b916245c0825d9b1d6c7ef3d4c866d60efb673fb
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Support routines for reading and decoding debugging information in
24 the "stabs" format. This format is used with many systems that use
25 the a.out object file format, as well as some systems that use
26 COFF or ELF where the stabs data is placed in a special section.
27 Avoid placing any object file format specific code in this file. */
28
29 #include "defs.h"
30 #include "gdb_string.h"
31 #include "bfd.h"
32 #include "gdb_obstack.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "expression.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "libaout.h"
40 #include "aout/aout64.h"
41 #include "gdb-stabs.h"
42 #include "buildsym.h"
43 #include "complaints.h"
44 #include "demangle.h"
45 #include "language.h"
46 #include "doublest.h"
47 #include "cp-abi.h"
48 #include "cp-support.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static char *get_substring (char **, int);
93
94 static struct type *dbx_alloc_type (int[2], struct objfile *);
95
96 static long read_huge_number (char **, int, int *);
97
98 static struct type *error_type (char **, struct objfile *);
99
100 static void
101 patch_block_stabs (struct pending *, struct pending_stabs *,
102 struct objfile *);
103
104 static void fix_common_block (struct symbol *, int);
105
106 static int read_type_number (char **, int *);
107
108 static struct type *read_type (char **, struct objfile *);
109
110 static struct type *read_range_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
113
114 static struct type *read_sun_floating_type (char **, int[2],
115 struct objfile *);
116
117 static struct type *read_enum_type (char **, struct type *, struct objfile *);
118
119 static struct type *rs6000_builtin_type (int);
120
121 static int
122 read_member_functions (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_struct_fields (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_baseclasses (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_tilde_fields (struct field_info *, char **, struct type *,
135 struct objfile *);
136
137 static int attach_fn_fields_to_type (struct field_info *, struct type *);
138
139 static int attach_fields_to_type (struct field_info *, struct type *,
140 struct objfile *);
141
142 static struct type *read_struct_type (char **, struct type *,
143 enum type_code,
144 struct objfile *);
145
146 static struct type *read_array_type (char **, struct type *,
147 struct objfile *);
148
149 static struct field *read_args (char **, int, struct objfile *, int *, int *);
150
151 static void add_undefined_type (struct type *);
152
153 static int
154 read_cpp_abbrev (struct field_info *, char **, struct type *,
155 struct objfile *);
156
157 static char *find_name_end (char *name);
158
159 static int process_reference (char **string);
160
161 static CORE_ADDR ref_search_value (int refnum);
162
163 void stabsread_clear_cache (void);
164
165 static const char vptr_name[] = "_vptr$";
166 static const char vb_name[] = "_vb$";
167
168 /* Define this as 1 if a pcc declaration of a char or short argument
169 gives the correct address. Otherwise assume pcc gives the
170 address of the corresponding int, which is not the same on a
171 big-endian machine. */
172
173 #if !defined (BELIEVE_PCC_PROMOTION)
174 #define BELIEVE_PCC_PROMOTION 0
175 #endif
176
177 static void
178 invalid_cpp_abbrev_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "invalid C++ abbreviation `%s'", arg1);
181 }
182
183 static void
184 reg_value_complaint (int arg1, int arg2, const char *arg3)
185 {
186 complaint (&symfile_complaints,
187 "register number %d too large (max %d) in symbol %s", arg1, arg2,
188 arg3);
189 }
190
191 static void
192 stabs_general_complaint (const char *arg1)
193 {
194 complaint (&symfile_complaints, "%s", arg1);
195 }
196
197 static void
198 lrs_general_complaint (const char *arg1)
199 {
200 complaint (&symfile_complaints, "%s", arg1);
201 }
202
203 /* Make a list of forward references which haven't been defined. */
204
205 static struct type **undef_types;
206 static int undef_types_allocated;
207 static int undef_types_length;
208 static struct symbol *current_symbol = NULL;
209
210 /* Check for and handle cretinous stabs symbol name continuation! */
211 #define STABS_CONTINUE(pp,objfile) \
212 do { \
213 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
214 *(pp) = next_symbol_text (objfile); \
215 } while (0)
216 \f
217
218 /* Look up a dbx type-number pair. Return the address of the slot
219 where the type for that number-pair is stored.
220 The number-pair is in TYPENUMS.
221
222 This can be used for finding the type associated with that pair
223 or for associating a new type with the pair. */
224
225 static struct type **
226 dbx_lookup_type (int typenums[2])
227 {
228 int filenum = typenums[0];
229 int index = typenums[1];
230 unsigned old_len;
231 int real_filenum;
232 struct header_file *f;
233 int f_orig_length;
234
235 if (filenum == -1) /* -1,-1 is for temporary types. */
236 return 0;
237
238 if (filenum < 0 || filenum >= n_this_object_header_files)
239 {
240 complaint (&symfile_complaints,
241 "Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
242 filenum, index, symnum);
243 goto error_return;
244 }
245
246 if (filenum == 0)
247 {
248 if (index < 0)
249 {
250 /* Caller wants address of address of type. We think
251 that negative (rs6k builtin) types will never appear as
252 "lvalues", (nor should they), so we stuff the real type
253 pointer into a temp, and return its address. If referenced,
254 this will do the right thing. */
255 static struct type *temp_type;
256
257 temp_type = rs6000_builtin_type (index);
258 return &temp_type;
259 }
260
261 /* Type is defined outside of header files.
262 Find it in this object file's type vector. */
263 if (index >= type_vector_length)
264 {
265 old_len = type_vector_length;
266 if (old_len == 0)
267 {
268 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
269 type_vector = (struct type **)
270 xmalloc (type_vector_length * sizeof (struct type *));
271 }
272 while (index >= type_vector_length)
273 {
274 type_vector_length *= 2;
275 }
276 type_vector = (struct type **)
277 xrealloc ((char *) type_vector,
278 (type_vector_length * sizeof (struct type *)));
279 memset (&type_vector[old_len], 0,
280 (type_vector_length - old_len) * sizeof (struct type *));
281 }
282 return (&type_vector[index]);
283 }
284 else
285 {
286 real_filenum = this_object_header_files[filenum];
287
288 if (real_filenum >= N_HEADER_FILES (current_objfile))
289 {
290 struct type *temp_type;
291 struct type **temp_type_p;
292
293 warning ("GDB internal error: bad real_filenum");
294
295 error_return:
296 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
297 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
298 *temp_type_p = temp_type;
299 return temp_type_p;
300 }
301
302 f = HEADER_FILES (current_objfile) + real_filenum;
303
304 f_orig_length = f->length;
305 if (index >= f_orig_length)
306 {
307 while (index >= f->length)
308 {
309 f->length *= 2;
310 }
311 f->vector = (struct type **)
312 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
313 memset (&f->vector[f_orig_length], 0,
314 (f->length - f_orig_length) * sizeof (struct type *));
315 }
316 return (&f->vector[index]);
317 }
318 }
319
320 /* Make sure there is a type allocated for type numbers TYPENUMS
321 and return the type object.
322 This can create an empty (zeroed) type object.
323 TYPENUMS may be (-1, -1) to return a new type object that is not
324 put into the type vector, and so may not be referred to by number. */
325
326 static struct type *
327 dbx_alloc_type (int typenums[2], struct objfile *objfile)
328 {
329 struct type **type_addr;
330
331 if (typenums[0] == -1)
332 {
333 return (alloc_type (objfile));
334 }
335
336 type_addr = dbx_lookup_type (typenums);
337
338 /* If we are referring to a type not known at all yet,
339 allocate an empty type for it.
340 We will fill it in later if we find out how. */
341 if (*type_addr == 0)
342 {
343 *type_addr = alloc_type (objfile);
344 }
345
346 return (*type_addr);
347 }
348
349 /* for all the stabs in a given stab vector, build appropriate types
350 and fix their symbols in given symbol vector. */
351
352 static void
353 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
354 struct objfile *objfile)
355 {
356 int ii;
357 char *name;
358 char *pp;
359 struct symbol *sym;
360
361 if (stabs)
362 {
363
364 /* for all the stab entries, find their corresponding symbols and
365 patch their types! */
366
367 for (ii = 0; ii < stabs->count; ++ii)
368 {
369 name = stabs->stab[ii];
370 pp = (char *) strchr (name, ':');
371 while (pp[1] == ':')
372 {
373 pp += 2;
374 pp = (char *) strchr (pp, ':');
375 }
376 sym = find_symbol_in_list (symbols, name, pp - name);
377 if (!sym)
378 {
379 /* FIXME-maybe: it would be nice if we noticed whether
380 the variable was defined *anywhere*, not just whether
381 it is defined in this compilation unit. But neither
382 xlc or GCC seem to need such a definition, and until
383 we do psymtabs (so that the minimal symbols from all
384 compilation units are available now), I'm not sure
385 how to get the information. */
386
387 /* On xcoff, if a global is defined and never referenced,
388 ld will remove it from the executable. There is then
389 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
390 sym = (struct symbol *)
391 obstack_alloc (&objfile->symbol_obstack,
392 sizeof (struct symbol));
393
394 memset (sym, 0, sizeof (struct symbol));
395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
396 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
397 DEPRECATED_SYMBOL_NAME (sym) =
398 obsavestring (name, pp - name, &objfile->symbol_obstack);
399 pp += 2;
400 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
401 {
402 /* I don't think the linker does this with functions,
403 so as far as I know this is never executed.
404 But it doesn't hurt to check. */
405 SYMBOL_TYPE (sym) =
406 lookup_function_type (read_type (&pp, objfile));
407 }
408 else
409 {
410 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
411 }
412 add_symbol_to_list (sym, &global_symbols);
413 }
414 else
415 {
416 pp += 2;
417 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
418 {
419 SYMBOL_TYPE (sym) =
420 lookup_function_type (read_type (&pp, objfile));
421 }
422 else
423 {
424 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
425 }
426 }
427 }
428 }
429 }
430 \f
431
432 /* Read a number by which a type is referred to in dbx data,
433 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
434 Just a single number N is equivalent to (0,N).
435 Return the two numbers by storing them in the vector TYPENUMS.
436 TYPENUMS will then be used as an argument to dbx_lookup_type.
437
438 Returns 0 for success, -1 for error. */
439
440 static int
441 read_type_number (char **pp, int *typenums)
442 {
443 int nbits;
444 if (**pp == '(')
445 {
446 (*pp)++;
447 typenums[0] = read_huge_number (pp, ',', &nbits);
448 if (nbits != 0)
449 return -1;
450 typenums[1] = read_huge_number (pp, ')', &nbits);
451 if (nbits != 0)
452 return -1;
453 }
454 else
455 {
456 typenums[0] = 0;
457 typenums[1] = read_huge_number (pp, 0, &nbits);
458 if (nbits != 0)
459 return -1;
460 }
461 return 0;
462 }
463 \f
464
465 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
466 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
467 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
468 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
469
470 /* Structure for storing pointers to reference definitions for fast lookup
471 during "process_later". */
472
473 struct ref_map
474 {
475 char *stabs;
476 CORE_ADDR value;
477 struct symbol *sym;
478 };
479
480 #define MAX_CHUNK_REFS 100
481 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
482 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
483
484 static struct ref_map *ref_map;
485
486 /* Ptr to free cell in chunk's linked list. */
487 static int ref_count = 0;
488
489 /* Number of chunks malloced. */
490 static int ref_chunk = 0;
491
492 /* This file maintains a cache of stabs aliases found in the symbol
493 table. If the symbol table changes, this cache must be cleared
494 or we are left holding onto data in invalid obstacks. */
495 void
496 stabsread_clear_cache (void)
497 {
498 ref_count = 0;
499 ref_chunk = 0;
500 }
501
502 /* Create array of pointers mapping refids to symbols and stab strings.
503 Add pointers to reference definition symbols and/or their values as we
504 find them, using their reference numbers as our index.
505 These will be used later when we resolve references. */
506 void
507 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
508 {
509 if (ref_count == 0)
510 ref_chunk = 0;
511 if (refnum >= ref_count)
512 ref_count = refnum + 1;
513 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
514 {
515 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
516 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
517 ref_map = (struct ref_map *)
518 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
519 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
520 ref_chunk += new_chunks;
521 }
522 ref_map[refnum].stabs = stabs;
523 ref_map[refnum].sym = sym;
524 ref_map[refnum].value = value;
525 }
526
527 /* Return defined sym for the reference REFNUM. */
528 struct symbol *
529 ref_search (int refnum)
530 {
531 if (refnum < 0 || refnum > ref_count)
532 return 0;
533 return ref_map[refnum].sym;
534 }
535
536 /* Return value for the reference REFNUM. */
537
538 static CORE_ADDR
539 ref_search_value (int refnum)
540 {
541 if (refnum < 0 || refnum > ref_count)
542 return 0;
543 return ref_map[refnum].value;
544 }
545
546 /* Parse a reference id in STRING and return the resulting
547 reference number. Move STRING beyond the reference id. */
548
549 static int
550 process_reference (char **string)
551 {
552 char *p;
553 int refnum = 0;
554
555 if (**string != '#')
556 return 0;
557
558 /* Advance beyond the initial '#'. */
559 p = *string + 1;
560
561 /* Read number as reference id. */
562 while (*p && isdigit (*p))
563 {
564 refnum = refnum * 10 + *p - '0';
565 p++;
566 }
567 *string = p;
568 return refnum;
569 }
570
571 /* If STRING defines a reference, store away a pointer to the reference
572 definition for later use. Return the reference number. */
573
574 int
575 symbol_reference_defined (char **string)
576 {
577 char *p = *string;
578 int refnum = 0;
579
580 refnum = process_reference (&p);
581
582 /* Defining symbols end in '=' */
583 if (*p == '=')
584 {
585 /* Symbol is being defined here. */
586 *string = p + 1;
587 return refnum;
588 }
589 else
590 {
591 /* Must be a reference. Either the symbol has already been defined,
592 or this is a forward reference to it. */
593 *string = p;
594 return -1;
595 }
596 }
597
598 struct symbol *
599 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
600 struct objfile *objfile)
601 {
602 struct symbol *sym;
603 char *p = (char *) find_name_end (string);
604 int deftype;
605 int synonym = 0;
606 int i;
607
608 /* We would like to eliminate nameless symbols, but keep their types.
609 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
610 to type 2, but, should not create a symbol to address that type. Since
611 the symbol will be nameless, there is no way any user can refer to it. */
612
613 int nameless;
614
615 /* Ignore syms with empty names. */
616 if (string[0] == 0)
617 return 0;
618
619 /* Ignore old-style symbols from cc -go */
620 if (p == 0)
621 return 0;
622
623 while (p[1] == ':')
624 {
625 p += 2;
626 p = strchr (p, ':');
627 }
628
629 /* If a nameless stab entry, all we need is the type, not the symbol.
