* Makefile.in (objdump.o): Deleted special rule.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include <string.h>
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42
43 #include <ctype.h>
44
45 /* Ask stabsread.h to define the vars it normally declares `extern'. */
46 #define EXTERN /**/
47 #include "stabsread.h" /* Our own declarations */
48 #undef EXTERN
49
50 /* The routines that read and process a complete stabs for a C struct or
51 C++ class pass lists of data member fields and lists of member function
52 fields in an instance of a field_info structure, as defined below.
53 This is part of some reorganization of low level C++ support and is
54 expected to eventually go away... (FIXME) */
55
56 struct field_info
57 {
58 struct nextfield
59 {
60 struct nextfield *next;
61
62 /* This is the raw visibility from the stab. It is not checked
63 for being one of the visibilities we recognize, so code which
64 examines this field better be able to deal. */
65 int visibility;
66
67 struct field field;
68 } *list;
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 } *fnlist;
74 };
75
76 static struct type *
77 dbx_alloc_type PARAMS ((int [2], struct objfile *));
78
79 static long read_huge_number PARAMS ((char **, int, int *));
80
81 static struct type *error_type PARAMS ((char **));
82
83 static void
84 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
85 struct objfile *));
86
87 static void
88 fix_common_block PARAMS ((struct symbol *, int));
89
90 static int
91 read_type_number PARAMS ((char **, int *));
92
93 static struct type *
94 read_range_type PARAMS ((char **, int [2], struct objfile *));
95
96 static struct type *
97 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
98
99 static struct type *
100 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
101
102 static struct type *
103 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
104
105 static struct type *
106 rs6000_builtin_type PARAMS ((int));
107
108 static int
109 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
122 struct objfile *));
123
124 static int
125 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
126
127 static int
128 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
129 struct objfile *));
130
131 static struct type *
132 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
133
134 static struct type *
135 read_array_type PARAMS ((char **, struct type *, struct objfile *));
136
137 static struct type **
138 read_args PARAMS ((char **, int, struct objfile *));
139
140 static int
141 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
142 struct objfile *));
143
144 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
145 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
146
147 /* Define this as 1 if a pcc declaration of a char or short argument
148 gives the correct address. Otherwise assume pcc gives the
149 address of the corresponding int, which is not the same on a
150 big-endian machine. */
151
152 #ifndef BELIEVE_PCC_PROMOTION
153 #define BELIEVE_PCC_PROMOTION 0
154 #endif
155
156 struct complaint invalid_cpp_abbrev_complaint =
157 {"invalid C++ abbreviation `%s'", 0, 0};
158
159 struct complaint invalid_cpp_type_complaint =
160 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
161
162 struct complaint member_fn_complaint =
163 {"member function type missing, got '%c'", 0, 0};
164
165 struct complaint const_vol_complaint =
166 {"const/volatile indicator missing, got '%c'", 0, 0};
167
168 struct complaint error_type_complaint =
169 {"debug info mismatch between compiler and debugger", 0, 0};
170
171 struct complaint invalid_member_complaint =
172 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
173
174 struct complaint range_type_base_complaint =
175 {"base type %d of range type is not defined", 0, 0};
176
177 struct complaint reg_value_complaint =
178 {"register number too large in symbol %s", 0, 0};
179
180 struct complaint vtbl_notfound_complaint =
181 {"virtual function table pointer not found when defining class `%s'", 0, 0};
182
183 struct complaint unrecognized_cplus_name_complaint =
184 {"Unknown C++ symbol name `%s'", 0, 0};
185
186 struct complaint rs6000_builtin_complaint =
187 {"Unknown builtin type %d", 0, 0};
188
189 struct complaint stabs_general_complaint =
190 {"%s", 0, 0};
191
192 /* Make a list of forward references which haven't been defined. */
193
194 static struct type **undef_types;
195 static int undef_types_allocated;
196 static int undef_types_length;
197
198 /* Check for and handle cretinous stabs symbol name continuation! */
199 #define STABS_CONTINUE(pp) \
200 do { \
201 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
202 *(pp) = next_symbol_text (); \
203 } while (0)
204 \f
205 /* FIXME: These probably should be our own types (like rs6000_builtin_type
206 has its own types) rather than builtin_type_*. */
207 static struct type **os9k_type_vector[] = {
208 0,
209 &builtin_type_int,
210 &builtin_type_char,
211 &builtin_type_long,
212 &builtin_type_short,
213 &builtin_type_unsigned_char,
214 &builtin_type_unsigned_short,
215 &builtin_type_unsigned_long,
216 &builtin_type_unsigned_int,
217 &builtin_type_float,
218 &builtin_type_double,
219 &builtin_type_void,
220 &builtin_type_long_double
221 };
222
223 static void os9k_init_type_vector PARAMS ((struct type **));
224
225 static void
226 os9k_init_type_vector(tv)
227 struct type **tv;
228 {
229 int i;
230 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
231 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
232 }
233
234 /* Look up a dbx type-number pair. Return the address of the slot
235 where the type for that number-pair is stored.
236 The number-pair is in TYPENUMS.
237
238 This can be used for finding the type associated with that pair
239 or for associating a new type with the pair. */
240
241 struct type **
242 dbx_lookup_type (typenums)
243 int typenums[2];
244 {
245 register int filenum = typenums[0];
246 register int index = typenums[1];
247 unsigned old_len;
248 register int real_filenum;
249 register struct header_file *f;
250 int f_orig_length;
251
252 if (filenum == -1) /* -1,-1 is for temporary types. */
253 return 0;
254
255 if (filenum < 0 || filenum >= n_this_object_header_files)
256 {
257 static struct complaint msg = {"\
258 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
259 0, 0};
260 complain (&msg, filenum, index, symnum);
261 goto error_return;
262 }
263
264 if (filenum == 0)
265 {
266 if (index < 0)
267 {
268 /* Caller wants address of address of type. We think
269 that negative (rs6k builtin) types will never appear as
270 "lvalues", (nor should they), so we stuff the real type
271 pointer into a temp, and return its address. If referenced,
272 this will do the right thing. */
273 static struct type *temp_type;
274
275 temp_type = rs6000_builtin_type(index);
276 return &temp_type;
277 }
278
279 /* Type is defined outside of header files.
280 Find it in this object file's type vector. */
281 if (index >= type_vector_length)
282 {
283 old_len = type_vector_length;
284 if (old_len == 0)
285 {
286 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
287 type_vector = (struct type **)
288 malloc (type_vector_length * sizeof (struct type *));
289 }
290 while (index >= type_vector_length)
291 {
292 type_vector_length *= 2;
293 }
294 type_vector = (struct type **)
295 xrealloc ((char *) type_vector,
296 (type_vector_length * sizeof (struct type *)));
297 memset (&type_vector[old_len], 0,
298 (type_vector_length - old_len) * sizeof (struct type *));
299
300 if (os9k_stabs)
301 /* Deal with OS9000 fundamental types. */
302 os9k_init_type_vector (type_vector);
303 }
304 return (&type_vector[index]);
305 }
306 else
307 {
308 real_filenum = this_object_header_files[filenum];
309
310 if (real_filenum >= n_header_files)
311 {
312 struct type *temp_type;
313 struct type **temp_type_p;
314
315 warning ("GDB internal error: bad real_filenum");
316
317 error_return:
318 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
319 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
320 *temp_type_p = temp_type;
321 return temp_type_p;
322 }
323
324 f = &header_files[real_filenum];
325
326 f_orig_length = f->length;
327 if (index >= f_orig_length)
328 {
329 while (index >= f->length)
330 {
331 f->length *= 2;
332 }
333 f->vector = (struct type **)
334 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
335 memset (&f->vector[f_orig_length], 0,
336 (f->length - f_orig_length) * sizeof (struct type *));
337 }
338 return (&f->vector[index]);
339 }
340 }
341
342 /* Make sure there is a type allocated for type numbers TYPENUMS
343 and return the type object.
344 This can create an empty (zeroed) type object.
345 TYPENUMS may be (-1, -1) to return a new type object that is not
346 put into the type vector, and so may not be referred to by number. */
347
348 static struct type *
349 dbx_alloc_type (typenums, objfile)
350 int typenums[2];
351 struct objfile *objfile;
352 {
353 register struct type **type_addr;
354
355 if (typenums[0] == -1)
356 {
357 return (alloc_type (objfile));
358 }
359
360 type_addr = dbx_lookup_type (typenums);
361
362 /* If we are referring to a type not known at all yet,
363 allocate an empty type for it.
364 We will fill it in later if we find out how. */
365 if (*type_addr == 0)
366 {
367 *type_addr = alloc_type (objfile);
368 }
369
370 return (*type_addr);
371 }
372
373 /* for all the stabs in a given stab vector, build appropriate types
374 and fix their symbols in given symbol vector. */
375
376 static void
377 patch_block_stabs (symbols, stabs, objfile)
378 struct pending *symbols;
379 struct pending_stabs *stabs;
380 struct objfile *objfile;
381 {
382 int ii;
383 char *name;
384 char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char*) strchr (name, ':');
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *)strchr(pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp-name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = (struct symbol *)
417 obstack_alloc (&objfile->symbol_obstack,
418 sizeof (struct symbol));
419
420 memset (sym, 0, sizeof (struct symbol));
421 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
422 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
423 SYMBOL_NAME (sym) =
424 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
425 pp += 2;
426 if (*(pp-1) == 'F' || *(pp-1) == 'f')
427 {
428 /* I don't think the linker does this with functions,
429 so as far as I know this is never executed.
430 But it doesn't hurt to check. */
431 SYMBOL_TYPE (sym) =
432 lookup_function_type (read_type (&pp, objfile));
433 }
434 else
435 {
436 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
437 }
438 add_symbol_to_list (sym, &global_symbols);
439 }
440 else
441 {
442 pp += 2;
443 if (*(pp-1) == 'F' || *(pp-1) == 'f')
444 {
445 SYMBOL_TYPE (sym) =
446 lookup_function_type (read_type (&pp, objfile));
447 }
448 else
449 {
450 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
451 }
452 }
453 }
454 }
455 }
456
457 \f
458 /* Read a number by which a type is referred to in dbx data,
459 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
460 Just a single number N is equivalent to (0,N).
461 Return the two numbers by storing them in the vector TYPENUMS.
462 TYPENUMS will then be used as an argument to dbx_lookup_type.
463
464 Returns 0 for success, -1 for error. */
465
466 static int
467 read_type_number (pp, typenums)
468 register char **pp;
469 register int *typenums;
470 {
471 int nbits;
472 if (**pp == '(')
473 {
474 (*pp)++;
475 typenums[0] = read_huge_number (pp, ',', &nbits);
476 if (nbits != 0) return -1;
477 typenums[1] = read_huge_number (pp, ')', &nbits);
478 if (nbits != 0) return -1;
479 }
480 else
481 {
482 typenums[0] = 0;
483 typenums[1] = read_huge_number (pp, 0, &nbits);
484 if (nbits != 0) return -1;
485 }
486 return 0;
487 }
488
489 \f
490 /* To handle GNU C++ typename abbreviation, we need to be able to
491 fill in a type's name as soon as space for that type is allocated.
492 `type_synonym_name' is the name of the type being allocated.
493 It is cleared as soon as it is used (lest all allocated types
494 get this name). */
495
496 static char *type_synonym_name;
497
498 #if !defined (REG_STRUCT_HAS_ADDR)
499 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
500 #endif
501
502 /* ARGSUSED */
503 struct symbol *
504 define_symbol (valu, string, desc, type, objfile)
505 CORE_ADDR valu;
506 char *string;
507 int desc;
508 int type;
509 struct objfile *objfile;
510 {
511 register struct symbol *sym;
512 char *p = (char *) strchr (string, ':');
513 int deftype;
514 int synonym = 0;
515 register int i;
516
517 /* We would like to eliminate nameless symbols, but keep their types.
518 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
519 to type 2, but, should not create a symbol to address that type. Since
520 the symbol will be nameless, there is no way any user can refer to it. */
521
522 int nameless;
523
524 /* Ignore syms with empty names. */
525 if (string[0] == 0)
526 return 0;
527
528 /* Ignore old-style symbols from cc -go */
529 if (p == 0)
530 return 0;
531
532 while (p[1] == ':')
533 {
534 p += 2;
535 p = strchr(p, ':');
536 }
537
538 /* If a nameless stab entry, all we need is the type, not the symbol.
539 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
540 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
541
542 sym = (struct symbol *)
543 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
544 memset (sym, 0, sizeof (struct symbol));
545
546 switch (type & N_TYPE)
547 {
548 case N_TEXT:
549 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
550 break;
551 case N_DATA:
552 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
553 break;
554 case N_BSS:
555 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
556 break;
557 }
558
559 if (processing_gcc_compilation)
560 {
561 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
562 number of bytes occupied by a type or object, which we ignore. */
563 SYMBOL_LINE(sym) = desc;
564 }
565 else
566 {
567 SYMBOL_LINE(sym) = 0; /* unknown */
568 }
569
570 if (string[0] == CPLUS_MARKER)
571 {
572 /* Special GNU C++ names. */
573 switch (string[1])
574 {
575 case 't':
576 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
577 &objfile -> symbol_obstack);
578 break;
579
580 case 'v': /* $vtbl_ptr_type */
581 /* Was: SYMBOL_NAME (sym) = "vptr"; */
582 goto normal;
583
584 case 'e':
585 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
586 &objfile -> symbol_obstack);
587 break;
588
589 case '_':
590 /* This was an anonymous type that was never fixed up. */
591 goto normal;
592
593 default:
594 complain (&unrecognized_cplus_name_complaint, string);
595 goto normal; /* Do *something* with it */
596 }
597 }
598 else
599 {
600 normal:
601 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
602 SYMBOL_NAME (sym) = (char *)
603 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
604 /* Open-coded memcpy--saves function call time. */
605 /* FIXME: Does it really? Try replacing with simple strcpy and
606 try it on an executable with a large symbol table. */
607 /* FIXME: considering that gcc can open code memcpy anyway, I
608 doubt it. xoxorich. */
609 {
610 register char *p1 = string;
611 register char *p2 = SYMBOL_NAME (sym);
612 while (p1 != p)
613 {
614 *p2++ = *p1++;
615 }
616 *p2++ = '\0';
617 }
618
619 /* If this symbol is from a C++ compilation, then attempt to cache the
620 demangled form for future reference. This is a typical time versus
621 space tradeoff, that was decided in favor of time because it sped up
622 C++ symbol lookups by a factor of about 20. */
623
624 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
625 }
626 p++;
627
628 /* Determine the type of name being defined. */
629 #if 0
630 /* Getting GDB to correctly skip the symbol on an undefined symbol
631 descriptor and not ever dump core is a very dodgy proposition if
632 we do things this way. I say the acorn RISC machine can just
633 fix their compiler. */
634 /* The Acorn RISC machine's compiler can put out locals that don't
635 start with "234=" or "(3,4)=", so assume anything other than the
636 deftypes we know how to handle is a local. */
637 if (!strchr ("cfFGpPrStTvVXCR", *p))
638 #else
639 if (isdigit (*p) || *p == '(' || *p == '-')
640 #endif
641 deftype = 'l';
642 else
643 deftype = *p++;
644
645 switch (deftype)
646 {
647 case 'c':
648 /* c is a special case, not followed by a type-number.
