2011-02-28 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number "
237 "(%d,%d) out of range at symtab pos %d."),
238 filenum, index, symnum);
239 goto error_return;
240 }
241
242 if (filenum == 0)
243 {
244 if (index < 0)
245 {
246 /* Caller wants address of address of type. We think
247 that negative (rs6k builtin) types will never appear as
248 "lvalues", (nor should they), so we stuff the real type
249 pointer into a temp, and return its address. If referenced,
250 this will do the right thing. */
251 static struct type *temp_type;
252
253 temp_type = rs6000_builtin_type (index, objfile);
254 return &temp_type;
255 }
256
257 /* Type is defined outside of header files.
258 Find it in this object file's type vector. */
259 if (index >= type_vector_length)
260 {
261 old_len = type_vector_length;
262 if (old_len == 0)
263 {
264 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
265 type_vector = (struct type **)
266 xmalloc (type_vector_length * sizeof (struct type *));
267 }
268 while (index >= type_vector_length)
269 {
270 type_vector_length *= 2;
271 }
272 type_vector = (struct type **)
273 xrealloc ((char *) type_vector,
274 (type_vector_length * sizeof (struct type *)));
275 memset (&type_vector[old_len], 0,
276 (type_vector_length - old_len) * sizeof (struct type *));
277 }
278 return (&type_vector[index]);
279 }
280 else
281 {
282 real_filenum = this_object_header_files[filenum];
283
284 if (real_filenum >= N_HEADER_FILES (objfile))
285 {
286 static struct type *temp_type;
287
288 warning (_("GDB internal error: bad real_filenum"));
289
290 error_return:
291 temp_type = objfile_type (objfile)->builtin_error;
292 return &temp_type;
293 }
294
295 f = HEADER_FILES (objfile) + real_filenum;
296
297 f_orig_length = f->length;
298 if (index >= f_orig_length)
299 {
300 while (index >= f->length)
301 {
302 f->length *= 2;
303 }
304 f->vector = (struct type **)
305 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
306 memset (&f->vector[f_orig_length], 0,
307 (f->length - f_orig_length) * sizeof (struct type *));
308 }
309 return (&f->vector[index]);
310 }
311 }
312
313 /* Make sure there is a type allocated for type numbers TYPENUMS
314 and return the type object.
315 This can create an empty (zeroed) type object.
316 TYPENUMS may be (-1, -1) to return a new type object that is not
317 put into the type vector, and so may not be referred to by number. */
318
319 static struct type *
320 dbx_alloc_type (int typenums[2], struct objfile *objfile)
321 {
322 struct type **type_addr;
323
324 if (typenums[0] == -1)
325 {
326 return (alloc_type (objfile));
327 }
328
329 type_addr = dbx_lookup_type (typenums, objfile);
330
331 /* If we are referring to a type not known at all yet,
332 allocate an empty type for it.
333 We will fill it in later if we find out how. */
334 if (*type_addr == 0)
335 {
336 *type_addr = alloc_type (objfile);
337 }
338
339 return (*type_addr);
340 }
341
342 /* for all the stabs in a given stab vector, build appropriate types
343 and fix their symbols in given symbol vector. */
344
345 static void
346 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
347 struct objfile *objfile)
348 {
349 int ii;
350 char *name;
351 char *pp;
352 struct symbol *sym;
353
354 if (stabs)
355 {
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
393 pp += 2;
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 {
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
399 SYMBOL_TYPE (sym) =
400 lookup_function_type (read_type (&pp, objfile));
401 }
402 else
403 {
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 }
406 add_symbol_to_list (sym, &global_symbols);
407 }
408 else
409 {
410 pp += 2;
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
412 {
413 SYMBOL_TYPE (sym) =
414 lookup_function_type (read_type (&pp, objfile));
415 }
416 else
417 {
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 }
420 }
421 }
422 }
423 }
424 \f
425
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
431
432 Returns 0 for success, -1 for error. */
433
434 static int
435 read_type_number (char **pp, int *typenums)
436 {
437 int nbits;
438
439 if (**pp == '(')
440 {
441 (*pp)++;
442 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
443 if (nbits != 0)
444 return -1;
445 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
446 if (nbits != 0)
447 return -1;
448 }
449 else
450 {
451 typenums[0] = 0;
452 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 }
456 return 0;
457 }
458 \f
459
460 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
461 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
462 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
463 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
464
465 /* Structure for storing pointers to reference definitions for fast lookup
466 during "process_later". */
467
468 struct ref_map
469 {
470 char *stabs;
471 CORE_ADDR value;
472 struct symbol *sym;
473 };
474
475 #define MAX_CHUNK_REFS 100
476 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
477 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
478
479 static struct ref_map *ref_map;
480
481 /* Ptr to free cell in chunk's linked list. */
482 static int ref_count = 0;
483
484 /* Number of chunks malloced. */
485 static int ref_chunk = 0;
486
487 /* This file maintains a cache of stabs aliases found in the symbol
488 table. If the symbol table changes, this cache must be cleared
489 or we are left holding onto data in invalid obstacks. */
490 void
491 stabsread_clear_cache (void)
492 {
493 ref_count = 0;
494 ref_chunk = 0;
495 }
496
497 /* Create array of pointers mapping refids to symbols and stab strings.
498 Add pointers to reference definition symbols and/or their values as we
499 find them, using their reference numbers as our index.
500 These will be used later when we resolve references. */
501 void
502 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
503 {
504 if (ref_count == 0)
505 ref_chunk = 0;
506 if (refnum >= ref_count)
507 ref_count = refnum + 1;
508 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
509 {
510 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
511 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
512
513 ref_map = (struct ref_map *)
514 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
515 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
516 new_chunks * REF_CHUNK_SIZE);
517 ref_chunk += new_chunks;
518 }
519 ref_map[refnum].stabs = stabs;
520 ref_map[refnum].sym = sym;
521 ref_map[refnum].value = value;
522 }
523
524 /* Return defined sym for the reference REFNUM. */
525 struct symbol *
526 ref_search (int refnum)
527 {
528 if (refnum < 0 || refnum > ref_count)
529 return 0;
530 return ref_map[refnum].sym;
531 }
532
533 /* Parse a reference id in STRING and return the resulting
534 reference number. Move STRING beyond the reference id. */
535
536 static int
537 process_reference (char **string)
538 {
539 char *p;
540 int refnum = 0;
541
542 if (**string != '#')
543 return 0;
544
545 /* Advance beyond the initial '#'. */
546 p = *string + 1;
547
548 /* Read number as reference id. */
549 while (*p && isdigit (*p))
550 {
551 refnum = refnum * 10 + *p - '0';
552 p++;
553 }
554 *string = p;
555 return refnum;
556 }
557
558 /* If STRING defines a reference, store away a pointer to the reference
559 definition for later use. Return the reference number. */
560
561 int
562 symbol_reference_defined (char **string)
563 {
564 char *p = *string;
565 int refnum = 0;
566
567 refnum = process_reference (&p);
568
569 /* Defining symbols end in '='. */
570 if (*p == '=')
571 {
572 /* Symbol is being defined here. */
573 *string = p + 1;
574 return refnum;
575 }
576 else
577 {
578 /* Must be a reference. Either the symbol has already been defined,
579 or this is a forward reference to it. */
580 *string = p;
581 return -1;
582 }
583 }
584
585 static int
586 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
587 {
588 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
589
590 if (regno >= gdbarch_num_regs (gdbarch)
591 + gdbarch_num_pseudo_regs (gdbarch))
592 {
593 reg_value_complaint (regno,
594 gdbarch_num_regs (gdbarch)
595 + gdbarch_num_pseudo_regs (gdbarch),
596 SYMBOL_PRINT_NAME (sym));
597
598 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
599 }
600
601 return regno;
602 }
603
604 static const struct symbol_register_ops stab_register_funcs = {
605 stab_reg_to_regnum
606 };
607
608 struct symbol *
609 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
610 struct objfile *objfile)
611 {
612 struct gdbarch *gdbarch = get_objfile_arch (objfile);
613 struct symbol *sym;
614 char *p = (char *) find_name_end (string);
615 int deftype;
616 int synonym = 0;
617 int i;
618 char *new_name = NULL;
619
620 /* We would like to eliminate nameless symbols, but keep their types.
621 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
622 to type 2, but, should not create a symbol to address that type. Since
623 the symbol will be nameless, there is no way any user can refer to it. */
624
625 int nameless;
626
627 /* Ignore syms with empty names. */
628 if (string[0] == 0)
629 return 0;
630
631 /* Ignore old-style symbols from cc -go. */
632 if (p == 0)
633 return 0;
634
635 while (p[1] == ':')
636 {
637 p += 2;
638 p = strchr (p, ':');
639 }
640
641 /* If a nameless stab entry, all we need is the type, not the symbol.
642 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
643 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
644
645 current_symbol = sym = (struct symbol *)
646 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
647 memset (sym, 0, sizeof (struct symbol));
648
649 switch (type & N_TYPE)
650 {
651 case N_TEXT:
652 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
653 break;
654 case N_DATA:
655 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
656 break;
657 case N_BSS:
658 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
659 break;
660 }
661
662 if (processing_gcc_compilation)
663 {
664 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
665 number of bytes occupied by a type or object, which we ignore. */
666 SYMBOL_LINE (sym) = desc;
667 }
668 else
669 {
670 SYMBOL_LINE (sym) = 0; /* unknown */
671 }
672
673 if (is_cplus_marker (string[0]))
674 {
675 /* Special GNU C++ names. */
676 switch (string[1])
677 {
678 case 't':
679 SYMBOL_SET_LINKAGE_NAME (sym, "this");
680 break;
681
682 case 'v': /* $vtbl_ptr_type */
683 goto normal;
684
685 case 'e':
686 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
687 break;
688
689 case '_':
690 /* This was an anonymous type that was never fixed up. */
691 goto normal;
692
693 case 'X':
694 /* SunPRO (3.0 at least) static variable encoding. */
695 if (gdbarch_static_transform_name_p (gdbarch))
696 goto normal;
697 /* ... fall through ... */
698
699 default:
700 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
701 string);
702 goto normal; /* Do *something* with it. */
703 }
704 }
705 else
706 {
707 normal:
708 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
709 if (SYMBOL_LANGUAGE (sym) == language_cplus)
710 {
711 char *name = alloca (p - string + 1);
712
713 memcpy (name, string, p - string);
714 name[p - string] = '\0';
715 new_name = cp_canonicalize_string (name);
716 }
717 if (new_name != NULL)
718 {
719 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
720 xfree (new_name);
721 }
722 else
723 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
724
725 if (SYMBOL_LANGUAGE (sym) == language_cplus)
726 cp_scan_for_anonymous_namespaces (sym);
727
728 }
729 p++;
730
731 /* Determine the type of name being defined. */
732 #if 0
733 /* Getting GDB to correctly skip the symbol on an undefined symbol
734 descriptor and not ever dump core is a very dodgy proposition if
735 we do things this way. I say the acorn RISC machine can just
736 fix their compiler. */
737 /* The Acorn RISC machine's compiler can put out locals that don't
738 start with "234=" or "(3,4)=", so assume anything other than the
739 deftypes we know how to handle is a local. */
740 if (!strchr ("cfFGpPrStTvVXCR", *p))
741 #else
742 if (isdigit (*p) || *p == '(' || *p == '-')
743 #endif
744 deftype = 'l';
745 else
746 deftype = *p++;
747
748 switch (deftype)
749 {
750 case 'c':
751 /* c is a special case, not followed by a type-number.
752 SYMBOL:c=iVALUE for an integer constant symbol.
753 SYMBOL:c=rVALUE for a floating constant symbol.
754 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
755 e.g. "b:c=e6,0" for "const b = blob1"
756 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
757 if (*p != '=')
758 {
759 SYMBOL_CLASS (sym) = LOC_CONST;
760 SYMBOL_TYPE (sym) = error_type (&p, objfile);
761 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
762 add_symbol_to_list (sym, &file_symbols);
763 return sym;
764 }
765 ++p;
766 switch (*p++)
767 {
768 case 'r':
769 {
770 double d = atof (p);
771 gdb_byte *dbl_valu;
772 struct type *dbl_type;
773
774 /* FIXME-if-picky-about-floating-accuracy: Should be using
775 target arithmetic to get the value. real.c in GCC
776 probably has the necessary code. */
777
778 dbl_type = objfile_type (objfile)->builtin_double;
779 dbl_valu =
780 obstack_alloc (&objfile->objfile_obstack,
781 TYPE_LENGTH (dbl_type));
782 store_typed_floating (dbl_valu, dbl_type, d);
783
784 SYMBOL_TYPE (sym) = dbl_type;
785 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
786 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
787 }
788 break;
789 case 'i':
790 {
791 /* Defining integer constants this way is kind of silly,
792 since 'e' constants allows the compiler to give not
793 only the value, but the type as well. C has at least
794 int, long, unsigned int, and long long as constant
795 types; other languages probably should have at least
796 unsigned as well as signed constants. */
797
798 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
799 SYMBOL_VALUE (sym) = atoi (p);
800 SYMBOL_CLASS (sym) = LOC_CONST;
801 }
802 break;
803
804 case 'c':
805 {
806 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
807 SYMBOL_VALUE (sym) = atoi (p);
808 SYMBOL_CLASS (sym) = LOC_CONST;
809 }
810 break;
811
812 case 's':
813 {
814 struct type *range_type;
815 int ind = 0;
816 char quote = *p++;
817 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
818 gdb_byte *string_value;
819
820 if (quote != '\'' && quote != '"')
821 {
822 SYMBOL_CLASS (sym) = LOC_CONST;
823 SYMBOL_TYPE (sym) = error_type (&p, objfile);
824 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
825 add_symbol_to_list (sym, &file_symbols);
826 return sym;
827 }
828
829 /* Find matching quote, rejecting escaped quotes. */
830 while (*p && *p != quote)
831 {
832 if (*p == '\\' && p[1] == quote)
833 {
834 string_local[ind] = (gdb_byte) quote;
835 ind++;
836 p += 2;
837 }
838 else if (*p)
839 {
840 string_local[ind] = (gdb_byte) (*p);
841 ind++;
842 p++;
843 }
844 }
845 if (*p != quote)
846 {
847 SYMBOL_CLASS (sym) = LOC_CONST;
848 SYMBOL_TYPE (sym) = error_type (&p, objfile);
849 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
850 add_symbol_to_list (sym, &file_symbols);
851 return sym;
852 }
853
854 /* NULL terminate the string. */
855 string_local[ind] = 0;
856 range_type
857 = create_range_type (NULL,
858 objfile_type (objfile)->builtin_int,
859 0, ind);
860 SYMBOL_TYPE (sym) = create_array_type (NULL,
861 objfile_type (objfile)->builtin_char,
862 range_type);
863 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
864 memcpy (string_value, string_local, ind + 1);
865 p++;
866
867 SYMBOL_VALUE_BYTES (sym) = string_value;
868 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
869 }
870 break;
871
872 case 'e':
873 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
874 can be represented as integral.
875 e.g. "b:c=e6,0" for "const b = blob1"
876 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
877 {
878 SYMBOL_CLASS (sym) = LOC_CONST;
879 SYMBOL_TYPE (sym) = read_type (&p, objfile);
880
881 if (*p != ',')
882 {
883 SYMBOL_TYPE (sym) = error_type (&p, objfile);
884 break;
885 }
886 ++p;
887
888 /* If the value is too big to fit in an int (perhaps because
889 it is unsigned), or something like that, we silently get
890 a bogus value. The type and everything else about it is
891 correct. Ideally, we should be using whatever we have
892 available for parsing unsigned and long long values,
893 however. */
894 SYMBOL_VALUE (sym) = atoi (p);
895 }
896 break;
897 default:
898 {
899 SYMBOL_CLASS (sym) = LOC_CONST;
900 SYMBOL_TYPE (sym) = error_type (&p, objfile);
901 }
902 }
903 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
904 add_symbol_to_list (sym, &file_symbols);
905 return sym;
906
907 case 'C':
908 /* The name of a caught exception. */
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910 SYMBOL_CLASS (sym) = LOC_LABEL;
911 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
912 SYMBOL_VALUE_ADDRESS (sym) = valu;
913 add_symbol_to_list (sym, &local_symbols);
914 break;
915
916 case 'f':
917 /* A static function definition. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
919 SYMBOL_CLASS (sym) = LOC_BLOCK;
920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
921 add_symbol_to_list (sym, &file_symbols);
922 /* fall into process_function_types. */
923
924 process_function_types:
925 /* Function result types are described as the result type in stabs.
