2007-06-13 Claudio Fontana <claudio.fontana@gmail.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* Support routines for reading and decoding debugging information in
25 the "stabs" format. This format is used with many systems that use
26 the a.out object file format, as well as some systems that use
27 COFF or ELF where the stabs data is placed in a special section.
28 Avoid placing any object file format specific code in this file. */
29
30 #include "defs.h"
31 #include "gdb_string.h"
32 #include "bfd.h"
33 #include "gdb_obstack.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "expression.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
40 #include "libaout.h"
41 #include "aout/aout64.h"
42 #include "gdb-stabs.h"
43 #include "buildsym.h"
44 #include "complaints.h"
45 #include "demangle.h"
46 #include "language.h"
47 #include "doublest.h"
48 #include "cp-abi.h"
49 #include "cp-support.h"
50
51 #include <ctype.h>
52
53 /* Ask stabsread.h to define the vars it normally declares `extern'. */
54 #define EXTERN
55 /**/
56 #include "stabsread.h" /* Our own declarations */
57 #undef EXTERN
58
59 extern void _initialize_stabsread (void);
60
61 /* The routines that read and process a complete stabs for a C struct or
62 C++ class pass lists of data member fields and lists of member function
63 fields in an instance of a field_info structure, as defined below.
64 This is part of some reorganization of low level C++ support and is
65 expected to eventually go away... (FIXME) */
66
67 struct field_info
68 {
69 struct nextfield
70 {
71 struct nextfield *next;
72
73 /* This is the raw visibility from the stab. It is not checked
74 for being one of the visibilities we recognize, so code which
75 examines this field better be able to deal. */
76 int visibility;
77
78 struct field field;
79 }
80 *list;
81 struct next_fnfieldlist
82 {
83 struct next_fnfieldlist *next;
84 struct fn_fieldlist fn_fieldlist;
85 }
86 *fnlist;
87 };
88
89 static void
90 read_one_struct_field (struct field_info *, char **, char *,
91 struct type *, struct objfile *);
92
93 static struct type *dbx_alloc_type (int[2], struct objfile *);
94
95 static long read_huge_number (char **, int, int *, int);
96
97 static struct type *error_type (char **, struct objfile *);
98
99 static void
100 patch_block_stabs (struct pending *, struct pending_stabs *,
101 struct objfile *);
102
103 static void fix_common_block (struct symbol *, int);
104
105 static int read_type_number (char **, int *);
106
107 static struct type *read_type (char **, struct objfile *);
108
109 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110
111 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112
113 static struct type *read_sun_floating_type (char **, int[2],
114 struct objfile *);
115
116 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117
118 static struct type *rs6000_builtin_type (int);
119
120 static int
121 read_member_functions (struct field_info *, char **, struct type *,
122 struct objfile *);
123
124 static int
125 read_struct_fields (struct field_info *, char **, struct type *,
126 struct objfile *);
127
128 static int
129 read_baseclasses (struct field_info *, char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_tilde_fields (struct field_info *, char **, struct type *,
134 struct objfile *);
135
136 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137
138 static int attach_fields_to_type (struct field_info *, struct type *,
139 struct objfile *);
140
141 static struct type *read_struct_type (char **, struct type *,
142 enum type_code,
143 struct objfile *);
144
145 static struct type *read_array_type (char **, struct type *,
146 struct objfile *);
147
148 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149
150 static void add_undefined_type (struct type *, int[2]);
151
152 static int
153 read_cpp_abbrev (struct field_info *, char **, struct type *,
154 struct objfile *);
155
156 static char *find_name_end (char *name);
157
158 static int process_reference (char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 /* Define this as 1 if a pcc declaration of a char or short argument
166 gives the correct address. Otherwise assume pcc gives the
167 address of the corresponding int, which is not the same on a
168 big-endian machine. */
169
170 #if !defined (BELIEVE_PCC_PROMOTION)
171 #define BELIEVE_PCC_PROMOTION 0
172 #endif
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
178 }
179
180 static void
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183 complaint (&symfile_complaints,
184 _("register number %d too large (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint (&symfile_complaints, "%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221 \f
222
223 /* Look up a dbx type-number pair. Return the address of the slot
224 where the type for that number-pair is stored.
225 The number-pair is in TYPENUMS.
226
227 This can be used for finding the type associated with that pair
228 or for associating a new type with the pair. */
229
230 static struct type **
231 dbx_lookup_type (int typenums[2])
232 {
233 int filenum = typenums[0];
234 int index = typenums[1];
235 unsigned old_len;
236 int real_filenum;
237 struct header_file *f;
238 int f_orig_length;
239
240 if (filenum == -1) /* -1,-1 is for temporary types. */
241 return 0;
242
243 if (filenum < 0 || filenum >= n_this_object_header_files)
244 {
245 complaint (&symfile_complaints,
246 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
247 filenum, index, symnum);
248 goto error_return;
249 }
250
251 if (filenum == 0)
252 {
253 if (index < 0)
254 {
255 /* Caller wants address of address of type. We think
256 that negative (rs6k builtin) types will never appear as
257 "lvalues", (nor should they), so we stuff the real type
258 pointer into a temp, and return its address. If referenced,
259 this will do the right thing. */
260 static struct type *temp_type;
261
262 temp_type = rs6000_builtin_type (index);
263 return &temp_type;
264 }
265
266 /* Type is defined outside of header files.
267 Find it in this object file's type vector. */
268 if (index >= type_vector_length)
269 {
270 old_len = type_vector_length;
271 if (old_len == 0)
272 {
273 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
274 type_vector = (struct type **)
275 xmalloc (type_vector_length * sizeof (struct type *));
276 }
277 while (index >= type_vector_length)
278 {
279 type_vector_length *= 2;
280 }
281 type_vector = (struct type **)
282 xrealloc ((char *) type_vector,
283 (type_vector_length * sizeof (struct type *)));
284 memset (&type_vector[old_len], 0,
285 (type_vector_length - old_len) * sizeof (struct type *));
286 }
287 return (&type_vector[index]);
288 }
289 else
290 {
291 real_filenum = this_object_header_files[filenum];
292
293 if (real_filenum >= N_HEADER_FILES (current_objfile))
294 {
295 struct type *temp_type;
296 struct type **temp_type_p;
297
298 warning (_("GDB internal error: bad real_filenum"));
299
300 error_return:
301 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
302 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
303 *temp_type_p = temp_type;
304 return temp_type_p;
305 }
306
307 f = HEADER_FILES (current_objfile) + real_filenum;
308
309 f_orig_length = f->length;
310 if (index >= f_orig_length)
311 {
312 while (index >= f->length)
313 {
314 f->length *= 2;
315 }
316 f->vector = (struct type **)
317 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
318 memset (&f->vector[f_orig_length], 0,
319 (f->length - f_orig_length) * sizeof (struct type *));
320 }
321 return (&f->vector[index]);
322 }
323 }
324
325 /* Make sure there is a type allocated for type numbers TYPENUMS
326 and return the type object.
327 This can create an empty (zeroed) type object.
328 TYPENUMS may be (-1, -1) to return a new type object that is not
329 put into the type vector, and so may not be referred to by number. */
330
331 static struct type *
332 dbx_alloc_type (int typenums[2], struct objfile *objfile)
333 {
334 struct type **type_addr;
335
336 if (typenums[0] == -1)
337 {
338 return (alloc_type (objfile));
339 }
340
341 type_addr = dbx_lookup_type (typenums);
342
343 /* If we are referring to a type not known at all yet,
344 allocate an empty type for it.
345 We will fill it in later if we find out how. */
346 if (*type_addr == 0)
347 {
348 *type_addr = alloc_type (objfile);
349 }
350
351 return (*type_addr);
352 }
353
354 /* for all the stabs in a given stab vector, build appropriate types
355 and fix their symbols in given symbol vector. */
356
357 static void
358 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
359 struct objfile *objfile)
360 {
361 int ii;
362 char *name;
363 char *pp;
364 struct symbol *sym;
365
366 if (stabs)
367 {
368
369 /* for all the stab entries, find their corresponding symbols and
370 patch their types! */
371
372 for (ii = 0; ii < stabs->count; ++ii)
373 {
374 name = stabs->stab[ii];
375 pp = (char *) strchr (name, ':');
376 while (pp[1] == ':')
377 {
378 pp += 2;
379 pp = (char *) strchr (pp, ':');
380 }
381 sym = find_symbol_in_list (symbols, name, pp - name);
382 if (!sym)
383 {
384 /* FIXME-maybe: it would be nice if we noticed whether
385 the variable was defined *anywhere*, not just whether
386 it is defined in this compilation unit. But neither
387 xlc or GCC seem to need such a definition, and until
388 we do psymtabs (so that the minimal symbols from all
389 compilation units are available now), I'm not sure
390 how to get the information. */
391
392 /* On xcoff, if a global is defined and never referenced,
393 ld will remove it from the executable. There is then
394 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
395 sym = (struct symbol *)
396 obstack_alloc (&objfile->objfile_obstack,
397 sizeof (struct symbol));
398
399 memset (sym, 0, sizeof (struct symbol));
400 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
401 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
402 DEPRECATED_SYMBOL_NAME (sym) =
403 obsavestring (name, pp - name, &objfile->objfile_obstack);
404 pp += 2;
405 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
406 {
407 /* I don't think the linker does this with functions,
408 so as far as I know this is never executed.
409 But it doesn't hurt to check. */
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 add_symbol_to_list (sym, &global_symbols);
418 }
419 else
420 {
421 pp += 2;
422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
423 {
424 SYMBOL_TYPE (sym) =
425 lookup_function_type (read_type (&pp, objfile));
426 }
427 else
428 {
429 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
430 }
431 }
432 }
433 }
434 }
435 \f
436
437 /* Read a number by which a type is referred to in dbx data,
438 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
439 Just a single number N is equivalent to (0,N).
440 Return the two numbers by storing them in the vector TYPENUMS.
441 TYPENUMS will then be used as an argument to dbx_lookup_type.
442
443 Returns 0 for success, -1 for error. */
444
445 static int
446 read_type_number (char **pp, int *typenums)
447 {
448 int nbits;
449 if (**pp == '(')
450 {
451 (*pp)++;
452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
456 if (nbits != 0)
457 return -1;
458 }
459 else
460 {
461 typenums[0] = 0;
462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
463 if (nbits != 0)
464 return -1;
465 }
466 return 0;
467 }
468 \f
469
470 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
475 /* Structure for storing pointers to reference definitions for fast lookup
476 during "process_later". */
477
478 struct ref_map
479 {
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483 };
484
485 #define MAX_CHUNK_REFS 100
486 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
489 static struct ref_map *ref_map;
490
491 /* Ptr to free cell in chunk's linked list. */
492 static int ref_count = 0;
493
494 /* Number of chunks malloced. */
495 static int ref_chunk = 0;
496
497 /* This file maintains a cache of stabs aliases found in the symbol
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
500 void
501 stabsread_clear_cache (void)
502 {
503 ref_count = 0;
504 ref_chunk = 0;
505 }
506
507 /* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
511 void
512 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
513 {
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
522 ref_map = (struct ref_map *)
523 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
524 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
525 ref_chunk += new_chunks;
526 }
527 ref_map[refnum].stabs = stabs;
528 ref_map[refnum].sym = sym;
529 ref_map[refnum].value = value;
530 }
531
532 /* Return defined sym for the reference REFNUM. */
533 struct symbol *
534 ref_search (int refnum)
535 {
536 if (refnum < 0 || refnum > ref_count)
537 return 0;
538 return ref_map[refnum].sym;
539 }
540
541 /* Parse a reference id in STRING and return the resulting
542 reference number. Move STRING beyond the reference id. */
543
544 static int
545 process_reference (char **string)
546 {
547 char *p;
548 int refnum = 0;
549
550 if (**string != '#')
551 return 0;
552
553 /* Advance beyond the initial '#'. */
554 p = *string + 1;
555
556 /* Read number as reference id. */
557 while (*p && isdigit (*p))
558 {
559 refnum = refnum * 10 + *p - '0';
560 p++;
561 }
562 *string = p;
563 return refnum;
564 }
565
566 /* If STRING defines a reference, store away a pointer to the reference
567 definition for later use. Return the reference number. */
568
569 int
570 symbol_reference_defined (char **string)
571 {
572 char *p = *string;
573 int refnum = 0;
574
575 refnum = process_reference (&p);
576
577 /* Defining symbols end in '=' */
578 if (*p == '=')
579 {
580 /* Symbol is being defined here. */
581 *string = p + 1;
582 return refnum;
583 }
584 else
585 {
586 /* Must be a reference. Either the symbol has already been defined,
587 or this is a forward reference to it. */
588 *string = p;
589 return -1;
590 }
591 }
592
593 struct symbol *
594 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
595 struct objfile *objfile)
596 {
597 struct symbol *sym;
598 char *p = (char *) find_name_end (string);
599 int deftype;
600 int synonym = 0;
601 int i;
602
603 /* We would like to eliminate nameless symbols, but keep their types.
604 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
605 to type 2, but, should not create a symbol to address that type. Since
606 the symbol will be nameless, there is no way any user can refer to it. */
607
608 int nameless;
609
610 /* Ignore syms with empty names. */
611 if (string[0] == 0)
612 return 0;
613
614 /* Ignore old-style symbols from cc -go */
615 if (p == 0)
616 return 0;
617
618 while (p[1] == ':')
619 {
620 p += 2;
621 p = strchr (p, ':');
622 }
623
624 /* If a nameless stab entry, all we need is the type, not the symbol.
625 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
626 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
627
628 current_symbol = sym = (struct symbol *)
629 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
630 memset (sym, 0, sizeof (struct symbol));
631
632 switch (type & N_TYPE)
633 {
634 case N_TEXT:
635 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
636 break;
637 case N_DATA:
638 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
639 break;
640 case N_BSS:
641 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
642 break;
643 }
644
645 if (processing_gcc_compilation)
646 {
647 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
648 number of bytes occupied by a type or object, which we ignore. */
649 SYMBOL_LINE (sym) = desc;
650 }
651 else
652 {
653 SYMBOL_LINE (sym) = 0; /* unknown */
654 }
655
656 if (is_cplus_marker (string[0]))
657 {
658 /* Special GNU C++ names. */
659 switch (string[1])
660 {
661 case 't':
662 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
663 &objfile->objfile_obstack);
664 break;
665
666 case 'v': /* $vtbl_ptr_type */
667 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
668 goto normal;
669
670 case 'e':
671 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
672 &objfile->objfile_obstack);
673 break;
674
675 case '_':
676 /* This was an anonymous type that was never fixed up. */
677 goto normal;
678
679 #ifdef STATIC_TRANSFORM_NAME
680 case 'X':
681 /* SunPRO (3.0 at least) static variable encoding. */
682 goto normal;
683 #endif
684
685 default:
686 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
687 string);
688 goto normal; /* Do *something* with it */
689 }
690 }
691 else
692 {
693 normal:
694 SYMBOL_LANGUAGE (sym) = current_subfile->language;
695 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
696 }
697 p++;
698
699 /* Determine the type of name being defined. */
700 #if 0
701 /* Getting GDB to correctly skip the symbol on an undefined symbol
702 descriptor and not ever dump core is a very dodgy proposition if
703 we do things this way. I say the acorn RISC machine can just
704 fix their compiler. */
705 /* The Acorn RISC machine's compiler can put out locals that don't
706 start with "234=" or "(3,4)=", so assume anything other than the
707 deftypes we know how to handle is a local. */
708 if (!strchr ("cfFGpPrStTvVXCR", *p))
709 #else
710 if (isdigit (*p) || *p == '(' || *p == '-')
711 #endif
712 deftype = 'l';
713 else
714 deftype = *p++;
715
716 switch (deftype)
717 {
718 case 'c':
719 /* c is a special case, not followed by a type-number.
720 SYMBOL:c=iVALUE for an integer constant symbol.
721 SYMBOL:c=rVALUE for a floating constant symbol.
722 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
723 e.g. "b:c=e6,0" for "const b = blob1"
724 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
725 if (*p != '=')
726 {
727 SYMBOL_CLASS (sym) = LOC_CONST;
728 SYMBOL_TYPE (sym) = error_type (&p, objfile);
729 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
730 add_symbol_to_list (sym, &file_symbols);
731 return sym;
732 }
733 ++p;
734 switch (*p++)
735 {
736 case 'r':
737 {
738 double d = atof (p);
739 gdb_byte *dbl_valu;
740
741 /* FIXME-if-picky-about-floating-accuracy: Should be using
742 target arithmetic to get the value. real.c in GCC
743 probably has the necessary code. */
744
745 /* FIXME: lookup_fundamental_type is a hack. We should be
746 creating a type especially for the type of float constants.