649 SYMBOL:c=iVALUE for an integer constant symbol.
650 SYMBOL:c=rVALUE for a floating constant symbol.
651 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
652 e.g. "b:c=e6,0" for "const b = blob1"
653 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
654 if (*p != '=')
655 {
656 SYMBOL_CLASS (sym) = LOC_CONST;
657 SYMBOL_TYPE (sym) = error_type (&p);
658 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
659 add_symbol_to_list (sym, &file_symbols);
660 return sym;
661 }
662 ++p;
663 switch (*p++)
664 {
665 case 'r':
666 {
667 double d = atof (p);
668 char *dbl_valu;
669
670 /* FIXME-if-picky-about-floating-accuracy: Should be using
671 target arithmetic to get the value. real.c in GCC
672 probably has the necessary code. */
673
674 /* FIXME: lookup_fundamental_type is a hack. We should be
675 creating a type especially for the type of float constants.
676 Problem is, what type should it be?
677
678 Also, what should the name of this type be? Should we
679 be using 'S' constants (see stabs.texinfo) instead? */
680
681 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
682 FT_DBL_PREC_FLOAT);
683 dbl_valu = (char *)
684 obstack_alloc (&objfile -> symbol_obstack,
685 TYPE_LENGTH (SYMBOL_TYPE (sym)));
686 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
687 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
688 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
689 }
690 break;
691 case 'i':
692 {
693 /* Defining integer constants this way is kind of silly,
694 since 'e' constants allows the compiler to give not
695 only the value, but the type as well. C has at least
696 int, long, unsigned int, and long long as constant
697 types; other languages probably should have at least
698 unsigned as well as signed constants. */
699
700 /* We just need one int constant type for all objfiles.
701 It doesn't depend on languages or anything (arguably its
702 name should be a language-specific name for a type of
703 that size, but I'm inclined to say that if the compiler
704 wants a nice name for the type, it can use 'e'). */
705 static struct type *int_const_type;
706
707 /* Yes, this is as long as a *host* int. That is because we
708 use atoi. */
709 if (int_const_type == NULL)
710 int_const_type =
711 init_type (TYPE_CODE_INT,
712 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
713 "integer constant",
714 (struct objfile *)NULL);
715 SYMBOL_TYPE (sym) = int_const_type;
716 SYMBOL_VALUE (sym) = atoi (p);
717 SYMBOL_CLASS (sym) = LOC_CONST;
718 }
719 break;
720 case 'e':
721 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
722 can be represented as integral.
723 e.g. "b:c=e6,0" for "const b = blob1"
724 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
725 {
726 SYMBOL_CLASS (sym) = LOC_CONST;
727 SYMBOL_TYPE (sym) = read_type (&p, objfile);
728
729 if (*p != ',')
730 {
731 SYMBOL_TYPE (sym) = error_type (&p);
732 break;
733 }
734 ++p;
735
736 /* If the value is too big to fit in an int (perhaps because
737 it is unsigned), or something like that, we silently get
738 a bogus value. The type and everything else about it is
739 correct. Ideally, we should be using whatever we have
740 available for parsing unsigned and long long values,
741 however. */
742 SYMBOL_VALUE (sym) = atoi (p);
743 }
744 break;
745 default:
746 {
747 SYMBOL_CLASS (sym) = LOC_CONST;
748 SYMBOL_TYPE (sym) = error_type (&p);
749 }
750 }
751 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
752 add_symbol_to_list (sym, &file_symbols);
753 return sym;
754
755 case 'C':
756 /* The name of a caught exception. */
757 SYMBOL_TYPE (sym) = read_type (&p, objfile);
758 SYMBOL_CLASS (sym) = LOC_LABEL;
759 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
760 SYMBOL_VALUE_ADDRESS (sym) = valu;
761 add_symbol_to_list (sym, &local_symbols);
762 break;
763
764 case 'f':
765 /* A static function definition. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 SYMBOL_CLASS (sym) = LOC_BLOCK;
768 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
769 add_symbol_to_list (sym, &file_symbols);
770 /* fall into process_function_types. */
771
772 process_function_types:
773 /* Function result types are described as the result type in stabs.
774 We need to convert this to the function-returning-type-X type
775 in GDB. E.g. "int" is converted to "function returning int". */
776 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
777 {
778 #if 0
779 /* This code doesn't work -- it needs to realloc and can't. */
780 /* Attempt to set up to record a function prototype... */
781 struct type *new = alloc_type (objfile);
782
783 /* Generate a template for the type of this function. The
784 types of the arguments will be added as we read the symbol
785 table. */
786 *new = *lookup_function_type (SYMBOL_TYPE(sym));
787 SYMBOL_TYPE(sym) = new;
788 TYPE_OBJFILE (new) = objfile;
789 in_function_type = new;
790 #else
791 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
792 #endif
793 }
794 /* fall into process_prototype_types */
795
796 process_prototype_types:
797 /* Sun acc puts declared types of arguments here. We don't care
798 about their actual types (FIXME -- we should remember the whole
799 function prototype), but the list may define some new types
800 that we have to remember, so we must scan it now. */
801 while (*p == ';') {
802 p++;
803 read_type (&p, objfile);
804 }
805 break;
806
807 case 'F':
808 /* A global function definition. */
809 SYMBOL_TYPE (sym) = read_type (&p, objfile);
810 SYMBOL_CLASS (sym) = LOC_BLOCK;
811 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
812 add_symbol_to_list (sym, &global_symbols);
813 goto process_function_types;
814
815 case 'G':
816 /* For a class G (global) symbol, it appears that the
817 value is not correct. It is necessary to search for the
818 corresponding linker definition to find the value.
819 These definitions appear at the end of the namelist. */
820 SYMBOL_TYPE (sym) = read_type (&p, objfile);
821 i = hashname (SYMBOL_NAME (sym));
822 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
823 global_sym_chain[i] = sym;
824 SYMBOL_CLASS (sym) = LOC_STATIC;
825 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
826 add_symbol_to_list (sym, &global_symbols);
827 break;
828
829 /* This case is faked by a conditional above,
830 when there is no code letter in the dbx data.
831 Dbx data never actually contains 'l'. */
832 case 's':
833 case 'l':
834 SYMBOL_TYPE (sym) = read_type (&p, objfile);
835 SYMBOL_CLASS (sym) = LOC_LOCAL;
836 SYMBOL_VALUE (sym) = valu;
837 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
838 add_symbol_to_list (sym, &local_symbols);
839 break;
840
841 case 'p':
842 if (*p == 'F')
843 /* pF is a two-letter code that means a function parameter in Fortran.
844 The type-number specifies the type of the return value.
845 Translate it into a pointer-to-function type. */
846 {
847 p++;
848 SYMBOL_TYPE (sym)
849 = lookup_pointer_type
850 (lookup_function_type (read_type (&p, objfile)));
851 }
852 else
853 SYMBOL_TYPE (sym) = read_type (&p, objfile);
854
855 /* Normally this is a parameter, a LOC_ARG. On the i960, it
856 can also be a LOC_LOCAL_ARG depending on symbol type. */
857 #ifndef DBX_PARM_SYMBOL_CLASS
858 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
859 #endif
860
861 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
862 SYMBOL_VALUE (sym) = valu;
863 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
864 #if 0
865 /* This doesn't work yet. */
866 add_param_to_type (&in_function_type, sym);
867 #endif
868 add_symbol_to_list (sym, &local_symbols);
869
870 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
871 /* On little-endian machines, this crud is never necessary, and,
872 if the extra bytes contain garbage, is harmful. */
873 break;
874 #else /* Big endian. */
875 /* If it's gcc-compiled, if it says `short', believe it. */
876 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
877 break;
878
879 #if !BELIEVE_PCC_PROMOTION
880 {
881 /* This is the signed type which arguments get promoted to. */
882 static struct type *pcc_promotion_type;
883 /* This is the unsigned type which arguments get promoted to. */
884 static struct type *pcc_unsigned_promotion_type;
885
886 /* Call it "int" because this is mainly C lossage. */
887 if (pcc_promotion_type == NULL)
888 pcc_promotion_type =
889 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
890 0, "int", NULL);
891
892 if (pcc_unsigned_promotion_type == NULL)
893 pcc_unsigned_promotion_type =
894 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
895 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
896
897 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
898 /* This macro is defined on machines (e.g. sparc) where
899 we should believe the type of a PCC 'short' argument,
900 but shouldn't believe the address (the address is
901 the address of the corresponding int).
902
903 My guess is that this correction, as opposed to changing
904 the parameter to an 'int' (as done below, for PCC
905 on most machines), is the right thing to do
906 on all machines, but I don't want to risk breaking
907 something that already works. On most PCC machines,
908 the sparc problem doesn't come up because the calling
909 function has to zero the top bytes (not knowing whether
910 the called function wants an int or a short), so there
911 is little practical difference between an int and a short
912 (except perhaps what happens when the GDB user types
913 "print short_arg = 0x10000;").
914
915 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
916 actually produces the correct address (we don't need to fix it
917 up). I made this code adapt so that it will offset the symbol
918 if it was pointing at an int-aligned location and not
919 otherwise. This way you can use the same gdb for 4.0.x and
920 4.1 systems.
921
922 If the parameter is shorter than an int, and is integral
923 (e.g. char, short, or unsigned equivalent), and is claimed to
924 be passed on an integer boundary, don't believe it! Offset the
925 parameter's address to the tail-end of that integer. */
926
927 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
928 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
929 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
930 {
931 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
932 - TYPE_LENGTH (SYMBOL_TYPE (sym));
933 }
934 break;
935
936 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
937
938 /* If PCC says a parameter is a short or a char,
939 it is really an int. */
940 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
941 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
942 {
943 SYMBOL_TYPE (sym) =
944 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
945 ? pcc_unsigned_promotion_type
946 : pcc_promotion_type;
947 }
948 break;
949
950 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
951 }
952 #endif /* !BELIEVE_PCC_PROMOTION. */
953 #endif /* Big endian. */
954
955 case 'P':
956 /* acc seems to use P to delare the prototypes of functions that
957 are referenced by this file. gdb is not prepared to deal
958 with this extra information. FIXME, it ought to. */
959 if (type == N_FUN)
960 {
961 read_type (&p, objfile);
962 goto process_prototype_types;
963 }
964 /*FALLTHROUGH*/
965
966 case 'R':
967 /* Parameter which is in a register. */
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969 SYMBOL_CLASS (sym) = LOC_REGPARM;
970 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
971 if (SYMBOL_VALUE (sym) >= NUM_REGS)
972 {
973 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
974 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
975 }
976 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
977 add_symbol_to_list (sym, &local_symbols);
978 break;
979
980 case 'r':
981 /* Register variable (either global or local). */
982 SYMBOL_TYPE (sym) = read_type (&p, objfile);
983 SYMBOL_CLASS (sym) = LOC_REGISTER;
984 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
985 if (SYMBOL_VALUE (sym) >= NUM_REGS)
986 {
987 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
988 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
989 }
990 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
991 if (within_function)
992 {
993 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
994 name to represent an argument passed in a register.
995 GCC uses 'P' for the same case. So if we find such a symbol pair
996 we combine it into one 'P' symbol. For Sun cc we need to do this
997 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
998 the 'p' symbol even if it never saves the argument onto the stack.
999
1000 On most machines, we want to preserve both symbols, so that
1001 we can still get information about what is going on with the
1002 stack (VAX for computing args_printed, using stack slots instead
1003 of saved registers in backtraces, etc.).
1004
1005 Note that this code illegally combines
1006 main(argc) struct foo argc; { register struct foo argc; }
1007 but this case is considered pathological and causes a warning
1008 from a decent compiler. */
1009
1010 if (local_symbols
1011 && local_symbols->nsyms > 0
1012 #ifndef USE_REGISTER_NOT_ARG
1013 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1014 SYMBOL_TYPE (sym))
1015 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1016 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1017 #endif
1018 )
1019 {
1020 struct symbol *prev_sym;
1021 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1022 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1023 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1024 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1025 {
1026 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1027 /* Use the type from the LOC_REGISTER; that is the type
1028 that is actually in that register. */
1029 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1030 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1031 sym = prev_sym;
1032 break;
1033 }
1034 }
1035 add_symbol_to_list (sym, &local_symbols);
1036 }
1037 else
1038 add_symbol_to_list (sym, &file_symbols);
1039 break;
1040
1041 case 'S':
1042 /* Static symbol at top level of file */
1043 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1044 SYMBOL_CLASS (sym) = LOC_STATIC;
1045 SYMBOL_VALUE_ADDRESS (sym) = valu;
1046 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1047 add_symbol_to_list (sym, &file_symbols);
1048 break;
1049
1050 case 't':
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052
1053 /* For a nameless type, we don't want a create a symbol, thus we
1054 did not use `sym'. Return without further processing. */
1055 if (nameless) return NULL;
1056
1057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1060 /* C++ vagaries: we may have a type which is derived from
1061 a base type which did not have its name defined when the
1062 derived class was output. We fill in the derived class's
1063 base part member's name here in that case. */
1064 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1065 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1066 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1067 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1068 {
1069 int j;
1070 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1071 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1072 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1073 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1074 }
1075
1076 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1077 {
1078 /* gcc-2.6 or later (when using -fvtable-thunks)
1079 emits a unique named type for a vtable entry.
