* gdb.base/help.exp (help source): Update expected output.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
393 pp += 2;
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 {
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
399 SYMBOL_TYPE (sym) =
400 lookup_function_type (read_type (&pp, objfile));
401 }
402 else
403 {
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 }
406 add_symbol_to_list (sym, &global_symbols);
407 }
408 else
409 {
410 pp += 2;
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
412 {
413 SYMBOL_TYPE (sym) =
414 lookup_function_type (read_type (&pp, objfile));
415 }
416 else
417 {
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 }
420 }
421 }
422 }
423 }
424 \f
425
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
431
432 Returns 0 for success, -1 for error. */
433
434 static int
435 read_type_number (char **pp, int *typenums)
436 {
437 int nbits;
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 ref_map = (struct ref_map *)
512 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
513 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
514 ref_chunk += new_chunks;
515 }
516 ref_map[refnum].stabs = stabs;
517 ref_map[refnum].sym = sym;
518 ref_map[refnum].value = value;
519 }
520
521 /* Return defined sym for the reference REFNUM. */
522 struct symbol *
523 ref_search (int refnum)
524 {
525 if (refnum < 0 || refnum > ref_count)
526 return 0;
527 return ref_map[refnum].sym;
528 }
529
530 /* Parse a reference id in STRING and return the resulting
531 reference number. Move STRING beyond the reference id. */
532
533 static int
534 process_reference (char **string)
535 {
536 char *p;
537 int refnum = 0;
538
539 if (**string != '#')
540 return 0;
541
542 /* Advance beyond the initial '#'. */
543 p = *string + 1;
544
545 /* Read number as reference id. */
546 while (*p && isdigit (*p))
547 {
548 refnum = refnum * 10 + *p - '0';
549 p++;
550 }
551 *string = p;
552 return refnum;
553 }
554
555 /* If STRING defines a reference, store away a pointer to the reference
556 definition for later use. Return the reference number. */
557
558 int
559 symbol_reference_defined (char **string)
560 {
561 char *p = *string;
562 int refnum = 0;
563
564 refnum = process_reference (&p);
565
566 /* Defining symbols end in '=' */
567 if (*p == '=')
568 {
569 /* Symbol is being defined here. */
570 *string = p + 1;
571 return refnum;
572 }
573 else
574 {
575 /* Must be a reference. Either the symbol has already been defined,
576 or this is a forward reference to it. */
577 *string = p;
578 return -1;
579 }
580 }
581
582 static int
583 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
584 {
585 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
586
587 if (regno >= gdbarch_num_regs (gdbarch)
588 + gdbarch_num_pseudo_regs (gdbarch))
589 {
590 reg_value_complaint (regno,
591 gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch),
593 SYMBOL_PRINT_NAME (sym));
594
595 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
596 }
597
598 return regno;
599 }
600
601 static const struct symbol_register_ops stab_register_funcs = {
602 stab_reg_to_regnum
603 };
604
605 struct symbol *
606 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
607 struct objfile *objfile)
608 {
609 struct gdbarch *gdbarch = get_objfile_arch (objfile);
610 struct symbol *sym;
611 char *p = (char *) find_name_end (string);
612 int deftype;
613 int synonym = 0;
614 int i;
615 char *new_name = NULL;
616
617 /* We would like to eliminate nameless symbols, but keep their types.
618 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
619 to type 2, but, should not create a symbol to address that type. Since
620 the symbol will be nameless, there is no way any user can refer to it. */
621
622 int nameless;
623
624 /* Ignore syms with empty names. */
625 if (string[0] == 0)
626 return 0;
627
628 /* Ignore old-style symbols from cc -go */
629 if (p == 0)
630 return 0;
631
632 while (p[1] == ':')
633 {
634 p += 2;
635 p = strchr (p, ':');
636 }
637
638 /* If a nameless stab entry, all we need is the type, not the symbol.
639 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
640 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
641
642 current_symbol = sym = (struct symbol *)
643 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
644 memset (sym, 0, sizeof (struct symbol));
645
646 switch (type & N_TYPE)
647 {
648 case N_TEXT:
649 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
650 break;
651 case N_DATA:
652 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
653 break;
654 case N_BSS:
655 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
656 break;
657 }
658
659 if (processing_gcc_compilation)
660 {
661 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
662 number of bytes occupied by a type or object, which we ignore. */
663 SYMBOL_LINE (sym) = desc;
664 }
665 else
666 {
667 SYMBOL_LINE (sym) = 0; /* unknown */
668 }
669
670 if (is_cplus_marker (string[0]))
671 {
672 /* Special GNU C++ names. */
673 switch (string[1])
674 {
675 case 't':
676 SYMBOL_SET_LINKAGE_NAME (sym, "this");
677 break;
678
679 case 'v': /* $vtbl_ptr_type */
680 goto normal;
681
682 case 'e':
683 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
684 break;
685
686 case '_':
687 /* This was an anonymous type that was never fixed up. */
688 goto normal;
689
690 case 'X':
691 /* SunPRO (3.0 at least) static variable encoding. */
692 if (gdbarch_static_transform_name_p (gdbarch))
693 goto normal;
694 /* ... fall through ... */
695
696 default:
697 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
698 string);
699 goto normal; /* Do *something* with it */
700 }
701 }
702 else
703 {
704 normal:
705 SYMBOL_LANGUAGE (sym) = current_subfile->language;
706 if (SYMBOL_LANGUAGE (sym) == language_cplus)
707 {
708 char *name = alloca (p - string + 1);
709 memcpy (name, string, p - string);
710 name[p - string] = '\0';
711 new_name = cp_canonicalize_string (name);
712 cp_scan_for_anonymous_namespaces (sym);
713 }
714 if (new_name != NULL)
715 {
716 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
717 xfree (new_name);
718 }
719 else
720 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
721 }
722 p++;
723
724 /* Determine the type of name being defined. */
725 #if 0
726 /* Getting GDB to correctly skip the symbol on an undefined symbol
727 descriptor and not ever dump core is a very dodgy proposition if
728 we do things this way. I say the acorn RISC machine can just
729 fix their compiler. */
730 /* The Acorn RISC machine's compiler can put out locals that don't
731 start with "234=" or "(3,4)=", so assume anything other than the
732 deftypes we know how to handle is a local. */
733 if (!strchr ("cfFGpPrStTvVXCR", *p))
734 #else
735 if (isdigit (*p) || *p == '(' || *p == '-')
736 #endif
737 deftype = 'l';
738 else
739 deftype = *p++;
740
741 switch (deftype)
742 {
743 case 'c':
744 /* c is a special case, not followed by a type-number.
745 SYMBOL:c=iVALUE for an integer constant symbol.
746 SYMBOL:c=rVALUE for a floating constant symbol.
747 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
748 e.g. "b:c=e6,0" for "const b = blob1"
749 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
750 if (*p != '=')
751 {
752 SYMBOL_CLASS (sym) = LOC_CONST;
753 SYMBOL_TYPE (sym) = error_type (&p, objfile);
754 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
755 add_symbol_to_list (sym, &file_symbols);
756 return sym;
757 }
758 ++p;
759 switch (*p++)
760 {
761 case 'r':
762 {
763 double d = atof (p);
764 gdb_byte *dbl_valu;
765 struct type *dbl_type;
766
767 /* FIXME-if-picky-about-floating-accuracy: Should be using
768 target arithmetic to get the value. real.c in GCC
769 probably has the necessary code. */
770
771 dbl_type = objfile_type (objfile)->builtin_double;
772 dbl_valu =
773 obstack_alloc (&objfile->objfile_obstack,
774 TYPE_LENGTH (dbl_type));
775 store_typed_floating (dbl_valu, dbl_type, d);
776
777 SYMBOL_TYPE (sym) = dbl_type;
778 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
779 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
780 }
781 break;
782 case 'i':
783 {
784 /* Defining integer constants this way is kind of silly,
785 since 'e' constants allows the compiler to give not
786 only the value, but the type as well. C has at least
787 int, long, unsigned int, and long long as constant
788 types; other languages probably should have at least
789 unsigned as well as signed constants. */
790
791 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
792 SYMBOL_VALUE (sym) = atoi (p);
793 SYMBOL_CLASS (sym) = LOC_CONST;
794 }
795 break;
796
797 case 'c':
798 {
799 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
800 SYMBOL_VALUE (sym) = atoi (p);
801 SYMBOL_CLASS (sym) = LOC_CONST;
802 }
803 break;
804
805 case 's':
806 {
807 struct type *range_type;
808 int ind = 0;
809 char quote = *p++;
810 char *startp = p;
811 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
812 gdb_byte *string_value;
813
814 if (quote != '\'' && quote != '"')
815 {
816 SYMBOL_CLASS (sym) = LOC_CONST;
817 SYMBOL_TYPE (sym) = error_type (&p, objfile);
818 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
819 add_symbol_to_list (sym, &file_symbols);
820 return sym;
821 }
822
823 /* Find matching quote, rejecting escaped quotes. */
824 while (*p && *p != quote)
825 {
826 if (*p == '\\' && p[1] == quote)
827 {
828 string_local[ind] = (gdb_byte) quote;
829 ind++;
830 p += 2;
831 }
832 else if (*p)
833 {
834 string_local[ind] = (gdb_byte) (*p);
835 ind++;
836 p++;
837 }
838 }
839 if (*p != quote)
840 {
841 SYMBOL_CLASS (sym) = LOC_CONST;
842 SYMBOL_TYPE (sym) = error_type (&p, objfile);
843 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
844 add_symbol_to_list (sym, &file_symbols);
845 return sym;
846 }
847
848 /* NULL terminate the string. */
849 string_local[ind] = 0;
850 range_type = create_range_type (NULL,
851 objfile_type (objfile)->builtin_int,
852 0, ind);
853 SYMBOL_TYPE (sym) = create_array_type (NULL,
854 objfile_type (objfile)->builtin_char,
855 range_type);
856 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
857 memcpy (string_value, string_local, ind + 1);
858 p++;
859
860 SYMBOL_VALUE_BYTES (sym) = string_value;
861 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
862 }
863 break;
864
865 case 'e':
866 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
867 can be represented as integral.
868 e.g. "b:c=e6,0" for "const b = blob1"
869 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
870 {
871 SYMBOL_CLASS (sym) = LOC_CONST;
872 SYMBOL_TYPE (sym) = read_type (&p, objfile);
873
874 if (*p != ',')
875 {
876 SYMBOL_TYPE (sym) = error_type (&p, objfile);
877 break;
878 }
879 ++p;
880
881 /* If the value is too big to fit in an int (perhaps because
882 it is unsigned), or something like that, we silently get
883 a bogus value. The type and everything else about it is
884 correct. Ideally, we should be using whatever we have
885 available for parsing unsigned and long long values,
886 however. */
887 SYMBOL_VALUE (sym) = atoi (p);
888 }
889 break;
890 default:
891 {
892 SYMBOL_CLASS (sym) = LOC_CONST;
893 SYMBOL_TYPE (sym) = error_type (&p, objfile);
894 }
895 }
896 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
897 add_symbol_to_list (sym, &file_symbols);
898 return sym;
899
900 case 'C':
901 /* The name of a caught exception. */
902 SYMBOL_TYPE (sym) = read_type (&p, objfile);
903 SYMBOL_CLASS (sym) = LOC_LABEL;
904 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
905 SYMBOL_VALUE_ADDRESS (sym) = valu;
906 add_symbol_to_list (sym, &local_symbols);
907 break;
908
909 case 'f':
910 /* A static function definition. */
911 SYMBOL_TYPE (sym) = read_type (&p, objfile);
912 SYMBOL_CLASS (sym) = LOC_BLOCK;
913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
914 add_symbol_to_list (sym, &file_symbols);
915 /* fall into process_function_types. */
916
917 process_function_types:
918 /* Function result types are described as the result type in stabs.
919 We need to convert this to the function-returning-type-X type
920 in GDB. E.g. "int" is converted to "function returning int". */
921 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
922 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
923
924 /* All functions in C++ have prototypes. Stabs does not offer an
925 explicit way to identify prototyped or unprototyped functions,
926 but both GCC and Sun CC emit stabs for the "call-as" type rather
927 than the "declared-as" type for unprototyped functions, so
928 we treat all functions as if they were prototyped. This is used
929 primarily for promotion when calling the function from GDB. */
930 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
931
932 /* fall into process_prototype_types */
933
934 process_prototype_types:
935 /* Sun acc puts declared types of arguments here. */
936 if (*p == ';')
937 {
938 struct type *ftype = SYMBOL_TYPE (sym);
939 int nsemi = 0;
940 int nparams = 0;
941 char *p1 = p;
942
943 /* Obtain a worst case guess for the number of arguments
944 by counting the semicolons. */
945 while (*p1)
946 {
947 if (*p1++ == ';')
948 nsemi++;
949 }
950
951 /* Allocate parameter information fields and fill them in. */
952 TYPE_FIELDS (ftype) = (struct field *)
953 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
954 while (*p++ == ';')
955 {
956 struct type *ptype;
957
958 /* A type number of zero indicates the start of varargs.
959 FIXME: GDB currently ignores vararg functions. */
960 if (p[0] == '0' && p[1] == '\0')
961 break;
962 ptype = read_type (&p, objfile);
963
964 /* The Sun compilers mark integer arguments, which should
965 be promoted to the width of the calling conventions, with
966 a type which references itself. This type is turned into
967 a TYPE_CODE_VOID type by read_type, and we have to turn
968 it back into builtin_int here.
969 FIXME: Do we need a new builtin_promoted_int_arg ? */
970 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
971 ptype = objfile_type (objfile)->builtin_int;
972 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
973 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
974 }
975 TYPE_NFIELDS (ftype) = nparams;
976 TYPE_PROTOTYPED (ftype) = 1;
977 }
978 break;
979
980 case 'F':
981 /* A global function definition. */
982 SYMBOL_TYPE (sym) = read_type (&p, objfile);
983 SYMBOL_CLASS (sym) = LOC_BLOCK;
984 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
985 add_symbol_to_list (sym, &global_symbols);
986 goto process_function_types;
987
988 case 'G':
989 /* For a class G (global) symbol, it appears that the
990 value is not correct. It is necessary to search for the
991 corresponding linker definition to find the value.
992 These definitions appear at the end of the namelist. */
993 SYMBOL_TYPE (sym) = read_type (&p, objfile);
994 SYMBOL_CLASS (sym) = LOC_STATIC;
995 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
996 /* Don't add symbol references to global_sym_chain.
997 Symbol references don't have valid names and wont't match up with
998 minimal symbols when the global_sym_chain is relocated.
999 We'll fixup symbol references when we fixup the defining symbol. */
1000 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1001 {
1002 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1003 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1004 global_sym_chain[i] = sym;
1005 }
1006 add_symbol_to_list (sym, &global_symbols);
1007 break;
1008
1009 /* This case is faked by a conditional above,
1010 when there is no code letter in the dbx data.
1011 Dbx data never actually contains 'l'. */
1012 case 's':
1013 case 'l':
1014 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1015 SYMBOL_CLASS (sym) = LOC_LOCAL;
1016 SYMBOL_VALUE (sym) = valu;
1017 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1018 add_symbol_to_list (sym, &local_symbols);
1019 break;
1020
1021 case 'p':
1022 if (*p == 'F')
1023 /* pF is a two-letter code that means a function parameter in Fortran.