747 Problem is, what type should it be?
748
749 Also, what should the name of this type be? Should we
750 be using 'S' constants (see stabs.texinfo) instead? */
751
752 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
753 FT_DBL_PREC_FLOAT);
754 dbl_valu =
755 obstack_alloc (&objfile->objfile_obstack,
756 TYPE_LENGTH (SYMBOL_TYPE (sym)));
757 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
758 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
759 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
760 }
761 break;
762 case 'i':
763 {
764 /* Defining integer constants this way is kind of silly,
765 since 'e' constants allows the compiler to give not
766 only the value, but the type as well. C has at least
767 int, long, unsigned int, and long long as constant
768 types; other languages probably should have at least
769 unsigned as well as signed constants. */
770
771 /* We just need one int constant type for all objfiles.
772 It doesn't depend on languages or anything (arguably its
773 name should be a language-specific name for a type of
774 that size, but I'm inclined to say that if the compiler
775 wants a nice name for the type, it can use 'e'). */
776 static struct type *int_const_type;
777
778 /* Yes, this is as long as a *host* int. That is because we
779 use atoi. */
780 if (int_const_type == NULL)
781 int_const_type =
782 init_type (TYPE_CODE_INT,
783 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
784 "integer constant",
785 (struct objfile *) NULL);
786 SYMBOL_TYPE (sym) = int_const_type;
787 SYMBOL_VALUE (sym) = atoi (p);
788 SYMBOL_CLASS (sym) = LOC_CONST;
789 }
790 break;
791 case 'e':
792 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
793 can be represented as integral.
794 e.g. "b:c=e6,0" for "const b = blob1"
795 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
796 {
797 SYMBOL_CLASS (sym) = LOC_CONST;
798 SYMBOL_TYPE (sym) = read_type (&p, objfile);
799
800 if (*p != ',')
801 {
802 SYMBOL_TYPE (sym) = error_type (&p, objfile);
803 break;
804 }
805 ++p;
806
807 /* If the value is too big to fit in an int (perhaps because
808 it is unsigned), or something like that, we silently get
809 a bogus value. The type and everything else about it is
810 correct. Ideally, we should be using whatever we have
811 available for parsing unsigned and long long values,
812 however. */
813 SYMBOL_VALUE (sym) = atoi (p);
814 }
815 break;
816 default:
817 {
818 SYMBOL_CLASS (sym) = LOC_CONST;
819 SYMBOL_TYPE (sym) = error_type (&p, objfile);
820 }
821 }
822 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
823 add_symbol_to_list (sym, &file_symbols);
824 return sym;
825
826 case 'C':
827 /* The name of a caught exception. */
828 SYMBOL_TYPE (sym) = read_type (&p, objfile);
829 SYMBOL_CLASS (sym) = LOC_LABEL;
830 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
831 SYMBOL_VALUE_ADDRESS (sym) = valu;
832 add_symbol_to_list (sym, &local_symbols);
833 break;
834
835 case 'f':
836 /* A static function definition. */
837 SYMBOL_TYPE (sym) = read_type (&p, objfile);
838 SYMBOL_CLASS (sym) = LOC_BLOCK;
839 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
840 add_symbol_to_list (sym, &file_symbols);
841 /* fall into process_function_types. */
842
843 process_function_types:
844 /* Function result types are described as the result type in stabs.
845 We need to convert this to the function-returning-type-X type
846 in GDB. E.g. "int" is converted to "function returning int". */
847 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
848 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
849
850 /* All functions in C++ have prototypes. Stabs does not offer an
851 explicit way to identify prototyped or unprototyped functions,
852 but both GCC and Sun CC emit stabs for the "call-as" type rather
853 than the "declared-as" type for unprototyped functions, so
854 we treat all functions as if they were prototyped. This is used
855 primarily for promotion when calling the function from GDB. */
856 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
857
858 /* fall into process_prototype_types */
859
860 process_prototype_types:
861 /* Sun acc puts declared types of arguments here. */
862 if (*p == ';')
863 {
864 struct type *ftype = SYMBOL_TYPE (sym);
865 int nsemi = 0;
866 int nparams = 0;
867 char *p1 = p;
868
869 /* Obtain a worst case guess for the number of arguments
870 by counting the semicolons. */
871 while (*p1)
872 {
873 if (*p1++ == ';')
874 nsemi++;
875 }
876
877 /* Allocate parameter information fields and fill them in. */
878 TYPE_FIELDS (ftype) = (struct field *)
879 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
880 while (*p++ == ';')
881 {
882 struct type *ptype;
883
884 /* A type number of zero indicates the start of varargs.
885 FIXME: GDB currently ignores vararg functions. */
886 if (p[0] == '0' && p[1] == '\0')
887 break;
888 ptype = read_type (&p, objfile);
889
890 /* The Sun compilers mark integer arguments, which should
891 be promoted to the width of the calling conventions, with
892 a type which references itself. This type is turned into
893 a TYPE_CODE_VOID type by read_type, and we have to turn
894 it back into builtin_type_int here.
895 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
896 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
897 ptype = builtin_type_int;
898 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
899 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
900 }
901 TYPE_NFIELDS (ftype) = nparams;
902 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
903 }
904 break;
905
906 case 'F':
907 /* A global function definition. */
908 SYMBOL_TYPE (sym) = read_type (&p, objfile);
909 SYMBOL_CLASS (sym) = LOC_BLOCK;
910 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
911 add_symbol_to_list (sym, &global_symbols);
912 goto process_function_types;
913
914 case 'G':
915 /* For a class G (global) symbol, it appears that the
916 value is not correct. It is necessary to search for the
917 corresponding linker definition to find the value.
918 These definitions appear at the end of the namelist. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_CLASS (sym) = LOC_STATIC;
921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
922 /* Don't add symbol references to global_sym_chain.
923 Symbol references don't have valid names and wont't match up with
924 minimal symbols when the global_sym_chain is relocated.
925 We'll fixup symbol references when we fixup the defining symbol. */
926 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
927 {
928 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
929 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
930 global_sym_chain[i] = sym;
931 }
932 add_symbol_to_list (sym, &global_symbols);
933 break;
934
935 /* This case is faked by a conditional above,
936 when there is no code letter in the dbx data.
937 Dbx data never actually contains 'l'. */
938 case 's':
939 case 'l':
940 SYMBOL_TYPE (sym) = read_type (&p, objfile);
941 SYMBOL_CLASS (sym) = LOC_LOCAL;
942 SYMBOL_VALUE (sym) = valu;
943 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
944 add_symbol_to_list (sym, &local_symbols);
945 break;
946
947 case 'p':
948 if (*p == 'F')
949 /* pF is a two-letter code that means a function parameter in Fortran.
950 The type-number specifies the type of the return value.
951 Translate it into a pointer-to-function type. */
952 {
953 p++;
954 SYMBOL_TYPE (sym)
955 = lookup_pointer_type
956 (lookup_function_type (read_type (&p, objfile)));
957 }
958 else
959 SYMBOL_TYPE (sym) = read_type (&p, objfile);
960
961 SYMBOL_CLASS (sym) = LOC_ARG;
962 SYMBOL_VALUE (sym) = valu;
963 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
964 add_symbol_to_list (sym, &local_symbols);
965
966 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_BIG)
967 {
968 /* On little-endian machines, this crud is never necessary,
969 and, if the extra bytes contain garbage, is harmful. */
970 break;
971 }
972
973 /* If it's gcc-compiled, if it says `short', believe it. */
974 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
975 break;
976
977 if (!BELIEVE_PCC_PROMOTION)
978 {
979 /* This is the signed type which arguments get promoted to. */
980 static struct type *pcc_promotion_type;
981 /* This is the unsigned type which arguments get promoted to. */
982 static struct type *pcc_unsigned_promotion_type;
983
984 /* Call it "int" because this is mainly C lossage. */
985 if (pcc_promotion_type == NULL)
986 pcc_promotion_type =
987 init_type (TYPE_CODE_INT,
988 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
989 0, "int", NULL);
990
991 if (pcc_unsigned_promotion_type == NULL)
992 pcc_unsigned_promotion_type =
993 init_type (TYPE_CODE_INT,
994 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
995 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
996
997 /* If PCC says a parameter is a short or a char, it is
998 really an int. */
999 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1000 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1001 {
1002 SYMBOL_TYPE (sym) =
1003 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1004 ? pcc_unsigned_promotion_type
1005 : pcc_promotion_type;
1006 }
1007 break;
1008 }
1009
1010 case 'P':
1011 /* acc seems to use P to declare the prototypes of functions that
1012 are referenced by this file. gdb is not prepared to deal
1013 with this extra information. FIXME, it ought to. */
1014 if (type == N_FUN)
1015 {
1016 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1017 goto process_prototype_types;
1018 }
1019 /*FALLTHROUGH */
1020
1021 case 'R':
1022 /* Parameter which is in a register. */
1023 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1024 SYMBOL_CLASS (sym) = LOC_REGPARM;
1025 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1026 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1027 + gdbarch_num_pseudo_regs (current_gdbarch))
1028 {
1029 reg_value_complaint (SYMBOL_VALUE (sym),
1030 gdbarch_num_regs (current_gdbarch)
1031 + gdbarch_num_pseudo_regs (current_gdbarch),
1032 SYMBOL_PRINT_NAME (sym));
1033 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1034 }
1035 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1036 add_symbol_to_list (sym, &local_symbols);
1037 break;
1038
1039 case 'r':
1040 /* Register variable (either global or local). */
1041 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1042 SYMBOL_CLASS (sym) = LOC_REGISTER;
1043 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1044 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1045 + gdbarch_num_pseudo_regs (current_gdbarch))
1046 {
1047 reg_value_complaint (SYMBOL_VALUE (sym),
1048 gdbarch_num_regs (current_gdbarch)
1049 + gdbarch_num_pseudo_regs (current_gdbarch),
1050 SYMBOL_PRINT_NAME (sym));
1051 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1052 }
1053 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1054 if (within_function)
1055 {
1056 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1057 the same name to represent an argument passed in a
1058 register. GCC uses 'P' for the same case. So if we find
1059 such a symbol pair we combine it into one 'P' symbol.
1060 For Sun cc we need to do this regardless of
1061 stabs_argument_has_addr, because the compiler puts out
1062 the 'p' symbol even if it never saves the argument onto
1063 the stack.
1064
1065 On most machines, we want to preserve both symbols, so
1066 that we can still get information about what is going on
1067 with the stack (VAX for computing args_printed, using
1068 stack slots instead of saved registers in backtraces,
1069 etc.).
1070
1071 Note that this code illegally combines
1072 main(argc) struct foo argc; { register struct foo argc; }
1073 but this case is considered pathological and causes a warning
1074 from a decent compiler. */
1075
1076 if (local_symbols
1077 && local_symbols->nsyms > 0
1078 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1079 SYMBOL_TYPE (sym)))
1080 {
1081 struct symbol *prev_sym;
1082 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1083 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1084 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1085 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1086 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1087 {
1088 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1089 /* Use the type from the LOC_REGISTER; that is the type
1090 that is actually in that register. */
1091 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1092 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1093 sym = prev_sym;
1094 break;
1095 }
1096 }
1097 add_symbol_to_list (sym, &local_symbols);
1098 }
1099 else
1100 add_symbol_to_list (sym, &file_symbols);
1101 break;
1102
1103 case 'S':
1104 /* Static symbol at top level of file */
1105 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106 SYMBOL_CLASS (sym) = LOC_STATIC;
1107 SYMBOL_VALUE_ADDRESS (sym) = valu;
1108 #ifdef STATIC_TRANSFORM_NAME
1109 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1110 {
1111 struct minimal_symbol *msym;
1112 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1113 if (msym != NULL)
1114 {
1115 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1116 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1117 }
1118 }
1119 #endif
1120 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1121 add_symbol_to_list (sym, &file_symbols);
1122 break;
1123
1124 case 't':
1125 /* In Ada, there is no distinction between typedef and non-typedef;
1126 any type declaration implicitly has the equivalent of a typedef,
1127 and thus 't' is in fact equivalent to 'Tt'.
1128
1129 Therefore, for Ada units, we check the character immediately
1130 before the 't', and if we do not find a 'T', then make sure to
1131 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1132 will be stored in the VAR_DOMAIN). If the symbol was indeed
1133 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1134 elsewhere, so we don't need to take care of that.
1135
1136 This is important to do, because of forward references:
1137 The cleanup of undefined types stored in undef_types only uses
1138 STRUCT_DOMAIN symbols to perform the replacement. */
1139 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1140
1141 /* Typedef */
1142 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1143
1144 /* For a nameless type, we don't want a create a symbol, thus we
1145 did not use `sym'. Return without further processing. */
1146 if (nameless)
1147 return NULL;
1148
1149 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1150 SYMBOL_VALUE (sym) = valu;
1151 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1152 /* C++ vagaries: we may have a type which is derived from
1153 a base type which did not have its name defined when the
1154 derived class was output. We fill in the derived class's
1155 base part member's name here in that case. */
1156 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1157 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1158 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1159 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1160 {
1161 int j;
1162 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1163 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1164 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1165 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1166 }
1167
1168 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1169 {
1170 /* gcc-2.6 or later (when using -fvtable-thunks)
1171 emits a unique named type for a vtable entry.
1172 Some gdb code depends on that specific name. */
1173 extern const char vtbl_ptr_name[];
1174
1175 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1176 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1177 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1178 {
1179 /* If we are giving a name to a type such as "pointer to
1180 foo" or "function returning foo", we better not set
1181 the TYPE_NAME. If the program contains "typedef char
1182 *caddr_t;", we don't want all variables of type char
1183 * to print as caddr_t. This is not just a
1184 consequence of GDB's type management; PCC and GCC (at
1185 least through version 2.4) both output variables of
1186 either type char * or caddr_t with the type number
1187 defined in the 't' symbol for caddr_t. If a future
1188 compiler cleans this up it GDB is not ready for it
1189 yet, but if it becomes ready we somehow need to
1190 disable this check (without breaking the PCC/GCC2.4
1191 case).