926 We need to convert this to the function-returning-type-X type
927 in GDB. E.g. "int" is converted to "function returning int". */
928 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
929 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
930
931 /* All functions in C++ have prototypes. Stabs does not offer an
932 explicit way to identify prototyped or unprototyped functions,
933 but both GCC and Sun CC emit stabs for the "call-as" type rather
934 than the "declared-as" type for unprototyped functions, so
935 we treat all functions as if they were prototyped. This is used
936 primarily for promotion when calling the function from GDB. */
937 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
938
939 /* fall into process_prototype_types. */
940
941 process_prototype_types:
942 /* Sun acc puts declared types of arguments here. */
943 if (*p == ';')
944 {
945 struct type *ftype = SYMBOL_TYPE (sym);
946 int nsemi = 0;
947 int nparams = 0;
948 char *p1 = p;
949
950 /* Obtain a worst case guess for the number of arguments
951 by counting the semicolons. */
952 while (*p1)
953 {
954 if (*p1++ == ';')
955 nsemi++;
956 }
957
958 /* Allocate parameter information fields and fill them in. */
959 TYPE_FIELDS (ftype) = (struct field *)
960 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
961 while (*p++ == ';')
962 {
963 struct type *ptype;
964
965 /* A type number of zero indicates the start of varargs.
966 FIXME: GDB currently ignores vararg functions. */
967 if (p[0] == '0' && p[1] == '\0')
968 break;
969 ptype = read_type (&p, objfile);
970
971 /* The Sun compilers mark integer arguments, which should
972 be promoted to the width of the calling conventions, with
973 a type which references itself. This type is turned into
974 a TYPE_CODE_VOID type by read_type, and we have to turn
975 it back into builtin_int here.
976 FIXME: Do we need a new builtin_promoted_int_arg ? */
977 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
978 ptype = objfile_type (objfile)->builtin_int;
979 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
980 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
981 }
982 TYPE_NFIELDS (ftype) = nparams;
983 TYPE_PROTOTYPED (ftype) = 1;
984 }
985 break;
986
987 case 'F':
988 /* A global function definition. */
989 SYMBOL_TYPE (sym) = read_type (&p, objfile);
990 SYMBOL_CLASS (sym) = LOC_BLOCK;
991 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
992 add_symbol_to_list (sym, &global_symbols);
993 goto process_function_types;
994
995 case 'G':
996 /* For a class G (global) symbol, it appears that the
997 value is not correct. It is necessary to search for the
998 corresponding linker definition to find the value.
999 These definitions appear at the end of the namelist. */
1000 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1001 SYMBOL_CLASS (sym) = LOC_STATIC;
1002 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1003 /* Don't add symbol references to global_sym_chain.
1004 Symbol references don't have valid names and wont't match up with
1005 minimal symbols when the global_sym_chain is relocated.
1006 We'll fixup symbol references when we fixup the defining symbol. */
1007 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1008 {
1009 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1010 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1011 global_sym_chain[i] = sym;
1012 }
1013 add_symbol_to_list (sym, &global_symbols);
1014 break;
1015
1016 /* This case is faked by a conditional above,
1017 when there is no code letter in the dbx data.
1018 Dbx data never actually contains 'l'. */
1019 case 's':
1020 case 'l':
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_CLASS (sym) = LOC_LOCAL;
1023 SYMBOL_VALUE (sym) = valu;
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 add_symbol_to_list (sym, &local_symbols);
1026 break;
1027
1028 case 'p':
1029 if (*p == 'F')
1030 /* pF is a two-letter code that means a function parameter in Fortran.
1031 The type-number specifies the type of the return value.
1032 Translate it into a pointer-to-function type. */
1033 {
1034 p++;
1035 SYMBOL_TYPE (sym)
1036 = lookup_pointer_type
1037 (lookup_function_type (read_type (&p, objfile)));
1038 }
1039 else
1040 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1041
1042 SYMBOL_CLASS (sym) = LOC_ARG;
1043 SYMBOL_VALUE (sym) = valu;
1044 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1045 SYMBOL_IS_ARGUMENT (sym) = 1;
1046 add_symbol_to_list (sym, &local_symbols);
1047
1048 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1049 {
1050 /* On little-endian machines, this crud is never necessary,
1051 and, if the extra bytes contain garbage, is harmful. */
1052 break;
1053 }
1054
1055 /* If it's gcc-compiled, if it says `short', believe it. */
1056 if (processing_gcc_compilation
1057 || gdbarch_believe_pcc_promotion (gdbarch))
1058 break;
1059
1060 if (!gdbarch_believe_pcc_promotion (gdbarch))
1061 {
1062 /* If PCC says a parameter is a short or a char, it is
1063 really an int. */
1064 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1065 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1066 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1067 {
1068 SYMBOL_TYPE (sym) =
1069 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1070 ? objfile_type (objfile)->builtin_unsigned_int
1071 : objfile_type (objfile)->builtin_int;
1072 }
1073 break;
1074 }
1075
1076 case 'P':
1077 /* acc seems to use P to declare the prototypes of functions that
1078 are referenced by this file. gdb is not prepared to deal
1079 with this extra information. FIXME, it ought to. */
1080 if (type == N_FUN)
1081 {
1082 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1083 goto process_prototype_types;
1084 }
1085 /*FALLTHROUGH */
1086
1087 case 'R':
1088 /* Parameter which is in a register. */
1089 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1090 SYMBOL_CLASS (sym) = LOC_REGISTER;
1091 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1092 SYMBOL_IS_ARGUMENT (sym) = 1;
1093 SYMBOL_VALUE (sym) = valu;
1094 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1095 add_symbol_to_list (sym, &local_symbols);
1096 break;
1097
1098 case 'r':
1099 /* Register variable (either global or local). */
1100 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1101 SYMBOL_CLASS (sym) = LOC_REGISTER;
1102 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1103 SYMBOL_VALUE (sym) = valu;
1104 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1105 if (within_function)
1106 {
1107 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1108 the same name to represent an argument passed in a
1109 register. GCC uses 'P' for the same case. So if we find
1110 such a symbol pair we combine it into one 'P' symbol.
1111 For Sun cc we need to do this regardless of
1112 stabs_argument_has_addr, because the compiler puts out
1113 the 'p' symbol even if it never saves the argument onto
1114 the stack.
1115
1116 On most machines, we want to preserve both symbols, so
1117 that we can still get information about what is going on
1118 with the stack (VAX for computing args_printed, using
1119 stack slots instead of saved registers in backtraces,
1120 etc.).
1121
1122 Note that this code illegally combines
1123 main(argc) struct foo argc; { register struct foo argc; }
1124 but this case is considered pathological and causes a warning
1125 from a decent compiler. */
1126
1127 if (local_symbols
1128 && local_symbols->nsyms > 0
1129 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1130 {
1131 struct symbol *prev_sym;
1132
1133 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1134 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1135 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1136 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1137 SYMBOL_LINKAGE_NAME (sym)) == 0)
1138 {
1139 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1140 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1141 /* Use the type from the LOC_REGISTER; that is the type
1142 that is actually in that register. */
1143 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1144 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1145 sym = prev_sym;
1146 break;
1147 }
1148 }
1149 add_symbol_to_list (sym, &local_symbols);
1150 }
1151 else
1152 add_symbol_to_list (sym, &file_symbols);
1153 break;
1154
1155 case 'S':
1156 /* Static symbol at top level of file. */
1157 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1158 SYMBOL_CLASS (sym) = LOC_STATIC;
1159 SYMBOL_VALUE_ADDRESS (sym) = valu;
1160 if (gdbarch_static_transform_name_p (gdbarch)
1161 && gdbarch_static_transform_name (gdbarch,
1162 SYMBOL_LINKAGE_NAME (sym))
1163 != SYMBOL_LINKAGE_NAME (sym))
1164 {
1165 struct minimal_symbol *msym;
1166
1167 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1168 NULL, objfile);
1169 if (msym != NULL)
1170 {
1171 char *new_name = gdbarch_static_transform_name
1172 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1173
1174 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1175 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1176 }
1177 }
1178 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1179 add_symbol_to_list (sym, &file_symbols);
1180 break;
1181
1182 case 't':
1183 /* In Ada, there is no distinction between typedef and non-typedef;
1184 any type declaration implicitly has the equivalent of a typedef,
1185 and thus 't' is in fact equivalent to 'Tt'.
1186
1187 Therefore, for Ada units, we check the character immediately
1188 before the 't', and if we do not find a 'T', then make sure to
1189 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1190 will be stored in the VAR_DOMAIN). If the symbol was indeed
1191 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1192 elsewhere, so we don't need to take care of that.
1193
1194 This is important to do, because of forward references:
1195 The cleanup of undefined types stored in undef_types only uses
1196 STRUCT_DOMAIN symbols to perform the replacement. */
1197 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1198
1199 /* Typedef */
1200 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1201
1202 /* For a nameless type, we don't want a create a symbol, thus we
1203 did not use `sym'. Return without further processing. */
1204 if (nameless)
1205 return NULL;
1206
1207 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1208 SYMBOL_VALUE (sym) = valu;
1209 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1210 /* C++ vagaries: we may have a type which is derived from
1211 a base type which did not have its name defined when the
1212 derived class was output. We fill in the derived class's
1213 base part member's name here in that case. */
1214 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1215 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1216 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1217 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1218 {
1219 int j;
1220
1221 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1222 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1223 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1224 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1225 }
1226
1227 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1228 {
1229 /* gcc-2.6 or later (when using -fvtable-thunks)
1230 emits a unique named type for a vtable entry.
1231 Some gdb code depends on that specific name. */
1232 extern const char vtbl_ptr_name[];
1233
1234 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1235 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1236 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1237 {
1238 /* If we are giving a name to a type such as "pointer to
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1250 case).
1251
1252 Sigh.
1253
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char().
1260
1261 typedef char *caddr_t;
1262 char *name2;
1263 struct x
1264 {
1265 char *name1;
1266 } xx;
1267 char *func()
1268 {
1269 }
1270 main () {}
1271 */
1272
1273 /* Pascal accepts names for pointer types. */
1274 if (current_subfile->language == language_pascal)
1275 {
1276 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1277 }
1278 }
1279 else
1280 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1281 }
1282
1283 add_symbol_to_list (sym, &file_symbols);
1284
1285 if (synonym)
1286 {
1287 /* Create the STRUCT_DOMAIN clone. */
1288 struct symbol *struct_sym = (struct symbol *)
1289 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1290
1291 *struct_sym = *sym;
1292 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1293 SYMBOL_VALUE (struct_sym) = valu;
1294 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1295 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1296 TYPE_NAME (SYMBOL_TYPE (sym))
1297 = obconcat (&objfile->objfile_obstack,
1298 SYMBOL_LINKAGE_NAME (sym),
1299 (char *) NULL);
1300 add_symbol_to_list (struct_sym, &file_symbols);
1301 }
1302
1303 break;
1304
1305 case 'T':
1306 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1307 by 't' which means we are typedef'ing it as well. */
1308 synonym = *p == 't';
1309
1310 if (synonym)
1311 p++;
1312
1313 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1314
1315 /* For a nameless type, we don't want a create a symbol, thus we
1316 did not use `sym'. Return without further processing. */
1317 if (nameless)
1318 return NULL;
1319
1320 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1321 SYMBOL_VALUE (sym) = valu;
1322 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1323 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1324 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1325 = obconcat (&objfile->objfile_obstack,
1326 SYMBOL_LINKAGE_NAME (sym),
1327 (char *) NULL);
1328 add_symbol_to_list (sym, &file_symbols);
1329
1330 if (synonym)
1331 {
1332 /* Clone the sym and then modify it. */
1333 struct symbol *typedef_sym = (struct symbol *)
1334 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1335
1336 *typedef_sym = *sym;
1337 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1338 SYMBOL_VALUE (typedef_sym) = valu;
1339 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1340 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1341 TYPE_NAME (SYMBOL_TYPE (sym))
1342 = obconcat (&objfile->objfile_obstack,
1343 SYMBOL_LINKAGE_NAME (sym),
1344 (char *) NULL);
1345 add_symbol_to_list (typedef_sym, &file_symbols);
1346 }
1347 break;
1348
1349 case 'V':
1350 /* Static symbol of local scope. */
1351 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1352 SYMBOL_CLASS (sym) = LOC_STATIC;
1353 SYMBOL_VALUE_ADDRESS (sym) = valu;
1354 if (gdbarch_static_transform_name_p (gdbarch)
1355 && gdbarch_static_transform_name (gdbarch,
1356 SYMBOL_LINKAGE_NAME (sym))
1357 != SYMBOL_LINKAGE_NAME (sym))
1358 {
1359 struct minimal_symbol *msym;
1360
1361 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1362 NULL, objfile);
1363 if (msym != NULL)
1364 {
1365 char *new_name = gdbarch_static_transform_name
1366 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1367
1368 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1369 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1370 }
1371 }
1372 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1373 add_symbol_to_list (sym, &local_symbols);
1374 break;
1375
1376 case 'v':
1377 /* Reference parameter */
1378 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1379 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1380 SYMBOL_IS_ARGUMENT (sym) = 1;
1381 SYMBOL_VALUE (sym) = valu;
1382 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1383 add_symbol_to_list (sym, &local_symbols);
1384 break;
1385
1386 case 'a':
1387 /* Reference parameter which is in a register. */
1388 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1389 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1390 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1391 SYMBOL_IS_ARGUMENT (sym) = 1;
1392 SYMBOL_VALUE (sym) = valu;
1393 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1394 add_symbol_to_list (sym, &local_symbols);
1395 break;
1396
1397 case 'X':
1398 /* This is used by Sun FORTRAN for "function result value".
1399 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1400 that Pascal uses it too, but when I tried it Pascal used
1401 "x:3" (local symbol) instead. */
1402 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1403 SYMBOL_CLASS (sym) = LOC_LOCAL;
1404 SYMBOL_VALUE (sym) = valu;
1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1406 add_symbol_to_list (sym, &local_symbols);
1407 break;
1408
1409 default:
1410 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1411 SYMBOL_CLASS (sym) = LOC_CONST;
1412 SYMBOL_VALUE (sym) = 0;
1413 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1414 add_symbol_to_list (sym, &file_symbols);
1415 break;
1416 }
1417
1418 /* Some systems pass variables of certain types by reference instead
1419 of by value, i.e. they will pass the address of a structure (in a
1420 register or on the stack) instead of the structure itself. */
1421
1422 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1423 && SYMBOL_IS_ARGUMENT (sym))
1424 {
1425 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1426 variables passed in a register). */
1427 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1428 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1429 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1430 and subsequent arguments on SPARC, for example). */
1431 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1432 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1433 }
1434
1435 return sym;
1436 }
1437
1438 /* Skip rest of this symbol and return an error type.
1439
1440 General notes on error recovery: error_type always skips to the
1441 end of the symbol (modulo cretinous dbx symbol name continuation).
1442 Thus code like this:
1443
1444 if (*(*pp)++ != ';')
1445 return error_type (pp, objfile);
1446
1447 is wrong because if *pp starts out pointing at '\0' (typically as the
1448 result of an earlier error), it will be incremented to point to the
1449 start of the next symbol, which might produce strange results, at least
1450 if you run off the end of the string table. Instead use
1451
1452 if (**pp != ';')
1453 return error_type (pp, objfile);
1454 ++*pp;
1455
1456 or
1457
1458 if (**pp != ';')
1459 foo = error_type (pp, objfile);
1460 else
1461 ++*pp;
1462
1463 And in case it isn't obvious, the point of all this hair is so the compiler
1464 can define new types and new syntaxes, and old versions of the
1465 debugger will be able to read the new symbol tables. */
1466
1467 static struct type *
1468 error_type (char **pp, struct objfile *objfile)
1469 {
1470 complaint (&symfile_complaints,
1471 _("couldn't parse type; debugger out of date?"));
1472 while (1)
1473 {
1474 /* Skip to end of symbol. */
1475 while (**pp != '\0')
1476 {
1477 (*pp)++;
1478 }
1479
1480 /* Check for and handle cretinous dbx symbol name continuation! */
1481 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1482 {
1483 *pp = next_symbol_text (objfile);
1484 }
1485 else
1486 {
1487 break;
1488 }
1489 }
1490 return objfile_type (objfile)->builtin_error;
1491 }
1492 \f
1493
1494 /* Read type information or a type definition; return the type. Even
1495 though this routine accepts either type information or a type
1496 definition, the distinction is relevant--some parts of stabsread.c
1497 assume that type information starts with a digit, '-', or '(' in
1498 deciding whether to call read_type. */
1499
1500 static struct type *
1501 read_type (char **pp, struct objfile *objfile)
1502 {
1503 struct type *type = 0;
1504 struct type *type1;
1505 int typenums[2];
1506 char type_descriptor;
1507
1508 /* Size in bits of type if specified by a type attribute, or -1 if
1509 there is no size attribute. */
1510 int type_size = -1;
1511
1512 /* Used to distinguish string and bitstring from char-array and set. */
1513 int is_string = 0;
1514
1515 /* Used to distinguish vector from array. */
1516 int is_vector = 0;
1517
1518 /* Read type number if present. The type number may be omitted.
