read_baseclasses (&fi, pp, type, objfile)
4202 || !read_struct_fields (&fi, pp, type, objfile)
4203 || !attach_fields_to_type (&fi, type, objfile)
4204 || !read_member_functions (&fi, pp, type, objfile)
4205 || !attach_fn_fields_to_type (&fi, type)
4206 || !read_tilde_fields (&fi, pp, type, objfile))
4207 {
4208 type = error_type (pp, objfile);
4209 }
4210
4211 /* Fix up any cv-qualified versions of this type. */
4212 finish_cv_type (type);
4213 do_cleanups (back_to);
4214 return (type);
4215 }
4216
4217 /* Read a definition of an array type,
4218 and create and return a suitable type object.
4219 Also creates a range type which represents the bounds of that
4220 array. */
4221
4222 static struct type *
4223 read_array_type (register char **pp, register struct type *type,
4224 struct objfile *objfile)
4225 {
4226 struct type *index_type, *element_type, *range_type;
4227 int lower, upper;
4228 int adjustable = 0;
4229 int nbits;
4230
4231 /* Format of an array type:
4232 "ar<index type>;lower;upper;<array_contents_type>".
4233 OS9000: "arlower,upper;<array_contents_type>".
4234
4235 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4236 for these, produce a type like float[][]. */
4237
4238 if (os9k_stabs)
4239 index_type = builtin_type_int;
4240 else
4241 {
4242 index_type = read_type (pp, objfile);
4243 if (**pp != ';')
4244 /* Improper format of array type decl. */
4245 return error_type (pp, objfile);
4246 ++*pp;
4247 }
4248
4249 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4250 {
4251 (*pp)++;
4252 adjustable = 1;
4253 }
4254 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
4255 if (nbits != 0)
4256 return error_type (pp, objfile);
4257
4258 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4259 {
4260 (*pp)++;
4261 adjustable = 1;
4262 }
4263 upper = read_huge_number (pp, ';', &nbits);
4264 if (nbits != 0)
4265 return error_type (pp, objfile);
4266
4267 element_type = read_type (pp, objfile);
4268
4269 if (adjustable)
4270 {
4271 lower = 0;
4272 upper = -1;
4273 }
4274
4275 range_type =
4276 create_range_type ((struct type *) NULL, index_type, lower, upper);
4277 type = create_array_type (type, element_type, range_type);
4278
4279 return type;
4280 }
4281
4282
4283 /* Read a definition of an enumeration type,
4284 and create and return a suitable type object.
4285 Also defines the symbols that represent the values of the type. */
4286
4287 static struct type *
4288 read_enum_type (register char **pp, register struct type *type,
4289 struct objfile *objfile)
4290 {
4291 register char *p;
4292 char *name;
4293 register long n;
4294 register struct symbol *sym;
4295 int nsyms = 0;
4296 struct pending **symlist;
4297 struct pending *osyms, *syms;
4298 int o_nsyms;
4299 int nbits;
4300 int unsigned_enum = 1;
4301
4302 #if 0
4303 /* FIXME! The stabs produced by Sun CC merrily define things that ought
4304 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
4305 to do? For now, force all enum values to file scope. */
4306 if (within_function)
4307 symlist = &local_symbols;
4308 else
4309 #endif
4310 symlist = &file_symbols;
4311 osyms = *symlist;
4312 o_nsyms = osyms ? osyms->nsyms : 0;
4313
4314 if (os9k_stabs)
4315 {
4316 /* Size. Perhaps this does not have to be conditionalized on
4317 os9k_stabs (assuming the name of an enum constant can't start
4318 with a digit). */
4319 read_huge_number (pp, 0, &nbits);
4320 if (nbits != 0)
4321 return error_type (pp, objfile);
4322 }
4323
4324 /* The aix4 compiler emits an extra field before the enum members;
4325 my guess is it's a type of some sort. Just ignore it. */
4326 if (**pp == '-')
4327 {
4328 /* Skip over the type. */
4329 while (**pp != ':')
4330 (*pp)++;
4331
4332 /* Skip over the colon. */
4333 (*pp)++;
4334 }
4335
4336 /* Read the value-names and their values.
