* utils.c, defs.h (putchar_unfiltered, fputc_unfiltered): Make
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include <string.h>
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42
43 #include <ctype.h>
44
45 /* Ask stabsread.h to define the vars it normally declares `extern'. */
46 #define EXTERN /**/
47 #include "stabsread.h" /* Our own declarations */
48 #undef EXTERN
49
50 /* The routines that read and process a complete stabs for a C struct or
51 C++ class pass lists of data member fields and lists of member function
52 fields in an instance of a field_info structure, as defined below.
53 This is part of some reorganization of low level C++ support and is
54 expected to eventually go away... (FIXME) */
55
56 struct field_info
57 {
58 struct nextfield
59 {
60 struct nextfield *next;
61
62 /* This is the raw visibility from the stab. It is not checked
63 for being one of the visibilities we recognize, so code which
64 examines this field better be able to deal. */
65 int visibility;
66
67 struct field field;
68 } *list;
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 } *fnlist;
74 };
75
76 static struct type *
77 dbx_alloc_type PARAMS ((int [2], struct objfile *));
78
79 static long read_huge_number PARAMS ((char **, int, int *));
80
81 static struct type *error_type PARAMS ((char **));
82
83 static void
84 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
85 struct objfile *));
86
87 static void
88 fix_common_block PARAMS ((struct symbol *, int));
89
90 static int
91 read_type_number PARAMS ((char **, int *));
92
93 static struct type *
94 read_range_type PARAMS ((char **, int [2], struct objfile *));
95
96 static struct type *
97 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
98
99 static struct type *
100 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
101
102 static struct type *
103 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
104
105 static struct type *
106 rs6000_builtin_type PARAMS ((int));
107
108 static int
109 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
122 struct objfile *));
123
124 static int
125 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
126
127 static int
128 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
129 struct objfile *));
130
131 static struct type *
132 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
133
134 static struct type *
135 read_array_type PARAMS ((char **, struct type *, struct objfile *));
136
137 static struct type **
138 read_args PARAMS ((char **, int, struct objfile *));
139
140 static int
141 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
142 struct objfile *));
143
144 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
145 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
146
147 /* Define this as 1 if a pcc declaration of a char or short argument
148 gives the correct address. Otherwise assume pcc gives the
149 address of the corresponding int, which is not the same on a
150 big-endian machine. */
151
152 #ifndef BELIEVE_PCC_PROMOTION
153 #define BELIEVE_PCC_PROMOTION 0
154 #endif
155
156 struct complaint invalid_cpp_abbrev_complaint =
157 {"invalid C++ abbreviation `%s'", 0, 0};
158
159 struct complaint invalid_cpp_type_complaint =
160 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
161
162 struct complaint member_fn_complaint =
163 {"member function type missing, got '%c'", 0, 0};
164
165 struct complaint const_vol_complaint =
166 {"const/volatile indicator missing, got '%c'", 0, 0};
167
168 struct complaint error_type_complaint =
169 {"debug info mismatch between compiler and debugger", 0, 0};
170
171 struct complaint invalid_member_complaint =
172 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
173
174 struct complaint range_type_base_complaint =
175 {"base type %d of range type is not defined", 0, 0};
176
177 struct complaint reg_value_complaint =
178 {"register number too large in symbol %s", 0, 0};
179
180 struct complaint vtbl_notfound_complaint =
181 {"virtual function table pointer not found when defining class `%s'", 0, 0};
182
183 struct complaint unrecognized_cplus_name_complaint =
184 {"Unknown C++ symbol name `%s'", 0, 0};
185
186 struct complaint rs6000_builtin_complaint =
187 {"Unknown builtin type %d", 0, 0};
188
189 struct complaint unresolved_sym_chain_complaint =
190 {"%s: `%s' from global_sym_chain unresolved", 0, 0};
191
192 struct complaint stabs_general_complaint =
193 {"%s", 0, 0};
194
195 /* Make a list of forward references which haven't been defined. */
196
197 static struct type **undef_types;
198 static int undef_types_allocated;
199 static int undef_types_length;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (); \
206 } while (0)
207 \f
208 /* FIXME: These probably should be our own types (like rs6000_builtin_type
209 has its own types) rather than builtin_type_*. */
210 static struct type **os9k_type_vector[] = {
211 0,
212 &builtin_type_int,
213 &builtin_type_char,
214 &builtin_type_long,
215 &builtin_type_short,
216 &builtin_type_unsigned_char,
217 &builtin_type_unsigned_short,
218 &builtin_type_unsigned_long,
219 &builtin_type_unsigned_int,
220 &builtin_type_float,
221 &builtin_type_double,
222 &builtin_type_void,
223 &builtin_type_long_double
224 };
225
226 static void os9k_init_type_vector PARAMS ((struct type **));
227
228 static void
229 os9k_init_type_vector(tv)
230 struct type **tv;
231 {
232 int i;
233 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
234 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
235 }
236
237 /* Look up a dbx type-number pair. Return the address of the slot
238 where the type for that number-pair is stored.
239 The number-pair is in TYPENUMS.
240
241 This can be used for finding the type associated with that pair
242 or for associating a new type with the pair. */
243
244 struct type **
245 dbx_lookup_type (typenums)
246 int typenums[2];
247 {
248 register int filenum = typenums[0];
249 register int index = typenums[1];
250 unsigned old_len;
251 register int real_filenum;
252 register struct header_file *f;
253 int f_orig_length;
254
255 if (filenum == -1) /* -1,-1 is for temporary types. */
256 return 0;
257
258 if (filenum < 0 || filenum >= n_this_object_header_files)
259 {
260 static struct complaint msg = {"\
261 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
262 0, 0};
263 complain (&msg, filenum, index, symnum);
264 goto error_return;
265 }
266
267 if (filenum == 0)
268 {
269 if (index < 0)
270 {
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
277
278 temp_type = rs6000_builtin_type(index);
279 return &temp_type;
280 }
281
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
285 {
286 old_len = type_vector_length;
287 if (old_len == 0)
288 {
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = (struct type **)
291 malloc (type_vector_length * sizeof (struct type *));
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302
303 if (os9k_stabs)
304 /* Deal with OS9000 fundamental types. */
305 os9k_init_type_vector (type_vector);
306 }
307 return (&type_vector[index]);
308 }
309 else
310 {
311 real_filenum = this_object_header_files[filenum];
312
313 if (real_filenum >= n_header_files)
314 {
315 struct type *temp_type;
316 struct type **temp_type_p;
317
318 warning ("GDB internal error: bad real_filenum");
319
320 error_return:
321 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
322 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
323 *temp_type_p = temp_type;
324 return temp_type_p;
325 }
326
327 f = &header_files[real_filenum];
328
329 f_orig_length = f->length;
330 if (index >= f_orig_length)
331 {
332 while (index >= f->length)
333 {
334 f->length *= 2;
335 }
336 f->vector = (struct type **)
337 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
338 memset (&f->vector[f_orig_length], 0,
339 (f->length - f_orig_length) * sizeof (struct type *));
340 }
341 return (&f->vector[index]);
342 }
343 }
344
345 /* Make sure there is a type allocated for type numbers TYPENUMS
346 and return the type object.
347 This can create an empty (zeroed) type object.
348 TYPENUMS may be (-1, -1) to return a new type object that is not
349 put into the type vector, and so may not be referred to by number. */
350
351 static struct type *
352 dbx_alloc_type (typenums, objfile)
353 int typenums[2];
354 struct objfile *objfile;
355 {
356 register struct type **type_addr;
357
358 if (typenums[0] == -1)
359 {
360 return (alloc_type (objfile));
361 }
362
363 type_addr = dbx_lookup_type (typenums);
364
365 /* If we are referring to a type not known at all yet,
366 allocate an empty type for it.