630 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
631 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
632
633 current_symbol = sym = (struct symbol *)
634 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
635 memset (sym, 0, sizeof (struct symbol));
636
637 switch (type & N_TYPE)
638 {
639 case N_TEXT:
640 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
641 break;
642 case N_DATA:
643 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
644 break;
645 case N_BSS:
646 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
647 break;
648 }
649
650 if (processing_gcc_compilation)
651 {
652 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
653 number of bytes occupied by a type or object, which we ignore. */
654 SYMBOL_LINE (sym) = desc;
655 }
656 else
657 {
658 SYMBOL_LINE (sym) = 0; /* unknown */
659 }
660
661 if (is_cplus_marker (string[0]))
662 {
663 /* Special GNU C++ names. */
664 switch (string[1])
665 {
666 case 't':
667 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
668 &objfile->symbol_obstack);
669 break;
670
671 case 'v': /* $vtbl_ptr_type */
672 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
673 goto normal;
674
675 case 'e':
676 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
677 &objfile->symbol_obstack);
678 break;
679
680 case '_':
681 /* This was an anonymous type that was never fixed up. */
682 goto normal;
683
684 #ifdef STATIC_TRANSFORM_NAME
685 case 'X':
686 /* SunPRO (3.0 at least) static variable encoding. */
687 goto normal;
688 #endif
689
690 default:
691 complaint (&symfile_complaints, "Unknown C++ symbol name `%s'",
692 string);
693 goto normal; /* Do *something* with it */
694 }
695 }
696 else
697 {
698 normal:
699 SYMBOL_LANGUAGE (sym) = current_subfile->language;
700 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
701 }
702 p++;
703
704 /* Determine the type of name being defined. */
705 #if 0
706 /* Getting GDB to correctly skip the symbol on an undefined symbol
707 descriptor and not ever dump core is a very dodgy proposition if
708 we do things this way. I say the acorn RISC machine can just
709 fix their compiler. */
710 /* The Acorn RISC machine's compiler can put out locals that don't
711 start with "234=" or "(3,4)=", so assume anything other than the
712 deftypes we know how to handle is a local. */
713 if (!strchr ("cfFGpPrStTvVXCR", *p))
714 #else
715 if (isdigit (*p) || *p == '(' || *p == '-')
716 #endif
717 deftype = 'l';
718 else
719 deftype = *p++;
720
721 switch (deftype)
722 {
723 case 'c':
724 /* c is a special case, not followed by a type-number.
725 SYMBOL:c=iVALUE for an integer constant symbol.
726 SYMBOL:c=rVALUE for a floating constant symbol.
727 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
728 e.g. "b:c=e6,0" for "const b = blob1"
729 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
730 if (*p != '=')
731 {
732 SYMBOL_CLASS (sym) = LOC_CONST;
733 SYMBOL_TYPE (sym) = error_type (&p, objfile);
734 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
735 add_symbol_to_list (sym, &file_symbols);
736 return sym;
737 }
738 ++p;
739 switch (*p++)
740 {
741 case 'r':
742 {
743 double d = atof (p);
744 char *dbl_valu;
745
746 /* FIXME-if-picky-about-floating-accuracy: Should be using
747 target arithmetic to get the value. real.c in GCC
748 probably has the necessary code. */
749
750 /* FIXME: lookup_fundamental_type is a hack. We should be
751 creating a type especially for the type of float constants.
752 Problem is, what type should it be?
753
754 Also, what should the name of this type be? Should we
755 be using 'S' constants (see stabs.texinfo) instead? */
756
757 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
758 FT_DBL_PREC_FLOAT);
759 dbl_valu = (char *)
760 obstack_alloc (&objfile->symbol_obstack,
761 TYPE_LENGTH (SYMBOL_TYPE (sym)));
762 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
763 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
764 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
765 }
766 break;
767 case 'i':
768 {
769 /* Defining integer constants this way is kind of silly,
770 since 'e' constants allows the compiler to give not
771 only the value, but the type as well. C has at least
772 int, long, unsigned int, and long long as constant
773 types; other languages probably should have at least
774 unsigned as well as signed constants. */
775
776 /* We just need one int constant type for all objfiles.
777 It doesn't depend on languages or anything (arguably its
778 name should be a language-specific name for a type of
779 that size, but I'm inclined to say that if the compiler
780 wants a nice name for the type, it can use 'e'). */
781 static struct type *int_const_type;
782
783 /* Yes, this is as long as a *host* int. That is because we
784 use atoi. */
785 if (int_const_type == NULL)
786 int_const_type =
787 init_type (TYPE_CODE_INT,
788 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
789 "integer constant",
790 (struct objfile *) NULL);
791 SYMBOL_TYPE (sym) = int_const_type;
792 SYMBOL_VALUE (sym) = atoi (p);
793 SYMBOL_CLASS (sym) = LOC_CONST;
794 }
795 break;
796 case 'e':
797 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
798 can be represented as integral.
799 e.g. "b:c=e6,0" for "const b = blob1"
800 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
801 {
802 SYMBOL_CLASS (sym) = LOC_CONST;
803 SYMBOL_TYPE (sym) = read_type (&p, objfile);
804
805 if (*p != ',')
806 {
807 SYMBOL_TYPE (sym) = error_type (&p, objfile);
808 break;
809 }
810 ++p;
811
812 /* If the value is too big to fit in an int (perhaps because
813 it is unsigned), or something like that, we silently get
814 a bogus value. The type and everything else about it is
815 correct. Ideally, we should be using whatever we have
816 available for parsing unsigned and long long values,
817 however. */
818 SYMBOL_VALUE (sym) = atoi (p);
819 }
820 break;
821 default:
822 {
823 SYMBOL_CLASS (sym) = LOC_CONST;
824 SYMBOL_TYPE (sym) = error_type (&p, objfile);
825 }
826 }
827 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
828 add_symbol_to_list (sym, &file_symbols);
829 return sym;
830
831 case 'C':
832 /* The name of a caught exception. */
833 SYMBOL_TYPE (sym) = read_type (&p, objfile);
834 SYMBOL_CLASS (sym) = LOC_LABEL;
835 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
836 SYMBOL_VALUE_ADDRESS (sym) = valu;
837 add_symbol_to_list (sym, &local_symbols);
838 break;
839
840 case 'f':
841 /* A static function definition. */
842 SYMBOL_TYPE (sym) = read_type (&p, objfile);
843 SYMBOL_CLASS (sym) = LOC_BLOCK;
844 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
845 add_symbol_to_list (sym, &file_symbols);
846 /* fall into process_function_types. */
847
848 process_function_types:
849 /* Function result types are described as the result type in stabs.
850 We need to convert this to the function-returning-type-X type
851 in GDB. E.g. "int" is converted to "function returning int". */
852 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
853 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
854
855 /* All functions in C++ have prototypes. Stabs does not offer an
856 explicit way to identify prototyped or unprototyped functions,
857 but both GCC and Sun CC emit stabs for the "call-as" type rather
858 than the "declared-as" type for unprototyped functions, so
859 we treat all functions as if they were prototyped. This is used
860 primarily for promotion when calling the function from GDB. */
861 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
862
863 /* fall into process_prototype_types */
864
865 process_prototype_types:
866 /* Sun acc puts declared types of arguments here. */
867 if (*p == ';')
868 {
869 struct type *ftype = SYMBOL_TYPE (sym);
870 int nsemi = 0;
871 int nparams = 0;
872 char *p1 = p;
873
874 /* Obtain a worst case guess for the number of arguments
875 by counting the semicolons. */
876 while (*p1)
877 {
878 if (*p1++ == ';')
879 nsemi++;
880 }
881
882 /* Allocate parameter information fields and fill them in. */
883 TYPE_FIELDS (ftype) = (struct field *)
884 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
885 while (*p++ == ';')
886 {
887 struct type *ptype;
888
889 /* A type number of zero indicates the start of varargs.
890 FIXME: GDB currently ignores vararg functions. */
891 if (p[0] == '0' && p[1] == '\0')
892 break;
893 ptype = read_type (&p, objfile);
894
895 /* The Sun compilers mark integer arguments, which should
896 be promoted to the width of the calling conventions, with
897 a type which references itself. This type is turned into
898 a TYPE_CODE_VOID type by read_type, and we have to turn
899 it back into builtin_type_int here.
900 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
901 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
902 ptype = builtin_type_int;
903 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
904 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
905 }
906 TYPE_NFIELDS (ftype) = nparams;
907 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
908 }
909 break;
910
911 case 'F':
912 /* A global function definition. */
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914 SYMBOL_CLASS (sym) = LOC_BLOCK;
915 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
916 add_symbol_to_list (sym, &global_symbols);
917 goto process_function_types;
918
919 case 'G':
920 /* For a class G (global) symbol, it appears that the
921 value is not correct. It is necessary to search for the
922 corresponding linker definition to find the value.
923 These definitions appear at the end of the namelist. */
924 SYMBOL_TYPE (sym) = read_type (&p, objfile);
925 SYMBOL_CLASS (sym) = LOC_STATIC;
926 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
927 /* Don't add symbol references to global_sym_chain.
928 Symbol references don't have valid names and wont't match up with
929 minimal symbols when the global_sym_chain is relocated.
930 We'll fixup symbol references when we fixup the defining symbol. */
931 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
932 {
933 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
934 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
935 global_sym_chain[i] = sym;
936 }
937 add_symbol_to_list (sym, &global_symbols);
938 break;
939
940 /* This case is faked by a conditional above,
941 when there is no code letter in the dbx data.
942 Dbx data never actually contains 'l'. */
943 case 's':
944 case 'l':
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946 SYMBOL_CLASS (sym) = LOC_LOCAL;
947 SYMBOL_VALUE (sym) = valu;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &local_symbols);
950 break;
951
952 case 'p':
953 if (*p == 'F')
954 /* pF is a two-letter code that means a function parameter in Fortran.
955 The type-number specifies the type of the return value.
956 Translate it into a pointer-to-function type. */
957 {
958 p++;
959 SYMBOL_TYPE (sym)
960 = lookup_pointer_type
961 (lookup_function_type (read_type (&p, objfile)));
962 }
963 else
964 SYMBOL_TYPE (sym) = read_type (&p, objfile);
965
966 SYMBOL_CLASS (sym) = LOC_ARG;
967 SYMBOL_VALUE (sym) = valu;
968 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
969 add_symbol_to_list (sym, &local_symbols);
970
971 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
972 {
973 /* On little-endian machines, this crud is never necessary,
974 and, if the extra bytes contain garbage, is harmful. */
975 break;
976 }
977
978 /* If it's gcc-compiled, if it says `short', believe it. */
979 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
980 break;
981
982 if (!BELIEVE_PCC_PROMOTION)
983 {
984 /* This is the signed type which arguments get promoted to. */
985 static struct type *pcc_promotion_type;
986 /* This is the unsigned type which arguments get promoted to. */
987 static struct type *pcc_unsigned_promotion_type;
988
989 /* Call it "int" because this is mainly C lossage. */
990 if (pcc_promotion_type == NULL)
991 pcc_promotion_type =
992 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
993 0, "int", NULL);
994
995 if (pcc_unsigned_promotion_type == NULL)
996 pcc_unsigned_promotion_type =
997 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
998 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
999
1000 if (BELIEVE_PCC_PROMOTION_TYPE)
1001 {
1002 /* This is defined on machines (e.g. sparc) where we
1003 should believe the type of a PCC 'short' argument,
1004 but shouldn't believe the address (the address is the
1005 address of the corresponding int).
1006
1007 My guess is that this correction, as opposed to
1008 changing the parameter to an 'int' (as done below,
1009 for PCC on most machines), is the right thing to do
1010 on all machines, but I don't want to risk breaking
1011 something that already works. On most PCC machines,
1012 the sparc problem doesn't come up because the calling
1013 function has to zero the top bytes (not knowing
1014 whether the called function wants an int or a short),
1015 so there is little practical difference between an
1016 int and a short (except perhaps what happens when the
1017 GDB user types "print short_arg = 0x10000;").
1018
1019 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1020 compiler actually produces the correct address (we
1021 don't need to fix it up). I made this code adapt so
1022 that it will offset the symbol if it was pointing at
1023 an int-aligned location and not otherwise. This way
1024 you can use the same gdb for 4.0.x and 4.1 systems.
1025
1026 If the parameter is shorter than an int, and is
1027 integral (e.g. char, short, or unsigned equivalent),
1028 and is claimed to be passed on an integer boundary,
1029 don't believe it! Offset the parameter's address to
1030 the tail-end of that integer. */
1031
1032 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1033 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1034 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1035 {
1036 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1037 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1038 }
1039 break;
1040 }
1041 else
1042 {
1043 /* If PCC says a parameter is a short or a char,
1044 it is really an int. */
1045 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1046 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1047 {
1048 SYMBOL_TYPE (sym) =
1049 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1050 ? pcc_unsigned_promotion_type
1051 : pcc_promotion_type;
1052 }
1053 break;
1054 }
1055 }
1056
1057 case 'P':
1058 /* acc seems to use P to declare the prototypes of functions that
1059 are referenced by this file. gdb is not prepared to deal
1060 with this extra information. FIXME, it ought to. */
1061 if (type == N_FUN)
1062 {
1063 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1064 goto process_prototype_types;
1065 }
1066 /*FALLTHROUGH */
1067
1068 case 'R':
1069 /* Parameter which is in a register. */
1070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1071 SYMBOL_CLASS (sym) = LOC_REGPARM;
1072 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1073 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1074 {
1075 reg_value_complaint (SYMBOL_VALUE (sym),
1076 NUM_REGS + NUM_PSEUDO_REGS,
1077 SYMBOL_PRINT_NAME (sym));
1078 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1079 }
1080 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1081 add_symbol_to_list (sym, &local_symbols);
1082 break;
1083
1084 case 'r':
1085 /* Register variable (either global or local). */
1086 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1087 SYMBOL_CLASS (sym) = LOC_REGISTER;
1088 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1089 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1090 {
1091 reg_value_complaint (SYMBOL_VALUE (sym),
1092 NUM_REGS + NUM_PSEUDO_REGS,
1093 SYMBOL_PRINT_NAME (sym));
1094 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1095 }
1096 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1097 if (within_function)
1098 {
1099 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1100 the same name to represent an argument passed in a
1101 register. GCC uses 'P' for the same case. So if we find
1102 such a symbol pair we combine it into one 'P' symbol.
1103 For Sun cc we need to do this regardless of
1104 stabs_argument_has_addr, because the compiler puts out
1105 the 'p' symbol even if it never saves the argument onto
1106 the stack.
1107
1108 On most machines, we want to preserve both symbols, so
1109 that we can still get information about what is going on
1110 with the stack (VAX for computing args_printed, using
1111 stack slots instead of saved registers in backtraces,
1112 etc.).
1113
1114 Note that this code illegally combines
1115 main(argc) struct foo argc; { register struct foo argc; }
1116 but this case is considered pathological and causes a warning
1117 from a decent compiler. */
1118
1119 if (local_symbols
1120 && local_symbols->nsyms > 0
1121 #ifndef USE_REGISTER_NOT_ARG
1122 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1123 SYMBOL_TYPE (sym))
1124 #endif
1125 )
1126 {
1127 struct symbol *prev_sym;
1128 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1129 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1130 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1131 && STREQ (DEPRECATED_SYMBOL_NAME (prev_sym), DEPRECATED_SYMBOL_NAME (sym)))
1132 {
1133 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1134 /* Use the type from the LOC_REGISTER; that is the type
1135 that is actually in that register. */
1136 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1137 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1138 sym = prev_sym;
1139 break;
1140 }
1141 }
1142 add_symbol_to_list (sym, &local_symbols);
1143 }
1144 else
1145 add_symbol_to_list (sym, &file_symbols);
1146 break;
1147
1148 case 'S':
1149 /* Static symbol at top level of file */
1150 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1151 SYMBOL_CLASS (sym) = LOC_STATIC;
1152 SYMBOL_VALUE_ADDRESS (sym) = valu;
1153 #ifdef STATIC_TRANSFORM_NAME
1154 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1155 {
1156 struct minimal_symbol *msym;
1157 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1158 if (msym != NULL)
1159 {
1160 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1161 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1162 }
1163 }
1164 #endif
1165 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1166 add_symbol_to_list (sym, &file_symbols);
1167 break;
1168
1169 case 't':
1170 /* Typedef */
1171 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1172
1173 /* For a nameless type, we don't want a create a symbol, thus we
1174 did not use `sym'. Return without further processing. */
1175 if (nameless)
1176 return NULL;
1177
1178 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1179 SYMBOL_VALUE (sym) = valu;
1180 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1181 /* C++ vagaries: we may have a type which is derived from
1182 a base type which did not have its name defined when the
1183 derived class was output. We fill in the derived class's
1184 base part member's name here in that case. */
1185 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1186 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1187 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1188 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1189 {
1190 int j;
1191 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1192 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1193 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1194 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1195 }
1196
1197 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1198 {
1199 /* gcc-2.6 or later (when using -fvtable-thunks)
1200 emits a unique named type for a vtable entry.