1024 The type-number specifies the type of the return value.
1025 Translate it into a pointer-to-function type. */
1026 {
1027 p++;
1028 SYMBOL_TYPE (sym)
1029 = lookup_pointer_type
1030 (lookup_function_type (read_type (&p, objfile)));
1031 }
1032 else
1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034
1035 SYMBOL_CLASS (sym) = LOC_ARG;
1036 SYMBOL_VALUE (sym) = valu;
1037 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1038 SYMBOL_IS_ARGUMENT (sym) = 1;
1039 add_symbol_to_list (sym, &local_symbols);
1040
1041 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1042 {
1043 /* On little-endian machines, this crud is never necessary,
1044 and, if the extra bytes contain garbage, is harmful. */
1045 break;
1046 }
1047
1048 /* If it's gcc-compiled, if it says `short', believe it. */
1049 if (processing_gcc_compilation
1050 || gdbarch_believe_pcc_promotion (gdbarch))
1051 break;
1052
1053 if (!gdbarch_believe_pcc_promotion (gdbarch))
1054 {
1055 /* If PCC says a parameter is a short or a char, it is
1056 really an int. */
1057 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1058 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1059 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1060 {
1061 SYMBOL_TYPE (sym) =
1062 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1063 ? objfile_type (objfile)->builtin_unsigned_int
1064 : objfile_type (objfile)->builtin_int;
1065 }
1066 break;
1067 }
1068
1069 case 'P':
1070 /* acc seems to use P to declare the prototypes of functions that
1071 are referenced by this file. gdb is not prepared to deal
1072 with this extra information. FIXME, it ought to. */
1073 if (type == N_FUN)
1074 {
1075 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1076 goto process_prototype_types;
1077 }
1078 /*FALLTHROUGH */
1079
1080 case 'R':
1081 /* Parameter which is in a register. */
1082 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1083 SYMBOL_CLASS (sym) = LOC_REGISTER;
1084 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1085 SYMBOL_IS_ARGUMENT (sym) = 1;
1086 SYMBOL_VALUE (sym) = valu;
1087 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1088 add_symbol_to_list (sym, &local_symbols);
1089 break;
1090
1091 case 'r':
1092 /* Register variable (either global or local). */
1093 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1094 SYMBOL_CLASS (sym) = LOC_REGISTER;
1095 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1096 SYMBOL_VALUE (sym) = valu;
1097 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1098 if (within_function)
1099 {
1100 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1101 the same name to represent an argument passed in a
1102 register. GCC uses 'P' for the same case. So if we find
1103 such a symbol pair we combine it into one 'P' symbol.
1104 For Sun cc we need to do this regardless of
1105 stabs_argument_has_addr, because the compiler puts out
1106 the 'p' symbol even if it never saves the argument onto
1107 the stack.
1108
1109 On most machines, we want to preserve both symbols, so
1110 that we can still get information about what is going on
1111 with the stack (VAX for computing args_printed, using
1112 stack slots instead of saved registers in backtraces,
1113 etc.).
1114
1115 Note that this code illegally combines
1116 main(argc) struct foo argc; { register struct foo argc; }
1117 but this case is considered pathological and causes a warning
1118 from a decent compiler. */
1119
1120 if (local_symbols
1121 && local_symbols->nsyms > 0
1122 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1123 {
1124 struct symbol *prev_sym;
1125 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1126 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1127 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1128 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1129 SYMBOL_LINKAGE_NAME (sym)) == 0)
1130 {
1131 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1132 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1133 /* Use the type from the LOC_REGISTER; that is the type
1134 that is actually in that register. */
1135 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1136 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1137 sym = prev_sym;
1138 break;
1139 }
1140 }
1141 add_symbol_to_list (sym, &local_symbols);
1142 }
1143 else
1144 add_symbol_to_list (sym, &file_symbols);
1145 break;
1146
1147 case 'S':
1148 /* Static symbol at top level of file */
1149 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1150 SYMBOL_CLASS (sym) = LOC_STATIC;
1151 SYMBOL_VALUE_ADDRESS (sym) = valu;
1152 if (gdbarch_static_transform_name_p (gdbarch)
1153 && gdbarch_static_transform_name (gdbarch,
1154 SYMBOL_LINKAGE_NAME (sym))
1155 != SYMBOL_LINKAGE_NAME (sym))
1156 {
1157 struct minimal_symbol *msym;
1158 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1159 if (msym != NULL)
1160 {
1161 char *new_name = gdbarch_static_transform_name
1162 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1163 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1164 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1165 }
1166 }
1167 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1168 add_symbol_to_list (sym, &file_symbols);
1169 break;
1170
1171 case 't':
1172 /* In Ada, there is no distinction between typedef and non-typedef;
1173 any type declaration implicitly has the equivalent of a typedef,
1174 and thus 't' is in fact equivalent to 'Tt'.
1175
1176 Therefore, for Ada units, we check the character immediately
1177 before the 't', and if we do not find a 'T', then make sure to
1178 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1179 will be stored in the VAR_DOMAIN). If the symbol was indeed
1180 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1181 elsewhere, so we don't need to take care of that.
1182
1183 This is important to do, because of forward references:
1184 The cleanup of undefined types stored in undef_types only uses
1185 STRUCT_DOMAIN symbols to perform the replacement. */
1186 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1187
1188 /* Typedef */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190
1191 /* For a nameless type, we don't want a create a symbol, thus we
1192 did not use `sym'. Return without further processing. */
1193 if (nameless)
1194 return NULL;
1195
1196 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1197 SYMBOL_VALUE (sym) = valu;
1198 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1199 /* C++ vagaries: we may have a type which is derived from
1200 a base type which did not have its name defined when the
1201 derived class was output. We fill in the derived class's
1202 base part member's name here in that case. */
1203 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1204 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1205 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1206 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1207 {
1208 int j;
1209 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1210 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1211 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1212 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1213 }
1214
1215 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1216 {
1217 /* gcc-2.6 or later (when using -fvtable-thunks)
1218 emits a unique named type for a vtable entry.
1219 Some gdb code depends on that specific name. */
1220 extern const char vtbl_ptr_name[];
1221
1222 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1223 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1224 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1225 {
1226 /* If we are giving a name to a type such as "pointer to
1227 foo" or "function returning foo", we better not set
1228 the TYPE_NAME. If the program contains "typedef char
1229 *caddr_t;", we don't want all variables of type char
1230 * to print as caddr_t. This is not just a
1231 consequence of GDB's type management; PCC and GCC (at
1232 least through version 2.4) both output variables of
1233 either type char * or caddr_t with the type number
1234 defined in the 't' symbol for caddr_t. If a future
1235 compiler cleans this up it GDB is not ready for it
1236 yet, but if it becomes ready we somehow need to
1237 disable this check (without breaking the PCC/GCC2.4
1238 case).
1239
1240 Sigh.
1241
1242 Fortunately, this check seems not to be necessary
1243 for anything except pointers or functions. */
1244 /* ezannoni: 2000-10-26. This seems to apply for
1245 versions of gcc older than 2.8. This was the original
1246 problem: with the following code gdb would tell that
1247 the type for name1 is caddr_t, and func is char()
1248 typedef char *caddr_t;
1249 char *name2;
1250 struct x
1251 {
1252 char *name1;
1253 } xx;
1254 char *func()
1255 {
1256 }
1257 main () {}
1258 */
1259
1260 /* Pascal accepts names for pointer types. */
1261 if (current_subfile->language == language_pascal)
1262 {
1263 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1264 }
1265 }
1266 else
1267 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1268 }
1269
1270 add_symbol_to_list (sym, &file_symbols);
1271
1272 if (synonym)
1273 {
1274 /* Create the STRUCT_DOMAIN clone. */
1275 struct symbol *struct_sym = (struct symbol *)
1276 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1277
1278 *struct_sym = *sym;
1279 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1280 SYMBOL_VALUE (struct_sym) = valu;
1281 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1282 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1283 TYPE_NAME (SYMBOL_TYPE (sym))
1284 = obconcat (&objfile->objfile_obstack, "", "",
1285 SYMBOL_LINKAGE_NAME (sym));
1286 add_symbol_to_list (struct_sym, &file_symbols);
1287 }
1288
1289 break;
1290
1291 case 'T':
1292 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1293 by 't' which means we are typedef'ing it as well. */
1294 synonym = *p == 't';
1295
1296 if (synonym)
1297 p++;
1298
1299 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1300
1301 /* For a nameless type, we don't want a create a symbol, thus we
1302 did not use `sym'. Return without further processing. */
1303 if (nameless)
1304 return NULL;
1305
1306 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1307 SYMBOL_VALUE (sym) = valu;
1308 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1309 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1310 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1311 = obconcat (&objfile->objfile_obstack, "", "",
1312 SYMBOL_LINKAGE_NAME (sym));
1313 add_symbol_to_list (sym, &file_symbols);
1314
1315 if (synonym)
1316 {
1317 /* Clone the sym and then modify it. */
1318 struct symbol *typedef_sym = (struct symbol *)
1319 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1320 *typedef_sym = *sym;
1321 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1322 SYMBOL_VALUE (typedef_sym) = valu;
1323 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1324 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1325 TYPE_NAME (SYMBOL_TYPE (sym))
1326 = obconcat (&objfile->objfile_obstack, "", "",
1327 SYMBOL_LINKAGE_NAME (sym));
1328 add_symbol_to_list (typedef_sym, &file_symbols);
1329 }
1330 break;
1331
1332 case 'V':
1333 /* Static symbol of local scope */
1334 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1335 SYMBOL_CLASS (sym) = LOC_STATIC;
1336 SYMBOL_VALUE_ADDRESS (sym) = valu;
1337 if (gdbarch_static_transform_name_p (gdbarch)
1338 && gdbarch_static_transform_name (gdbarch,
1339 SYMBOL_LINKAGE_NAME (sym))
1340 != SYMBOL_LINKAGE_NAME (sym))
1341 {
1342 struct minimal_symbol *msym;
1343 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1344 if (msym != NULL)
1345 {
1346 char *new_name = gdbarch_static_transform_name
1347 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1348 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1349 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1350 }
1351 }
1352 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1353 add_symbol_to_list (sym, &local_symbols);
1354 break;
1355
1356 case 'v':
1357 /* Reference parameter */
1358 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1359 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1360 SYMBOL_IS_ARGUMENT (sym) = 1;
1361 SYMBOL_VALUE (sym) = valu;
1362 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1363 add_symbol_to_list (sym, &local_symbols);
1364 break;
1365
1366 case 'a':
1367 /* Reference parameter which is in a register. */
1368 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1369 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1370 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1371 SYMBOL_IS_ARGUMENT (sym) = 1;
1372 SYMBOL_VALUE (sym) = valu;
1373 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1374 add_symbol_to_list (sym, &local_symbols);
1375 break;
1376
1377 case 'X':
1378 /* This is used by Sun FORTRAN for "function result value".
1379 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1380 that Pascal uses it too, but when I tried it Pascal used
1381 "x:3" (local symbol) instead. */
1382 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1383 SYMBOL_CLASS (sym) = LOC_LOCAL;
1384 SYMBOL_VALUE (sym) = valu;
1385 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1386 add_symbol_to_list (sym, &local_symbols);
1387 break;
1388
1389 default:
1390 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1391 SYMBOL_CLASS (sym) = LOC_CONST;
1392 SYMBOL_VALUE (sym) = 0;
1393 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1394 add_symbol_to_list (sym, &file_symbols);
1395 break;
1396 }
1397
1398 /* Some systems pass variables of certain types by reference instead
1399 of by value, i.e. they will pass the address of a structure (in a
1400 register or on the stack) instead of the structure itself. */
1401
1402 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1403 && SYMBOL_IS_ARGUMENT (sym))
1404 {
1405 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1406 variables passed in a register). */
1407 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1408 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1409 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1410 and subsequent arguments on SPARC, for example). */
1411 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1412 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1413 }
1414
1415 return sym;
1416 }
1417
1418 /* Skip rest of this symbol and return an error type.
1419
1420 General notes on error recovery: error_type always skips to the
1421 end of the symbol (modulo cretinous dbx symbol name continuation).
1422 Thus code like this:
1423
1424 if (*(*pp)++ != ';')
1425 return error_type (pp, objfile);
1426
1427 is wrong because if *pp starts out pointing at '\0' (typically as the
1428 result of an earlier error), it will be incremented to point to the
1429 start of the next symbol, which might produce strange results, at least
1430 if you run off the end of the string table. Instead use
1431
1432 if (**pp != ';')
1433 return error_type (pp, objfile);
1434 ++*pp;
1435
1436 or
1437
1438 if (**pp != ';')
1439 foo = error_type (pp, objfile);
1440 else
1441 ++*pp;
1442
1443 And in case it isn't obvious, the point of all this hair is so the compiler
1444 can define new types and new syntaxes, and old versions of the
1445 debugger will be able to read the new symbol tables. */
1446
1447 static struct type *
1448 error_type (char **pp, struct objfile *objfile)
1449 {
1450 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1451 while (1)
1452 {
1453 /* Skip to end of symbol. */
1454 while (**pp != '\0')
1455 {
1456 (*pp)++;
1457 }
1458
1459 /* Check for and handle cretinous dbx symbol name continuation! */
1460 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1461 {
1462 *pp = next_symbol_text (objfile);
1463 }
1464 else
1465 {
1466 break;
1467 }
1468 }
1469 return objfile_type (objfile)->builtin_error;
1470 }
1471 \f
1472
1473 /* Read type information or a type definition; return the type. Even
1474 though this routine accepts either type information or a type
1475 definition, the distinction is relevant--some parts of stabsread.c
1476 assume that type information starts with a digit, '-', or '(' in
1477 deciding whether to call read_type. */
1478
1479 static struct type *
1480 read_type (char **pp, struct objfile *objfile)
1481 {
1482 struct type *type = 0;
1483 struct type *type1;
1484 int typenums[2];
1485 char type_descriptor;
1486
1487 /* Size in bits of type if specified by a type attribute, or -1 if
1488 there is no size attribute. */
1489 int type_size = -1;
1490
1491 /* Used to distinguish string and bitstring from char-array and set. */
1492 int is_string = 0;
1493
1494 /* Used to distinguish vector from array. */
1495 int is_vector = 0;
1496
1497 /* Read type number if present. The type number may be omitted.
1498 for instance in a two-dimensional array declared with type
1499 "ar1;1;10;ar1;1;10;4". */
1500 if ((**pp >= '0' && **pp <= '9')
1501 || **pp == '('
1502 || **pp == '-')
1503 {
1504 if (read_type_number (pp, typenums) != 0)
1505 return error_type (pp, objfile);
1506
1507 if (**pp != '=')
1508 {
1509 /* Type is not being defined here. Either it already
1510 exists, or this is a forward reference to it.
1511 dbx_alloc_type handles both cases. */
1512 type = dbx_alloc_type (typenums, objfile);
1513
1514 /* If this is a forward reference, arrange to complain if it
1515 doesn't get patched up by the time we're done
1516 reading. */
1517 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1518 add_undefined_type (type, typenums);
1519
1520 return type;
1521 }
1522
1523 /* Type is being defined here. */
1524 /* Skip the '='.