367 We will fill it in later if we find out how. */
368 if (*type_addr == 0)
369 {
370 *type_addr = alloc_type (objfile);
371 }
372
373 return (*type_addr);
374 }
375
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
378
379 static void
380 patch_block_stabs (symbols, stabs, objfile)
381 struct pending *symbols;
382 struct pending_stabs *stabs;
383 struct objfile *objfile;
384 {
385 int ii;
386 char *name;
387 char *pp;
388 struct symbol *sym;
389
390 if (stabs)
391 {
392
393 /* for all the stab entries, find their corresponding symbols and
394 patch their types! */
395
396 for (ii = 0; ii < stabs->count; ++ii)
397 {
398 name = stabs->stab[ii];
399 pp = (char*) strchr (name, ':');
400 while (pp[1] == ':')
401 {
402 pp += 2;
403 pp = (char *)strchr(pp, ':');
404 }
405 sym = find_symbol_in_list (symbols, name, pp-name);
406 if (!sym)
407 {
408 /* FIXME-maybe: it would be nice if we noticed whether
409 the variable was defined *anywhere*, not just whether
410 it is defined in this compilation unit. But neither
411 xlc or GCC seem to need such a definition, and until
412 we do psymtabs (so that the minimal symbols from all
413 compilation units are available now), I'm not sure
414 how to get the information. */
415
416 /* On xcoff, if a global is defined and never referenced,
417 ld will remove it from the executable. There is then
418 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
419 sym = (struct symbol *)
420 obstack_alloc (&objfile->symbol_obstack,
421 sizeof (struct symbol));
422
423 memset (sym, 0, sizeof (struct symbol));
424 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
425 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
426 SYMBOL_NAME (sym) =
427 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
428 pp += 2;
429 if (*(pp-1) == 'F' || *(pp-1) == 'f')
430 {
431 /* I don't think the linker does this with functions,
432 so as far as I know this is never executed.
433 But it doesn't hurt to check. */
434 SYMBOL_TYPE (sym) =
435 lookup_function_type (read_type (&pp, objfile));
436 }
437 else
438 {
439 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
440 }
441 add_symbol_to_list (sym, &global_symbols);
442 }
443 else
444 {
445 pp += 2;
446 if (*(pp-1) == 'F' || *(pp-1) == 'f')
447 {
448 SYMBOL_TYPE (sym) =
449 lookup_function_type (read_type (&pp, objfile));
450 }
451 else
452 {
453 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
454 }
455 }
456 }
457 }
458 }
459
460 \f
461 /* Read a number by which a type is referred to in dbx data,
462 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
463 Just a single number N is equivalent to (0,N).
464 Return the two numbers by storing them in the vector TYPENUMS.
465 TYPENUMS will then be used as an argument to dbx_lookup_type.
466
467 Returns 0 for success, -1 for error. */
468
469 static int
470 read_type_number (pp, typenums)
471 register char **pp;
472 register int *typenums;
473 {
474 int nbits;
475 if (**pp == '(')
476 {
477 (*pp)++;
478 typenums[0] = read_huge_number (pp, ',', &nbits);
479 if (nbits != 0) return -1;
480 typenums[1] = read_huge_number (pp, ')', &nbits);
481 if (nbits != 0) return -1;
482 }
483 else
484 {
485 typenums[0] = 0;
486 typenums[1] = read_huge_number (pp, 0, &nbits);
487 if (nbits != 0) return -1;
488 }
489 return 0;
490 }
491
492 \f
493 /* To handle GNU C++ typename abbreviation, we need to be able to
494 fill in a type's name as soon as space for that type is allocated.
495 `type_synonym_name' is the name of the type being allocated.
496 It is cleared as soon as it is used (lest all allocated types
497 get this name). */
498
499 static char *type_synonym_name;
500
501 #if !defined (REG_STRUCT_HAS_ADDR)
502 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
503 #endif
504
505 /* ARGSUSED */
506 struct symbol *
507 define_symbol (valu, string, desc, type, objfile)
508 CORE_ADDR valu;
509 char *string;
510 int desc;
511 int type;
512 struct objfile *objfile;
513 {
514 register struct symbol *sym;
515 char *p = (char *) strchr (string, ':');
516 int deftype;
517 int synonym = 0;
518 register int i;
519
520 /* We would like to eliminate nameless symbols, but keep their types.
521 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
522 to type 2, but, should not create a symbol to address that type. Since
523 the symbol will be nameless, there is no way any user can refer to it. */
524
525 int nameless;
526
527 /* Ignore syms with empty names. */
528 if (string[0] == 0)
529 return 0;
530
531 /* Ignore old-style symbols from cc -go */
532 if (p == 0)
533 return 0;
534
535 while (p[1] == ':')
536 {
537 p += 2;
538 p = strchr(p, ':');
539 }
540
541 /* If a nameless stab entry, all we need is the type, not the symbol.
542 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
543 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
544
545 sym = (struct symbol *)
546 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
547 memset (sym, 0, sizeof (struct symbol));
548
549 switch (type & N_TYPE)
550 {
551 case N_TEXT:
552 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
553 break;
554 case N_DATA:
555 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
556 break;
557 case N_BSS:
558 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
559 break;
560 }
561
562 if (processing_gcc_compilation)
563 {
564 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
565 number of bytes occupied by a type or object, which we ignore. */
566 SYMBOL_LINE(sym) = desc;
567 }
568 else
569 {
570 SYMBOL_LINE(sym) = 0; /* unknown */
571 }
572
573 if (string[0] == CPLUS_MARKER)
574 {
575 /* Special GNU C++ names. */
576 switch (string[1])
577 {
578 case 't':
579 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
580 &objfile -> symbol_obstack);
581 break;
582
583 case 'v': /* $vtbl_ptr_type */
584 /* Was: SYMBOL_NAME (sym) = "vptr"; */
585 goto normal;
586
587 case 'e':
588 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
589 &objfile -> symbol_obstack);
590 break;
591
592 case '_':
593 /* This was an anonymous type that was never fixed up. */
594 goto normal;
595
596 default:
597 complain (&unrecognized_cplus_name_complaint, string);
598 goto normal; /* Do *something* with it */
599 }
600 }
601 else
602 {
603 normal:
604 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
605 SYMBOL_NAME (sym) = (char *)
606 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
607 /* Open-coded memcpy--saves function call time. */
608 /* FIXME: Does it really? Try replacing with simple strcpy and
609 try it on an executable with a large symbol table. */
610 /* FIXME: considering that gcc can open code memcpy anyway, I
611 doubt it. xoxorich. */
612 {
613 register char *p1 = string;
614 register char *p2 = SYMBOL_NAME (sym);
615 while (p1 != p)
616 {
617 *p2++ = *p1++;
618 }
619 *p2++ = '\0';
620 }
621
622 /* If this symbol is from a C++ compilation, then attempt to cache the
623 demangled form for future reference. This is a typical time versus
624 space tradeoff, that was decided in favor of time because it sped up
625 C++ symbol lookups by a factor of about 20. */
626
627 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
628 }
629 p++;
630
631 /* Determine the type of name being defined. */
632 #if 0
633 /* Getting GDB to correctly skip the symbol on an undefined symbol
634 descriptor and not ever dump core is a very dodgy proposition if
635 we do things this way. I say the acorn RISC machine can just
636 fix their compiler. */
637 /* The Acorn RISC machine's compiler can put out locals that don't
638 start with "234=" or "(3,4)=", so assume anything other than the
639 deftypes we know how to handle is a local. */
640 if (!strchr ("cfFGpPrStTvVXCR", *p))
641 #else
642 if (isdigit (*p) || *p == '(' || *p == '-')
643 #endif
644 deftype = 'l';
645 else
646 deftype = *p++;
647
648 switch (deftype)
649 {
650 case 'c':
651 /* c is a special case, not followed by a type-number.
652 SYMBOL:c=iVALUE for an integer constant symbol.
653 SYMBOL:c=rVALUE for a floating constant symbol.
654 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
655 e.g. "b:c=e6,0" for "const b = blob1"
656 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
657 if (*p != '=')
658 {
659 SYMBOL_CLASS (sym) = LOC_CONST;
660 SYMBOL_TYPE (sym) = error_type (&p);
661 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
662 add_symbol_to_list (sym, &file_symbols);
663 return sym;
664 }
665 ++p;
666 switch (*p++)
667 {
668 case 'r':
669 {
670 double d = atof (p);
671 char *dbl_valu;
672
673 /* FIXME-if-picky-about-floating-accuracy: Should be using
674 target arithmetic to get the value. real.c in GCC
675 probably has the necessary code. */
676
677 /* FIXME: lookup_fundamental_type is a hack. We should be
678 creating a type especially for the type of float constants.