4337 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4338 A semicolon or comma instead of a NAME means the end. */
4339 while (**pp && **pp != ';' && **pp != ',')
4340 {
4341 STABS_CONTINUE (pp, objfile);
4342 p = *pp;
4343 while (*p != ':')
4344 p++;
4345 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
4346 *pp = p + 1;
4347 n = read_huge_number (pp, ',', &nbits);
4348 if (nbits != 0)
4349 return error_type (pp, objfile);
4350
4351 sym = (struct symbol *)
4352 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4353 memset (sym, 0, sizeof (struct symbol));
4354 SYMBOL_NAME (sym) = name;
4355 SYMBOL_LANGUAGE (sym) = current_subfile->language;
4356 SYMBOL_CLASS (sym) = LOC_CONST;
4357 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4358 SYMBOL_VALUE (sym) = n;
4359 if (n < 0)
4360 unsigned_enum = 0;
4361 add_symbol_to_list (sym, symlist);
4362 nsyms++;
4363 }
4364
4365 if (**pp == ';')
4366 (*pp)++; /* Skip the semicolon. */
4367
4368 /* Now fill in the fields of the type-structure. */
4369
4370 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
4371 TYPE_CODE (type) = TYPE_CODE_ENUM;
4372 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4373 if (unsigned_enum)
4374 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
4375 TYPE_NFIELDS (type) = nsyms;
4376 TYPE_FIELDS (type) = (struct field *)
4377 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
4378 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
4379
4380 /* Find the symbols for the values and put them into the type.
4381 The symbols can be found in the symlist that we put them on
4382 to cause them to be defined. osyms contains the old value
4383 of that symlist; everything up to there was defined by us. */
4384 /* Note that we preserve the order of the enum constants, so
4385 that in something like "enum {FOO, LAST_THING=FOO}" we print
4386 FOO, not LAST_THING. */
4387
4388 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
4389 {
4390 int last = syms == osyms ? o_nsyms : 0;
4391 int j = syms->nsyms;
4392 for (; --j >= last; --n)
4393 {
4394 struct symbol *xsym = syms->symbol[j];
4395 SYMBOL_TYPE (xsym) = type;
4396 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4397 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4398 TYPE_FIELD_BITSIZE (type, n) = 0;
4399 }
4400 if (syms == osyms)
4401 break;
4402 }
4403
4404 return type;
4405 }
4406
4407 /* Sun's ACC uses a somewhat saner method for specifying the builtin
4408 typedefs in every file (for int, long, etc):
4409
4410 type = b <signed> <width> <format type>; <offset>; <nbits>
4411 signed = u or s.
4412 optional format type = c or b for char or boolean.
4413 offset = offset from high order bit to start bit of type.
4414 width is # bytes in object of this type, nbits is # bits in type.
4415
4416 The width/offset stuff appears to be for small objects stored in
4417 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
4418 FIXME. */
4419
4420 static struct type *
4421 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
4422 {
4423 int type_bits;
4424 int nbits;
4425 int signed_type;
4426 enum type_code code = TYPE_CODE_INT;
4427
4428 switch (**pp)
4429 {
4430 case 's':
4431 signed_type = 1;
4432 break;
4433 case 'u':
4434 signed_type = 0;
4435 break;
4436 default:
4437 return error_type (pp, objfile);
4438 }
4439 (*pp)++;
4440
4441 /* For some odd reason, all forms of char put a c here. This is strange
4442 because no other type has this honor. We can safely ignore this because
4443 we actually determine 'char'acterness by the number of bits specified in
4444 the descriptor.
4445 Boolean forms, e.g Fortran logical*X, put a b here. */
4446
4447 if (**pp == 'c')
4448 (*pp)++;
4449 else if (**pp == 'b')
4450 {
4451 code = TYPE_CODE_BOOL;
4452 (*pp)++;
4453 }
4454
4455 /* The first number appears to be the number of bytes occupied
4456 by this type, except that unsigned short is 4 instead of 2.