1525 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1526 (*pp) += 2;
1527 }
1528 else
1529 {
1530 /* 'typenums=' not present, type is anonymous. Read and return
1531 the definition, but don't put it in the type vector. */
1532 typenums[0] = typenums[1] = -1;
1533 (*pp)++;
1534 }
1535
1536 again:
1537 type_descriptor = (*pp)[-1];
1538 switch (type_descriptor)
1539 {
1540 case 'x':
1541 {
1542 enum type_code code;
1543
1544 /* Used to index through file_symbols. */
1545 struct pending *ppt;
1546 int i;
1547
1548 /* Name including "struct", etc. */
1549 char *type_name;
1550
1551 {
1552 char *from, *to, *p, *q1, *q2;
1553
1554 /* Set the type code according to the following letter. */
1555 switch ((*pp)[0])
1556 {
1557 case 's':
1558 code = TYPE_CODE_STRUCT;
1559 break;
1560 case 'u':
1561 code = TYPE_CODE_UNION;
1562 break;
1563 case 'e':
1564 code = TYPE_CODE_ENUM;
1565 break;
1566 default:
1567 {
1568 /* Complain and keep going, so compilers can invent new
1569 cross-reference types. */
1570 complaint (&symfile_complaints,
1571 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1572 code = TYPE_CODE_STRUCT;
1573 break;
1574 }
1575 }
1576
1577 q1 = strchr (*pp, '<');
1578 p = strchr (*pp, ':');
1579 if (p == NULL)
1580 return error_type (pp, objfile);
1581 if (q1 && p > q1 && p[1] == ':')
1582 {
1583 int nesting_level = 0;
1584 for (q2 = q1; *q2; q2++)
1585 {
1586 if (*q2 == '<')
1587 nesting_level++;
1588 else if (*q2 == '>')
1589 nesting_level--;
1590 else if (*q2 == ':' && nesting_level == 0)
1591 break;
1592 }
1593 p = q2;
1594 if (*p != ':')
1595 return error_type (pp, objfile);
1596 }
1597 type_name = NULL;
1598 if (current_subfile->language == language_cplus)
1599 {
1600 char *new_name, *name = alloca (p - *pp + 1);
1601 memcpy (name, *pp, p - *pp);
1602 name[p - *pp] = '\0';
1603 new_name = cp_canonicalize_string (name);
1604 if (new_name != NULL)
1605 {
1606 type_name = obsavestring (new_name, strlen (new_name),
1607 &objfile->objfile_obstack);
1608 xfree (new_name);
1609 }
1610 }
1611 if (type_name == NULL)
1612 {
1613 to = type_name =
1614 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1615
1616 /* Copy the name. */
1617 from = *pp + 1;
1618 while (from < p)
1619 *to++ = *from++;
1620 *to = '\0';
1621 }
1622
1623 /* Set the pointer ahead of the name which we just read, and
1624 the colon. */
1625 *pp = p + 1;
1626 }
1627
1628 /* If this type has already been declared, then reuse the same
1629 type, rather than allocating a new one. This saves some
1630 memory. */
1631
1632 for (ppt = file_symbols; ppt; ppt = ppt->next)
1633 for (i = 0; i < ppt->nsyms; i++)
1634 {
1635 struct symbol *sym = ppt->symbol[i];
1636
1637 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1638 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1639 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1640 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1641 {
1642 obstack_free (&objfile->objfile_obstack, type_name);
1643 type = SYMBOL_TYPE (sym);
1644 if (typenums[0] != -1)
1645 *dbx_lookup_type (typenums, objfile) = type;
1646 return type;
1647 }
1648 }
1649
1650 /* Didn't find the type to which this refers, so we must
1651 be dealing with a forward reference. Allocate a type
1652 structure for it, and keep track of it so we can
1653 fill in the rest of the fields when we get the full
1654 type. */
1655 type = dbx_alloc_type (typenums, objfile);
1656 TYPE_CODE (type) = code;
1657 TYPE_TAG_NAME (type) = type_name;
1658 INIT_CPLUS_SPECIFIC (type);
1659 TYPE_STUB (type) = 1;
1660
1661 add_undefined_type (type, typenums);
1662 return type;
1663 }
1664
1665 case '-': /* RS/6000 built-in type */
1666 case '0':
1667 case '1':
1668 case '2':
1669 case '3':
1670 case '4':
1671 case '5':
1672 case '6':
1673 case '7':
1674 case '8':
1675 case '9':
1676 case '(':
1677 (*pp)--;
1678
1679 /* We deal with something like t(1,2)=(3,4)=... which
1680 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1681
1682 /* Allocate and enter the typedef type first.
1683 This handles recursive types. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1686 {
1687 struct type *xtype = read_type (pp, objfile);
1688 if (type == xtype)
1689 {
1690 /* It's being defined as itself. That means it is "void". */
1691 TYPE_CODE (type) = TYPE_CODE_VOID;
1692 TYPE_LENGTH (type) = 1;
1693 }
1694 else if (type_size >= 0 || is_string)
1695 {
1696 /* This is the absolute wrong way to construct types. Every
1697 other debug format has found a way around this problem and
1698 the related problems with unnecessarily stubbed types;
1699 someone motivated should attempt to clean up the issue
1700 here as well. Once a type pointed to has been created it
1701 should not be modified.
1702
1703 Well, it's not *absolutely* wrong. Constructing recursive
1704 types (trees, linked lists) necessarily entails modifying
1705 types after creating them. Constructing any loop structure
1706 entails side effects. The Dwarf 2 reader does handle this
1707 more gracefully (it never constructs more than once
1708 instance of a type object, so it doesn't have to copy type
1709 objects wholesale), but it still mutates type objects after
1710 other folks have references to them.
1711
1712 Keep in mind that this circularity/mutation issue shows up
1713 at the source language level, too: C's "incomplete types",
1714 for example. So the proper cleanup, I think, would be to
1715 limit GDB's type smashing to match exactly those required
1716 by the source language. So GDB could have a
1717 "complete_this_type" function, but never create unnecessary
1718 copies of a type otherwise. */
1719 replace_type (type, xtype);
1720 TYPE_NAME (type) = NULL;
1721 TYPE_TAG_NAME (type) = NULL;
1722 }
1723 else
1724 {
1725 TYPE_TARGET_STUB (type) = 1;
1726 TYPE_TARGET_TYPE (type) = xtype;
1727 }
1728 }
1729 break;
1730
1731 /* In the following types, we must be sure to overwrite any existing
1732 type that the typenums refer to, rather than allocating a new one
1733 and making the typenums point to the new one. This is because there
1734 may already be pointers to the existing type (if it had been
1735 forward-referenced), and we must change it to a pointer, function,
1736 reference, or whatever, *in-place*. */
1737
1738 case '*': /* Pointer to another type */
1739 type1 = read_type (pp, objfile);
1740 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1741 break;
1742
1743 case '&': /* Reference to another type */
1744 type1 = read_type (pp, objfile);
1745 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1746 break;
1747
1748 case 'f': /* Function returning another type */
1749 type1 = read_type (pp, objfile);
1750 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1751 break;
1752
1753 case 'g': /* Prototyped function. (Sun) */
1754 {
1755 /* Unresolved questions:
1756
1757 - According to Sun's ``STABS Interface Manual'', for 'f'
1758 and 'F' symbol descriptors, a `0' in the argument type list
1759 indicates a varargs function. But it doesn't say how 'g'
1760 type descriptors represent that info. Someone with access
1761 to Sun's toolchain should try it out.
1762
1763 - According to the comment in define_symbol (search for
1764 `process_prototype_types:'), Sun emits integer arguments as
1765 types which ref themselves --- like `void' types. Do we
1766 have to deal with that here, too? Again, someone with
1767 access to Sun's toolchain should try it out and let us
1768 know. */
1769
1770 const char *type_start = (*pp) - 1;
1771 struct type *return_type = read_type (pp, objfile);
1772 struct type *func_type
1773 = make_function_type (return_type,
1774 dbx_lookup_type (typenums, objfile));
1775 struct type_list {
1776 struct type *type;
1777 struct type_list *next;
1778 } *arg_types = 0;
1779 int num_args = 0;
1780
1781 while (**pp && **pp != '#')
1782 {
1783 struct type *arg_type = read_type (pp, objfile);
1784 struct type_list *new = alloca (sizeof (*new));
1785 new->type = arg_type;
1786 new->next = arg_types;
1787 arg_types = new;
1788 num_args++;
1789 }
1790 if (**pp == '#')
1791 ++*pp;
1792 else
1793 {
1794 complaint (&symfile_complaints,
1795 _("Prototyped function type didn't end arguments with `#':\n%s"),
1796 type_start);
1797 }
1798
1799 /* If there is just one argument whose type is `void', then
1800 that's just an empty argument list. */
1801 if (arg_types
1802 && ! arg_types->next
1803 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1804 num_args = 0;
1805
1806 TYPE_FIELDS (func_type)
1807 = (struct field *) TYPE_ALLOC (func_type,
1808 num_args * sizeof (struct field));
1809 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1810 {
1811 int i;
1812 struct type_list *t;
1813
1814 /* We stuck each argument type onto the front of the list
1815 when we read it, so the list is reversed. Build the
1816 fields array right-to-left. */
1817 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1818 TYPE_FIELD_TYPE (func_type, i) = t->type;
1819 }
1820 TYPE_NFIELDS (func_type) = num_args;
1821 TYPE_PROTOTYPED (func_type) = 1;
1822
1823 type = func_type;
1824 break;
1825 }
1826
1827 case 'k': /* Const qualifier on some type (Sun) */
1828 type = read_type (pp, objfile);
1829 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1830 dbx_lookup_type (typenums, objfile));
1831 break;
1832
1833 case 'B': /* Volatile qual on some type (Sun) */
1834 type = read_type (pp, objfile);
1835 type = make_cv_type (TYPE_CONST (type), 1, type,
1836 dbx_lookup_type (typenums, objfile));
1837 break;
1838
1839 case '@':
1840 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1841 { /* Member (class & variable) type */
1842 /* FIXME -- we should be doing smash_to_XXX types here. */
1843
1844 struct type *domain = read_type (pp, objfile);
1845 struct type *memtype;
1846
1847 if (**pp != ',')
1848 /* Invalid member type data format. */
1849 return error_type (pp, objfile);
1850 ++*pp;
1851
1852 memtype = read_type (pp, objfile);
1853 type = dbx_alloc_type (typenums, objfile);
1854 smash_to_memberptr_type (type, domain, memtype);
1855 }
1856 else
1857 /* type attribute */
1858 {
1859 char *attr = *pp;
1860 /* Skip to the semicolon. */
1861 while (**pp != ';' && **pp != '\0')
1862 ++(*pp);
1863 if (**pp == '\0')
1864 return error_type (pp, objfile);
1865 else
1866 ++ * pp; /* Skip the semicolon. */
1867
1868 switch (*attr)
1869 {
1870 case 's': /* Size attribute */
1871 type_size = atoi (attr + 1);
1872 if (type_size <= 0)
1873 type_size = -1;
1874 break;
1875
1876 case 'S': /* String attribute */
1877 /* FIXME: check to see if following type is array? */
1878 is_string = 1;
1879 break;
1880
1881 case 'V': /* Vector attribute */
1882 /* FIXME: check to see if following type is array? */
1883 is_vector = 1;
1884 break;
1885
1886 default:
1887 /* Ignore unrecognized type attributes, so future compilers
1888 can invent new ones. */
1889 break;
1890 }
1891 ++*pp;
1892 goto again;
1893 }
1894 break;
1895
1896 case '#': /* Method (class & fn) type */
1897 if ((*pp)[0] == '#')
1898 {
1899 /* We'll get the parameter types from the name. */
1900 struct type *return_type;
1901
1902 (*pp)++;
1903 return_type = read_type (pp, objfile);
1904 if (*(*pp)++ != ';')
1905 complaint (&symfile_complaints,
1906 _("invalid (minimal) member type data format at symtab pos %d."),
1907 symnum);
1908 type = allocate_stub_method (return_type);
1909 if (typenums[0] != -1)
1910 *dbx_lookup_type (typenums, objfile) = type;
1911 }
1912 else
1913 {
1914 struct type *domain = read_type (pp, objfile);
1915 struct type *return_type;
1916 struct field *args;
1917 int nargs, varargs;
1918
1919 if (**pp != ',')
1920 /* Invalid member type data format. */
1921 return error_type (pp, objfile);
1922 else
1923 ++(*pp);
1924
1925 return_type = read_type (pp, objfile);
1926 args = read_args (pp, ';', objfile, &nargs, &varargs);
1927 if (args == NULL)
1928 return error_type (pp, objfile);
1929 type = dbx_alloc_type (typenums, objfile);
1930 smash_to_method_type (type, domain, return_type, args,
1931 nargs, varargs);
1932 }
1933 break;
1934
1935 case 'r': /* Range type */
1936 type = read_range_type (pp, typenums, type_size, objfile);
1937 if (typenums[0] != -1)
1938 *dbx_lookup_type (typenums, objfile) = type;
1939 break;
1940
1941 case 'b':
1942 {
1943 /* Sun ACC builtin int type */
1944 type = read_sun_builtin_type (pp, typenums, objfile);
1945 if (typenums[0] != -1)
1946 *dbx_lookup_type (typenums, objfile) = type;
1947 }
1948 break;
1949
1950 case 'R': /* Sun ACC builtin float type */
1951 type = read_sun_floating_type (pp, typenums, objfile);
1952 if (typenums[0] != -1)
1953 *dbx_lookup_type (typenums, objfile) = type;
1954 break;
1955
1956 case 'e': /* Enumeration type */
1957 type = dbx_alloc_type (typenums, objfile);
1958 type = read_enum_type (pp, type, objfile);
1959 if (typenums[0] != -1)
1960 *dbx_lookup_type (typenums, objfile) = type;
1961 break;
1962
1963 case 's': /* Struct type */
1964 case 'u': /* Union type */
1965 {
1966 enum type_code type_code = TYPE_CODE_UNDEF;
1967 type = dbx_alloc_type (typenums, objfile);
1968 switch (type_descriptor)
1969 {
1970 case 's':
1971 type_code = TYPE_CODE_STRUCT;
1972 break;
1973 case 'u':
1974 type_code = TYPE_CODE_UNION;
1975 break;
1976 }
1977 type = read_struct_type (pp, type, type_code, objfile);
1978 break;
1979 }
1980
1981 case 'a': /* Array type */
1982 if (**pp != 'r')
1983 return error_type (pp, objfile);
1984 ++*pp;
1985
1986 type = dbx_alloc_type (typenums, objfile);
1987 type = read_array_type (pp, type, objfile);
1988 if (is_string)
1989 TYPE_CODE (type) = TYPE_CODE_STRING;
1990 if (is_vector)
1991 make_vector_type (type);
1992 break;
1993
1994 case 'S': /* Set or bitstring type */
1995 type1 = read_type (pp, objfile);
1996 type = create_set_type ((struct type *) NULL, type1);
1997 if (is_string)
1998 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2001 break;
2002
2003 default:
2004 --*pp; /* Go back to the symbol in error */
2005 /* Particularly important if it was \0! */
2006 return error_type (pp, objfile);
2007 }
2008
2009 if (type == 0)
2010 {
2011 warning (_("GDB internal error, type is NULL in stabsread.c."));
2012 return error_type (pp, objfile);
2013 }
2014
2015 /* Size specified in a type attribute overrides any other size. */
2016 if (type_size != -1)
2017 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2018
2019 return type;
2020 }
2021 \f
2022 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2023 Return the proper type node for a given builtin type number. */
2024
2025 static const struct objfile_data *rs6000_builtin_type_data;
2026
2027 static struct type *
2028 rs6000_builtin_type (int typenum, struct objfile *objfile)
2029 {
2030 struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
2031
2032 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2033 #define NUMBER_RECOGNIZED 34
2034 struct type *rettype = NULL;
2035
2036 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2037 {
2038 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2039 return objfile_type (objfile)->builtin_error;
2040 }
2041
2042 if (!negative_types)
2043 {
2044 /* This includes an empty slot for type number -0. */
2045 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2046 NUMBER_RECOGNIZED + 1, struct type *);
2047 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2048 }
2049
2050 if (negative_types[-typenum] != NULL)
2051 return negative_types[-typenum];
2052
2053 #if TARGET_CHAR_BIT != 8
2054 #error This code wrong for TARGET_CHAR_BIT not 8
2055 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2056 that if that ever becomes not true, the correct fix will be to
2057 make the size in the struct type to be in bits, not in units of
2058 TARGET_CHAR_BIT. */
2059 #endif
2060
2061 switch (-typenum)
2062 {
2063 case 1:
2064 /* The size of this and all the other types are fixed, defined
2065 by the debugging format. If there is a type called "int" which
2066 is other than 32 bits, then it should use a new negative type
2067 number (or avoid negative type numbers for that case).