679 Problem is, what type should it be?
680
681 Also, what should the name of this type be? Should we
682 be using 'S' constants (see stabs.texinfo) instead? */
683
684 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
685 FT_DBL_PREC_FLOAT);
686 dbl_valu = (char *)
687 obstack_alloc (&objfile -> symbol_obstack,
688 TYPE_LENGTH (SYMBOL_TYPE (sym)));
689 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
690 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
691 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
692 }
693 break;
694 case 'i':
695 {
696 /* Defining integer constants this way is kind of silly,
697 since 'e' constants allows the compiler to give not
698 only the value, but the type as well. C has at least
699 int, long, unsigned int, and long long as constant
700 types; other languages probably should have at least
701 unsigned as well as signed constants. */
702
703 /* We just need one int constant type for all objfiles.
704 It doesn't depend on languages or anything (arguably its
705 name should be a language-specific name for a type of
706 that size, but I'm inclined to say that if the compiler
707 wants a nice name for the type, it can use 'e'). */
708 static struct type *int_const_type;
709
710 /* Yes, this is as long as a *host* int. That is because we
711 use atoi. */
712 if (int_const_type == NULL)
713 int_const_type =
714 init_type (TYPE_CODE_INT,
715 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
716 "integer constant",
717 (struct objfile *)NULL);
718 SYMBOL_TYPE (sym) = int_const_type;
719 SYMBOL_VALUE (sym) = atoi (p);
720 SYMBOL_CLASS (sym) = LOC_CONST;
721 }
722 break;
723 case 'e':
724 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
725 can be represented as integral.
726 e.g. "b:c=e6,0" for "const b = blob1"
727 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
728 {
729 SYMBOL_CLASS (sym) = LOC_CONST;
730 SYMBOL_TYPE (sym) = read_type (&p, objfile);
731
732 if (*p != ',')
733 {
734 SYMBOL_TYPE (sym) = error_type (&p);
735 break;
736 }
737 ++p;
738
739 /* If the value is too big to fit in an int (perhaps because
740 it is unsigned), or something like that, we silently get
741 a bogus value. The type and everything else about it is
742 correct. Ideally, we should be using whatever we have
743 available for parsing unsigned and long long values,
744 however. */
745 SYMBOL_VALUE (sym) = atoi (p);
746 }
747 break;
748 default:
749 {
750 SYMBOL_CLASS (sym) = LOC_CONST;
751 SYMBOL_TYPE (sym) = error_type (&p);
752 }
753 }
754 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
755 add_symbol_to_list (sym, &file_symbols);
756 return sym;
757
758 case 'C':
759 /* The name of a caught exception. */
760 SYMBOL_TYPE (sym) = read_type (&p, objfile);
761 SYMBOL_CLASS (sym) = LOC_LABEL;
762 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
763 SYMBOL_VALUE_ADDRESS (sym) = valu;
764 add_symbol_to_list (sym, &local_symbols);
765 break;
766
767 case 'f':
768 /* A static function definition. */
769 SYMBOL_TYPE (sym) = read_type (&p, objfile);
770 SYMBOL_CLASS (sym) = LOC_BLOCK;
771 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
772 add_symbol_to_list (sym, &file_symbols);
773 /* fall into process_function_types. */
774
775 process_function_types:
776 /* Function result types are described as the result type in stabs.
777 We need to convert this to the function-returning-type-X type
778 in GDB. E.g. "int" is converted to "function returning int". */
779 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
780 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
781 /* fall into process_prototype_types */
782
783 process_prototype_types:
784 /* Sun acc puts declared types of arguments here. We don't care
785 about their actual types (FIXME -- we should remember the whole
786 function prototype), but the list may define some new types
787 that we have to remember, so we must scan it now. */
788 while (*p == ';') {
789 p++;
790 read_type (&p, objfile);
791 }
792 break;
793
794 case 'F':
795 /* A global function definition. */
796 SYMBOL_TYPE (sym) = read_type (&p, objfile);
797 SYMBOL_CLASS (sym) = LOC_BLOCK;
798 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
799 add_symbol_to_list (sym, &global_symbols);
800 goto process_function_types;
801
802 case 'G':
803 /* For a class G (global) symbol, it appears that the
804 value is not correct. It is necessary to search for the
805 corresponding linker definition to find the value.
806 These definitions appear at the end of the namelist. */
807 SYMBOL_TYPE (sym) = read_type (&p, objfile);
808 i = hashname (SYMBOL_NAME (sym));
809 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
810 global_sym_chain[i] = sym;
811 SYMBOL_CLASS (sym) = LOC_STATIC;
812 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
813 add_symbol_to_list (sym, &global_symbols);
814 break;
815
816 /* This case is faked by a conditional above,
817 when there is no code letter in the dbx data.
818 Dbx data never actually contains 'l'. */
819 case 's':
820 case 'l':
821 SYMBOL_TYPE (sym) = read_type (&p, objfile);
822 SYMBOL_CLASS (sym) = LOC_LOCAL;
823 SYMBOL_VALUE (sym) = valu;
824 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
825 add_symbol_to_list (sym, &local_symbols);
826 break;
827
828 case 'p':
829 if (*p == 'F')
830 /* pF is a two-letter code that means a function parameter in Fortran.
831 The type-number specifies the type of the return value.
832 Translate it into a pointer-to-function type. */
833 {
834 p++;
835 SYMBOL_TYPE (sym)
836 = lookup_pointer_type
837 (lookup_function_type (read_type (&p, objfile)));
838 }
839 else
840 SYMBOL_TYPE (sym) = read_type (&p, objfile);
841
842 /* Normally this is a parameter, a LOC_ARG. On the i960, it
843 can also be a LOC_LOCAL_ARG depending on symbol type. */
844 #ifndef DBX_PARM_SYMBOL_CLASS
845 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
846 #endif
847
848 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
849 SYMBOL_VALUE (sym) = valu;
850 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
851 add_symbol_to_list (sym, &local_symbols);
852
853 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
854 {
855 /* On little-endian machines, this crud is never necessary,
856 and, if the extra bytes contain garbage, is harmful. */
857 break;
858 }
859
860 /* If it's gcc-compiled, if it says `short', believe it. */
861 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
862 break;
863
864 #if !BELIEVE_PCC_PROMOTION
865 {
866 /* This is the signed type which arguments get promoted to. */
867 static struct type *pcc_promotion_type;
868 /* This is the unsigned type which arguments get promoted to. */
869 static struct type *pcc_unsigned_promotion_type;
870
871 /* Call it "int" because this is mainly C lossage. */
872 if (pcc_promotion_type == NULL)
873 pcc_promotion_type =
874 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
875 0, "int", NULL);
876
877 if (pcc_unsigned_promotion_type == NULL)
878 pcc_unsigned_promotion_type =
879 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
880 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
881
882 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
883 /* This macro is defined on machines (e.g. sparc) where
884 we should believe the type of a PCC 'short' argument,
885 but shouldn't believe the address (the address is
886 the address of the corresponding int).
887
888 My guess is that this correction, as opposed to changing
889 the parameter to an 'int' (as done below, for PCC
890 on most machines), is the right thing to do
891 on all machines, but I don't want to risk breaking
892 something that already works. On most PCC machines,
893 the sparc problem doesn't come up because the calling
894 function has to zero the top bytes (not knowing whether
895 the called function wants an int or a short), so there
896 is little practical difference between an int and a short
897 (except perhaps what happens when the GDB user types
898 "print short_arg = 0x10000;").
899
900 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
901 actually produces the correct address (we don't need to fix it
902 up). I made this code adapt so that it will offset the symbol
903 if it was pointing at an int-aligned location and not
904 otherwise. This way you can use the same gdb for 4.0.x and
905 4.1 systems.