4457 Since this information is redundant with the third number,
4458 we will ignore it. */
4459 read_huge_number (pp, ';', &nbits);
4460 if (nbits != 0)
4461 return error_type (pp, objfile);
4462
4463 /* The second number is always 0, so ignore it too. */
4464 read_huge_number (pp, ';', &nbits);
4465 if (nbits != 0)
4466 return error_type (pp, objfile);
4467
4468 /* The third number is the number of bits for this type. */
4469 type_bits = read_huge_number (pp, 0, &nbits);
4470 if (nbits != 0)
4471 return error_type (pp, objfile);
4472 /* The type *should* end with a semicolon. If it are embedded
4473 in a larger type the semicolon may be the only way to know where
4474 the type ends. If this type is at the end of the stabstring we
4475 can deal with the omitted semicolon (but we don't have to like
4476 it). Don't bother to complain(), Sun's compiler omits the semicolon
4477 for "void". */
4478 if (**pp == ';')
4479 ++(*pp);
4480
4481 if (type_bits == 0)
4482 return init_type (TYPE_CODE_VOID, 1,
4483 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4484 objfile);
4485 else
4486 return init_type (code,
4487 type_bits / TARGET_CHAR_BIT,
4488 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4489 objfile);
4490 }
4491
4492 static struct type *
4493 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
4494 {
4495 int nbits;
4496 int details;
4497 int nbytes;
4498 struct type *rettype;
4499
4500 /* The first number has more details about the type, for example
4501 FN_COMPLEX. */
4502 details = read_huge_number (pp, ';', &nbits);
4503 if (nbits != 0)
4504 return error_type (pp, objfile);
4505
4506 /* The second number is the number of bytes occupied by this type */
4507 nbytes = read_huge_number (pp, ';', &nbits);
4508 if (nbits != 0)
4509 return error_type (pp, objfile);
4510
4511 if (details == NF_COMPLEX || details == NF_COMPLEX16
4512 || details == NF_COMPLEX32)
4513 {
4514 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
4515 TYPE_TARGET_TYPE (rettype)
4516 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
4517 return rettype;
4518 }
4519
4520 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
4521 }
4522
4523 /* Read a number from the string pointed to by *PP.
4524 The value of *PP is advanced over the number.
4525 If END is nonzero, the character that ends the
4526 number must match END, or an error happens;
4527 and that character is skipped if it does match.
4528 If END is zero, *PP is left pointing to that character.
4529
4530 If the number fits in a long, set *BITS to 0 and return the value.
4531 If not, set *BITS to be the number of bits in the number and return 0.
4532
4533 If encounter garbage, set *BITS to -1 and return 0. */
4534
4535 static long
4536 read_huge_number (char **pp, int end, int *bits)
4537 {
4538 char *p = *pp;
4539 int sign = 1;
4540 long n = 0;
4541 int radix = 10;
4542 char overflow = 0;
4543 int nbits = 0;
4544 int c;
4545 long upper_limit;
4546
4547 if (*p == '-')
4548 {
4549 sign = -1;
4550 p++;
4551 }
4552
4553 /* Leading zero means octal. GCC uses this to output values larger
4554 than an int (because that would be hard in decimal). */
4555 if (*p == '0')
4556 {
4557 radix = 8;
4558 p++;
4559 }
4560
4561 if (os9k_stabs)
4562 upper_limit = ULONG_MAX / radix;
4563 else
4564 upper_limit = LONG_MAX / radix;
4565
4566 while ((c = *p++) >= '0' && c < ('0' + radix))
4567 {
4568 if (n <= upper_limit)
4569 {
4570 n *= radix;
4571 n += c - '0'; /* FIXME this overflows anyway */
4572 }
4573 else
4574 overflow = 1;
4575
4576 /* This depends on large values being output in octal, which is
4577 what GCC does. */
4578 if (radix == 8)
4579 {
4580 if (nbits == 0)
4581 {
4582 if (c == '0')
4583 /* Ignore leading zeroes. */
4584 ;
4585 else if (c == '1')
4586 nbits = 1;
4587 else if (c == '2' || c == '3')
4588 nbits = 2;
4589 else
4590 nbits = 3;
4591 }
4592 else
4593 nbits += 3;
4594 }
4595 }
4596 if (end)
4597 {
4598 if (c && c != end)
4599 {
4600 if (bits != NULL)
4601 *bits = -1;
4602 return 0;
4603 }
4604 }
4605 else
4606 --p;
4607
4608 *pp = p;
4609 if (overflow)
4610 {
4611 if (nbits == 0)
4612 {
4613 /* Large decimal constants are an error (because it is hard to
4614 count how many bits are in them). */
4615 if (bits != NULL)
4616 *bits = -1;
4617 return 0;
4618 }
4619
4620 /* -0x7f is the same as 0x80. So deal with it by adding one to
4621 the number of bits. */
4622 if (sign == -1)
4623 ++nbits;
4624 if (bits)
4625 *bits = nbits;
4626 }
4627 else
4628 {
4629 if (bits)
4630 *bits = 0;
4631 return n * sign;
4632 }
4633 /* It's *BITS which has the interesting information. */
4634 return 0;
4635 }
4636
4637 static struct type *
4638 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
4639 {
4640 char *orig_pp = *pp;
4641 int rangenums[2];
4642 long n2, n3;
4643 int n2bits, n3bits;
4644 int self_subrange;
4645 struct type *result_type;
4646 struct type *index_type = NULL;
4647
4648 /* First comes a type we are a subrange of.