2068 See stabs.texinfo. */
2069 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2070 break;
2071 case 2:
2072 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2073 break;
2074 case 3:
2075 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2076 break;
2077 case 4:
2078 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2079 break;
2080 case 5:
2081 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2082 "unsigned char", objfile);
2083 break;
2084 case 6:
2085 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2086 break;
2087 case 7:
2088 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2089 "unsigned short", objfile);
2090 break;
2091 case 8:
2092 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2093 "unsigned int", objfile);
2094 break;
2095 case 9:
2096 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2097 "unsigned", objfile);
2098 case 10:
2099 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2100 "unsigned long", objfile);
2101 break;
2102 case 11:
2103 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2104 break;
2105 case 12:
2106 /* IEEE single precision (32 bit). */
2107 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2108 break;
2109 case 13:
2110 /* IEEE double precision (64 bit). */
2111 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2112 break;
2113 case 14:
2114 /* This is an IEEE double on the RS/6000, and different machines with
2115 different sizes for "long double" should use different negative
2116 type numbers. See stabs.texinfo. */
2117 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2118 break;
2119 case 15:
2120 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2121 break;
2122 case 16:
2123 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2124 "boolean", objfile);
2125 break;
2126 case 17:
2127 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2128 break;
2129 case 18:
2130 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2131 break;
2132 case 19:
2133 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2134 break;
2135 case 20:
2136 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2137 "character", objfile);
2138 break;
2139 case 21:
2140 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2141 "logical*1", objfile);
2142 break;
2143 case 22:
2144 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2145 "logical*2", objfile);
2146 break;
2147 case 23:
2148 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2149 "logical*4", objfile);
2150 break;
2151 case 24:
2152 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2153 "logical", objfile);
2154 break;
2155 case 25:
2156 /* Complex type consisting of two IEEE single precision values. */
2157 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2158 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2159 objfile);
2160 break;
2161 case 26:
2162 /* Complex type consisting of two IEEE double precision values. */
2163 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2164 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2165 objfile);
2166 break;
2167 case 27:
2168 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2169 break;
2170 case 28:
2171 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2172 break;
2173 case 29:
2174 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2175 break;
2176 case 30:
2177 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2178 break;
2179 case 31:
2180 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2181 break;
2182 case 32:
2183 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2184 "unsigned long long", objfile);
2185 break;
2186 case 33:
2187 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2188 "logical*8", objfile);
2189 break;
2190 case 34:
2191 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2192 break;
2193 }
2194 negative_types[-typenum] = rettype;
2195 return rettype;
2196 }
2197 \f
2198 /* This page contains subroutines of read_type. */
2199
2200 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2201
2202 static void
2203 update_method_name_from_physname (char **old_name, char *physname)
2204 {
2205 char *method_name;
2206
2207 method_name = method_name_from_physname (physname);
2208
2209 if (method_name == NULL)
2210 {
2211 complaint (&symfile_complaints,
2212 _("Method has bad physname %s\n"), physname);
2213 return;
2214 }
2215
2216 if (strcmp (*old_name, method_name) != 0)
2217 {
2218 xfree (*old_name);
2219 *old_name = method_name;
2220 }
2221 else
2222 xfree (method_name);
2223 }
2224
2225 /* Read member function stabs info for C++ classes. The form of each member
2226 function data is:
2227
2228 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2229
2230 An example with two member functions is:
2231
2232 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2233
2234 For the case of overloaded operators, the format is op$::*.funcs, where
2235 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2236 name (such as `+=') and `.' marks the end of the operator name.
2237
2238 Returns 1 for success, 0 for failure. */
2239
2240 static int
2241 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2242 struct objfile *objfile)
2243 {
2244 int nfn_fields = 0;
2245 int length = 0;
2246 /* Total number of member functions defined in this class. If the class
2247 defines two `f' functions, and one `g' function, then this will have
2248 the value 3. */
2249 int total_length = 0;
2250 int i;
2251 struct next_fnfield
2252 {
2253 struct next_fnfield *next;
2254 struct fn_field fn_field;
2255 }
2256 *sublist;
2257 struct type *look_ahead_type;
2258 struct next_fnfieldlist *new_fnlist;
2259 struct next_fnfield *new_sublist;
2260 char *main_fn_name;
2261 char *p;
2262
2263 /* Process each list until we find something that is not a member function
2264 or find the end of the functions. */
2265
2266 while (**pp != ';')
2267 {
2268 /* We should be positioned at the start of the function name.
2269 Scan forward to find the first ':' and if it is not the
2270 first of a "::" delimiter, then this is not a member function. */
2271 p = *pp;
2272 while (*p != ':')
2273 {
2274 p++;
2275 }
2276 if (p[1] != ':')
2277 {
2278 break;
2279 }
2280
2281 sublist = NULL;
2282 look_ahead_type = NULL;
2283 length = 0;
2284
2285 new_fnlist = (struct next_fnfieldlist *)
2286 xmalloc (sizeof (struct next_fnfieldlist));
2287 make_cleanup (xfree, new_fnlist);
2288 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2289
2290 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2291 {
2292 /* This is a completely wierd case. In order to stuff in the
2293 names that might contain colons (the usual name delimiter),
2294 Mike Tiemann defined a different name format which is
2295 signalled if the identifier is "op$". In that case, the
2296 format is "op$::XXXX." where XXXX is the name. This is
2297 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2298 /* This lets the user type "break operator+".
2299 We could just put in "+" as the name, but that wouldn't
2300 work for "*". */
2301 static char opname[32] = "op$";
2302 char *o = opname + 3;
2303
2304 /* Skip past '::'. */
2305 *pp = p + 2;
2306
2307 STABS_CONTINUE (pp, objfile);
2308 p = *pp;
2309 while (*p != '.')
2310 {
2311 *o++ = *p++;
2312 }
2313 main_fn_name = savestring (opname, o - opname);
2314 /* Skip past '.' */
2315 *pp = p + 1;
2316 }
2317 else
2318 {
2319 main_fn_name = savestring (*pp, p - *pp);
2320 /* Skip past '::'. */
2321 *pp = p + 2;
2322 }
2323 new_fnlist->fn_fieldlist.name = main_fn_name;
2324
2325 do
2326 {
2327 new_sublist =
2328 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2329 make_cleanup (xfree, new_sublist);
2330 memset (new_sublist, 0, sizeof (struct next_fnfield));
2331
2332 /* Check for and handle cretinous dbx symbol name continuation! */
2333 if (look_ahead_type == NULL)
2334 {
2335 /* Normal case. */
2336 STABS_CONTINUE (pp, objfile);
2337
2338 new_sublist->fn_field.type = read_type (pp, objfile);
2339 if (**pp != ':')
2340 {
2341 /* Invalid symtab info for member function. */
2342 return 0;
2343 }
2344 }
2345 else
2346 {
2347 /* g++ version 1 kludge */
2348 new_sublist->fn_field.type = look_ahead_type;
2349 look_ahead_type = NULL;
2350 }
2351
2352 (*pp)++;
2353 p = *pp;
2354 while (*p != ';')
2355 {
2356 p++;
2357 }
2358
2359 /* If this is just a stub, then we don't have the real name here. */
2360
2361 if (TYPE_STUB (new_sublist->fn_field.type))
2362 {
2363 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2364 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2365 new_sublist->fn_field.is_stub = 1;
2366 }
2367 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2368 *pp = p + 1;
2369
2370 /* Set this member function's visibility fields. */
2371 switch (*(*pp)++)
2372 {
2373 case VISIBILITY_PRIVATE:
2374 new_sublist->fn_field.is_private = 1;
2375 break;
2376 case VISIBILITY_PROTECTED:
2377 new_sublist->fn_field.is_protected = 1;
2378 break;
2379 }
2380
2381 STABS_CONTINUE (pp, objfile);
2382 switch (**pp)
2383 {
2384 case 'A': /* Normal functions. */
2385 new_sublist->fn_field.is_const = 0;
2386 new_sublist->fn_field.is_volatile = 0;
2387 (*pp)++;
2388 break;
2389 case 'B': /* `const' member functions. */
2390 new_sublist->fn_field.is_const = 1;
2391 new_sublist->fn_field.is_volatile = 0;
2392 (*pp)++;
2393 break;
2394 case 'C': /* `volatile' member function. */
2395 new_sublist->fn_field.is_const = 0;
2396 new_sublist->fn_field.is_volatile = 1;
2397 (*pp)++;
2398 break;
2399 case 'D': /* `const volatile' member function. */
2400 new_sublist->fn_field.is_const = 1;
2401 new_sublist->fn_field.is_volatile = 1;
2402 (*pp)++;
2403 break;
2404 case '*': /* File compiled with g++ version 1 -- no info */
2405 case '?':
2406 case '.':
2407 break;
2408 default:
2409 complaint (&symfile_complaints,
2410 _("const/volatile indicator missing, got '%c'"), **pp);
2411 break;
2412 }
2413
2414 switch (*(*pp)++)
2415 {
2416 case '*':
2417 {
2418 int nbits;
2419 /* virtual member function, followed by index.
2420 The sign bit is set to distinguish pointers-to-methods
2421 from virtual function indicies. Since the array is
2422 in words, the quantity must be shifted left by 1
2423 on 16 bit machine, and by 2 on 32 bit machine, forcing
2424 the sign bit out, and usable as a valid index into
2425 the array. Remove the sign bit here. */
2426 new_sublist->fn_field.voffset =
2427 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2428 if (nbits != 0)
2429 return 0;
2430
2431 STABS_CONTINUE (pp, objfile);
2432 if (**pp == ';' || **pp == '\0')
2433 {
2434 /* Must be g++ version 1. */
2435 new_sublist->fn_field.fcontext = 0;
2436 }
2437 else
2438 {
2439 /* Figure out from whence this virtual function came.
2440 It may belong to virtual function table of
2441 one of its baseclasses. */
2442 look_ahead_type = read_type (pp, objfile);
2443 if (**pp == ':')
2444 {
2445 /* g++ version 1 overloaded methods. */
2446 }
2447 else
2448 {
2449 new_sublist->fn_field.fcontext = look_ahead_type;
2450 if (**pp != ';')
2451 {
2452 return 0;
2453 }
2454 else
2455 {
2456 ++*pp;
2457 }
2458 look_ahead_type = NULL;
2459 }
2460 }
2461 break;
2462 }
2463 case '?':
2464 /* static member function. */
2465 {
2466 int slen = strlen (main_fn_name);
2467
2468 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2469
2470 /* For static member functions, we can't tell if they
2471 are stubbed, as they are put out as functions, and not as
2472 methods.
2473 GCC v2 emits the fully mangled name if
2474 dbxout.c:flag_minimal_debug is not set, so we have to
2475 detect a fully mangled physname here and set is_stub
2476 accordingly. Fully mangled physnames in v2 start with
2477 the member function name, followed by two underscores.
2478 GCC v3 currently always emits stubbed member functions,
2479 but with fully mangled physnames, which start with _Z. */
2480 if (!(strncmp (new_sublist->fn_field.physname,
2481 main_fn_name, slen) == 0
2482 && new_sublist->fn_field.physname[slen] == '_'
2483 && new_sublist->fn_field.physname[slen + 1] == '_'))
2484 {
2485 new_sublist->fn_field.is_stub = 1;
2486 }
2487 break;
2488 }
2489
2490 default:
2491 /* error */
2492 complaint (&symfile_complaints,
2493 _("member function type missing, got '%c'"), (*pp)[-1]);
2494 /* Fall through into normal member function. */
2495
2496 case '.':
2497 /* normal member function. */
2498 new_sublist->fn_field.voffset = 0;
2499 new_sublist->fn_field.fcontext = 0;
2500 break;
2501 }
2502
2503 new_sublist->next = sublist;
2504 sublist = new_sublist;
2505 length++;
2506 STABS_CONTINUE (pp, objfile);
2507 }
2508 while (**pp != ';' && **pp != '\0');
2509
2510 (*pp)++;
2511 STABS_CONTINUE (pp, objfile);
2512
2513 /* Skip GCC 3.X member functions which are duplicates of the callable
2514 constructor/destructor. */
2515 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2516 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2517 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2518 {
2519 xfree (main_fn_name);
2520 }
2521 else
2522 {
2523 int has_stub = 0;
2524 int has_destructor = 0, has_other = 0;
2525 int is_v3 = 0;
2526 struct next_fnfield *tmp_sublist;
2527
2528 /* Various versions of GCC emit various mostly-useless
2529 strings in the name field for special member functions.
2530
2531 For stub methods, we need to defer correcting the name
2532 until we are ready to unstub the method, because the current
2533 name string is used by gdb_mangle_name. The only stub methods
2534 of concern here are GNU v2 operators; other methods have their
2535 names correct (see caveat below).
2536
2537 For non-stub methods, in GNU v3, we have a complete physname.
2538 Therefore we can safely correct the name now. This primarily
2539 affects constructors and destructors, whose name will be
2540 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2541 operators will also have incorrect names; for instance,
2542 "operator int" will be named "operator i" (i.e. the type is
2543 mangled).
2544
2545 For non-stub methods in GNU v2, we have no easy way to
2546 know if we have a complete physname or not. For most
2547 methods the result depends on the platform (if CPLUS_MARKER
2548 can be `$' or `.', it will use minimal debug information, or
2549 otherwise the full physname will be included).
2550
2551 Rather than dealing with this, we take a different approach.
2552 For v3 mangled names, we can use the full physname; for v2,
2553 we use cplus_demangle_opname (which is actually v2 specific),
2554 because the only interesting names are all operators - once again
2555 barring the caveat below. Skip this process if any method in the
2556 group is a stub, to prevent our fouling up the workings of
2557 gdb_mangle_name.
2558
2559 The caveat: GCC 2.95.x (and earlier?) put constructors and
2560 destructors in the same method group. We need to split this
2561 into two groups, because they should have different names.
2562 So for each method group we check whether it contains both
2563 routines whose physname appears to be a destructor (the physnames
2564 for and destructors are always provided, due to quirks in v2
2565 mangling) and routines whose physname does not appear to be a
2566 destructor. If so then we break up the list into two halves.
2567 Even if the constructors and destructors aren't in the same group
2568 the destructor will still lack the leading tilde, so that also
2569 needs to be fixed.