906
907 If the parameter is shorter than an int, and is integral
908 (e.g. char, short, or unsigned equivalent), and is claimed to
909 be passed on an integer boundary, don't believe it! Offset the
910 parameter's address to the tail-end of that integer. */
911
912 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
913 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
914 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
915 {
916 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
917 - TYPE_LENGTH (SYMBOL_TYPE (sym));
918 }
919 break;
920
921 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
922
923 /* If PCC says a parameter is a short or a char,
924 it is really an int. */
925 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
926 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
927 {
928 SYMBOL_TYPE (sym) =
929 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
930 ? pcc_unsigned_promotion_type
931 : pcc_promotion_type;
932 }
933 break;
934
935 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
936 }
937 #endif /* !BELIEVE_PCC_PROMOTION. */
938
939 case 'P':
940 /* acc seems to use P to delare the prototypes of functions that
941 are referenced by this file. gdb is not prepared to deal
942 with this extra information. FIXME, it ought to. */
943 if (type == N_FUN)
944 {
945 read_type (&p, objfile);
946 goto process_prototype_types;
947 }
948 /*FALLTHROUGH*/
949
950 case 'R':
951 /* Parameter which is in a register. */
952 SYMBOL_TYPE (sym) = read_type (&p, objfile);
953 SYMBOL_CLASS (sym) = LOC_REGPARM;
954 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
955 if (SYMBOL_VALUE (sym) >= NUM_REGS)
956 {
957 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
958 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
959 }
960 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
961 add_symbol_to_list (sym, &local_symbols);
962 break;
963
964 case 'r':
965 /* Register variable (either global or local). */
966 SYMBOL_TYPE (sym) = read_type (&p, objfile);
967 SYMBOL_CLASS (sym) = LOC_REGISTER;
968 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
969 if (SYMBOL_VALUE (sym) >= NUM_REGS)
970 {
971 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
972 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
973 }
974 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
975 if (within_function)
976 {
977 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
978 name to represent an argument passed in a register.
979 GCC uses 'P' for the same case. So if we find such a symbol pair
980 we combine it into one 'P' symbol. For Sun cc we need to do this
981 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
982 the 'p' symbol even if it never saves the argument onto the stack.
983
984 On most machines, we want to preserve both symbols, so that
985 we can still get information about what is going on with the
986 stack (VAX for computing args_printed, using stack slots instead
987 of saved registers in backtraces, etc.).
988
989 Note that this code illegally combines
990 main(argc) struct foo argc; { register struct foo argc; }
991 but this case is considered pathological and causes a warning
992 from a decent compiler. */
993
994 if (local_symbols
995 && local_symbols->nsyms > 0
996 #ifndef USE_REGISTER_NOT_ARG
997 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
998 SYMBOL_TYPE (sym))
999 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1000 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1001 #endif
1002 )
1003 {
1004 struct symbol *prev_sym;
1005 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1006 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1007 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1008 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1009 {
1010 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1011 /* Use the type from the LOC_REGISTER; that is the type
1012 that is actually in that register. */
1013 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1014 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1015 sym = prev_sym;
1016 break;
1017 }
1018 }
1019 add_symbol_to_list (sym, &local_symbols);
1020 }
1021 else
1022 add_symbol_to_list (sym, &file_symbols);
1023 break;
1024
1025 case 'S':
1026 /* Static symbol at top level of file */
1027 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1028 SYMBOL_CLASS (sym) = LOC_STATIC;
1029 SYMBOL_VALUE_ADDRESS (sym) = valu;
1030 #ifdef STATIC_TRANSFORM_NAME
1031 if (SYMBOL_NAME (sym)[0] == '$')
1032 {
1033 struct minimal_symbol *msym;
1034 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1035 if (msym != NULL)
1036 {
1037 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1038 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1039 }
1040 }
1041 #endif
1042 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1043 add_symbol_to_list (sym, &file_symbols);
1044 break;
1045
1046 case 't':
1047 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1048
1049 /* For a nameless type, we don't want a create a symbol, thus we
1050 did not use `sym'. Return without further processing. */
1051 if (nameless) return NULL;
1052
1053 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1054 SYMBOL_VALUE (sym) = valu;
1055 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1056 /* C++ vagaries: we may have a type which is derived from
1057 a base type which did not have its name defined when the
1058 derived class was output. We fill in the derived class's
1059 base part member's name here in that case. */
1060 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1061 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1062 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1063 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1064 {
1065 int j;
1066 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1067 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1068 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1069 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1070 }
1071
1072 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1073 {
1074 /* gcc-2.6 or later (when using -fvtable-thunks)
1075 emits a unique named type for a vtable entry.
1076 Some gdb code depends on that specific name. */
1077 extern const char vtbl_ptr_name[];
1078
1079 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1080 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1081 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1082 {
1083 /* If we are giving a name to a type such as "pointer to
1084 foo" or "function returning foo", we better not set
1085 the TYPE_NAME. If the program contains "typedef char
1086 *caddr_t;", we don't want all variables of type char
1087 * to print as caddr_t. This is not just a
1088 consequence of GDB's type management; PCC and GCC (at
1089 least through version 2.4) both output variables of
1090 either type char * or caddr_t with the type number
1091 defined in the 't' symbol for caddr_t. If a future
1092 compiler cleans this up it GDB is not ready for it
1093 yet, but if it becomes ready we somehow need to
1094 disable this check (without breaking the PCC/GCC2.4
1095 case).
1096
1097 Sigh.
1098
1099 Fortunately, this check seems not to be necessary
1100 for anything except pointers or functions. */
1101 }
1102 else
1103 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1104 }
1105
1106 add_symbol_to_list (sym, &file_symbols);
1107 break;
1108
1109 case 'T':
1110 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1111 by 't' which means we are typedef'ing it as well. */
1112 synonym = *p == 't';
1113
1114 if (synonym)
1115 {
1116 p++;
1117 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1118 strlen (SYMBOL_NAME (sym)),
1119 &objfile -> symbol_obstack);
1120 }
1121 /* The semantics of C++ state that "struct foo { ... }" also defines
1122 a typedef for "foo". Unfortunately, cfront never makes the typedef
1123 when translating C++ into C. We make the typedef here so that
1124 "ptype foo" works as expected for cfront translated code. */
1125 else if (current_subfile->language == language_cplus)
1126 {
1127 synonym = 1;
1128 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1129 strlen (SYMBOL_NAME (sym)),
1130 &objfile -> symbol_obstack);
1131 }
1132
1133 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1134
1135 /* For a nameless type, we don't want a create a symbol, thus we
1136 did not use `sym'. Return without further processing. */
1137 if (nameless) return NULL;
1138
1139 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1140 SYMBOL_VALUE (sym) = valu;
1141 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1142 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1143 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1144 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1145 add_symbol_to_list (sym, &file_symbols);
1146
1147 if (synonym)
1148 {
1149 /* Clone the sym and then modify it. */
1150 register struct symbol *typedef_sym = (struct symbol *)
1151 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1152 *typedef_sym = *sym;
1153 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1154 SYMBOL_VALUE (typedef_sym) = valu;
1155 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1156 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1157 TYPE_NAME (SYMBOL_TYPE (sym))
1158 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1159 add_symbol_to_list (typedef_sym, &file_symbols);
1160 }
1161 break;
1162
1163 case 'V':
1164 /* Static symbol of local scope */
1165 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1166 SYMBOL_CLASS (sym) = LOC_STATIC;
1167 SYMBOL_VALUE_ADDRESS (sym) = valu;
1168 #ifdef STATIC_TRANSFORM_NAME
1169 if (SYMBOL_NAME (sym)[0] == '$')
1170 {
1171 struct minimal_symbol *msym;
1172 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1173 if (msym != NULL)
1174 {
1175 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1176 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1177 }
1178 }
1179 #endif
1180 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1181 if (os9k_stabs)
1182 add_symbol_to_list (sym, &global_symbols);
1183 else
1184 add_symbol_to_list (sym, &local_symbols);
1185 break;
1186
1187 case 'v':
1188 /* Reference parameter */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1191 SYMBOL_VALUE (sym) = valu;
1192 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1193 add_symbol_to_list (sym, &local_symbols);
1194 break;
1195
1196 case 'a':
1197 /* Reference parameter which is in a register. */
1198 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1199 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1200 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1201 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1202 {
1203 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
1204 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1205 }
1206 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1207 add_symbol_to_list (sym, &local_symbols);
1208 break;
1209
1210 case 'X':
1211 /* This is used by Sun FORTRAN for "function result value".