1192
1193 Sigh.
1194
1195 Fortunately, this check seems not to be necessary
1196 for anything except pointers or functions. */
1197 /* ezannoni: 2000-10-26. This seems to apply for
1198 versions of gcc older than 2.8. This was the original
1199 problem: with the following code gdb would tell that
1200 the type for name1 is caddr_t, and func is char()
1201 typedef char *caddr_t;
1202 char *name2;
1203 struct x
1204 {
1205 char *name1;
1206 } xx;
1207 char *func()
1208 {
1209 }
1210 main () {}
1211 */
1212
1213 /* Pascal accepts names for pointer types. */
1214 if (current_subfile->language == language_pascal)
1215 {
1216 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1217 }
1218 }
1219 else
1220 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1221 }
1222
1223 add_symbol_to_list (sym, &file_symbols);
1224
1225 if (synonym)
1226 {
1227 /* Create the STRUCT_DOMAIN clone. */
1228 struct symbol *struct_sym = (struct symbol *)
1229 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1230
1231 *struct_sym = *sym;
1232 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1233 SYMBOL_VALUE (struct_sym) = valu;
1234 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1235 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1236 TYPE_NAME (SYMBOL_TYPE (sym))
1237 = obconcat (&objfile->objfile_obstack, "", "",
1238 DEPRECATED_SYMBOL_NAME (sym));
1239 add_symbol_to_list (struct_sym, &file_symbols);
1240 }
1241
1242 break;
1243
1244 case 'T':
1245 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1246 by 't' which means we are typedef'ing it as well. */
1247 synonym = *p == 't';
1248
1249 if (synonym)
1250 p++;
1251
1252 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1253
1254 /* For a nameless type, we don't want a create a symbol, thus we
1255 did not use `sym'. Return without further processing. */
1256 if (nameless)
1257 return NULL;
1258
1259 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1260 SYMBOL_VALUE (sym) = valu;
1261 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1262 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1263 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1264 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1265 add_symbol_to_list (sym, &file_symbols);
1266
1267 if (synonym)
1268 {
1269 /* Clone the sym and then modify it. */
1270 struct symbol *typedef_sym = (struct symbol *)
1271 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1272 *typedef_sym = *sym;
1273 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1274 SYMBOL_VALUE (typedef_sym) = valu;
1275 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1276 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1277 TYPE_NAME (SYMBOL_TYPE (sym))
1278 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1279 add_symbol_to_list (typedef_sym, &file_symbols);
1280 }
1281 break;
1282
1283 case 'V':
1284 /* Static symbol of local scope */
1285 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1286 SYMBOL_CLASS (sym) = LOC_STATIC;
1287 SYMBOL_VALUE_ADDRESS (sym) = valu;
1288 #ifdef STATIC_TRANSFORM_NAME
1289 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1290 {
1291 struct minimal_symbol *msym;
1292 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1293 if (msym != NULL)
1294 {
1295 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1296 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1297 }
1298 }
1299 #endif
1300 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1301 add_symbol_to_list (sym, &local_symbols);
1302 break;
1303
1304 case 'v':
1305 /* Reference parameter */
1306 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1307 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1308 SYMBOL_VALUE (sym) = valu;
1309 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1310 add_symbol_to_list (sym, &local_symbols);
1311 break;
1312
1313 case 'a':
1314 /* Reference parameter which is in a register. */
1315 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1316 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1317 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1318 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1319 + gdbarch_num_pseudo_regs (current_gdbarch))
1320 {
1321 reg_value_complaint (SYMBOL_VALUE (sym),
1322 gdbarch_num_regs (current_gdbarch)
1323 + gdbarch_num_pseudo_regs (current_gdbarch),
1324 SYMBOL_PRINT_NAME (sym));
1325 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1326 }
1327 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1328 add_symbol_to_list (sym, &local_symbols);
1329 break;
1330
1331 case 'X':
1332 /* This is used by Sun FORTRAN for "function result value".
1333 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1334 that Pascal uses it too, but when I tried it Pascal used
1335 "x:3" (local symbol) instead. */
1336 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1337 SYMBOL_CLASS (sym) = LOC_LOCAL;
1338 SYMBOL_VALUE (sym) = valu;
1339 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1340 add_symbol_to_list (sym, &local_symbols);
1341 break;
1342
1343 default:
1344 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1345 SYMBOL_CLASS (sym) = LOC_CONST;
1346 SYMBOL_VALUE (sym) = 0;
1347 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1348 add_symbol_to_list (sym, &file_symbols);
1349 break;
1350 }
1351
1352 /* Some systems pass variables of certain types by reference instead
1353 of by value, i.e. they will pass the address of a structure (in a
1354 register or on the stack) instead of the structure itself. */
1355
1356 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1357 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1358 {
1359 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1360 variables passed in a register). */
1361 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1362 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1363 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1364 and subsequent arguments on SPARC, for example). */
1365 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1366 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1367 }
1368
1369 return sym;
1370 }
1371
1372 /* Skip rest of this symbol and return an error type.
1373
1374 General notes on error recovery: error_type always skips to the
1375 end of the symbol (modulo cretinous dbx symbol name continuation).
1376 Thus code like this:
1377
1378 if (*(*pp)++ != ';')
1379 return error_type (pp, objfile);
1380
1381 is wrong because if *pp starts out pointing at '\0' (typically as the
1382 result of an earlier error), it will be incremented to point to the
1383 start of the next symbol, which might produce strange results, at least
1384 if you run off the end of the string table. Instead use
1385
1386 if (**pp != ';')
1387 return error_type (pp, objfile);
1388 ++*pp;
1389
1390 or
1391
1392 if (**pp != ';')
1393 foo = error_type (pp, objfile);
1394 else
1395 ++*pp;
1396
1397 And in case it isn't obvious, the point of all this hair is so the compiler
1398 can define new types and new syntaxes, and old versions of the
1399 debugger will be able to read the new symbol tables. */
1400
1401 static struct type *
1402 error_type (char **pp, struct objfile *objfile)
1403 {
1404 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1405 while (1)
1406 {
1407 /* Skip to end of symbol. */
1408 while (**pp != '\0')
1409 {
1410 (*pp)++;
1411 }
1412
1413 /* Check for and handle cretinous dbx symbol name continuation! */
1414 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1415 {
1416 *pp = next_symbol_text (objfile);
1417 }
1418 else
1419 {
1420 break;
1421 }
1422 }
1423 return (builtin_type_error);
1424 }
1425 \f
1426
1427 /* Read type information or a type definition; return the type. Even
1428 though this routine accepts either type information or a type
1429 definition, the distinction is relevant--some parts of stabsread.c
1430 assume that type information starts with a digit, '-', or '(' in
1431 deciding whether to call read_type. */
1432
1433 static struct type *
1434 read_type (char **pp, struct objfile *objfile)
1435 {
1436 struct type *type = 0;
1437 struct type *type1;
1438 int typenums[2];
1439 char type_descriptor;
1440
1441 /* Size in bits of type if specified by a type attribute, or -1 if
1442 there is no size attribute. */
1443 int type_size = -1;
1444
1445 /* Used to distinguish string and bitstring from char-array and set. */
1446 int is_string = 0;
1447
1448 /* Used to distinguish vector from array. */
1449 int is_vector = 0;
1450
1451 /* Read type number if present. The type number may be omitted.
1452 for instance in a two-dimensional array declared with type
1453 "ar1;1;10;ar1;1;10;4". */
1454 if ((**pp >= '0' && **pp <= '9')
1455 || **pp == '('
1456 || **pp == '-')
1457 {
1458 if (read_type_number (pp, typenums) != 0)
1459 return error_type (pp, objfile);
1460
1461 if (**pp != '=')
1462 {
1463 /* Type is not being defined here. Either it already
1464 exists, or this is a forward reference to it.
1465 dbx_alloc_type handles both cases. */
1466 type = dbx_alloc_type (typenums, objfile);
1467
1468 /* If this is a forward reference, arrange to complain if it
1469 doesn't get patched up by the time we're done
1470 reading. */
1471 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1472 add_undefined_type (type, typenums);
1473
1474 return type;
1475 }
1476
1477 /* Type is being defined here. */
1478 /* Skip the '='.
1479 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1480 (*pp) += 2;
1481 }
1482 else
1483 {
1484 /* 'typenums=' not present, type is anonymous. Read and return
1485 the definition, but don't put it in the type vector. */
1486 typenums[0] = typenums[1] = -1;
1487 (*pp)++;
1488 }
1489
1490 again:
1491 type_descriptor = (*pp)[-1];
1492 switch (type_descriptor)
1493 {
1494 case 'x':
1495 {
1496 enum type_code code;
1497
1498 /* Used to index through file_symbols. */
1499 struct pending *ppt;
1500 int i;
1501
1502 /* Name including "struct", etc. */
1503 char *type_name;
1504
1505 {
1506 char *from, *to, *p, *q1, *q2;
1507
1508 /* Set the type code according to the following letter. */
1509 switch ((*pp)[0])
1510 {
1511 case 's':
1512 code = TYPE_CODE_STRUCT;
1513 break;
1514 case 'u':
1515 code = TYPE_CODE_UNION;
1516 break;
1517 case 'e':
1518 code = TYPE_CODE_ENUM;
1519 break;
1520 default:
1521 {
1522 /* Complain and keep going, so compilers can invent new
1523 cross-reference types. */
1524 complaint (&symfile_complaints,
1525 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1526 code = TYPE_CODE_STRUCT;
1527 break;
1528 }
1529 }
1530
1531 q1 = strchr (*pp, '<');
1532 p = strchr (*pp, ':');
1533 if (p == NULL)
1534 return error_type (pp, objfile);
1535 if (q1 && p > q1 && p[1] == ':')
1536 {
1537 int nesting_level = 0;
1538 for (q2 = q1; *q2; q2++)
1539 {
1540 if (*q2 == '<')
1541 nesting_level++;
1542 else if (*q2 == '>')
1543 nesting_level--;
1544 else if (*q2 == ':' && nesting_level == 0)
1545 break;
1546 }
1547 p = q2;
1548 if (*p != ':')
1549 return error_type (pp, objfile);
1550 }
1551 to = type_name =
1552 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1553
1554 /* Copy the name. */
1555 from = *pp + 1;
1556 while (from < p)
1557 *to++ = *from++;
1558 *to = '\0';
1559
1560 /* Set the pointer ahead of the name which we just read, and
1561 the colon. */
1562 *pp = from + 1;
1563 }
1564
1565 /* If this type has already been declared, then reuse the same
1566 type, rather than allocating a new one. This saves some
1567 memory. */
1568
1569 for (ppt = file_symbols; ppt; ppt = ppt->next)
1570 for (i = 0; i < ppt->nsyms; i++)
1571 {
1572 struct symbol *sym = ppt->symbol[i];
1573
1574 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1575 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1576 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1577 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1578 {
1579 obstack_free (&objfile->objfile_obstack, type_name);
1580 type = SYMBOL_TYPE (sym);
1581 if (typenums[0] != -1)
1582 *dbx_lookup_type (typenums) = type;
1583 return type;
1584 }
1585 }
1586
1587 /* Didn't find the type to which this refers, so we must
1588 be dealing with a forward reference. Allocate a type
1589 structure for it, and keep track of it so we can
1590 fill in the rest of the fields when we get the full
1591 type. */
1592 type = dbx_alloc_type (typenums, objfile);
1593 TYPE_CODE (type) = code;
1594 TYPE_TAG_NAME (type) = type_name;
1595 INIT_CPLUS_SPECIFIC (type);
1596 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1597
1598 add_undefined_type (type, typenums);
1599 return type;
1600 }
1601
1602 case '-': /* RS/6000 built-in type */
1603 case '0':
1604 case '1':
1605 case '2':
1606 case '3':
1607 case '4':
1608 case '5':
1609 case '6':
1610 case '7':
1611 case '8':
1612 case '9':
1613 case '(':
1614 (*pp)--;
1615
1616 /* We deal with something like t(1,2)=(3,4)=... which
1617 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1618
1619 /* Allocate and enter the typedef type first.
1620 This handles recursive types. */
1621 type = dbx_alloc_type (typenums, objfile);
1622 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1623 {
1624 struct type *xtype = read_type (pp, objfile);
1625 if (type == xtype)
1626 {
1627 /* It's being defined as itself. That means it is "void". */
1628 TYPE_CODE (type) = TYPE_CODE_VOID;
1629 TYPE_LENGTH (type) = 1;
1630 }
1631 else if (type_size >= 0 || is_string)
1632 {
1633 /* This is the absolute wrong way to construct types. Every
1634 other debug format has found a way around this problem and
1635 the related problems with unnecessarily stubbed types;
1636 someone motivated should attempt to clean up the issue
1637 here as well. Once a type pointed to has been created it
1638 should not be modified.
1639
1640 Well, it's not *absolutely* wrong. Constructing recursive
1641 types (trees, linked lists) necessarily entails modifying
1642 types after creating them. Constructing any loop structure
1643 entails side effects. The Dwarf 2 reader does handle this
1644 more gracefully (it never constructs more than once
1645 instance of a type object, so it doesn't have to copy type
1646 objects wholesale), but it still mutates type objects after
1647 other folks have references to them.
1648
1649 Keep in mind that this circularity/mutation issue shows up
1650 at the source language level, too: C's "incomplete types",
1651 for example. So the proper cleanup, I think, would be to
1652 limit GDB's type smashing to match exactly those required
1653 by the source language. So GDB could have a
1654 "complete_this_type" function, but never create unnecessary
1655 copies of a type otherwise. */
1656 replace_type (type, xtype);
1657 TYPE_NAME (type) = NULL;
1658 TYPE_TAG_NAME (type) = NULL;
1659 }
1660 else
1661 {
1662 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1663 TYPE_TARGET_TYPE (type) = xtype;
1664 }
1665 }
1666 break;
1667
1668 /* In the following types, we must be sure to overwrite any existing
1669 type that the typenums refer to, rather than allocating a new one
1670 and making the typenums point to the new one. This is because there
1671 may already be pointers to the existing type (if it had been
1672 forward-referenced), and we must change it to a pointer, function,
1673 reference, or whatever, *in-place*. */
1674
1675 case '*': /* Pointer to another type */
1676 type1 = read_type (pp, objfile);
1677 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1678 break;
1679
1680 case '&': /* Reference to another type */
1681 type1 = read_type (pp, objfile);
1682 type = make_reference_type (type1, dbx_lookup_type (typenums));
1683 break;
1684
1685 case 'f': /* Function returning another type */
1686 type1 = read_type (pp, objfile);
1687 type = make_function_type (type1, dbx_lookup_type (typenums));
1688 break;
1689
1690 case 'g': /* Prototyped function. (Sun) */
1691 {
1692 /* Unresolved questions:
1693
1694 - According to Sun's ``STABS Interface Manual'', for 'f'
1695 and 'F' symbol descriptors, a `0' in the argument type list
1696 indicates a varargs function. But it doesn't say how 'g'
1697 type descriptors represent that info. Someone with access
1698 to Sun's toolchain should try it out.