2570
2571 So, to summarize what we expect and handle here:
2572
2573 Given Given Real Real Action
2574 method name physname physname method name
2575
2576 __opi [none] __opi__3Foo operator int opname
2577 [now or later]
2578 Foo _._3Foo _._3Foo ~Foo separate and
2579 rename
2580 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2581 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2582 */
2583
2584 tmp_sublist = sublist;
2585 while (tmp_sublist != NULL)
2586 {
2587 if (tmp_sublist->fn_field.is_stub)
2588 has_stub = 1;
2589 if (tmp_sublist->fn_field.physname[0] == '_'
2590 && tmp_sublist->fn_field.physname[1] == 'Z')
2591 is_v3 = 1;
2592
2593 if (is_destructor_name (tmp_sublist->fn_field.physname))
2594 has_destructor++;
2595 else
2596 has_other++;
2597
2598 tmp_sublist = tmp_sublist->next;
2599 }
2600
2601 if (has_destructor && has_other)
2602 {
2603 struct next_fnfieldlist *destr_fnlist;
2604 struct next_fnfield *last_sublist;
2605
2606 /* Create a new fn_fieldlist for the destructors. */
2607
2608 destr_fnlist = (struct next_fnfieldlist *)
2609 xmalloc (sizeof (struct next_fnfieldlist));
2610 make_cleanup (xfree, destr_fnlist);
2611 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2612 destr_fnlist->fn_fieldlist.name
2613 = obconcat (&objfile->objfile_obstack, "", "~",
2614 new_fnlist->fn_fieldlist.name);
2615
2616 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2617 obstack_alloc (&objfile->objfile_obstack,
2618 sizeof (struct fn_field) * has_destructor);
2619 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2620 sizeof (struct fn_field) * has_destructor);
2621 tmp_sublist = sublist;
2622 last_sublist = NULL;
2623 i = 0;
2624 while (tmp_sublist != NULL)
2625 {
2626 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2627 {
2628 tmp_sublist = tmp_sublist->next;
2629 continue;
2630 }
2631
2632 destr_fnlist->fn_fieldlist.fn_fields[i++]
2633 = tmp_sublist->fn_field;
2634 if (last_sublist)
2635 last_sublist->next = tmp_sublist->next;
2636 else
2637 sublist = tmp_sublist->next;
2638 last_sublist = tmp_sublist;
2639 tmp_sublist = tmp_sublist->next;
2640 }
2641
2642 destr_fnlist->fn_fieldlist.length = has_destructor;
2643 destr_fnlist->next = fip->fnlist;
2644 fip->fnlist = destr_fnlist;
2645 nfn_fields++;
2646 total_length += has_destructor;
2647 length -= has_destructor;
2648 }
2649 else if (is_v3)
2650 {
2651 /* v3 mangling prevents the use of abbreviated physnames,
2652 so we can do this here. There are stubbed methods in v3
2653 only:
2654 - in -gstabs instead of -gstabs+
2655 - or for static methods, which are output as a function type
2656 instead of a method type. */
2657
2658 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2659 sublist->fn_field.physname);
2660 }
2661 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2662 {
2663 new_fnlist->fn_fieldlist.name =
2664 concat ("~", main_fn_name, (char *)NULL);
2665 xfree (main_fn_name);
2666 }
2667 else if (!has_stub)
2668 {
2669 char dem_opname[256];
2670 int ret;
2671 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2672 dem_opname, DMGL_ANSI);
2673 if (!ret)
2674 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2675 dem_opname, 0);
2676 if (ret)
2677 new_fnlist->fn_fieldlist.name
2678 = obsavestring (dem_opname, strlen (dem_opname),
2679 &objfile->objfile_obstack);
2680 }
2681
2682 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2683 obstack_alloc (&objfile->objfile_obstack,
2684 sizeof (struct fn_field) * length);
2685 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2686 sizeof (struct fn_field) * length);
2687 for (i = length; (i--, sublist); sublist = sublist->next)
2688 {
2689 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2690 }
2691
2692 new_fnlist->fn_fieldlist.length = length;
2693 new_fnlist->next = fip->fnlist;
2694 fip->fnlist = new_fnlist;
2695 nfn_fields++;
2696 total_length += length;
2697 }
2698 }
2699
2700 if (nfn_fields)
2701 {
2702 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2703 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2704 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2705 memset (TYPE_FN_FIELDLISTS (type), 0,
2706 sizeof (struct fn_fieldlist) * nfn_fields);
2707 TYPE_NFN_FIELDS (type) = nfn_fields;
2708 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2709 }
2710
2711 return 1;
2712 }
2713
2714 /* Special GNU C++ name.
2715
2716 Returns 1 for success, 0 for failure. "failure" means that we can't
2717 keep parsing and it's time for error_type(). */
2718
2719 static int
2720 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2721 struct objfile *objfile)
2722 {
2723 char *p;
2724 char *name;
2725 char cpp_abbrev;
2726 struct type *context;
2727
2728 p = *pp;
2729 if (*++p == 'v')
2730 {
2731 name = NULL;
2732 cpp_abbrev = *++p;
2733
2734 *pp = p + 1;
2735
2736 /* At this point, *pp points to something like "22:23=*22...",
2737 where the type number before the ':' is the "context" and
2738 everything after is a regular type definition. Lookup the
2739 type, find it's name, and construct the field name. */
2740
2741 context = read_type (pp, objfile);
2742
2743 switch (cpp_abbrev)
2744 {
2745 case 'f': /* $vf -- a virtual function table pointer */
2746 name = type_name_no_tag (context);
2747 if (name == NULL)
2748 {
2749 name = "";
2750 }
2751 fip->list->field.name =
2752 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2753 break;
2754
2755 case 'b': /* $vb -- a virtual bsomethingorother */
2756 name = type_name_no_tag (context);
2757 if (name == NULL)
2758 {
2759 complaint (&symfile_complaints,
2760 _("C++ abbreviated type name unknown at symtab pos %d"),
2761 symnum);
2762 name = "FOO";
2763 }
2764 fip->list->field.name =
2765 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2766 break;
2767
2768 default:
2769 invalid_cpp_abbrev_complaint (*pp);
2770 fip->list->field.name =
2771 obconcat (&objfile->objfile_obstack,
2772 "INVALID_CPLUSPLUS_ABBREV", "", "");
2773 break;
2774 }
2775
2776 /* At this point, *pp points to the ':'. Skip it and read the
2777 field type. */
2778
2779 p = ++(*pp);
2780 if (p[-1] != ':')
2781 {
2782 invalid_cpp_abbrev_complaint (*pp);
2783 return 0;
2784 }
2785 fip->list->field.type = read_type (pp, objfile);
2786 if (**pp == ',')
2787 (*pp)++; /* Skip the comma. */
2788 else
2789 return 0;
2790
2791 {
2792 int nbits;
2793 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2794 0);
2795 if (nbits != 0)
2796 return 0;
2797 }
2798 /* This field is unpacked. */
2799 FIELD_BITSIZE (fip->list->field) = 0;
2800 fip->list->visibility = VISIBILITY_PRIVATE;
2801 }
2802 else
2803 {
2804 invalid_cpp_abbrev_complaint (*pp);
2805 /* We have no idea what syntax an unrecognized abbrev would have, so
2806 better return 0. If we returned 1, we would need to at least advance
2807 *pp to avoid an infinite loop. */
2808 return 0;
2809 }
2810 return 1;
2811 }
2812
2813 static void
2814 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2815 struct type *type, struct objfile *objfile)
2816 {
2817 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2818
2819 fip->list->field.name =
2820 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2821 *pp = p + 1;
2822
2823 /* This means we have a visibility for a field coming. */
2824 if (**pp == '/')
2825 {
2826 (*pp)++;
2827 fip->list->visibility = *(*pp)++;
2828 }
2829 else
2830 {
2831 /* normal dbx-style format, no explicit visibility */
2832 fip->list->visibility = VISIBILITY_PUBLIC;
2833 }
2834
2835 fip->list->field.type = read_type (pp, objfile);
2836 if (**pp == ':')
2837 {
2838 p = ++(*pp);
2839 #if 0
2840 /* Possible future hook for nested types. */
2841 if (**pp == '!')
2842 {
2843 fip->list->field.bitpos = (long) -2; /* nested type */
2844 p = ++(*pp);
2845 }
2846 else
2847 ...;
2848 #endif
2849 while (*p != ';')
2850 {
2851 p++;
2852 }
2853 /* Static class member. */
2854 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2855 *pp = p + 1;
2856 return;
2857 }
2858 else if (**pp != ',')
2859 {
2860 /* Bad structure-type format. */
2861 stabs_general_complaint ("bad structure-type format");
2862 return;
2863 }
2864
2865 (*pp)++; /* Skip the comma. */
2866
2867 {
2868 int nbits;
2869 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2870 if (nbits != 0)
2871 {
2872 stabs_general_complaint ("bad structure-type format");
2873 return;
2874 }
2875 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2876 if (nbits != 0)
2877 {
2878 stabs_general_complaint ("bad structure-type format");
2879 return;
2880 }
2881 }
2882
2883 if (FIELD_BITPOS (fip->list->field) == 0
2884 && FIELD_BITSIZE (fip->list->field) == 0)
2885 {
2886 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2887 it is a field which has been optimized out. The correct stab for
2888 this case is to use VISIBILITY_IGNORE, but that is a recent
2889 invention. (2) It is a 0-size array. For example
2890 union { int num; char str[0]; } foo. Printing _("<no value>" for
2891 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2892 will continue to work, and a 0-size array as a whole doesn't
2893 have any contents to print.
2894
2895 I suspect this probably could also happen with gcc -gstabs (not
2896 -gstabs+) for static fields, and perhaps other C++ extensions.
2897 Hopefully few people use -gstabs with gdb, since it is intended
2898 for dbx compatibility. */
2899
2900 /* Ignore this field. */
2901 fip->list->visibility = VISIBILITY_IGNORE;
2902 }
2903 else
2904 {
2905 /* Detect an unpacked field and mark it as such.
2906 dbx gives a bit size for all fields.
2907 Note that forward refs cannot be packed,
2908 and treat enums as if they had the width of ints. */
2909
2910 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2911
2912 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2913 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2914 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2915 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2916 {
2917 FIELD_BITSIZE (fip->list->field) = 0;
2918 }
2919 if ((FIELD_BITSIZE (fip->list->field)
2920 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2921 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2922 && FIELD_BITSIZE (fip->list->field)
2923 == gdbarch_int_bit (gdbarch))
2924 )
2925 &&
2926 FIELD_BITPOS (fip->list->field) % 8 == 0)
2927 {
2928 FIELD_BITSIZE (fip->list->field) = 0;
2929 }
2930 }
2931 }
2932
2933
2934 /* Read struct or class data fields. They have the form:
2935
2936 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2937
2938 At the end, we see a semicolon instead of a field.
2939
2940 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2941 a static field.
2942
2943 The optional VISIBILITY is one of:
2944
2945 '/0' (VISIBILITY_PRIVATE)
2946 '/1' (VISIBILITY_PROTECTED)
2947 '/2' (VISIBILITY_PUBLIC)
2948 '/9' (VISIBILITY_IGNORE)
2949
2950 or nothing, for C style fields with public visibility.
2951
2952 Returns 1 for success, 0 for failure. */
2953
2954 static int
2955 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2956 struct objfile *objfile)
2957 {
2958 char *p;
2959 struct nextfield *new;
2960
2961 /* We better set p right now, in case there are no fields at all... */
2962
2963 p = *pp;
2964
2965 /* Read each data member type until we find the terminating ';' at the end of
2966 the data member list, or break for some other reason such as finding the
2967 start of the member function list. */
2968 /* Stab string for structure/union does not end with two ';' in
2969 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2970
2971 while (**pp != ';' && **pp != '\0')
2972 {
2973 STABS_CONTINUE (pp, objfile);
2974 /* Get space to record the next field's data. */
2975 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2976 make_cleanup (xfree, new);
2977 memset (new, 0, sizeof (struct nextfield));
2978 new->next = fip->list;
2979 fip->list = new;
2980
2981 /* Get the field name. */
2982 p = *pp;
2983
2984 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2985 unless the CPLUS_MARKER is followed by an underscore, in
2986 which case it is just the name of an anonymous type, which we
2987 should handle like any other type name. */
2988
2989 if (is_cplus_marker (p[0]) && p[1] != '_')
2990 {
2991 if (!read_cpp_abbrev (fip, pp, type, objfile))
2992 return 0;
2993 continue;
2994 }
2995
2996 /* Look for the ':' that separates the field name from the field
2997 values. Data members are delimited by a single ':', while member
2998 functions are delimited by a pair of ':'s. When we hit the member
2999 functions (if any), terminate scan loop and return. */
3000
3001 while (*p != ':' && *p != '\0')
3002 {
3003 p++;
3004 }
3005 if (*p == '\0')
3006 return 0;
3007
3008 /* Check to see if we have hit the member functions yet. */
3009 if (p[1] == ':')
3010 {
3011 break;
3012 }
3013 read_one_struct_field (fip, pp, p, type, objfile);
3014 }
3015 if (p[0] == ':' && p[1] == ':')
3016 {
3017 /* (the deleted) chill the list of fields: the last entry (at
3018 the head) is a partially constructed entry which we now
3019 scrub. */
3020 fip->list = fip->list->next;
3021 }
3022 return 1;
3023 }
3024 /* *INDENT-OFF* */
3025 /* The stabs for C++ derived classes contain baseclass information which
3026 is marked by a '!' character after the total size. This function is
3027 called when we encounter the baseclass marker, and slurps up all the
3028 baseclass information.
3029
3030 Immediately following the '!' marker is the number of base classes that
3031 the class is derived from, followed by information for each base class.
3032 For each base class, there are two visibility specifiers, a bit offset
3033 to the base class information within the derived class, a reference to
3034 the type for the base class, and a terminating semicolon.
3035
3036 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3037 ^^ ^ ^ ^ ^ ^ ^
3038 Baseclass information marker __________________|| | | | | | |
3039 Number of baseclasses __________________________| | | | | | |
3040 Visibility specifiers (2) ________________________| | | | | |
3041 Offset in bits from start of class _________________| | | | |
3042 Type number for base class ___________________________| | | |
3043 Visibility specifiers (2) _______________________________| | |
3044 Offset in bits from start of class ________________________| |
3045 Type number of base class ____________________________________|
3046
3047 Return 1 for success, 0 for (error-type-inducing) failure. */
3048 /* *INDENT-ON* */
3049
3050
3051
3052 static int
3053 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3054 struct objfile *objfile)
3055 {
3056 int i;
3057 struct nextfield *new;
3058
3059 if (**pp != '!')
3060 {
3061 return 1;
3062 }
3063 else
3064 {
3065 /* Skip the '!' baseclass information marker. */
3066 (*pp)++;
3067 }
3068
3069 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3070 {
3071 int nbits;
3072 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3073 if (nbits != 0)
3074 return 0;
3075 }
3076
3077 #if 0
3078 /* Some stupid compilers have trouble with the following, so break
3079 it up into simpler expressions. */
3080 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3081 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3082 #else
3083 {
3084 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3085 char *pointer;
3086
3087 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3088 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3089 }
3090 #endif /* 0 */
3091
3092 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3093
3094 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3095 {
3096 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3097 make_cleanup (xfree, new);
3098 memset (new, 0, sizeof (struct nextfield));
3099 new->next = fip->list;
3100 fip->list = new;
3101 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3102
3103 STABS_CONTINUE (pp, objfile);
3104 switch (**pp)
3105 {
3106 case '0':
3107 /* Nothing to do. */
3108 break;
3109 case '1':
3110 SET_TYPE_FIELD_VIRTUAL (type, i);
3111 break;
3112 default:
3113 /* Unknown character. Complain and treat it as non-virtual. */
3114 {
3115 complaint (&symfile_complaints,
3116 _("Unknown virtual character `%c' for baseclass"), **pp);
3117 }
3118 }
3119 ++(*pp);
3120
3121 new->visibility = *(*pp)++;
3122 switch (new->visibility)
3123 {
3124 case VISIBILITY_PRIVATE:
3125 case VISIBILITY_PROTECTED:
3126 case VISIBILITY_PUBLIC:
3127 break;
3128 default:
3129 /* Bad visibility format. Complain and treat it as
3130 public. */
3131 {
3132 complaint (&symfile_complaints,
3133 _("Unknown visibility `%c' for baseclass"),
3134 new->visibility);
3135 new->visibility = VISIBILITY_PUBLIC;
3136 }
3137 }
3138
3139 {
3140 int nbits;
3141
3142 /* The remaining value is the bit offset of the portion of the object
3143 corresponding to this baseclass. Always zero in the absence of
3144 multiple inheritance. */
3145
3146 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3147 if (nbits != 0)
3148 return 0;
3149 }
3150
3151 /* The last piece of baseclass information is the type of the
3152 base class. Read it, and remember it's type name as this
3153 field's name. */
3154
3155 new->field.type = read_type (pp, objfile);
3156 new->field.name = type_name_no_tag (new->field.type);
3157
3158 /* skip trailing ';' and bump count of number of fields seen */
3159 if (**pp == ';')
3160 (*pp)++;
3161 else
3162 return 0;
3163 }
3164 return 1;
3165 }
3166
3167 /* The tail end of stabs for C++ classes that contain a virtual function
3168 pointer contains a tilde, a %, and a type number.