1201 Some gdb code depends on that specific name. */
1202 extern const char vtbl_ptr_name[];
1203
1204 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1205 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1206 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1207 {
1208 /* If we are giving a name to a type such as "pointer to
1209 foo" or "function returning foo", we better not set
1210 the TYPE_NAME. If the program contains "typedef char
1211 *caddr_t;", we don't want all variables of type char
1212 * to print as caddr_t. This is not just a
1213 consequence of GDB's type management; PCC and GCC (at
1214 least through version 2.4) both output variables of
1215 either type char * or caddr_t with the type number
1216 defined in the 't' symbol for caddr_t. If a future
1217 compiler cleans this up it GDB is not ready for it
1218 yet, but if it becomes ready we somehow need to
1219 disable this check (without breaking the PCC/GCC2.4
1220 case).
1221
1222 Sigh.
1223
1224 Fortunately, this check seems not to be necessary
1225 for anything except pointers or functions. */
1226 /* ezannoni: 2000-10-26. This seems to apply for
1227 versions of gcc older than 2.8. This was the original
1228 problem: with the following code gdb would tell that
1229 the type for name1 is caddr_t, and func is char()
1230 typedef char *caddr_t;
1231 char *name2;
1232 struct x
1233 {
1234 char *name1;
1235 } xx;
1236 char *func()
1237 {
1238 }
1239 main () {}
1240 */
1241
1242 /* Pascal accepts names for pointer types. */
1243 if (current_subfile->language == language_pascal)
1244 {
1245 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1246 }
1247 }
1248 else
1249 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1250 }
1251
1252 add_symbol_to_list (sym, &file_symbols);
1253 break;
1254
1255 case 'T':
1256 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1257 by 't' which means we are typedef'ing it as well. */
1258 synonym = *p == 't';
1259
1260 if (synonym)
1261 p++;
1262
1263 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1264
1265 /* For a nameless type, we don't want a create a symbol, thus we
1266 did not use `sym'. Return without further processing. */
1267 if (nameless)
1268 return NULL;
1269
1270 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1271 SYMBOL_VALUE (sym) = valu;
1272 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1273 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1274 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1275 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1276 add_symbol_to_list (sym, &file_symbols);
1277
1278 if (synonym)
1279 {
1280 /* Clone the sym and then modify it. */
1281 struct symbol *typedef_sym = (struct symbol *)
1282 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1283 *typedef_sym = *sym;
1284 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1285 SYMBOL_VALUE (typedef_sym) = valu;
1286 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1287 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1288 TYPE_NAME (SYMBOL_TYPE (sym))
1289 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1290 add_symbol_to_list (typedef_sym, &file_symbols);
1291 }
1292 break;
1293
1294 case 'V':
1295 /* Static symbol of local scope */
1296 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1297 SYMBOL_CLASS (sym) = LOC_STATIC;
1298 SYMBOL_VALUE_ADDRESS (sym) = valu;
1299 #ifdef STATIC_TRANSFORM_NAME
1300 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1301 {
1302 struct minimal_symbol *msym;
1303 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1304 if (msym != NULL)
1305 {
1306 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1307 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1308 }
1309 }
1310 #endif
1311 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1312 add_symbol_to_list (sym, &local_symbols);
1313 break;
1314
1315 case 'v':
1316 /* Reference parameter */
1317 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1318 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1319 SYMBOL_VALUE (sym) = valu;
1320 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1321 add_symbol_to_list (sym, &local_symbols);
1322 break;
1323
1324 case 'a':
1325 /* Reference parameter which is in a register. */
1326 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1327 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1328 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1329 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1330 {
1331 reg_value_complaint (SYMBOL_VALUE (sym),
1332 NUM_REGS + NUM_PSEUDO_REGS,
1333 SYMBOL_PRINT_NAME (sym));
1334 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1335 }
1336 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1337 add_symbol_to_list (sym, &local_symbols);
1338 break;
1339
1340 case 'X':
1341 /* This is used by Sun FORTRAN for "function result value".
1342 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1343 that Pascal uses it too, but when I tried it Pascal used
1344 "x:3" (local symbol) instead. */
1345 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1346 SYMBOL_CLASS (sym) = LOC_LOCAL;
1347 SYMBOL_VALUE (sym) = valu;
1348 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1349 add_symbol_to_list (sym, &local_symbols);
1350 break;
1351
1352 default:
1353 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1354 SYMBOL_CLASS (sym) = LOC_CONST;
1355 SYMBOL_VALUE (sym) = 0;
1356 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1357 add_symbol_to_list (sym, &file_symbols);
1358 break;
1359 }
1360
1361 /* Some systems pass variables of certain types by reference instead
1362 of by value, i.e. they will pass the address of a structure (in a
1363 register or on the stack) instead of the structure itself. */
1364
1365 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1366 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1367 {
1368 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1369 variables passed in a register). */
1370 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1371 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1372 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1373 and subsequent arguments on SPARC, for example). */
1374 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1375 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1376 }
1377
1378 return sym;
1379 }
1380
1381 /* Skip rest of this symbol and return an error type.
1382
1383 General notes on error recovery: error_type always skips to the
1384 end of the symbol (modulo cretinous dbx symbol name continuation).
1385 Thus code like this:
1386
1387 if (*(*pp)++ != ';')
1388 return error_type (pp, objfile);
1389
1390 is wrong because if *pp starts out pointing at '\0' (typically as the
1391 result of an earlier error), it will be incremented to point to the
1392 start of the next symbol, which might produce strange results, at least
1393 if you run off the end of the string table. Instead use
1394
1395 if (**pp != ';')
1396 return error_type (pp, objfile);
1397 ++*pp;
1398
1399 or
1400
1401 if (**pp != ';')
1402 foo = error_type (pp, objfile);
1403 else
1404 ++*pp;
1405
1406 And in case it isn't obvious, the point of all this hair is so the compiler
1407 can define new types and new syntaxes, and old versions of the
1408 debugger will be able to read the new symbol tables. */
1409
1410 static struct type *
1411 error_type (char **pp, struct objfile *objfile)
1412 {
1413 complaint (&symfile_complaints, "couldn't parse type; debugger out of date?");
1414 while (1)
1415 {
1416 /* Skip to end of symbol. */
1417 while (**pp != '\0')
1418 {
1419 (*pp)++;
1420 }
1421
1422 /* Check for and handle cretinous dbx symbol name continuation! */
1423 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1424 {
1425 *pp = next_symbol_text (objfile);
1426 }
1427 else
1428 {
1429 break;
1430 }
1431 }
1432 return (builtin_type_error);
1433 }
1434 \f
1435
1436 /* Read type information or a type definition; return the type. Even
1437 though this routine accepts either type information or a type
1438 definition, the distinction is relevant--some parts of stabsread.c
1439 assume that type information starts with a digit, '-', or '(' in
1440 deciding whether to call read_type. */
1441
1442 static struct type *
1443 read_type (char **pp, struct objfile *objfile)
1444 {
1445 struct type *type = 0;
1446 struct type *type1;
1447 int typenums[2];
1448 char type_descriptor;
1449
1450 /* Size in bits of type if specified by a type attribute, or -1 if
1451 there is no size attribute. */
1452 int type_size = -1;
1453
1454 /* Used to distinguish string and bitstring from char-array and set. */
1455 int is_string = 0;
1456
1457 /* Used to distinguish vector from array. */
1458 int is_vector = 0;
1459
1460 /* Read type number if present. The type number may be omitted.
1461 for instance in a two-dimensional array declared with type
1462 "ar1;1;10;ar1;1;10;4". */
1463 if ((**pp >= '0' && **pp <= '9')
1464 || **pp == '('
1465 || **pp == '-')
1466 {
1467 if (read_type_number (pp, typenums) != 0)
1468 return error_type (pp, objfile);
1469
1470 /* Type is not being defined here. Either it already exists,
1471 or this is a forward reference to it. dbx_alloc_type handles
1472 both cases. */
1473 if (**pp != '=')
1474 return dbx_alloc_type (typenums, objfile);
1475
1476 /* Type is being defined here. */
1477 /* Skip the '='.
1478 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1479 (*pp) += 2;
1480 }
1481 else
1482 {
1483 /* 'typenums=' not present, type is anonymous. Read and return
1484 the definition, but don't put it in the type vector. */
1485 typenums[0] = typenums[1] = -1;
1486 (*pp)++;
1487 }
1488
1489 again:
1490 type_descriptor = (*pp)[-1];
1491 switch (type_descriptor)
1492 {
1493 case 'x':
1494 {
1495 enum type_code code;
1496
1497 /* Used to index through file_symbols. */
1498 struct pending *ppt;
1499 int i;
1500
1501 /* Name including "struct", etc. */
1502 char *type_name;
1503
1504 {
1505 char *from, *to, *p, *q1, *q2;
1506
1507 /* Set the type code according to the following letter. */
1508 switch ((*pp)[0])
1509 {
1510 case 's':
1511 code = TYPE_CODE_STRUCT;
1512 break;
1513 case 'u':
1514 code = TYPE_CODE_UNION;
1515 break;
1516 case 'e':
1517 code = TYPE_CODE_ENUM;
1518 break;
1519 default:
1520 {
1521 /* Complain and keep going, so compilers can invent new
1522 cross-reference types. */
1523 complaint (&symfile_complaints,
1524 "Unrecognized cross-reference type `%c'", (*pp)[0]);
1525 code = TYPE_CODE_STRUCT;
1526 break;
1527 }
1528 }
1529
1530 q1 = strchr (*pp, '<');
1531 p = strchr (*pp, ':');
1532 if (p == NULL)
1533 return error_type (pp, objfile);
1534 if (q1 && p > q1 && p[1] == ':')
1535 {
1536 int nesting_level = 0;
1537 for (q2 = q1; *q2; q2++)
1538 {
1539 if (*q2 == '<')
1540 nesting_level++;
1541 else if (*q2 == '>')
1542 nesting_level--;
1543 else if (*q2 == ':' && nesting_level == 0)
1544 break;
1545 }
1546 p = q2;
1547 if (*p != ':')
1548 return error_type (pp, objfile);
1549 }
1550 to = type_name =
1551 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1552
1553 /* Copy the name. */
1554 from = *pp + 1;
1555 while (from < p)
1556 *to++ = *from++;
1557 *to = '\0';
1558
1559 /* Set the pointer ahead of the name which we just read, and
1560 the colon. */
1561 *pp = from + 1;
1562 }
1563
1564 /* Now check to see whether the type has already been
1565 declared. This was written for arrays of cross-referenced
1566 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1567 sure it is not necessary anymore. But it might be a good
1568 idea, to save a little memory. */
1569
1570 for (ppt = file_symbols; ppt; ppt = ppt->next)
1571 for (i = 0; i < ppt->nsyms; i++)
1572 {
1573 struct symbol *sym = ppt->symbol[i];
1574
1575 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1576 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1577 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1578 && STREQ (DEPRECATED_SYMBOL_NAME (sym), type_name))
1579 {
1580 obstack_free (&objfile->type_obstack, type_name);
1581 type = SYMBOL_TYPE (sym);
1582 return type;
1583 }
1584 }
1585
1586 /* Didn't find the type to which this refers, so we must
1587 be dealing with a forward reference. Allocate a type
1588 structure for it, and keep track of it so we can
1589 fill in the rest of the fields when we get the full
1590 type. */
1591 type = dbx_alloc_type (typenums, objfile);
1592 TYPE_CODE (type) = code;
1593 TYPE_TAG_NAME (type) = type_name;
1594 INIT_CPLUS_SPECIFIC (type);
1595 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1596
1597 add_undefined_type (type);
1598 return type;
1599 }
1600
1601 case '-': /* RS/6000 built-in type */
1602 case '0':
1603 case '1':
1604 case '2':
1605 case '3':
1606 case '4':
1607 case '5':
1608 case '6':
1609 case '7':
1610 case '8':
1611 case '9':
1612 case '(':
1613 (*pp)--;
1614
1615 /* We deal with something like t(1,2)=(3,4)=... which
1616 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1617
1618 /* Allocate and enter the typedef type first.
1619 This handles recursive types. */
1620 type = dbx_alloc_type (typenums, objfile);
1621 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1622 {
1623 struct type *xtype = read_type (pp, objfile);
1624 if (type == xtype)
1625 {
1626 /* It's being defined as itself. That means it is "void". */
1627 TYPE_CODE (type) = TYPE_CODE_VOID;
1628 TYPE_LENGTH (type) = 1;
1629 }
1630 else if (type_size >= 0 || is_string)
1631 {
1632 /* This is the absolute wrong way to construct types. Every
1633 other debug format has found a way around this problem and
1634 the related problems with unnecessarily stubbed types;
1635 someone motivated should attempt to clean up the issue
1636 here as well. Once a type pointed to has been created it
1637 should not be modified.
1638
1639 Well, it's not *absolutely* wrong. Constructing recursive
1640 types (trees, linked lists) necessarily entails modifying
1641 types after creating them. Constructing any loop structure
1642 entails side effects. The Dwarf 2 reader does handle this
1643 more gracefully (it never constructs more than once
1644 instance of a type object, so it doesn't have to copy type
1645 objects wholesale), but it still mutates type objects after
1646 other folks have references to them.
1647
1648 Keep in mind that this circularity/mutation issue shows up
1649 at the source language level, too: C's "incomplete types",
1650 for example. So the proper cleanup, I think, would be to
1651 limit GDB's type smashing to match exactly those required
1652 by the source language. So GDB could have a
1653 "complete_this_type" function, but never create unnecessary
1654 copies of a type otherwise. */
1655 replace_type (type, xtype);
1656 TYPE_NAME (type) = NULL;
1657 TYPE_TAG_NAME (type) = NULL;
1658 }
1659 else
1660 {
1661 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1662 TYPE_TARGET_TYPE (type) = xtype;
1663 }
1664 }
1665 break;
1666
1667 /* In the following types, we must be sure to overwrite any existing
1668 type that the typenums refer to, rather than allocating a new one
1669 and making the typenums point to the new one. This is because there
1670 may already be pointers to the existing type (if it had been
1671 forward-referenced), and we must change it to a pointer, function,
1672 reference, or whatever, *in-place*. */
1673
1674 case '*': /* Pointer to another type */
1675 type1 = read_type (pp, objfile);
1676 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1677 break;
1678
1679 case '&': /* Reference to another type */
1680 type1 = read_type (pp, objfile);
1681 type = make_reference_type (type1, dbx_lookup_type (typenums));
1682 break;
1683
1684 case 'f': /* Function returning another type */
1685 type1 = read_type (pp, objfile);
1686 type = make_function_type (type1, dbx_lookup_type (typenums));
1687 break;
1688
1689 case 'g': /* Prototyped function. (Sun) */
1690 {
1691 /* Unresolved questions:
1692
1693 - According to Sun's ``STABS Interface Manual'', for 'f'
1694 and 'F' symbol descriptors, a `0' in the argument type list
1695 indicates a varargs function. But it doesn't say how 'g'
1696 type descriptors represent that info. Someone with access
1697 to Sun's toolchain should try it out.