1212 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1213 that Pascal uses it too, but when I tried it Pascal used
1214 "x:3" (local symbol) instead. */
1215 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1216 SYMBOL_CLASS (sym) = LOC_LOCAL;
1217 SYMBOL_VALUE (sym) = valu;
1218 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1219 add_symbol_to_list (sym, &local_symbols);
1220 break;
1221
1222 default:
1223 SYMBOL_TYPE (sym) = error_type (&p);
1224 SYMBOL_CLASS (sym) = LOC_CONST;
1225 SYMBOL_VALUE (sym) = 0;
1226 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1227 add_symbol_to_list (sym, &file_symbols);
1228 break;
1229 }
1230
1231 /* When passing structures to a function, some systems sometimes pass
1232 the address in a register, not the structure itself.
1233
1234 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1235 to LOC_REGPARM_ADDR for structures and unions. */
1236
1237 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1238 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1239 SYMBOL_TYPE (sym))
1240 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1241 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1242 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1243
1244 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1245 subsequent arguments on the sparc, for example). */
1246 if (SYMBOL_CLASS (sym) == LOC_ARG
1247 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1248 SYMBOL_TYPE (sym))
1249 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1250 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1251 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1252
1253 return sym;
1254 }
1255
1256 \f
1257 /* Skip rest of this symbol and return an error type.
1258
1259 General notes on error recovery: error_type always skips to the
1260 end of the symbol (modulo cretinous dbx symbol name continuation).
1261 Thus code like this:
1262
1263 if (*(*pp)++ != ';')
1264 return error_type (pp);
1265
1266 is wrong because if *pp starts out pointing at '\0' (typically as the
1267 result of an earlier error), it will be incremented to point to the
1268 start of the next symbol, which might produce strange results, at least
1269 if you run off the end of the string table. Instead use
1270
1271 if (**pp != ';')
1272 return error_type (pp);
1273 ++*pp;
1274
1275 or
1276
1277 if (**pp != ';')
1278 foo = error_type (pp);
1279 else
1280 ++*pp;
1281
1282 And in case it isn't obvious, the point of all this hair is so the compiler
1283 can define new types and new syntaxes, and old versions of the
1284 debugger will be able to read the new symbol tables. */
1285
1286 static struct type *
1287 error_type (pp)
1288 char **pp;
1289 {
1290 complain (&error_type_complaint);
1291 while (1)
1292 {
1293 /* Skip to end of symbol. */
1294 while (**pp != '\0')
1295 {
1296 (*pp)++;
1297 }
1298
1299 /* Check for and handle cretinous dbx symbol name continuation! */
1300 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1301 {
1302 *pp = next_symbol_text ();
1303 }
1304 else
1305 {
1306 break;
1307 }
1308 }
1309 return (builtin_type_error);
1310 }
1311
1312 \f
1313 /* Read type information or a type definition; return the type. Even
1314 though this routine accepts either type information or a type
1315 definition, the distinction is relevant--some parts of stabsread.c
1316 assume that type information starts with a digit, '-', or '(' in
1317 deciding whether to call read_type. */
1318
1319 struct type *
1320 read_type (pp, objfile)
1321 register char **pp;
1322 struct objfile *objfile;
1323 {
1324 register struct type *type = 0;
1325 struct type *type1;
1326 int typenums[2];
1327 int xtypenums[2];
1328 char type_descriptor;
1329
1330 /* Size in bits of type if specified by a type attribute, or -1 if
1331 there is no size attribute. */
1332 int type_size = -1;
1333
1334 /* Used to distinguish string and bitstring from char-array and set. */
1335 int is_string = 0;
1336
1337 /* Read type number if present. The type number may be omitted.
1338 for instance in a two-dimensional array declared with type
1339 "ar1;1;10;ar1;1;10;4". */
1340 if ((**pp >= '0' && **pp <= '9')
1341 || **pp == '('
1342 || **pp == '-')
1343 {
1344 if (read_type_number (pp, typenums) != 0)
1345 return error_type (pp);
1346
1347 /* Type is not being defined here. Either it already exists,
1348 or this is a forward reference to it. dbx_alloc_type handles
1349 both cases. */
1350 if (**pp != '=')
1351 return dbx_alloc_type (typenums, objfile);
1352
1353 /* Type is being defined here. */
1354 /* Skip the '='. */
1355 ++(*pp);
1356
1357 while (**pp == '@')
1358 {
1359 char *p = *pp + 1;
1360 /* It might be a type attribute or a member type. */
1361 if (isdigit (*p) || *p == '(' || *p == '-')
1362 /* Member type. */
1363 break;
1364 else
1365 {
1366 /* Type attributes. */
1367 char *attr = p;
1368
1369 /* Skip to the semicolon. */
1370 while (*p != ';' && *p != '\0')
1371 ++p;
1372 *pp = p;
1373 if (*p == '\0')
1374 return error_type (pp);
1375 else
1376 /* Skip the semicolon. */
1377 ++*pp;
1378
1379 switch (*attr)
1380 {
1381 case 's':
1382 type_size = atoi (attr + 1);
1383 if (type_size <= 0)
1384 type_size = -1;
1385 break;
1386
1387 case 'S':
1388 is_string = 1;
1389 break;
1390
1391 default:
1392 /* Ignore unrecognized type attributes, so future compilers
1393 can invent new ones. */
1394 break;
1395 }
1396 }
1397 }
1398 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1399 ++(*pp);
1400 }
1401 else
1402 {
1403 /* 'typenums=' not present, type is anonymous. Read and return
1404 the definition, but don't put it in the type vector. */
1405 typenums[0] = typenums[1] = -1;
1406 (*pp)++;
1407 }
1408
1409 type_descriptor = (*pp)[-1];
1410 switch (type_descriptor)
1411 {
1412 case 'x':
1413 {
1414 enum type_code code;
1415
1416 /* Used to index through file_symbols. */
1417 struct pending *ppt;
1418 int i;
1419
1420 /* Name including "struct", etc. */
1421 char *type_name;
1422
1423 {
1424 char *from, *to, *p, *q1, *q2;
1425
1426 /* Set the type code according to the following letter. */
1427 switch ((*pp)[0])
1428 {
1429 case 's':
1430 code = TYPE_CODE_STRUCT;
1431 break;
1432 case 'u':
1433 code = TYPE_CODE_UNION;
1434 break;
1435 case 'e':
1436 code = TYPE_CODE_ENUM;
1437 break;
1438 default:
1439 {
1440 /* Complain and keep going, so compilers can invent new
1441 cross-reference types. */
1442 static struct complaint msg =
1443 {"Unrecognized cross-reference type `%c'", 0, 0};
1444 complain (&msg, (*pp)[0]);
1445 code = TYPE_CODE_STRUCT;
1446 break;
1447 }
1448 }
1449
1450 q1 = strchr(*pp, '<');
1451 p = strchr(*pp, ':');
1452 if (p == NULL)
1453 return error_type (pp);
1454 while (q1 && p > q1 && p[1] == ':')
1455 {
1456 q2 = strchr(q1, '>');
1457 if (!q2 || q2 < p)
1458 break;
1459 p += 2;
1460 p = strchr(p, ':');
1461 if (p == NULL)
1462 return error_type (pp);
1463 }
1464 to = type_name =
1465 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1466
1467 /* Copy the name. */
1468 from = *pp + 1;
1469 while (from < p)
1470 *to++ = *from++;
1471 *to = '\0';
1472
1473 /* Set the pointer ahead of the name which we just read, and
1474 the colon. */
1475 *pp = from + 1;
1476 }
1477
1478 /* Now check to see whether the type has already been
1479 declared. This was written for arrays of cross-referenced
1480 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1481 sure it is not necessary anymore. But it might be a good
1482 idea, to save a little memory. */
1483
1484 for (ppt = file_symbols; ppt; ppt = ppt->next)
1485 for (i = 0; i < ppt->nsyms; i++)
1486 {
1487 struct symbol *sym = ppt->symbol[i];
1488
1489 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1490 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1491 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1492 && STREQ (SYMBOL_NAME (sym), type_name))
1493 {
1494 obstack_free (&objfile -> type_obstack, type_name);
1495 type = SYMBOL_TYPE (sym);
1496 return type;
1497 }
1498 }
1499
1500 /* Didn't find the type to which this refers, so we must
1501 be dealing with a forward reference. Allocate a type
1502 structure for it, and keep track of it so we can
1503 fill in the rest of the fields when we get the full
1504 type. */
1505 type = dbx_alloc_type (typenums, objfile);
1506 TYPE_CODE (type) = code;
1507 TYPE_TAG_NAME (type) = type_name;
1508 INIT_CPLUS_SPECIFIC(type);
1509 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1510
1511 add_undefined_type (type);
1512 return type;
1513 }
1514
1515 case '-': /* RS/6000 built-in type */
1516 case '0':
1517 case '1':
1518 case '2':
1519 case '3':
1520 case '4':
1521 case '5':
1522 case '6':
1523 case '7':
1524 case '8':
1525 case '9':
1526 case '(':
1527
1528 {
1529 char *pp_saved;
1530
1531 (*pp)--;
1532 pp_saved = *pp;
1533
1534 /* Peek ahead at the number to detect void. */
1535 if (read_type_number (pp, xtypenums) != 0)
1536 return error_type (pp);
1537
1538 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1539 /* It's being defined as itself. That means it is "void". */
1540 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1541 else
1542 {
1543 struct type *xtype;
1544
1545 /* Go back to the number and have read_type get it. This means
1546 that we can deal with something like t(1,2)=(3,4)=... which
1547 the Lucid compiler uses. */
1548 *pp = pp_saved;
1549 xtype = read_type (pp, objfile);
1550
1551 /* The type is being defined to another type. So we copy the type.