3169 The type number refers to the base class (possibly this class itself) which
3170 contains the vtable pointer for the current class.
3171
3172 This function is called when we have parsed all the method declarations,
3173 so we can look for the vptr base class info. */
3174
3175 static int
3176 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3177 struct objfile *objfile)
3178 {
3179 char *p;
3180
3181 STABS_CONTINUE (pp, objfile);
3182
3183 /* If we are positioned at a ';', then skip it. */
3184 if (**pp == ';')
3185 {
3186 (*pp)++;
3187 }
3188
3189 if (**pp == '~')
3190 {
3191 (*pp)++;
3192
3193 if (**pp == '=' || **pp == '+' || **pp == '-')
3194 {
3195 /* Obsolete flags that used to indicate the presence
3196 of constructors and/or destructors. */
3197 (*pp)++;
3198 }
3199
3200 /* Read either a '%' or the final ';'. */
3201 if (*(*pp)++ == '%')
3202 {
3203 /* The next number is the type number of the base class
3204 (possibly our own class) which supplies the vtable for
3205 this class. Parse it out, and search that class to find
3206 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3207 and TYPE_VPTR_FIELDNO. */
3208
3209 struct type *t;
3210 int i;
3211
3212 t = read_type (pp, objfile);
3213 p = (*pp)++;
3214 while (*p != '\0' && *p != ';')
3215 {
3216 p++;
3217 }
3218 if (*p == '\0')
3219 {
3220 /* Premature end of symbol. */
3221 return 0;
3222 }
3223
3224 TYPE_VPTR_BASETYPE (type) = t;
3225 if (type == t) /* Our own class provides vtbl ptr */
3226 {
3227 for (i = TYPE_NFIELDS (t) - 1;
3228 i >= TYPE_N_BASECLASSES (t);
3229 --i)
3230 {
3231 char *name = TYPE_FIELD_NAME (t, i);
3232 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3233 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3234 {
3235 TYPE_VPTR_FIELDNO (type) = i;
3236 goto gotit;
3237 }
3238 }
3239 /* Virtual function table field not found. */
3240 complaint (&symfile_complaints,
3241 _("virtual function table pointer not found when defining class `%s'"),
3242 TYPE_NAME (type));
3243 return 0;
3244 }
3245 else
3246 {
3247 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3248 }
3249
3250 gotit:
3251 *pp = p + 1;
3252 }
3253 }
3254 return 1;
3255 }
3256
3257 static int
3258 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3259 {
3260 int n;
3261
3262 for (n = TYPE_NFN_FIELDS (type);
3263 fip->fnlist != NULL;
3264 fip->fnlist = fip->fnlist->next)
3265 {
3266 --n; /* Circumvent Sun3 compiler bug */
3267 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3268 }
3269 return 1;
3270 }
3271
3272 /* Create the vector of fields, and record how big it is.
3273 We need this info to record proper virtual function table information
3274 for this class's virtual functions. */
3275
3276 static int
3277 attach_fields_to_type (struct field_info *fip, struct type *type,
3278 struct objfile *objfile)
3279 {
3280 int nfields = 0;
3281 int non_public_fields = 0;
3282 struct nextfield *scan;
3283
3284 /* Count up the number of fields that we have, as well as taking note of
3285 whether or not there are any non-public fields, which requires us to
3286 allocate and build the private_field_bits and protected_field_bits
3287 bitfields. */
3288
3289 for (scan = fip->list; scan != NULL; scan = scan->next)
3290 {
3291 nfields++;
3292 if (scan->visibility != VISIBILITY_PUBLIC)
3293 {
3294 non_public_fields++;
3295 }
3296 }
3297
3298 /* Now we know how many fields there are, and whether or not there are any
3299 non-public fields. Record the field count, allocate space for the
3300 array of fields, and create blank visibility bitfields if necessary. */
3301
3302 TYPE_NFIELDS (type) = nfields;
3303 TYPE_FIELDS (type) = (struct field *)
3304 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3305 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3306
3307 if (non_public_fields)
3308 {
3309 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3310
3311 TYPE_FIELD_PRIVATE_BITS (type) =
3312 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3313 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3314
3315 TYPE_FIELD_PROTECTED_BITS (type) =
3316 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3317 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3318
3319 TYPE_FIELD_IGNORE_BITS (type) =
3320 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3321 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3322 }
3323
3324 /* Copy the saved-up fields into the field vector. Start from the head
3325 of the list, adding to the tail of the field array, so that they end
3326 up in the same order in the array in which they were added to the list. */
3327
3328 while (nfields-- > 0)
3329 {
3330 TYPE_FIELD (type, nfields) = fip->list->field;
3331 switch (fip->list->visibility)
3332 {
3333 case VISIBILITY_PRIVATE:
3334 SET_TYPE_FIELD_PRIVATE (type, nfields);
3335 break;
3336
3337 case VISIBILITY_PROTECTED:
3338 SET_TYPE_FIELD_PROTECTED (type, nfields);
3339 break;
3340
3341 case VISIBILITY_IGNORE:
3342 SET_TYPE_FIELD_IGNORE (type, nfields);
3343 break;
3344
3345 case VISIBILITY_PUBLIC:
3346 break;
3347
3348 default:
3349 /* Unknown visibility. Complain and treat it as public. */
3350 {
3351 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3352 fip->list->visibility);
3353 }
3354 break;
3355 }
3356 fip->list = fip->list->next;
3357 }
3358 return 1;
3359 }
3360
3361
3362 /* Complain that the compiler has emitted more than one definition for the
3363 structure type TYPE. */
3364 static void
3365 complain_about_struct_wipeout (struct type *type)
3366 {
3367 char *name = "";
3368 char *kind = "";
3369
3370 if (TYPE_TAG_NAME (type))
3371 {
3372 name = TYPE_TAG_NAME (type);
3373 switch (TYPE_CODE (type))
3374 {
3375 case TYPE_CODE_STRUCT: kind = "struct "; break;
3376 case TYPE_CODE_UNION: kind = "union "; break;
3377 case TYPE_CODE_ENUM: kind = "enum "; break;
3378 default: kind = "";
3379 }
3380 }
3381 else if (TYPE_NAME (type))
3382 {
3383 name = TYPE_NAME (type);
3384 kind = "";
3385 }
3386 else
3387 {
3388 name = "<unknown>";
3389 kind = "";
3390 }
3391
3392 complaint (&symfile_complaints,
3393 _("struct/union type gets multiply defined: %s%s"), kind, name);
3394 }
3395
3396
3397 /* Read the description of a structure (or union type) and return an object
3398 describing the type.
3399
3400 PP points to a character pointer that points to the next unconsumed token
3401 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3402 *PP will point to "4a:1,0,32;;".
3403
3404 TYPE points to an incomplete type that needs to be filled in.
3405
3406 OBJFILE points to the current objfile from which the stabs information is
3407 being read. (Note that it is redundant in that TYPE also contains a pointer
3408 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3409 */
3410
3411 static struct type *
3412 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3413 struct objfile *objfile)
3414 {
3415 struct cleanup *back_to;
3416 struct field_info fi;
3417
3418 fi.list = NULL;
3419 fi.fnlist = NULL;
3420
3421 /* When describing struct/union/class types in stabs, G++ always drops
3422 all qualifications from the name. So if you've got:
3423 struct A { ... struct B { ... }; ... };
3424 then G++ will emit stabs for `struct A::B' that call it simply
3425 `struct B'. Obviously, if you've got a real top-level definition for
3426 `struct B', or other nested definitions, this is going to cause
3427 problems.
3428
3429 Obviously, GDB can't fix this by itself, but it can at least avoid
3430 scribbling on existing structure type objects when new definitions
3431 appear. */
3432 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3433 || TYPE_STUB (type)))
3434 {
3435 complain_about_struct_wipeout (type);
3436
3437 /* It's probably best to return the type unchanged. */
3438 return type;
3439 }
3440
3441 back_to = make_cleanup (null_cleanup, 0);
3442
3443 INIT_CPLUS_SPECIFIC (type);
3444 TYPE_CODE (type) = type_code;
3445 TYPE_STUB (type) = 0;
3446
3447 /* First comes the total size in bytes. */
3448
3449 {
3450 int nbits;
3451 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3452 if (nbits != 0)
3453 return error_type (pp, objfile);
3454 }
3455
3456 /* Now read the baseclasses, if any, read the regular C struct or C++
3457 class member fields, attach the fields to the type, read the C++
3458 member functions, attach them to the type, and then read any tilde
3459 field (baseclass specifier for the class holding the main vtable). */
3460
3461 if (!read_baseclasses (&fi, pp, type, objfile)
3462 || !read_struct_fields (&fi, pp, type, objfile)
3463 || !attach_fields_to_type (&fi, type, objfile)
3464 || !read_member_functions (&fi, pp, type, objfile)
3465 || !attach_fn_fields_to_type (&fi, type)
3466 || !read_tilde_fields (&fi, pp, type, objfile))
3467 {
3468 type = error_type (pp, objfile);
3469 }
3470
3471 do_cleanups (back_to);
3472 return (type);
3473 }
3474
3475 /* Read a definition of an array type,
3476 and create and return a suitable type object.
3477 Also creates a range type which represents the bounds of that
3478 array. */
3479
3480 static struct type *
3481 read_array_type (char **pp, struct type *type,
3482 struct objfile *objfile)
3483 {
3484 struct type *index_type, *element_type, *range_type;
3485 int lower, upper;
3486 int adjustable = 0;
3487 int nbits;
3488
3489 /* Format of an array type:
3490 "ar<index type>;lower;upper;<array_contents_type>".
3491 OS9000: "arlower,upper;<array_contents_type>".
3492
3493 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3494 for these, produce a type like float[][]. */
3495
3496 {
3497 index_type = read_type (pp, objfile);
3498 if (**pp != ';')
3499 /* Improper format of array type decl. */
3500 return error_type (pp, objfile);
3501 ++*pp;
3502 }
3503
3504 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3505 {
3506 (*pp)++;
3507 adjustable = 1;
3508 }
3509 lower = read_huge_number (pp, ';', &nbits, 0);
3510
3511 if (nbits != 0)
3512 return error_type (pp, objfile);
3513
3514 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3515 {
3516 (*pp)++;
3517 adjustable = 1;
3518 }
3519 upper = read_huge_number (pp, ';', &nbits, 0);
3520 if (nbits != 0)
3521 return error_type (pp, objfile);
3522
3523 element_type = read_type (pp, objfile);
3524
3525 if (adjustable)
3526 {
3527 lower = 0;
3528 upper = -1;
3529 }
3530
3531 range_type =
3532 create_range_type ((struct type *) NULL, index_type, lower, upper);
3533 type = create_array_type (type, element_type, range_type);
3534
3535 return type;
3536 }
3537
3538
3539 /* Read a definition of an enumeration type,
3540 and create and return a suitable type object.
3541 Also defines the symbols that represent the values of the type. */
3542
3543 static struct type *
3544 read_enum_type (char **pp, struct type *type,
3545 struct objfile *objfile)
3546 {
3547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3548 char *p;
3549 char *name;
3550 long n;
3551 struct symbol *sym;
3552 int nsyms = 0;
3553 struct pending **symlist;
3554 struct pending *osyms, *syms;
3555 int o_nsyms;
3556 int nbits;
3557 int unsigned_enum = 1;
3558
3559 #if 0
3560 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3561 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3562 to do? For now, force all enum values to file scope. */
3563 if (within_function)
3564 symlist = &local_symbols;
3565 else
3566 #endif
3567 symlist = &file_symbols;
3568 osyms = *symlist;
3569 o_nsyms = osyms ? osyms->nsyms : 0;
3570
3571 /* The aix4 compiler emits an extra field before the enum members;
3572 my guess is it's a type of some sort. Just ignore it. */
3573 if (**pp == '-')
3574 {
3575 /* Skip over the type. */
3576 while (**pp != ':')
3577 (*pp)++;
3578
3579 /* Skip over the colon. */
3580 (*pp)++;
3581 }
3582
3583 /* Read the value-names and their values.
3584 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3585 A semicolon or comma instead of a NAME means the end. */
3586 while (**pp && **pp != ';' && **pp != ',')
3587 {
3588 STABS_CONTINUE (pp, objfile);
3589 p = *pp;
3590 while (*p != ':')
3591 p++;
3592 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3593 *pp = p + 1;
3594 n = read_huge_number (pp, ',', &nbits, 0);
3595 if (nbits != 0)
3596 return error_type (pp, objfile);
3597
3598 sym = (struct symbol *)
3599 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3600 memset (sym, 0, sizeof (struct symbol));
3601 SYMBOL_SET_LINKAGE_NAME (sym, name);
3602 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3603 SYMBOL_CLASS (sym) = LOC_CONST;
3604 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3605 SYMBOL_VALUE (sym) = n;
3606 if (n < 0)
3607 unsigned_enum = 0;
3608 add_symbol_to_list (sym, symlist);
3609 nsyms++;
3610 }
3611
3612 if (**pp == ';')
3613 (*pp)++; /* Skip the semicolon. */
3614
3615 /* Now fill in the fields of the type-structure. */
3616
3617 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3618 TYPE_CODE (type) = TYPE_CODE_ENUM;
3619 TYPE_STUB (type) = 0;
3620 if (unsigned_enum)
3621 TYPE_UNSIGNED (type) = 1;
3622 TYPE_NFIELDS (type) = nsyms;
3623 TYPE_FIELDS (type) = (struct field *)
3624 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3625 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3626
3627 /* Find the symbols for the values and put them into the type.
3628 The symbols can be found in the symlist that we put them on
3629 to cause them to be defined. osyms contains the old value
3630 of that symlist; everything up to there was defined by us. */
3631 /* Note that we preserve the order of the enum constants, so
3632 that in something like "enum {FOO, LAST_THING=FOO}" we print
3633 FOO, not LAST_THING. */
3634
3635 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3636 {
3637 int last = syms == osyms ? o_nsyms : 0;
3638 int j = syms->nsyms;
3639 for (; --j >= last; --n)
3640 {
3641 struct symbol *xsym = syms->symbol[j];
3642 SYMBOL_TYPE (xsym) = type;
3643 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3644 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3645 TYPE_FIELD_BITSIZE (type, n) = 0;
3646 }
3647 if (syms == osyms)
3648 break;
3649 }
3650
3651 return type;
3652 }
3653
3654 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3655 typedefs in every file (for int, long, etc):
3656
3657 type = b <signed> <width> <format type>; <offset>; <nbits>
3658 signed = u or s.
3659 optional format type = c or b for char or boolean.
3660 offset = offset from high order bit to start bit of type.
3661 width is # bytes in object of this type, nbits is # bits in type.