1080 Some gdb code depends on that specific name. */
1081 extern const char vtbl_ptr_name[];
1082
1083 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1084 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1085 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1086 {
1087 /* If we are giving a name to a type such as "pointer to
1088 foo" or "function returning foo", we better not set
1089 the TYPE_NAME. If the program contains "typedef char
1090 *caddr_t;", we don't want all variables of type char
1091 * to print as caddr_t. This is not just a
1092 consequence of GDB's type management; PCC and GCC (at
1093 least through version 2.4) both output variables of
1094 either type char * or caddr_t with the type number
1095 defined in the 't' symbol for caddr_t. If a future
1096 compiler cleans this up it GDB is not ready for it
1097 yet, but if it becomes ready we somehow need to
1098 disable this check (without breaking the PCC/GCC2.4
1099 case).
1100
1101 Sigh.
1102
1103 Fortunately, this check seems not to be necessary
1104 for anything except pointers or functions. */
1105 }
1106 else
1107 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1108 }
1109
1110 add_symbol_to_list (sym, &file_symbols);
1111 break;
1112
1113 case 'T':
1114 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1115 by 't' which means we are typedef'ing it as well. */
1116 synonym = *p == 't';
1117
1118 if (synonym)
1119 {
1120 p++;
1121 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1122 strlen (SYMBOL_NAME (sym)),
1123 &objfile -> symbol_obstack);
1124 }
1125 /* The semantics of C++ state that "struct foo { ... }" also defines
1126 a typedef for "foo". Unfortunately, cfront never makes the typedef
1127 when translating C++ into C. We make the typedef here so that
1128 "ptype foo" works as expected for cfront translated code. */
1129 else if (current_subfile->language == language_cplus)
1130 {
1131 synonym = 1;
1132 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1133 strlen (SYMBOL_NAME (sym)),
1134 &objfile -> symbol_obstack);
1135 }
1136
1137 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1138
1139 /* For a nameless type, we don't want a create a symbol, thus we
1140 did not use `sym'. Return without further processing. */
1141 if (nameless) return NULL;
1142
1143 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1144 SYMBOL_VALUE (sym) = valu;
1145 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1146 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1147 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1148 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1149 add_symbol_to_list (sym, &file_symbols);
1150
1151 if (synonym)
1152 {
1153 /* Clone the sym and then modify it. */
1154 register struct symbol *typedef_sym = (struct symbol *)
1155 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1156 *typedef_sym = *sym;
1157 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1158 SYMBOL_VALUE (typedef_sym) = valu;
1159 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1160 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1161 TYPE_NAME (SYMBOL_TYPE (sym))
1162 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1163 add_symbol_to_list (typedef_sym, &file_symbols);
1164 }
1165 break;
1166
1167 case 'V':
1168 /* Static symbol of local scope */
1169 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1170 SYMBOL_CLASS (sym) = LOC_STATIC;
1171 SYMBOL_VALUE_ADDRESS (sym) = valu;
1172 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1173 if (os9k_stabs)
1174 add_symbol_to_list (sym, &global_symbols);
1175 else
1176 add_symbol_to_list (sym, &local_symbols);
1177 break;
1178
1179 case 'v':
1180 /* Reference parameter */
1181 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1182 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1183 SYMBOL_VALUE (sym) = valu;
1184 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1185 add_symbol_to_list (sym, &local_symbols);
1186 break;
1187
1188 case 'X':
1189 /* This is used by Sun FORTRAN for "function result value".
1190 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1191 that Pascal uses it too, but when I tried it Pascal used
1192 "x:3" (local symbol) instead. */
1193 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1194 SYMBOL_CLASS (sym) = LOC_LOCAL;
1195 SYMBOL_VALUE (sym) = valu;
1196 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1197 add_symbol_to_list (sym, &local_symbols);
1198 break;
1199
1200 default:
1201 SYMBOL_TYPE (sym) = error_type (&p);
1202 SYMBOL_CLASS (sym) = LOC_CONST;
1203 SYMBOL_VALUE (sym) = 0;
1204 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1205 add_symbol_to_list (sym, &file_symbols);
1206 break;
1207 }
1208
1209 /* When passing structures to a function, some systems sometimes pass
1210 the address in a register, not the structure itself.
1211
1212 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1213 to LOC_REGPARM_ADDR for structures and unions. */
1214
1215 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1216 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1217 SYMBOL_TYPE (sym))
1218 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1219 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1220 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1221
1222 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1223 subsequent arguments on the sparc, for example). */
1224 if (SYMBOL_CLASS (sym) == LOC_ARG
1225 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1226 SYMBOL_TYPE (sym))
1227 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1228 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1229 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1230
1231 return sym;
1232 }
1233
1234 \f
1235 /* Skip rest of this symbol and return an error type.
1236
1237 General notes on error recovery: error_type always skips to the
1238 end of the symbol (modulo cretinous dbx symbol name continuation).
1239 Thus code like this:
1240
1241 if (*(*pp)++ != ';')
1242 return error_type (pp);
1243
1244 is wrong because if *pp starts out pointing at '\0' (typically as the
1245 result of an earlier error), it will be incremented to point to the
1246 start of the next symbol, which might produce strange results, at least
1247 if you run off the end of the string table. Instead use
1248
1249 if (**pp != ';')
1250 return error_type (pp);
1251 ++*pp;
1252
1253 or
1254
1255 if (**pp != ';')
1256 foo = error_type (pp);
1257 else
1258 ++*pp;
1259
1260 And in case it isn't obvious, the point of all this hair is so the compiler
1261 can define new types and new syntaxes, and old versions of the
1262 debugger will be able to read the new symbol tables. */
1263
1264 static struct type *
1265 error_type (pp)
1266 char **pp;
1267 {
1268 complain (&error_type_complaint);
1269 while (1)
1270 {
1271 /* Skip to end of symbol. */
1272 while (**pp != '\0')
1273 {
1274 (*pp)++;
1275 }
1276
1277 /* Check for and handle cretinous dbx symbol name continuation! */
1278 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1279 {
1280 *pp = next_symbol_text ();
1281 }
1282 else
1283 {
1284 break;
1285 }
1286 }
1287 return (builtin_type_error);
1288 }
1289
1290 \f
1291 /* Read type information or a type definition; return the type. Even
1292 though this routine accepts either type information or a type
1293 definition, the distinction is relevant--some parts of stabsread.c
1294 assume that type information starts with a digit, '-', or '(' in
1295 deciding whether to call read_type. */
1296
1297 struct type *
1298 read_type (pp, objfile)
1299 register char **pp;
1300 struct objfile *objfile;
1301 {
1302 register struct type *type = 0;
1303 struct type *type1;
1304 int typenums[2];
1305 int xtypenums[2];
1306 char type_descriptor;
1307
1308 /* Size in bits of type if specified by a type attribute, or -1 if
1309 there is no size attribute. */
1310 int type_size = -1;
1311
1312 /* Used to distinguish string and bitstring from char-array and set. */
1313 int is_string = 0;
1314
1315 /* Read type number if present. The type number may be omitted.
1316 for instance in a two-dimensional array declared with type
1317 "ar1;1;10;ar1;1;10;4". */
1318 if ((**pp >= '0' && **pp <= '9')
1319 || **pp == '('
1320 || **pp == '-')
1321 {
1322 if (read_type_number (pp, typenums) != 0)
1323 return error_type (pp);
1324
1325 /* Type is not being defined here. Either it already exists,
1326 or this is a forward reference to it. dbx_alloc_type handles
1327 both cases. */
1328 if (**pp != '=')
1329 return dbx_alloc_type (typenums, objfile);
1330
1331 /* Type is being defined here. */
1332 /* Skip the '='. */
1333 ++(*pp);
1334
1335 while (**pp == '@')
1336 {
1337 char *p = *pp + 1;
1338 /* It might be a type attribute or a member type. */
1339 if (isdigit (*p) || *p == '(' || *p == '-')
1340 /* Member type. */
1341 break;
1342 else
1343 {
1344 /* Type attributes. */
1345 char *attr = p;
1346
1347 /* Skip to the semicolon. */
1348 while (*p != ';' && *p != '\0')
1349 ++p;
1350 *pp = p;
1351 if (*p == '\0')
1352 return error_type (pp);
1353 else
1354 /* Skip the semicolon. */
1355 ++*pp;
1356
1357 switch (*attr)
1358 {
1359 case 's':
1360 type_size = atoi (attr + 1);
1361 if (type_size <= 0)
1362 type_size = -1;
1363 break;
1364
1365 case 'S':
1366 is_string = 1;
1367 break;
1368
1369 default:
1370 /* Ignore unrecognized type attributes, so future compilers
1371 can invent new ones. */
1372 break;
1373 }
1374 }
1375 }
1376 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1377 ++(*pp);
1378 }
1379 else
1380 {
1381 /* 'typenums=' not present, type is anonymous. Read and return
1382 the definition, but don't put it in the type vector. */
1383 typenums[0] = typenums[1] = -1;
1384 (*pp)++;
1385 }
1386
1387 type_descriptor = (*pp)[-1];
1388 switch (type_descriptor)
1389 {
1390 case 'x':
1391 {
1392 enum type_code code;
1393
1394 /* Used to index through file_symbols. */
1395 struct pending *ppt;
1396 int i;
1397
1398 /* Name including "struct", etc. */
1399 char *type_name;
1400
1401 {
1402 char *from, *to, *p, *q1, *q2;
1403
1404 /* Set the type code according to the following letter. */
1405 switch ((*pp)[0])
1406 {
1407 case 's':
1408 code = TYPE_CODE_STRUCT;
1409 break;
1410 case 'u':
1411 code = TYPE_CODE_UNION;
1412 break;
1413 case 'e':
1414 code = TYPE_CODE_ENUM;
1415 break;
1416 default:
1417 {
1418 /* Complain and keep going, so compilers can invent new
1419 cross-reference types. */
1420 static struct complaint msg =
1421 {"Unrecognized cross-reference type `%c'", 0, 0};
1422 complain (&msg, (*pp)[0]);
1423 code = TYPE_CODE_STRUCT;
1424 break;
1425 }
1426 }
1427
1428 q1 = strchr(*pp, '<');
1429 p = strchr(*pp, ':');
1430 if (p == NULL)
1431 return error_type (pp);
1432 while (q1 && p > q1 && p[1] == ':')
1433 {
1434 q2 = strchr(q1, '>');
1435 if (!q2 || q2 < p)
1436 break;
1437 p += 2;
1438 p = strchr(p, ':');
1439 if (p == NULL)
1440 return error_type (pp);
1441 }
1442 to = type_name =
1443 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1444
1445 /* Copy the name. */
1446 from = *pp + 1;
1447 while (from < p)
1448 *to++ = *from++;
1449 *to = '\0';
1450
1451 /* Set the pointer ahead of the name which we just read, and
1452 the colon. */
1453 *pp = from + 1;
1454 }
1455
1456 /* Now check to see whether the type has already been
1457 declared. This was written for arrays of cross-referenced
1458 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1459 sure it is not necessary anymore. But it might be a good
1460 idea, to save a little memory. */
1461
1462 for (ppt = file_symbols; ppt; ppt = ppt->next)
1463 for (i = 0; i < ppt->nsyms; i++)
1464 {
1465 struct symbol *sym = ppt->symbol[i];
1466
1467 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1468 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1469 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1470 && STREQ (SYMBOL_NAME (sym), type_name))
1471 {
1472 obstack_free (&objfile -> type_obstack, type_name);
1473 type = SYMBOL_TYPE (sym);
1474 return type;
1475 }
1476 }
1477
1478 /* Didn't find the type to which this refers, so we must
1479 be dealing with a forward reference. Allocate a type
1480 structure for it, and keep track of it so we can
1481 fill in the rest of the fields when we get the full
1482 type. */
1483 type = dbx_alloc_type (typenums, objfile);
1484 TYPE_CODE (type) = code;
1485 TYPE_TAG_NAME (type) = type_name;
1486 INIT_CPLUS_SPECIFIC(type);
1487 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1488
1489 add_undefined_type (type);
1490 return type;
1491 }
1492
1493 case '-': /* RS/6000 built-in type */
1494 case '0':
1495 case '1':
1496 case '2':
1497 case '3':
1498 case '4':
1499 case '5':
1500 case '6':
1501 case '7':
1502 case '8':
1503 case '9':
1504 case '(':
1505
1506 {
1507 char *pp_saved;
1508
1509 (*pp)--;
1510 pp_saved = *pp;
1511
1512 /* Peek ahead at the number to detect void. */
1513 if (read_type_number (pp, xtypenums) != 0)
1514 return error_type (pp);
1515
1516 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1517 /* It's being defined as itself. That means it is "void". */
1518 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1519 else
1520 {
1521 struct type *xtype;
1522
1523 /* Go back to the number and have read_type get it. This means
1524 that we can deal with something like t(1,2)=(3,4)=... which
1525 the Lucid compiler uses. */
1526 *pp = pp_saved;
1527 xtype = read_type (pp, objfile);
1528
1529 /* The type is being defined to another type. So we copy the type.