4649 In C it is usually 0, 1 or the type being defined. */
4650 if (read_type_number (pp, rangenums) != 0)
4651 return error_type (pp, objfile);
4652 self_subrange = (rangenums[0] == typenums[0] &&
4653 rangenums[1] == typenums[1]);
4654
4655 if (**pp == '=')
4656 {
4657 *pp = orig_pp;
4658 index_type = read_type (pp, objfile);
4659 }
4660
4661 /* A semicolon should now follow; skip it. */
4662 if (**pp == ';')
4663 (*pp)++;
4664
4665 /* The remaining two operands are usually lower and upper bounds
4666 of the range. But in some special cases they mean something else. */
4667 n2 = read_huge_number (pp, ';', &n2bits);
4668 n3 = read_huge_number (pp, ';', &n3bits);
4669
4670 if (n2bits == -1 || n3bits == -1)
4671 return error_type (pp, objfile);
4672
4673 if (index_type)
4674 goto handle_true_range;
4675
4676 /* If limits are huge, must be large integral type. */
4677 if (n2bits != 0 || n3bits != 0)
4678 {
4679 char got_signed = 0;
4680 char got_unsigned = 0;
4681 /* Number of bits in the type. */
4682 int nbits = 0;
4683
4684 /* Range from 0 to <large number> is an unsigned large integral type. */
4685 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4686 {
4687 got_unsigned = 1;
4688 nbits = n3bits;
4689 }
4690 /* Range from <large number> to <large number>-1 is a large signed
4691 integral type. Take care of the case where <large number> doesn't
4692 fit in a long but <large number>-1 does. */
4693 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4694 || (n2bits != 0 && n3bits == 0
4695 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4696 && n3 == LONG_MAX))
4697 {
4698 got_signed = 1;
4699 nbits = n2bits;
4700 }
4701
4702 if (got_signed || got_unsigned)
4703 {
4704 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4705 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4706 objfile);
4707 }
4708 else
4709 return error_type (pp, objfile);
4710 }
4711
4712 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4713 if (self_subrange && n2 == 0 && n3 == 0)
4714 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4715
4716 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4717 is the width in bytes.
4718
4719 Fortran programs appear to use this for complex types also. To
4720 distinguish between floats and complex, g77 (and others?) seem
4721 to use self-subranges for the complexes, and subranges of int for
4722 the floats.