1519 for instance in a two-dimensional array declared with type
1520 "ar1;1;10;ar1;1;10;4". */
1521 if ((**pp >= '0' && **pp <= '9')
1522 || **pp == '('
1523 || **pp == '-')
1524 {
1525 if (read_type_number (pp, typenums) != 0)
1526 return error_type (pp, objfile);
1527
1528 if (**pp != '=')
1529 {
1530 /* Type is not being defined here. Either it already
1531 exists, or this is a forward reference to it.
1532 dbx_alloc_type handles both cases. */
1533 type = dbx_alloc_type (typenums, objfile);
1534
1535 /* If this is a forward reference, arrange to complain if it
1536 doesn't get patched up by the time we're done
1537 reading. */
1538 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1539 add_undefined_type (type, typenums);
1540
1541 return type;
1542 }
1543
1544 /* Type is being defined here. */
1545 /* Skip the '='.
1546 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1547 (*pp) += 2;
1548 }
1549 else
1550 {
1551 /* 'typenums=' not present, type is anonymous. Read and return
1552 the definition, but don't put it in the type vector. */
1553 typenums[0] = typenums[1] = -1;
1554 (*pp)++;
1555 }
1556
1557 again:
1558 type_descriptor = (*pp)[-1];
1559 switch (type_descriptor)
1560 {
1561 case 'x':
1562 {
1563 enum type_code code;
1564
1565 /* Used to index through file_symbols. */
1566 struct pending *ppt;
1567 int i;
1568
1569 /* Name including "struct", etc. */
1570 char *type_name;
1571
1572 {
1573 char *from, *to, *p, *q1, *q2;
1574
1575 /* Set the type code according to the following letter. */
1576 switch ((*pp)[0])
1577 {
1578 case 's':
1579 code = TYPE_CODE_STRUCT;
1580 break;
1581 case 'u':
1582 code = TYPE_CODE_UNION;
1583 break;
1584 case 'e':
1585 code = TYPE_CODE_ENUM;
1586 break;
1587 default:
1588 {
1589 /* Complain and keep going, so compilers can invent new
1590 cross-reference types. */
1591 complaint (&symfile_complaints,
1592 _("Unrecognized cross-reference type `%c'"),
1593 (*pp)[0]);
1594 code = TYPE_CODE_STRUCT;
1595 break;
1596 }
1597 }
1598
1599 q1 = strchr (*pp, '<');
1600 p = strchr (*pp, ':');
1601 if (p == NULL)
1602 return error_type (pp, objfile);
1603 if (q1 && p > q1 && p[1] == ':')
1604 {
1605 int nesting_level = 0;
1606
1607 for (q2 = q1; *q2; q2++)
1608 {
1609 if (*q2 == '<')
1610 nesting_level++;
1611 else if (*q2 == '>')
1612 nesting_level--;
1613 else if (*q2 == ':' && nesting_level == 0)
1614 break;
1615 }
1616 p = q2;
1617 if (*p != ':')
1618 return error_type (pp, objfile);
1619 }
1620 type_name = NULL;
1621 if (current_subfile->language == language_cplus)
1622 {
1623 char *new_name, *name = alloca (p - *pp + 1);
1624
1625 memcpy (name, *pp, p - *pp);
1626 name[p - *pp] = '\0';
1627 new_name = cp_canonicalize_string (name);
1628 if (new_name != NULL)
1629 {
1630 type_name = obsavestring (new_name, strlen (new_name),
1631 &objfile->objfile_obstack);
1632 xfree (new_name);
1633 }
1634 }
1635 if (type_name == NULL)
1636 {
1637 to = type_name = (char *)
1638 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1639
1640 /* Copy the name. */
1641 from = *pp + 1;
1642 while (from < p)
1643 *to++ = *from++;
1644 *to = '\0';
1645 }
1646
1647 /* Set the pointer ahead of the name which we just read, and
1648 the colon. */
1649 *pp = p + 1;
1650 }
1651
1652 /* If this type has already been declared, then reuse the same
1653 type, rather than allocating a new one. This saves some
1654 memory. */
1655
1656 for (ppt = file_symbols; ppt; ppt = ppt->next)
1657 for (i = 0; i < ppt->nsyms; i++)
1658 {
1659 struct symbol *sym = ppt->symbol[i];
1660
1661 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1662 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1663 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1664 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1665 {
1666 obstack_free (&objfile->objfile_obstack, type_name);
1667 type = SYMBOL_TYPE (sym);
1668 if (typenums[0] != -1)
1669 *dbx_lookup_type (typenums, objfile) = type;
1670 return type;
1671 }
1672 }
1673
1674 /* Didn't find the type to which this refers, so we must
1675 be dealing with a forward reference. Allocate a type
1676 structure for it, and keep track of it so we can
1677 fill in the rest of the fields when we get the full
1678 type. */
1679 type = dbx_alloc_type (typenums, objfile);
1680 TYPE_CODE (type) = code;
1681 TYPE_TAG_NAME (type) = type_name;
1682 INIT_CPLUS_SPECIFIC (type);
1683 TYPE_STUB (type) = 1;
1684
1685 add_undefined_type (type, typenums);
1686 return type;
1687 }
1688
1689 case '-': /* RS/6000 built-in type */
1690 case '0':
1691 case '1':
1692 case '2':
1693 case '3':
1694 case '4':
1695 case '5':
1696 case '6':
1697 case '7':
1698 case '8':
1699 case '9':
1700 case '(':
1701 (*pp)--;
1702
1703 /* We deal with something like t(1,2)=(3,4)=... which
1704 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1705
1706 /* Allocate and enter the typedef type first.
1707 This handles recursive types. */
1708 type = dbx_alloc_type (typenums, objfile);
1709 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1710 {
1711 struct type *xtype = read_type (pp, objfile);
1712
1713 if (type == xtype)
1714 {
1715 /* It's being defined as itself. That means it is "void". */
1716 TYPE_CODE (type) = TYPE_CODE_VOID;
1717 TYPE_LENGTH (type) = 1;
1718 }
1719 else if (type_size >= 0 || is_string)
1720 {
1721 /* This is the absolute wrong way to construct types. Every
1722 other debug format has found a way around this problem and
1723 the related problems with unnecessarily stubbed types;
1724 someone motivated should attempt to clean up the issue
1725 here as well. Once a type pointed to has been created it
1726 should not be modified.
1727
1728 Well, it's not *absolutely* wrong. Constructing recursive
1729 types (trees, linked lists) necessarily entails modifying
1730 types after creating them. Constructing any loop structure
1731 entails side effects. The Dwarf 2 reader does handle this
1732 more gracefully (it never constructs more than once
1733 instance of a type object, so it doesn't have to copy type
1734 objects wholesale), but it still mutates type objects after
1735 other folks have references to them.
1736
1737 Keep in mind that this circularity/mutation issue shows up
1738 at the source language level, too: C's "incomplete types",
1739 for example. So the proper cleanup, I think, would be to
1740 limit GDB's type smashing to match exactly those required
1741 by the source language. So GDB could have a
1742 "complete_this_type" function, but never create unnecessary
1743 copies of a type otherwise. */
1744 replace_type (type, xtype);
1745 TYPE_NAME (type) = NULL;
1746 TYPE_TAG_NAME (type) = NULL;
1747 }
1748 else
1749 {
1750 TYPE_TARGET_STUB (type) = 1;
1751 TYPE_TARGET_TYPE (type) = xtype;
1752 }
1753 }
1754 break;
1755
1756 /* In the following types, we must be sure to overwrite any existing
1757 type that the typenums refer to, rather than allocating a new one
1758 and making the typenums point to the new one. This is because there
1759 may already be pointers to the existing type (if it had been
1760 forward-referenced), and we must change it to a pointer, function,
1761 reference, or whatever, *in-place*. */
1762
1763 case '*': /* Pointer to another type */
1764 type1 = read_type (pp, objfile);
1765 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1766 break;
1767
1768 case '&': /* Reference to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case 'f': /* Function returning another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'g': /* Prototyped function. (Sun) */
1779 {
1780 /* Unresolved questions:
1781
1782 - According to Sun's ``STABS Interface Manual'', for 'f'
1783 and 'F' symbol descriptors, a `0' in the argument type list
1784 indicates a varargs function. But it doesn't say how 'g'
1785 type descriptors represent that info. Someone with access
1786 to Sun's toolchain should try it out.
1787
1788 - According to the comment in define_symbol (search for
1789 `process_prototype_types:'), Sun emits integer arguments as
1790 types which ref themselves --- like `void' types. Do we
1791 have to deal with that here, too? Again, someone with
1792 access to Sun's toolchain should try it out and let us
1793 know. */
1794
1795 const char *type_start = (*pp) - 1;
1796 struct type *return_type = read_type (pp, objfile);
1797 struct type *func_type
1798 = make_function_type (return_type,
1799 dbx_lookup_type (typenums, objfile));
1800 struct type_list {
1801 struct type *type;
1802 struct type_list *next;
1803 } *arg_types = 0;
1804 int num_args = 0;
1805
1806 while (**pp && **pp != '#')
1807 {
1808 struct type *arg_type = read_type (pp, objfile);
1809 struct type_list *new = alloca (sizeof (*new));
1810 new->type = arg_type;
1811 new->next = arg_types;
1812 arg_types = new;
1813 num_args++;
1814 }
1815 if (**pp == '#')
1816 ++*pp;
1817 else
1818 {
1819 complaint (&symfile_complaints,
1820 _("Prototyped function type didn't "
1821 "end arguments with `#':\n%s"),
1822 type_start);
1823 }
1824
1825 /* If there is just one argument whose type is `void', then
1826 that's just an empty argument list. */
1827 if (arg_types
1828 && ! arg_types->next
1829 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1830 num_args = 0;
1831
1832 TYPE_FIELDS (func_type)
1833 = (struct field *) TYPE_ALLOC (func_type,
1834 num_args * sizeof (struct field));
1835 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1836 {
1837 int i;
1838 struct type_list *t;
1839
1840 /* We stuck each argument type onto the front of the list
1841 when we read it, so the list is reversed. Build the
1842 fields array right-to-left. */
1843 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1844 TYPE_FIELD_TYPE (func_type, i) = t->type;
1845 }
1846 TYPE_NFIELDS (func_type) = num_args;
1847 TYPE_PROTOTYPED (func_type) = 1;
1848
1849 type = func_type;
1850 break;
1851 }
1852
1853 case 'k': /* Const qualifier on some type (Sun) */
1854 type = read_type (pp, objfile);
1855 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1856 dbx_lookup_type (typenums, objfile));
1857 break;
1858
1859 case 'B': /* Volatile qual on some type (Sun) */
1860 type = read_type (pp, objfile);
1861 type = make_cv_type (TYPE_CONST (type), 1, type,
1862 dbx_lookup_type (typenums, objfile));
1863 break;
1864
1865 case '@':
1866 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1867 { /* Member (class & variable) type */
1868 /* FIXME -- we should be doing smash_to_XXX types here. */
1869
1870 struct type *domain = read_type (pp, objfile);
1871 struct type *memtype;
1872
1873 if (**pp != ',')
1874 /* Invalid member type data format. */
1875 return error_type (pp, objfile);
1876 ++*pp;
1877
1878 memtype = read_type (pp, objfile);
1879 type = dbx_alloc_type (typenums, objfile);
1880 smash_to_memberptr_type (type, domain, memtype);
1881 }
1882 else
1883 /* type attribute */
1884 {
1885 char *attr = *pp;
1886
1887 /* Skip to the semicolon. */
1888 while (**pp != ';' && **pp != '\0')
1889 ++(*pp);
1890 if (**pp == '\0')
1891 return error_type (pp, objfile);
1892 else
1893 ++ * pp; /* Skip the semicolon. */
1894
1895 switch (*attr)
1896 {
1897 case 's': /* Size attribute */
1898 type_size = atoi (attr + 1);
1899 if (type_size <= 0)
1900 type_size = -1;
1901 break;
1902
1903 case 'S': /* String attribute */
1904 /* FIXME: check to see if following type is array? */
1905 is_string = 1;
1906 break;
1907
1908 case 'V': /* Vector attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_vector = 1;
1911 break;
1912
1913 default:
1914 /* Ignore unrecognized type attributes, so future compilers
1915 can invent new ones. */
1916 break;
1917 }
1918 ++*pp;
1919 goto again;
1920 }
1921 break;
1922
1923 case '#': /* Method (class & fn) type */
1924 if ((*pp)[0] == '#')
1925 {
1926 /* We'll get the parameter types from the name. */
1927 struct type *return_type;
1928
1929 (*pp)++;
1930 return_type = read_type (pp, objfile);
1931 if (*(*pp)++ != ';')
1932 complaint (&symfile_complaints,
1933 _("invalid (minimal) member type "
1934 "data format at symtab pos %d."),
1935 symnum);
1936 type = allocate_stub_method (return_type);
1937 if (typenums[0] != -1)
1938 *dbx_lookup_type (typenums, objfile) = type;
1939 }
1940 else
1941 {
1942 struct type *domain = read_type (pp, objfile);
1943 struct type *return_type;
1944 struct field *args;
1945 int nargs, varargs;
1946
1947 if (**pp != ',')
1948 /* Invalid member type data format. */
1949 return error_type (pp, objfile);
1950 else
1951 ++(*pp);
1952
1953 return_type = read_type (pp, objfile);
1954 args = read_args (pp, ';', objfile, &nargs, &varargs);
1955 if (args == NULL)
1956 return error_type (pp, objfile);
1957 type = dbx_alloc_type (typenums, objfile);
1958 smash_to_method_type (type, domain, return_type, args,
1959 nargs, varargs);
1960 }
1961 break;
1962
1963 case 'r': /* Range type */
1964 type = read_range_type (pp, typenums, type_size, objfile);
1965 if (typenums[0] != -1)
1966 *dbx_lookup_type (typenums, objfile) = type;
1967 break;
1968
1969 case 'b':
1970 {
1971 /* Sun ACC builtin int type */
1972 type = read_sun_builtin_type (pp, typenums, objfile);
1973 if (typenums[0] != -1)
1974 *dbx_lookup_type (typenums, objfile) = type;
1975 }
1976 break;
1977
1978 case 'R': /* Sun ACC builtin float type */
1979 type = read_sun_floating_type (pp, typenums, objfile);
1980 if (typenums[0] != -1)
1981 *dbx_lookup_type (typenums, objfile) = type;
1982 break;
1983
1984 case 'e': /* Enumeration type */
1985 type = dbx_alloc_type (typenums, objfile);
1986 type = read_enum_type (pp, type, objfile);
1987 if (typenums[0] != -1)
1988 *dbx_lookup_type (typenums, objfile) = type;
1989 break;
1990
1991 case 's': /* Struct type */
1992 case 'u': /* Union type */
1993 {
1994 enum type_code type_code = TYPE_CODE_UNDEF;
1995 type = dbx_alloc_type (typenums, objfile);
1996 switch (type_descriptor)
1997 {
1998 case 's':
1999 type_code = TYPE_CODE_STRUCT;
2000 break;
2001 case 'u':
2002 type_code = TYPE_CODE_UNION;
2003 break;
2004 }
2005 type = read_struct_type (pp, type, type_code, objfile);
2006 break;
2007 }
2008
2009 case 'a': /* Array type */
2010 if (**pp != 'r')
2011 return error_type (pp, objfile);
2012 ++*pp;
2013
2014 type = dbx_alloc_type (typenums, objfile);
2015 type = read_array_type (pp, type, objfile);
2016 if (is_string)
2017 TYPE_CODE (type) = TYPE_CODE_STRING;
2018 if (is_vector)
2019 make_vector_type (type);
2020 break;
2021
2022 case 'S': /* Set or bitstring type */
2023 type1 = read_type (pp, objfile);
2024 type = create_set_type ((struct type *) NULL, type1);
2025 if (is_string)
2026 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2027 if (typenums[0] != -1)
2028 *dbx_lookup_type (typenums, objfile) = type;
2029 break;
2030
2031 default:
2032 --*pp; /* Go back to the symbol in error. */
2033 /* Particularly important if it was \0! */
2034 return error_type (pp, objfile);
2035 }
2036
2037 if (type == 0)
2038 {
2039 warning (_("GDB internal error, type is NULL in stabsread.c."));
2040 return error_type (pp, objfile);
2041 }
2042
2043 /* Size specified in a type attribute overrides any other size. */
2044 if (type_size != -1)
2045 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2046
2047 return type;
2048 }
2049 \f
2050 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2051 Return the proper type node for a given builtin type number. */
2052
2053 static const struct objfile_data *rs6000_builtin_type_data;
2054
2055 static struct type *
2056 rs6000_builtin_type (int typenum, struct objfile *objfile)
2057 {
2058 struct type **negative_types = objfile_data (objfile,
2059 rs6000_builtin_type_data);
2060
2061 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2062 #define NUMBER_RECOGNIZED 34
2063 struct type *rettype = NULL;
2064
2065 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2066 {
2067 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2068 return objfile_type (objfile)->builtin_error;
2069 }
2070
2071 if (!negative_types)
2072 {
2073 /* This includes an empty slot for type number -0. */
2074 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2075 NUMBER_RECOGNIZED + 1, struct type *);
2076 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2077 }
2078
2079 if (negative_types[-typenum] != NULL)
2080 return negative_types[-typenum];
2081
2082 #if TARGET_CHAR_BIT != 8
2083 #error This code wrong for TARGET_CHAR_BIT not 8
2084 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2085 that if that ever becomes not true, the correct fix will be to
2086 make the size in the struct type to be in bits, not in units of
2087 TARGET_CHAR_BIT. */
2088 #endif
2089
2090 switch (-typenum)
2091 {
2092 case 1:
2093 /* The size of this and all the other types are fixed, defined
2094 by the debugging format. If there is a type called "int" which
2095 is other than 32 bits, then it should use a new negative type
2096 number (or avoid negative type numbers for that case).