1699
1700 - According to the comment in define_symbol (search for
1701 `process_prototype_types:'), Sun emits integer arguments as
1702 types which ref themselves --- like `void' types. Do we
1703 have to deal with that here, too? Again, someone with
1704 access to Sun's toolchain should try it out and let us
1705 know. */
1706
1707 const char *type_start = (*pp) - 1;
1708 struct type *return_type = read_type (pp, objfile);
1709 struct type *func_type
1710 = make_function_type (return_type, dbx_lookup_type (typenums));
1711 struct type_list {
1712 struct type *type;
1713 struct type_list *next;
1714 } *arg_types = 0;
1715 int num_args = 0;
1716
1717 while (**pp && **pp != '#')
1718 {
1719 struct type *arg_type = read_type (pp, objfile);
1720 struct type_list *new = alloca (sizeof (*new));
1721 new->type = arg_type;
1722 new->next = arg_types;
1723 arg_types = new;
1724 num_args++;
1725 }
1726 if (**pp == '#')
1727 ++*pp;
1728 else
1729 {
1730 complaint (&symfile_complaints,
1731 _("Prototyped function type didn't end arguments with `#':\n%s"),
1732 type_start);
1733 }
1734
1735 /* If there is just one argument whose type is `void', then
1736 that's just an empty argument list. */
1737 if (arg_types
1738 && ! arg_types->next
1739 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1740 num_args = 0;
1741
1742 TYPE_FIELDS (func_type)
1743 = (struct field *) TYPE_ALLOC (func_type,
1744 num_args * sizeof (struct field));
1745 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1746 {
1747 int i;
1748 struct type_list *t;
1749
1750 /* We stuck each argument type onto the front of the list
1751 when we read it, so the list is reversed. Build the
1752 fields array right-to-left. */
1753 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1754 TYPE_FIELD_TYPE (func_type, i) = t->type;
1755 }
1756 TYPE_NFIELDS (func_type) = num_args;
1757 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1758
1759 type = func_type;
1760 break;
1761 }
1762
1763 case 'k': /* Const qualifier on some type (Sun) */
1764 type = read_type (pp, objfile);
1765 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1766 dbx_lookup_type (typenums));
1767 break;
1768
1769 case 'B': /* Volatile qual on some type (Sun) */
1770 type = read_type (pp, objfile);
1771 type = make_cv_type (TYPE_CONST (type), 1, type,
1772 dbx_lookup_type (typenums));
1773 break;
1774
1775 case '@':
1776 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1777 { /* Member (class & variable) type */
1778 /* FIXME -- we should be doing smash_to_XXX types here. */
1779
1780 struct type *domain = read_type (pp, objfile);
1781 struct type *memtype;
1782
1783 if (**pp != ',')
1784 /* Invalid member type data format. */
1785 return error_type (pp, objfile);
1786 ++*pp;
1787
1788 memtype = read_type (pp, objfile);
1789 type = dbx_alloc_type (typenums, objfile);
1790 smash_to_memberptr_type (type, domain, memtype);
1791 }
1792 else
1793 /* type attribute */
1794 {
1795 char *attr = *pp;
1796 /* Skip to the semicolon. */
1797 while (**pp != ';' && **pp != '\0')
1798 ++(*pp);
1799 if (**pp == '\0')
1800 return error_type (pp, objfile);
1801 else
1802 ++ * pp; /* Skip the semicolon. */
1803
1804 switch (*attr)
1805 {
1806 case 's': /* Size attribute */
1807 type_size = atoi (attr + 1);
1808 if (type_size <= 0)
1809 type_size = -1;
1810 break;
1811
1812 case 'S': /* String attribute */
1813 /* FIXME: check to see if following type is array? */
1814 is_string = 1;
1815 break;
1816
1817 case 'V': /* Vector attribute */
1818 /* FIXME: check to see if following type is array? */
1819 is_vector = 1;
1820 break;
1821
1822 default:
1823 /* Ignore unrecognized type attributes, so future compilers
1824 can invent new ones. */
1825 break;
1826 }
1827 ++*pp;
1828 goto again;
1829 }
1830 break;
1831
1832 case '#': /* Method (class & fn) type */
1833 if ((*pp)[0] == '#')
1834 {
1835 /* We'll get the parameter types from the name. */
1836 struct type *return_type;
1837
1838 (*pp)++;
1839 return_type = read_type (pp, objfile);
1840 if (*(*pp)++ != ';')
1841 complaint (&symfile_complaints,
1842 _("invalid (minimal) member type data format at symtab pos %d."),
1843 symnum);
1844 type = allocate_stub_method (return_type);
1845 if (typenums[0] != -1)
1846 *dbx_lookup_type (typenums) = type;
1847 }
1848 else
1849 {
1850 struct type *domain = read_type (pp, objfile);
1851 struct type *return_type;
1852 struct field *args;
1853 int nargs, varargs;
1854
1855 if (**pp != ',')
1856 /* Invalid member type data format. */
1857 return error_type (pp, objfile);
1858 else
1859 ++(*pp);
1860
1861 return_type = read_type (pp, objfile);
1862 args = read_args (pp, ';', objfile, &nargs, &varargs);
1863 if (args == NULL)
1864 return error_type (pp, objfile);
1865 type = dbx_alloc_type (typenums, objfile);
1866 smash_to_method_type (type, domain, return_type, args,
1867 nargs, varargs);
1868 }
1869 break;
1870
1871 case 'r': /* Range type */
1872 type = read_range_type (pp, typenums, type_size, objfile);
1873 if (typenums[0] != -1)
1874 *dbx_lookup_type (typenums) = type;
1875 break;
1876
1877 case 'b':
1878 {
1879 /* Sun ACC builtin int type */
1880 type = read_sun_builtin_type (pp, typenums, objfile);
1881 if (typenums[0] != -1)
1882 *dbx_lookup_type (typenums) = type;
1883 }
1884 break;
1885
1886 case 'R': /* Sun ACC builtin float type */
1887 type = read_sun_floating_type (pp, typenums, objfile);
1888 if (typenums[0] != -1)
1889 *dbx_lookup_type (typenums) = type;
1890 break;
1891
1892 case 'e': /* Enumeration type */
1893 type = dbx_alloc_type (typenums, objfile);
1894 type = read_enum_type (pp, type, objfile);
1895 if (typenums[0] != -1)
1896 *dbx_lookup_type (typenums) = type;
1897 break;
1898
1899 case 's': /* Struct type */
1900 case 'u': /* Union type */
1901 {
1902 enum type_code type_code = TYPE_CODE_UNDEF;
1903 type = dbx_alloc_type (typenums, objfile);
1904 switch (type_descriptor)
1905 {
1906 case 's':
1907 type_code = TYPE_CODE_STRUCT;
1908 break;
1909 case 'u':
1910 type_code = TYPE_CODE_UNION;
1911 break;
1912 }
1913 type = read_struct_type (pp, type, type_code, objfile);
1914 break;
1915 }
1916
1917 case 'a': /* Array type */
1918 if (**pp != 'r')
1919 return error_type (pp, objfile);
1920 ++*pp;
1921
1922 type = dbx_alloc_type (typenums, objfile);
1923 type = read_array_type (pp, type, objfile);
1924 if (is_string)
1925 TYPE_CODE (type) = TYPE_CODE_STRING;
1926 if (is_vector)
1927 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1928 break;
1929
1930 case 'S': /* Set or bitstring type */
1931 type1 = read_type (pp, objfile);
1932 type = create_set_type ((struct type *) NULL, type1);
1933 if (is_string)
1934 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1935 if (typenums[0] != -1)
1936 *dbx_lookup_type (typenums) = type;
1937 break;
1938
1939 default:
1940 --*pp; /* Go back to the symbol in error */
1941 /* Particularly important if it was \0! */
1942 return error_type (pp, objfile);
1943 }
1944
1945 if (type == 0)
1946 {
1947 warning (_("GDB internal error, type is NULL in stabsread.c."));
1948 return error_type (pp, objfile);
1949 }
1950
1951 /* Size specified in a type attribute overrides any other size. */
1952 if (type_size != -1)
1953 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1954
1955 return type;
1956 }
1957 \f
1958 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1959 Return the proper type node for a given builtin type number. */
1960
1961 static struct type *
1962 rs6000_builtin_type (int typenum)
1963 {
1964 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1965 #define NUMBER_RECOGNIZED 34
1966 /* This includes an empty slot for type number -0. */
1967 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1968 struct type *rettype = NULL;
1969
1970 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1971 {
1972 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1973 return builtin_type_error;
1974 }
1975 if (negative_types[-typenum] != NULL)
1976 return negative_types[-typenum];
1977
1978 #if TARGET_CHAR_BIT != 8
1979 #error This code wrong for TARGET_CHAR_BIT not 8
1980 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1981 that if that ever becomes not true, the correct fix will be to
1982 make the size in the struct type to be in bits, not in units of
1983 TARGET_CHAR_BIT. */
1984 #endif
1985
1986 switch (-typenum)
1987 {
1988 case 1:
1989 /* The size of this and all the other types are fixed, defined
1990 by the debugging format. If there is a type called "int" which
1991 is other than 32 bits, then it should use a new negative type
1992 number (or avoid negative type numbers for that case).
1993 See stabs.texinfo. */
1994 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1995 break;
1996 case 2:
1997 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1998 break;
1999 case 3:
2000 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2001 break;
2002 case 4:
2003 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2004 break;
2005 case 5:
2006 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2007 "unsigned char", NULL);
2008 break;
2009 case 6:
2010 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2011 break;
2012 case 7:
2013 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2014 "unsigned short", NULL);
2015 break;
2016 case 8:
2017 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2018 "unsigned int", NULL);
2019 break;
2020 case 9:
2021 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2022 "unsigned", NULL);
2023 case 10:
2024 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2025 "unsigned long", NULL);
2026 break;
2027 case 11:
2028 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2029 break;
2030 case 12:
2031 /* IEEE single precision (32 bit). */
2032 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2033 break;
2034 case 13:
2035 /* IEEE double precision (64 bit). */
2036 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2037 break;
2038 case 14:
2039 /* This is an IEEE double on the RS/6000, and different machines with
2040 different sizes for "long double" should use different negative
2041 type numbers. See stabs.texinfo. */
2042 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2043 break;
2044 case 15:
2045 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2046 break;
2047 case 16:
2048 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2049 "boolean", NULL);
2050 break;
2051 case 17:
2052 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2053 break;
2054 case 18:
2055 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2056 break;
2057 case 19:
2058 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2059 break;
2060 case 20:
2061 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2062 "character", NULL);
2063 break;
2064 case 21:
2065 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2066 "logical*1", NULL);
2067 break;
2068 case 22:
2069 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2070 "logical*2", NULL);
2071 break;
2072 case 23:
2073 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2074 "logical*4", NULL);
2075 break;
2076 case 24:
2077 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2078 "logical", NULL);
2079 break;
2080 case 25:
2081 /* Complex type consisting of two IEEE single precision values. */
2082 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2083 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2084 NULL);
2085 break;
2086 case 26:
2087 /* Complex type consisting of two IEEE double precision values. */
2088 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2089 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2090 NULL);
2091 break;
2092 case 27:
2093 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2094 break;
2095 case 28:
2096 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2097 break;
2098 case 29:
2099 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2100 break;
2101 case 30:
2102 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2103 break;
2104 case 31:
2105 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2106 break;
2107 case 32:
2108 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2109 "unsigned long long", NULL);
2110 break;
2111 case 33:
2112 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2113 "logical*8", NULL);
2114 break;
2115 case 34:
2116 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2117 break;
2118 }
2119 negative_types[-typenum] = rettype;
2120 return rettype;
2121 }
2122 \f
2123 /* This page contains subroutines of read_type. */
2124
2125 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2126
2127 static void
2128 update_method_name_from_physname (char **old_name, char *physname)
2129 {
2130 char *method_name;
2131
2132 method_name = method_name_from_physname (physname);
2133
2134 if (method_name == NULL)
2135 {
2136 complaint (&symfile_complaints,
2137 _("Method has bad physname %s\n"), physname);
2138 return;
2139 }
2140
2141 if (strcmp (*old_name, method_name) != 0)
2142 {
2143 xfree (*old_name);
2144 *old_name = method_name;
2145 }
2146 else
2147 xfree (method_name);
2148 }
2149
2150 /* Read member function stabs info for C++ classes. The form of each member
2151 function data is:
2152
2153 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2154
2155 An example with two member functions is:
2156
2157 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2158
2159 For the case of overloaded operators, the format is op$::*.funcs, where
2160 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2161 name (such as `+=') and `.' marks the end of the operator name.
2162
2163 Returns 1 for success, 0 for failure. */
2164
2165 static int
2166 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2167 struct objfile *objfile)
2168 {
2169 int nfn_fields = 0;
2170 int length = 0;
2171 /* Total number of member functions defined in this class. If the class
2172 defines two `f' functions, and one `g' function, then this will have
2173 the value 3. */
2174 int total_length = 0;
2175 int i;
2176 struct next_fnfield
2177 {
2178 struct next_fnfield *next;
2179 struct fn_field fn_field;
2180 }
2181 *sublist;
2182 struct type *look_ahead_type;
2183 struct next_fnfieldlist *new_fnlist;
2184 struct next_fnfield *new_sublist;
2185 char *main_fn_name;
2186 char *p;
2187
2188 /* Process each list until we find something that is not a member function
2189 or find the end of the functions. */
2190
2191 while (**pp != ';')
2192 {
2193 /* We should be positioned at the start of the function name.
2194 Scan forward to find the first ':' and if it is not the
2195 first of a "::" delimiter, then this is not a member function. */
2196 p = *pp;
2197 while (*p != ':')
2198 {
2199 p++;
2200 }
2201 if (p[1] != ':')
2202 {
2203 break;
2204 }
2205
2206 sublist = NULL;
2207 look_ahead_type = NULL;
2208 length = 0;
2209
2210 new_fnlist = (struct next_fnfieldlist *)
2211 xmalloc (sizeof (struct next_fnfieldlist));
2212 make_cleanup (xfree, new_fnlist);
2213 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2214
2215 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2216 {
2217 /* This is a completely wierd case. In order to stuff in the
2218 names that might contain colons (the usual name delimiter),
2219 Mike Tiemann defined a different name format which is
2220 signalled if the identifier is "op$". In that case, the
2221 format is "op$::XXXX." where XXXX is the name. This is
2222 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2223 /* This lets the user type "break operator+".
2224 We could just put in "+" as the name, but that wouldn't
2225 work for "*". */
2226 static char opname[32] = "op$";
2227 char *o = opname + 3;
2228
2229 /* Skip past '::'. */
2230 *pp = p + 2;
2231
2232 STABS_CONTINUE (pp, objfile);
2233 p = *pp;
2234 while (*p != '.')
2235 {
2236 *o++ = *p++;
2237 }
2238 main_fn_name = savestring (opname, o - opname);
2239 /* Skip past '.' */
2240 *pp = p + 1;
2241 }
2242 else
2243 {
2244 main_fn_name = savestring (*pp, p - *pp);
2245 /* Skip past '::'. */
2246 *pp = p + 2;
2247 }
2248 new_fnlist->fn_fieldlist.name = main_fn_name;
2249
2250 do
2251 {
2252 new_sublist =
2253 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2254 make_cleanup (xfree, new_sublist);
2255 memset (new_sublist, 0, sizeof (struct next_fnfield));
2256
2257 /* Check for and handle cretinous dbx symbol name continuation! */
2258 if (look_ahead_type == NULL)
2259 {
2260 /* Normal case. */
2261 STABS_CONTINUE (pp, objfile);
2262
2263 new_sublist->fn_field.type = read_type (pp, objfile);
2264 if (**pp != ':')
2265 {
2266 /* Invalid symtab info for member function. */
2267 return 0;
2268 }
2269 }
2270 else
2271 {
2272 /* g++ version 1 kludge */
2273 new_sublist->fn_field.type = look_ahead_type;
2274 look_ahead_type = NULL;
2275 }
2276
2277 (*pp)++;
2278 p = *pp;
2279 while (*p != ';')
2280 {
2281 p++;
2282 }
2283
2284 /* If this is just a stub, then we don't have the real name here. */
2285
2286 if (TYPE_STUB (new_sublist->fn_field.type))
2287 {
2288 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2289 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2290 new_sublist->fn_field.is_stub = 1;
2291 }
2292 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2293 *pp = p + 1;
2294
2295 /* Set this member function's visibility fields. */
2296 switch (*(*pp)++)
2297 {
2298 case VISIBILITY_PRIVATE:
2299 new_sublist->fn_field.is_private = 1;
2300 break;
2301 case VISIBILITY_PROTECTED:
2302 new_sublist->fn_field.is_protected = 1;
2303 break;
2304 }
2305
2306 STABS_CONTINUE (pp, objfile);
2307 switch (**pp)
2308 {
2309 case 'A': /* Normal functions. */
2310 new_sublist->fn_field.is_const = 0;
2311 new_sublist->fn_field.is_volatile = 0;
2312 (*pp)++;
2313 break;
2314 case 'B': /* `const' member functions. */
2315 new_sublist->fn_field.is_const = 1;
2316 new_sublist->fn_field.is_volatile = 0;
2317 (*pp)++;
2318 break;
2319 case 'C': /* `volatile' member function. */
2320 new_sublist->fn_field.is_const = 0;
2321 new_sublist->fn_field.is_volatile = 1;
2322 (*pp)++;
2323 break;
2324 case 'D': /* `const volatile' member function. */
2325 new_sublist->fn_field.is_const = 1;
2326 new_sublist->fn_field.is_volatile = 1;
2327 (*pp)++;
2328 break;
2329 case '*': /* File compiled with g++ version 1 -- no info */
2330 case '?':
2331 case '.':
2332 break;
2333 default:
2334 complaint (&symfile_complaints,
2335 _("const/volatile indicator missing, got '%c'"), **pp);
2336 break;
2337 }
2338
2339 switch (*(*pp)++)
2340 {
2341 case '*':
2342 {
2343 int nbits;
2344 /* virtual member function, followed by index.
2345 The sign bit is set to distinguish pointers-to-methods
2346 from virtual function indicies. Since the array is
2347 in words, the quantity must be shifted left by 1
2348 on 16 bit machine, and by 2 on 32 bit machine, forcing
2349 the sign bit out, and usable as a valid index into
2350 the array. Remove the sign bit here. */
2351 new_sublist->fn_field.voffset =
2352 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2353 if (nbits != 0)
2354 return 0;
2355
2356 STABS_CONTINUE (pp, objfile);
2357 if (**pp == ';' || **pp == '\0')
2358 {
2359 /* Must be g++ version 1. */
2360 new_sublist->fn_field.fcontext = 0;
2361 }
2362 else
2363 {
2364 /* Figure out from whence this virtual function came.
2365 It may belong to virtual function table of
2366 one of its baseclasses. */
2367 look_ahead_type = read_type (pp, objfile);
2368 if (**pp == ':')
2369 {
2370 /* g++ version 1 overloaded methods. */
2371 }
2372 else
2373 {
2374 new_sublist->fn_field.fcontext = look_ahead_type;
2375 if (**pp != ';')
2376 {
2377 return 0;
2378 }
2379 else
2380 {
2381 ++*pp;
2382 }
2383 look_ahead_type = NULL;
2384 }
2385 }
2386 break;
2387 }
2388 case '?':
2389 /* static member function. */
2390 {
2391 int slen = strlen (main_fn_name);
2392
2393 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2394
2395 /* For static member functions, we can't tell if they
2396 are stubbed, as they are put out as functions, and not as
2397 methods.