1552 This loses if we copy a C++ class and so we lose track of how
1553 the names are mangled (but g++ doesn't output stabs like this
1554 now anyway). */
1555
1556 type = alloc_type (objfile);
1557 memcpy (type, xtype, sizeof (struct type));
1558
1559 /* The idea behind clearing the names is that the only purpose
1560 for defining a type to another type is so that the name of
1561 one can be different. So we probably don't need to worry much
1562 about the case where the compiler doesn't give a name to the
1563 new type. */
1564 TYPE_NAME (type) = NULL;
1565 TYPE_TAG_NAME (type) = NULL;
1566 }
1567 if (typenums[0] != -1)
1568 *dbx_lookup_type (typenums) = type;
1569 break;
1570 }
1571
1572 /* In the following types, we must be sure to overwrite any existing
1573 type that the typenums refer to, rather than allocating a new one
1574 and making the typenums point to the new one. This is because there
1575 may already be pointers to the existing type (if it had been
1576 forward-referenced), and we must change it to a pointer, function,
1577 reference, or whatever, *in-place*. */
1578
1579 case '*':
1580 type1 = read_type (pp, objfile);
1581 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1582 break;
1583
1584 case '&': /* Reference to another type */
1585 type1 = read_type (pp, objfile);
1586 type = make_reference_type (type1, dbx_lookup_type (typenums));
1587 break;
1588
1589 case 'f': /* Function returning another type */
1590 if (os9k_stabs && **pp == '(')
1591 {
1592 /* Function prototype; parse it.
1593 We must conditionalize this on os9k_stabs because otherwise
1594 it could be confused with a Sun-style (1,3) typenumber
1595 (I think). */
1596 struct type *t;
1597 ++*pp;
1598 while (**pp != ')')
1599 {
1600 t = read_type(pp, objfile);
1601 if (**pp == ',') ++*pp;
1602 }
1603 }
1604 type1 = read_type (pp, objfile);
1605 type = make_function_type (type1, dbx_lookup_type (typenums));
1606 break;
1607
1608 case 'k': /* Const qualifier on some type (Sun) */
1609 case 'c': /* Const qualifier on some type (OS9000) */
1610 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1611 only accept 'c' in the os9k_stabs case. */
1612 if (type_descriptor == 'c' && !os9k_stabs)
1613 return error_type (pp);
1614 type = read_type (pp, objfile);
1615 /* FIXME! For now, we ignore const and volatile qualifiers. */
1616 break;
1617
1618 case 'B': /* Volatile qual on some type (Sun) */
1619 case 'i': /* Volatile qual on some type (OS9000) */
1620 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1621 only accept 'i' in the os9k_stabs case. */
1622 if (type_descriptor == 'i' && !os9k_stabs)
1623 return error_type (pp);
1624 type = read_type (pp, objfile);
1625 /* FIXME! For now, we ignore const and volatile qualifiers. */
1626 break;
1627
1628 /* FIXME -- we should be doing smash_to_XXX types here. */
1629 case '@': /* Member (class & variable) type */
1630 {
1631 struct type *domain = read_type (pp, objfile);
1632 struct type *memtype;
1633
1634 if (**pp != ',')
1635 /* Invalid member type data format. */
1636 return error_type (pp);
1637 ++*pp;
1638
1639 memtype = read_type (pp, objfile);
1640 type = dbx_alloc_type (typenums, objfile);
1641 smash_to_member_type (type, domain, memtype);
1642 }
1643 break;
1644
1645 case '#': /* Method (class & fn) type */
1646 if ((*pp)[0] == '#')
1647 {
1648 /* We'll get the parameter types from the name. */
1649 struct type *return_type;
1650
1651 (*pp)++;
1652 return_type = read_type (pp, objfile);
1653 if (*(*pp)++ != ';')
1654 complain (&invalid_member_complaint, symnum);
1655 type = allocate_stub_method (return_type);
1656 if (typenums[0] != -1)
1657 *dbx_lookup_type (typenums) = type;
1658 }
1659 else
1660 {
1661 struct type *domain = read_type (pp, objfile);
1662 struct type *return_type;
1663 struct type **args;
1664
1665 if (**pp != ',')
1666 /* Invalid member type data format. */
1667 return error_type (pp);
1668 else
1669 ++(*pp);
1670
1671 return_type = read_type (pp, objfile);
1672 args = read_args (pp, ';', objfile);
1673 type = dbx_alloc_type (typenums, objfile);
1674 smash_to_method_type (type, domain, return_type, args);
1675 }
1676 break;
1677
1678 case 'r': /* Range type */
1679 type = read_range_type (pp, typenums, objfile);
1680 if (typenums[0] != -1)
1681 *dbx_lookup_type (typenums) = type;
1682 break;
1683
1684 case 'b':
1685 if (os9k_stabs)
1686 /* Const and volatile qualified type. */
1687 type = read_type (pp, objfile);
1688 else
1689 {
1690 /* Sun ACC builtin int type */
1691 type = read_sun_builtin_type (pp, typenums, objfile);
1692 if (typenums[0] != -1)
1693 *dbx_lookup_type (typenums) = type;
1694 }
1695 break;
1696
1697 case 'R': /* Sun ACC builtin float type */
1698 type = read_sun_floating_type (pp, typenums, objfile);
1699 if (typenums[0] != -1)
1700 *dbx_lookup_type (typenums) = type;
1701 break;
1702
1703 case 'e': /* Enumeration type */
1704 type = dbx_alloc_type (typenums, objfile);
1705 type = read_enum_type (pp, type, objfile);
1706 if (typenums[0] != -1)
1707 *dbx_lookup_type (typenums) = type;
1708 break;
1709
1710 case 's': /* Struct type */
1711 case 'u': /* Union type */
1712 type = dbx_alloc_type (typenums, objfile);
1713 if (!TYPE_NAME (type))
1714 {
1715 TYPE_NAME (type) = type_synonym_name;
1716 }
1717 type_synonym_name = NULL;
1718 switch (type_descriptor)
1719 {
1720 case 's':
1721 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1722 break;
1723 case 'u':
1724 TYPE_CODE (type) = TYPE_CODE_UNION;
1725 break;
1726 }
1727 type = read_struct_type (pp, type, objfile);
1728 break;
1729
1730 case 'a': /* Array type */
1731 if (**pp != 'r')
1732 return error_type (pp);
1733 ++*pp;
1734
1735 type = dbx_alloc_type (typenums, objfile);
1736 type = read_array_type (pp, type, objfile);
1737 if (is_string)
1738 TYPE_CODE (type) = TYPE_CODE_STRING;
1739 break;
1740
1741 case 'S':
1742 type1 = read_type (pp, objfile);
1743 type = create_set_type ((struct type*) NULL, type1);
1744 if (is_string)
1745 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1746 if (typenums[0] != -1)
1747 *dbx_lookup_type (typenums) = type;
1748 break;
1749
1750 default:
1751 --*pp; /* Go back to the symbol in error */
1752 /* Particularly important if it was \0! */
1753 return error_type (pp);
1754 }
1755
1756 if (type == 0)
1757 {
1758 warning ("GDB internal error, type is NULL in stabsread.c\n");
1759 return error_type (pp);
1760 }
1761
1762 /* Size specified in a type attribute overrides any other size. */
1763 if (type_size != -1)
1764 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1765
1766 return type;
1767 }
1768 \f
1769 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1770 Return the proper type node for a given builtin type number. */
1771
1772 static struct type *
1773 rs6000_builtin_type (typenum)
1774 int typenum;
1775 {
1776 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1777 #define NUMBER_RECOGNIZED 30
1778 /* This includes an empty slot for type number -0. */
1779 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1780 struct type *rettype = NULL;
1781
1782 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1783 {
1784 complain (&rs6000_builtin_complaint, typenum);
1785 return builtin_type_error;
1786 }
1787 if (negative_types[-typenum] != NULL)
1788 return negative_types[-typenum];
1789
1790 #if TARGET_CHAR_BIT != 8
1791 #error This code wrong for TARGET_CHAR_BIT not 8
1792 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1793 that if that ever becomes not true, the correct fix will be to
1794 make the size in the struct type to be in bits, not in units of
1795 TARGET_CHAR_BIT. */
1796 #endif
1797
1798 switch (-typenum)
1799 {
1800 case 1:
1801 /* The size of this and all the other types are fixed, defined
1802 by the debugging format. If there is a type called "int" which
1803 is other than 32 bits, then it should use a new negative type
1804 number (or avoid negative type numbers for that case).