4723
4724 Also note that for complexes, g77 sets n2 to the size of one of
4725 the member floats, not the whole complex beast. My guess is that
4726 this was to work well with pre-COMPLEX versions of gdb. */
4727
4728 if (n3 == 0 && n2 > 0)
4729 {
4730 struct type *float_type
4731 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4732
4733 if (self_subrange)
4734 {
4735 struct type *complex_type =
4736 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4737 TYPE_TARGET_TYPE (complex_type) = float_type;
4738 return complex_type;
4739 }
4740 else
4741 return float_type;
4742 }
4743
4744 /* If the upper bound is -1, it must really be an unsigned int. */
4745
4746 else if (n2 == 0 && n3 == -1)
4747 {
4748 /* It is unsigned int or unsigned long. */
4749 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
4750 compatibility hack. */
4751 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4752 TYPE_FLAG_UNSIGNED, NULL, objfile);
4753 }
4754
4755 /* Special case: char is defined (Who knows why) as a subrange of
4756 itself with range 0-127. */
4757 else if (self_subrange && n2 == 0 && n3 == 127)
4758 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4759
4760 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
4761 && !self_subrange)
4762 goto handle_true_range;
4763
4764 /* We used to do this only for subrange of self or subrange of int. */
4765 else if (n2 == 0)
4766 {
4767 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4768 "unsigned long", and we already checked for that,
4769 so don't need to test for it here. */
4770
4771 if (n3 < 0)
4772 /* n3 actually gives the size. */
4773 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4774 NULL, objfile);
4775
4776 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4777 unsigned n-byte integer. But do require n to be a power of
4778 two; we don't want 3- and 5-byte integers flying around. */
4779 {
4780 int bytes;
4781 unsigned long bits;
4782
4783 bits = n3;
4784 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4785 bits >>= 8;
4786 if (bits == 0
4787 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4788 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4789 objfile);
4790 }
4791 }
4792 /* I think this is for Convex "long long". Since I don't know whether
4793 Convex sets self_subrange, I also accept that particular size regardless
4794 of self_subrange. */
4795 else if (n3 == 0 && n2 < 0
4796 && (self_subrange
4797 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4798 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4799 else if (n2 == -n3 - 1)
4800 {
4801 if (n3 == 0x7f)
4802 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4803 if (n3 == 0x7fff)
4804 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4805 if (n3 == 0x7fffffff)
4806 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4807 }
4808
4809 /* We have a real range type on our hands. Allocate space and
4810 return a real pointer. */
4811 handle_true_range:
4812
4813 if (self_subrange)
4814 index_type = builtin_type_int;
4815 else
4816 index_type = *dbx_lookup_type (rangenums);
4817 if (index_type == NULL)
4818 {
4819 /* Does this actually ever happen? Is that why we are worrying
4820 about dealing with it rather than just calling error_type? */
4821
4822 static struct type *range_type_index;
4823
4824 complain (&range_type_base_complaint, rangenums[1]);
4825 if (range_type_index == NULL)
4826 range_type_index =
4827 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4828 0, "range type index type", NULL);
4829 index_type = range_type_index;
4830 }
4831
4832 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4833 return (result_type);
4834 }
4835
4836 /* Read in an argument list. This is a list of types, separated by commas
4837 and terminated with END. Return the list of types read in, or (struct type
4838 **)-1 if there is an error. */
4839
4840 static struct type **
4841 read_args (char **pp, int end, struct objfile *objfile)
4842 {
4843 /* FIXME! Remove this arbitrary limit! */
4844 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
4845 int n = 0;
4846
4847 while (**pp != end)
4848 {
4849 if (**pp != ',')
4850 /* Invalid argument list: no ','. */
4851 return (struct type **) -1;
4852 (*pp)++;
4853 STABS_CONTINUE (pp, objfile);
4854 types[n++] = read_type (pp, objfile);
4855 }
4856 (*pp)++; /* get past `end' (the ':' character) */
4857
4858 if (n == 1)
4859 {
4860 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
4861 }
4862 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4863 {
4864 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
4865 memset (rval + n, 0, sizeof (struct type *));
4866 }
4867 else
4868 {
4869 rval = (struct type **) xmalloc (n * sizeof (struct type *));
4870 }