2097 See stabs.texinfo. */
2098 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2099 break;
2100 case 2:
2101 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2102 break;
2103 case 3:
2104 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2105 break;
2106 case 4:
2107 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2108 break;
2109 case 5:
2110 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2111 "unsigned char", objfile);
2112 break;
2113 case 6:
2114 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2115 break;
2116 case 7:
2117 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2118 "unsigned short", objfile);
2119 break;
2120 case 8:
2121 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2122 "unsigned int", objfile);
2123 break;
2124 case 9:
2125 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2126 "unsigned", objfile);
2127 break;
2128 case 10:
2129 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2130 "unsigned long", objfile);
2131 break;
2132 case 11:
2133 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2134 break;
2135 case 12:
2136 /* IEEE single precision (32 bit). */
2137 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2138 break;
2139 case 13:
2140 /* IEEE double precision (64 bit). */
2141 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2142 break;
2143 case 14:
2144 /* This is an IEEE double on the RS/6000, and different machines with
2145 different sizes for "long double" should use different negative
2146 type numbers. See stabs.texinfo. */
2147 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2148 break;
2149 case 15:
2150 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2151 break;
2152 case 16:
2153 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2154 "boolean", objfile);
2155 break;
2156 case 17:
2157 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2158 break;
2159 case 18:
2160 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2161 break;
2162 case 19:
2163 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2164 break;
2165 case 20:
2166 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2167 "character", objfile);
2168 break;
2169 case 21:
2170 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2171 "logical*1", objfile);
2172 break;
2173 case 22:
2174 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2175 "logical*2", objfile);
2176 break;
2177 case 23:
2178 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2179 "logical*4", objfile);
2180 break;
2181 case 24:
2182 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2183 "logical", objfile);
2184 break;
2185 case 25:
2186 /* Complex type consisting of two IEEE single precision values. */
2187 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2188 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2189 objfile);
2190 break;
2191 case 26:
2192 /* Complex type consisting of two IEEE double precision values. */
2193 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2194 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2195 objfile);
2196 break;
2197 case 27:
2198 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2199 break;
2200 case 28:
2201 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2202 break;
2203 case 29:
2204 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2205 break;
2206 case 30:
2207 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2208 break;
2209 case 31:
2210 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2211 break;
2212 case 32:
2213 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2214 "unsigned long long", objfile);
2215 break;
2216 case 33:
2217 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2218 "logical*8", objfile);
2219 break;
2220 case 34:
2221 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2222 break;
2223 }
2224 negative_types[-typenum] = rettype;
2225 return rettype;
2226 }
2227 \f
2228 /* This page contains subroutines of read_type. */
2229
2230 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2231
2232 static void
2233 update_method_name_from_physname (char **old_name, char *physname)
2234 {
2235 char *method_name;
2236
2237 method_name = method_name_from_physname (physname);
2238
2239 if (method_name == NULL)
2240 {
2241 complaint (&symfile_complaints,
2242 _("Method has bad physname %s\n"), physname);
2243 return;
2244 }
2245
2246 if (strcmp (*old_name, method_name) != 0)
2247 {
2248 xfree (*old_name);
2249 *old_name = method_name;
2250 }
2251 else
2252 xfree (method_name);
2253 }
2254
2255 /* Read member function stabs info for C++ classes. The form of each member
2256 function data is:
2257
2258 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2259
2260 An example with two member functions is:
2261
2262 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2263
2264 For the case of overloaded operators, the format is op$::*.funcs, where
2265 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2266 name (such as `+=') and `.' marks the end of the operator name.
2267
2268 Returns 1 for success, 0 for failure. */
2269
2270 static int
2271 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2272 struct objfile *objfile)
2273 {
2274 int nfn_fields = 0;
2275 int length = 0;
2276 /* Total number of member functions defined in this class. If the class
2277 defines two `f' functions, and one `g' function, then this will have
2278 the value 3. */
2279 int total_length = 0;
2280 int i;
2281 struct next_fnfield
2282 {
2283 struct next_fnfield *next;
2284 struct fn_field fn_field;
2285 }
2286 *sublist;
2287 struct type *look_ahead_type;
2288 struct next_fnfieldlist *new_fnlist;
2289 struct next_fnfield *new_sublist;
2290 char *main_fn_name;
2291 char *p;
2292
2293 /* Process each list until we find something that is not a member function
2294 or find the end of the functions. */
2295
2296 while (**pp != ';')
2297 {
2298 /* We should be positioned at the start of the function name.
2299 Scan forward to find the first ':' and if it is not the
2300 first of a "::" delimiter, then this is not a member function. */
2301 p = *pp;
2302 while (*p != ':')
2303 {
2304 p++;
2305 }
2306 if (p[1] != ':')
2307 {
2308 break;
2309 }
2310
2311 sublist = NULL;
2312 look_ahead_type = NULL;
2313 length = 0;
2314
2315 new_fnlist = (struct next_fnfieldlist *)
2316 xmalloc (sizeof (struct next_fnfieldlist));
2317 make_cleanup (xfree, new_fnlist);
2318 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2319
2320 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2321 {
2322 /* This is a completely wierd case. In order to stuff in the
2323 names that might contain colons (the usual name delimiter),
2324 Mike Tiemann defined a different name format which is
2325 signalled if the identifier is "op$". In that case, the
2326 format is "op$::XXXX." where XXXX is the name. This is
2327 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2328 /* This lets the user type "break operator+".
2329 We could just put in "+" as the name, but that wouldn't
2330 work for "*". */
2331 static char opname[32] = "op$";
2332 char *o = opname + 3;
2333
2334 /* Skip past '::'. */
2335 *pp = p + 2;
2336
2337 STABS_CONTINUE (pp, objfile);
2338 p = *pp;
2339 while (*p != '.')
2340 {
2341 *o++ = *p++;
2342 }
2343 main_fn_name = savestring (opname, o - opname);
2344 /* Skip past '.' */
2345 *pp = p + 1;
2346 }
2347 else
2348 {
2349 main_fn_name = savestring (*pp, p - *pp);
2350 /* Skip past '::'. */
2351 *pp = p + 2;
2352 }
2353 new_fnlist->fn_fieldlist.name = main_fn_name;
2354
2355 do
2356 {
2357 new_sublist =
2358 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2359 make_cleanup (xfree, new_sublist);
2360 memset (new_sublist, 0, sizeof (struct next_fnfield));
2361
2362 /* Check for and handle cretinous dbx symbol name continuation! */
2363 if (look_ahead_type == NULL)
2364 {
2365 /* Normal case. */
2366 STABS_CONTINUE (pp, objfile);
2367
2368 new_sublist->fn_field.type = read_type (pp, objfile);
2369 if (**pp != ':')
2370 {
2371 /* Invalid symtab info for member function. */
2372 return 0;
2373 }
2374 }
2375 else
2376 {
2377 /* g++ version 1 kludge */
2378 new_sublist->fn_field.type = look_ahead_type;
2379 look_ahead_type = NULL;
2380 }
2381
2382 (*pp)++;
2383 p = *pp;
2384 while (*p != ';')
2385 {
2386 p++;
2387 }
2388
2389 /* If this is just a stub, then we don't have the real name here. */
2390
2391 if (TYPE_STUB (new_sublist->fn_field.type))
2392 {
2393 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2394 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2395 new_sublist->fn_field.is_stub = 1;
2396 }
2397 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2398 *pp = p + 1;
2399
2400 /* Set this member function's visibility fields. */
2401 switch (*(*pp)++)
2402 {
2403 case VISIBILITY_PRIVATE:
2404 new_sublist->fn_field.is_private = 1;
2405 break;
2406 case VISIBILITY_PROTECTED:
2407 new_sublist->fn_field.is_protected = 1;
2408 break;
2409 }
2410
2411 STABS_CONTINUE (pp, objfile);
2412 switch (**pp)
2413 {
2414 case 'A': /* Normal functions. */
2415 new_sublist->fn_field.is_const = 0;
2416 new_sublist->fn_field.is_volatile = 0;
2417 (*pp)++;
2418 break;
2419 case 'B': /* `const' member functions. */
2420 new_sublist->fn_field.is_const = 1;
2421 new_sublist->fn_field.is_volatile = 0;
2422 (*pp)++;
2423 break;
2424 case 'C': /* `volatile' member function. */
2425 new_sublist->fn_field.is_const = 0;
2426 new_sublist->fn_field.is_volatile = 1;
2427 (*pp)++;
2428 break;
2429 case 'D': /* `const volatile' member function. */
2430 new_sublist->fn_field.is_const = 1;
2431 new_sublist->fn_field.is_volatile = 1;
2432 (*pp)++;
2433 break;
2434 case '*': /* File compiled with g++ version 1 --
2435 no info. */
2436 case '?':
2437 case '.':
2438 break;
2439 default:
2440 complaint (&symfile_complaints,
2441 _("const/volatile indicator missing, got '%c'"),
2442 **pp);
2443 break;
2444 }
2445
2446 switch (*(*pp)++)
2447 {
2448 case '*':
2449 {
2450 int nbits;
2451 /* virtual member function, followed by index.
2452 The sign bit is set to distinguish pointers-to-methods
2453 from virtual function indicies. Since the array is
2454 in words, the quantity must be shifted left by 1
2455 on 16 bit machine, and by 2 on 32 bit machine, forcing
2456 the sign bit out, and usable as a valid index into
2457 the array. Remove the sign bit here. */
2458 new_sublist->fn_field.voffset =
2459 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2460 if (nbits != 0)
2461 return 0;
2462
2463 STABS_CONTINUE (pp, objfile);
2464 if (**pp == ';' || **pp == '\0')
2465 {
2466 /* Must be g++ version 1. */
2467 new_sublist->fn_field.fcontext = 0;
2468 }
2469 else
2470 {
2471 /* Figure out from whence this virtual function came.
2472 It may belong to virtual function table of
2473 one of its baseclasses. */
2474 look_ahead_type = read_type (pp, objfile);
2475 if (**pp == ':')
2476 {
2477 /* g++ version 1 overloaded methods. */
2478 }
2479 else
2480 {
2481 new_sublist->fn_field.fcontext = look_ahead_type;
2482 if (**pp != ';')
2483 {
2484 return 0;
2485 }
2486 else
2487 {
2488 ++*pp;
2489 }
2490 look_ahead_type = NULL;
2491 }
2492 }
2493 break;
2494 }
2495 case '?':
2496 /* static member function. */
2497 {
2498 int slen = strlen (main_fn_name);
2499
2500 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2501
2502 /* For static member functions, we can't tell if they
2503 are stubbed, as they are put out as functions, and not as
2504 methods.
2505 GCC v2 emits the fully mangled name if
2506 dbxout.c:flag_minimal_debug is not set, so we have to
2507 detect a fully mangled physname here and set is_stub
2508 accordingly. Fully mangled physnames in v2 start with
2509 the member function name, followed by two underscores.
2510 GCC v3 currently always emits stubbed member functions,
2511 but with fully mangled physnames, which start with _Z. */
2512 if (!(strncmp (new_sublist->fn_field.physname,
2513 main_fn_name, slen) == 0
2514 && new_sublist->fn_field.physname[slen] == '_'
2515 && new_sublist->fn_field.physname[slen + 1] == '_'))
2516 {
2517 new_sublist->fn_field.is_stub = 1;
2518 }
2519 break;
2520 }
2521
2522 default:
2523 /* error */
2524 complaint (&symfile_complaints,
2525 _("member function type missing, got '%c'"),
2526 (*pp)[-1]);
2527 /* Fall through into normal member function. */
2528
2529 case '.':
2530 /* normal member function. */
2531 new_sublist->fn_field.voffset = 0;
2532 new_sublist->fn_field.fcontext = 0;
2533 break;
2534 }
2535
2536 new_sublist->next = sublist;
2537 sublist = new_sublist;
2538 length++;
2539 STABS_CONTINUE (pp, objfile);
2540 }
2541 while (**pp != ';' && **pp != '\0');
2542
2543 (*pp)++;
2544 STABS_CONTINUE (pp, objfile);
2545
2546 /* Skip GCC 3.X member functions which are duplicates of the callable
2547 constructor/destructor. */
2548 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2549 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2550 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2551 {
2552 xfree (main_fn_name);
2553 }
2554 else
2555 {
2556 int has_stub = 0;
2557 int has_destructor = 0, has_other = 0;
2558 int is_v3 = 0;
2559 struct next_fnfield *tmp_sublist;
2560
2561 /* Various versions of GCC emit various mostly-useless
2562 strings in the name field for special member functions.
2563
2564 For stub methods, we need to defer correcting the name
2565 until we are ready to unstub the method, because the current
2566 name string is used by gdb_mangle_name. The only stub methods
2567 of concern here are GNU v2 operators; other methods have their
2568 names correct (see caveat below).
2569
2570 For non-stub methods, in GNU v3, we have a complete physname.
2571 Therefore we can safely correct the name now. This primarily
2572 affects constructors and destructors, whose name will be
2573 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2574 operators will also have incorrect names; for instance,
2575 "operator int" will be named "operator i" (i.e. the type is
2576 mangled).
2577
2578 For non-stub methods in GNU v2, we have no easy way to
2579 know if we have a complete physname or not. For most
2580 methods the result depends on the platform (if CPLUS_MARKER
2581 can be `$' or `.', it will use minimal debug information, or
2582 otherwise the full physname will be included).
2583
2584 Rather than dealing with this, we take a different approach.
2585 For v3 mangled names, we can use the full physname; for v2,
2586 we use cplus_demangle_opname (which is actually v2 specific),
2587 because the only interesting names are all operators - once again
2588 barring the caveat below. Skip this process if any method in the
2589 group is a stub, to prevent our fouling up the workings of
2590 gdb_mangle_name.
2591
2592 The caveat: GCC 2.95.x (and earlier?) put constructors and
2593 destructors in the same method group. We need to split this
2594 into two groups, because they should have different names.