3662
3663 The width/offset stuff appears to be for small objects stored in
3664 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3665 FIXME. */
3666
3667 static struct type *
3668 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3669 {
3670 int type_bits;
3671 int nbits;
3672 int signed_type;
3673 enum type_code code = TYPE_CODE_INT;
3674
3675 switch (**pp)
3676 {
3677 case 's':
3678 signed_type = 1;
3679 break;
3680 case 'u':
3681 signed_type = 0;
3682 break;
3683 default:
3684 return error_type (pp, objfile);
3685 }
3686 (*pp)++;
3687
3688 /* For some odd reason, all forms of char put a c here. This is strange
3689 because no other type has this honor. We can safely ignore this because
3690 we actually determine 'char'acterness by the number of bits specified in
3691 the descriptor.
3692 Boolean forms, e.g Fortran logical*X, put a b here. */
3693
3694 if (**pp == 'c')
3695 (*pp)++;
3696 else if (**pp == 'b')
3697 {
3698 code = TYPE_CODE_BOOL;
3699 (*pp)++;
3700 }
3701
3702 /* The first number appears to be the number of bytes occupied
3703 by this type, except that unsigned short is 4 instead of 2.
3704 Since this information is redundant with the third number,
3705 we will ignore it. */
3706 read_huge_number (pp, ';', &nbits, 0);
3707 if (nbits != 0)
3708 return error_type (pp, objfile);
3709
3710 /* The second number is always 0, so ignore it too. */
3711 read_huge_number (pp, ';', &nbits, 0);
3712 if (nbits != 0)
3713 return error_type (pp, objfile);
3714
3715 /* The third number is the number of bits for this type. */
3716 type_bits = read_huge_number (pp, 0, &nbits, 0);
3717 if (nbits != 0)
3718 return error_type (pp, objfile);
3719 /* The type *should* end with a semicolon. If it are embedded
3720 in a larger type the semicolon may be the only way to know where
3721 the type ends. If this type is at the end of the stabstring we
3722 can deal with the omitted semicolon (but we don't have to like
3723 it). Don't bother to complain(), Sun's compiler omits the semicolon
3724 for "void". */
3725 if (**pp == ';')
3726 ++(*pp);
3727
3728 if (type_bits == 0)
3729 return init_type (TYPE_CODE_VOID, 1,
3730 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3731 objfile);
3732 else
3733 return init_type (code,
3734 type_bits / TARGET_CHAR_BIT,
3735 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3736 objfile);
3737 }
3738
3739 static struct type *
3740 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3741 {
3742 int nbits;
3743 int details;
3744 int nbytes;
3745 struct type *rettype;
3746
3747 /* The first number has more details about the type, for example
3748 FN_COMPLEX. */
3749 details = read_huge_number (pp, ';', &nbits, 0);
3750 if (nbits != 0)
3751 return error_type (pp, objfile);
3752
3753 /* The second number is the number of bytes occupied by this type */
3754 nbytes = read_huge_number (pp, ';', &nbits, 0);
3755 if (nbits != 0)
3756 return error_type (pp, objfile);
3757
3758 if (details == NF_COMPLEX || details == NF_COMPLEX16
3759 || details == NF_COMPLEX32)
3760 {
3761 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3762 TYPE_TARGET_TYPE (rettype)
3763 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3764 return rettype;
3765 }
3766
3767 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3768 }
3769
3770 /* Read a number from the string pointed to by *PP.
3771 The value of *PP is advanced over the number.
3772 If END is nonzero, the character that ends the
3773 number must match END, or an error happens;
3774 and that character is skipped if it does match.
3775 If END is zero, *PP is left pointing to that character.
3776
3777 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3778 the number is represented in an octal representation, assume that
3779 it is represented in a 2's complement representation with a size of
3780 TWOS_COMPLEMENT_BITS.
3781
3782 If the number fits in a long, set *BITS to 0 and return the value.
3783 If not, set *BITS to be the number of bits in the number and return 0.
3784
3785 If encounter garbage, set *BITS to -1 and return 0. */
3786
3787 static long
3788 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3789 {
3790 char *p = *pp;
3791 int sign = 1;
3792 int sign_bit = 0;
3793 long n = 0;
3794 int radix = 10;
3795 char overflow = 0;
3796 int nbits = 0;
3797 int c;
3798 long upper_limit;
3799 int twos_complement_representation = 0;
3800
3801 if (*p == '-')
3802 {
3803 sign = -1;
3804 p++;
3805 }
3806
3807 /* Leading zero means octal. GCC uses this to output values larger
3808 than an int (because that would be hard in decimal). */
3809 if (*p == '0')
3810 {
3811 radix = 8;
3812 p++;
3813 }
3814
3815 /* Skip extra zeros. */
3816 while (*p == '0')
3817 p++;
3818
3819 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3820 {
3821 /* Octal, possibly signed. Check if we have enough chars for a
3822 negative number. */
3823
3824 size_t len;
3825 char *p1 = p;
3826 while ((c = *p1) >= '0' && c < '8')
3827 p1++;
3828
3829 len = p1 - p;
3830 if (len > twos_complement_bits / 3
3831 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3832 {
3833 /* Ok, we have enough characters for a signed value, check
3834 for signness by testing if the sign bit is set. */
3835 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3836 c = *p - '0';
3837 if (c & (1 << sign_bit))
3838 {
3839 /* Definitely signed. */
3840 twos_complement_representation = 1;
3841 sign = -1;
3842 }
3843 }
3844 }
3845
3846 upper_limit = LONG_MAX / radix;
3847
3848 while ((c = *p++) >= '0' && c < ('0' + radix))
3849 {
3850 if (n <= upper_limit)
3851 {
3852 if (twos_complement_representation)
3853 {
3854 /* Octal, signed, twos complement representation. In
3855 this case, n is the corresponding absolute value. */
3856 if (n == 0)
3857 {
3858 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3859 n = -sn;
3860 }
3861 else
3862 {
3863 n *= radix;
3864 n -= c - '0';
3865 }
3866 }
3867 else
3868 {
3869 /* unsigned representation */
3870 n *= radix;
3871 n += c - '0'; /* FIXME this overflows anyway */
3872 }
3873 }
3874 else
3875 overflow = 1;
3876
3877 /* This depends on large values being output in octal, which is
3878 what GCC does. */
3879 if (radix == 8)
3880 {
3881 if (nbits == 0)
3882 {
3883 if (c == '0')
3884 /* Ignore leading zeroes. */
3885 ;
3886 else if (c == '1')
3887 nbits = 1;
3888 else if (c == '2' || c == '3')
3889 nbits = 2;
3890 else
3891 nbits = 3;
3892 }
3893 else
3894 nbits += 3;
3895 }
3896 }
3897 if (end)
3898 {
3899 if (c && c != end)
3900 {
3901 if (bits != NULL)
3902 *bits = -1;
3903 return 0;
3904 }
3905 }
3906 else
3907 --p;
3908
3909 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3910 {
3911 /* We were supposed to parse a number with maximum
3912 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3913 if (bits != NULL)
3914 *bits = -1;
3915 return 0;
3916 }
3917
3918 *pp = p;
3919 if (overflow)
3920 {
3921 if (nbits == 0)
3922 {
3923 /* Large decimal constants are an error (because it is hard to
3924 count how many bits are in them). */
3925 if (bits != NULL)
3926 *bits = -1;
3927 return 0;
3928 }
3929
3930 /* -0x7f is the same as 0x80. So deal with it by adding one to
3931 the number of bits. Two's complement represention octals
3932 can't have a '-' in front. */
3933 if (sign == -1 && !twos_complement_representation)
3934 ++nbits;
3935 if (bits)
3936 *bits = nbits;
3937 }
3938 else
3939 {
3940 if (bits)
3941 *bits = 0;
3942 return n * sign;
3943 }
3944 /* It's *BITS which has the interesting information. */
3945 return 0;
3946 }
3947
3948 static struct type *
3949 read_range_type (char **pp, int typenums[2], int type_size,
3950 struct objfile *objfile)
3951 {
3952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3953 char *orig_pp = *pp;
3954 int rangenums[2];
3955 long n2, n3;
3956 int n2bits, n3bits;
3957 int self_subrange;
3958 struct type *result_type;
3959 struct type *index_type = NULL;
3960
3961 /* First comes a type we are a subrange of.
3962 In C it is usually 0, 1 or the type being defined. */
3963 if (read_type_number (pp, rangenums) != 0)
3964 return error_type (pp, objfile);
3965 self_subrange = (rangenums[0] == typenums[0] &&
3966 rangenums[1] == typenums[1]);
3967
3968 if (**pp == '=')
3969 {
3970 *pp = orig_pp;
3971 index_type = read_type (pp, objfile);
3972 }
3973
3974 /* A semicolon should now follow; skip it. */
3975 if (**pp == ';')
3976 (*pp)++;
3977
3978 /* The remaining two operands are usually lower and upper bounds
3979 of the range. But in some special cases they mean something else. */
3980 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3981 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3982
3983 if (n2bits == -1 || n3bits == -1)
3984 return error_type (pp, objfile);
3985
3986 if (index_type)
3987 goto handle_true_range;
3988
3989 /* If limits are huge, must be large integral type. */
3990 if (n2bits != 0 || n3bits != 0)
3991 {
3992 char got_signed = 0;
3993 char got_unsigned = 0;
3994 /* Number of bits in the type. */
3995 int nbits = 0;
3996
3997 /* If a type size attribute has been specified, the bounds of
3998 the range should fit in this size. If the lower bounds needs
3999 more bits than the upper bound, then the type is signed. */
4000 if (n2bits <= type_size && n3bits <= type_size)
4001 {
4002 if (n2bits == type_size && n2bits > n3bits)
4003 got_signed = 1;
4004 else
4005 got_unsigned = 1;
4006 nbits = type_size;
4007 }
4008 /* Range from 0 to <large number> is an unsigned large integral type. */
4009 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4010 {
4011 got_unsigned = 1;
4012 nbits = n3bits;
4013 }
4014 /* Range from <large number> to <large number>-1 is a large signed
4015 integral type. Take care of the case where <large number> doesn't
4016 fit in a long but <large number>-1 does. */
4017 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4018 || (n2bits != 0 && n3bits == 0
4019 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4020 && n3 == LONG_MAX))
4021 {
4022 got_signed = 1;
4023 nbits = n2bits;
4024 }
4025
4026 if (got_signed || got_unsigned)
4027 {
4028 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4029 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4030 objfile);
4031 }
4032 else
4033 return error_type (pp, objfile);
4034 }
4035
4036 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4037 if (self_subrange && n2 == 0 && n3 == 0)
4038 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4039
4040 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4041 is the width in bytes.
4042
4043 Fortran programs appear to use this for complex types also. To
4044 distinguish between floats and complex, g77 (and others?) seem
4045 to use self-subranges for the complexes, and subranges of int for
4046 the floats.
4047
4048 Also note that for complexes, g77 sets n2 to the size of one of
4049 the member floats, not the whole complex beast. My guess is that
4050 this was to work well with pre-COMPLEX versions of gdb. */
4051
4052 if (n3 == 0 && n2 > 0)
4053 {
4054 struct type *float_type
4055 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4056
4057 if (self_subrange)
4058 {
4059 struct type *complex_type =
4060 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4061 TYPE_TARGET_TYPE (complex_type) = float_type;
4062 return complex_type;
4063 }
4064 else
4065 return float_type;
4066 }
4067
4068 /* If the upper bound is -1, it must really be an unsigned integral. */
4069
4070 else if (n2 == 0 && n3 == -1)
4071 {
4072 int bits = type_size;
4073 if (bits <= 0)
4074 {
4075 /* We don't know its size. It is unsigned int or unsigned
4076 long. GCC 2.3.3 uses this for long long too, but that is
4077 just a GDB 3.5 compatibility hack. */
4078 bits = gdbarch_int_bit (gdbarch);
4079 }
4080
4081 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4082 TYPE_FLAG_UNSIGNED, NULL, objfile);
4083 }
4084
4085 /* Special case: char is defined (Who knows why) as a subrange of
4086 itself with range 0-127. */
4087 else if (self_subrange && n2 == 0 && n3 == 127)
4088 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4089
4090 /* We used to do this only for subrange of self or subrange of int. */
4091 else if (n2 == 0)
4092 {
4093 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4094 "unsigned long", and we already checked for that,
4095 so don't need to test for it here. */
4096
4097 if (n3 < 0)
4098 /* n3 actually gives the size. */
4099 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4100 NULL, objfile);
4101
4102 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4103 unsigned n-byte integer. But do require n to be a power of
4104 two; we don't want 3- and 5-byte integers flying around. */
4105 {
4106 int bytes;
4107 unsigned long bits;
4108
4109 bits = n3;
4110 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4111 bits >>= 8;
4112 if (bits == 0
4113 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4114 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4115 objfile);
4116 }
4117 }
4118 /* I think this is for Convex "long long". Since I don't know whether
4119 Convex sets self_subrange, I also accept that particular size regardless
4120 of self_subrange. */
4121 else if (n3 == 0 && n2 < 0
4122 && (self_subrange
4123 || n2 == -gdbarch_long_long_bit
4124 (gdbarch) / TARGET_CHAR_BIT))
4125 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4126 else if (n2 == -n3 - 1)
4127 {
4128 if (n3 == 0x7f)
4129 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4130 if (n3 == 0x7fff)
4131 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4132 if (n3 == 0x7fffffff)
4133 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4134 }
4135
4136 /* We have a real range type on our hands. Allocate space and
4137 return a real pointer. */
4138 handle_true_range:
4139
4140 if (self_subrange)
4141 index_type = objfile_type (objfile)->builtin_int;
4142 else
4143 index_type = *dbx_lookup_type (rangenums, objfile);
4144 if (index_type == NULL)
4145 {
4146 /* Does this actually ever happen? Is that why we are worrying
4147 about dealing with it rather than just calling error_type? */
4148
4149 complaint (&symfile_complaints,
4150 _("base type %d of range type is not defined"), rangenums[1]);
4151
4152 index_type = objfile_type (objfile)->builtin_int;
4153 }
4154
4155 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4156 return (result_type);
4157 }
4158
4159 /* Read in an argument list. This is a list of types, separated by commas
4160 and terminated with END. Return the list of types read in, or NULL
4161 if there is an error. */
4162
4163 static struct field *
4164 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4165 int *varargsp)
4166 {
4167 /* FIXME! Remove this arbitrary limit! */
4168 struct type *types[1024]; /* allow for fns of 1023 parameters */
4169 int n = 0, i;
4170 struct field *rval;
4171
4172 while (**pp != end)
4173 {
4174 if (**pp != ',')
4175 /* Invalid argument list: no ','. */
4176 return NULL;
4177 (*pp)++;
4178 STABS_CONTINUE (pp, objfile);
4179 types[n++] = read_type (pp, objfile);
4180 }
4181 (*pp)++; /* get past `end' (the ':' character) */
4182
4183 if (n == 0)
4184 {
4185 /* We should read at least the THIS parameter here. Some broken stabs
4186 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4187 have been present ";-16,(0,43)" reference instead. This way the
4188 excessive ";" marker prematurely stops the parameters parsing. */
4189
4190 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4191 *varargsp = 0;
4192 }
4193 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4194 *varargsp = 1;
4195 else
4196 {
4197 n--;
4198 *varargsp = 0;
4199 }
4200
4201 rval = (struct field *) xmalloc (n * sizeof (struct field));
4202 memset (rval, 0, n * sizeof (struct field));
4203 for (i = 0; i < n; i++)
4204 rval[i].type = types[i];
4205 *nargsp = n;
4206 return rval;
4207 }
4208 \f
4209 /* Common block handling. */
4210
4211 /* List of symbols declared since the last BCOMM. This list is a tail
4212 of local_symbols. When ECOMM is seen, the symbols on the list
4213 are noted so their proper addresses can be filled in later,
4214 using the common block base address gotten from the assembler
4215 stabs. */
4216
4217 static struct pending *common_block;
4218 static int common_block_i;
4219
4220 /* Name of the current common block. We get it from the BCOMM instead of the
4221 ECOMM to match IBM documentation (even though IBM puts the name both places
4222 like everyone else). */
4223 static char *common_block_name;
4224
4225 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4226 to remain after this function returns. */
4227
4228 void
4229 common_block_start (char *name, struct objfile *objfile)
4230 {
4231 if (common_block_name != NULL)
4232 {
4233 complaint (&symfile_complaints,
4234 _("Invalid symbol data: common block within common block"));
4235 }
4236 common_block = local_symbols;
4237 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4238 common_block_name = obsavestring (name, strlen (name),
4239 &objfile->objfile_obstack);
4240 }
4241
4242 /* Process a N_ECOMM symbol. */
4243
4244 void
4245 common_block_end (struct objfile *objfile)
4246 {
4247 /* Symbols declared since the BCOMM are to have the common block
4248 start address added in when we know it. common_block and
4249 common_block_i point to the first symbol after the BCOMM in
4250 the local_symbols list; copy the list and hang it off the
4251 symbol for the common block name for later fixup. */
4252 int i;
4253 struct symbol *sym;
4254 struct pending *new = 0;
4255 struct pending *next;
4256 int j;
4257
4258 if (common_block_name == NULL)
4259 {
4260 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4261 return;
4262 }
4263
4264 sym = (struct symbol *)
4265 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4266 memset (sym, 0, sizeof (struct symbol));
4267 /* Note: common_block_name already saved on objfile_obstack */
4268 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4269 SYMBOL_CLASS (sym) = LOC_BLOCK;
4270
4271 /* Now we copy all the symbols which have been defined since the BCOMM. */
4272
4273 /* Copy all the struct pendings before common_block. */
4274 for (next = local_symbols;
4275 next != NULL && next != common_block;
4276 next = next->next)
4277 {
4278 for (j = 0; j < next->nsyms; j++)
4279 add_symbol_to_list (next->symbol[j], &new);
4280 }
4281
4282 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4283 NULL, it means copy all the local symbols (which we already did
4284 above). */
4285
4286 if (common_block != NULL)
4287 for (j = common_block_i; j < common_block->nsyms; j++)
4288 add_symbol_to_list (common_block->symbol[j], &new);
4289
4290 SYMBOL_TYPE (sym) = (struct type *) new;
4291
4292 /* Should we be putting local_symbols back to what it was?