4871 memcpy (rval, types, n * sizeof (struct type *));
4872 return rval;
4873 }
4874 \f
4875 /* Common block handling. */
4876
4877 /* List of symbols declared since the last BCOMM. This list is a tail
4878 of local_symbols. When ECOMM is seen, the symbols on the list
4879 are noted so their proper addresses can be filled in later,
4880 using the common block base address gotten from the assembler
4881 stabs. */
4882
4883 static struct pending *common_block;
4884 static int common_block_i;
4885
4886 /* Name of the current common block. We get it from the BCOMM instead of the
4887 ECOMM to match IBM documentation (even though IBM puts the name both places
4888 like everyone else). */
4889 static char *common_block_name;
4890
4891 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4892 to remain after this function returns. */
4893
4894 void
4895 common_block_start (char *name, struct objfile *objfile)
4896 {
4897 if (common_block_name != NULL)
4898 {
4899 static struct complaint msg =
4900 {
4901 "Invalid symbol data: common block within common block",
4902 0, 0};
4903 complain (&msg);
4904 }
4905 common_block = local_symbols;
4906 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4907 common_block_name = obsavestring (name, strlen (name),
4908 &objfile->symbol_obstack);
4909 }
4910
4911 /* Process a N_ECOMM symbol. */
4912
4913 void
4914 common_block_end (struct objfile *objfile)
4915 {
4916 /* Symbols declared since the BCOMM are to have the common block
4917 start address added in when we know it. common_block and
4918 common_block_i point to the first symbol after the BCOMM in
4919 the local_symbols list; copy the list and hang it off the
4920 symbol for the common block name for later fixup. */
4921 int i;
4922 struct symbol *sym;
4923 struct pending *new = 0;
4924 struct pending *next;
4925 int j;
4926
4927 if (common_block_name == NULL)
4928 {
4929 static struct complaint msg =
4930 {"ECOMM symbol unmatched by BCOMM", 0, 0};
4931 complain (&msg);
4932 return;
4933 }
4934
4935 sym = (struct symbol *)
4936 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4937 memset (sym, 0, sizeof (struct symbol));
4938 /* Note: common_block_name already saved on symbol_obstack */
4939 SYMBOL_NAME (sym) = common_block_name;
4940 SYMBOL_CLASS (sym) = LOC_BLOCK;
4941
4942 /* Now we copy all the symbols which have been defined since the BCOMM. */
4943
4944 /* Copy all the struct pendings before common_block. */
4945 for (next = local_symbols;
4946 next != NULL && next != common_block;
4947 next = next->next)
4948 {
4949 for (j = 0; j < next->nsyms; j++)
4950 add_symbol_to_list (next->symbol[j], &new);
4951 }
4952
4953 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4954 NULL, it means copy all the local symbols (which we already did
4955 above). */
4956
4957 if (common_block != NULL)
4958 for (j = common_block_i; j < common_block->nsyms; j++)
4959 add_symbol_to_list (common_block->symbol[j], &new);
4960
4961 SYMBOL_TYPE (sym) = (struct type *) new;
4962
4963 /* Should we be putting local_symbols back to what it was?
4964 Does it matter? */
4965
4966 i = hashname (SYMBOL_NAME (sym));
4967 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4968 global_sym_chain[i] = sym;
4969 common_block_name = NULL;
4970 }
4971
4972 /* Add a common block's start address to the offset of each symbol
4973 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4974 the common block name). */
4975
4976 static void
4977 fix_common_block (struct symbol *sym, int valu)
4978 {
4979 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4980 for (; next; next = next->next)
4981 {
4982 register int j;
4983 for (j = next->nsyms - 1; j >= 0; j--)
4984 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4985 }
4986 }
4987 \f
4988
4989
4990 /* What about types defined as forward references inside of a small lexical
4991 scope? */
4992 /* Add a type to the list of undefined types to be checked through
4993 once this file has been read in. */
4994
4995 void
4996 add_undefined_type (struct type *type)
4997 {
4998 if (undef_types_length == undef_types_allocated)
4999 {
5000 undef_types_allocated *= 2;
5001 undef_types = (struct type **)
5002 xrealloc ((char *) undef_types,
5003 undef_types_allocated * sizeof (struct type *));
5004 }
5005 undef_types[undef_types_length++] = type;
5006 }
5007
5008 /* Go through each undefined type, see if it's still undefined, and fix it
5009 up if possible. We have two kinds of undefined types:
5010
5011 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
5012 Fix: update array length using the element bounds
5013 and the target type's length.
5014 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
5015 yet defined at the time a pointer to it was made.