2398 GCC v2 emits the fully mangled name if
2399 dbxout.c:flag_minimal_debug is not set, so we have to
2400 detect a fully mangled physname here and set is_stub
2401 accordingly. Fully mangled physnames in v2 start with
2402 the member function name, followed by two underscores.
2403 GCC v3 currently always emits stubbed member functions,
2404 but with fully mangled physnames, which start with _Z. */
2405 if (!(strncmp (new_sublist->fn_field.physname,
2406 main_fn_name, slen) == 0
2407 && new_sublist->fn_field.physname[slen] == '_'
2408 && new_sublist->fn_field.physname[slen + 1] == '_'))
2409 {
2410 new_sublist->fn_field.is_stub = 1;
2411 }
2412 break;
2413 }
2414
2415 default:
2416 /* error */
2417 complaint (&symfile_complaints,
2418 _("member function type missing, got '%c'"), (*pp)[-1]);
2419 /* Fall through into normal member function. */
2420
2421 case '.':
2422 /* normal member function. */
2423 new_sublist->fn_field.voffset = 0;
2424 new_sublist->fn_field.fcontext = 0;
2425 break;
2426 }
2427
2428 new_sublist->next = sublist;
2429 sublist = new_sublist;
2430 length++;
2431 STABS_CONTINUE (pp, objfile);
2432 }
2433 while (**pp != ';' && **pp != '\0');
2434
2435 (*pp)++;
2436 STABS_CONTINUE (pp, objfile);
2437
2438 /* Skip GCC 3.X member functions which are duplicates of the callable
2439 constructor/destructor. */
2440 if (strcmp (main_fn_name, "__base_ctor") == 0
2441 || strcmp (main_fn_name, "__base_dtor") == 0
2442 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2443 {
2444 xfree (main_fn_name);
2445 }
2446 else
2447 {
2448 int has_stub = 0;
2449 int has_destructor = 0, has_other = 0;
2450 int is_v3 = 0;
2451 struct next_fnfield *tmp_sublist;
2452
2453 /* Various versions of GCC emit various mostly-useless
2454 strings in the name field for special member functions.
2455
2456 For stub methods, we need to defer correcting the name
2457 until we are ready to unstub the method, because the current
2458 name string is used by gdb_mangle_name. The only stub methods
2459 of concern here are GNU v2 operators; other methods have their
2460 names correct (see caveat below).
2461
2462 For non-stub methods, in GNU v3, we have a complete physname.
2463 Therefore we can safely correct the name now. This primarily
2464 affects constructors and destructors, whose name will be
2465 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2466 operators will also have incorrect names; for instance,
2467 "operator int" will be named "operator i" (i.e. the type is
2468 mangled).
2469
2470 For non-stub methods in GNU v2, we have no easy way to
2471 know if we have a complete physname or not. For most
2472 methods the result depends on the platform (if CPLUS_MARKER
2473 can be `$' or `.', it will use minimal debug information, or
2474 otherwise the full physname will be included).
2475
2476 Rather than dealing with this, we take a different approach.
2477 For v3 mangled names, we can use the full physname; for v2,
2478 we use cplus_demangle_opname (which is actually v2 specific),
2479 because the only interesting names are all operators - once again
2480 barring the caveat below. Skip this process if any method in the
2481 group is a stub, to prevent our fouling up the workings of
2482 gdb_mangle_name.
2483
2484 The caveat: GCC 2.95.x (and earlier?) put constructors and
2485 destructors in the same method group. We need to split this
2486 into two groups, because they should have different names.
2487 So for each method group we check whether it contains both
2488 routines whose physname appears to be a destructor (the physnames
2489 for and destructors are always provided, due to quirks in v2
2490 mangling) and routines whose physname does not appear to be a
2491 destructor. If so then we break up the list into two halves.
2492 Even if the constructors and destructors aren't in the same group
2493 the destructor will still lack the leading tilde, so that also
2494 needs to be fixed.
2495
2496 So, to summarize what we expect and handle here:
2497
2498 Given Given Real Real Action
2499 method name physname physname method name
2500
2501 __opi [none] __opi__3Foo operator int opname
2502 [now or later]
2503 Foo _._3Foo _._3Foo ~Foo separate and
2504 rename
2505 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2506 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2507 */
2508
2509 tmp_sublist = sublist;
2510 while (tmp_sublist != NULL)
2511 {
2512 if (tmp_sublist->fn_field.is_stub)
2513 has_stub = 1;
2514 if (tmp_sublist->fn_field.physname[0] == '_'
2515 && tmp_sublist->fn_field.physname[1] == 'Z')
2516 is_v3 = 1;
2517
2518 if (is_destructor_name (tmp_sublist->fn_field.physname))
2519 has_destructor++;
2520 else
2521 has_other++;
2522
2523 tmp_sublist = tmp_sublist->next;
2524 }
2525
2526 if (has_destructor && has_other)
2527 {
2528 struct next_fnfieldlist *destr_fnlist;
2529 struct next_fnfield *last_sublist;
2530
2531 /* Create a new fn_fieldlist for the destructors. */
2532
2533 destr_fnlist = (struct next_fnfieldlist *)
2534 xmalloc (sizeof (struct next_fnfieldlist));
2535 make_cleanup (xfree, destr_fnlist);
2536 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2537 destr_fnlist->fn_fieldlist.name
2538 = obconcat (&objfile->objfile_obstack, "", "~",
2539 new_fnlist->fn_fieldlist.name);
2540
2541 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2542 obstack_alloc (&objfile->objfile_obstack,
2543 sizeof (struct fn_field) * has_destructor);
2544 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2545 sizeof (struct fn_field) * has_destructor);
2546 tmp_sublist = sublist;
2547 last_sublist = NULL;
2548 i = 0;
2549 while (tmp_sublist != NULL)
2550 {
2551 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2552 {
2553 tmp_sublist = tmp_sublist->next;
2554 continue;
2555 }
2556
2557 destr_fnlist->fn_fieldlist.fn_fields[i++]
2558 = tmp_sublist->fn_field;
2559 if (last_sublist)
2560 last_sublist->next = tmp_sublist->next;
2561 else
2562 sublist = tmp_sublist->next;
2563 last_sublist = tmp_sublist;
2564 tmp_sublist = tmp_sublist->next;
2565 }
2566
2567 destr_fnlist->fn_fieldlist.length = has_destructor;
2568 destr_fnlist->next = fip->fnlist;
2569 fip->fnlist = destr_fnlist;
2570 nfn_fields++;
2571 total_length += has_destructor;
2572 length -= has_destructor;
2573 }
2574 else if (is_v3)
2575 {
2576 /* v3 mangling prevents the use of abbreviated physnames,
2577 so we can do this here. There are stubbed methods in v3
2578 only:
2579 - in -gstabs instead of -gstabs+
2580 - or for static methods, which are output as a function type
2581 instead of a method type. */
2582
2583 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2584 sublist->fn_field.physname);
2585 }
2586 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2587 {
2588 new_fnlist->fn_fieldlist.name =
2589 concat ("~", main_fn_name, (char *)NULL);
2590 xfree (main_fn_name);
2591 }
2592 else if (!has_stub)
2593 {
2594 char dem_opname[256];
2595 int ret;
2596 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2597 dem_opname, DMGL_ANSI);
2598 if (!ret)
2599 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2600 dem_opname, 0);
2601 if (ret)
2602 new_fnlist->fn_fieldlist.name
2603 = obsavestring (dem_opname, strlen (dem_opname),
2604 &objfile->objfile_obstack);
2605 }
2606
2607 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2608 obstack_alloc (&objfile->objfile_obstack,
2609 sizeof (struct fn_field) * length);
2610 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2611 sizeof (struct fn_field) * length);
2612 for (i = length; (i--, sublist); sublist = sublist->next)
2613 {
2614 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2615 }
2616
2617 new_fnlist->fn_fieldlist.length = length;
2618 new_fnlist->next = fip->fnlist;
2619 fip->fnlist = new_fnlist;
2620 nfn_fields++;
2621 total_length += length;
2622 }
2623 }
2624
2625 if (nfn_fields)
2626 {
2627 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2628 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2629 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2630 memset (TYPE_FN_FIELDLISTS (type), 0,
2631 sizeof (struct fn_fieldlist) * nfn_fields);
2632 TYPE_NFN_FIELDS (type) = nfn_fields;
2633 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2634 }
2635
2636 return 1;
2637 }
2638
2639 /* Special GNU C++ name.
2640
2641 Returns 1 for success, 0 for failure. "failure" means that we can't
2642 keep parsing and it's time for error_type(). */
2643
2644 static int
2645 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2646 struct objfile *objfile)
2647 {
2648 char *p;
2649 char *name;
2650 char cpp_abbrev;
2651 struct type *context;
2652
2653 p = *pp;
2654 if (*++p == 'v')
2655 {
2656 name = NULL;
2657 cpp_abbrev = *++p;
2658
2659 *pp = p + 1;
2660
2661 /* At this point, *pp points to something like "22:23=*22...",
2662 where the type number before the ':' is the "context" and
2663 everything after is a regular type definition. Lookup the
2664 type, find it's name, and construct the field name. */
2665
2666 context = read_type (pp, objfile);
2667
2668 switch (cpp_abbrev)
2669 {
2670 case 'f': /* $vf -- a virtual function table pointer */
2671 name = type_name_no_tag (context);
2672 if (name == NULL)
2673 {
2674 name = "";
2675 }
2676 fip->list->field.name =
2677 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2678 break;
2679
2680 case 'b': /* $vb -- a virtual bsomethingorother */
2681 name = type_name_no_tag (context);
2682 if (name == NULL)
2683 {
2684 complaint (&symfile_complaints,
2685 _("C++ abbreviated type name unknown at symtab pos %d"),
2686 symnum);
2687 name = "FOO";
2688 }
2689 fip->list->field.name =
2690 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2691 break;
2692
2693 default:
2694 invalid_cpp_abbrev_complaint (*pp);
2695 fip->list->field.name =
2696 obconcat (&objfile->objfile_obstack,
2697 "INVALID_CPLUSPLUS_ABBREV", "", "");
2698 break;
2699 }
2700
2701 /* At this point, *pp points to the ':'. Skip it and read the
2702 field type. */
2703
2704 p = ++(*pp);
2705 if (p[-1] != ':')
2706 {
2707 invalid_cpp_abbrev_complaint (*pp);
2708 return 0;
2709 }
2710 fip->list->field.type = read_type (pp, objfile);
2711 if (**pp == ',')
2712 (*pp)++; /* Skip the comma. */
2713 else
2714 return 0;
2715
2716 {
2717 int nbits;
2718 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2719 0);
2720 if (nbits != 0)
2721 return 0;
2722 }
2723 /* This field is unpacked. */
2724 FIELD_BITSIZE (fip->list->field) = 0;
2725 fip->list->visibility = VISIBILITY_PRIVATE;
2726 }
2727 else
2728 {
2729 invalid_cpp_abbrev_complaint (*pp);
2730 /* We have no idea what syntax an unrecognized abbrev would have, so
2731 better return 0. If we returned 1, we would need to at least advance
2732 *pp to avoid an infinite loop. */
2733 return 0;
2734 }
2735 return 1;
2736 }
2737
2738 static void
2739 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2740 struct type *type, struct objfile *objfile)
2741 {
2742 fip->list->field.name =
2743 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2744 *pp = p + 1;
2745
2746 /* This means we have a visibility for a field coming. */
2747 if (**pp == '/')
2748 {
2749 (*pp)++;
2750 fip->list->visibility = *(*pp)++;
2751 }
2752 else
2753 {
2754 /* normal dbx-style format, no explicit visibility */
2755 fip->list->visibility = VISIBILITY_PUBLIC;
2756 }
2757
2758 fip->list->field.type = read_type (pp, objfile);
2759 if (**pp == ':')
2760 {
2761 p = ++(*pp);
2762 #if 0
2763 /* Possible future hook for nested types. */
2764 if (**pp == '!')
2765 {
2766 fip->list->field.bitpos = (long) -2; /* nested type */
2767 p = ++(*pp);
2768 }
2769 else
2770 ...;
2771 #endif
2772 while (*p != ';')
2773 {
2774 p++;
2775 }
2776 /* Static class member. */
2777 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2778 *pp = p + 1;
2779 return;
2780 }
2781 else if (**pp != ',')
2782 {
2783 /* Bad structure-type format. */
2784 stabs_general_complaint ("bad structure-type format");
2785 return;
2786 }
2787
2788 (*pp)++; /* Skip the comma. */
2789
2790 {
2791 int nbits;
2792 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2793 if (nbits != 0)
2794 {
2795 stabs_general_complaint ("bad structure-type format");
2796 return;
2797 }
2798 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2799 if (nbits != 0)
2800 {
2801 stabs_general_complaint ("bad structure-type format");
2802 return;
2803 }
2804 }
2805
2806 if (FIELD_BITPOS (fip->list->field) == 0
2807 && FIELD_BITSIZE (fip->list->field) == 0)
2808 {
2809 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2810 it is a field which has been optimized out. The correct stab for
2811 this case is to use VISIBILITY_IGNORE, but that is a recent
2812 invention. (2) It is a 0-size array. For example
2813 union { int num; char str[0]; } foo. Printing _("<no value>" for
2814 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2815 will continue to work, and a 0-size array as a whole doesn't
2816 have any contents to print.
2817
2818 I suspect this probably could also happen with gcc -gstabs (not
2819 -gstabs+) for static fields, and perhaps other C++ extensions.
2820 Hopefully few people use -gstabs with gdb, since it is intended
2821 for dbx compatibility. */
2822
2823 /* Ignore this field. */
2824 fip->list->visibility = VISIBILITY_IGNORE;
2825 }
2826 else
2827 {
2828 /* Detect an unpacked field and mark it as such.
2829 dbx gives a bit size for all fields.
2830 Note that forward refs cannot be packed,
2831 and treat enums as if they had the width of ints. */
2832
2833 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2834
2835 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2836 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2837 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2838 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2839 {
2840 FIELD_BITSIZE (fip->list->field) = 0;
2841 }
2842 if ((FIELD_BITSIZE (fip->list->field)
2843 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2844 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2845 && FIELD_BITSIZE (fip->list->field)
2846 == gdbarch_int_bit (current_gdbarch))
2847 )
2848 &&
2849 FIELD_BITPOS (fip->list->field) % 8 == 0)
2850 {
2851 FIELD_BITSIZE (fip->list->field) = 0;
2852 }
2853 }
2854 }
2855
2856
2857 /* Read struct or class data fields. They have the form:
2858
2859 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2860
2861 At the end, we see a semicolon instead of a field.
2862
2863 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2864 a static field.
2865
2866 The optional VISIBILITY is one of:
2867
2868 '/0' (VISIBILITY_PRIVATE)
2869 '/1' (VISIBILITY_PROTECTED)
2870 '/2' (VISIBILITY_PUBLIC)
2871 '/9' (VISIBILITY_IGNORE)
2872
2873 or nothing, for C style fields with public visibility.