1805 See stabs.texinfo. */
1806 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1807 break;
1808 case 2:
1809 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1810 break;
1811 case 3:
1812 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1813 break;
1814 case 4:
1815 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1816 break;
1817 case 5:
1818 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1819 "unsigned char", NULL);
1820 break;
1821 case 6:
1822 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1823 break;
1824 case 7:
1825 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1826 "unsigned short", NULL);
1827 break;
1828 case 8:
1829 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1830 "unsigned int", NULL);
1831 break;
1832 case 9:
1833 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1834 "unsigned", NULL);
1835 case 10:
1836 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1837 "unsigned long", NULL);
1838 break;
1839 case 11:
1840 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1841 break;
1842 case 12:
1843 /* IEEE single precision (32 bit). */
1844 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1845 break;
1846 case 13:
1847 /* IEEE double precision (64 bit). */
1848 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1849 break;
1850 case 14:
1851 /* This is an IEEE double on the RS/6000, and different machines with
1852 different sizes for "long double" should use different negative
1853 type numbers. See stabs.texinfo. */
1854 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1855 break;
1856 case 15:
1857 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1858 break;
1859 case 16:
1860 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1861 break;
1862 case 17:
1863 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1864 break;
1865 case 18:
1866 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1867 break;
1868 case 19:
1869 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1870 break;
1871 case 20:
1872 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1873 "character", NULL);
1874 break;
1875 case 21:
1876 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1877 "logical*1", NULL);
1878 break;
1879 case 22:
1880 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1881 "logical*2", NULL);
1882 break;
1883 case 23:
1884 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1885 "logical*4", NULL);
1886 break;
1887 case 24:
1888 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1889 "logical", NULL);
1890 break;
1891 case 25:
1892 /* Complex type consisting of two IEEE single precision values. */
1893 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1894 break;
1895 case 26:
1896 /* Complex type consisting of two IEEE double precision values. */
1897 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1898 break;
1899 case 27:
1900 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1901 break;
1902 case 28:
1903 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1904 break;
1905 case 29:
1906 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1907 break;
1908 case 30:
1909 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1910 break;
1911 }
1912 negative_types[-typenum] = rettype;
1913 return rettype;
1914 }
1915 \f
1916 /* This page contains subroutines of read_type. */
1917
1918 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1919 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1920 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1921 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1922
1923 /* Read member function stabs info for C++ classes. The form of each member
1924 function data is:
1925
1926 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1927
1928 An example with two member functions is:
1929
1930 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1931
1932 For the case of overloaded operators, the format is op$::*.funcs, where
1933 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1934 name (such as `+=') and `.' marks the end of the operator name.
1935
1936 Returns 1 for success, 0 for failure. */
1937
1938 static int
1939 read_member_functions (fip, pp, type, objfile)
1940 struct field_info *fip;
1941 char **pp;
1942 struct type *type;
1943 struct objfile *objfile;
1944 {
1945 int nfn_fields = 0;
1946 int length = 0;
1947 /* Total number of member functions defined in this class. If the class
1948 defines two `f' functions, and one `g' function, then this will have
1949 the value 3. */
1950 int total_length = 0;
1951 int i;
1952 struct next_fnfield
1953 {
1954 struct next_fnfield *next;
1955 struct fn_field fn_field;
1956 } *sublist;
1957 struct type *look_ahead_type;
1958 struct next_fnfieldlist *new_fnlist;
1959 struct next_fnfield *new_sublist;
1960 char *main_fn_name;
1961 register char *p;
1962
1963 /* Process each list until we find something that is not a member function
1964 or find the end of the functions. */
1965
1966 while (**pp != ';')
1967 {
1968 /* We should be positioned at the start of the function name.
1969 Scan forward to find the first ':' and if it is not the
1970 first of a "::" delimiter, then this is not a member function. */
1971 p = *pp;
1972 while (*p != ':')
1973 {
1974 p++;
1975 }
1976 if (p[1] != ':')
1977 {
1978 break;
1979 }
1980
1981 sublist = NULL;
1982 look_ahead_type = NULL;
1983 length = 0;
1984
1985 new_fnlist = (struct next_fnfieldlist *)
1986 xmalloc (sizeof (struct next_fnfieldlist));
1987 make_cleanup (free, new_fnlist);
1988 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1989
1990 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1991 {
1992 /* This is a completely wierd case. In order to stuff in the
1993 names that might contain colons (the usual name delimiter),
1994 Mike Tiemann defined a different name format which is
1995 signalled if the identifier is "op$". In that case, the
1996 format is "op$::XXXX." where XXXX is the name. This is
1997 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1998 /* This lets the user type "break operator+".
1999 We could just put in "+" as the name, but that wouldn't
2000 work for "*". */
2001 static char opname[32] = {'o', 'p', CPLUS_MARKER};
2002 char *o = opname + 3;
2003
2004 /* Skip past '::'. */
2005 *pp = p + 2;
2006
2007 STABS_CONTINUE (pp);
2008 p = *pp;
2009 while (*p != '.')