1698
1699 - According to the comment in define_symbol (search for
1700 `process_prototype_types:'), Sun emits integer arguments as
1701 types which ref themselves --- like `void' types. Do we
1702 have to deal with that here, too? Again, someone with
1703 access to Sun's toolchain should try it out and let us
1704 know. */
1705
1706 const char *type_start = (*pp) - 1;
1707 struct type *return_type = read_type (pp, objfile);
1708 struct type *func_type
1709 = make_function_type (return_type, dbx_lookup_type (typenums));
1710 struct type_list {
1711 struct type *type;
1712 struct type_list *next;
1713 } *arg_types = 0;
1714 int num_args = 0;
1715
1716 while (**pp && **pp != '#')
1717 {
1718 struct type *arg_type = read_type (pp, objfile);
1719 struct type_list *new = alloca (sizeof (*new));
1720 new->type = arg_type;
1721 new->next = arg_types;
1722 arg_types = new;
1723 num_args++;
1724 }
1725 if (**pp == '#')
1726 ++*pp;
1727 else
1728 {
1729 complaint (&symfile_complaints,
1730 "Prototyped function type didn't end arguments with `#':\n%s",
1731 type_start);
1732 }
1733
1734 /* If there is just one argument whose type is `void', then
1735 that's just an empty argument list. */
1736 if (arg_types
1737 && ! arg_types->next
1738 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1739 num_args = 0;
1740
1741 TYPE_FIELDS (func_type)
1742 = (struct field *) TYPE_ALLOC (func_type,
1743 num_args * sizeof (struct field));
1744 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1745 {
1746 int i;
1747 struct type_list *t;
1748
1749 /* We stuck each argument type onto the front of the list
1750 when we read it, so the list is reversed. Build the
1751 fields array right-to-left. */
1752 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1753 TYPE_FIELD_TYPE (func_type, i) = t->type;
1754 }
1755 TYPE_NFIELDS (func_type) = num_args;
1756 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1757
1758 type = func_type;
1759 break;
1760 }
1761
1762 case 'k': /* Const qualifier on some type (Sun) */
1763 type = read_type (pp, objfile);
1764 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1765 dbx_lookup_type (typenums));
1766 break;
1767
1768 case 'B': /* Volatile qual on some type (Sun) */
1769 type = read_type (pp, objfile);
1770 type = make_cv_type (TYPE_CONST (type), 1, type,
1771 dbx_lookup_type (typenums));
1772 break;
1773
1774 case '@':
1775 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1776 { /* Member (class & variable) type */
1777 /* FIXME -- we should be doing smash_to_XXX types here. */
1778
1779 struct type *domain = read_type (pp, objfile);
1780 struct type *memtype;
1781
1782 if (**pp != ',')
1783 /* Invalid member type data format. */
1784 return error_type (pp, objfile);
1785 ++*pp;
1786
1787 memtype = read_type (pp, objfile);
1788 type = dbx_alloc_type (typenums, objfile);
1789 smash_to_member_type (type, domain, memtype);
1790 }
1791 else
1792 /* type attribute */
1793 {
1794 char *attr = *pp;
1795 /* Skip to the semicolon. */
1796 while (**pp != ';' && **pp != '\0')
1797 ++(*pp);
1798 if (**pp == '\0')
1799 return error_type (pp, objfile);
1800 else
1801 ++ * pp; /* Skip the semicolon. */
1802
1803 switch (*attr)
1804 {
1805 case 's': /* Size attribute */
1806 type_size = atoi (attr + 1);
1807 if (type_size <= 0)
1808 type_size = -1;
1809 break;
1810
1811 case 'S': /* String attribute */
1812 /* FIXME: check to see if following type is array? */
1813 is_string = 1;
1814 break;
1815
1816 case 'V': /* Vector attribute */
1817 /* FIXME: check to see if following type is array? */
1818 is_vector = 1;
1819 break;
1820
1821 default:
1822 /* Ignore unrecognized type attributes, so future compilers
1823 can invent new ones. */
1824 break;
1825 }
1826 ++*pp;
1827 goto again;
1828 }
1829 break;
1830
1831 case '#': /* Method (class & fn) type */
1832 if ((*pp)[0] == '#')
1833 {
1834 /* We'll get the parameter types from the name. */
1835 struct type *return_type;
1836
1837 (*pp)++;
1838 return_type = read_type (pp, objfile);
1839 if (*(*pp)++ != ';')
1840 complaint (&symfile_complaints,
1841 "invalid (minimal) member type data format at symtab pos %d.",
1842 symnum);
1843 type = allocate_stub_method (return_type);
1844 if (typenums[0] != -1)
1845 *dbx_lookup_type (typenums) = type;
1846 }
1847 else
1848 {
1849 struct type *domain = read_type (pp, objfile);
1850 struct type *return_type;
1851 struct field *args;
1852 int nargs, varargs;
1853
1854 if (**pp != ',')
1855 /* Invalid member type data format. */
1856 return error_type (pp, objfile);
1857 else
1858 ++(*pp);
1859
1860 return_type = read_type (pp, objfile);
1861 args = read_args (pp, ';', objfile, &nargs, &varargs);
1862 type = dbx_alloc_type (typenums, objfile);
1863 smash_to_method_type (type, domain, return_type, args,
1864 nargs, varargs);
1865 }
1866 break;
1867
1868 case 'r': /* Range type */
1869 type = read_range_type (pp, typenums, objfile);
1870 if (typenums[0] != -1)
1871 *dbx_lookup_type (typenums) = type;
1872 break;
1873
1874 case 'b':
1875 {
1876 /* Sun ACC builtin int type */
1877 type = read_sun_builtin_type (pp, typenums, objfile);
1878 if (typenums[0] != -1)
1879 *dbx_lookup_type (typenums) = type;
1880 }
1881 break;
1882
1883 case 'R': /* Sun ACC builtin float type */
1884 type = read_sun_floating_type (pp, typenums, objfile);
1885 if (typenums[0] != -1)
1886 *dbx_lookup_type (typenums) = type;
1887 break;
1888
1889 case 'e': /* Enumeration type */
1890 type = dbx_alloc_type (typenums, objfile);
1891 type = read_enum_type (pp, type, objfile);
1892 if (typenums[0] != -1)
1893 *dbx_lookup_type (typenums) = type;
1894 break;
1895
1896 case 's': /* Struct type */
1897 case 'u': /* Union type */
1898 {
1899 enum type_code type_code = TYPE_CODE_UNDEF;
1900 type = dbx_alloc_type (typenums, objfile);
1901 switch (type_descriptor)
1902 {
1903 case 's':
1904 type_code = TYPE_CODE_STRUCT;
1905 break;
1906 case 'u':
1907 type_code = TYPE_CODE_UNION;
1908 break;
1909 }
1910 type = read_struct_type (pp, type, type_code, objfile);
1911 break;
1912 }
1913
1914 case 'a': /* Array type */
1915 if (**pp != 'r')
1916 return error_type (pp, objfile);
1917 ++*pp;
1918
1919 type = dbx_alloc_type (typenums, objfile);
1920 type = read_array_type (pp, type, objfile);
1921 if (is_string)
1922 TYPE_CODE (type) = TYPE_CODE_STRING;
1923 if (is_vector)
1924 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1925 break;
1926
1927 case 'S': /* Set or bitstring type */
1928 type1 = read_type (pp, objfile);
1929 type = create_set_type ((struct type *) NULL, type1);
1930 if (is_string)
1931 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1932 if (typenums[0] != -1)
1933 *dbx_lookup_type (typenums) = type;
1934 break;
1935
1936 default:
1937 --*pp; /* Go back to the symbol in error */
1938 /* Particularly important if it was \0! */
1939 return error_type (pp, objfile);
1940 }
1941
1942 if (type == 0)
1943 {
1944 warning ("GDB internal error, type is NULL in stabsread.c\n");
1945 return error_type (pp, objfile);
1946 }
1947
1948 /* Size specified in a type attribute overrides any other size. */
1949 if (type_size != -1)
1950 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1951
1952 return type;
1953 }
1954 \f
1955 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1956 Return the proper type node for a given builtin type number. */
1957
1958 static struct type *
1959 rs6000_builtin_type (int typenum)
1960 {
1961 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1962 #define NUMBER_RECOGNIZED 34
1963 /* This includes an empty slot for type number -0. */
1964 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1965 struct type *rettype = NULL;
1966
1967 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1968 {
1969 complaint (&symfile_complaints, "Unknown builtin type %d", typenum);
1970 return builtin_type_error;
1971 }
1972 if (negative_types[-typenum] != NULL)
1973 return negative_types[-typenum];
1974
1975 #if TARGET_CHAR_BIT != 8
1976 #error This code wrong for TARGET_CHAR_BIT not 8
1977 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1978 that if that ever becomes not true, the correct fix will be to
1979 make the size in the struct type to be in bits, not in units of
1980 TARGET_CHAR_BIT. */
1981 #endif
1982
1983 switch (-typenum)
1984 {
1985 case 1:
1986 /* The size of this and all the other types are fixed, defined
1987 by the debugging format. If there is a type called "int" which
1988 is other than 32 bits, then it should use a new negative type
1989 number (or avoid negative type numbers for that case).
1990 See stabs.texinfo. */
1991 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1992 break;
1993 case 2:
1994 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1995 break;
1996 case 3:
1997 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1998 break;
1999 case 4:
2000 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2001 break;
2002 case 5:
2003 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2004 "unsigned char", NULL);
2005 break;
2006 case 6:
2007 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2008 break;
2009 case 7:
2010 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2011 "unsigned short", NULL);
2012 break;
2013 case 8:
2014 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2015 "unsigned int", NULL);
2016 break;
2017 case 9:
2018 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2019 "unsigned", NULL);
2020 case 10:
2021 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2022 "unsigned long", NULL);
2023 break;
2024 case 11:
2025 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2026 break;
2027 case 12:
2028 /* IEEE single precision (32 bit). */
2029 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2030 break;
2031 case 13:
2032 /* IEEE double precision (64 bit). */
2033 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2034 break;
2035 case 14:
2036 /* This is an IEEE double on the RS/6000, and different machines with
2037 different sizes for "long double" should use different negative
2038 type numbers. See stabs.texinfo. */
2039 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2040 break;
2041 case 15:
2042 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2043 break;
2044 case 16:
2045 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2046 "boolean", NULL);
2047 break;
2048 case 17:
2049 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2050 break;
2051 case 18:
2052 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2053 break;
2054 case 19:
2055 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2056 break;
2057 case 20:
2058 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2059 "character", NULL);
2060 break;
2061 case 21:
2062 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2063 "logical*1", NULL);
2064 break;
2065 case 22:
2066 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2067 "logical*2", NULL);
2068 break;
2069 case 23:
2070 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2071 "logical*4", NULL);
2072 break;
2073 case 24:
2074 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2075 "logical", NULL);
2076 break;
2077 case 25:
2078 /* Complex type consisting of two IEEE single precision values. */
2079 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2080 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2081 NULL);
2082 break;
2083 case 26:
2084 /* Complex type consisting of two IEEE double precision values. */
2085 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2086 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2087 NULL);
2088 break;
2089 case 27:
2090 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2091 break;
2092 case 28:
2093 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2094 break;
2095 case 29:
2096 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2097 break;
2098 case 30:
2099 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2100 break;
2101 case 31:
2102 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2103 break;
2104 case 32:
2105 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2106 "unsigned long long", NULL);
2107 break;
2108 case 33:
2109 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2110 "logical*8", NULL);
2111 break;
2112 case 34:
2113 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2114 break;
2115 }
2116 negative_types[-typenum] = rettype;
2117 return rettype;
2118 }
2119 \f
2120 /* This page contains subroutines of read_type. */
2121
2122 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2123
2124 static void
2125 update_method_name_from_physname (char **old_name, char *physname)
2126 {
2127 char *method_name;
2128
2129 method_name = method_name_from_physname (physname);
2130
2131 if (method_name == NULL)
2132 {
2133 complaint (&symfile_complaints,
2134 "Method has bad physname %s\n", physname);
2135 return;
2136 }
2137
2138 if (strcmp (*old_name, method_name) != 0)
2139 {
2140 xfree (*old_name);
2141 *old_name = method_name;
2142 }
2143 else
2144 xfree (method_name);
2145 }
2146
2147 /* Read member function stabs info for C++ classes. The form of each member
2148 function data is:
2149
2150 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2151
2152 An example with two member functions is:
2153
2154 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2155
2156 For the case of overloaded operators, the format is op$::*.funcs, where
2157 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2158 name (such as `+=') and `.' marks the end of the operator name.
2159
2160 Returns 1 for success, 0 for failure. */
2161
2162 static int
2163 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2164 struct objfile *objfile)
2165 {
2166 int nfn_fields = 0;
2167 int length = 0;
2168 /* Total number of member functions defined in this class. If the class
2169 defines two `f' functions, and one `g' function, then this will have
2170 the value 3. */
2171 int total_length = 0;
2172 int i;
2173 struct next_fnfield
2174 {
2175 struct next_fnfield *next;
2176 struct fn_field fn_field;
2177 }
2178 *sublist;
2179 struct type *look_ahead_type;
2180 struct next_fnfieldlist *new_fnlist;
2181 struct next_fnfield *new_sublist;
2182 char *main_fn_name;
2183 char *p;
2184
2185 /* Process each list until we find something that is not a member function
2186 or find the end of the functions. */
2187
2188 while (**pp != ';')
2189 {
2190 /* We should be positioned at the start of the function name.
2191 Scan forward to find the first ':' and if it is not the
2192 first of a "::" delimiter, then this is not a member function. */
2193 p = *pp;
2194 while (*p != ':')
2195 {
2196 p++;
2197 }
2198 if (p[1] != ':')
2199 {
2200 break;
2201 }
2202
2203 sublist = NULL;
2204 look_ahead_type = NULL;
2205 length = 0;
2206
2207 new_fnlist = (struct next_fnfieldlist *)
2208 xmalloc (sizeof (struct next_fnfieldlist));
2209 make_cleanup (xfree, new_fnlist);
2210 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2211
2212 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2213 {
2214 /* This is a completely wierd case. In order to stuff in the
2215 names that might contain colons (the usual name delimiter),
2216 Mike Tiemann defined a different name format which is
2217 signalled if the identifier is "op$". In that case, the
2218 format is "op$::XXXX." where XXXX is the name. This is
2219 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2220 /* This lets the user type "break operator+".
2221 We could just put in "+" as the name, but that wouldn't
2222 work for "*". */
2223 static char opname[32] = "op$";
2224 char *o = opname + 3;
2225
2226 /* Skip past '::'. */
2227 *pp = p + 2;
2228
2229 STABS_CONTINUE (pp, objfile);
2230 p = *pp;
2231 while (*p != '.')
2232 {
2233 *o++ = *p++;
2234 }
2235 main_fn_name = savestring (opname, o - opname);
2236 /* Skip past '.' */
2237 *pp = p + 1;
2238 }
2239 else
2240 {
2241 main_fn_name = savestring (*pp, p - *pp);
2242 /* Skip past '::'. */
2243 *pp = p + 2;
2244 }
2245 new_fnlist->fn_fieldlist.name = main_fn_name;
2246
2247 do
2248 {
2249 new_sublist =
2250 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2251 make_cleanup (xfree, new_sublist);
2252 memset (new_sublist, 0, sizeof (struct next_fnfield));
2253
2254 /* Check for and handle cretinous dbx symbol name continuation! */
2255 if (look_ahead_type == NULL)
2256 {
2257 /* Normal case. */
2258 STABS_CONTINUE (pp, objfile);
2259
2260 new_sublist->fn_field.type = read_type (pp, objfile);
2261 if (**pp != ':')
2262 {
2263 /* Invalid symtab info for member function. */
2264 return 0;
2265 }
2266 }
2267 else
2268 {
2269 /* g++ version 1 kludge */
2270 new_sublist->fn_field.type = look_ahead_type;
2271 look_ahead_type = NULL;
2272 }
2273
2274 (*pp)++;
2275 p = *pp;
2276 while (*p != ';')
2277 {
2278 p++;
2279 }
2280
2281 /* If this is just a stub, then we don't have the real name here. */
2282
2283 if (TYPE_STUB (new_sublist->fn_field.type))
2284 {
2285 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2286 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2287 new_sublist->fn_field.is_stub = 1;
2288 }
2289 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2290 *pp = p + 1;
2291
2292 /* Set this member function's visibility fields. */
2293 switch (*(*pp)++)
2294 {
2295 case VISIBILITY_PRIVATE:
2296 new_sublist->fn_field.is_private = 1;
2297 break;
2298 case VISIBILITY_PROTECTED:
2299 new_sublist->fn_field.is_protected = 1;
2300 break;
2301 }
2302
2303 STABS_CONTINUE (pp, objfile);
2304 switch (**pp)
2305 {
2306 case 'A': /* Normal functions. */
2307 new_sublist->fn_field.is_const = 0;
2308 new_sublist->fn_field.is_volatile = 0;
2309 (*pp)++;
2310 break;
2311 case 'B': /* `const' member functions. */
2312 new_sublist->fn_field.is_const = 1;
2313 new_sublist->fn_field.is_volatile = 0;
2314 (*pp)++;
2315 break;
2316 case 'C': /* `volatile' member function. */
2317 new_sublist->fn_field.is_const = 0;
2318 new_sublist->fn_field.is_volatile = 1;
2319 (*pp)++;
2320 break;
2321 case 'D': /* `const volatile' member function. */
2322 new_sublist->fn_field.is_const = 1;
2323 new_sublist->fn_field.is_volatile = 1;
2324 (*pp)++;
2325 break;
2326 case '*': /* File compiled with g++ version 1 -- no info */
2327 case '?':
2328 case '.':
2329 break;
2330 default:
2331 complaint (&symfile_complaints,
2332 "const/volatile indicator missing, got '%c'", **pp);
2333 break;
2334 }
2335
2336 switch (*(*pp)++)
2337 {
2338 case '*':
2339 {
2340 int nbits;
2341 /* virtual member function, followed by index.