2874
2875 Returns 1 for success, 0 for failure. */
2876
2877 static int
2878 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2879 struct objfile *objfile)
2880 {
2881 char *p;
2882 struct nextfield *new;
2883
2884 /* We better set p right now, in case there are no fields at all... */
2885
2886 p = *pp;
2887
2888 /* Read each data member type until we find the terminating ';' at the end of
2889 the data member list, or break for some other reason such as finding the
2890 start of the member function list. */
2891 /* Stab string for structure/union does not end with two ';' in
2892 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2893
2894 while (**pp != ';' && **pp != '\0')
2895 {
2896 STABS_CONTINUE (pp, objfile);
2897 /* Get space to record the next field's data. */
2898 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2899 make_cleanup (xfree, new);
2900 memset (new, 0, sizeof (struct nextfield));
2901 new->next = fip->list;
2902 fip->list = new;
2903
2904 /* Get the field name. */
2905 p = *pp;
2906
2907 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2908 unless the CPLUS_MARKER is followed by an underscore, in
2909 which case it is just the name of an anonymous type, which we
2910 should handle like any other type name. */
2911
2912 if (is_cplus_marker (p[0]) && p[1] != '_')
2913 {
2914 if (!read_cpp_abbrev (fip, pp, type, objfile))
2915 return 0;
2916 continue;
2917 }
2918
2919 /* Look for the ':' that separates the field name from the field
2920 values. Data members are delimited by a single ':', while member
2921 functions are delimited by a pair of ':'s. When we hit the member
2922 functions (if any), terminate scan loop and return. */
2923
2924 while (*p != ':' && *p != '\0')
2925 {
2926 p++;
2927 }
2928 if (*p == '\0')
2929 return 0;
2930
2931 /* Check to see if we have hit the member functions yet. */
2932 if (p[1] == ':')
2933 {
2934 break;
2935 }
2936 read_one_struct_field (fip, pp, p, type, objfile);
2937 }
2938 if (p[0] == ':' && p[1] == ':')
2939 {
2940 /* (the deleted) chill the list of fields: the last entry (at
2941 the head) is a partially constructed entry which we now
2942 scrub. */
2943 fip->list = fip->list->next;
2944 }
2945 return 1;
2946 }
2947 /* *INDENT-OFF* */
2948 /* The stabs for C++ derived classes contain baseclass information which
2949 is marked by a '!' character after the total size. This function is
2950 called when we encounter the baseclass marker, and slurps up all the
2951 baseclass information.
2952
2953 Immediately following the '!' marker is the number of base classes that
2954 the class is derived from, followed by information for each base class.
2955 For each base class, there are two visibility specifiers, a bit offset
2956 to the base class information within the derived class, a reference to
2957 the type for the base class, and a terminating semicolon.
2958
2959 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2960 ^^ ^ ^ ^ ^ ^ ^
2961 Baseclass information marker __________________|| | | | | | |
2962 Number of baseclasses __________________________| | | | | | |
2963 Visibility specifiers (2) ________________________| | | | | |
2964 Offset in bits from start of class _________________| | | | |
2965 Type number for base class ___________________________| | | |
2966 Visibility specifiers (2) _______________________________| | |
2967 Offset in bits from start of class ________________________| |
2968 Type number of base class ____________________________________|
2969
2970 Return 1 for success, 0 for (error-type-inducing) failure. */
2971 /* *INDENT-ON* */
2972
2973
2974
2975 static int
2976 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2977 struct objfile *objfile)
2978 {
2979 int i;
2980 struct nextfield *new;
2981
2982 if (**pp != '!')
2983 {
2984 return 1;
2985 }
2986 else
2987 {
2988 /* Skip the '!' baseclass information marker. */
2989 (*pp)++;
2990 }
2991
2992 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2993 {
2994 int nbits;
2995 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2996 if (nbits != 0)
2997 return 0;
2998 }
2999
3000 #if 0
3001 /* Some stupid compilers have trouble with the following, so break
3002 it up into simpler expressions. */
3003 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3004 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3005 #else
3006 {
3007 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3008 char *pointer;
3009
3010 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3011 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3012 }
3013 #endif /* 0 */
3014
3015 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3016
3017 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3018 {
3019 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3020 make_cleanup (xfree, new);
3021 memset (new, 0, sizeof (struct nextfield));
3022 new->next = fip->list;
3023 fip->list = new;
3024 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3025
3026 STABS_CONTINUE (pp, objfile);
3027 switch (**pp)
3028 {
3029 case '0':
3030 /* Nothing to do. */
3031 break;
3032 case '1':
3033 SET_TYPE_FIELD_VIRTUAL (type, i);
3034 break;
3035 default:
3036 /* Unknown character. Complain and treat it as non-virtual. */
3037 {
3038 complaint (&symfile_complaints,
3039 _("Unknown virtual character `%c' for baseclass"), **pp);
3040 }
3041 }
3042 ++(*pp);
3043
3044 new->visibility = *(*pp)++;
3045 switch (new->visibility)
3046 {
3047 case VISIBILITY_PRIVATE:
3048 case VISIBILITY_PROTECTED:
3049 case VISIBILITY_PUBLIC:
3050 break;
3051 default:
3052 /* Bad visibility format. Complain and treat it as
3053 public. */
3054 {
3055 complaint (&symfile_complaints,
3056 _("Unknown visibility `%c' for baseclass"),
3057 new->visibility);
3058 new->visibility = VISIBILITY_PUBLIC;
3059 }
3060 }
3061
3062 {
3063 int nbits;
3064
3065 /* The remaining value is the bit offset of the portion of the object
3066 corresponding to this baseclass. Always zero in the absence of
3067 multiple inheritance. */
3068
3069 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3070 if (nbits != 0)
3071 return 0;
3072 }
3073
3074 /* The last piece of baseclass information is the type of the
3075 base class. Read it, and remember it's type name as this
3076 field's name. */
3077
3078 new->field.type = read_type (pp, objfile);
3079 new->field.name = type_name_no_tag (new->field.type);
3080
3081 /* skip trailing ';' and bump count of number of fields seen */
3082 if (**pp == ';')
3083 (*pp)++;
3084 else
3085 return 0;
3086 }
3087 return 1;
3088 }
3089
3090 /* The tail end of stabs for C++ classes that contain a virtual function
3091 pointer contains a tilde, a %, and a type number.
3092 The type number refers to the base class (possibly this class itself) which
3093 contains the vtable pointer for the current class.
3094
3095 This function is called when we have parsed all the method declarations,
3096 so we can look for the vptr base class info. */
3097
3098 static int
3099 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3100 struct objfile *objfile)
3101 {
3102 char *p;
3103
3104 STABS_CONTINUE (pp, objfile);
3105
3106 /* If we are positioned at a ';', then skip it. */
3107 if (**pp == ';')
3108 {
3109 (*pp)++;
3110 }
3111
3112 if (**pp == '~')
3113 {
3114 (*pp)++;
3115
3116 if (**pp == '=' || **pp == '+' || **pp == '-')
3117 {
3118 /* Obsolete flags that used to indicate the presence
3119 of constructors and/or destructors. */
3120 (*pp)++;
3121 }
3122
3123 /* Read either a '%' or the final ';'. */
3124 if (*(*pp)++ == '%')
3125 {
3126 /* The next number is the type number of the base class
3127 (possibly our own class) which supplies the vtable for
3128 this class. Parse it out, and search that class to find
3129 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3130 and TYPE_VPTR_FIELDNO. */
3131
3132 struct type *t;
3133 int i;
3134
3135 t = read_type (pp, objfile);
3136 p = (*pp)++;
3137 while (*p != '\0' && *p != ';')
3138 {
3139 p++;
3140 }
3141 if (*p == '\0')
3142 {
3143 /* Premature end of symbol. */
3144 return 0;
3145 }
3146
3147 TYPE_VPTR_BASETYPE (type) = t;
3148 if (type == t) /* Our own class provides vtbl ptr */
3149 {
3150 for (i = TYPE_NFIELDS (t) - 1;
3151 i >= TYPE_N_BASECLASSES (t);
3152 --i)
3153 {
3154 char *name = TYPE_FIELD_NAME (t, i);
3155 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3156 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3157 {
3158 TYPE_VPTR_FIELDNO (type) = i;
3159 goto gotit;
3160 }
3161 }
3162 /* Virtual function table field not found. */
3163 complaint (&symfile_complaints,
3164 _("virtual function table pointer not found when defining class `%s'"),
3165 TYPE_NAME (type));
3166 return 0;
3167 }
3168 else
3169 {
3170 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3171 }
3172
3173 gotit:
3174 *pp = p + 1;
3175 }
3176 }
3177 return 1;
3178 }
3179
3180 static int
3181 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3182 {
3183 int n;
3184
3185 for (n = TYPE_NFN_FIELDS (type);
3186 fip->fnlist != NULL;
3187 fip->fnlist = fip->fnlist->next)
3188 {
3189 --n; /* Circumvent Sun3 compiler bug */
3190 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3191 }
3192 return 1;
3193 }
3194
3195 /* Create the vector of fields, and record how big it is.
3196 We need this info to record proper virtual function table information
3197 for this class's virtual functions. */
3198
3199 static int
3200 attach_fields_to_type (struct field_info *fip, struct type *type,
3201 struct objfile *objfile)
3202 {
3203 int nfields = 0;
3204 int non_public_fields = 0;
3205 struct nextfield *scan;
3206
3207 /* Count up the number of fields that we have, as well as taking note of
3208 whether or not there are any non-public fields, which requires us to
3209 allocate and build the private_field_bits and protected_field_bits
3210 bitfields. */
3211
3212 for (scan = fip->list; scan != NULL; scan = scan->next)
3213 {
3214 nfields++;
3215 if (scan->visibility != VISIBILITY_PUBLIC)
3216 {
3217 non_public_fields++;
3218 }
3219 }
3220
3221 /* Now we know how many fields there are, and whether or not there are any
3222 non-public fields. Record the field count, allocate space for the
3223 array of fields, and create blank visibility bitfields if necessary. */
3224
3225 TYPE_NFIELDS (type) = nfields;
3226 TYPE_FIELDS (type) = (struct field *)
3227 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3228 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3229
3230 if (non_public_fields)
3231 {
3232 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3233
3234 TYPE_FIELD_PRIVATE_BITS (type) =
3235 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3236 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3237
3238 TYPE_FIELD_PROTECTED_BITS (type) =
3239 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3240 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3241
3242 TYPE_FIELD_IGNORE_BITS (type) =
3243 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3244 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3245 }
3246
3247 /* Copy the saved-up fields into the field vector. Start from the head
3248 of the list, adding to the tail of the field array, so that they end
3249 up in the same order in the array in which they were added to the list. */
3250
3251 while (nfields-- > 0)
3252 {
3253 TYPE_FIELD (type, nfields) = fip->list->field;
3254 switch (fip->list->visibility)
3255 {
3256 case VISIBILITY_PRIVATE:
3257 SET_TYPE_FIELD_PRIVATE (type, nfields);
3258 break;
3259
3260 case VISIBILITY_PROTECTED:
3261 SET_TYPE_FIELD_PROTECTED (type, nfields);
3262 break;
3263
3264 case VISIBILITY_IGNORE:
3265 SET_TYPE_FIELD_IGNORE (type, nfields);
3266 break;
3267
3268 case VISIBILITY_PUBLIC:
3269 break;
3270
3271 default:
3272 /* Unknown visibility. Complain and treat it as public. */
3273 {
3274 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3275 fip->list->visibility);
3276 }
3277 break;
3278 }
3279 fip->list = fip->list->next;
3280 }
3281 return 1;
3282 }
3283
3284
3285 /* Complain that the compiler has emitted more than one definition for the
3286 structure type TYPE. */
3287 static void
3288 complain_about_struct_wipeout (struct type *type)
3289 {
3290 char *name = "";
3291 char *kind = "";
3292
3293 if (TYPE_TAG_NAME (type))
3294 {
3295 name = TYPE_TAG_NAME (type);
3296 switch (TYPE_CODE (type))
3297 {
3298 case TYPE_CODE_STRUCT: kind = "struct "; break;
3299 case TYPE_CODE_UNION: kind = "union "; break;
3300 case TYPE_CODE_ENUM: kind = "enum "; break;
3301 default: kind = "";
3302 }
3303 }
3304 else if (TYPE_NAME (type))
3305 {
3306 name = TYPE_NAME (type);
3307 kind = "";
3308 }
3309 else
3310 {
3311 name = "<unknown>";
3312 kind = "";
3313 }
3314
3315 complaint (&symfile_complaints,
3316 _("struct/union type gets multiply defined: %s%s"), kind, name);
3317 }
3318
3319
3320 /* Read the description of a structure (or union type) and return an object
3321 describing the type.
3322
3323 PP points to a character pointer that points to the next unconsumed token
3324 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3325 *PP will point to "4a:1,0,32;;".
3326
3327 TYPE points to an incomplete type that needs to be filled in.
3328
3329 OBJFILE points to the current objfile from which the stabs information is
3330 being read. (Note that it is redundant in that TYPE also contains a pointer
3331 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3332 */
3333
3334 static struct type *
3335 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3336 struct objfile *objfile)
3337 {
3338 struct cleanup *back_to;
3339 struct field_info fi;
3340
3341 fi.list = NULL;
3342 fi.fnlist = NULL;
3343
3344 /* When describing struct/union/class types in stabs, G++ always drops
3345 all qualifications from the name. So if you've got:
3346 struct A { ... struct B { ... }; ... };
3347 then G++ will emit stabs for `struct A::B' that call it simply
3348 `struct B'. Obviously, if you've got a real top-level definition for
3349 `struct B', or other nested definitions, this is going to cause
3350 problems.
3351
3352 Obviously, GDB can't fix this by itself, but it can at least avoid
3353 scribbling on existing structure type objects when new definitions
3354 appear. */
3355 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3356 || TYPE_STUB (type)))
3357 {
3358 complain_about_struct_wipeout (type);
3359
3360 /* It's probably best to return the type unchanged. */
3361 return type;
3362 }
3363
3364 back_to = make_cleanup (null_cleanup, 0);
3365
3366 INIT_CPLUS_SPECIFIC (type);
3367 TYPE_CODE (type) = type_code;
3368 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3369
3370 /* First comes the total size in bytes. */
3371
3372 {
3373 int nbits;
3374 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3375 if (nbits != 0)
3376 return error_type (pp, objfile);
3377 }
3378
3379 /* Now read the baseclasses, if any, read the regular C struct or C++
3380 class member fields, attach the fields to the type, read the C++
3381 member functions, attach them to the type, and then read any tilde
3382 field (baseclass specifier for the class holding the main vtable). */
3383
3384 if (!read_baseclasses (&fi, pp, type, objfile)
3385 || !read_struct_fields (&fi, pp, type, objfile)
3386 || !attach_fields_to_type (&fi, type, objfile)
3387 || !read_member_functions (&fi, pp, type, objfile)
3388 || !attach_fn_fields_to_type (&fi, type)
3389 || !read_tilde_fields (&fi, pp, type, objfile))
3390 {
3391 type = error_type (pp, objfile);
3392 }
3393
3394 do_cleanups (back_to);
3395 return (type);
3396 }
3397
3398 /* Read a definition of an array type,
3399 and create and return a suitable type object.
3400 Also creates a range type which represents the bounds of that
3401 array. */
3402
3403 static struct type *
3404 read_array_type (char **pp, struct type *type,
3405 struct objfile *objfile)
3406 {
3407 struct type *index_type, *element_type, *range_type;
3408 int lower, upper;
3409 int adjustable = 0;
3410 int nbits;
3411
3412 /* Format of an array type:
3413 "ar<index type>;lower;upper;<array_contents_type>".
3414 OS9000: "arlower,upper;<array_contents_type>".
3415
3416 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3417 for these, produce a type like float[][]. */
3418
3419 {
3420 index_type = read_type (pp, objfile);
3421 if (**pp != ';')
3422 /* Improper format of array type decl. */
3423 return error_type (pp, objfile);
3424 ++*pp;
3425 }
3426
3427 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3428 {
3429 (*pp)++;
3430 adjustable = 1;
3431 }
3432 lower = read_huge_number (pp, ';', &nbits, 0);
3433
3434 if (nbits != 0)
3435 return error_type (pp, objfile);
3436
3437 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3438 {
3439 (*pp)++;
3440 adjustable = 1;
3441 }
3442 upper = read_huge_number (pp, ';', &nbits, 0);
3443 if (nbits != 0)
3444 return error_type (pp, objfile);
3445
3446 element_type = read_type (pp, objfile);
3447
3448 if (adjustable)
3449 {
3450 lower = 0;
3451 upper = -1;
3452 }
3453
3454 range_type =
3455 create_range_type ((struct type *) NULL, index_type, lower, upper);
3456 type = create_array_type (type, element_type, range_type);
3457
3458 return type;
3459 }
3460
3461
3462 /* Read a definition of an enumeration type,
3463 and create and return a suitable type object.