1530 This loses if we copy a C++ class and so we lose track of how
1531 the names are mangled (but g++ doesn't output stabs like this
1532 now anyway). */
1533
1534 type = alloc_type (objfile);
1535 memcpy (type, xtype, sizeof (struct type));
1536
1537 /* The idea behind clearing the names is that the only purpose
1538 for defining a type to another type is so that the name of
1539 one can be different. So we probably don't need to worry much
1540 about the case where the compiler doesn't give a name to the
1541 new type. */
1542 TYPE_NAME (type) = NULL;
1543 TYPE_TAG_NAME (type) = NULL;
1544 }
1545 if (typenums[0] != -1)
1546 *dbx_lookup_type (typenums) = type;
1547 break;
1548 }
1549
1550 /* In the following types, we must be sure to overwrite any existing
1551 type that the typenums refer to, rather than allocating a new one
1552 and making the typenums point to the new one. This is because there
1553 may already be pointers to the existing type (if it had been
1554 forward-referenced), and we must change it to a pointer, function,
1555 reference, or whatever, *in-place*. */
1556
1557 case '*':
1558 type1 = read_type (pp, objfile);
1559 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1560 break;
1561
1562 case '&': /* Reference to another type */
1563 type1 = read_type (pp, objfile);
1564 type = make_reference_type (type1, dbx_lookup_type (typenums));
1565 break;
1566
1567 case 'f': /* Function returning another type */
1568 if (os9k_stabs && **pp == '(')
1569 {
1570 /* Function prototype; parse it.
1571 We must conditionalize this on os9k_stabs because otherwise
1572 it could be confused with a Sun-style (1,3) typenumber
1573 (I think). */
1574 struct type *t;
1575 ++*pp;
1576 while (**pp != ')')
1577 {
1578 t = read_type(pp, objfile);
1579 if (**pp == ',') ++*pp;
1580 }
1581 }
1582 type1 = read_type (pp, objfile);
1583 type = make_function_type (type1, dbx_lookup_type (typenums));
1584 break;
1585
1586 case 'k': /* Const qualifier on some type (Sun) */
1587 case 'c': /* Const qualifier on some type (OS9000) */
1588 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1589 only accept 'c' in the os9k_stabs case. */
1590 if (type_descriptor == 'c' && !os9k_stabs)
1591 return error_type (pp);
1592 type = read_type (pp, objfile);
1593 /* FIXME! For now, we ignore const and volatile qualifiers. */
1594 break;
1595
1596 case 'B': /* Volatile qual on some type (Sun) */
1597 case 'i': /* Volatile qual on some type (OS9000) */
1598 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1599 only accept 'i' in the os9k_stabs case. */
1600 if (type_descriptor == 'i' && !os9k_stabs)
1601 return error_type (pp);
1602 type = read_type (pp, objfile);
1603 /* FIXME! For now, we ignore const and volatile qualifiers. */
1604 break;
1605
1606 /* FIXME -- we should be doing smash_to_XXX types here. */
1607 case '@': /* Member (class & variable) type */
1608 {
1609 struct type *domain = read_type (pp, objfile);
1610 struct type *memtype;
1611
1612 if (**pp != ',')
1613 /* Invalid member type data format. */
1614 return error_type (pp);
1615 ++*pp;
1616
1617 memtype = read_type (pp, objfile);
1618 type = dbx_alloc_type (typenums, objfile);
1619 smash_to_member_type (type, domain, memtype);
1620 }
1621 break;
1622
1623 case '#': /* Method (class & fn) type */
1624 if ((*pp)[0] == '#')
1625 {
1626 /* We'll get the parameter types from the name. */
1627 struct type *return_type;
1628
1629 (*pp)++;
1630 return_type = read_type (pp, objfile);
1631 if (*(*pp)++ != ';')
1632 complain (&invalid_member_complaint, symnum);
1633 type = allocate_stub_method (return_type);
1634 if (typenums[0] != -1)
1635 *dbx_lookup_type (typenums) = type;
1636 }
1637 else
1638 {
1639 struct type *domain = read_type (pp, objfile);
1640 struct type *return_type;
1641 struct type **args;
1642
1643 if (**pp != ',')
1644 /* Invalid member type data format. */
1645 return error_type (pp);
1646 else
1647 ++(*pp);
1648
1649 return_type = read_type (pp, objfile);
1650 args = read_args (pp, ';', objfile);
1651 type = dbx_alloc_type (typenums, objfile);
1652 smash_to_method_type (type, domain, return_type, args);
1653 }
1654 break;
1655
1656 case 'r': /* Range type */
1657 type = read_range_type (pp, typenums, objfile);
1658 if (typenums[0] != -1)
1659 *dbx_lookup_type (typenums) = type;
1660 break;
1661
1662 case 'b':
1663 if (os9k_stabs)
1664 /* Const and volatile qualified type. */
1665 type = read_type (pp, objfile);
1666 else
1667 {
1668 /* Sun ACC builtin int type */
1669 type = read_sun_builtin_type (pp, typenums, objfile);
1670 if (typenums[0] != -1)
1671 *dbx_lookup_type (typenums) = type;
1672 }
1673 break;
1674
1675 case 'R': /* Sun ACC builtin float type */
1676 type = read_sun_floating_type (pp, typenums, objfile);
1677 if (typenums[0] != -1)
1678 *dbx_lookup_type (typenums) = type;
1679 break;
1680
1681 case 'e': /* Enumeration type */
1682 type = dbx_alloc_type (typenums, objfile);
1683 type = read_enum_type (pp, type, objfile);
1684 if (typenums[0] != -1)
1685 *dbx_lookup_type (typenums) = type;
1686 break;
1687
1688 case 's': /* Struct type */
1689 case 'u': /* Union type */
1690 type = dbx_alloc_type (typenums, objfile);
1691 if (!TYPE_NAME (type))
1692 {
1693 TYPE_NAME (type) = type_synonym_name;
1694 }
1695 type_synonym_name = NULL;
1696 switch (type_descriptor)
1697 {
1698 case 's':
1699 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1700 break;
1701 case 'u':
1702 TYPE_CODE (type) = TYPE_CODE_UNION;
1703 break;
1704 }
1705 type = read_struct_type (pp, type, objfile);
1706 break;
1707
1708 case 'a': /* Array type */
1709 if (**pp != 'r')
1710 return error_type (pp);
1711 ++*pp;
1712
1713 type = dbx_alloc_type (typenums, objfile);
1714 type = read_array_type (pp, type, objfile);
1715 if (is_string)
1716 TYPE_CODE (type) = TYPE_CODE_STRING;
1717 break;
1718
1719 case 'S':
1720 type1 = read_type (pp, objfile);
1721 type = create_set_type ((struct type*) NULL, type1);
1722 if (is_string)
1723 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1724 if (typenums[0] != -1)
1725 *dbx_lookup_type (typenums) = type;
1726 break;
1727
1728 default:
1729 --*pp; /* Go back to the symbol in error */
1730 /* Particularly important if it was \0! */
1731 return error_type (pp);
1732 }
1733
1734 if (type == 0)
1735 {
1736 warning ("GDB internal error, type is NULL in stabsread.c\n");
1737 return error_type (pp);
1738 }
1739
1740 /* Size specified in a type attribute overrides any other size. */
1741 if (type_size != -1)
1742 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1743
1744 return type;
1745 }
1746 \f
1747 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1748 Return the proper type node for a given builtin type number. */
1749
1750 static struct type *
1751 rs6000_builtin_type (typenum)
1752 int typenum;
1753 {
1754 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1755 #define NUMBER_RECOGNIZED 30
1756 /* This includes an empty slot for type number -0. */
1757 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1758 struct type *rettype = NULL;
1759
1760 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1761 {
1762 complain (&rs6000_builtin_complaint, typenum);
1763 return builtin_type_error;
1764 }
1765 if (negative_types[-typenum] != NULL)
1766 return negative_types[-typenum];
1767
1768 #if TARGET_CHAR_BIT != 8
1769 #error This code wrong for TARGET_CHAR_BIT not 8
1770 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1771 that if that ever becomes not true, the correct fix will be to
1772 make the size in the struct type to be in bits, not in units of
1773 TARGET_CHAR_BIT. */
1774 #endif
1775
1776 switch (-typenum)
1777 {
1778 case 1:
1779 /* The size of this and all the other types are fixed, defined
1780 by the debugging format. If there is a type called "int" which
1781 is other than 32 bits, then it should use a new negative type
1782 number (or avoid negative type numbers for that case).
1783 See stabs.texinfo. */
1784 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1785 break;
1786 case 2:
1787 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1788 break;
1789 case 3:
1790 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1791 break;
1792 case 4:
1793 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1794 break;
1795 case 5:
1796 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1797 "unsigned char", NULL);
1798 break;
1799 case 6:
1800 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1801 break;
1802 case 7:
1803 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1804 "unsigned short", NULL);
1805 break;
1806 case 8:
1807 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1808 "unsigned int", NULL);
1809 break;
1810 case 9:
1811 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1812 "unsigned", NULL);
1813 case 10:
1814 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1815 "unsigned long", NULL);
1816 break;
1817 case 11:
1818 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1819 break;
1820 case 12:
1821 /* IEEE single precision (32 bit). */
1822 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1823 break;
1824 case 13:
1825 /* IEEE double precision (64 bit). */
1826 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1827 break;
1828 case 14:
1829 /* This is an IEEE double on the RS/6000, and different machines with
1830 different sizes for "long double" should use different negative
1831 type numbers. See stabs.texinfo. */
1832 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1833 break;
1834 case 15:
1835 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1836 break;
1837 case 16:
1838 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1839 break;
1840 case 17:
1841 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1842 break;
1843 case 18:
1844 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1845 break;
1846 case 19:
1847 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1848 break;
1849 case 20:
1850 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1851 "character", NULL);
1852 break;
1853 case 21:
1854 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1855 "logical*1", NULL);
1856 break;
1857 case 22:
1858 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1859 "logical*2", NULL);
1860 break;
1861 case 23:
1862 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1863 "logical*4", NULL);
1864 break;
1865 case 24:
1866 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1867 "logical", NULL);
1868 break;
1869 case 25:
1870 /* Complex type consisting of two IEEE single precision values. */
1871 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1872 break;
1873 case 26:
1874 /* Complex type consisting of two IEEE double precision values. */
1875 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1876 break;
1877 case 27:
1878 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1879 break;
1880 case 28:
1881 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1882 break;
1883 case 29:
1884 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1885 break;
1886 case 30:
1887 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1888 break;
1889 }
1890 negative_types[-typenum] = rettype;
1891 return rettype;
1892 }
1893 \f
1894 /* This page contains subroutines of read_type. */
1895
1896 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1897 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1898 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1899 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1900
1901 /* Read member function stabs info for C++ classes. The form of each member
1902 function data is:
1903
1904 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1905
1906 An example with two member functions is:
1907
1908 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1909
1910 For the case of overloaded operators, the format is op$::*.funcs, where
1911 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1912 name (such as `+=') and `.' marks the end of the operator name.
1913
1914 Returns 1 for success, 0 for failure. */
1915
1916 static int
1917 read_member_functions (fip, pp, type, objfile)
1918 struct field_info *fip;
1919 char **pp;
1920 struct type *type;
1921 struct objfile *objfile;
1922 {
1923 int nfn_fields = 0;
1924 int length = 0;
1925 /* Total number of member functions defined in this class. If the class
1926 defines two `f' functions, and one `g' function, then this will have
1927 the value 3. */
1928 int total_length = 0;
1929 int i;
1930 struct next_fnfield
1931 {
1932 struct next_fnfield *next;
1933 struct fn_field fn_field;
1934 } *sublist;
1935 struct type *look_ahead_type;
1936 struct next_fnfieldlist *new_fnlist;
1937 struct next_fnfield *new_sublist;
1938 char *main_fn_name;
1939 register char *p;
1940
1941 /* Process each list until we find something that is not a member function
1942 or find the end of the functions. */
1943
1944 while (**pp != ';')
1945 {
1946 /* We should be positioned at the start of the function name.
1947 Scan forward to find the first ':' and if it is not the
1948 first of a "::" delimiter, then this is not a member function. */
1949 p = *pp;
1950 while (*p != ':')
1951 {
1952 p++;
1953 }
1954 if (p[1] != ':')
1955 {
1956 break;
1957 }
1958
1959 sublist = NULL;
1960 look_ahead_type = NULL;
1961 length = 0;
1962
1963 new_fnlist = (struct next_fnfieldlist *)
1964 xmalloc (sizeof (struct next_fnfieldlist));
1965 make_cleanup (free, new_fnlist);
1966 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1967
1968 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1969 {
1970 /* This is a completely wierd case. In order to stuff in the
1971 names that might contain colons (the usual name delimiter),
1972 Mike Tiemann defined a different name format which is
1973 signalled if the identifier is "op$". In that case, the
1974 format is "op$::XXXX." where XXXX is the name. This is
1975 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1976 /* This lets the user type "break operator+".
1977 We could just put in "+" as the name, but that wouldn't
1978 work for "*". */
1979 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1980 char *o = opname + 3;
1981
1982 /* Skip past '::'. */
1983 *pp = p + 2;
1984
1985 STABS_CONTINUE (pp);
1986 p = *pp;
1987 while (*p != '.')