2595 So for each method group we check whether it contains both
2596 routines whose physname appears to be a destructor (the physnames
2597 for and destructors are always provided, due to quirks in v2
2598 mangling) and routines whose physname does not appear to be a
2599 destructor. If so then we break up the list into two halves.
2600 Even if the constructors and destructors aren't in the same group
2601 the destructor will still lack the leading tilde, so that also
2602 needs to be fixed.
2603
2604 So, to summarize what we expect and handle here:
2605
2606 Given Given Real Real Action
2607 method name physname physname method name
2608
2609 __opi [none] __opi__3Foo operator int opname
2610 [now or later]
2611 Foo _._3Foo _._3Foo ~Foo separate and
2612 rename
2613 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2614 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2615 */
2616
2617 tmp_sublist = sublist;
2618 while (tmp_sublist != NULL)
2619 {
2620 if (tmp_sublist->fn_field.is_stub)
2621 has_stub = 1;
2622 if (tmp_sublist->fn_field.physname[0] == '_'
2623 && tmp_sublist->fn_field.physname[1] == 'Z')
2624 is_v3 = 1;
2625
2626 if (is_destructor_name (tmp_sublist->fn_field.physname))
2627 has_destructor++;
2628 else
2629 has_other++;
2630
2631 tmp_sublist = tmp_sublist->next;
2632 }
2633
2634 if (has_destructor && has_other)
2635 {
2636 struct next_fnfieldlist *destr_fnlist;
2637 struct next_fnfield *last_sublist;
2638
2639 /* Create a new fn_fieldlist for the destructors. */
2640
2641 destr_fnlist = (struct next_fnfieldlist *)
2642 xmalloc (sizeof (struct next_fnfieldlist));
2643 make_cleanup (xfree, destr_fnlist);
2644 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2645 destr_fnlist->fn_fieldlist.name
2646 = obconcat (&objfile->objfile_obstack, "~",
2647 new_fnlist->fn_fieldlist.name, (char *) NULL);
2648
2649 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2650 obstack_alloc (&objfile->objfile_obstack,
2651 sizeof (struct fn_field) * has_destructor);
2652 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2653 sizeof (struct fn_field) * has_destructor);
2654 tmp_sublist = sublist;
2655 last_sublist = NULL;
2656 i = 0;
2657 while (tmp_sublist != NULL)
2658 {
2659 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2660 {
2661 tmp_sublist = tmp_sublist->next;
2662 continue;
2663 }
2664
2665 destr_fnlist->fn_fieldlist.fn_fields[i++]
2666 = tmp_sublist->fn_field;
2667 if (last_sublist)
2668 last_sublist->next = tmp_sublist->next;
2669 else
2670 sublist = tmp_sublist->next;
2671 last_sublist = tmp_sublist;
2672 tmp_sublist = tmp_sublist->next;
2673 }
2674
2675 destr_fnlist->fn_fieldlist.length = has_destructor;
2676 destr_fnlist->next = fip->fnlist;
2677 fip->fnlist = destr_fnlist;
2678 nfn_fields++;
2679 total_length += has_destructor;
2680 length -= has_destructor;
2681 }
2682 else if (is_v3)
2683 {
2684 /* v3 mangling prevents the use of abbreviated physnames,
2685 so we can do this here. There are stubbed methods in v3
2686 only:
2687 - in -gstabs instead of -gstabs+
2688 - or for static methods, which are output as a function type
2689 instead of a method type. */
2690
2691 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2692 sublist->fn_field.physname);
2693 }
2694 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2695 {
2696 new_fnlist->fn_fieldlist.name =
2697 concat ("~", main_fn_name, (char *)NULL);
2698 xfree (main_fn_name);
2699 }
2700 else if (!has_stub)
2701 {
2702 char dem_opname[256];
2703 int ret;
2704
2705 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2706 dem_opname, DMGL_ANSI);
2707 if (!ret)
2708 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2709 dem_opname, 0);
2710 if (ret)
2711 new_fnlist->fn_fieldlist.name
2712 = obsavestring (dem_opname, strlen (dem_opname),
2713 &objfile->objfile_obstack);
2714 }
2715
2716 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2717 obstack_alloc (&objfile->objfile_obstack,
2718 sizeof (struct fn_field) * length);
2719 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2720 sizeof (struct fn_field) * length);
2721 for (i = length; (i--, sublist); sublist = sublist->next)
2722 {
2723 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2724 }
2725
2726 new_fnlist->fn_fieldlist.length = length;
2727 new_fnlist->next = fip->fnlist;
2728 fip->fnlist = new_fnlist;
2729 nfn_fields++;
2730 total_length += length;
2731 }
2732 }
2733
2734 if (nfn_fields)
2735 {
2736 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2737 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2738 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2739 memset (TYPE_FN_FIELDLISTS (type), 0,
2740 sizeof (struct fn_fieldlist) * nfn_fields);
2741 TYPE_NFN_FIELDS (type) = nfn_fields;
2742 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2743 }
2744
2745 return 1;
2746 }
2747
2748 /* Special GNU C++ name.
2749
2750 Returns 1 for success, 0 for failure. "failure" means that we can't
2751 keep parsing and it's time for error_type(). */
2752
2753 static int
2754 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2755 struct objfile *objfile)
2756 {
2757 char *p;
2758 char *name;
2759 char cpp_abbrev;
2760 struct type *context;
2761
2762 p = *pp;
2763 if (*++p == 'v')
2764 {
2765 name = NULL;
2766 cpp_abbrev = *++p;
2767
2768 *pp = p + 1;
2769
2770 /* At this point, *pp points to something like "22:23=*22...",
2771 where the type number before the ':' is the "context" and
2772 everything after is a regular type definition. Lookup the
2773 type, find it's name, and construct the field name. */
2774
2775 context = read_type (pp, objfile);
2776
2777 switch (cpp_abbrev)
2778 {
2779 case 'f': /* $vf -- a virtual function table pointer */
2780 name = type_name_no_tag (context);
2781 if (name == NULL)
2782 {
2783 name = "";
2784 }
2785 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2786 vptr_name, name, (char *) NULL);
2787 break;
2788
2789 case 'b': /* $vb -- a virtual bsomethingorother */
2790 name = type_name_no_tag (context);
2791 if (name == NULL)
2792 {
2793 complaint (&symfile_complaints,
2794 _("C++ abbreviated type name "
2795 "unknown at symtab pos %d"),
2796 symnum);
2797 name = "FOO";
2798 }
2799 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2800 name, (char *) NULL);
2801 break;
2802
2803 default:
2804 invalid_cpp_abbrev_complaint (*pp);
2805 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2806 "INVALID_CPLUSPLUS_ABBREV",
2807 (char *) NULL);
2808 break;
2809 }
2810
2811 /* At this point, *pp points to the ':'. Skip it and read the
2812 field type. */
2813
2814 p = ++(*pp);
2815 if (p[-1] != ':')
2816 {
2817 invalid_cpp_abbrev_complaint (*pp);
2818 return 0;
2819 }
2820 fip->list->field.type = read_type (pp, objfile);
2821 if (**pp == ',')
2822 (*pp)++; /* Skip the comma. */
2823 else
2824 return 0;
2825
2826 {
2827 int nbits;
2828
2829 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2830 0);
2831 if (nbits != 0)
2832 return 0;
2833 }
2834 /* This field is unpacked. */
2835 FIELD_BITSIZE (fip->list->field) = 0;
2836 fip->list->visibility = VISIBILITY_PRIVATE;
2837 }
2838 else
2839 {
2840 invalid_cpp_abbrev_complaint (*pp);
2841 /* We have no idea what syntax an unrecognized abbrev would have, so
2842 better return 0. If we returned 1, we would need to at least advance
2843 *pp to avoid an infinite loop. */
2844 return 0;
2845 }
2846 return 1;
2847 }
2848
2849 static void
2850 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2851 struct type *type, struct objfile *objfile)
2852 {
2853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2854
2855 fip->list->field.name =
2856 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2857 *pp = p + 1;
2858
2859 /* This means we have a visibility for a field coming. */
2860 if (**pp == '/')
2861 {
2862 (*pp)++;
2863 fip->list->visibility = *(*pp)++;
2864 }
2865 else
2866 {
2867 /* normal dbx-style format, no explicit visibility */
2868 fip->list->visibility = VISIBILITY_PUBLIC;
2869 }
2870
2871 fip->list->field.type = read_type (pp, objfile);
2872 if (**pp == ':')
2873 {
2874 p = ++(*pp);
2875 #if 0
2876 /* Possible future hook for nested types. */
2877 if (**pp == '!')
2878 {
2879 fip->list->field.bitpos = (long) -2; /* nested type */
2880 p = ++(*pp);
2881 }
2882 else
2883 ...;
2884 #endif
2885 while (*p != ';')
2886 {
2887 p++;
2888 }
2889 /* Static class member. */
2890 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2891 *pp = p + 1;
2892 return;
2893 }
2894 else if (**pp != ',')
2895 {
2896 /* Bad structure-type format. */
2897 stabs_general_complaint ("bad structure-type format");
2898 return;
2899 }
2900
2901 (*pp)++; /* Skip the comma. */
2902
2903 {
2904 int nbits;
2905
2906 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2907 if (nbits != 0)
2908 {
2909 stabs_general_complaint ("bad structure-type format");
2910 return;
2911 }
2912 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2913 if (nbits != 0)
2914 {
2915 stabs_general_complaint ("bad structure-type format");
2916 return;
2917 }
2918 }
2919
2920 if (FIELD_BITPOS (fip->list->field) == 0
2921 && FIELD_BITSIZE (fip->list->field) == 0)
2922 {
2923 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2924 it is a field which has been optimized out. The correct stab for
2925 this case is to use VISIBILITY_IGNORE, but that is a recent
2926 invention. (2) It is a 0-size array. For example
2927 union { int num; char str[0]; } foo. Printing _("<no value>" for
2928 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2929 will continue to work, and a 0-size array as a whole doesn't
2930 have any contents to print.
2931
2932 I suspect this probably could also happen with gcc -gstabs (not
2933 -gstabs+) for static fields, and perhaps other C++ extensions.
2934 Hopefully few people use -gstabs with gdb, since it is intended
2935 for dbx compatibility. */
2936
2937 /* Ignore this field. */
2938 fip->list->visibility = VISIBILITY_IGNORE;
2939 }
2940 else
2941 {
2942 /* Detect an unpacked field and mark it as such.
2943 dbx gives a bit size for all fields.
2944 Note that forward refs cannot be packed,
2945 and treat enums as if they had the width of ints. */
2946
2947 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2948
2949 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2950 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2951 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2952 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2953 {
2954 FIELD_BITSIZE (fip->list->field) = 0;
2955 }
2956 if ((FIELD_BITSIZE (fip->list->field)
2957 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2958 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2959 && FIELD_BITSIZE (fip->list->field)
2960 == gdbarch_int_bit (gdbarch))
2961 )
2962 &&
2963 FIELD_BITPOS (fip->list->field) % 8 == 0)
2964 {
2965 FIELD_BITSIZE (fip->list->field) = 0;
2966 }
2967 }
2968 }
2969
2970
2971 /* Read struct or class data fields. They have the form:
2972
2973 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2974
2975 At the end, we see a semicolon instead of a field.
2976
2977 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2978 a static field.
2979
2980 The optional VISIBILITY is one of:
2981
2982 '/0' (VISIBILITY_PRIVATE)
2983 '/1' (VISIBILITY_PROTECTED)
2984 '/2' (VISIBILITY_PUBLIC)
2985 '/9' (VISIBILITY_IGNORE)
2986
2987 or nothing, for C style fields with public visibility.
2988
2989 Returns 1 for success, 0 for failure. */
2990
2991 static int
2992 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2993 struct objfile *objfile)
2994 {
2995 char *p;
2996 struct nextfield *new;
2997
2998 /* We better set p right now, in case there are no fields at all... */
2999
3000 p = *pp;
3001
3002 /* Read each data member type until we find the terminating ';' at the end of
3003 the data member list, or break for some other reason such as finding the
3004 start of the member function list. */
3005 /* Stab string for structure/union does not end with two ';' in
3006 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3007
3008 while (**pp != ';' && **pp != '\0')
3009 {
3010 STABS_CONTINUE (pp, objfile);
3011 /* Get space to record the next field's data. */
3012 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3013 make_cleanup (xfree, new);
3014 memset (new, 0, sizeof (struct nextfield));
3015 new->next = fip->list;
3016 fip->list = new;
3017
3018 /* Get the field name. */
3019 p = *pp;
3020
3021 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3022 unless the CPLUS_MARKER is followed by an underscore, in
3023 which case it is just the name of an anonymous type, which we
3024 should handle like any other type name. */
3025
3026 if (is_cplus_marker (p[0]) && p[1] != '_')
3027 {
3028 if (!read_cpp_abbrev (fip, pp, type, objfile))
3029 return 0;
3030 continue;
3031 }
3032
3033 /* Look for the ':' that separates the field name from the field
3034 values. Data members are delimited by a single ':', while member
3035 functions are delimited by a pair of ':'s. When we hit the member
3036 functions (if any), terminate scan loop and return. */
3037
3038 while (*p != ':' && *p != '\0')
3039 {
3040 p++;
3041 }
3042 if (*p == '\0')
3043 return 0;
3044
3045 /* Check to see if we have hit the member functions yet. */
3046 if (p[1] == ':')
3047 {
3048 break;
3049 }
3050 read_one_struct_field (fip, pp, p, type, objfile);
3051 }
3052 if (p[0] == ':' && p[1] == ':')
3053 {
3054 /* (the deleted) chill the list of fields: the last entry (at
3055 the head) is a partially constructed entry which we now
3056 scrub. */
3057 fip->list = fip->list->next;
3058 }
3059 return 1;
3060 }
3061 /* *INDENT-OFF* */
3062 /* The stabs for C++ derived classes contain baseclass information which
3063 is marked by a '!' character after the total size. This function is
3064 called when we encounter the baseclass marker, and slurps up all the
3065 baseclass information.
3066
3067 Immediately following the '!' marker is the number of base classes that
3068 the class is derived from, followed by information for each base class.
3069 For each base class, there are two visibility specifiers, a bit offset
3070 to the base class information within the derived class, a reference to
3071 the type for the base class, and a terminating semicolon.
3072
3073 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3074 ^^ ^ ^ ^ ^ ^ ^
3075 Baseclass information marker __________________|| | | | | | |
3076 Number of baseclasses __________________________| | | | | | |
3077 Visibility specifiers (2) ________________________| | | | | |
3078 Offset in bits from start of class _________________| | | | |
3079 Type number for base class ___________________________| | | |
3080 Visibility specifiers (2) _______________________________| | |
3081 Offset in bits from start of class ________________________| |
3082 Type number of base class ____________________________________|
3083
3084 Return 1 for success, 0 for (error-type-inducing) failure. */
3085 /* *INDENT-ON* */
3086
3087
3088
3089 static int
3090 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3091 struct objfile *objfile)
3092 {
3093 int i;
3094 struct nextfield *new;
3095
3096 if (**pp != '!')