2342 The sign bit is set to distinguish pointers-to-methods
2343 from virtual function indicies. Since the array is
2344 in words, the quantity must be shifted left by 1
2345 on 16 bit machine, and by 2 on 32 bit machine, forcing
2346 the sign bit out, and usable as a valid index into
2347 the array. Remove the sign bit here. */
2348 new_sublist->fn_field.voffset =
2349 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2350 if (nbits != 0)
2351 return 0;
2352
2353 STABS_CONTINUE (pp, objfile);
2354 if (**pp == ';' || **pp == '\0')
2355 {
2356 /* Must be g++ version 1. */
2357 new_sublist->fn_field.fcontext = 0;
2358 }
2359 else
2360 {
2361 /* Figure out from whence this virtual function came.
2362 It may belong to virtual function table of
2363 one of its baseclasses. */
2364 look_ahead_type = read_type (pp, objfile);
2365 if (**pp == ':')
2366 {
2367 /* g++ version 1 overloaded methods. */
2368 }
2369 else
2370 {
2371 new_sublist->fn_field.fcontext = look_ahead_type;
2372 if (**pp != ';')
2373 {
2374 return 0;
2375 }
2376 else
2377 {
2378 ++*pp;
2379 }
2380 look_ahead_type = NULL;
2381 }
2382 }
2383 break;
2384 }
2385 case '?':
2386 /* static member function. */
2387 {
2388 int slen = strlen (main_fn_name);
2389
2390 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2391
2392 /* For static member functions, we can't tell if they
2393 are stubbed, as they are put out as functions, and not as
2394 methods.
2395 GCC v2 emits the fully mangled name if
2396 dbxout.c:flag_minimal_debug is not set, so we have to
2397 detect a fully mangled physname here and set is_stub
2398 accordingly. Fully mangled physnames in v2 start with
2399 the member function name, followed by two underscores.
2400 GCC v3 currently always emits stubbed member functions,
2401 but with fully mangled physnames, which start with _Z. */
2402 if (!(strncmp (new_sublist->fn_field.physname,
2403 main_fn_name, slen) == 0
2404 && new_sublist->fn_field.physname[slen] == '_'
2405 && new_sublist->fn_field.physname[slen + 1] == '_'))
2406 {
2407 new_sublist->fn_field.is_stub = 1;
2408 }
2409 break;
2410 }
2411
2412 default:
2413 /* error */
2414 complaint (&symfile_complaints,
2415 "member function type missing, got '%c'", (*pp)[-1]);
2416 /* Fall through into normal member function. */
2417
2418 case '.':
2419 /* normal member function. */
2420 new_sublist->fn_field.voffset = 0;
2421 new_sublist->fn_field.fcontext = 0;
2422 break;
2423 }
2424
2425 new_sublist->next = sublist;
2426 sublist = new_sublist;
2427 length++;
2428 STABS_CONTINUE (pp, objfile);
2429 }
2430 while (**pp != ';' && **pp != '\0');
2431
2432 (*pp)++;
2433 STABS_CONTINUE (pp, objfile);
2434
2435 /* Skip GCC 3.X member functions which are duplicates of the callable
2436 constructor/destructor. */
2437 if (strcmp (main_fn_name, "__base_ctor") == 0
2438 || strcmp (main_fn_name, "__base_dtor") == 0
2439 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2440 {
2441 xfree (main_fn_name);
2442 }
2443 else
2444 {
2445 int has_stub = 0;
2446 int has_destructor = 0, has_other = 0;
2447 int is_v3 = 0;
2448 struct next_fnfield *tmp_sublist;
2449
2450 /* Various versions of GCC emit various mostly-useless
2451 strings in the name field for special member functions.
2452
2453 For stub methods, we need to defer correcting the name
2454 until we are ready to unstub the method, because the current
2455 name string is used by gdb_mangle_name. The only stub methods
2456 of concern here are GNU v2 operators; other methods have their
2457 names correct (see caveat below).
2458
2459 For non-stub methods, in GNU v3, we have a complete physname.
2460 Therefore we can safely correct the name now. This primarily
2461 affects constructors and destructors, whose name will be
2462 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2463 operators will also have incorrect names; for instance,
2464 "operator int" will be named "operator i" (i.e. the type is
2465 mangled).
2466
2467 For non-stub methods in GNU v2, we have no easy way to
2468 know if we have a complete physname or not. For most
2469 methods the result depends on the platform (if CPLUS_MARKER
2470 can be `$' or `.', it will use minimal debug information, or
2471 otherwise the full physname will be included).
2472
2473 Rather than dealing with this, we take a different approach.
2474 For v3 mangled names, we can use the full physname; for v2,
2475 we use cplus_demangle_opname (which is actually v2 specific),
2476 because the only interesting names are all operators - once again
2477 barring the caveat below. Skip this process if any method in the
2478 group is a stub, to prevent our fouling up the workings of
2479 gdb_mangle_name.
2480
2481 The caveat: GCC 2.95.x (and earlier?) put constructors and
2482 destructors in the same method group. We need to split this
2483 into two groups, because they should have different names.
2484 So for each method group we check whether it contains both
2485 routines whose physname appears to be a destructor (the physnames
2486 for and destructors are always provided, due to quirks in v2
2487 mangling) and routines whose physname does not appear to be a
2488 destructor. If so then we break up the list into two halves.
2489 Even if the constructors and destructors aren't in the same group
2490 the destructor will still lack the leading tilde, so that also
2491 needs to be fixed.
2492
2493 So, to summarize what we expect and handle here:
2494
2495 Given Given Real Real Action
2496 method name physname physname method name
2497
2498 __opi [none] __opi__3Foo operator int opname
2499 [now or later]
2500 Foo _._3Foo _._3Foo ~Foo separate and
2501 rename
2502 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2503 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2504 */
2505
2506 tmp_sublist = sublist;
2507 while (tmp_sublist != NULL)
2508 {
2509 if (tmp_sublist->fn_field.is_stub)
2510 has_stub = 1;
2511 if (tmp_sublist->fn_field.physname[0] == '_'
2512 && tmp_sublist->fn_field.physname[1] == 'Z')
2513 is_v3 = 1;
2514
2515 if (is_destructor_name (tmp_sublist->fn_field.physname))
2516 has_destructor++;
2517 else
2518 has_other++;
2519
2520 tmp_sublist = tmp_sublist->next;
2521 }
2522
2523 if (has_destructor && has_other)
2524 {
2525 struct next_fnfieldlist *destr_fnlist;
2526 struct next_fnfield *last_sublist;
2527
2528 /* Create a new fn_fieldlist for the destructors. */
2529
2530 destr_fnlist = (struct next_fnfieldlist *)
2531 xmalloc (sizeof (struct next_fnfieldlist));
2532 make_cleanup (xfree, destr_fnlist);
2533 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2534 destr_fnlist->fn_fieldlist.name
2535 = obconcat (&objfile->type_obstack, "", "~",
2536 new_fnlist->fn_fieldlist.name);
2537
2538 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2539 obstack_alloc (&objfile->type_obstack,
2540 sizeof (struct fn_field) * has_destructor);
2541 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2542 sizeof (struct fn_field) * has_destructor);
2543 tmp_sublist = sublist;
2544 last_sublist = NULL;
2545 i = 0;
2546 while (tmp_sublist != NULL)
2547 {
2548 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2549 {
2550 tmp_sublist = tmp_sublist->next;
2551 continue;
2552 }
2553
2554 destr_fnlist->fn_fieldlist.fn_fields[i++]
2555 = tmp_sublist->fn_field;
2556 if (last_sublist)
2557 last_sublist->next = tmp_sublist->next;
2558 else
2559 sublist = tmp_sublist->next;
2560 last_sublist = tmp_sublist;
2561 tmp_sublist = tmp_sublist->next;
2562 }
2563
2564 destr_fnlist->fn_fieldlist.length = has_destructor;
2565 destr_fnlist->next = fip->fnlist;
2566 fip->fnlist = destr_fnlist;
2567 nfn_fields++;
2568 total_length += has_destructor;
2569 length -= has_destructor;
2570 }
2571 else if (is_v3)
2572 {
2573 /* v3 mangling prevents the use of abbreviated physnames,
2574 so we can do this here. There are stubbed methods in v3
2575 only:
2576 - in -gstabs instead of -gstabs+
2577 - or for static methods, which are output as a function type
2578 instead of a method type. */
2579
2580 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2581 sublist->fn_field.physname);
2582 }
2583 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2584 {
2585 new_fnlist->fn_fieldlist.name = concat ("~", main_fn_name, NULL);
2586 xfree (main_fn_name);
2587 }
2588 else if (!has_stub)
2589 {
2590 char dem_opname[256];
2591 int ret;
2592 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2593 dem_opname, DMGL_ANSI);
2594 if (!ret)
2595 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2596 dem_opname, 0);
2597 if (ret)
2598 new_fnlist->fn_fieldlist.name
2599 = obsavestring (dem_opname, strlen (dem_opname),
2600 &objfile->type_obstack);
2601 }
2602
2603 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2604 obstack_alloc (&objfile->type_obstack,
2605 sizeof (struct fn_field) * length);
2606 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2607 sizeof (struct fn_field) * length);
2608 for (i = length; (i--, sublist); sublist = sublist->next)
2609 {
2610 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2611 }
2612
2613 new_fnlist->fn_fieldlist.length = length;
2614 new_fnlist->next = fip->fnlist;
2615 fip->fnlist = new_fnlist;
2616 nfn_fields++;
2617 total_length += length;
2618 }
2619 }
2620
2621 if (nfn_fields)
2622 {
2623 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2624 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2625 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2626 memset (TYPE_FN_FIELDLISTS (type), 0,
2627 sizeof (struct fn_fieldlist) * nfn_fields);
2628 TYPE_NFN_FIELDS (type) = nfn_fields;
2629 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2630 }
2631
2632 return 1;
2633 }
2634
2635 /* Special GNU C++ name.
2636
2637 Returns 1 for success, 0 for failure. "failure" means that we can't
2638 keep parsing and it's time for error_type(). */
2639
2640 static int
2641 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2642 struct objfile *objfile)
2643 {
2644 char *p;
2645 char *name;
2646 char cpp_abbrev;
2647 struct type *context;
2648
2649 p = *pp;
2650 if (*++p == 'v')
2651 {
2652 name = NULL;
2653 cpp_abbrev = *++p;
2654
2655 *pp = p + 1;
2656
2657 /* At this point, *pp points to something like "22:23=*22...",
2658 where the type number before the ':' is the "context" and
2659 everything after is a regular type definition. Lookup the
2660 type, find it's name, and construct the field name. */
2661
2662 context = read_type (pp, objfile);
2663
2664 switch (cpp_abbrev)
2665 {
2666 case 'f': /* $vf -- a virtual function table pointer */
2667 name = type_name_no_tag (context);
2668 if (name == NULL)
2669 {
2670 name = "";
2671 }
2672 fip->list->field.name =
2673 obconcat (&objfile->type_obstack, vptr_name, name, "");
2674 break;
2675
2676 case 'b': /* $vb -- a virtual bsomethingorother */
2677 name = type_name_no_tag (context);
2678 if (name == NULL)
2679 {
2680 complaint (&symfile_complaints,
2681 "C++ abbreviated type name unknown at symtab pos %d",
2682 symnum);
2683 name = "FOO";
2684 }
2685 fip->list->field.name =
2686 obconcat (&objfile->type_obstack, vb_name, name, "");
2687 break;
2688
2689 default:
2690 invalid_cpp_abbrev_complaint (*pp);
2691 fip->list->field.name =
2692 obconcat (&objfile->type_obstack,
2693 "INVALID_CPLUSPLUS_ABBREV", "", "");
2694 break;
2695 }
2696
2697 /* At this point, *pp points to the ':'. Skip it and read the
2698 field type. */
2699
2700 p = ++(*pp);
2701 if (p[-1] != ':')
2702 {
2703 invalid_cpp_abbrev_complaint (*pp);
2704 return 0;
2705 }
2706 fip->list->field.type = read_type (pp, objfile);
2707 if (**pp == ',')
2708 (*pp)++; /* Skip the comma. */
2709 else
2710 return 0;
2711
2712 {
2713 int nbits;
2714 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
2715 if (nbits != 0)
2716 return 0;
2717 }
2718 /* This field is unpacked. */
2719 FIELD_BITSIZE (fip->list->field) = 0;
2720 fip->list->visibility = VISIBILITY_PRIVATE;
2721 }
2722 else
2723 {
2724 invalid_cpp_abbrev_complaint (*pp);
2725 /* We have no idea what syntax an unrecognized abbrev would have, so
2726 better return 0. If we returned 1, we would need to at least advance
2727 *pp to avoid an infinite loop. */
2728 return 0;
2729 }
2730 return 1;
2731 }
2732
2733 static void
2734 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2735 struct type *type, struct objfile *objfile)
2736 {
2737 fip->list->field.name =
2738 obsavestring (*pp, p - *pp, &objfile->type_obstack);
2739 *pp = p + 1;
2740
2741 /* This means we have a visibility for a field coming. */
2742 if (**pp == '/')
2743 {
2744 (*pp)++;
2745 fip->list->visibility = *(*pp)++;
2746 }
2747 else
2748 {
2749 /* normal dbx-style format, no explicit visibility */
2750 fip->list->visibility = VISIBILITY_PUBLIC;
2751 }
2752
2753 fip->list->field.type = read_type (pp, objfile);
2754 if (**pp == ':')
2755 {
2756 p = ++(*pp);
2757 #if 0
2758 /* Possible future hook for nested types. */
2759 if (**pp == '!')
2760 {
2761 fip->list->field.bitpos = (long) -2; /* nested type */
2762 p = ++(*pp);
2763 }
2764 else
2765 ...;
2766 #endif
2767 while (*p != ';')
2768 {
2769 p++;
2770 }
2771 /* Static class member. */
2772 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2773 *pp = p + 1;
2774 return;
2775 }
2776 else if (**pp != ',')
2777 {
2778 /* Bad structure-type format. */
2779 stabs_general_complaint ("bad structure-type format");
2780 return;
2781 }
2782
2783 (*pp)++; /* Skip the comma. */
2784
2785 {
2786 int nbits;
2787 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
2788 if (nbits != 0)
2789 {
2790 stabs_general_complaint ("bad structure-type format");
2791 return;
2792 }
2793 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
2794 if (nbits != 0)
2795 {
2796 stabs_general_complaint ("bad structure-type format");
2797 return;
2798 }
2799 }
2800
2801 if (FIELD_BITPOS (fip->list->field) == 0
2802 && FIELD_BITSIZE (fip->list->field) == 0)
2803 {
2804 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2805 it is a field which has been optimized out. The correct stab for
2806 this case is to use VISIBILITY_IGNORE, but that is a recent
2807 invention. (2) It is a 0-size array. For example
2808 union { int num; char str[0]; } foo. Printing "<no value>" for
2809 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2810 will continue to work, and a 0-size array as a whole doesn't
2811 have any contents to print.