3464 Also defines the symbols that represent the values of the type. */
3465
3466 static struct type *
3467 read_enum_type (char **pp, struct type *type,
3468 struct objfile *objfile)
3469 {
3470 char *p;
3471 char *name;
3472 long n;
3473 struct symbol *sym;
3474 int nsyms = 0;
3475 struct pending **symlist;
3476 struct pending *osyms, *syms;
3477 int o_nsyms;
3478 int nbits;
3479 int unsigned_enum = 1;
3480
3481 #if 0
3482 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3483 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3484 to do? For now, force all enum values to file scope. */
3485 if (within_function)
3486 symlist = &local_symbols;
3487 else
3488 #endif
3489 symlist = &file_symbols;
3490 osyms = *symlist;
3491 o_nsyms = osyms ? osyms->nsyms : 0;
3492
3493 /* The aix4 compiler emits an extra field before the enum members;
3494 my guess is it's a type of some sort. Just ignore it. */
3495 if (**pp == '-')
3496 {
3497 /* Skip over the type. */
3498 while (**pp != ':')
3499 (*pp)++;
3500
3501 /* Skip over the colon. */
3502 (*pp)++;
3503 }
3504
3505 /* Read the value-names and their values.
3506 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3507 A semicolon or comma instead of a NAME means the end. */
3508 while (**pp && **pp != ';' && **pp != ',')
3509 {
3510 STABS_CONTINUE (pp, objfile);
3511 p = *pp;
3512 while (*p != ':')
3513 p++;
3514 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3515 *pp = p + 1;
3516 n = read_huge_number (pp, ',', &nbits, 0);
3517 if (nbits != 0)
3518 return error_type (pp, objfile);
3519
3520 sym = (struct symbol *)
3521 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3522 memset (sym, 0, sizeof (struct symbol));
3523 DEPRECATED_SYMBOL_NAME (sym) = name;
3524 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3525 SYMBOL_CLASS (sym) = LOC_CONST;
3526 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3527 SYMBOL_VALUE (sym) = n;
3528 if (n < 0)
3529 unsigned_enum = 0;
3530 add_symbol_to_list (sym, symlist);
3531 nsyms++;
3532 }
3533
3534 if (**pp == ';')
3535 (*pp)++; /* Skip the semicolon. */
3536
3537 /* Now fill in the fields of the type-structure. */
3538
3539 TYPE_LENGTH (type) = gdbarch_int_bit (current_gdbarch) / HOST_CHAR_BIT;
3540 TYPE_CODE (type) = TYPE_CODE_ENUM;
3541 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3542 if (unsigned_enum)
3543 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3544 TYPE_NFIELDS (type) = nsyms;
3545 TYPE_FIELDS (type) = (struct field *)
3546 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3547 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3548
3549 /* Find the symbols for the values and put them into the type.
3550 The symbols can be found in the symlist that we put them on
3551 to cause them to be defined. osyms contains the old value
3552 of that symlist; everything up to there was defined by us. */
3553 /* Note that we preserve the order of the enum constants, so
3554 that in something like "enum {FOO, LAST_THING=FOO}" we print
3555 FOO, not LAST_THING. */
3556
3557 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3558 {
3559 int last = syms == osyms ? o_nsyms : 0;
3560 int j = syms->nsyms;
3561 for (; --j >= last; --n)
3562 {
3563 struct symbol *xsym = syms->symbol[j];
3564 SYMBOL_TYPE (xsym) = type;
3565 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3566 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3567 TYPE_FIELD_BITSIZE (type, n) = 0;
3568 }
3569 if (syms == osyms)
3570 break;
3571 }
3572
3573 return type;
3574 }
3575
3576 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3577 typedefs in every file (for int, long, etc):
3578
3579 type = b <signed> <width> <format type>; <offset>; <nbits>
3580 signed = u or s.
3581 optional format type = c or b for char or boolean.
3582 offset = offset from high order bit to start bit of type.
3583 width is # bytes in object of this type, nbits is # bits in type.
3584
3585 The width/offset stuff appears to be for small objects stored in
3586 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3587 FIXME. */
3588
3589 static struct type *
3590 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3591 {
3592 int type_bits;
3593 int nbits;
3594 int signed_type;
3595 enum type_code code = TYPE_CODE_INT;
3596
3597 switch (**pp)
3598 {
3599 case 's':
3600 signed_type = 1;
3601 break;
3602 case 'u':
3603 signed_type = 0;
3604 break;
3605 default:
3606 return error_type (pp, objfile);
3607 }
3608 (*pp)++;
3609
3610 /* For some odd reason, all forms of char put a c here. This is strange
3611 because no other type has this honor. We can safely ignore this because
3612 we actually determine 'char'acterness by the number of bits specified in
3613 the descriptor.
3614 Boolean forms, e.g Fortran logical*X, put a b here. */
3615
3616 if (**pp == 'c')
3617 (*pp)++;
3618 else if (**pp == 'b')
3619 {
3620 code = TYPE_CODE_BOOL;
3621 (*pp)++;
3622 }
3623
3624 /* The first number appears to be the number of bytes occupied
3625 by this type, except that unsigned short is 4 instead of 2.
3626 Since this information is redundant with the third number,
3627 we will ignore it. */
3628 read_huge_number (pp, ';', &nbits, 0);
3629 if (nbits != 0)
3630 return error_type (pp, objfile);
3631
3632 /* The second number is always 0, so ignore it too. */
3633 read_huge_number (pp, ';', &nbits, 0);
3634 if (nbits != 0)
3635 return error_type (pp, objfile);
3636
3637 /* The third number is the number of bits for this type. */
3638 type_bits = read_huge_number (pp, 0, &nbits, 0);
3639 if (nbits != 0)
3640 return error_type (pp, objfile);
3641 /* The type *should* end with a semicolon. If it are embedded
3642 in a larger type the semicolon may be the only way to know where
3643 the type ends. If this type is at the end of the stabstring we
3644 can deal with the omitted semicolon (but we don't have to like
3645 it). Don't bother to complain(), Sun's compiler omits the semicolon
3646 for "void". */
3647 if (**pp == ';')
3648 ++(*pp);
3649
3650 if (type_bits == 0)
3651 return init_type (TYPE_CODE_VOID, 1,
3652 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3653 objfile);
3654 else
3655 return init_type (code,
3656 type_bits / TARGET_CHAR_BIT,
3657 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3658 objfile);
3659 }
3660
3661 static struct type *
3662 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3663 {
3664 int nbits;
3665 int details;
3666 int nbytes;
3667 struct type *rettype;
3668
3669 /* The first number has more details about the type, for example
3670 FN_COMPLEX. */
3671 details = read_huge_number (pp, ';', &nbits, 0);
3672 if (nbits != 0)
3673 return error_type (pp, objfile);
3674
3675 /* The second number is the number of bytes occupied by this type */
3676 nbytes = read_huge_number (pp, ';', &nbits, 0);
3677 if (nbits != 0)
3678 return error_type (pp, objfile);
3679
3680 if (details == NF_COMPLEX || details == NF_COMPLEX16
3681 || details == NF_COMPLEX32)
3682 {
3683 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3684 TYPE_TARGET_TYPE (rettype)
3685 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3686 return rettype;
3687 }
3688
3689 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3690 }
3691
3692 /* Read a number from the string pointed to by *PP.
3693 The value of *PP is advanced over the number.
3694 If END is nonzero, the character that ends the
3695 number must match END, or an error happens;
3696 and that character is skipped if it does match.
3697 If END is zero, *PP is left pointing to that character.
3698
3699 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3700 the number is represented in an octal representation, assume that
3701 it is represented in a 2's complement representation with a size of
3702 TWOS_COMPLEMENT_BITS.
3703
3704 If the number fits in a long, set *BITS to 0 and return the value.
3705 If not, set *BITS to be the number of bits in the number and return 0.
3706
3707 If encounter garbage, set *BITS to -1 and return 0. */
3708
3709 static long
3710 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3711 {
3712 char *p = *pp;
3713 int sign = 1;
3714 int sign_bit;
3715 long n = 0;
3716 long sn = 0;
3717 int radix = 10;
3718 char overflow = 0;
3719 int nbits = 0;
3720 int c;
3721 long upper_limit;
3722 int twos_complement_representation = radix == 8 && twos_complement_bits > 0;
3723
3724 if (*p == '-')
3725 {
3726 sign = -1;
3727 p++;
3728 }
3729
3730 /* Leading zero means octal. GCC uses this to output values larger
3731 than an int (because that would be hard in decimal). */
3732 if (*p == '0')
3733 {
3734 radix = 8;
3735 p++;
3736 }
3737
3738 upper_limit = LONG_MAX / radix;
3739
3740 while ((c = *p++) >= '0' && c < ('0' + radix))
3741 {
3742 if (n <= upper_limit)
3743 {
3744 if (twos_complement_representation)
3745 {
3746 /* Octal, signed, twos complement representation. In this case,
3747 sn is the signed value, n is the corresponding absolute
3748 value. signed_bit is the position of the sign bit in the
3749 first three bits. */
3750 if (sn == 0)
3751 {
3752 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3753 sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3754 }
3755 else
3756 {
3757 sn *= radix;
3758 sn += c - '0';
3759 }
3760
3761 if (sn < 0)
3762 n = -sn;
3763 }
3764 else
3765 {
3766 /* unsigned representation */
3767 n *= radix;
3768 n += c - '0'; /* FIXME this overflows anyway */
3769 }
3770 }
3771 else
3772 overflow = 1;
3773
3774 /* This depends on large values being output in octal, which is
3775 what GCC does. */
3776 if (radix == 8)
3777 {
3778 if (nbits == 0)
3779 {
3780 if (c == '0')
3781 /* Ignore leading zeroes. */
3782 ;
3783 else if (c == '1')
3784 nbits = 1;
3785 else if (c == '2' || c == '3')
3786 nbits = 2;
3787 else
3788 nbits = 3;
3789 }
3790 else
3791 nbits += 3;
3792 }
3793 }
3794 if (end)
3795 {
3796 if (c && c != end)
3797 {
3798 if (bits != NULL)
3799 *bits = -1;
3800 return 0;
3801 }
3802 }
3803 else
3804 --p;
3805
3806 *pp = p;
3807 if (overflow)
3808 {
3809 if (nbits == 0)
3810 {
3811 /* Large decimal constants are an error (because it is hard to
3812 count how many bits are in them). */
3813 if (bits != NULL)
3814 *bits = -1;
3815 return 0;
3816 }
3817
3818 /* -0x7f is the same as 0x80. So deal with it by adding one to
3819 the number of bits. */
3820 if (sign == -1)
3821 ++nbits;
3822 if (bits)
3823 *bits = nbits;
3824 }
3825 else
3826 {
3827 if (bits)
3828 *bits = 0;
3829 if (twos_complement_representation)
3830 return sn;
3831 else
3832 return n * sign;
3833 }
3834 /* It's *BITS which has the interesting information. */
3835 return 0;
3836 }
3837
3838 static struct type *
3839 read_range_type (char **pp, int typenums[2], int type_size,
3840 struct objfile *objfile)
3841 {
3842 char *orig_pp = *pp;
3843 int rangenums[2];
3844 long n2, n3;
3845 int n2bits, n3bits;
3846 int self_subrange;
3847 struct type *result_type;
3848 struct type *index_type = NULL;
3849
3850 /* First comes a type we are a subrange of.
3851 In C it is usually 0, 1 or the type being defined. */
3852 if (read_type_number (pp, rangenums) != 0)
3853 return error_type (pp, objfile);
3854 self_subrange = (rangenums[0] == typenums[0] &&
3855 rangenums[1] == typenums[1]);
3856
3857 if (**pp == '=')
3858 {
3859 *pp = orig_pp;
3860 index_type = read_type (pp, objfile);
3861 }
3862
3863 /* A semicolon should now follow; skip it. */
3864 if (**pp == ';')
3865 (*pp)++;
3866
3867 /* The remaining two operands are usually lower and upper bounds
3868 of the range. But in some special cases they mean something else. */
3869 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3870 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3871
3872 if (n2bits == -1 || n3bits == -1)
3873 return error_type (pp, objfile);
3874
3875 if (index_type)
3876 goto handle_true_range;
3877
3878 /* If limits are huge, must be large integral type. */
3879 if (n2bits != 0 || n3bits != 0)
3880 {
3881 char got_signed = 0;
3882 char got_unsigned = 0;
3883 /* Number of bits in the type. */
3884 int nbits = 0;
3885
3886 /* If a type size attribute has been specified, the bounds of
3887 the range should fit in this size. If the lower bounds needs
3888 more bits than the upper bound, then the type is signed. */
3889 if (n2bits <= type_size && n3bits <= type_size)
3890 {
3891 if (n2bits == type_size && n2bits > n3bits)
3892 got_signed = 1;
3893 else
3894 got_unsigned = 1;
3895 nbits = type_size;
3896 }
3897 /* Range from 0 to <large number> is an unsigned large integral type. */
3898 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3899 {
3900 got_unsigned = 1;
3901 nbits = n3bits;
3902 }
3903 /* Range from <large number> to <large number>-1 is a large signed
3904 integral type. Take care of the case where <large number> doesn't
3905 fit in a long but <large number>-1 does. */
3906 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3907 || (n2bits != 0 && n3bits == 0
3908 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3909 && n3 == LONG_MAX))
3910 {
3911 got_signed = 1;
3912 nbits = n2bits;
3913 }
3914
3915 if (got_signed || got_unsigned)
3916 {
3917 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3918 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3919 objfile);
3920 }
3921 else
3922 return error_type (pp, objfile);
3923 }
3924
3925 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3926 if (self_subrange && n2 == 0 && n3 == 0)
3927 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3928
3929 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3930 is the width in bytes.
3931
3932 Fortran programs appear to use this for complex types also. To
3933 distinguish between floats and complex, g77 (and others?) seem
3934 to use self-subranges for the complexes, and subranges of int for
3935 the floats.