1988 {
1989 *o++ = *p++;
1990 }
1991 main_fn_name = savestring (opname, o - opname);
1992 /* Skip past '.' */
1993 *pp = p + 1;
1994 }
1995 else
1996 {
1997 main_fn_name = savestring (*pp, p - *pp);
1998 /* Skip past '::'. */
1999 *pp = p + 2;
2000 }
2001 new_fnlist -> fn_fieldlist.name = main_fn_name;
2002
2003 do
2004 {
2005 new_sublist =
2006 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2007 make_cleanup (free, new_sublist);
2008 memset (new_sublist, 0, sizeof (struct next_fnfield));
2009
2010 /* Check for and handle cretinous dbx symbol name continuation! */
2011 if (look_ahead_type == NULL)
2012 {
2013 /* Normal case. */
2014 STABS_CONTINUE (pp);
2015
2016 new_sublist -> fn_field.type = read_type (pp, objfile);
2017 if (**pp != ':')
2018 {
2019 /* Invalid symtab info for member function. */
2020 return 0;
2021 }
2022 }
2023 else
2024 {
2025 /* g++ version 1 kludge */
2026 new_sublist -> fn_field.type = look_ahead_type;
2027 look_ahead_type = NULL;
2028 }
2029
2030 (*pp)++;
2031 p = *pp;
2032 while (*p != ';')
2033 {
2034 p++;
2035 }
2036
2037 /* If this is just a stub, then we don't have the real name here. */
2038
2039 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2040 {
2041 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2042 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2043 new_sublist -> fn_field.is_stub = 1;
2044 }
2045 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2046 *pp = p + 1;
2047
2048 /* Set this member function's visibility fields. */
2049 switch (*(*pp)++)
2050 {
2051 case VISIBILITY_PRIVATE:
2052 new_sublist -> fn_field.is_private = 1;
2053 break;
2054 case VISIBILITY_PROTECTED:
2055 new_sublist -> fn_field.is_protected = 1;
2056 break;
2057 }
2058
2059 STABS_CONTINUE (pp);
2060 switch (**pp)
2061 {
2062 case 'A': /* Normal functions. */
2063 new_sublist -> fn_field.is_const = 0;
2064 new_sublist -> fn_field.is_volatile = 0;
2065 (*pp)++;
2066 break;
2067 case 'B': /* `const' member functions. */
2068 new_sublist -> fn_field.is_const = 1;
2069 new_sublist -> fn_field.is_volatile = 0;
2070 (*pp)++;
2071 break;
2072 case 'C': /* `volatile' member function. */
2073 new_sublist -> fn_field.is_const = 0;
2074 new_sublist -> fn_field.is_volatile = 1;
2075 (*pp)++;
2076 break;
2077 case 'D': /* `const volatile' member function. */
2078 new_sublist -> fn_field.is_const = 1;
2079 new_sublist -> fn_field.is_volatile = 1;
2080 (*pp)++;
2081 break;
2082 case '*': /* File compiled with g++ version 1 -- no info */
2083 case '?':
2084 case '.':
2085 break;
2086 default:
2087 complain (&const_vol_complaint, **pp);
2088 break;
2089 }
2090
2091 switch (*(*pp)++)
2092 {
2093 case '*':
2094 {
2095 int nbits;
2096 /* virtual member function, followed by index.
2097 The sign bit is set to distinguish pointers-to-methods
2098 from virtual function indicies. Since the array is
2099 in words, the quantity must be shifted left by 1
2100 on 16 bit machine, and by 2 on 32 bit machine, forcing
2101 the sign bit out, and usable as a valid index into
2102 the array. Remove the sign bit here. */
2103 new_sublist -> fn_field.voffset =
2104 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2105 if (nbits != 0)
2106 return 0;
2107
2108 STABS_CONTINUE (pp);
2109 if (**pp == ';' || **pp == '\0')
2110 {
2111 /* Must be g++ version 1. */
2112 new_sublist -> fn_field.fcontext = 0;
2113 }
2114 else
2115 {
2116 /* Figure out from whence this virtual function came.
2117 It may belong to virtual function table of
2118 one of its baseclasses. */
2119 look_ahead_type = read_type (pp, objfile);
2120 if (**pp == ':')
2121 {
2122 /* g++ version 1 overloaded methods. */
2123 }
2124 else
2125 {
2126 new_sublist -> fn_field.fcontext = look_ahead_type;
2127 if (**pp != ';')
2128 {
2129 return 0;
2130 }
2131 else
2132 {
2133 ++*pp;
2134 }
2135 look_ahead_type = NULL;
2136 }
2137 }
2138 break;
2139 }
2140 case '?':
2141 /* static member function. */
2142 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2143 if (strncmp (new_sublist -> fn_field.physname,
2144 main_fn_name, strlen (main_fn_name)))
2145 {
2146 new_sublist -> fn_field.is_stub = 1;
2147 }
2148 break;
2149
2150 default:
2151 /* error */
2152 complain (&member_fn_complaint, (*pp)[-1]);
2153 /* Fall through into normal member function. */
2154
2155 case '.':
2156 /* normal member function. */
2157 new_sublist -> fn_field.voffset = 0;
2158 new_sublist -> fn_field.fcontext = 0;
2159 break;
2160 }
2161
2162 new_sublist -> next = sublist;
2163 sublist = new_sublist;
2164 length++;
2165 STABS_CONTINUE (pp);
2166 }
2167 while (**pp != ';' && **pp != '\0');
2168
2169 (*pp)++;
2170
2171 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2172 obstack_alloc (&objfile -> type_obstack,
2173 sizeof (struct fn_field) * length);
2174 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2175 sizeof (struct fn_field) * length);
2176 for (i = length; (i--, sublist); sublist = sublist -> next)
2177 {
2178 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2179 }
2180
2181 new_fnlist -> fn_fieldlist.length = length;
2182 new_fnlist -> next = fip -> fnlist;
2183 fip -> fnlist = new_fnlist;
2184 nfn_fields++;
2185 total_length += length;
2186 STABS_CONTINUE (pp);
2187 }
2188
2189 if (nfn_fields)
2190 {
2191 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2192 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2193 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2194 memset (TYPE_FN_FIELDLISTS (type), 0,
2195 sizeof (struct fn_fieldlist) * nfn_fields);
2196 TYPE_NFN_FIELDS (type) = nfn_fields;
2197 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2198 }
2199
2200 return 1;
2201 }
2202
2203 /* Special GNU C++ name.
2204
2205 Returns 1 for success, 0 for failure. "failure" means that we can't
2206 keep parsing and it's time for error_type(). */
2207
2208 static int
2209 read_cpp_abbrev (fip, pp, type, objfile)
2210 struct field_info *fip;
2211 char **pp;
2212 struct type *type;
2213 struct objfile *objfile;
2214 {
2215 register char *p;
2216 char *name;
2217 char cpp_abbrev;
2218 struct type *context;
2219
2220 p = *pp;
2221 if (*++p == 'v')
2222 {
2223 name = NULL;
2224 cpp_abbrev = *++p;
2225
2226 *pp = p + 1;
2227
2228 /* At this point, *pp points to something like "22:23=*22...",
2229 where the type number before the ':' is the "context" and
2230 everything after is a regular type definition. Lookup the
2231 type, find it's name, and construct the field name. */
2232
2233 context = read_type (pp, objfile);
2234
2235 switch (cpp_abbrev)
2236 {
2237 case 'f': /* $vf -- a virtual function table pointer */
2238 fip->list->field.name =
2239 obconcat (&objfile->type_obstack, vptr_name, "", "");
2240 break;
2241
2242 case 'b': /* $vb -- a virtual bsomethingorother */
2243 name = type_name_no_tag (context);
2244 if (name == NULL)
2245 {
2246 complain (&invalid_cpp_type_complaint, symnum);
2247 name = "FOO";
2248 }
2249 fip->list->field.name =
2250 obconcat (&objfile->type_obstack, vb_name, name, "");
2251 break;
2252
2253 default:
2254 complain (&invalid_cpp_abbrev_complaint, *pp);
2255 fip->list->field.name =
2256 obconcat (&objfile->type_obstack,
2257 "INVALID_CPLUSPLUS_ABBREV", "", "");
2258 break;
2259 }
2260
2261 /* At this point, *pp points to the ':'. Skip it and read the
2262 field type. */
2263
2264 p = ++(*pp);
2265 if (p[-1] != ':')
2266 {
2267 complain (&invalid_cpp_abbrev_complaint, *pp);
2268 return 0;
2269 }
2270 fip->list->field.type = read_type (pp, objfile);
2271 if (**pp == ',')
2272 (*pp)++; /* Skip the comma. */
2273 else
2274 return 0;
2275
2276 {
2277 int nbits;
2278 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2279 if (nbits != 0)
2280 return 0;
2281 }
2282 /* This field is unpacked. */
2283 fip->list->field.bitsize = 0;
2284 fip->list->visibility = VISIBILITY_PRIVATE;
2285 }
2286 else
2287 {
2288 complain (&invalid_cpp_abbrev_complaint, *pp);
2289 /* We have no idea what syntax an unrecognized abbrev would have, so
2290 better return 0. If we returned 1, we would need to at least advance
2291 *pp to avoid an infinite loop. */
2292 return 0;
2293 }
2294 return 1;
2295 }
2296
2297 static void
2298 read_one_struct_field (fip, pp, p, type, objfile)
2299 struct field_info *fip;
2300 char **pp;
2301 char *p;
2302 struct type *type;
2303 struct objfile *objfile;
2304 {
2305 fip -> list -> field.name =
2306 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2307 *pp = p + 1;
2308
2309 /* This means we have a visibility for a field coming. */
2310 if (**pp == '/')
2311 {
2312 (*pp)++;
2313 fip -> list -> visibility = *(*pp)++;
2314 }
2315 else
2316 {
2317 /* normal dbx-style format, no explicit visibility */
2318 fip -> list -> visibility = VISIBILITY_PUBLIC;
2319 }
2320
2321 fip -> list -> field.type = read_type (pp, objfile);
2322 if (**pp == ':')
2323 {
2324 p = ++(*pp);
2325 #if 0
2326 /* Possible future hook for nested types. */
2327 if (**pp == '!')
2328 {
2329 fip -> list -> field.bitpos = (long)-2; /* nested type */
2330 p = ++(*pp);
2331 }
2332 else
2333 #endif
2334 {
2335 /* Static class member. */
2336 fip -> list -> field.bitpos = (long) -1;
2337 }
2338 while (*p != ';')
2339 {
2340 p++;
2341 }
2342 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2343 *pp = p + 1;
2344 return;
2345 }
2346 else if (**pp != ',')
2347 {
2348 /* Bad structure-type format. */
2349 complain (&stabs_general_complaint, "bad structure-type format");
2350 return;
2351 }
2352
2353 (*pp)++; /* Skip the comma. */
2354
2355 {
2356 int nbits;
2357 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2358 if (nbits != 0)
2359 {
2360 complain (&stabs_general_complaint, "bad structure-type format");
2361 return;
2362 }
2363 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2364 if (nbits != 0)
2365 {
2366 complain (&stabs_general_complaint, "bad structure-type format");
2367 return;
2368 }
2369 }
2370
2371 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2372 {
2373 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2374 it is a field which has been optimized out. The correct stab for
2375 this case is to use VISIBILITY_IGNORE, but that is a recent
2376 invention. (2) It is a 0-size array. For example
2377 union { int num; char str[0]; } foo. Printing "<no value>" for
2378 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2379 will continue to work, and a 0-size array as a whole doesn't
2380 have any contents to print.
2381
2382 I suspect this probably could also happen with gcc -gstabs (not
2383 -gstabs+) for static fields, and perhaps other C++ extensions.
2384 Hopefully few people use -gstabs with gdb, since it is intended
2385 for dbx compatibility. */
2386
2387 /* Ignore this field. */
2388 fip -> list-> visibility = VISIBILITY_IGNORE;
2389 }
2390 else
2391 {
2392 /* Detect an unpacked field and mark it as such.
2393 dbx gives a bit size for all fields.
2394 Note that forward refs cannot be packed,
2395 and treat enums as if they had the width of ints. */
2396
2397 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2398 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2399 {
2400 fip -> list -> field.bitsize = 0;
2401 }
2402 if ((fip -> list -> field.bitsize
2403 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2404 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2405 && (fip -> list -> field.bitsize
2406 == TARGET_INT_BIT)
2407 )
2408 )
2409 &&
2410 fip -> list -> field.bitpos % 8 == 0)
2411 {
2412 fip -> list -> field.bitsize = 0;
2413 }
2414 }
2415 }
2416
2417
2418 /* Read struct or class data fields. They have the form:
2419
2420 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2421
2422 At the end, we see a semicolon instead of a field.
2423
2424 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2425 a static field.
2426
2427 The optional VISIBILITY is one of:
2428
2429 '/0' (VISIBILITY_PRIVATE)
2430 '/1' (VISIBILITY_PROTECTED)
2431 '/2' (VISIBILITY_PUBLIC)
2432 '/9' (VISIBILITY_IGNORE)
2433
2434 or nothing, for C style fields with public visibility.
2435
2436 Returns 1 for success, 0 for failure. */
2437
2438 static int
2439 read_struct_fields (fip, pp, type, objfile)
2440 struct field_info *fip;
2441 char **pp;
2442 struct type *type;
2443 struct objfile *objfile;
2444 {
2445 register char *p;
2446 struct nextfield *new;
2447
2448 /* We better set p right now, in case there are no fields at all... */
2449
2450 p = *pp;
2451
2452 /* Read each data member type until we find the terminating ';' at the end of
2453 the data member list, or break for some other reason such as finding the
2454 start of the member function list. */
2455
2456 while (**pp != ';')
2457 {
2458 STABS_CONTINUE (pp);
2459 /* Get space to record the next field's data. */
2460 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2461 make_cleanup (free, new);
2462 memset (new, 0, sizeof (struct nextfield));
2463 new -> next = fip -> list;
2464 fip -> list = new;
2465
2466 /* Get the field name. */
2467 p = *pp;
2468
2469 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2470 unless the CPLUS_MARKER is followed by an underscore, in
2471 which case it is just the name of an anonymous type, which we
2472 should handle like any other type name. We accept either '$'
2473 or '.', because a field name can never contain one of these
2474 characters except as a CPLUS_MARKER (we probably should be
2475 doing that in most parts of GDB). */
2476
2477 if ((*p == '$' || *p == '.') && p[1] != '_')
2478 {
2479 if (!read_cpp_abbrev (fip, pp, type, objfile))
2480 return 0;
2481 continue;
2482 }
2483
2484 /* Look for the ':' that separates the field name from the field
2485 values. Data members are delimited by a single ':', while member
2486 functions are delimited by a pair of ':'s. When we hit the member
2487 functions (if any), terminate scan loop and return. */
2488
2489 while (*p != ':' && *p != '\0')
2490 {
2491 p++;
2492 }
2493 if (*p == '\0')
2494 return 0;
2495
2496 /* Check to see if we have hit the member functions yet. */
2497 if (p[1] == ':')
2498 {
2499 break;
2500 }
2501 read_one_struct_field (fip, pp, p, type, objfile);
2502 }
2503 if (p[0] == ':' && p[1] == ':')
2504 {
2505 /* chill the list of fields: the last entry (at the head) is a
2506 partially constructed entry which we now scrub. */
2507 fip -> list = fip -> list -> next;
2508 }
2509 return 1;
2510 }
2511
2512 /* The stabs for C++ derived classes contain baseclass information which
2513 is marked by a '!' character after the total size. This function is
2514 called when we encounter the baseclass marker, and slurps up all the
2515 baseclass information.