2812
2813 I suspect this probably could also happen with gcc -gstabs (not
2814 -gstabs+) for static fields, and perhaps other C++ extensions.
2815 Hopefully few people use -gstabs with gdb, since it is intended
2816 for dbx compatibility. */
2817
2818 /* Ignore this field. */
2819 fip->list->visibility = VISIBILITY_IGNORE;
2820 }
2821 else
2822 {
2823 /* Detect an unpacked field and mark it as such.
2824 dbx gives a bit size for all fields.
2825 Note that forward refs cannot be packed,
2826 and treat enums as if they had the width of ints. */
2827
2828 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2829
2830 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2831 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2832 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2833 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2834 {
2835 FIELD_BITSIZE (fip->list->field) = 0;
2836 }
2837 if ((FIELD_BITSIZE (fip->list->field)
2838 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2839 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2840 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2841 )
2842 &&
2843 FIELD_BITPOS (fip->list->field) % 8 == 0)
2844 {
2845 FIELD_BITSIZE (fip->list->field) = 0;
2846 }
2847 }
2848 }
2849
2850
2851 /* Read struct or class data fields. They have the form:
2852
2853 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2854
2855 At the end, we see a semicolon instead of a field.
2856
2857 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2858 a static field.
2859
2860 The optional VISIBILITY is one of:
2861
2862 '/0' (VISIBILITY_PRIVATE)
2863 '/1' (VISIBILITY_PROTECTED)
2864 '/2' (VISIBILITY_PUBLIC)
2865 '/9' (VISIBILITY_IGNORE)
2866
2867 or nothing, for C style fields with public visibility.
2868
2869 Returns 1 for success, 0 for failure. */
2870
2871 static int
2872 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2873 struct objfile *objfile)
2874 {
2875 char *p;
2876 struct nextfield *new;
2877
2878 /* We better set p right now, in case there are no fields at all... */
2879
2880 p = *pp;
2881
2882 /* Read each data member type until we find the terminating ';' at the end of
2883 the data member list, or break for some other reason such as finding the
2884 start of the member function list. */
2885 /* Stab string for structure/union does not end with two ';' in
2886 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2887
2888 while (**pp != ';' && **pp != '\0')
2889 {
2890 STABS_CONTINUE (pp, objfile);
2891 /* Get space to record the next field's data. */
2892 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2893 make_cleanup (xfree, new);
2894 memset (new, 0, sizeof (struct nextfield));
2895 new->next = fip->list;
2896 fip->list = new;
2897
2898 /* Get the field name. */
2899 p = *pp;
2900
2901 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2902 unless the CPLUS_MARKER is followed by an underscore, in
2903 which case it is just the name of an anonymous type, which we
2904 should handle like any other type name. */
2905
2906 if (is_cplus_marker (p[0]) && p[1] != '_')
2907 {
2908 if (!read_cpp_abbrev (fip, pp, type, objfile))
2909 return 0;
2910 continue;
2911 }
2912
2913 /* Look for the ':' that separates the field name from the field
2914 values. Data members are delimited by a single ':', while member
2915 functions are delimited by a pair of ':'s. When we hit the member
2916 functions (if any), terminate scan loop and return. */
2917
2918 while (*p != ':' && *p != '\0')
2919 {
2920 p++;
2921 }
2922 if (*p == '\0')
2923 return 0;
2924
2925 /* Check to see if we have hit the member functions yet. */
2926 if (p[1] == ':')
2927 {
2928 break;
2929 }
2930 read_one_struct_field (fip, pp, p, type, objfile);
2931 }
2932 if (p[0] == ':' && p[1] == ':')
2933 {
2934 /* (the deleted) chill the list of fields: the last entry (at
2935 the head) is a partially constructed entry which we now
2936 scrub. */
2937 fip->list = fip->list->next;
2938 }
2939 return 1;
2940 }
2941 /* *INDENT-OFF* */
2942 /* The stabs for C++ derived classes contain baseclass information which
2943 is marked by a '!' character after the total size. This function is
2944 called when we encounter the baseclass marker, and slurps up all the
2945 baseclass information.
2946
2947 Immediately following the '!' marker is the number of base classes that
2948 the class is derived from, followed by information for each base class.
2949 For each base class, there are two visibility specifiers, a bit offset
2950 to the base class information within the derived class, a reference to
2951 the type for the base class, and a terminating semicolon.
2952
2953 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2954 ^^ ^ ^ ^ ^ ^ ^
2955 Baseclass information marker __________________|| | | | | | |
2956 Number of baseclasses __________________________| | | | | | |
2957 Visibility specifiers (2) ________________________| | | | | |
2958 Offset in bits from start of class _________________| | | | |
2959 Type number for base class ___________________________| | | |
2960 Visibility specifiers (2) _______________________________| | |
2961 Offset in bits from start of class ________________________| |
2962 Type number of base class ____________________________________|
2963
2964 Return 1 for success, 0 for (error-type-inducing) failure. */
2965 /* *INDENT-ON* */
2966
2967
2968
2969 static int
2970 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2971 struct objfile *objfile)
2972 {
2973 int i;
2974 struct nextfield *new;
2975
2976 if (**pp != '!')
2977 {
2978 return 1;
2979 }
2980 else
2981 {
2982 /* Skip the '!' baseclass information marker. */
2983 (*pp)++;
2984 }
2985
2986 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2987 {
2988 int nbits;
2989 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2990 if (nbits != 0)
2991 return 0;
2992 }
2993
2994 #if 0
2995 /* Some stupid compilers have trouble with the following, so break
2996 it up into simpler expressions. */
2997 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2998 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2999 #else
3000 {
3001 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3002 char *pointer;
3003
3004 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3005 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3006 }
3007 #endif /* 0 */
3008
3009 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3010
3011 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3012 {
3013 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3014 make_cleanup (xfree, new);
3015 memset (new, 0, sizeof (struct nextfield));
3016 new->next = fip->list;
3017 fip->list = new;
3018 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3019
3020 STABS_CONTINUE (pp, objfile);
3021 switch (**pp)
3022 {
3023 case '0':
3024 /* Nothing to do. */
3025 break;
3026 case '1':
3027 SET_TYPE_FIELD_VIRTUAL (type, i);
3028 break;
3029 default:
3030 /* Unknown character. Complain and treat it as non-virtual. */
3031 {
3032 complaint (&symfile_complaints,
3033 "Unknown virtual character `%c' for baseclass", **pp);
3034 }
3035 }
3036 ++(*pp);
3037
3038 new->visibility = *(*pp)++;
3039 switch (new->visibility)
3040 {
3041 case VISIBILITY_PRIVATE:
3042 case VISIBILITY_PROTECTED:
3043 case VISIBILITY_PUBLIC:
3044 break;
3045 default:
3046 /* Bad visibility format. Complain and treat it as
3047 public. */
3048 {
3049 complaint (&symfile_complaints,
3050 "Unknown visibility `%c' for baseclass",
3051 new->visibility);
3052 new->visibility = VISIBILITY_PUBLIC;
3053 }
3054 }
3055
3056 {
3057 int nbits;
3058
3059 /* The remaining value is the bit offset of the portion of the object
3060 corresponding to this baseclass. Always zero in the absence of
3061 multiple inheritance. */
3062
3063 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3064 if (nbits != 0)
3065 return 0;
3066 }
3067
3068 /* The last piece of baseclass information is the type of the
3069 base class. Read it, and remember it's type name as this
3070 field's name. */
3071
3072 new->field.type = read_type (pp, objfile);
3073 new->field.name = type_name_no_tag (new->field.type);
3074
3075 /* skip trailing ';' and bump count of number of fields seen */
3076 if (**pp == ';')
3077 (*pp)++;
3078 else
3079 return 0;
3080 }
3081 return 1;
3082 }
3083
3084 /* The tail end of stabs for C++ classes that contain a virtual function
3085 pointer contains a tilde, a %, and a type number.
3086 The type number refers to the base class (possibly this class itself) which
3087 contains the vtable pointer for the current class.
3088
3089 This function is called when we have parsed all the method declarations,
3090 so we can look for the vptr base class info. */
3091
3092 static int
3093 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3094 struct objfile *objfile)
3095 {
3096 char *p;
3097
3098 STABS_CONTINUE (pp, objfile);
3099
3100 /* If we are positioned at a ';', then skip it. */
3101 if (**pp == ';')
3102 {
3103 (*pp)++;
3104 }
3105
3106 if (**pp == '~')
3107 {
3108 (*pp)++;
3109
3110 if (**pp == '=' || **pp == '+' || **pp == '-')
3111 {
3112 /* Obsolete flags that used to indicate the presence
3113 of constructors and/or destructors. */
3114 (*pp)++;
3115 }
3116
3117 /* Read either a '%' or the final ';'. */
3118 if (*(*pp)++ == '%')
3119 {
3120 /* The next number is the type number of the base class
3121 (possibly our own class) which supplies the vtable for
3122 this class. Parse it out, and search that class to find
3123 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3124 and TYPE_VPTR_FIELDNO. */
3125
3126 struct type *t;
3127 int i;
3128
3129 t = read_type (pp, objfile);
3130 p = (*pp)++;
3131 while (*p != '\0' && *p != ';')
3132 {
3133 p++;
3134 }
3135 if (*p == '\0')
3136 {
3137 /* Premature end of symbol. */
3138 return 0;
3139 }
3140
3141 TYPE_VPTR_BASETYPE (type) = t;
3142 if (type == t) /* Our own class provides vtbl ptr */
3143 {
3144 for (i = TYPE_NFIELDS (t) - 1;
3145 i >= TYPE_N_BASECLASSES (t);
3146 --i)
3147 {
3148 char *name = TYPE_FIELD_NAME (t, i);
3149 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3150 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3151 {
3152 TYPE_VPTR_FIELDNO (type) = i;
3153 goto gotit;
3154 }
3155 }
3156 /* Virtual function table field not found. */
3157 complaint (&symfile_complaints,
3158 "virtual function table pointer not found when defining class `%s'",
3159 TYPE_NAME (type));
3160 return 0;
3161 }
3162 else
3163 {
3164 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3165 }
3166
3167 gotit:
3168 *pp = p + 1;
3169 }
3170 }
3171 return 1;
3172 }
3173
3174 static int
3175 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3176 {
3177 int n;
3178
3179 for (n = TYPE_NFN_FIELDS (type);
3180 fip->fnlist != NULL;
3181 fip->fnlist = fip->fnlist->next)
3182 {
3183 --n; /* Circumvent Sun3 compiler bug */
3184 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3185 }
3186 return 1;
3187 }
3188
3189 /* Create the vector of fields, and record how big it is.
3190 We need this info to record proper virtual function table information
3191 for this class's virtual functions. */
3192
3193 static int
3194 attach_fields_to_type (struct field_info *fip, struct type *type,
3195 struct objfile *objfile)
3196 {
3197 int nfields = 0;
3198 int non_public_fields = 0;
3199 struct nextfield *scan;
3200
3201 /* Count up the number of fields that we have, as well as taking note of
3202 whether or not there are any non-public fields, which requires us to
3203 allocate and build the private_field_bits and protected_field_bits
3204 bitfields. */
3205
3206 for (scan = fip->list; scan != NULL; scan = scan->next)
3207 {
3208 nfields++;
3209 if (scan->visibility != VISIBILITY_PUBLIC)
3210 {
3211 non_public_fields++;
3212 }
3213 }
3214
3215 /* Now we know how many fields there are, and whether or not there are any
3216 non-public fields. Record the field count, allocate space for the
3217 array of fields, and create blank visibility bitfields if necessary. */
3218
3219 TYPE_NFIELDS (type) = nfields;
3220 TYPE_FIELDS (type) = (struct field *)
3221 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3222 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3223
3224 if (non_public_fields)
3225 {
3226 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3227
3228 TYPE_FIELD_PRIVATE_BITS (type) =
3229 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3230 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3231
3232 TYPE_FIELD_PROTECTED_BITS (type) =
3233 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3234 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3235
3236 TYPE_FIELD_IGNORE_BITS (type) =
3237 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3238 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3239 }
3240
3241 /* Copy the saved-up fields into the field vector. Start from the head
3242 of the list, adding to the tail of the field array, so that they end
3243 up in the same order in the array in which they were added to the list. */
3244
3245 while (nfields-- > 0)
3246 {
3247 TYPE_FIELD (type, nfields) = fip->list->field;
3248 switch (fip->list->visibility)
3249 {
3250 case VISIBILITY_PRIVATE:
3251 SET_TYPE_FIELD_PRIVATE (type, nfields);
3252 break;
3253
3254 case VISIBILITY_PROTECTED:
3255 SET_TYPE_FIELD_PROTECTED (type, nfields);
3256 break;
3257
3258 case VISIBILITY_IGNORE:
3259 SET_TYPE_FIELD_IGNORE (type, nfields);
3260 break;
3261
3262 case VISIBILITY_PUBLIC:
3263 break;
3264
3265 default:
3266 /* Unknown visibility. Complain and treat it as public. */
3267 {
3268 complaint (&symfile_complaints, "Unknown visibility `%c' for field",
3269 fip->list->visibility);
3270 }
3271 break;
3272 }
3273 fip->list = fip->list->next;
3274 }
3275 return 1;
3276 }
3277
3278
3279 /* Complain that the compiler has emitted more than one definition for the
3280 structure type TYPE. */
3281 static void
3282 complain_about_struct_wipeout (struct type *type)
3283 {
3284 char *name = "";
3285 char *kind = "";
3286
3287 if (TYPE_TAG_NAME (type))
3288 {
3289 name = TYPE_TAG_NAME (type);
3290 switch (TYPE_CODE (type))
3291 {
3292 case TYPE_CODE_STRUCT: kind = "struct "; break;
3293 case TYPE_CODE_UNION: kind = "union "; break;
3294 case TYPE_CODE_ENUM: kind = "enum "; break;
3295 default: kind = "";
3296 }
3297 }
3298 else if (TYPE_NAME (type))
3299 {
3300 name = TYPE_NAME (type);
3301 kind = "";
3302 }
3303 else
3304 {
3305 name = "<unknown>";
3306 kind = "";
3307 }
3308
3309 complaint (&symfile_complaints,
3310 "struct/union type gets multiply defined: %s%s", kind, name);
3311 }
3312
3313
3314 /* Read the description of a structure (or union type) and return an object
3315 describing the type.
3316
3317 PP points to a character pointer that points to the next unconsumed token
3318 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3319 *PP will point to "4a:1,0,32;;".
3320
3321 TYPE points to an incomplete type that needs to be filled in.
3322
3323 OBJFILE points to the current objfile from which the stabs information is
3324 being read. (Note that it is redundant in that TYPE also contains a pointer
3325 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3326 */
3327
3328 static struct type *
3329 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3330 struct objfile *objfile)
3331 {
3332 struct cleanup *back_to;
3333 struct field_info fi;
3334
3335 fi.list = NULL;
3336 fi.fnlist = NULL;
3337
3338 /* When describing struct/union/class types in stabs, G++ always drops
3339 all qualifications from the name. So if you've got:
3340 struct A { ... struct B { ... }; ... };
3341 then G++ will emit stabs for `struct A::B' that call it simply
3342 `struct B'. Obviously, if you've got a real top-level definition for
3343 `struct B', or other nested definitions, this is going to cause
3344 problems.