3097 {
3098 return 1;
3099 }
3100 else
3101 {
3102 /* Skip the '!' baseclass information marker. */
3103 (*pp)++;
3104 }
3105
3106 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3107 {
3108 int nbits;
3109
3110 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3111 if (nbits != 0)
3112 return 0;
3113 }
3114
3115 #if 0
3116 /* Some stupid compilers have trouble with the following, so break
3117 it up into simpler expressions. */
3118 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3119 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3120 #else
3121 {
3122 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3123 char *pointer;
3124
3125 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3126 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3127 }
3128 #endif /* 0 */
3129
3130 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3131
3132 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3133 {
3134 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3135 make_cleanup (xfree, new);
3136 memset (new, 0, sizeof (struct nextfield));
3137 new->next = fip->list;
3138 fip->list = new;
3139 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3140 field! */
3141
3142 STABS_CONTINUE (pp, objfile);
3143 switch (**pp)
3144 {
3145 case '0':
3146 /* Nothing to do. */
3147 break;
3148 case '1':
3149 SET_TYPE_FIELD_VIRTUAL (type, i);
3150 break;
3151 default:
3152 /* Unknown character. Complain and treat it as non-virtual. */
3153 {
3154 complaint (&symfile_complaints,
3155 _("Unknown virtual character `%c' for baseclass"),
3156 **pp);
3157 }
3158 }
3159 ++(*pp);
3160
3161 new->visibility = *(*pp)++;
3162 switch (new->visibility)
3163 {
3164 case VISIBILITY_PRIVATE:
3165 case VISIBILITY_PROTECTED:
3166 case VISIBILITY_PUBLIC:
3167 break;
3168 default:
3169 /* Bad visibility format. Complain and treat it as
3170 public. */
3171 {
3172 complaint (&symfile_complaints,
3173 _("Unknown visibility `%c' for baseclass"),
3174 new->visibility);
3175 new->visibility = VISIBILITY_PUBLIC;
3176 }
3177 }
3178
3179 {
3180 int nbits;
3181
3182 /* The remaining value is the bit offset of the portion of the object
3183 corresponding to this baseclass. Always zero in the absence of
3184 multiple inheritance. */
3185
3186 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3187 if (nbits != 0)
3188 return 0;
3189 }
3190
3191 /* The last piece of baseclass information is the type of the
3192 base class. Read it, and remember it's type name as this
3193 field's name. */
3194
3195 new->field.type = read_type (pp, objfile);
3196 new->field.name = type_name_no_tag (new->field.type);
3197
3198 /* Skip trailing ';' and bump count of number of fields seen. */
3199 if (**pp == ';')
3200 (*pp)++;
3201 else
3202 return 0;
3203 }
3204 return 1;
3205 }
3206
3207 /* The tail end of stabs for C++ classes that contain a virtual function
3208 pointer contains a tilde, a %, and a type number.
3209 The type number refers to the base class (possibly this class itself) which
3210 contains the vtable pointer for the current class.
3211
3212 This function is called when we have parsed all the method declarations,
3213 so we can look for the vptr base class info. */
3214
3215 static int
3216 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3217 struct objfile *objfile)
3218 {
3219 char *p;
3220
3221 STABS_CONTINUE (pp, objfile);
3222
3223 /* If we are positioned at a ';', then skip it. */
3224 if (**pp == ';')
3225 {
3226 (*pp)++;
3227 }
3228
3229 if (**pp == '~')
3230 {
3231 (*pp)++;
3232
3233 if (**pp == '=' || **pp == '+' || **pp == '-')
3234 {
3235 /* Obsolete flags that used to indicate the presence
3236 of constructors and/or destructors. */
3237 (*pp)++;
3238 }
3239
3240 /* Read either a '%' or the final ';'. */
3241 if (*(*pp)++ == '%')
3242 {
3243 /* The next number is the type number of the base class
3244 (possibly our own class) which supplies the vtable for
3245 this class. Parse it out, and search that class to find
3246 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3247 and TYPE_VPTR_FIELDNO. */
3248
3249 struct type *t;
3250 int i;
3251
3252 t = read_type (pp, objfile);
3253 p = (*pp)++;
3254 while (*p != '\0' && *p != ';')
3255 {
3256 p++;
3257 }
3258 if (*p == '\0')
3259 {
3260 /* Premature end of symbol. */
3261 return 0;
3262 }
3263
3264 TYPE_VPTR_BASETYPE (type) = t;
3265 if (type == t) /* Our own class provides vtbl ptr. */
3266 {
3267 for (i = TYPE_NFIELDS (t) - 1;
3268 i >= TYPE_N_BASECLASSES (t);
3269 --i)
3270 {
3271 char *name = TYPE_FIELD_NAME (t, i);
3272
3273 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3274 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3275 {
3276 TYPE_VPTR_FIELDNO (type) = i;
3277 goto gotit;
3278 }
3279 }
3280 /* Virtual function table field not found. */
3281 complaint (&symfile_complaints,
3282 _("virtual function table pointer "
3283 "not found when defining class `%s'"),
3284 TYPE_NAME (type));
3285 return 0;
3286 }
3287 else
3288 {
3289 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3290 }
3291
3292 gotit:
3293 *pp = p + 1;
3294 }
3295 }
3296 return 1;
3297 }
3298
3299 static int
3300 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3301 {
3302 int n;
3303
3304 for (n = TYPE_NFN_FIELDS (type);
3305 fip->fnlist != NULL;
3306 fip->fnlist = fip->fnlist->next)
3307 {
3308 --n; /* Circumvent Sun3 compiler bug. */
3309 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3310 }
3311 return 1;
3312 }
3313
3314 /* Create the vector of fields, and record how big it is.
3315 We need this info to record proper virtual function table information
3316 for this class's virtual functions. */
3317
3318 static int
3319 attach_fields_to_type (struct field_info *fip, struct type *type,
3320 struct objfile *objfile)
3321 {
3322 int nfields = 0;
3323 int non_public_fields = 0;
3324 struct nextfield *scan;
3325
3326 /* Count up the number of fields that we have, as well as taking note of
3327 whether or not there are any non-public fields, which requires us to
3328 allocate and build the private_field_bits and protected_field_bits
3329 bitfields. */
3330
3331 for (scan = fip->list; scan != NULL; scan = scan->next)
3332 {
3333 nfields++;
3334 if (scan->visibility != VISIBILITY_PUBLIC)
3335 {
3336 non_public_fields++;
3337 }
3338 }
3339
3340 /* Now we know how many fields there are, and whether or not there are any
3341 non-public fields. Record the field count, allocate space for the
3342 array of fields, and create blank visibility bitfields if necessary. */
3343
3344 TYPE_NFIELDS (type) = nfields;
3345 TYPE_FIELDS (type) = (struct field *)
3346 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3347 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3348
3349 if (non_public_fields)
3350 {
3351 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3352
3353 TYPE_FIELD_PRIVATE_BITS (type) =
3354 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3355 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3356
3357 TYPE_FIELD_PROTECTED_BITS (type) =
3358 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3359 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3360
3361 TYPE_FIELD_IGNORE_BITS (type) =
3362 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3363 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3364 }
3365
3366 /* Copy the saved-up fields into the field vector. Start from the
3367 head of the list, adding to the tail of the field array, so that
3368 they end up in the same order in the array in which they were
3369 added to the list. */
3370
3371 while (nfields-- > 0)
3372 {
3373 TYPE_FIELD (type, nfields) = fip->list->field;
3374 switch (fip->list->visibility)
3375 {
3376 case VISIBILITY_PRIVATE:
3377 SET_TYPE_FIELD_PRIVATE (type, nfields);
3378 break;
3379
3380 case VISIBILITY_PROTECTED:
3381 SET_TYPE_FIELD_PROTECTED (type, nfields);
3382 break;
3383
3384 case VISIBILITY_IGNORE:
3385 SET_TYPE_FIELD_IGNORE (type, nfields);
3386 break;
3387
3388 case VISIBILITY_PUBLIC:
3389 break;
3390
3391 default:
3392 /* Unknown visibility. Complain and treat it as public. */
3393 {
3394 complaint (&symfile_complaints,
3395 _("Unknown visibility `%c' for field"),
3396 fip->list->visibility);
3397 }
3398 break;
3399 }
3400 fip->list = fip->list->next;
3401 }
3402 return 1;
3403 }
3404
3405
3406 /* Complain that the compiler has emitted more than one definition for the
3407 structure type TYPE. */
3408 static void
3409 complain_about_struct_wipeout (struct type *type)
3410 {
3411 char *name = "";
3412 char *kind = "";
3413
3414 if (TYPE_TAG_NAME (type))
3415 {
3416 name = TYPE_TAG_NAME (type);
3417 switch (TYPE_CODE (type))
3418 {
3419 case TYPE_CODE_STRUCT: kind = "struct "; break;
3420 case TYPE_CODE_UNION: kind = "union "; break;
3421 case TYPE_CODE_ENUM: kind = "enum "; break;
3422 default: kind = "";
3423 }
3424 }
3425 else if (TYPE_NAME (type))
3426 {
3427 name = TYPE_NAME (type);
3428 kind = "";
3429 }
3430 else
3431 {
3432 name = "<unknown>";
3433 kind = "";
3434 }
3435
3436 complaint (&symfile_complaints,
3437 _("struct/union type gets multiply defined: %s%s"), kind, name);
3438 }
3439
3440 /* Set the length for all variants of a same main_type, which are
3441 connected in the closed chain.
3442
3443 This is something that needs to be done when a type is defined *after*
3444 some cross references to this type have already been read. Consider
3445 for instance the following scenario where we have the following two
3446 stabs entries:
3447
3448 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3449 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3450
3451 A stubbed version of type dummy is created while processing the first
3452 stabs entry. The length of that type is initially set to zero, since
3453 it is unknown at this point. Also, a "constant" variation of type
3454 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3455 the stabs line).
3456
3457 The second stabs entry allows us to replace the stubbed definition
3458 with the real definition. However, we still need to adjust the length
3459 of the "constant" variation of that type, as its length was left
3460 untouched during the main type replacement... */
3461
3462 static void
3463 set_length_in_type_chain (struct type *type)
3464 {
3465 struct type *ntype = TYPE_CHAIN (type);
3466
3467 while (ntype != type)
3468 {
3469 if (TYPE_LENGTH(ntype) == 0)
3470 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3471 else
3472 complain_about_struct_wipeout (ntype);
3473 ntype = TYPE_CHAIN (ntype);
3474 }
3475 }
3476
3477 /* Read the description of a structure (or union type) and return an object
3478 describing the type.
3479
3480 PP points to a character pointer that points to the next unconsumed token
3481 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3482 *PP will point to "4a:1,0,32;;".
3483
3484 TYPE points to an incomplete type that needs to be filled in.
3485
3486 OBJFILE points to the current objfile from which the stabs information is
3487 being read. (Note that it is redundant in that TYPE also contains a pointer
3488 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3489 */
3490
3491 static struct type *
3492 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3493 struct objfile *objfile)
3494 {
3495 struct cleanup *back_to;
3496 struct field_info fi;
3497
3498 fi.list = NULL;
3499 fi.fnlist = NULL;
3500
3501 /* When describing struct/union/class types in stabs, G++ always drops
3502 all qualifications from the name. So if you've got:
3503 struct A { ... struct B { ... }; ... };
3504 then G++ will emit stabs for `struct A::B' that call it simply
3505 `struct B'. Obviously, if you've got a real top-level definition for
3506 `struct B', or other nested definitions, this is going to cause
3507 problems.
3508
3509 Obviously, GDB can't fix this by itself, but it can at least avoid
3510 scribbling on existing structure type objects when new definitions
3511 appear. */
3512 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3513 || TYPE_STUB (type)))
3514 {
3515 complain_about_struct_wipeout (type);
3516
3517 /* It's probably best to return the type unchanged. */
3518 return type;
3519 }
3520
3521 back_to = make_cleanup (null_cleanup, 0);
3522
3523 INIT_CPLUS_SPECIFIC (type);
3524 TYPE_CODE (type) = type_code;
3525 TYPE_STUB (type) = 0;
3526
3527 /* First comes the total size in bytes. */
3528
3529 {
3530 int nbits;
3531
3532 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3533 if (nbits != 0)
3534 return error_type (pp, objfile);
3535 set_length_in_type_chain (type);
3536 }
3537
3538 /* Now read the baseclasses, if any, read the regular C struct or C++
3539 class member fields, attach the fields to the type, read the C++
3540 member functions, attach them to the type, and then read any tilde
3541 field (baseclass specifier for the class holding the main vtable). */
3542
3543 if (!read_baseclasses (&fi, pp, type, objfile)
3544 || !read_struct_fields (&fi, pp, type, objfile)
3545 || !attach_fields_to_type (&fi, type, objfile)
3546 || !read_member_functions (&fi, pp, type, objfile)
3547 || !attach_fn_fields_to_type (&fi, type)
3548 || !read_tilde_fields (&fi, pp, type, objfile))
3549 {
3550 type = error_type (pp, objfile);
3551 }
3552
3553 do_cleanups (back_to);
3554 return (type);
3555 }
3556
3557 /* Read a definition of an array type,
3558 and create and return a suitable type object.
3559 Also creates a range type which represents the bounds of that
3560 array. */
3561
3562 static struct type *
3563 read_array_type (char **pp, struct type *type,
3564 struct objfile *objfile)
3565 {
3566 struct type *index_type, *element_type, *range_type;
3567 int lower, upper;
3568 int adjustable = 0;
3569 int nbits;
3570
3571 /* Format of an array type:
3572 "ar<index type>;lower;upper;<array_contents_type>".
3573 OS9000: "arlower,upper;<array_contents_type>".
3574
3575 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3576 for these, produce a type like float[][]. */
3577
3578 {
3579 index_type = read_type (pp, objfile);
3580 if (**pp != ';')
3581 /* Improper format of array type decl. */
3582 return error_type (pp, objfile);
3583 ++*pp;
3584 }
3585
3586 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3587 {
3588 (*pp)++;
3589 adjustable = 1;
3590 }
3591 lower = read_huge_number (pp, ';', &nbits, 0);
3592
3593 if (nbits != 0)
3594 return error_type (pp, objfile);
3595
3596 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3597 {
3598 (*pp)++;
3599 adjustable = 1;
3600 }
3601 upper = read_huge_number (pp, ';', &nbits, 0);
3602 if (nbits != 0)
3603 return error_type (pp, objfile);
3604
3605 element_type = read_type (pp, objfile);
3606
3607 if (adjustable)
3608 {
3609 lower = 0;
3610 upper = -1;
3611 }
3612
3613 range_type =
3614 create_range_type ((struct type *) NULL, index_type, lower, upper);
3615 type = create_array_type (type, element_type, range_type);
3616
3617 return type;
3618 }
3619
3620
3621 /* Read a definition of an enumeration type,
3622 and create and return a suitable type object.
3623 Also defines the symbols that represent the values of the type. */
3624
3625 static struct type *
3626 read_enum_type (char **pp, struct type *type,
3627 struct objfile *objfile)
3628 {
3629 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3630 char *p;
3631 char *name;
3632 long n;
3633 struct symbol *sym;
3634 int nsyms = 0;
3635 struct pending **symlist;
3636 struct pending *osyms, *syms;
3637 int o_nsyms;
3638 int nbits;
3639 int unsigned_enum = 1;
3640
3641 #if 0
3642 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3643 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3644 to do? For now, force all enum values to file scope. */
3645 if (within_function)
3646 symlist = &local_symbols;
3647 else
3648 #endif
3649 symlist = &file_symbols;
3650 osyms = *symlist;
3651 o_nsyms = osyms ? osyms->nsyms : 0;
3652
3653 /* The aix4 compiler emits an extra field before the enum members;
3654 my guess is it's a type of some sort. Just ignore it. */
3655 if (**pp == '-')
3656 {
3657 /* Skip over the type. */
3658 while (**pp != ':')
3659 (*pp)++;
3660
3661 /* Skip over the colon. */
3662 (*pp)++;
3663 }
3664
3665 /* Read the value-names and their values.
3666 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3667 A semicolon or comma instead of a NAME means the end. */
3668 while (**pp && **pp != ';' && **pp != ',')
3669 {
3670 STABS_CONTINUE (pp, objfile);
3671 p = *pp;
3672 while (*p != ':')
3673 p++;
3674 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3675 *pp = p + 1;
3676 n = read_huge_number (pp, ',', &nbits, 0);
3677 if (nbits != 0)
3678 return error_type (pp, objfile);
3679
3680 sym = (struct symbol *)
3681 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3682 memset (sym, 0, sizeof (struct symbol));
3683 SYMBOL_SET_LINKAGE_NAME (sym, name);
3684 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3685 SYMBOL_CLASS (sym) = LOC_CONST;
3686 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3687 SYMBOL_VALUE (sym) = n;
3688 if (n < 0)
3689 unsigned_enum = 0;
3690 add_symbol_to_list (sym, symlist);
3691 nsyms++;
3692 }
3693
3694 if (**pp == ';')
3695 (*pp)++; /* Skip the semicolon. */
3696
3697 /* Now fill in the fields of the type-structure. */
3698
3699 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3700 set_length_in_type_chain (type);
3701 TYPE_CODE (type) = TYPE_CODE_ENUM;
3702 TYPE_STUB (type) = 0;
3703 if (unsigned_enum)
3704 TYPE_UNSIGNED (type) = 1;
3705 TYPE_NFIELDS (type) = nsyms;
3706 TYPE_FIELDS (type) = (struct field *)
3707 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3708 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3709
3710 /* Find the symbols for the values and put them into the type.