5016 Fix: Do a full lookup on the struct/union tag. */
5017 void
5018 cleanup_undefined_types (void)
5019 {
5020 struct type **type;
5021
5022 for (type = undef_types; type < undef_types + undef_types_length; type++)
5023 {
5024 switch (TYPE_CODE (*type))
5025 {
5026
5027 case TYPE_CODE_STRUCT:
5028 case TYPE_CODE_UNION:
5029 case TYPE_CODE_ENUM:
5030 {
5031 /* Check if it has been defined since. Need to do this here
5032 as well as in check_typedef to deal with the (legitimate in
5033 C though not C++) case of several types with the same name
5034 in different source files. */
5035 if (TYPE_STUB (*type))
5036 {
5037 struct pending *ppt;
5038 int i;
5039 /* Name of the type, without "struct" or "union" */
5040 char *typename = TYPE_TAG_NAME (*type);
5041
5042 if (typename == NULL)
5043 {
5044 static struct complaint msg =
5045 {"need a type name", 0, 0};
5046 complain (&msg);
5047 break;
5048 }
5049 for (ppt = file_symbols; ppt; ppt = ppt->next)
5050 {
5051 for (i = 0; i < ppt->nsyms; i++)
5052 {
5053 struct symbol *sym = ppt->symbol[i];
5054
5055 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
5056 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
5057 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
5058 TYPE_CODE (*type))
5059 && STREQ (SYMBOL_NAME (sym), typename))
5060 {
5061 memcpy (*type, SYMBOL_TYPE (sym),
5062 sizeof (struct type));
5063 }
5064 }
5065 }
5066 }
5067 }
5068 break;
5069
5070 default:
5071 {
5072 static struct complaint msg =
5073 {"\
5074 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
5075 complain (&msg, TYPE_CODE (*type));
5076 }
5077 break;
5078 }
5079 }
5080
5081 undef_types_length = 0;
5082 }
5083
5084 /* Scan through all of the global symbols defined in the object file,
5085 assigning values to the debugging symbols that need to be assigned
5086 to. Get these symbols from the minimal symbol table. */
5087
5088 void
5089 scan_file_globals (struct objfile *objfile)
5090 {
5091 int hash;
5092 struct minimal_symbol *msymbol;
5093 struct symbol *sym, *prev, *rsym;
5094 struct objfile *resolve_objfile;
5095
5096 /* SVR4 based linkers copy referenced global symbols from shared
5097 libraries to the main executable.
5098 If we are scanning the symbols for a shared library, try to resolve
5099 them from the minimal symbols of the main executable first. */
5100
5101 if (symfile_objfile && objfile != symfile_objfile)
5102 resolve_objfile = symfile_objfile;
5103 else
5104 resolve_objfile = objfile;
5105
5106 while (1)
5107 {
5108 /* Avoid expensive loop through all minimal symbols if there are
5109 no unresolved symbols. */
5110 for (hash = 0; hash < HASHSIZE; hash++)
5111 {
5112 if (global_sym_chain[hash])
5113 break;
5114 }
5115 if (hash >= HASHSIZE)
5116 return;
5117
5118 for (msymbol = resolve_objfile->msymbols;
5119 msymbol && SYMBOL_NAME (msymbol) != NULL;
5120 msymbol++)
5121 {
5122 QUIT;
5123
5124 /* Skip static symbols. */
5125 switch (MSYMBOL_TYPE (msymbol))
5126 {
5127 case mst_file_text:
5128 case mst_file_data:
5129 case mst_file_bss:
5130 continue;
5131 default:
5132 break;
5133 }
5134
5135 prev = NULL;
5136
5137 /* Get the hash index and check all the symbols
5138 under that hash index. */
5139
5140 hash = hashname (SYMBOL_NAME (msymbol));
5141
5142 for (sym = global_sym_chain[hash]; sym;)
5143 {
5144 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
5145 STREQ (SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
5146 {
5147
5148 struct alias_list *aliases;
5149
5150 /* Splice this symbol out of the hash chain and
5151 assign the value we have to it. */
5152 if (prev)
5153 {
5154 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
5155 }
5156 else
5157 {
5158 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
5159 }
5160
5161 /* Check to see whether we need to fix up a common block. */
5162 /* Note: this code might be executed several times for
5163 the same symbol if there are multiple references. */
5164
5165 /* If symbol has aliases, do minimal symbol fixups for each.