3345
3346 Obviously, GDB can't fix this by itself, but it can at least avoid
3347 scribbling on existing structure type objects when new definitions
3348 appear. */
3349 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3350 || TYPE_STUB (type)))
3351 {
3352 complain_about_struct_wipeout (type);
3353
3354 /* It's probably best to return the type unchanged. */
3355 return type;
3356 }
3357
3358 back_to = make_cleanup (null_cleanup, 0);
3359
3360 INIT_CPLUS_SPECIFIC (type);
3361 TYPE_CODE (type) = type_code;
3362 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3363
3364 /* First comes the total size in bytes. */
3365
3366 {
3367 int nbits;
3368 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
3369 if (nbits != 0)
3370 return error_type (pp, objfile);
3371 }
3372
3373 /* Now read the baseclasses, if any, read the regular C struct or C++
3374 class member fields, attach the fields to the type, read the C++
3375 member functions, attach them to the type, and then read any tilde
3376 field (baseclass specifier for the class holding the main vtable). */
3377
3378 if (!read_baseclasses (&fi, pp, type, objfile)
3379 || !read_struct_fields (&fi, pp, type, objfile)
3380 || !attach_fields_to_type (&fi, type, objfile)
3381 || !read_member_functions (&fi, pp, type, objfile)
3382 || !attach_fn_fields_to_type (&fi, type)
3383 || !read_tilde_fields (&fi, pp, type, objfile))
3384 {
3385 type = error_type (pp, objfile);
3386 }
3387
3388 do_cleanups (back_to);
3389 return (type);
3390 }
3391
3392 /* Read a definition of an array type,
3393 and create and return a suitable type object.
3394 Also creates a range type which represents the bounds of that
3395 array. */
3396
3397 static struct type *
3398 read_array_type (char **pp, struct type *type,
3399 struct objfile *objfile)
3400 {
3401 struct type *index_type, *element_type, *range_type;
3402 int lower, upper;
3403 int adjustable = 0;
3404 int nbits;
3405
3406 /* Format of an array type:
3407 "ar<index type>;lower;upper;<array_contents_type>".
3408 OS9000: "arlower,upper;<array_contents_type>".
3409
3410 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3411 for these, produce a type like float[][]. */
3412
3413 {
3414 index_type = read_type (pp, objfile);
3415 if (**pp != ';')
3416 /* Improper format of array type decl. */
3417 return error_type (pp, objfile);
3418 ++*pp;
3419 }
3420
3421 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3422 {
3423 (*pp)++;
3424 adjustable = 1;
3425 }
3426 lower = read_huge_number (pp, ';', &nbits);
3427
3428 if (nbits != 0)
3429 return error_type (pp, objfile);
3430
3431 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3432 {
3433 (*pp)++;
3434 adjustable = 1;
3435 }
3436 upper = read_huge_number (pp, ';', &nbits);
3437 if (nbits != 0)
3438 return error_type (pp, objfile);
3439
3440 element_type = read_type (pp, objfile);
3441
3442 if (adjustable)
3443 {
3444 lower = 0;
3445 upper = -1;
3446 }
3447
3448 range_type =
3449 create_range_type ((struct type *) NULL, index_type, lower, upper);
3450 type = create_array_type (type, element_type, range_type);
3451
3452 return type;
3453 }
3454
3455
3456 /* Read a definition of an enumeration type,
3457 and create and return a suitable type object.
3458 Also defines the symbols that represent the values of the type. */
3459
3460 static struct type *
3461 read_enum_type (char **pp, struct type *type,
3462 struct objfile *objfile)
3463 {
3464 char *p;
3465 char *name;
3466 long n;
3467 struct symbol *sym;
3468 int nsyms = 0;
3469 struct pending **symlist;
3470 struct pending *osyms, *syms;
3471 int o_nsyms;
3472 int nbits;
3473 int unsigned_enum = 1;
3474
3475 #if 0
3476 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3477 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3478 to do? For now, force all enum values to file scope. */
3479 if (within_function)
3480 symlist = &local_symbols;
3481 else
3482 #endif
3483 symlist = &file_symbols;
3484 osyms = *symlist;
3485 o_nsyms = osyms ? osyms->nsyms : 0;
3486
3487 /* The aix4 compiler emits an extra field before the enum members;
3488 my guess is it's a type of some sort. Just ignore it. */
3489 if (**pp == '-')
3490 {
3491 /* Skip over the type. */
3492 while (**pp != ':')
3493 (*pp)++;
3494
3495 /* Skip over the colon. */
3496 (*pp)++;
3497 }
3498
3499 /* Read the value-names and their values.
3500 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3501 A semicolon or comma instead of a NAME means the end. */
3502 while (**pp && **pp != ';' && **pp != ',')
3503 {
3504 STABS_CONTINUE (pp, objfile);
3505 p = *pp;
3506 while (*p != ':')
3507 p++;
3508 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
3509 *pp = p + 1;
3510 n = read_huge_number (pp, ',', &nbits);
3511 if (nbits != 0)
3512 return error_type (pp, objfile);
3513
3514 sym = (struct symbol *)
3515 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3516 memset (sym, 0, sizeof (struct symbol));
3517 DEPRECATED_SYMBOL_NAME (sym) = name;
3518 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3519 SYMBOL_CLASS (sym) = LOC_CONST;
3520 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3521 SYMBOL_VALUE (sym) = n;
3522 if (n < 0)
3523 unsigned_enum = 0;
3524 add_symbol_to_list (sym, symlist);
3525 nsyms++;
3526 }
3527
3528 if (**pp == ';')
3529 (*pp)++; /* Skip the semicolon. */
3530
3531 /* Now fill in the fields of the type-structure. */
3532
3533 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3534 TYPE_CODE (type) = TYPE_CODE_ENUM;
3535 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3536 if (unsigned_enum)
3537 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3538 TYPE_NFIELDS (type) = nsyms;
3539 TYPE_FIELDS (type) = (struct field *)
3540 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3541 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3542
3543 /* Find the symbols for the values and put them into the type.
3544 The symbols can be found in the symlist that we put them on
3545 to cause them to be defined. osyms contains the old value
3546 of that symlist; everything up to there was defined by us. */
3547 /* Note that we preserve the order of the enum constants, so
3548 that in something like "enum {FOO, LAST_THING=FOO}" we print
3549 FOO, not LAST_THING. */
3550
3551 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3552 {
3553 int last = syms == osyms ? o_nsyms : 0;
3554 int j = syms->nsyms;
3555 for (; --j >= last; --n)
3556 {
3557 struct symbol *xsym = syms->symbol[j];
3558 SYMBOL_TYPE (xsym) = type;
3559 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3560 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3561 TYPE_FIELD_BITSIZE (type, n) = 0;
3562 }
3563 if (syms == osyms)
3564 break;
3565 }
3566
3567 return type;
3568 }
3569
3570 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3571 typedefs in every file (for int, long, etc):
3572
3573 type = b <signed> <width> <format type>; <offset>; <nbits>
3574 signed = u or s.
3575 optional format type = c or b for char or boolean.
3576 offset = offset from high order bit to start bit of type.
3577 width is # bytes in object of this type, nbits is # bits in type.
3578
3579 The width/offset stuff appears to be for small objects stored in
3580 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3581 FIXME. */
3582
3583 static struct type *
3584 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3585 {
3586 int type_bits;
3587 int nbits;
3588 int signed_type;
3589 enum type_code code = TYPE_CODE_INT;
3590
3591 switch (**pp)
3592 {
3593 case 's':
3594 signed_type = 1;
3595 break;
3596 case 'u':
3597 signed_type = 0;
3598 break;
3599 default:
3600 return error_type (pp, objfile);
3601 }
3602 (*pp)++;
3603
3604 /* For some odd reason, all forms of char put a c here. This is strange
3605 because no other type has this honor. We can safely ignore this because
3606 we actually determine 'char'acterness by the number of bits specified in
3607 the descriptor.
3608 Boolean forms, e.g Fortran logical*X, put a b here. */
3609
3610 if (**pp == 'c')
3611 (*pp)++;
3612 else if (**pp == 'b')
3613 {
3614 code = TYPE_CODE_BOOL;
3615 (*pp)++;
3616 }
3617
3618 /* The first number appears to be the number of bytes occupied
3619 by this type, except that unsigned short is 4 instead of 2.
3620 Since this information is redundant with the third number,
3621 we will ignore it. */
3622 read_huge_number (pp, ';', &nbits);
3623 if (nbits != 0)
3624 return error_type (pp, objfile);
3625
3626 /* The second number is always 0, so ignore it too. */
3627 read_huge_number (pp, ';', &nbits);
3628 if (nbits != 0)
3629 return error_type (pp, objfile);
3630
3631 /* The third number is the number of bits for this type. */
3632 type_bits = read_huge_number (pp, 0, &nbits);
3633 if (nbits != 0)
3634 return error_type (pp, objfile);
3635 /* The type *should* end with a semicolon. If it are embedded
3636 in a larger type the semicolon may be the only way to know where
3637 the type ends. If this type is at the end of the stabstring we
3638 can deal with the omitted semicolon (but we don't have to like
3639 it). Don't bother to complain(), Sun's compiler omits the semicolon
3640 for "void". */
3641 if (**pp == ';')
3642 ++(*pp);
3643
3644 if (type_bits == 0)
3645 return init_type (TYPE_CODE_VOID, 1,
3646 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3647 objfile);
3648 else
3649 return init_type (code,
3650 type_bits / TARGET_CHAR_BIT,
3651 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3652 objfile);
3653 }
3654
3655 static struct type *
3656 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3657 {
3658 int nbits;
3659 int details;
3660 int nbytes;
3661 struct type *rettype;
3662
3663 /* The first number has more details about the type, for example
3664 FN_COMPLEX. */
3665 details = read_huge_number (pp, ';', &nbits);
3666 if (nbits != 0)
3667 return error_type (pp, objfile);
3668
3669 /* The second number is the number of bytes occupied by this type */
3670 nbytes = read_huge_number (pp, ';', &nbits);
3671 if (nbits != 0)
3672 return error_type (pp, objfile);
3673
3674 if (details == NF_COMPLEX || details == NF_COMPLEX16
3675 || details == NF_COMPLEX32)
3676 {
3677 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3678 TYPE_TARGET_TYPE (rettype)
3679 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3680 return rettype;
3681 }
3682
3683 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3684 }
3685
3686 /* Read a number from the string pointed to by *PP.
3687 The value of *PP is advanced over the number.
3688 If END is nonzero, the character that ends the
3689 number must match END, or an error happens;
3690 and that character is skipped if it does match.
3691 If END is zero, *PP is left pointing to that character.
3692
3693 If the number fits in a long, set *BITS to 0 and return the value.
3694 If not, set *BITS to be the number of bits in the number and return 0.
3695
3696 If encounter garbage, set *BITS to -1 and return 0. */
3697
3698 static long
3699 read_huge_number (char **pp, int end, int *bits)
3700 {
3701 char *p = *pp;
3702 int sign = 1;
3703 long n = 0;
3704 int radix = 10;
3705 char overflow = 0;
3706 int nbits = 0;
3707 int c;
3708 long upper_limit;
3709
3710 if (*p == '-')
3711 {
3712 sign = -1;
3713 p++;
3714 }
3715
3716 /* Leading zero means octal. GCC uses this to output values larger
3717 than an int (because that would be hard in decimal). */
3718 if (*p == '0')
3719 {
3720 radix = 8;
3721 p++;
3722 }
3723
3724 upper_limit = LONG_MAX / radix;
3725
3726 while ((c = *p++) >= '0' && c < ('0' + radix))
3727 {
3728 if (n <= upper_limit)
3729 {
3730 n *= radix;
3731 n += c - '0'; /* FIXME this overflows anyway */
3732 }
3733 else
3734 overflow = 1;
3735
3736 /* This depends on large values being output in octal, which is
3737 what GCC does. */
3738 if (radix == 8)
3739 {
3740 if (nbits == 0)
3741 {
3742 if (c == '0')
3743 /* Ignore leading zeroes. */
3744 ;
3745 else if (c == '1')
3746 nbits = 1;
3747 else if (c == '2' || c == '3')
3748 nbits = 2;
3749 else
3750 nbits = 3;
3751 }
3752 else
3753 nbits += 3;
3754 }
3755 }
3756 if (end)
3757 {
3758 if (c && c != end)
3759 {
3760 if (bits != NULL)
3761 *bits = -1;
3762 return 0;
3763 }
3764 }
3765 else
3766 --p;
3767
3768 *pp = p;
3769 if (overflow)
3770 {
3771 if (nbits == 0)
3772 {
3773 /* Large decimal constants are an error (because it is hard to
3774 count how many bits are in them). */
3775 if (bits != NULL)
3776 *bits = -1;
3777 return 0;
3778 }
3779
3780 /* -0x7f is the same as 0x80. So deal with it by adding one to
3781 the number of bits. */
3782 if (sign == -1)
3783 ++nbits;
3784 if (bits)
3785 *bits = nbits;
3786 }
3787 else
3788 {
3789 if (bits)
3790 *bits = 0;
3791 return n * sign;
3792 }
3793 /* It's *BITS which has the interesting information. */
3794 return 0;
3795 }
3796
3797 static struct type *
3798 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
3799 {
3800 char *orig_pp = *pp;
3801 int rangenums[2];
3802 long n2, n3;
3803 int n2bits, n3bits;
3804 int self_subrange;
3805 struct type *result_type;
3806 struct type *index_type = NULL;
3807
3808 /* First comes a type we are a subrange of.
3809 In C it is usually 0, 1 or the type being defined. */
3810 if (read_type_number (pp, rangenums) != 0)
3811 return error_type (pp, objfile);
3812 self_subrange = (rangenums[0] == typenums[0] &&
3813 rangenums[1] == typenums[1]);
3814
3815 if (**pp == '=')
3816 {
3817 *pp = orig_pp;
3818 index_type = read_type (pp, objfile);
3819 }
3820
3821 /* A semicolon should now follow; skip it. */
3822 if (**pp == ';')
3823 (*pp)++;
3824
3825 /* The remaining two operands are usually lower and upper bounds
3826 of the range. But in some special cases they mean something else. */
3827 n2 = read_huge_number (pp, ';', &n2bits);
3828 n3 = read_huge_number (pp, ';', &n3bits);
3829
3830 if (n2bits == -1 || n3bits == -1)
3831 return error_type (pp, objfile);
3832
3833 if (index_type)
3834 goto handle_true_range;
3835
3836 /* If limits are huge, must be large integral type. */
3837 if (n2bits != 0 || n3bits != 0)
3838 {
3839 char got_signed = 0;
3840 char got_unsigned = 0;
3841 /* Number of bits in the type. */
3842 int nbits = 0;
3843
3844 /* Range from 0 to <large number> is an unsigned large integral type. */
3845 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3846 {
3847 got_unsigned = 1;
3848 nbits = n3bits;
3849 }
3850 /* Range from <large number> to <large number>-1 is a large signed
3851 integral type. Take care of the case where <large number> doesn't
3852 fit in a long but <large number>-1 does. */
3853 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3854 || (n2bits != 0 && n3bits == 0
3855 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3856 && n3 == LONG_MAX))
3857 {
3858 got_signed = 1;
3859 nbits = n2bits;
3860 }
3861
3862 if (got_signed || got_unsigned)
3863 {
3864 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3865 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3866 objfile);
3867 }
3868 else
3869 return error_type (pp, objfile);
3870 }
3871
3872 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3873 if (self_subrange && n2 == 0 && n3 == 0)
3874 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3875
3876 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3877 is the width in bytes.
3878
3879 Fortran programs appear to use this for complex types also. To
3880 distinguish between floats and complex, g77 (and others?) seem
3881 to use self-subranges for the complexes, and subranges of int for
3882 the floats.