3711 The symbols can be found in the symlist that we put them on
3712 to cause them to be defined. osyms contains the old value
3713 of that symlist; everything up to there was defined by us. */
3714 /* Note that we preserve the order of the enum constants, so
3715 that in something like "enum {FOO, LAST_THING=FOO}" we print
3716 FOO, not LAST_THING. */
3717
3718 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3719 {
3720 int last = syms == osyms ? o_nsyms : 0;
3721 int j = syms->nsyms;
3722
3723 for (; --j >= last; --n)
3724 {
3725 struct symbol *xsym = syms->symbol[j];
3726
3727 SYMBOL_TYPE (xsym) = type;
3728 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3729 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3730 TYPE_FIELD_BITSIZE (type, n) = 0;
3731 }
3732 if (syms == osyms)
3733 break;
3734 }
3735
3736 return type;
3737 }
3738
3739 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3740 typedefs in every file (for int, long, etc):
3741
3742 type = b <signed> <width> <format type>; <offset>; <nbits>
3743 signed = u or s.
3744 optional format type = c or b for char or boolean.
3745 offset = offset from high order bit to start bit of type.
3746 width is # bytes in object of this type, nbits is # bits in type.
3747
3748 The width/offset stuff appears to be for small objects stored in
3749 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3750 FIXME. */
3751
3752 static struct type *
3753 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3754 {
3755 int type_bits;
3756 int nbits;
3757 int signed_type;
3758 enum type_code code = TYPE_CODE_INT;
3759
3760 switch (**pp)
3761 {
3762 case 's':
3763 signed_type = 1;
3764 break;
3765 case 'u':
3766 signed_type = 0;
3767 break;
3768 default:
3769 return error_type (pp, objfile);
3770 }
3771 (*pp)++;
3772
3773 /* For some odd reason, all forms of char put a c here. This is strange
3774 because no other type has this honor. We can safely ignore this because
3775 we actually determine 'char'acterness by the number of bits specified in
3776 the descriptor.
3777 Boolean forms, e.g Fortran logical*X, put a b here. */
3778
3779 if (**pp == 'c')
3780 (*pp)++;
3781 else if (**pp == 'b')
3782 {
3783 code = TYPE_CODE_BOOL;
3784 (*pp)++;
3785 }
3786
3787 /* The first number appears to be the number of bytes occupied
3788 by this type, except that unsigned short is 4 instead of 2.
3789 Since this information is redundant with the third number,
3790 we will ignore it. */
3791 read_huge_number (pp, ';', &nbits, 0);
3792 if (nbits != 0)
3793 return error_type (pp, objfile);
3794
3795 /* The second number is always 0, so ignore it too. */
3796 read_huge_number (pp, ';', &nbits, 0);
3797 if (nbits != 0)
3798 return error_type (pp, objfile);
3799
3800 /* The third number is the number of bits for this type. */
3801 type_bits = read_huge_number (pp, 0, &nbits, 0);
3802 if (nbits != 0)
3803 return error_type (pp, objfile);
3804 /* The type *should* end with a semicolon. If it are embedded
3805 in a larger type the semicolon may be the only way to know where
3806 the type ends. If this type is at the end of the stabstring we
3807 can deal with the omitted semicolon (but we don't have to like
3808 it). Don't bother to complain(), Sun's compiler omits the semicolon
3809 for "void". */
3810 if (**pp == ';')
3811 ++(*pp);
3812
3813 if (type_bits == 0)
3814 return init_type (TYPE_CODE_VOID, 1,
3815 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3816 objfile);
3817 else
3818 return init_type (code,
3819 type_bits / TARGET_CHAR_BIT,
3820 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3821 objfile);
3822 }
3823
3824 static struct type *
3825 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3826 {
3827 int nbits;
3828 int details;
3829 int nbytes;
3830 struct type *rettype;
3831
3832 /* The first number has more details about the type, for example
3833 FN_COMPLEX. */
3834 details = read_huge_number (pp, ';', &nbits, 0);
3835 if (nbits != 0)
3836 return error_type (pp, objfile);
3837
3838 /* The second number is the number of bytes occupied by this type. */
3839 nbytes = read_huge_number (pp, ';', &nbits, 0);
3840 if (nbits != 0)
3841 return error_type (pp, objfile);
3842
3843 if (details == NF_COMPLEX || details == NF_COMPLEX16
3844 || details == NF_COMPLEX32)
3845 {
3846 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3847 TYPE_TARGET_TYPE (rettype)
3848 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3849 return rettype;
3850 }
3851
3852 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3853 }
3854
3855 /* Read a number from the string pointed to by *PP.
3856 The value of *PP is advanced over the number.
3857 If END is nonzero, the character that ends the
3858 number must match END, or an error happens;
3859 and that character is skipped if it does match.
3860 If END is zero, *PP is left pointing to that character.
3861
3862 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3863 the number is represented in an octal representation, assume that
3864 it is represented in a 2's complement representation with a size of
3865 TWOS_COMPLEMENT_BITS.
3866
3867 If the number fits in a long, set *BITS to 0 and return the value.
3868 If not, set *BITS to be the number of bits in the number and return 0.
3869
3870 If encounter garbage, set *BITS to -1 and return 0. */
3871
3872 static long
3873 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3874 {
3875 char *p = *pp;
3876 int sign = 1;
3877 int sign_bit = 0;
3878 long n = 0;
3879 int radix = 10;
3880 char overflow = 0;
3881 int nbits = 0;
3882 int c;
3883 long upper_limit;
3884 int twos_complement_representation = 0;
3885
3886 if (*p == '-')
3887 {
3888 sign = -1;
3889 p++;
3890 }
3891
3892 /* Leading zero means octal. GCC uses this to output values larger
3893 than an int (because that would be hard in decimal). */
3894 if (*p == '0')
3895 {
3896 radix = 8;
3897 p++;
3898 }
3899
3900 /* Skip extra zeros. */
3901 while (*p == '0')
3902 p++;
3903
3904 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3905 {
3906 /* Octal, possibly signed. Check if we have enough chars for a
3907 negative number. */
3908
3909 size_t len;
3910 char *p1 = p;
3911
3912 while ((c = *p1) >= '0' && c < '8')
3913 p1++;
3914
3915 len = p1 - p;
3916 if (len > twos_complement_bits / 3
3917 || (twos_complement_bits % 3 == 0
3918 && len == twos_complement_bits / 3))
3919 {
3920 /* Ok, we have enough characters for a signed value, check
3921 for signness by testing if the sign bit is set. */
3922 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3923 c = *p - '0';
3924 if (c & (1 << sign_bit))
3925 {
3926 /* Definitely signed. */
3927 twos_complement_representation = 1;
3928 sign = -1;
3929 }
3930 }
3931 }
3932
3933 upper_limit = LONG_MAX / radix;
3934
3935 while ((c = *p++) >= '0' && c < ('0' + radix))
3936 {
3937 if (n <= upper_limit)
3938 {
3939 if (twos_complement_representation)
3940 {
3941 /* Octal, signed, twos complement representation. In
3942 this case, n is the corresponding absolute value. */
3943 if (n == 0)
3944 {
3945 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3946
3947 n = -sn;
3948 }
3949 else
3950 {
3951 n *= radix;
3952 n -= c - '0';
3953 }
3954 }
3955 else
3956 {
3957 /* unsigned representation */
3958 n *= radix;
3959 n += c - '0'; /* FIXME this overflows anyway. */
3960 }
3961 }
3962 else
3963 overflow = 1;
3964
3965 /* This depends on large values being output in octal, which is
3966 what GCC does. */
3967 if (radix == 8)
3968 {
3969 if (nbits == 0)
3970 {
3971 if (c == '0')
3972 /* Ignore leading zeroes. */
3973 ;
3974 else if (c == '1')
3975 nbits = 1;
3976 else if (c == '2' || c == '3')
3977 nbits = 2;
3978 else
3979 nbits = 3;
3980 }
3981 else
3982 nbits += 3;
3983 }
3984 }
3985 if (end)
3986 {
3987 if (c && c != end)
3988 {
3989 if (bits != NULL)
3990 *bits = -1;
3991 return 0;
3992 }
3993 }
3994 else
3995 --p;
3996
3997 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3998 {
3999 /* We were supposed to parse a number with maximum
4000 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4001 if (bits != NULL)
4002 *bits = -1;
4003 return 0;
4004 }
4005
4006 *pp = p;
4007 if (overflow)
4008 {
4009 if (nbits == 0)
4010 {
4011 /* Large decimal constants are an error (because it is hard to
4012 count how many bits are in them). */
4013 if (bits != NULL)
4014 *bits = -1;
4015 return 0;
4016 }
4017
4018 /* -0x7f is the same as 0x80. So deal with it by adding one to
4019 the number of bits. Two's complement represention octals
4020 can't have a '-' in front. */
4021 if (sign == -1 && !twos_complement_representation)
4022 ++nbits;
4023 if (bits)
4024 *bits = nbits;
4025 }
4026 else
4027 {
4028 if (bits)
4029 *bits = 0;
4030 return n * sign;
4031 }
4032 /* It's *BITS which has the interesting information. */
4033 return 0;
4034 }
4035
4036 static struct type *
4037 read_range_type (char **pp, int typenums[2], int type_size,
4038 struct objfile *objfile)
4039 {
4040 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4041 char *orig_pp = *pp;
4042 int rangenums[2];
4043 long n2, n3;
4044 int n2bits, n3bits;
4045 int self_subrange;
4046 struct type *result_type;
4047 struct type *index_type = NULL;
4048
4049 /* First comes a type we are a subrange of.
4050 In C it is usually 0, 1 or the type being defined. */
4051 if (read_type_number (pp, rangenums) != 0)
4052 return error_type (pp, objfile);
4053 self_subrange = (rangenums[0] == typenums[0] &&
4054 rangenums[1] == typenums[1]);
4055
4056 if (**pp == '=')
4057 {
4058 *pp = orig_pp;
4059 index_type = read_type (pp, objfile);
4060 }
4061
4062 /* A semicolon should now follow; skip it. */
4063 if (**pp == ';')
4064 (*pp)++;
4065
4066 /* The remaining two operands are usually lower and upper bounds
4067 of the range. But in some special cases they mean something else. */
4068 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4069 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4070
4071 if (n2bits == -1 || n3bits == -1)
4072 return error_type (pp, objfile);
4073
4074 if (index_type)
4075 goto handle_true_range;
4076
4077 /* If limits are huge, must be large integral type. */
4078 if (n2bits != 0 || n3bits != 0)
4079 {
4080 char got_signed = 0;
4081 char got_unsigned = 0;
4082 /* Number of bits in the type. */
4083 int nbits = 0;
4084
4085 /* If a type size attribute has been specified, the bounds of
4086 the range should fit in this size. If the lower bounds needs
4087 more bits than the upper bound, then the type is signed. */
4088 if (n2bits <= type_size && n3bits <= type_size)
4089 {
4090 if (n2bits == type_size && n2bits > n3bits)
4091 got_signed = 1;
4092 else
4093 got_unsigned = 1;
4094 nbits = type_size;
4095 }
4096 /* Range from 0 to <large number> is an unsigned large integral type. */
4097 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4098 {
4099 got_unsigned = 1;
4100 nbits = n3bits;
4101 }
4102 /* Range from <large number> to <large number>-1 is a large signed
4103 integral type. Take care of the case where <large number> doesn't
4104 fit in a long but <large number>-1 does. */
4105 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4106 || (n2bits != 0 && n3bits == 0
4107 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4108 && n3 == LONG_MAX))
4109 {
4110 got_signed = 1;
4111 nbits = n2bits;
4112 }
4113
4114 if (got_signed || got_unsigned)
4115 {
4116 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4117 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4118 objfile);
4119 }
4120 else
4121 return error_type (pp, objfile);
4122 }
4123
4124 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4125 if (self_subrange && n2 == 0 && n3 == 0)
4126 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4127
4128 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4129 is the width in bytes.
4130
4131 Fortran programs appear to use this for complex types also. To
4132 distinguish between floats and complex, g77 (and others?) seem
4133 to use self-subranges for the complexes, and subranges of int for
4134 the floats.
4135
4136 Also note that for complexes, g77 sets n2 to the size of one of
4137 the member floats, not the whole complex beast. My guess is that
4138 this was to work well with pre-COMPLEX versions of gdb. */
4139
4140 if (n3 == 0 && n2 > 0)
4141 {
4142 struct type *float_type
4143 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4144
4145 if (self_subrange)
4146 {
4147 struct type *complex_type =
4148 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4149
4150 TYPE_TARGET_TYPE (complex_type) = float_type;
4151 return complex_type;
4152 }
4153 else
4154 return float_type;
4155 }
4156
4157 /* If the upper bound is -1, it must really be an unsigned integral. */
4158
4159 else if (n2 == 0 && n3 == -1)
4160 {
4161 int bits = type_size;
4162
4163 if (bits <= 0)
4164 {
4165 /* We don't know its size. It is unsigned int or unsigned
4166 long. GCC 2.3.3 uses this for long long too, but that is
4167 just a GDB 3.5 compatibility hack. */
4168 bits = gdbarch_int_bit (gdbarch);
4169 }
4170
4171 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4172 TYPE_FLAG_UNSIGNED, NULL, objfile);
4173 }
4174
4175 /* Special case: char is defined (Who knows why) as a subrange of
4176 itself with range 0-127. */
4177 else if (self_subrange && n2 == 0 && n3 == 127)
4178 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4179
4180 /* We used to do this only for subrange of self or subrange of int. */
4181 else if (n2 == 0)
4182 {
4183 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4184 "unsigned long", and we already checked for that,
4185 so don't need to test for it here. */
4186
4187 if (n3 < 0)
4188 /* n3 actually gives the size. */
4189 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4190 NULL, objfile);
4191
4192 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4193 unsigned n-byte integer. But do require n to be a power of
4194 two; we don't want 3- and 5-byte integers flying around. */
4195 {
4196 int bytes;
4197 unsigned long bits;
4198
4199 bits = n3;
4200 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4201 bits >>= 8;
4202 if (bits == 0
4203 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4204 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4205 objfile);
4206 }
4207 }
4208 /* I think this is for Convex "long long". Since I don't know whether
4209 Convex sets self_subrange, I also accept that particular size regardless
4210 of self_subrange. */
4211 else if (n3 == 0 && n2 < 0
4212 && (self_subrange
4213 || n2 == -gdbarch_long_long_bit
4214 (gdbarch) / TARGET_CHAR_BIT))
4215 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4216 else if (n2 == -n3 - 1)
4217 {
4218 if (n3 == 0x7f)
4219 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4220 if (n3 == 0x7fff)
4221 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4222 if (n3 == 0x7fffffff)
4223 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4224 }
4225
4226 /* We have a real range type on our hands. Allocate space and
4227 return a real pointer. */
4228 handle_true_range:
4229
4230 if (self_subrange)
4231 index_type = objfile_type (objfile)->builtin_int;
4232 else
4233 index_type = *dbx_lookup_type (rangenums, objfile);
4234 if (index_type == NULL)
4235 {
4236 /* Does this actually ever happen? Is that why we are worrying
4237 about dealing with it rather than just calling error_type? */
4238
4239 complaint (&symfile_complaints,
4240 _("base type %d of range type is not defined"), rangenums[1]);
4241
4242 index_type = objfile_type (objfile)->builtin_int;
4243 }
4244
4245 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4246 return (result_type);
4247 }
4248
4249 /* Read in an argument list. This is a list of types, separated by commas
4250 and terminated with END. Return the list of types read in, or NULL
4251 if there is an error. */
4252
4253 static struct field *
4254 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4255 int *varargsp)
4256 {
4257 /* FIXME! Remove this arbitrary limit! */
4258 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4259 int n = 0, i;
4260 struct field *rval;
4261
4262 while (**pp != end)
4263 {
4264 if (**pp != ',')
4265 /* Invalid argument list: no ','. */
4266 return NULL;
4267 (*pp)++;
4268 STABS_CONTINUE (pp, objfile);
4269 types[n++] = read_type (pp, objfile);
4270 }
4271 (*pp)++; /* get past `end' (the ':' character). */
4272
4273 if (n == 0)
4274 {
4275 /* We should read at least the THIS parameter here. Some broken stabs
4276 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4277 have been present ";-16,(0,43)" reference instead. This way the
4278 excessive ";" marker prematurely stops the parameters parsing. */
4279
4280 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4281 *varargsp = 0;
4282 }
4283 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4284 *varargsp = 1;
4285 else
4286 {
4287 n--;
4288 *varargsp = 0;
4289 }
4290
4291 rval = (struct field *) xmalloc (n * sizeof (struct field));
4292 memset (rval, 0, n * sizeof (struct field));
4293 for (i = 0; i < n; i++)
4294 rval[i].type = types[i];
4295 *nargsp = n;
4296 return rval;
4297 }
4298 \f
4299 /* Common block handling. */
4300
4301 /* List of symbols declared since the last BCOMM. This list is a tail
4302 of local_symbols. When ECOMM is seen, the symbols on the list
4303 are noted so their proper addresses can be filled in later,
4304 using the common block base address gotten from the assembler
4305 stabs. */
4306
4307 static struct pending *common_block;
4308 static int common_block_i;
4309
4310 /* Name of the current common block. We get it from the BCOMM instead of the
4311 ECOMM to match IBM documentation (even though IBM puts the name both places
4312 like everyone else). */
4313 static char *common_block_name;
4314
4315 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4316 to remain after this function returns. */
4317
4318 void
4319 common_block_start (char *name, struct objfile *objfile)
4320 {
4321 if (common_block_name != NULL)
4322 {
4323 complaint (&symfile_complaints,
4324 _("Invalid symbol data: common block within common block"));
4325 }
4326 common_block = local_symbols;
4327 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4328 common_block_name = obsavestring (name, strlen (name),
4329 &objfile->objfile_obstack);
4330 }
4331
4332 /* Process a N_ECOMM symbol. */
4333
4334 void
4335 common_block_end (struct objfile *objfile)
4336 {
4337 /* Symbols declared since the BCOMM are to have the common block
4338 start address added in when we know it. common_block and
4339 common_block_i point to the first symbol after the BCOMM in
4340 the local_symbols list; copy the list and hang it off the
4341 symbol for the common block name for later fixup. */
4342 int i;
4343 struct symbol *sym;
4344 struct pending *new = 0;
4345 struct pending *next;
4346 int j;
4347
4348 if (common_block_name == NULL)
4349 {
4350 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4351 return;
4352 }
4353
4354 sym = (struct symbol *)
4355 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4356 memset (sym, 0, sizeof (struct symbol));
4357 /* Note: common_block_name already saved on objfile_obstack. */
4358 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4359 SYMBOL_CLASS (sym) = LOC_BLOCK;
4360
4361 /* Now we copy all the symbols which have been defined since the BCOMM. */
4362
4363 /* Copy all the struct pendings before common_block. */
4364 for (next = local_symbols;
4365 next != NULL && next != common_block;
4366 next = next->next)
4367 {
4368 for (j = 0; j < next->nsyms; j++)
4369 add_symbol_to_list (next->symbol[j], &new);
4370 }
4371
4372 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4373 NULL, it means copy all the local symbols (which we already did
4374 above). */
4375
4376 if (common_block != NULL)
4377 for (j = common_block_i; j < common_block->nsyms; j++)
4378 add_symbol_to_list (common_block->symbol[j], &new);
4379
4380 SYMBOL_TYPE (sym) = (struct type *) new;
4381
4382 /* Should we be putting local_symbols back to what it was?