2516
2517 Immediately following the '!' marker is the number of base classes that
2518 the class is derived from, followed by information for each base class.
2519 For each base class, there are two visibility specifiers, a bit offset
2520 to the base class information within the derived class, a reference to
2521 the type for the base class, and a terminating semicolon.
2522
2523 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2524 ^^ ^ ^ ^ ^ ^ ^
2525 Baseclass information marker __________________|| | | | | | |
2526 Number of baseclasses __________________________| | | | | | |
2527 Visibility specifiers (2) ________________________| | | | | |
2528 Offset in bits from start of class _________________| | | | |
2529 Type number for base class ___________________________| | | |
2530 Visibility specifiers (2) _______________________________| | |
2531 Offset in bits from start of class ________________________| |
2532 Type number of base class ____________________________________|
2533
2534 Return 1 for success, 0 for (error-type-inducing) failure. */
2535
2536 static int
2537 read_baseclasses (fip, pp, type, objfile)
2538 struct field_info *fip;
2539 char **pp;
2540 struct type *type;
2541 struct objfile *objfile;
2542 {
2543 int i;
2544 struct nextfield *new;
2545
2546 if (**pp != '!')
2547 {
2548 return 1;
2549 }
2550 else
2551 {
2552 /* Skip the '!' baseclass information marker. */
2553 (*pp)++;
2554 }
2555
2556 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2557 {
2558 int nbits;
2559 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2560 if (nbits != 0)
2561 return 0;
2562 }
2563
2564 #if 0
2565 /* Some stupid compilers have trouble with the following, so break
2566 it up into simpler expressions. */
2567 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2568 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2569 #else
2570 {
2571 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2572 char *pointer;
2573
2574 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2575 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2576 }
2577 #endif /* 0 */
2578
2579 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2580
2581 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2582 {
2583 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2584 make_cleanup (free, new);
2585 memset (new, 0, sizeof (struct nextfield));
2586 new -> next = fip -> list;
2587 fip -> list = new;
2588 new -> field.bitsize = 0; /* this should be an unpacked field! */
2589
2590 STABS_CONTINUE (pp);
2591 switch (**pp)
2592 {
2593 case '0':
2594 /* Nothing to do. */
2595 break;
2596 case '1':
2597 SET_TYPE_FIELD_VIRTUAL (type, i);
2598 break;
2599 default:
2600 /* Unknown character. Complain and treat it as non-virtual. */
2601 {
2602 static struct complaint msg = {
2603 "Unknown virtual character `%c' for baseclass", 0, 0};
2604 complain (&msg, **pp);
2605 }
2606 }
2607 ++(*pp);
2608
2609 new -> visibility = *(*pp)++;
2610 switch (new -> visibility)
2611 {
2612 case VISIBILITY_PRIVATE:
2613 case VISIBILITY_PROTECTED:
2614 case VISIBILITY_PUBLIC:
2615 break;
2616 default:
2617 /* Bad visibility format. Complain and treat it as
2618 public. */
2619 {
2620 static struct complaint msg = {
2621 "Unknown visibility `%c' for baseclass", 0, 0};
2622 complain (&msg, new -> visibility);
2623 new -> visibility = VISIBILITY_PUBLIC;
2624 }
2625 }
2626
2627 {
2628 int nbits;
2629
2630 /* The remaining value is the bit offset of the portion of the object
2631 corresponding to this baseclass. Always zero in the absence of
2632 multiple inheritance. */
2633
2634 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2635 if (nbits != 0)
2636 return 0;
2637 }
2638
2639 /* The last piece of baseclass information is the type of the
2640 base class. Read it, and remember it's type name as this
2641 field's name. */
2642
2643 new -> field.type = read_type (pp, objfile);
2644 new -> field.name = type_name_no_tag (new -> field.type);
2645
2646 /* skip trailing ';' and bump count of number of fields seen */
2647 if (**pp == ';')
2648 (*pp)++;
2649 else
2650 return 0;
2651 }
2652 return 1;
2653 }
2654
2655 /* The tail end of stabs for C++ classes that contain a virtual function
2656 pointer contains a tilde, a %, and a type number.
2657 The type number refers to the base class (possibly this class itself) which
2658 contains the vtable pointer for the current class.
2659
2660 This function is called when we have parsed all the method declarations,
2661 so we can look for the vptr base class info. */
2662
2663 static int
2664 read_tilde_fields (fip, pp, type, objfile)
2665 struct field_info *fip;
2666 char **pp;
2667 struct type *type;
2668 struct objfile *objfile;
2669 {
2670 register char *p;
2671
2672 STABS_CONTINUE (pp);
2673
2674 /* If we are positioned at a ';', then skip it. */
2675 if (**pp == ';')
2676 {
2677 (*pp)++;
2678 }
2679
2680 if (**pp == '~')
2681 {
2682 (*pp)++;
2683
2684 if (**pp == '=' || **pp == '+' || **pp == '-')
2685 {
2686 /* Obsolete flags that used to indicate the presence
2687 of constructors and/or destructors. */
2688 (*pp)++;
2689 }
2690
2691 /* Read either a '%' or the final ';'. */
2692 if (*(*pp)++ == '%')
2693 {
2694 /* The next number is the type number of the base class
2695 (possibly our own class) which supplies the vtable for
2696 this class. Parse it out, and search that class to find
2697 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2698 and TYPE_VPTR_FIELDNO. */
2699
2700 struct type *t;
2701 int i;
2702
2703 t = read_type (pp, objfile);
2704 p = (*pp)++;
2705 while (*p != '\0' && *p != ';')
2706 {
2707 p++;
2708 }
2709 if (*p == '\0')
2710 {
2711 /* Premature end of symbol. */
2712 return 0;
2713 }
2714
2715 TYPE_VPTR_BASETYPE (type) = t;
2716 if (type == t) /* Our own class provides vtbl ptr */
2717 {
2718 for (i = TYPE_NFIELDS (t) - 1;
2719 i >= TYPE_N_BASECLASSES (t);
2720 --i)
2721 {
2722 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2723 sizeof (vptr_name) - 1))
2724 {
2725 TYPE_VPTR_FIELDNO (type) = i;
2726 goto gotit;
2727 }
2728 }
2729 /* Virtual function table field not found. */
2730 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2731 return 0;
2732 }
2733 else
2734 {
2735 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2736 }
2737
2738 gotit:
2739 *pp = p + 1;
2740 }
2741 }
2742 return 1;
2743 }
2744
2745 static int
2746 attach_fn_fields_to_type (fip, type)
2747 struct field_info *fip;
2748 register struct type *type;
2749 {
2750 register int n;
2751
2752 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2753 {
2754 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2755 {
2756 /* @@ Memory leak on objfile -> type_obstack? */
2757 return 0;
2758 }
2759 TYPE_NFN_FIELDS_TOTAL (type) +=
2760 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2761 }
2762
2763 for (n = TYPE_NFN_FIELDS (type);
2764 fip -> fnlist != NULL;
2765 fip -> fnlist = fip -> fnlist -> next)
2766 {
2767 --n; /* Circumvent Sun3 compiler bug */
2768 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2769 }
2770 return 1;
2771 }
2772
2773 /* Create the vector of fields, and record how big it is.
2774 We need this info to record proper virtual function table information
2775 for this class's virtual functions. */
2776
2777 static int
2778 attach_fields_to_type (fip, type, objfile)
2779 struct field_info *fip;
2780 register struct type *type;
2781 struct objfile *objfile;
2782 {
2783 register int nfields = 0;
2784 register int non_public_fields = 0;
2785 register struct nextfield *scan;
2786
2787 /* Count up the number of fields that we have, as well as taking note of
2788 whether or not there are any non-public fields, which requires us to
2789 allocate and build the private_field_bits and protected_field_bits
2790 bitfields. */
2791
2792 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2793 {
2794 nfields++;
2795 if (scan -> visibility != VISIBILITY_PUBLIC)
2796 {
2797 non_public_fields++;
2798 }
2799 }
2800
2801 /* Now we know how many fields there are, and whether or not there are any
2802 non-public fields. Record the field count, allocate space for the
2803 array of fields, and create blank visibility bitfields if necessary. */
2804
2805 TYPE_NFIELDS (type) = nfields;
2806 TYPE_FIELDS (type) = (struct field *)
2807 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2808 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2809
2810 if (non_public_fields)
2811 {
2812 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2813
2814 TYPE_FIELD_PRIVATE_BITS (type) =
2815 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2816 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2817
2818 TYPE_FIELD_PROTECTED_BITS (type) =
2819 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2820 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2821
2822 TYPE_FIELD_IGNORE_BITS (type) =
2823 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2824 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2825 }
2826
2827 /* Copy the saved-up fields into the field vector. Start from the head
2828 of the list, adding to the tail of the field array, so that they end
2829 up in the same order in the array in which they were added to the list. */
2830
2831 while (nfields-- > 0)
2832 {
2833 TYPE_FIELD (type, nfields) = fip -> list -> field;
2834 switch (fip -> list -> visibility)
2835 {
2836 case VISIBILITY_PRIVATE:
2837 SET_TYPE_FIELD_PRIVATE (type, nfields);
2838 break;
2839
2840 case VISIBILITY_PROTECTED:
2841 SET_TYPE_FIELD_PROTECTED (type, nfields);
2842 break;
2843
2844 case VISIBILITY_IGNORE:
2845 SET_TYPE_FIELD_IGNORE (type, nfields);
2846 break;
2847
2848 case VISIBILITY_PUBLIC:
2849 break;
2850
2851 default:
2852 /* Unknown visibility. Complain and treat it as public. */
2853 {
2854 static struct complaint msg = {
2855 "Unknown visibility `%c' for field", 0, 0};
2856 complain (&msg, fip -> list -> visibility);
2857 }
2858 break;
2859 }
2860 fip -> list = fip -> list -> next;
2861 }
2862 return 1;
2863 }
2864
2865 /* Read the description of a structure (or union type) and return an object
2866 describing the type.
2867
2868 PP points to a character pointer that points to the next unconsumed token
2869 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2870 *PP will point to "4a:1,0,32;;".
2871
2872 TYPE points to an incomplete type that needs to be filled in.
2873
2874 OBJFILE points to the current objfile from which the stabs information is
2875 being read. (Note that it is redundant in that TYPE also contains a pointer
2876 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2877 */
2878
2879 static struct type *
2880 read_struct_type (pp, type, objfile)
2881 char **pp;
2882 struct type *type;
2883 struct objfile *objfile;
2884 {
2885 struct cleanup *back_to;
2886 struct field_info fi;
2887
2888 fi.list = NULL;
2889 fi.fnlist = NULL;
2890
2891 back_to = make_cleanup (null_cleanup, 0);
2892
2893 INIT_CPLUS_SPECIFIC (type);
2894 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2895
2896 /* First comes the total size in bytes. */
2897
2898 {
2899 int nbits;
2900 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2901 if (nbits != 0)
2902 return error_type (pp);
2903 }
2904
2905 /* Now read the baseclasses, if any, read the regular C struct or C++
2906 class member fields, attach the fields to the type, read the C++
2907 member functions, attach them to the type, and then read any tilde
2908 field (baseclass specifier for the class holding the main vtable). */
2909
2910 if (!read_baseclasses (&fi, pp, type, objfile)
2911 || !read_struct_fields (&fi, pp, type, objfile)
2912 || !attach_fields_to_type (&fi, type, objfile)
2913 || !read_member_functions (&fi, pp, type, objfile)
2914 || !attach_fn_fields_to_type (&fi, type)
2915 || !read_tilde_fields (&fi, pp, type, objfile))
2916 {
2917 do_cleanups (back_to);
2918 return (error_type (pp));
2919 }
2920
2921 do_cleanups (back_to);
2922 return (type);
2923 }
2924
2925 /* Read a definition of an array type,
2926 and create and return a suitable type object.
2927 Also creates a range type which represents the bounds of that
2928 array. */
2929
2930 static struct type *
2931 read_array_type (pp, type, objfile)
2932 register char **pp;
2933 register struct type *type;
2934 struct objfile *objfile;
2935 {
2936 struct type *index_type, *element_type, *range_type;
2937 int lower, upper;
2938 int adjustable = 0;
2939 int nbits;
2940
2941 /* Format of an array type:
2942 "ar<index type>;lower;upper;<array_contents_type>".