3883
3884 Also note that for complexes, g77 sets n2 to the size of one of
3885 the member floats, not the whole complex beast. My guess is that
3886 this was to work well with pre-COMPLEX versions of gdb. */
3887
3888 if (n3 == 0 && n2 > 0)
3889 {
3890 struct type *float_type
3891 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3892
3893 if (self_subrange)
3894 {
3895 struct type *complex_type =
3896 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3897 TYPE_TARGET_TYPE (complex_type) = float_type;
3898 return complex_type;
3899 }
3900 else
3901 return float_type;
3902 }
3903
3904 /* If the upper bound is -1, it must really be an unsigned int. */
3905
3906 else if (n2 == 0 && n3 == -1)
3907 {
3908 /* It is unsigned int or unsigned long. */
3909 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3910 compatibility hack. */
3911 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3912 TYPE_FLAG_UNSIGNED, NULL, objfile);
3913 }
3914
3915 /* Special case: char is defined (Who knows why) as a subrange of
3916 itself with range 0-127. */
3917 else if (self_subrange && n2 == 0 && n3 == 127)
3918 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3919
3920 /* We used to do this only for subrange of self or subrange of int. */
3921 else if (n2 == 0)
3922 {
3923 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3924 "unsigned long", and we already checked for that,
3925 so don't need to test for it here. */
3926
3927 if (n3 < 0)
3928 /* n3 actually gives the size. */
3929 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3930 NULL, objfile);
3931
3932 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3933 unsigned n-byte integer. But do require n to be a power of
3934 two; we don't want 3- and 5-byte integers flying around. */
3935 {
3936 int bytes;
3937 unsigned long bits;
3938
3939 bits = n3;
3940 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3941 bits >>= 8;
3942 if (bits == 0
3943 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3944 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3945 objfile);
3946 }
3947 }
3948 /* I think this is for Convex "long long". Since I don't know whether
3949 Convex sets self_subrange, I also accept that particular size regardless
3950 of self_subrange. */
3951 else if (n3 == 0 && n2 < 0
3952 && (self_subrange
3953 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3954 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3955 else if (n2 == -n3 - 1)
3956 {
3957 if (n3 == 0x7f)
3958 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3959 if (n3 == 0x7fff)
3960 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3961 if (n3 == 0x7fffffff)
3962 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3963 }
3964
3965 /* We have a real range type on our hands. Allocate space and
3966 return a real pointer. */
3967 handle_true_range:
3968
3969 if (self_subrange)
3970 index_type = builtin_type_int;
3971 else
3972 index_type = *dbx_lookup_type (rangenums);
3973 if (index_type == NULL)
3974 {
3975 /* Does this actually ever happen? Is that why we are worrying
3976 about dealing with it rather than just calling error_type? */
3977
3978 static struct type *range_type_index;
3979
3980 complaint (&symfile_complaints,
3981 "base type %d of range type is not defined", rangenums[1]);
3982 if (range_type_index == NULL)
3983 range_type_index =
3984 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3985 0, "range type index type", NULL);
3986 index_type = range_type_index;
3987 }
3988
3989 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3990 return (result_type);
3991 }
3992
3993 /* Read in an argument list. This is a list of types, separated by commas
3994 and terminated with END. Return the list of types read in, or (struct type
3995 **)-1 if there is an error. */
3996
3997 static struct field *
3998 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
3999 int *varargsp)
4000 {
4001 /* FIXME! Remove this arbitrary limit! */
4002 struct type *types[1024]; /* allow for fns of 1023 parameters */
4003 int n = 0, i;
4004 struct field *rval;
4005
4006 while (**pp != end)
4007 {
4008 if (**pp != ',')
4009 /* Invalid argument list: no ','. */
4010 return (struct field *) -1;
4011 (*pp)++;
4012 STABS_CONTINUE (pp, objfile);
4013 types[n++] = read_type (pp, objfile);
4014 }
4015 (*pp)++; /* get past `end' (the ':' character) */
4016
4017 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4018 *varargsp = 1;
4019 else
4020 {
4021 n--;
4022 *varargsp = 0;
4023 }
4024
4025 rval = (struct field *) xmalloc (n * sizeof (struct field));
4026 memset (rval, 0, n * sizeof (struct field));
4027 for (i = 0; i < n; i++)
4028 rval[i].type = types[i];
4029 *nargsp = n;
4030 return rval;
4031 }
4032 \f
4033 /* Common block handling. */
4034
4035 /* List of symbols declared since the last BCOMM. This list is a tail
4036 of local_symbols. When ECOMM is seen, the symbols on the list
4037 are noted so their proper addresses can be filled in later,
4038 using the common block base address gotten from the assembler
4039 stabs. */
4040
4041 static struct pending *common_block;
4042 static int common_block_i;
4043
4044 /* Name of the current common block. We get it from the BCOMM instead of the
4045 ECOMM to match IBM documentation (even though IBM puts the name both places
4046 like everyone else). */
4047 static char *common_block_name;
4048
4049 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4050 to remain after this function returns. */
4051
4052 void
4053 common_block_start (char *name, struct objfile *objfile)
4054 {
4055 if (common_block_name != NULL)
4056 {
4057 complaint (&symfile_complaints,
4058 "Invalid symbol data: common block within common block");
4059 }
4060 common_block = local_symbols;
4061 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4062 common_block_name = obsavestring (name, strlen (name),
4063 &objfile->symbol_obstack);
4064 }
4065
4066 /* Process a N_ECOMM symbol. */
4067
4068 void
4069 common_block_end (struct objfile *objfile)
4070 {
4071 /* Symbols declared since the BCOMM are to have the common block
4072 start address added in when we know it. common_block and
4073 common_block_i point to the first symbol after the BCOMM in
4074 the local_symbols list; copy the list and hang it off the
4075 symbol for the common block name for later fixup. */
4076 int i;
4077 struct symbol *sym;
4078 struct pending *new = 0;
4079 struct pending *next;
4080 int j;
4081
4082 if (common_block_name == NULL)
4083 {
4084 complaint (&symfile_complaints, "ECOMM symbol unmatched by BCOMM");
4085 return;
4086 }
4087
4088 sym = (struct symbol *)
4089 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4090 memset (sym, 0, sizeof (struct symbol));
4091 /* Note: common_block_name already saved on symbol_obstack */
4092 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4093 SYMBOL_CLASS (sym) = LOC_BLOCK;
4094
4095 /* Now we copy all the symbols which have been defined since the BCOMM. */
4096
4097 /* Copy all the struct pendings before common_block. */
4098 for (next = local_symbols;
4099 next != NULL && next != common_block;
4100 next = next->next)
4101 {
4102 for (j = 0; j < next->nsyms; j++)
4103 add_symbol_to_list (next->symbol[j], &new);
4104 }
4105
4106 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4107 NULL, it means copy all the local symbols (which we already did
4108 above). */
4109
4110 if (common_block != NULL)
4111 for (j = common_block_i; j < common_block->nsyms; j++)
4112 add_symbol_to_list (common_block->symbol[j], &new);
4113
4114 SYMBOL_TYPE (sym) = (struct type *) new;
4115
4116 /* Should we be putting local_symbols back to what it was?
4117 Does it matter? */
4118
4119 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4120 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4121 global_sym_chain[i] = sym;
4122 common_block_name = NULL;
4123 }
4124
4125 /* Add a common block's start address to the offset of each symbol
4126 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4127 the common block name). */
4128
4129 static void
4130 fix_common_block (struct symbol *sym, int valu)
4131 {
4132 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4133 for (; next; next = next->next)
4134 {
4135 int j;
4136 for (j = next->nsyms - 1; j >= 0; j--)
4137 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4138 }
4139 }
4140 \f
4141
4142
4143 /* What about types defined as forward references inside of a small lexical
4144 scope? */
4145 /* Add a type to the list of undefined types to be checked through
4146 once this file has been read in. */
4147
4148 static void
4149 add_undefined_type (struct type *type)
4150 {
4151 if (undef_types_length == undef_types_allocated)
4152 {
4153 undef_types_allocated *= 2;
4154 undef_types = (struct type **)
4155 xrealloc ((char *) undef_types,
4156 undef_types_allocated * sizeof (struct type *));
4157 }
4158 undef_types[undef_types_length++] = type;
4159 }
4160
4161 /* Go through each undefined type, see if it's still undefined, and fix it
4162 up if possible. We have two kinds of undefined types:
4163
4164 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4165 Fix: update array length using the element bounds
4166 and the target type's length.
4167 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4168 yet defined at the time a pointer to it was made.
4169 Fix: Do a full lookup on the struct/union tag. */
4170 void
4171 cleanup_undefined_types (void)
4172 {
4173 struct type **type;
4174
4175 for (type = undef_types; type < undef_types + undef_types_length; type++)
4176 {
4177 switch (TYPE_CODE (*type))
4178 {
4179
4180 case TYPE_CODE_STRUCT:
4181 case TYPE_CODE_UNION:
4182 case TYPE_CODE_ENUM:
4183 {
4184 /* Check if it has been defined since. Need to do this here
4185 as well as in check_typedef to deal with the (legitimate in
4186 C though not C++) case of several types with the same name
4187 in different source files. */
4188 if (TYPE_STUB (*type))
4189 {
4190 struct pending *ppt;
4191 int i;
4192 /* Name of the type, without "struct" or "union" */
4193 char *typename = TYPE_TAG_NAME (*type);
4194
4195 if (typename == NULL)
4196 {
4197 complaint (&symfile_complaints, "need a type name");
4198 break;
4199 }
4200 for (ppt = file_symbols; ppt; ppt = ppt->next)
4201 {
4202 for (i = 0; i < ppt->nsyms; i++)
4203 {
4204 struct symbol *sym = ppt->symbol[i];
4205
4206 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4207 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4208 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4209 TYPE_CODE (*type))
4210 && STREQ (DEPRECATED_SYMBOL_NAME (sym), typename))
4211 replace_type (*type, SYMBOL_TYPE (sym));
4212 }
4213 }
4214 }
4215 }
4216 break;
4217
4218 default:
4219 {
4220 complaint (&symfile_complaints,
4221 "GDB internal error. cleanup_undefined_types with bad type %d.",
4222 TYPE_CODE (*type));
4223 }
4224 break;
4225 }
4226 }
4227
4228 undef_types_length = 0;
4229 }
4230
4231 /* Scan through all of the global symbols defined in the object file,
4232 assigning values to the debugging symbols that need to be assigned
4233 to. Get these symbols from the minimal symbol table. */
4234
4235 void
4236 scan_file_globals (struct objfile *objfile)
4237 {
4238 int hash;
4239 struct minimal_symbol *msymbol;
4240 struct symbol *sym, *prev;
4241 struct objfile *resolve_objfile;
4242
4243 /* SVR4 based linkers copy referenced global symbols from shared
4244 libraries to the main executable.
4245 If we are scanning the symbols for a shared library, try to resolve
4246 them from the minimal symbols of the main executable first. */
4247
4248 if (symfile_objfile && objfile != symfile_objfile)
4249 resolve_objfile = symfile_objfile;
4250 else
4251 resolve_objfile = objfile;
4252
4253 while (1)
4254 {
4255 /* Avoid expensive loop through all minimal symbols if there are
4256 no unresolved symbols. */
4257 for (hash = 0; hash < HASHSIZE; hash++)
4258 {
4259 if (global_sym_chain[hash])
4260 break;
4261 }
4262 if (hash >= HASHSIZE)
4263 return;
4264
4265 for (msymbol = resolve_objfile->msymbols;
4266 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4267 msymbol++)
4268 {
4269 QUIT;
4270
4271 /* Skip static symbols. */
4272 switch (MSYMBOL_TYPE (msymbol))
4273 {
4274 case mst_file_text:
4275 case mst_file_data:
4276 case mst_file_bss:
4277 continue;
4278 default:
4279 break;
4280 }
4281
4282 prev = NULL;
4283
4284 /* Get the hash index and check all the symbols
4285 under that hash index. */
4286
4287 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4288
4289 for (sym = global_sym_chain[hash]; sym;)
4290 {
4291 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4292 STREQ (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1))
4293 {
4294 /* Splice this symbol out of the hash chain and
4295 assign the value we have to it. */
4296 if (prev)
4297 {
4298 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4299 }
4300 else
4301 {
4302 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4303 }
4304
4305 /* Check to see whether we need to fix up a common block. */
4306 /* Note: this code might be executed several times for
4307 the same symbol if there are multiple references. */
4308 if (sym)
4309 {
4310 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4311 {
4312 fix_common_block (sym,
4313 SYMBOL_VALUE_ADDRESS (msymbol));
4314 }
4315 else
4316 {
4317 SYMBOL_VALUE_ADDRESS (sym)
4318 = SYMBOL_VALUE_ADDRESS (msymbol);
4319 }
4320 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4321 }
4322
4323 if (prev)
4324 {
4325 sym = SYMBOL_VALUE_CHAIN (prev);
4326 }
4327 else
4328 {
4329 sym = global_sym_chain[hash];
4330 }
4331 }
4332 else
4333 {
4334 prev = sym;
4335 sym = SYMBOL_VALUE_CHAIN (sym);
4336 }
4337 }
4338 }
4339 if (resolve_objfile == objfile)
4340 break;
4341 resolve_objfile = objfile;
4342 }
4343
4344 /* Change the storage class of any remaining unresolved globals to
4345 LOC_UNRESOLVED and remove them from the chain. */
4346 for (hash = 0; hash < HASHSIZE; hash++)
4347 {
4348 sym = global_sym_chain[hash];
4349 while (sym)
4350 {
4351 prev = sym;
4352 sym = SYMBOL_VALUE_CHAIN (sym);
4353
4354 /* Change the symbol address from the misleading chain value
4355 to address zero. */
4356 SYMBOL_VALUE_ADDRESS (prev) = 0;
4357
4358 /* Complain about unresolved common block symbols. */
4359 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4360 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4361 else
4362 complaint (&symfile_complaints,
4363 "%s: common block `%s' from global_sym_chain unresolved",
4364 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4365 }
4366 }
4367 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4368 }
4369
4370 /* Initialize anything that needs initializing when starting to read
4371 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4372 to a psymtab. */
4373
4374 void
4375 stabsread_init (void)
4376 {
4377 }
4378
4379 /* Initialize anything that needs initializing when a completely new
4380 symbol file is specified (not just adding some symbols from another
4381 file, e.g. a shared library). */
4382
4383 void
4384 stabsread_new_init (void)
4385 {
4386 /* Empty the hash table of global syms looking for values. */
4387 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4388 }
4389
4390 /* Initialize anything that needs initializing at the same time as
4391 start_symtab() is called. */
4392
4393 void
4394 start_stabs (void)
4395 {
4396 global_stabs = NULL; /* AIX COFF */
4397 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4398 n_this_object_header_files = 1;
4399 type_vector_length = 0;
4400 type_vector = (struct type **) 0;
4401
4402 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4403 common_block_name = NULL;
4404 }
4405
4406 /* Call after end_symtab() */
4407
4408 void
4409 end_stabs (void)
4410 {
4411 if (type_vector)
4412 {
4413 xfree (type_vector);
4414 }
4415 type_vector = 0;
4416 type_vector_length = 0;
4417 previous_stab_code = 0;
4418 }
4419
4420 void
4421 finish_global_stabs (struct objfile *objfile)
4422 {
4423 if (global_stabs)
4424 {
4425 patch_block_stabs (global_symbols, global_stabs, objfile);
4426 xfree (global_stabs);
4427 global_stabs = NULL;
4428 }
4429 }
4430
4431 /* Find the end of the name, delimited by a ':', but don't match
4432 ObjC symbols which look like -[Foo bar::]:bla. */
4433 static char *
4434 find_name_end (char *name)
4435 {
4436 char *s = name;
4437 if (s[0] == '-' || *s == '+')
4438 {
4439 /* Must be an ObjC method symbol. */
4440 if (s[1] != '[')
4441 {
4442 error ("invalid symbol name \"%s\"", name);
4443 }
4444 s = strchr (s, ']');
4445 if (s == NULL)
4446 {
4447 error ("invalid symbol name \"%s\"", name);
4448 }
4449 return strchr (s, ':');
4450 }
4451 else
4452 {
4453 return strchr (s, ':');
4454 }
4455 }
4456
4457 /* Initializer for this module */
4458
4459 void
4460 _initialize_stabsread (void)
4461 {
4462 undef_types_allocated = 20;
4463 undef_types_length = 0;
4464 undef_types = (struct type **)
4465 xmalloc (undef_types_allocated * sizeof (struct type *));
4466 }
This page took 0.123638 seconds and 4 git commands to generate.