4383 Does it matter? */
4384
4385 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4386 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4387 global_sym_chain[i] = sym;
4388 common_block_name = NULL;
4389 }
4390
4391 /* Add a common block's start address to the offset of each symbol
4392 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4393 the common block name). */
4394
4395 static void
4396 fix_common_block (struct symbol *sym, int valu)
4397 {
4398 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4399
4400 for (; next; next = next->next)
4401 {
4402 int j;
4403
4404 for (j = next->nsyms - 1; j >= 0; j--)
4405 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4406 }
4407 }
4408 \f
4409
4410
4411 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4412 See add_undefined_type for more details. */
4413
4414 static void
4415 add_undefined_type_noname (struct type *type, int typenums[2])
4416 {
4417 struct nat nat;
4418
4419 nat.typenums[0] = typenums [0];
4420 nat.typenums[1] = typenums [1];
4421 nat.type = type;
4422
4423 if (noname_undefs_length == noname_undefs_allocated)
4424 {
4425 noname_undefs_allocated *= 2;
4426 noname_undefs = (struct nat *)
4427 xrealloc ((char *) noname_undefs,
4428 noname_undefs_allocated * sizeof (struct nat));
4429 }
4430 noname_undefs[noname_undefs_length++] = nat;
4431 }
4432
4433 /* Add TYPE to the UNDEF_TYPES vector.
4434 See add_undefined_type for more details. */
4435
4436 static void
4437 add_undefined_type_1 (struct type *type)
4438 {
4439 if (undef_types_length == undef_types_allocated)
4440 {
4441 undef_types_allocated *= 2;
4442 undef_types = (struct type **)
4443 xrealloc ((char *) undef_types,
4444 undef_types_allocated * sizeof (struct type *));
4445 }
4446 undef_types[undef_types_length++] = type;
4447 }
4448
4449 /* What about types defined as forward references inside of a small lexical
4450 scope? */
4451 /* Add a type to the list of undefined types to be checked through
4452 once this file has been read in.
4453
4454 In practice, we actually maintain two such lists: The first list
4455 (UNDEF_TYPES) is used for types whose name has been provided, and
4456 concerns forward references (eg 'xs' or 'xu' forward references);
4457 the second list (NONAME_UNDEFS) is used for types whose name is
4458 unknown at creation time, because they were referenced through
4459 their type number before the actual type was declared.
4460 This function actually adds the given type to the proper list. */
4461
4462 static void
4463 add_undefined_type (struct type *type, int typenums[2])
4464 {
4465 if (TYPE_TAG_NAME (type) == NULL)
4466 add_undefined_type_noname (type, typenums);
4467 else
4468 add_undefined_type_1 (type);
4469 }
4470
4471 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4472
4473 static void
4474 cleanup_undefined_types_noname (struct objfile *objfile)
4475 {
4476 int i;
4477
4478 for (i = 0; i < noname_undefs_length; i++)
4479 {
4480 struct nat nat = noname_undefs[i];
4481 struct type **type;
4482
4483 type = dbx_lookup_type (nat.typenums, objfile);
4484 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4485 {
4486 /* The instance flags of the undefined type are still unset,
4487 and needs to be copied over from the reference type.
4488 Since replace_type expects them to be identical, we need
4489 to set these flags manually before hand. */
4490 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4491 replace_type (nat.type, *type);
4492 }
4493 }
4494
4495 noname_undefs_length = 0;
4496 }
4497
4498 /* Go through each undefined type, see if it's still undefined, and fix it
4499 up if possible. We have two kinds of undefined types:
4500
4501 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4502 Fix: update array length using the element bounds
4503 and the target type's length.
4504 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4505 yet defined at the time a pointer to it was made.
4506 Fix: Do a full lookup on the struct/union tag. */
4507
4508 static void
4509 cleanup_undefined_types_1 (void)
4510 {
4511 struct type **type;
4512
4513 /* Iterate over every undefined type, and look for a symbol whose type
4514 matches our undefined type. The symbol matches if:
4515 1. It is a typedef in the STRUCT domain;
4516 2. It has the same name, and same type code;
4517 3. The instance flags are identical.
4518
4519 It is important to check the instance flags, because we have seen
4520 examples where the debug info contained definitions such as:
4521
4522 "foo_t:t30=B31=xefoo_t:"
4523
4524 In this case, we have created an undefined type named "foo_t" whose
4525 instance flags is null (when processing "xefoo_t"), and then created
4526 another type with the same name, but with different instance flags
4527 ('B' means volatile). I think that the definition above is wrong,
4528 since the same type cannot be volatile and non-volatile at the same
4529 time, but we need to be able to cope with it when it happens. The
4530 approach taken here is to treat these two types as different. */
4531
4532 for (type = undef_types; type < undef_types + undef_types_length; type++)
4533 {
4534 switch (TYPE_CODE (*type))
4535 {
4536
4537 case TYPE_CODE_STRUCT:
4538 case TYPE_CODE_UNION:
4539 case TYPE_CODE_ENUM:
4540 {
4541 /* Check if it has been defined since. Need to do this here
4542 as well as in check_typedef to deal with the (legitimate in
4543 C though not C++) case of several types with the same name
4544 in different source files. */
4545 if (TYPE_STUB (*type))
4546 {
4547 struct pending *ppt;
4548 int i;
4549 /* Name of the type, without "struct" or "union". */
4550 char *typename = TYPE_TAG_NAME (*type);
4551
4552 if (typename == NULL)
4553 {
4554 complaint (&symfile_complaints, _("need a type name"));
4555 break;
4556 }
4557 for (ppt = file_symbols; ppt; ppt = ppt->next)
4558 {
4559 for (i = 0; i < ppt->nsyms; i++)
4560 {
4561 struct symbol *sym = ppt->symbol[i];
4562
4563 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4564 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4565 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4566 TYPE_CODE (*type))
4567 && (TYPE_INSTANCE_FLAGS (*type) ==
4568 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4569 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4570 typename) == 0)
4571 replace_type (*type, SYMBOL_TYPE (sym));
4572 }
4573 }
4574 }
4575 }
4576 break;
4577
4578 default:
4579 {
4580 complaint (&symfile_complaints,
4581 _("forward-referenced types left unresolved, "
4582 "type code %d."),
4583 TYPE_CODE (*type));
4584 }
4585 break;
4586 }
4587 }
4588
4589 undef_types_length = 0;
4590 }
4591
4592 /* Try to fix all the undefined types we ecountered while processing
4593 this unit. */
4594
4595 void
4596 cleanup_undefined_types (struct objfile *objfile)
4597 {
4598 cleanup_undefined_types_1 ();
4599 cleanup_undefined_types_noname (objfile);
4600 }
4601
4602 /* Scan through all of the global symbols defined in the object file,
4603 assigning values to the debugging symbols that need to be assigned
4604 to. Get these symbols from the minimal symbol table. */
4605
4606 void
4607 scan_file_globals (struct objfile *objfile)
4608 {
4609 int hash;
4610 struct minimal_symbol *msymbol;
4611 struct symbol *sym, *prev;
4612 struct objfile *resolve_objfile;
4613
4614 /* SVR4 based linkers copy referenced global symbols from shared
4615 libraries to the main executable.
4616 If we are scanning the symbols for a shared library, try to resolve
4617 them from the minimal symbols of the main executable first. */
4618
4619 if (symfile_objfile && objfile != symfile_objfile)
4620 resolve_objfile = symfile_objfile;
4621 else
4622 resolve_objfile = objfile;
4623
4624 while (1)
4625 {
4626 /* Avoid expensive loop through all minimal symbols if there are
4627 no unresolved symbols. */
4628 for (hash = 0; hash < HASHSIZE; hash++)
4629 {
4630 if (global_sym_chain[hash])
4631 break;
4632 }
4633 if (hash >= HASHSIZE)
4634 return;
4635
4636 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4637 {
4638 QUIT;
4639
4640 /* Skip static symbols. */
4641 switch (MSYMBOL_TYPE (msymbol))
4642 {
4643 case mst_file_text:
4644 case mst_file_data:
4645 case mst_file_bss:
4646 continue;
4647 default:
4648 break;
4649 }
4650
4651 prev = NULL;
4652
4653 /* Get the hash index and check all the symbols
4654 under that hash index. */
4655
4656 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4657
4658 for (sym = global_sym_chain[hash]; sym;)
4659 {
4660 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4661 SYMBOL_LINKAGE_NAME (sym)) == 0)
4662 {
4663 /* Splice this symbol out of the hash chain and
4664 assign the value we have to it. */
4665 if (prev)
4666 {
4667 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4668 }
4669 else
4670 {
4671 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4672 }
4673
4674 /* Check to see whether we need to fix up a common block. */
4675 /* Note: this code might be executed several times for
4676 the same symbol if there are multiple references. */
4677 if (sym)
4678 {
4679 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4680 {
4681 fix_common_block (sym,
4682 SYMBOL_VALUE_ADDRESS (msymbol));
4683 }
4684 else
4685 {
4686 SYMBOL_VALUE_ADDRESS (sym)
4687 = SYMBOL_VALUE_ADDRESS (msymbol);
4688 }
4689 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4690 }
4691
4692 if (prev)
4693 {
4694 sym = SYMBOL_VALUE_CHAIN (prev);
4695 }
4696 else
4697 {
4698 sym = global_sym_chain[hash];
4699 }
4700 }
4701 else
4702 {
4703 prev = sym;
4704 sym = SYMBOL_VALUE_CHAIN (sym);
4705 }
4706 }
4707 }
4708 if (resolve_objfile == objfile)
4709 break;
4710 resolve_objfile = objfile;
4711 }
4712
4713 /* Change the storage class of any remaining unresolved globals to
4714 LOC_UNRESOLVED and remove them from the chain. */
4715 for (hash = 0; hash < HASHSIZE; hash++)
4716 {
4717 sym = global_sym_chain[hash];
4718 while (sym)
4719 {
4720 prev = sym;
4721 sym = SYMBOL_VALUE_CHAIN (sym);
4722
4723 /* Change the symbol address from the misleading chain value
4724 to address zero. */
4725 SYMBOL_VALUE_ADDRESS (prev) = 0;
4726
4727 /* Complain about unresolved common block symbols. */
4728 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4729 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4730 else
4731 complaint (&symfile_complaints,
4732 _("%s: common block `%s' from "
4733 "global_sym_chain unresolved"),
4734 objfile->name, SYMBOL_PRINT_NAME (prev));
4735 }
4736 }
4737 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4738 }
4739
4740 /* Initialize anything that needs initializing when starting to read
4741 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4742 to a psymtab. */
4743
4744 void
4745 stabsread_init (void)
4746 {
4747 }
4748
4749 /* Initialize anything that needs initializing when a completely new
4750 symbol file is specified (not just adding some symbols from another
4751 file, e.g. a shared library). */
4752
4753 void
4754 stabsread_new_init (void)
4755 {
4756 /* Empty the hash table of global syms looking for values. */
4757 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4758 }
4759
4760 /* Initialize anything that needs initializing at the same time as
4761 start_symtab() is called. */
4762
4763 void
4764 start_stabs (void)
4765 {
4766 global_stabs = NULL; /* AIX COFF */
4767 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4768 n_this_object_header_files = 1;
4769 type_vector_length = 0;
4770 type_vector = (struct type **) 0;
4771
4772 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4773 common_block_name = NULL;
4774 }
4775
4776 /* Call after end_symtab(). */
4777
4778 void
4779 end_stabs (void)
4780 {
4781 if (type_vector)
4782 {
4783 xfree (type_vector);
4784 }
4785 type_vector = 0;
4786 type_vector_length = 0;
4787 previous_stab_code = 0;
4788 }
4789
4790 void
4791 finish_global_stabs (struct objfile *objfile)
4792 {
4793 if (global_stabs)
4794 {
4795 patch_block_stabs (global_symbols, global_stabs, objfile);
4796 xfree (global_stabs);
4797 global_stabs = NULL;
4798 }
4799 }
4800
4801 /* Find the end of the name, delimited by a ':', but don't match
4802 ObjC symbols which look like -[Foo bar::]:bla. */
4803 static char *
4804 find_name_end (char *name)
4805 {
4806 char *s = name;
4807
4808 if (s[0] == '-' || *s == '+')
4809 {
4810 /* Must be an ObjC method symbol. */
4811 if (s[1] != '[')
4812 {
4813 error (_("invalid symbol name \"%s\""), name);
4814 }
4815 s = strchr (s, ']');
4816 if (s == NULL)
4817 {
4818 error (_("invalid symbol name \"%s\""), name);
4819 }
4820 return strchr (s, ':');
4821 }
4822 else
4823 {
4824 return strchr (s, ':');
4825 }
4826 }
4827
4828 /* Initializer for this module. */
4829
4830 void
4831 _initialize_stabsread (void)
4832 {
4833 rs6000_builtin_type_data = register_objfile_data ();
4834
4835 undef_types_allocated = 20;
4836 undef_types_length = 0;
4837 undef_types = (struct type **)
4838 xmalloc (undef_types_allocated * sizeof (struct type *));
4839
4840 noname_undefs_allocated = 20;
4841 noname_undefs_length = 0;
4842 noname_undefs = (struct nat *)
4843 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4844 }
This page took 0.128404 seconds and 4 git commands to generate.