2943 OS9000: "arlower,upper;<array_contents_type>".
2944
2945 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2946 for these, produce a type like float[][]. */
2947
2948 if (os9k_stabs)
2949 index_type = builtin_type_int;
2950 else
2951 {
2952 index_type = read_type (pp, objfile);
2953 if (**pp != ';')
2954 /* Improper format of array type decl. */
2955 return error_type (pp);
2956 ++*pp;
2957 }
2958
2959 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2960 {
2961 (*pp)++;
2962 adjustable = 1;
2963 }
2964 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
2965 if (nbits != 0)
2966 return error_type (pp);
2967
2968 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2969 {
2970 (*pp)++;
2971 adjustable = 1;
2972 }
2973 upper = read_huge_number (pp, ';', &nbits);
2974 if (nbits != 0)
2975 return error_type (pp);
2976
2977 element_type = read_type (pp, objfile);
2978
2979 if (adjustable)
2980 {
2981 lower = 0;
2982 upper = -1;
2983 }
2984
2985 range_type =
2986 create_range_type ((struct type *) NULL, index_type, lower, upper);
2987 type = create_array_type (type, element_type, range_type);
2988
2989 /* If we have an array whose element type is not yet known, but whose
2990 bounds *are* known, record it to be adjusted at the end of the file. */
2991 /* FIXME: Why check for zero length rather than TYPE_FLAG_STUB? I think
2992 the two have the same effect except that the latter is cleaner and the
2993 former would be wrong for types which really are zero-length (if we
2994 have any). */
2995
2996 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2997 {
2998 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2999 add_undefined_type (type);
3000 }
3001
3002 return type;
3003 }
3004
3005
3006 /* Read a definition of an enumeration type,
3007 and create and return a suitable type object.
3008 Also defines the symbols that represent the values of the type. */
3009
3010 static struct type *
3011 read_enum_type (pp, type, objfile)
3012 register char **pp;
3013 register struct type *type;
3014 struct objfile *objfile;
3015 {
3016 register char *p;
3017 char *name;
3018 register long n;
3019 register struct symbol *sym;
3020 int nsyms = 0;
3021 struct pending **symlist;
3022 struct pending *osyms, *syms;
3023 int o_nsyms;
3024 int nbits;
3025
3026 #if 0
3027 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3028 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3029 to do? For now, force all enum values to file scope. */
3030 if (within_function)
3031 symlist = &local_symbols;
3032 else
3033 #endif
3034 symlist = &file_symbols;
3035 osyms = *symlist;
3036 o_nsyms = osyms ? osyms->nsyms : 0;
3037
3038 if (os9k_stabs)
3039 {
3040 /* Size. Perhaps this does not have to be conditionalized on
3041 os9k_stabs (assuming the name of an enum constant can't start
3042 with a digit). */
3043 read_huge_number (pp, 0, &nbits);
3044 if (nbits != 0)
3045 return error_type (pp);
3046 }
3047
3048 /* Read the value-names and their values.
3049 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3050 A semicolon or comma instead of a NAME means the end. */
3051 while (**pp && **pp != ';' && **pp != ',')
3052 {
3053 STABS_CONTINUE (pp);
3054 p = *pp;
3055 while (*p != ':') p++;
3056 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3057 *pp = p + 1;
3058 n = read_huge_number (pp, ',', &nbits);
3059 if (nbits != 0)
3060 return error_type (pp);
3061
3062 sym = (struct symbol *)
3063 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3064 memset (sym, 0, sizeof (struct symbol));
3065 SYMBOL_NAME (sym) = name;
3066 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3067 SYMBOL_CLASS (sym) = LOC_CONST;
3068 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3069 SYMBOL_VALUE (sym) = n;
3070 add_symbol_to_list (sym, symlist);
3071 nsyms++;
3072 }
3073
3074 if (**pp == ';')
3075 (*pp)++; /* Skip the semicolon. */
3076
3077 /* Now fill in the fields of the type-structure. */
3078
3079 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3080 TYPE_CODE (type) = TYPE_CODE_ENUM;
3081 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3082 TYPE_NFIELDS (type) = nsyms;
3083 TYPE_FIELDS (type) = (struct field *)
3084 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3085 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3086
3087 /* Find the symbols for the values and put them into the type.
3088 The symbols can be found in the symlist that we put them on
3089 to cause them to be defined. osyms contains the old value
3090 of that symlist; everything up to there was defined by us. */
3091 /* Note that we preserve the order of the enum constants, so
3092 that in something like "enum {FOO, LAST_THING=FOO}" we print
3093 FOO, not LAST_THING. */
3094
3095 for (syms = *symlist, n = 0; syms; syms = syms->next)
3096 {
3097 int j = 0;
3098 if (syms == osyms)
3099 j = o_nsyms;
3100 for (; j < syms->nsyms; j++,n++)
3101 {
3102 struct symbol *xsym = syms->symbol[j];
3103 SYMBOL_TYPE (xsym) = type;
3104 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3105 TYPE_FIELD_VALUE (type, n) = 0;
3106 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3107 TYPE_FIELD_BITSIZE (type, n) = 0;
3108 }
3109 if (syms == osyms)
3110 break;
3111 }
3112
3113 return type;
3114 }
3115
3116 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3117 typedefs in every file (for int, long, etc):
3118
3119 type = b <signed> <width>; <offset>; <nbits>
3120 signed = u or s. Possible c in addition to u or s (for char?).
3121 offset = offset from high order bit to start bit of type.
3122 width is # bytes in object of this type, nbits is # bits in type.
3123
3124 The width/offset stuff appears to be for small objects stored in
3125 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3126 FIXME. */
3127
3128 static struct type *
3129 read_sun_builtin_type (pp, typenums, objfile)
3130 char **pp;
3131 int typenums[2];
3132 struct objfile *objfile;
3133 {
3134 int type_bits;
3135 int nbits;
3136 int signed_type;
3137
3138 switch (**pp)
3139 {
3140 case 's':
3141 signed_type = 1;
3142 break;
3143 case 'u':
3144 signed_type = 0;
3145 break;
3146 default:
3147 return error_type (pp);
3148 }
3149 (*pp)++;
3150
3151 /* For some odd reason, all forms of char put a c here. This is strange
3152 because no other type has this honor. We can safely ignore this because
3153 we actually determine 'char'acterness by the number of bits specified in
3154 the descriptor. */
3155
3156 if (**pp == 'c')
3157 (*pp)++;
3158
3159 /* The first number appears to be the number of bytes occupied
3160 by this type, except that unsigned short is 4 instead of 2.
3161 Since this information is redundant with the third number,
3162 we will ignore it. */
3163 read_huge_number (pp, ';', &nbits);
3164 if (nbits != 0)
3165 return error_type (pp);
3166
3167 /* The second number is always 0, so ignore it too. */
3168 read_huge_number (pp, ';', &nbits);
3169 if (nbits != 0)
3170 return error_type (pp);
3171
3172 /* The third number is the number of bits for this type. */
3173 type_bits = read_huge_number (pp, 0, &nbits);
3174 if (nbits != 0)
3175 return error_type (pp);
3176 /* The type *should* end with a semicolon. If it are embedded
3177 in a larger type the semicolon may be the only way to know where
3178 the type ends. If this type is at the end of the stabstring we
3179 can deal with the omitted semicolon (but we don't have to like
3180 it). Don't bother to complain(), Sun's compiler omits the semicolon
3181 for "void". */
3182 if (**pp == ';')
3183 ++(*pp);
3184
3185 if (type_bits == 0)
3186 return init_type (TYPE_CODE_VOID, 1,
3187 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3188 objfile);
3189 else
3190 return init_type (TYPE_CODE_INT,
3191 type_bits / TARGET_CHAR_BIT,
3192 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3193 objfile);
3194 }
3195
3196 static struct type *
3197 read_sun_floating_type (pp, typenums, objfile)
3198 char **pp;
3199 int typenums[2];
3200 struct objfile *objfile;
3201 {
3202 int nbits;
3203 int details;
3204 int nbytes;
3205
3206 /* The first number has more details about the type, for example
3207 FN_COMPLEX. */
3208 details = read_huge_number (pp, ';', &nbits);
3209 if (nbits != 0)
3210 return error_type (pp);
3211
3212 /* The second number is the number of bytes occupied by this type */
3213 nbytes = read_huge_number (pp, ';', &nbits);
3214 if (nbits != 0)
3215 return error_type (pp);
3216
3217 if (details == NF_COMPLEX || details == NF_COMPLEX16
3218 || details == NF_COMPLEX32)
3219 /* This is a type we can't handle, but we do know the size.
3220 We also will be able to give it a name. */
3221 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3222
3223 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3224 }
3225
3226 /* Read a number from the string pointed to by *PP.
3227 The value of *PP is advanced over the number.
3228 If END is nonzero, the character that ends the
3229 number must match END, or an error happens;
3230 and that character is skipped if it does match.
3231 If END is zero, *PP is left pointing to that character.
3232
3233 If the number fits in a long, set *BITS to 0 and return the value.
3234 If not, set *BITS to be the number of bits in the number and return 0.
3235
3236 If encounter garbage, set *BITS to -1 and return 0. */
3237
3238 static long
3239 read_huge_number (pp, end, bits)
3240 char **pp;
3241 int end;
3242 int *bits;
3243 {
3244 char *p = *pp;
3245 int sign = 1;
3246 long n = 0;
3247 int radix = 10;
3248 char overflow = 0;
3249 int nbits = 0;
3250 int c;
3251 long upper_limit;
3252
3253 if (*p == '-')
3254 {
3255 sign = -1;
3256 p++;
3257 }
3258
3259 /* Leading zero means octal. GCC uses this to output values larger
3260 than an int (because that would be hard in decimal). */
3261 if (*p == '0')
3262 {
3263 radix = 8;
3264 p++;
3265 }
3266
3267 upper_limit = LONG_MAX / radix;
3268 while ((c = *p++) >= '0' && c < ('0' + radix))
3269 {
3270 if (n <= upper_limit)
3271 {
3272 n *= radix;
3273 n += c - '0'; /* FIXME this overflows anyway */
3274 }
3275 else
3276 overflow = 1;
3277
3278 /* This depends on large values being output in octal, which is
3279 what GCC does. */
3280 if (radix == 8)
3281 {
3282 if (nbits == 0)
3283 {
3284 if (c == '0')
3285 /* Ignore leading zeroes. */
3286 ;
3287 else if (c == '1')
3288 nbits = 1;
3289 else if (c == '2' || c == '3')
3290 nbits = 2;
3291 else
3292 nbits = 3;
3293 }
3294 else
3295 nbits += 3;
3296 }
3297 }
3298 if (end)
3299 {
3300 if (c && c != end)
3301 {
3302 if (bits != NULL)
3303 *bits = -1;
3304 return 0;
3305 }
3306 }
3307 else
3308 --p;
3309
3310 *pp = p;
3311 if (overflow)
3312 {
3313 if (nbits == 0)
3314 {
3315 /* Large decimal constants are an error (because it is hard to
3316 count how many bits are in them). */
3317 if (bits != NULL)
3318 *bits = -1;
3319 return 0;
3320 }
3321
3322 /* -0x7f is the same as 0x80. So deal with it by adding one to
3323 the number of bits. */
3324 if (sign == -1)
3325 ++nbits;
3326 if (bits)
3327 *bits = nbits;
3328 }
3329 else
3330 {
3331 if (bits)
3332 *bits = 0;
3333 return n * sign;
3334 }
3335 /* It's *BITS which has the interesting information. */
3336 return 0;
3337 }
3338
3339 static struct type *
3340 read_range_type (pp, typenums, objfile)
3341 char **pp;
3342 int typenums[2];
3343 struct objfile *objfile;
3344 {
3345 int rangenums[2];
3346 long n2, n3;
3347 int n2bits, n3bits;
3348 int self_subrange;
3349 struct type *result_type;
3350 struct type *index_type;
3351
3352 /* First comes a type we are a subrange of.
3353 In C it is usually 0, 1 or the type being defined. */
3354 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3355 not just a type number. */
3356 if (read_type_number (pp, rangenums) != 0)
3357 return error_type (pp);
3358 self_subrange = (rangenums[0] == typenums[0] &&
3359 rangenums[1] == typenums[1]);
3360
3361 /* A semicolon should now follow; skip it. */
3362 if (**pp == ';')
3363 (*pp)++;
3364
3365 /* The remaining two operands are usually lower and upper bounds
3366 of the range. But in some special cases they mean something else. */
3367 n2 = read_huge_number (pp, ';', &n2bits);
3368 n3 = read_huge_number (pp, ';', &n3bits);
3369
3370 if (n2bits == -1 || n3bits == -1)
3371 return error_type (pp);
3372
3373 /* If limits are huge, must be large integral type. */
3374 if (n2bits != 0 || n3bits != 0)
3375 {
3376 char got_signed = 0;
3377 char got_unsigned = 0;
3378 /* Number of bits in the type. */
3379 int nbits = 0;
3380
3381 /* Range from 0 to <large number> is an unsigned large integral type. */
3382 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3383 {
3384 got_unsigned = 1;
3385 nbits = n3bits;
3386 }
3387 /* Range from <large number> to <large number>-1 is a large signed
3388 integral type. Take care of the case where <large number> doesn't
3389 fit in a long but <large number>-1 does. */
3390 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3391 || (n2bits != 0 && n3bits == 0
3392 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3393 && n3 == LONG_MAX))
3394 {
3395 got_signed = 1;
3396 nbits = n2bits;
3397 }
3398
3399 if (got_signed || got_unsigned)
3400 {
3401 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3402 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3403 objfile);
3404 }
3405 else
3406 return error_type (pp);
3407 }
3408
3409 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3410 if (self_subrange && n2 == 0 && n3 == 0)
3411 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3412
3413 /* If n3 is zero and n2 is not, we want a floating type,
3414 and n2 is the width in bytes.
3415
3416 Fortran programs appear to use this for complex types also,
3417 and they give no way to distinguish between double and single-complex!