5166 These live aliases/references weren't added to
5167 global_sym_chain hash but may also need to be fixed up. */
5168 /* FIXME: Maybe should have added aliases to the global chain, resolved symbol name, then treated aliases as normal
5169 symbols? Still, we wouldn't want to add_to_list. */
5170 /* Now do the same for each alias of this symbol */
5171 rsym = sym;
5172 aliases = SYMBOL_ALIASES (sym);
5173 while (rsym)
5174 {
5175 if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
5176 {
5177 fix_common_block (rsym,
5178 SYMBOL_VALUE_ADDRESS (msymbol));
5179 }
5180 else
5181 {
5182 SYMBOL_VALUE_ADDRESS (rsym)
5183 = SYMBOL_VALUE_ADDRESS (msymbol);
5184 }
5185 SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
5186 if (aliases)
5187 {
5188 rsym = aliases->sym;
5189 aliases = aliases->next;
5190 }
5191 else
5192 rsym = NULL;
5193 }
5194
5195
5196 if (prev)
5197 {
5198 sym = SYMBOL_VALUE_CHAIN (prev);
5199 }
5200 else
5201 {
5202 sym = global_sym_chain[hash];
5203 }
5204 }
5205 else
5206 {
5207 prev = sym;
5208 sym = SYMBOL_VALUE_CHAIN (sym);
5209 }
5210 }
5211 }
5212 if (resolve_objfile == objfile)
5213 break;
5214 resolve_objfile = objfile;
5215 }
5216
5217 /* Change the storage class of any remaining unresolved globals to
5218 LOC_UNRESOLVED and remove them from the chain. */
5219 for (hash = 0; hash < HASHSIZE; hash++)
5220 {
5221 sym = global_sym_chain[hash];
5222 while (sym)
5223 {
5224 prev = sym;
5225 sym = SYMBOL_VALUE_CHAIN (sym);
5226
5227 /* Change the symbol address from the misleading chain value
5228 to address zero. */
5229 SYMBOL_VALUE_ADDRESS (prev) = 0;
5230
5231 /* Complain about unresolved common block symbols. */
5232 if (SYMBOL_CLASS (prev) == LOC_STATIC)
5233 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
5234 else
5235 complain (&unresolved_sym_chain_complaint,
5236 objfile->name, SYMBOL_NAME (prev));
5237 }
5238 }
5239 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5240 }
5241
5242 /* Initialize anything that needs initializing when starting to read
5243 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
5244 to a psymtab. */
5245
5246 void
5247 stabsread_init (void)
5248 {
5249 }
5250
5251 /* Initialize anything that needs initializing when a completely new
5252 symbol file is specified (not just adding some symbols from another
5253 file, e.g. a shared library). */
5254
5255 void
5256 stabsread_new_init (void)
5257 {
5258 /* Empty the hash table of global syms looking for values. */
5259 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5260 }
5261
5262 /* Initialize anything that needs initializing at the same time as
5263 start_symtab() is called. */
5264
5265 void
5266 start_stabs (void)
5267 {
5268 global_stabs = NULL; /* AIX COFF */
5269 /* Leave FILENUM of 0 free for builtin types and this file's types. */
5270 n_this_object_header_files = 1;
5271 type_vector_length = 0;
5272 type_vector = (struct type **) 0;
5273
5274 /* FIXME: If common_block_name is not already NULL, we should complain(). */
5275 common_block_name = NULL;
5276
5277 os9k_stabs = 0;
5278 }
5279
5280 /* Call after end_symtab() */
5281
5282 void
5283 end_stabs (void)
5284 {
5285 if (type_vector)
5286 {
5287 xfree (type_vector);
5288 }
5289 type_vector = 0;
5290 type_vector_length = 0;
5291 previous_stab_code = 0;
5292 }
5293
5294 void
5295 finish_global_stabs (struct objfile *objfile)
5296 {
5297 if (global_stabs)
5298 {
5299 patch_block_stabs (global_symbols, global_stabs, objfile);
5300 xfree (global_stabs);
5301 global_stabs = NULL;
5302 }
5303 }
5304
5305 /* Initializer for this module */
5306
5307 void
5308 _initialize_stabsread (void)
5309 {
5310 undef_types_allocated = 20;
5311 undef_types_length = 0;
5312 undef_types = (struct type **)
5313 xmalloc (undef_types_allocated * sizeof (struct type *));
5314 }
This page took 0.141876 seconds and 4 git commands to generate.