4293 Does it matter? */
4294
4295 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4296 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4297 global_sym_chain[i] = sym;
4298 common_block_name = NULL;
4299 }
4300
4301 /* Add a common block's start address to the offset of each symbol
4302 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4303 the common block name). */
4304
4305 static void
4306 fix_common_block (struct symbol *sym, int valu)
4307 {
4308 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4309 for (; next; next = next->next)
4310 {
4311 int j;
4312 for (j = next->nsyms - 1; j >= 0; j--)
4313 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4314 }
4315 }
4316 \f
4317
4318
4319 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4320 See add_undefined_type for more details. */
4321
4322 static void
4323 add_undefined_type_noname (struct type *type, int typenums[2])
4324 {
4325 struct nat nat;
4326
4327 nat.typenums[0] = typenums [0];
4328 nat.typenums[1] = typenums [1];
4329 nat.type = type;
4330
4331 if (noname_undefs_length == noname_undefs_allocated)
4332 {
4333 noname_undefs_allocated *= 2;
4334 noname_undefs = (struct nat *)
4335 xrealloc ((char *) noname_undefs,
4336 noname_undefs_allocated * sizeof (struct nat));
4337 }
4338 noname_undefs[noname_undefs_length++] = nat;
4339 }
4340
4341 /* Add TYPE to the UNDEF_TYPES vector.
4342 See add_undefined_type for more details. */
4343
4344 static void
4345 add_undefined_type_1 (struct type *type)
4346 {
4347 if (undef_types_length == undef_types_allocated)
4348 {
4349 undef_types_allocated *= 2;
4350 undef_types = (struct type **)
4351 xrealloc ((char *) undef_types,
4352 undef_types_allocated * sizeof (struct type *));
4353 }
4354 undef_types[undef_types_length++] = type;
4355 }
4356
4357 /* What about types defined as forward references inside of a small lexical
4358 scope? */
4359 /* Add a type to the list of undefined types to be checked through
4360 once this file has been read in.
4361
4362 In practice, we actually maintain two such lists: The first list
4363 (UNDEF_TYPES) is used for types whose name has been provided, and
4364 concerns forward references (eg 'xs' or 'xu' forward references);
4365 the second list (NONAME_UNDEFS) is used for types whose name is
4366 unknown at creation time, because they were referenced through
4367 their type number before the actual type was declared.
4368 This function actually adds the given type to the proper list. */
4369
4370 static void
4371 add_undefined_type (struct type *type, int typenums[2])
4372 {
4373 if (TYPE_TAG_NAME (type) == NULL)
4374 add_undefined_type_noname (type, typenums);
4375 else
4376 add_undefined_type_1 (type);
4377 }
4378
4379 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4380
4381 static void
4382 cleanup_undefined_types_noname (struct objfile *objfile)
4383 {
4384 int i;
4385
4386 for (i = 0; i < noname_undefs_length; i++)
4387 {
4388 struct nat nat = noname_undefs[i];
4389 struct type **type;
4390
4391 type = dbx_lookup_type (nat.typenums, objfile);
4392 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4393 {
4394 /* The instance flags of the undefined type are still unset,
4395 and needs to be copied over from the reference type.
4396 Since replace_type expects them to be identical, we need
4397 to set these flags manually before hand. */
4398 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4399 replace_type (nat.type, *type);
4400 }
4401 }
4402
4403 noname_undefs_length = 0;
4404 }
4405
4406 /* Go through each undefined type, see if it's still undefined, and fix it
4407 up if possible. We have two kinds of undefined types:
4408
4409 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4410 Fix: update array length using the element bounds
4411 and the target type's length.
4412 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4413 yet defined at the time a pointer to it was made.
4414 Fix: Do a full lookup on the struct/union tag. */
4415
4416 static void
4417 cleanup_undefined_types_1 (void)
4418 {
4419 struct type **type;
4420
4421 /* Iterate over every undefined type, and look for a symbol whose type
4422 matches our undefined type. The symbol matches if:
4423 1. It is a typedef in the STRUCT domain;
4424 2. It has the same name, and same type code;
4425 3. The instance flags are identical.
4426
4427 It is important to check the instance flags, because we have seen
4428 examples where the debug info contained definitions such as:
4429
4430 "foo_t:t30=B31=xefoo_t:"
4431
4432 In this case, we have created an undefined type named "foo_t" whose
4433 instance flags is null (when processing "xefoo_t"), and then created
4434 another type with the same name, but with different instance flags
4435 ('B' means volatile). I think that the definition above is wrong,
4436 since the same type cannot be volatile and non-volatile at the same
4437 time, but we need to be able to cope with it when it happens. The
4438 approach taken here is to treat these two types as different. */
4439
4440 for (type = undef_types; type < undef_types + undef_types_length; type++)
4441 {
4442 switch (TYPE_CODE (*type))
4443 {
4444
4445 case TYPE_CODE_STRUCT:
4446 case TYPE_CODE_UNION:
4447 case TYPE_CODE_ENUM:
4448 {
4449 /* Check if it has been defined since. Need to do this here
4450 as well as in check_typedef to deal with the (legitimate in
4451 C though not C++) case of several types with the same name
4452 in different source files. */
4453 if (TYPE_STUB (*type))
4454 {
4455 struct pending *ppt;
4456 int i;
4457 /* Name of the type, without "struct" or "union" */
4458 char *typename = TYPE_TAG_NAME (*type);
4459
4460 if (typename == NULL)
4461 {
4462 complaint (&symfile_complaints, _("need a type name"));
4463 break;
4464 }
4465 for (ppt = file_symbols; ppt; ppt = ppt->next)
4466 {
4467 for (i = 0; i < ppt->nsyms; i++)
4468 {
4469 struct symbol *sym = ppt->symbol[i];
4470
4471 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4472 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4473 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4474 TYPE_CODE (*type))
4475 && (TYPE_INSTANCE_FLAGS (*type) ==
4476 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4477 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4478 typename) == 0)
4479 replace_type (*type, SYMBOL_TYPE (sym));
4480 }
4481 }
4482 }
4483 }
4484 break;
4485
4486 default:
4487 {
4488 complaint (&symfile_complaints,
4489 _("forward-referenced types left unresolved, "
4490 "type code %d."),
4491 TYPE_CODE (*type));
4492 }
4493 break;
4494 }
4495 }
4496
4497 undef_types_length = 0;
4498 }
4499
4500 /* Try to fix all the undefined types we ecountered while processing
4501 this unit. */
4502
4503 void
4504 cleanup_undefined_types (struct objfile *objfile)
4505 {
4506 cleanup_undefined_types_1 ();
4507 cleanup_undefined_types_noname (objfile);
4508 }
4509
4510 /* Scan through all of the global symbols defined in the object file,
4511 assigning values to the debugging symbols that need to be assigned
4512 to. Get these symbols from the minimal symbol table. */
4513
4514 void
4515 scan_file_globals (struct objfile *objfile)
4516 {
4517 int hash;
4518 struct minimal_symbol *msymbol;
4519 struct symbol *sym, *prev;
4520 struct objfile *resolve_objfile;
4521
4522 /* SVR4 based linkers copy referenced global symbols from shared
4523 libraries to the main executable.
4524 If we are scanning the symbols for a shared library, try to resolve
4525 them from the minimal symbols of the main executable first. */
4526
4527 if (symfile_objfile && objfile != symfile_objfile)
4528 resolve_objfile = symfile_objfile;
4529 else
4530 resolve_objfile = objfile;
4531
4532 while (1)
4533 {
4534 /* Avoid expensive loop through all minimal symbols if there are
4535 no unresolved symbols. */
4536 for (hash = 0; hash < HASHSIZE; hash++)
4537 {
4538 if (global_sym_chain[hash])
4539 break;
4540 }
4541 if (hash >= HASHSIZE)
4542 return;
4543
4544 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4545 {
4546 QUIT;
4547
4548 /* Skip static symbols. */
4549 switch (MSYMBOL_TYPE (msymbol))
4550 {
4551 case mst_file_text:
4552 case mst_file_data:
4553 case mst_file_bss:
4554 continue;
4555 default:
4556 break;
4557 }
4558
4559 prev = NULL;
4560
4561 /* Get the hash index and check all the symbols
4562 under that hash index. */
4563
4564 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4565
4566 for (sym = global_sym_chain[hash]; sym;)
4567 {
4568 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4569 SYMBOL_LINKAGE_NAME (sym)) == 0)
4570 {
4571 /* Splice this symbol out of the hash chain and
4572 assign the value we have to it. */
4573 if (prev)
4574 {
4575 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4576 }
4577 else
4578 {
4579 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4580 }
4581
4582 /* Check to see whether we need to fix up a common block. */
4583 /* Note: this code might be executed several times for
4584 the same symbol if there are multiple references. */
4585 if (sym)
4586 {
4587 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4588 {
4589 fix_common_block (sym,
4590 SYMBOL_VALUE_ADDRESS (msymbol));
4591 }
4592 else
4593 {
4594 SYMBOL_VALUE_ADDRESS (sym)
4595 = SYMBOL_VALUE_ADDRESS (msymbol);
4596 }
4597 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4598 }
4599
4600 if (prev)
4601 {
4602 sym = SYMBOL_VALUE_CHAIN (prev);
4603 }
4604 else
4605 {
4606 sym = global_sym_chain[hash];
4607 }
4608 }
4609 else
4610 {
4611 prev = sym;
4612 sym = SYMBOL_VALUE_CHAIN (sym);
4613 }
4614 }
4615 }
4616 if (resolve_objfile == objfile)
4617 break;
4618 resolve_objfile = objfile;
4619 }
4620
4621 /* Change the storage class of any remaining unresolved globals to
4622 LOC_UNRESOLVED and remove them from the chain. */
4623 for (hash = 0; hash < HASHSIZE; hash++)
4624 {
4625 sym = global_sym_chain[hash];
4626 while (sym)
4627 {
4628 prev = sym;
4629 sym = SYMBOL_VALUE_CHAIN (sym);
4630
4631 /* Change the symbol address from the misleading chain value
4632 to address zero. */
4633 SYMBOL_VALUE_ADDRESS (prev) = 0;
4634
4635 /* Complain about unresolved common block symbols. */
4636 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4637 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4638 else
4639 complaint (&symfile_complaints,
4640 _("%s: common block `%s' from global_sym_chain unresolved"),
4641 objfile->name, SYMBOL_PRINT_NAME (prev));
4642 }
4643 }
4644 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4645 }
4646
4647 /* Initialize anything that needs initializing when starting to read
4648 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4649 to a psymtab. */
4650
4651 void
4652 stabsread_init (void)
4653 {
4654 }
4655
4656 /* Initialize anything that needs initializing when a completely new
4657 symbol file is specified (not just adding some symbols from another
4658 file, e.g. a shared library). */
4659
4660 void
4661 stabsread_new_init (void)
4662 {
4663 /* Empty the hash table of global syms looking for values. */
4664 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4665 }
4666
4667 /* Initialize anything that needs initializing at the same time as
4668 start_symtab() is called. */
4669
4670 void
4671 start_stabs (void)
4672 {
4673 global_stabs = NULL; /* AIX COFF */
4674 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4675 n_this_object_header_files = 1;
4676 type_vector_length = 0;
4677 type_vector = (struct type **) 0;
4678
4679 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4680 common_block_name = NULL;
4681 }
4682
4683 /* Call after end_symtab() */
4684
4685 void
4686 end_stabs (void)
4687 {
4688 if (type_vector)
4689 {
4690 xfree (type_vector);
4691 }
4692 type_vector = 0;
4693 type_vector_length = 0;
4694 previous_stab_code = 0;
4695 }
4696
4697 void
4698 finish_global_stabs (struct objfile *objfile)
4699 {
4700 if (global_stabs)
4701 {
4702 patch_block_stabs (global_symbols, global_stabs, objfile);
4703 xfree (global_stabs);
4704 global_stabs = NULL;
4705 }
4706 }
4707
4708 /* Find the end of the name, delimited by a ':', but don't match
4709 ObjC symbols which look like -[Foo bar::]:bla. */
4710 static char *
4711 find_name_end (char *name)
4712 {
4713 char *s = name;
4714 if (s[0] == '-' || *s == '+')
4715 {
4716 /* Must be an ObjC method symbol. */
4717 if (s[1] != '[')
4718 {
4719 error (_("invalid symbol name \"%s\""), name);
4720 }
4721 s = strchr (s, ']');
4722 if (s == NULL)
4723 {
4724 error (_("invalid symbol name \"%s\""), name);
4725 }
4726 return strchr (s, ':');
4727 }
4728 else
4729 {
4730 return strchr (s, ':');
4731 }
4732 }
4733
4734 /* Initializer for this module */
4735
4736 void
4737 _initialize_stabsread (void)
4738 {
4739 rs6000_builtin_type_data = register_objfile_data ();
4740
4741 undef_types_allocated = 20;
4742 undef_types_length = 0;
4743 undef_types = (struct type **)
4744 xmalloc (undef_types_allocated * sizeof (struct type *));
4745
4746 noname_undefs_allocated = 20;
4747 noname_undefs_length = 0;
4748 noname_undefs = (struct nat *)
4749 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4750 }
This page took 0.129269 seconds and 4 git commands to generate.