3418
3419 GDB does not have complex types.
3420
3421 Just return the complex as a float of that size. It won't work right
3422 for the complex values, but at least it makes the file loadable. */
3423
3424 if (n3 == 0 && n2 > 0)
3425 {
3426 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3427 }
3428
3429 /* If the upper bound is -1, it must really be an unsigned int. */
3430
3431 else if (n2 == 0 && n3 == -1)
3432 {
3433 /* It is unsigned int or unsigned long. */
3434 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3435 compatibility hack. */
3436 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3437 TYPE_FLAG_UNSIGNED, NULL, objfile);
3438 }
3439
3440 /* Special case: char is defined (Who knows why) as a subrange of
3441 itself with range 0-127. */
3442 else if (self_subrange && n2 == 0 && n3 == 127)
3443 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3444
3445 /* We used to do this only for subrange of self or subrange of int. */
3446 else if (n2 == 0)
3447 {
3448 if (n3 < 0)
3449 /* n3 actually gives the size. */
3450 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3451 NULL, objfile);
3452 if (n3 == 0xff)
3453 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3454 if (n3 == 0xffff)
3455 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3456
3457 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3458 "unsigned long", and we already checked for that,
3459 so don't need to test for it here. */
3460 }
3461 /* I think this is for Convex "long long". Since I don't know whether
3462 Convex sets self_subrange, I also accept that particular size regardless
3463 of self_subrange. */
3464 else if (n3 == 0 && n2 < 0
3465 && (self_subrange
3466 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3467 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3468 else if (n2 == -n3 -1)
3469 {
3470 if (n3 == 0x7f)
3471 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3472 if (n3 == 0x7fff)
3473 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3474 if (n3 == 0x7fffffff)
3475 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3476 }
3477
3478 /* We have a real range type on our hands. Allocate space and
3479 return a real pointer. */
3480
3481 /* At this point I don't have the faintest idea how to deal with
3482 a self_subrange type; I'm going to assume that this is used
3483 as an idiom, and that all of them are special cases. So . . . */
3484 if (self_subrange)
3485 return error_type (pp);
3486
3487 index_type = *dbx_lookup_type (rangenums);
3488 if (index_type == NULL)
3489 {
3490 /* Does this actually ever happen? Is that why we are worrying
3491 about dealing with it rather than just calling error_type? */
3492
3493 static struct type *range_type_index;
3494
3495 complain (&range_type_base_complaint, rangenums[1]);
3496 if (range_type_index == NULL)
3497 range_type_index =
3498 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3499 0, "range type index type", NULL);
3500 index_type = range_type_index;
3501 }
3502
3503 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3504 return (result_type);
3505 }
3506
3507 /* Read in an argument list. This is a list of types, separated by commas
3508 and terminated with END. Return the list of types read in, or (struct type
3509 **)-1 if there is an error. */
3510
3511 static struct type **
3512 read_args (pp, end, objfile)
3513 char **pp;
3514 int end;
3515 struct objfile *objfile;
3516 {
3517 /* FIXME! Remove this arbitrary limit! */
3518 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3519 int n = 0;
3520
3521 while (**pp != end)
3522 {
3523 if (**pp != ',')
3524 /* Invalid argument list: no ','. */
3525 return (struct type **)-1;
3526 (*pp)++;
3527 STABS_CONTINUE (pp);
3528 types[n++] = read_type (pp, objfile);
3529 }
3530 (*pp)++; /* get past `end' (the ':' character) */
3531
3532 if (n == 1)
3533 {
3534 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3535 }
3536 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3537 {
3538 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3539 memset (rval + n, 0, sizeof (struct type *));
3540 }
3541 else
3542 {
3543 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3544 }
3545 memcpy (rval, types, n * sizeof (struct type *));
3546 return rval;
3547 }
3548 \f
3549 /* Common block handling. */
3550
3551 /* List of symbols declared since the last BCOMM. This list is a tail
3552 of local_symbols. When ECOMM is seen, the symbols on the list
3553 are noted so their proper addresses can be filled in later,
3554 using the common block base address gotten from the assembler
3555 stabs. */
3556
3557 static struct pending *common_block;
3558 static int common_block_i;
3559
3560 /* Name of the current common block. We get it from the BCOMM instead of the
3561 ECOMM to match IBM documentation (even though IBM puts the name both places
3562 like everyone else). */
3563 static char *common_block_name;
3564
3565 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3566 to remain after this function returns. */
3567
3568 void
3569 common_block_start (name, objfile)
3570 char *name;
3571 struct objfile *objfile;
3572 {
3573 if (common_block_name != NULL)
3574 {
3575 static struct complaint msg = {
3576 "Invalid symbol data: common block within common block",
3577 0, 0};
3578 complain (&msg);
3579 }
3580 common_block = local_symbols;
3581 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3582 common_block_name = obsavestring (name, strlen (name),
3583 &objfile -> symbol_obstack);
3584 }
3585
3586 /* Process a N_ECOMM symbol. */
3587
3588 void
3589 common_block_end (objfile)
3590 struct objfile *objfile;
3591 {
3592 /* Symbols declared since the BCOMM are to have the common block
3593 start address added in when we know it. common_block and
3594 common_block_i point to the first symbol after the BCOMM in
3595 the local_symbols list; copy the list and hang it off the
3596 symbol for the common block name for later fixup. */
3597 int i;
3598 struct symbol *sym;
3599 struct pending *new = 0;
3600 struct pending *next;
3601 int j;
3602
3603 if (common_block_name == NULL)
3604 {
3605 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3606 complain (&msg);
3607 return;
3608 }
3609
3610 sym = (struct symbol *)
3611 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3612 memset (sym, 0, sizeof (struct symbol));
3613 SYMBOL_NAME (sym) = common_block_name;
3614 SYMBOL_CLASS (sym) = LOC_BLOCK;
3615
3616 /* Now we copy all the symbols which have been defined since the BCOMM. */
3617
3618 /* Copy all the struct pendings before common_block. */
3619 for (next = local_symbols;
3620 next != NULL && next != common_block;
3621 next = next->next)
3622 {
3623 for (j = 0; j < next->nsyms; j++)
3624 add_symbol_to_list (next->symbol[j], &new);
3625 }
3626
3627 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3628 NULL, it means copy all the local symbols (which we already did
3629 above). */
3630
3631 if (common_block != NULL)
3632 for (j = common_block_i; j < common_block->nsyms; j++)
3633 add_symbol_to_list (common_block->symbol[j], &new);
3634
3635 SYMBOL_TYPE (sym) = (struct type *) new;
3636
3637 /* Should we be putting local_symbols back to what it was?
3638 Does it matter? */
3639
3640 i = hashname (SYMBOL_NAME (sym));
3641 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3642 global_sym_chain[i] = sym;
3643 common_block_name = NULL;
3644 }
3645
3646 /* Add a common block's start address to the offset of each symbol
3647 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3648 the common block name). */
3649
3650 static void
3651 fix_common_block (sym, valu)
3652 struct symbol *sym;
3653 int valu;
3654 {
3655 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3656 for ( ; next; next = next->next)
3657 {
3658 register int j;
3659 for (j = next->nsyms - 1; j >= 0; j--)
3660 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3661 }
3662 }
3663
3664
3665 \f
3666 /* What about types defined as forward references inside of a small lexical
3667 scope? */
3668 /* Add a type to the list of undefined types to be checked through
3669 once this file has been read in. */
3670
3671 void
3672 add_undefined_type (type)
3673 struct type *type;
3674 {
3675 if (undef_types_length == undef_types_allocated)
3676 {
3677 undef_types_allocated *= 2;
3678 undef_types = (struct type **)
3679 xrealloc ((char *) undef_types,
3680 undef_types_allocated * sizeof (struct type *));
3681 }
3682 undef_types[undef_types_length++] = type;
3683 }
3684
3685 /* Go through each undefined type, see if it's still undefined, and fix it
3686 up if possible. We have two kinds of undefined types:
3687
3688 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3689 Fix: update array length using the element bounds
3690 and the target type's length.
3691 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3692 yet defined at the time a pointer to it was made.
3693 Fix: Do a full lookup on the struct/union tag. */
3694 void
3695 cleanup_undefined_types ()
3696 {
3697 struct type **type;
3698
3699 for (type = undef_types; type < undef_types + undef_types_length; type++)
3700 {
3701 switch (TYPE_CODE (*type))
3702 {
3703
3704 case TYPE_CODE_STRUCT:
3705 case TYPE_CODE_UNION:
3706 case TYPE_CODE_ENUM:
3707 {
3708 /* Check if it has been defined since. Need to do this here
3709 as well as in check_stub_type to deal with the (legitimate in
3710 C though not C++) case of several types with the same name
3711 in different source files. */
3712 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3713 {
3714 struct pending *ppt;
3715 int i;
3716 /* Name of the type, without "struct" or "union" */
3717 char *typename = TYPE_TAG_NAME (*type);
3718
3719 if (typename == NULL)
3720 {
3721 static struct complaint msg = {"need a type name", 0, 0};
3722 complain (&msg);
3723 break;
3724 }
3725 for (ppt = file_symbols; ppt; ppt = ppt->next)
3726 {
3727 for (i = 0; i < ppt->nsyms; i++)
3728 {
3729 struct symbol *sym = ppt->symbol[i];
3730
3731 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3732 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3733 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3734 TYPE_CODE (*type))
3735 && STREQ (SYMBOL_NAME (sym), typename))
3736 {
3737 memcpy (*type, SYMBOL_TYPE (sym),
3738 sizeof (struct type));
3739 }
3740 }
3741 }
3742 }
3743 }
3744 break;
3745
3746 case TYPE_CODE_ARRAY:
3747 {
3748 /* This is a kludge which is here for historical reasons
3749 because I suspect that check_stub_type does not get
3750 called everywhere it needs to be called for arrays. Even
3751 with this kludge, those places are broken for the case
3752 where the stub type is defined in another compilation
3753 unit, but this kludge at least deals with it for the case
3754 in which it is the same compilation unit.
3755
3756 Don't try to do this by calling check_stub_type; it might
3757 cause symbols to be read in lookup_symbol, and the symbol
3758 reader is not reentrant. */
3759
3760 struct type *range_type;
3761 int lower, upper;
3762
3763 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3764 goto badtype;
3765 if (TYPE_NFIELDS (*type) != 1)
3766 goto badtype;
3767 range_type = TYPE_FIELD_TYPE (*type, 0);
3768 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3769 goto badtype;
3770
3771 /* Now recompute the length of the array type, based on its
3772 number of elements and the target type's length. */
3773 lower = TYPE_FIELD_BITPOS (range_type, 0);
3774 upper = TYPE_FIELD_BITPOS (range_type, 1);
3775 TYPE_LENGTH (*type) = (upper - lower + 1)
3776 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3777
3778 /* If the target type is not a stub, we could be clearing
3779 TYPE_FLAG_TARGET_STUB for *type. */
3780 }
3781 break;
3782
3783 default:
3784 badtype:
3785 {
3786 static struct complaint msg = {"\
3787 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3788 complain (&msg, TYPE_CODE (*type));
3789 }
3790 break;
3791 }
3792 }
3793
3794 undef_types_length = 0;
3795 }
3796
3797 /* Scan through all of the global symbols defined in the object file,
3798 assigning values to the debugging symbols that need to be assigned
3799 to. Get these symbols from the minimal symbol table. */
3800
3801 void
3802 scan_file_globals (objfile)
3803 struct objfile *objfile;
3804 {
3805 int hash;
3806 struct minimal_symbol *msymbol;
3807 struct symbol *sym, *prev;
3808
3809 if (objfile->msymbols == 0) /* Beware the null file. */
3810 return;
3811
3812 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3813 {
3814 QUIT;
3815
3816 prev = NULL;
3817
3818 /* Get the hash index and check all the symbols
3819 under that hash index. */
3820
3821 hash = hashname (SYMBOL_NAME (msymbol));
3822
3823 for (sym = global_sym_chain[hash]; sym;)
3824 {
3825 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3826 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3827 {
3828 /* Splice this symbol out of the hash chain and
3829 assign the value we have to it. */
3830 if (prev)
3831 {
3832 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3833 }
3834 else
3835 {
3836 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3837 }
3838
3839 /* Check to see whether we need to fix up a common block. */
3840 /* Note: this code might be executed several times for
3841 the same symbol if there are multiple references. */
3842
3843 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3844 {
3845 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3846 }
3847 else
3848 {
3849 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3850 }
3851
3852 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3853
3854 if (prev)
3855 {
3856 sym = SYMBOL_VALUE_CHAIN (prev);
3857 }
3858 else
3859 {
3860 sym = global_sym_chain[hash];
3861 }
3862 }
3863 else
3864 {
3865 prev = sym;
3866 sym = SYMBOL_VALUE_CHAIN (sym);
3867 }
3868 }
3869 }
3870 }
3871
3872 /* Initialize anything that needs initializing when starting to read
3873 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3874 to a psymtab. */
3875
3876 void
3877 stabsread_init ()
3878 {
3879 }
3880
3881 /* Initialize anything that needs initializing when a completely new
3882 symbol file is specified (not just adding some symbols from another
3883 file, e.g. a shared library). */
3884
3885 void
3886 stabsread_new_init ()
3887 {
3888 /* Empty the hash table of global syms looking for values. */
3889 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3890 }
3891
3892 /* Initialize anything that needs initializing at the same time as
3893 start_symtab() is called. */
3894
3895 void start_stabs ()
3896 {
3897 global_stabs = NULL; /* AIX COFF */
3898 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3899 n_this_object_header_files = 1;
3900 type_vector_length = 0;
3901 type_vector = (struct type **) 0;
3902
3903 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3904 common_block_name = NULL;
3905
3906 os9k_stabs = 0;
3907 }
3908
3909 /* Call after end_symtab() */
3910
3911 void end_stabs ()
3912 {
3913 if (type_vector)
3914 {
3915 free ((char *) type_vector);
3916 }
3917 type_vector = 0;
3918 type_vector_length = 0;
3919 previous_stab_code = 0;
3920 }
3921
3922 void
3923 finish_global_stabs (objfile)
3924 struct objfile *objfile;
3925 {
3926 if (global_stabs)
3927 {
3928 patch_block_stabs (global_symbols, global_stabs, objfile);
3929 free ((PTR) global_stabs);
3930 global_stabs = NULL;
3931 }
3932 }
3933
3934 /* Initializer for this module */
3935
3936 void
3937 _initialize_stabsread ()
3938 {
3939 undef_types_allocated = 20;
3940 undef_types_length = 0;
3941 undef_types = (struct type **)
3942 xmalloc (undef_types_allocated * sizeof (struct type *));
3943 }
This page took 0.142624 seconds and 4 git commands to generate.