3936
3937 Also note that for complexes, g77 sets n2 to the size of one of
3938 the member floats, not the whole complex beast. My guess is that
3939 this was to work well with pre-COMPLEX versions of gdb. */
3940
3941 if (n3 == 0 && n2 > 0)
3942 {
3943 struct type *float_type
3944 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3945
3946 if (self_subrange)
3947 {
3948 struct type *complex_type =
3949 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3950 TYPE_TARGET_TYPE (complex_type) = float_type;
3951 return complex_type;
3952 }
3953 else
3954 return float_type;
3955 }
3956
3957 /* If the upper bound is -1, it must really be an unsigned int. */
3958
3959 else if (n2 == 0 && n3 == -1)
3960 {
3961 /* It is unsigned int or unsigned long. */
3962 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3963 compatibility hack. */
3964 return init_type (TYPE_CODE_INT,
3965 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
3966 TYPE_FLAG_UNSIGNED, NULL, objfile);
3967 }
3968
3969 /* Special case: char is defined (Who knows why) as a subrange of
3970 itself with range 0-127. */
3971 else if (self_subrange && n2 == 0 && n3 == 127)
3972 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3973
3974 /* We used to do this only for subrange of self or subrange of int. */
3975 else if (n2 == 0)
3976 {
3977 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3978 "unsigned long", and we already checked for that,
3979 so don't need to test for it here. */
3980
3981 if (n3 < 0)
3982 /* n3 actually gives the size. */
3983 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3984 NULL, objfile);
3985
3986 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3987 unsigned n-byte integer. But do require n to be a power of
3988 two; we don't want 3- and 5-byte integers flying around. */
3989 {
3990 int bytes;
3991 unsigned long bits;
3992
3993 bits = n3;
3994 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3995 bits >>= 8;
3996 if (bits == 0
3997 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3998 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3999 objfile);
4000 }
4001 }
4002 /* I think this is for Convex "long long". Since I don't know whether
4003 Convex sets self_subrange, I also accept that particular size regardless
4004 of self_subrange. */
4005 else if (n3 == 0 && n2 < 0
4006 && (self_subrange
4007 || n2 == -gdbarch_long_long_bit
4008 (current_gdbarch) / TARGET_CHAR_BIT))
4009 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4010 else if (n2 == -n3 - 1)
4011 {
4012 if (n3 == 0x7f)
4013 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4014 if (n3 == 0x7fff)
4015 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4016 if (n3 == 0x7fffffff)
4017 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4018 }
4019
4020 /* We have a real range type on our hands. Allocate space and
4021 return a real pointer. */
4022 handle_true_range:
4023
4024 if (self_subrange)
4025 index_type = builtin_type_int;
4026 else
4027 index_type = *dbx_lookup_type (rangenums);
4028 if (index_type == NULL)
4029 {
4030 /* Does this actually ever happen? Is that why we are worrying
4031 about dealing with it rather than just calling error_type? */
4032
4033 static struct type *range_type_index;
4034
4035 complaint (&symfile_complaints,
4036 _("base type %d of range type is not defined"), rangenums[1]);
4037 if (range_type_index == NULL)
4038 range_type_index =
4039 init_type (TYPE_CODE_INT,
4040 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
4041 0, "range type index type", NULL);
4042 index_type = range_type_index;
4043 }
4044
4045 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4046 return (result_type);
4047 }
4048
4049 /* Read in an argument list. This is a list of types, separated by commas
4050 and terminated with END. Return the list of types read in, or NULL
4051 if there is an error. */
4052
4053 static struct field *
4054 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4055 int *varargsp)
4056 {
4057 /* FIXME! Remove this arbitrary limit! */
4058 struct type *types[1024]; /* allow for fns of 1023 parameters */
4059 int n = 0, i;
4060 struct field *rval;
4061
4062 while (**pp != end)
4063 {
4064 if (**pp != ',')
4065 /* Invalid argument list: no ','. */
4066 return NULL;
4067 (*pp)++;
4068 STABS_CONTINUE (pp, objfile);
4069 types[n++] = read_type (pp, objfile);
4070 }
4071 (*pp)++; /* get past `end' (the ':' character) */
4072
4073 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4074 *varargsp = 1;
4075 else
4076 {
4077 n--;
4078 *varargsp = 0;
4079 }
4080
4081 rval = (struct field *) xmalloc (n * sizeof (struct field));
4082 memset (rval, 0, n * sizeof (struct field));
4083 for (i = 0; i < n; i++)
4084 rval[i].type = types[i];
4085 *nargsp = n;
4086 return rval;
4087 }
4088 \f
4089 /* Common block handling. */
4090
4091 /* List of symbols declared since the last BCOMM. This list is a tail
4092 of local_symbols. When ECOMM is seen, the symbols on the list
4093 are noted so their proper addresses can be filled in later,
4094 using the common block base address gotten from the assembler
4095 stabs. */
4096
4097 static struct pending *common_block;
4098 static int common_block_i;
4099
4100 /* Name of the current common block. We get it from the BCOMM instead of the
4101 ECOMM to match IBM documentation (even though IBM puts the name both places
4102 like everyone else). */
4103 static char *common_block_name;
4104
4105 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4106 to remain after this function returns. */
4107
4108 void
4109 common_block_start (char *name, struct objfile *objfile)
4110 {
4111 if (common_block_name != NULL)
4112 {
4113 complaint (&symfile_complaints,
4114 _("Invalid symbol data: common block within common block"));
4115 }
4116 common_block = local_symbols;
4117 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4118 common_block_name = obsavestring (name, strlen (name),
4119 &objfile->objfile_obstack);
4120 }
4121
4122 /* Process a N_ECOMM symbol. */
4123
4124 void
4125 common_block_end (struct objfile *objfile)
4126 {
4127 /* Symbols declared since the BCOMM are to have the common block
4128 start address added in when we know it. common_block and
4129 common_block_i point to the first symbol after the BCOMM in
4130 the local_symbols list; copy the list and hang it off the
4131 symbol for the common block name for later fixup. */
4132 int i;
4133 struct symbol *sym;
4134 struct pending *new = 0;
4135 struct pending *next;
4136 int j;
4137
4138 if (common_block_name == NULL)
4139 {
4140 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4141 return;
4142 }
4143
4144 sym = (struct symbol *)
4145 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4146 memset (sym, 0, sizeof (struct symbol));
4147 /* Note: common_block_name already saved on objfile_obstack */
4148 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4149 SYMBOL_CLASS (sym) = LOC_BLOCK;
4150
4151 /* Now we copy all the symbols which have been defined since the BCOMM. */
4152
4153 /* Copy all the struct pendings before common_block. */
4154 for (next = local_symbols;
4155 next != NULL && next != common_block;
4156 next = next->next)
4157 {
4158 for (j = 0; j < next->nsyms; j++)
4159 add_symbol_to_list (next->symbol[j], &new);
4160 }
4161
4162 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4163 NULL, it means copy all the local symbols (which we already did
4164 above). */
4165
4166 if (common_block != NULL)
4167 for (j = common_block_i; j < common_block->nsyms; j++)
4168 add_symbol_to_list (common_block->symbol[j], &new);
4169
4170 SYMBOL_TYPE (sym) = (struct type *) new;
4171
4172 /* Should we be putting local_symbols back to what it was?
4173 Does it matter? */
4174
4175 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4176 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4177 global_sym_chain[i] = sym;
4178 common_block_name = NULL;
4179 }
4180
4181 /* Add a common block's start address to the offset of each symbol
4182 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4183 the common block name). */
4184
4185 static void
4186 fix_common_block (struct symbol *sym, int valu)
4187 {
4188 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4189 for (; next; next = next->next)
4190 {
4191 int j;
4192 for (j = next->nsyms - 1; j >= 0; j--)
4193 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4194 }
4195 }
4196 \f
4197
4198
4199 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4200 See add_undefined_type for more details. */
4201
4202 static void
4203 add_undefined_type_noname (struct type *type, int typenums[2])
4204 {
4205 struct nat nat;
4206
4207 nat.typenums[0] = typenums [0];
4208 nat.typenums[1] = typenums [1];
4209 nat.type = type;
4210
4211 if (noname_undefs_length == noname_undefs_allocated)
4212 {
4213 noname_undefs_allocated *= 2;
4214 noname_undefs = (struct nat *)
4215 xrealloc ((char *) noname_undefs,
4216 noname_undefs_allocated * sizeof (struct nat));
4217 }
4218 noname_undefs[noname_undefs_length++] = nat;
4219 }
4220
4221 /* Add TYPE to the UNDEF_TYPES vector.
4222 See add_undefined_type for more details. */
4223
4224 static void
4225 add_undefined_type_1 (struct type *type)
4226 {
4227 if (undef_types_length == undef_types_allocated)
4228 {
4229 undef_types_allocated *= 2;
4230 undef_types = (struct type **)
4231 xrealloc ((char *) undef_types,
4232 undef_types_allocated * sizeof (struct type *));
4233 }
4234 undef_types[undef_types_length++] = type;
4235 }
4236
4237 /* What about types defined as forward references inside of a small lexical
4238 scope? */
4239 /* Add a type to the list of undefined types to be checked through
4240 once this file has been read in.
4241
4242 In practice, we actually maintain two such lists: The first list
4243 (UNDEF_TYPES) is used for types whose name has been provided, and
4244 concerns forward references (eg 'xs' or 'xu' forward references);
4245 the second list (NONAME_UNDEFS) is used for types whose name is
4246 unknown at creation time, because they were referenced through
4247 their type number before the actual type was declared.
4248 This function actually adds the given type to the proper list. */
4249
4250 static void
4251 add_undefined_type (struct type *type, int typenums[2])
4252 {
4253 if (TYPE_TAG_NAME (type) == NULL)
4254 add_undefined_type_noname (type, typenums);
4255 else
4256 add_undefined_type_1 (type);
4257 }
4258
4259 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4260
4261 void
4262 cleanup_undefined_types_noname (void)
4263 {
4264 int i;
4265
4266 for (i = 0; i < noname_undefs_length; i++)
4267 {
4268 struct nat nat = noname_undefs[i];
4269 struct type **type;
4270
4271 type = dbx_lookup_type (nat.typenums);
4272 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4273 replace_type (nat.type, *type);
4274 }
4275
4276 noname_undefs_length = 0;
4277 }
4278
4279 /* Go through each undefined type, see if it's still undefined, and fix it
4280 up if possible. We have two kinds of undefined types:
4281
4282 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4283 Fix: update array length using the element bounds
4284 and the target type's length.
4285 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4286 yet defined at the time a pointer to it was made.
4287 Fix: Do a full lookup on the struct/union tag. */
4288
4289 void
4290 cleanup_undefined_types_1 (void)
4291 {
4292 struct type **type;
4293
4294 for (type = undef_types; type < undef_types + undef_types_length; type++)
4295 {
4296 switch (TYPE_CODE (*type))
4297 {
4298
4299 case TYPE_CODE_STRUCT:
4300 case TYPE_CODE_UNION:
4301 case TYPE_CODE_ENUM:
4302 {
4303 /* Check if it has been defined since. Need to do this here
4304 as well as in check_typedef to deal with the (legitimate in
4305 C though not C++) case of several types with the same name
4306 in different source files. */
4307 if (TYPE_STUB (*type))
4308 {
4309 struct pending *ppt;
4310 int i;
4311 /* Name of the type, without "struct" or "union" */
4312 char *typename = TYPE_TAG_NAME (*type);
4313
4314 if (typename == NULL)
4315 {
4316 complaint (&symfile_complaints, _("need a type name"));
4317 break;
4318 }
4319 for (ppt = file_symbols; ppt; ppt = ppt->next)
4320 {
4321 for (i = 0; i < ppt->nsyms; i++)
4322 {
4323 struct symbol *sym = ppt->symbol[i];
4324
4325 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4326 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4327 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4328 TYPE_CODE (*type))
4329 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4330 replace_type (*type, SYMBOL_TYPE (sym));
4331 }
4332 }
4333 }
4334 }
4335 break;
4336
4337 default:
4338 {
4339 complaint (&symfile_complaints,
4340 _("forward-referenced types left unresolved, "
4341 "type code %d."),
4342 TYPE_CODE (*type));
4343 }
4344 break;
4345 }
4346 }
4347
4348 undef_types_length = 0;
4349 }
4350
4351 /* Try to fix all the undefined types we ecountered while processing
4352 this unit. */
4353
4354 void
4355 cleanup_undefined_types (void)
4356 {
4357 cleanup_undefined_types_1 ();
4358 cleanup_undefined_types_noname ();
4359 }
4360
4361 /* Scan through all of the global symbols defined in the object file,
4362 assigning values to the debugging symbols that need to be assigned
4363 to. Get these symbols from the minimal symbol table. */
4364
4365 void
4366 scan_file_globals (struct objfile *objfile)
4367 {
4368 int hash;
4369 struct minimal_symbol *msymbol;
4370 struct symbol *sym, *prev;
4371 struct objfile *resolve_objfile;
4372
4373 /* SVR4 based linkers copy referenced global symbols from shared
4374 libraries to the main executable.
4375 If we are scanning the symbols for a shared library, try to resolve
4376 them from the minimal symbols of the main executable first. */
4377
4378 if (symfile_objfile && objfile != symfile_objfile)
4379 resolve_objfile = symfile_objfile;
4380 else
4381 resolve_objfile = objfile;
4382
4383 while (1)
4384 {
4385 /* Avoid expensive loop through all minimal symbols if there are
4386 no unresolved symbols. */
4387 for (hash = 0; hash < HASHSIZE; hash++)
4388 {
4389 if (global_sym_chain[hash])
4390 break;
4391 }
4392 if (hash >= HASHSIZE)
4393 return;
4394
4395 for (msymbol = resolve_objfile->msymbols;
4396 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4397 msymbol++)
4398 {
4399 QUIT;
4400
4401 /* Skip static symbols. */
4402 switch (MSYMBOL_TYPE (msymbol))
4403 {
4404 case mst_file_text:
4405 case mst_file_data:
4406 case mst_file_bss:
4407 continue;
4408 default:
4409 break;
4410 }
4411
4412 prev = NULL;
4413
4414 /* Get the hash index and check all the symbols
4415 under that hash index. */
4416
4417 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4418
4419 for (sym = global_sym_chain[hash]; sym;)
4420 {
4421 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4422 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4423 {
4424 /* Splice this symbol out of the hash chain and
4425 assign the value we have to it. */
4426 if (prev)
4427 {
4428 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4429 }
4430 else
4431 {
4432 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4433 }
4434
4435 /* Check to see whether we need to fix up a common block. */
4436 /* Note: this code might be executed several times for
4437 the same symbol if there are multiple references. */
4438 if (sym)
4439 {
4440 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4441 {
4442 fix_common_block (sym,
4443 SYMBOL_VALUE_ADDRESS (msymbol));
4444 }
4445 else
4446 {
4447 SYMBOL_VALUE_ADDRESS (sym)
4448 = SYMBOL_VALUE_ADDRESS (msymbol);
4449 }
4450 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4451 }
4452
4453 if (prev)
4454 {
4455 sym = SYMBOL_VALUE_CHAIN (prev);
4456 }
4457 else
4458 {
4459 sym = global_sym_chain[hash];
4460 }
4461 }
4462 else
4463 {
4464 prev = sym;
4465 sym = SYMBOL_VALUE_CHAIN (sym);
4466 }
4467 }
4468 }
4469 if (resolve_objfile == objfile)
4470 break;
4471 resolve_objfile = objfile;
4472 }
4473
4474 /* Change the storage class of any remaining unresolved globals to
4475 LOC_UNRESOLVED and remove them from the chain. */
4476 for (hash = 0; hash < HASHSIZE; hash++)
4477 {
4478 sym = global_sym_chain[hash];
4479 while (sym)
4480 {
4481 prev = sym;
4482 sym = SYMBOL_VALUE_CHAIN (sym);
4483
4484 /* Change the symbol address from the misleading chain value
4485 to address zero. */
4486 SYMBOL_VALUE_ADDRESS (prev) = 0;
4487
4488 /* Complain about unresolved common block symbols. */
4489 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4490 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4491 else
4492 complaint (&symfile_complaints,
4493 _("%s: common block `%s' from global_sym_chain unresolved"),
4494 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4495 }
4496 }
4497 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4498 }
4499
4500 /* Initialize anything that needs initializing when starting to read
4501 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4502 to a psymtab. */
4503
4504 void
4505 stabsread_init (void)
4506 {
4507 }
4508
4509 /* Initialize anything that needs initializing when a completely new
4510 symbol file is specified (not just adding some symbols from another
4511 file, e.g. a shared library). */
4512
4513 void
4514 stabsread_new_init (void)
4515 {
4516 /* Empty the hash table of global syms looking for values. */
4517 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4518 }
4519
4520 /* Initialize anything that needs initializing at the same time as
4521 start_symtab() is called. */
4522
4523 void
4524 start_stabs (void)
4525 {
4526 global_stabs = NULL; /* AIX COFF */
4527 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4528 n_this_object_header_files = 1;
4529 type_vector_length = 0;
4530 type_vector = (struct type **) 0;
4531
4532 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4533 common_block_name = NULL;
4534 }
4535
4536 /* Call after end_symtab() */
4537
4538 void
4539 end_stabs (void)
4540 {
4541 if (type_vector)
4542 {
4543 xfree (type_vector);
4544 }
4545 type_vector = 0;
4546 type_vector_length = 0;
4547 previous_stab_code = 0;
4548 }
4549
4550 void
4551 finish_global_stabs (struct objfile *objfile)
4552 {
4553 if (global_stabs)
4554 {
4555 patch_block_stabs (global_symbols, global_stabs, objfile);
4556 xfree (global_stabs);
4557 global_stabs = NULL;
4558 }
4559 }
4560
4561 /* Find the end of the name, delimited by a ':', but don't match
4562 ObjC symbols which look like -[Foo bar::]:bla. */
4563 static char *
4564 find_name_end (char *name)
4565 {
4566 char *s = name;
4567 if (s[0] == '-' || *s == '+')
4568 {
4569 /* Must be an ObjC method symbol. */
4570 if (s[1] != '[')
4571 {
4572 error (_("invalid symbol name \"%s\""), name);
4573 }
4574 s = strchr (s, ']');
4575 if (s == NULL)
4576 {
4577 error (_("invalid symbol name \"%s\""), name);
4578 }
4579 return strchr (s, ':');
4580 }
4581 else
4582 {
4583 return strchr (s, ':');
4584 }
4585 }
4586
4587 /* Initializer for this module */
4588
4589 void
4590 _initialize_stabsread (void)
4591 {
4592 undef_types_allocated = 20;
4593 undef_types_length = 0;
4594 undef_types = (struct type **)
4595 xmalloc (undef_types_allocated * sizeof (struct type *));
4596
4597 noname_undefs_allocated = 20;
4598 noname_undefs_length = 0;
4599 noname_undefs = (struct nat *)
4600 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4601 }
This page took 0.123339 seconds and 4 git commands to generate.