2010 {
2011 *o++ = *p++;
2012 }
2013 main_fn_name = savestring (opname, o - opname);
2014 /* Skip past '.' */
2015 *pp = p + 1;
2016 }
2017 else
2018 {
2019 main_fn_name = savestring (*pp, p - *pp);
2020 /* Skip past '::'. */
2021 *pp = p + 2;
2022 }
2023 new_fnlist -> fn_fieldlist.name = main_fn_name;
2024
2025 do
2026 {
2027 new_sublist =
2028 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2029 make_cleanup (free, new_sublist);
2030 memset (new_sublist, 0, sizeof (struct next_fnfield));
2031
2032 /* Check for and handle cretinous dbx symbol name continuation! */
2033 if (look_ahead_type == NULL)
2034 {
2035 /* Normal case. */
2036 STABS_CONTINUE (pp);
2037
2038 new_sublist -> fn_field.type = read_type (pp, objfile);
2039 if (**pp != ':')
2040 {
2041 /* Invalid symtab info for member function. */
2042 return 0;
2043 }
2044 }
2045 else
2046 {
2047 /* g++ version 1 kludge */
2048 new_sublist -> fn_field.type = look_ahead_type;
2049 look_ahead_type = NULL;
2050 }
2051
2052 (*pp)++;
2053 p = *pp;
2054 while (*p != ';')
2055 {
2056 p++;
2057 }
2058
2059 /* If this is just a stub, then we don't have the real name here. */
2060
2061 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2062 {
2063 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2064 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2065 new_sublist -> fn_field.is_stub = 1;
2066 }
2067 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2068 *pp = p + 1;
2069
2070 /* Set this member function's visibility fields. */
2071 switch (*(*pp)++)
2072 {
2073 case VISIBILITY_PRIVATE:
2074 new_sublist -> fn_field.is_private = 1;
2075 break;
2076 case VISIBILITY_PROTECTED:
2077 new_sublist -> fn_field.is_protected = 1;
2078 break;
2079 }
2080
2081 STABS_CONTINUE (pp);
2082 switch (**pp)
2083 {
2084 case 'A': /* Normal functions. */
2085 new_sublist -> fn_field.is_const = 0;
2086 new_sublist -> fn_field.is_volatile = 0;
2087 (*pp)++;
2088 break;
2089 case 'B': /* `const' member functions. */
2090 new_sublist -> fn_field.is_const = 1;
2091 new_sublist -> fn_field.is_volatile = 0;
2092 (*pp)++;
2093 break;
2094 case 'C': /* `volatile' member function. */
2095 new_sublist -> fn_field.is_const = 0;
2096 new_sublist -> fn_field.is_volatile = 1;
2097 (*pp)++;
2098 break;
2099 case 'D': /* `const volatile' member function. */
2100 new_sublist -> fn_field.is_const = 1;
2101 new_sublist -> fn_field.is_volatile = 1;
2102 (*pp)++;
2103 break;
2104 case '*': /* File compiled with g++ version 1 -- no info */
2105 case '?':
2106 case '.':
2107 break;
2108 default:
2109 complain (&const_vol_complaint, **pp);
2110 break;
2111 }
2112
2113 switch (*(*pp)++)
2114 {
2115 case '*':
2116 {
2117 int nbits;
2118 /* virtual member function, followed by index.
2119 The sign bit is set to distinguish pointers-to-methods
2120 from virtual function indicies. Since the array is
2121 in words, the quantity must be shifted left by 1
2122 on 16 bit machine, and by 2 on 32 bit machine, forcing
2123 the sign bit out, and usable as a valid index into
2124 the array. Remove the sign bit here. */
2125 new_sublist -> fn_field.voffset =
2126 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2127 if (nbits != 0)
2128 return 0;
2129
2130 STABS_CONTINUE (pp);
2131 if (**pp == ';' || **pp == '\0')
2132 {
2133 /* Must be g++ version 1. */
2134 new_sublist -> fn_field.fcontext = 0;
2135 }
2136 else
2137 {
2138 /* Figure out from whence this virtual function came.
2139 It may belong to virtual function table of
2140 one of its baseclasses. */
2141 look_ahead_type = read_type (pp, objfile);
2142 if (**pp == ':')
2143 {
2144 /* g++ version 1 overloaded methods. */
2145 }
2146 else
2147 {
2148 new_sublist -> fn_field.fcontext = look_ahead_type;
2149 if (**pp != ';')
2150 {
2151 return 0;
2152 }
2153 else
2154 {
2155 ++*pp;
2156 }
2157 look_ahead_type = NULL;
2158 }
2159 }
2160 break;
2161 }
2162 case '?':
2163 /* static member function. */
2164 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2165 if (strncmp (new_sublist -> fn_field.physname,
2166 main_fn_name, strlen (main_fn_name)))
2167 {
2168 new_sublist -> fn_field.is_stub = 1;
2169 }
2170 break;
2171
2172 default:
2173 /* error */
2174 complain (&member_fn_complaint, (*pp)[-1]);
2175 /* Fall through into normal member function. */
2176
2177 case '.':
2178 /* normal member function. */
2179 new_sublist -> fn_field.voffset = 0;
2180 new_sublist -> fn_field.fcontext = 0;
2181 break;
2182 }
2183
2184 new_sublist -> next = sublist;
2185 sublist = new_sublist;
2186 length++;
2187 STABS_CONTINUE (pp);
2188 }
2189 while (**pp != ';' && **pp != '\0');
2190
2191 (*pp)++;
2192
2193 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2194 obstack_alloc (&objfile -> type_obstack,
2195 sizeof (struct fn_field) * length);
2196 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2197 sizeof (struct fn_field) * length);
2198 for (i = length; (i--, sublist); sublist = sublist -> next)
2199 {
2200 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2201 }
2202
2203 new_fnlist -> fn_fieldlist.length = length;
2204 new_fnlist -> next = fip -> fnlist;
2205 fip -> fnlist = new_fnlist;
2206 nfn_fields++;
2207 total_length += length;
2208 STABS_CONTINUE (pp);
2209 }
2210
2211 if (nfn_fields)
2212 {
2213 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2214 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2215 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2216 memset (TYPE_FN_FIELDLISTS (type), 0,
2217 sizeof (struct fn_fieldlist) * nfn_fields);
2218 TYPE_NFN_FIELDS (type) = nfn_fields;
2219 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2220 }
2221
2222 return 1;
2223 }
2224
2225 /* Special GNU C++ name.
2226
2227 Returns 1 for success, 0 for failure. "failure" means that we can't
2228 keep parsing and it's time for error_type(). */
2229
2230 static int
2231 read_cpp_abbrev (fip, pp, type, objfile)
2232 struct field_info *fip;
2233 char **pp;
2234 struct type *type;
2235 struct objfile *objfile;
2236 {
2237 register char *p;
2238 char *name;
2239 char cpp_abbrev;
2240 struct type *context;
2241
2242 p = *pp;
2243 if (*++p == 'v')
2244 {
2245 name = NULL;
2246 cpp_abbrev = *++p;
2247
2248 *pp = p + 1;
2249
2250 /* At this point, *pp points to something like "22:23=*22...",
2251 where the type number before the ':' is the "context" and
2252 everything after is a regular type definition. Lookup the
2253 type, find it's name, and construct the field name. */
2254
2255 context = read_type (pp, objfile);
2256
2257 switch (cpp_abbrev)
2258 {
2259 case 'f': /* $vf -- a virtual function table pointer */
2260 fip->list->field.name =
2261 obconcat (&objfile->type_obstack, vptr_name, "", "");
2262 break;
2263
2264 case 'b': /* $vb -- a virtual bsomethingorother */
2265 name = type_name_no_tag (context);
2266 if (name == NULL)
2267 {
2268 complain (&invalid_cpp_type_complaint, symnum);
2269 name = "FOO";
2270 }
2271 fip->list->field.name =
2272 obconcat (&objfile->type_obstack, vb_name, name, "");
2273 break;
2274
2275 default:
2276 complain (&invalid_cpp_abbrev_complaint, *pp);
2277 fip->list->field.name =
2278 obconcat (&objfile->type_obstack,
2279 "INVALID_CPLUSPLUS_ABBREV", "", "");
2280 break;
2281 }
2282
2283 /* At this point, *pp points to the ':'. Skip it and read the
2284 field type. */
2285
2286 p = ++(*pp);
2287 if (p[-1] != ':')
2288 {
2289 complain (&invalid_cpp_abbrev_complaint, *pp);
2290 return 0;
2291 }
2292 fip->list->field.type = read_type (pp, objfile);
2293 if (**pp == ',')
2294 (*pp)++; /* Skip the comma. */
2295 else
2296 return 0;
2297
2298 {
2299 int nbits;
2300 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2301 if (nbits != 0)
2302 return 0;
2303 }
2304 /* This field is unpacked. */
2305 fip->list->field.bitsize = 0;
2306 fip->list->visibility = VISIBILITY_PRIVATE;
2307 }
2308 else
2309 {
2310 complain (&invalid_cpp_abbrev_complaint, *pp);
2311 /* We have no idea what syntax an unrecognized abbrev would have, so
2312 better return 0. If we returned 1, we would need to at least advance
2313 *pp to avoid an infinite loop. */
2314 return 0;
2315 }
2316 return 1;
2317 }
2318
2319 static void
2320 read_one_struct_field (fip, pp, p, type, objfile)
2321 struct field_info *fip;
2322 char **pp;
2323 char *p;
2324 struct type *type;
2325 struct objfile *objfile;
2326 {
2327 fip -> list -> field.name =
2328 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2329 *pp = p + 1;
2330
2331 /* This means we have a visibility for a field coming. */
2332 if (**pp == '/')
2333 {
2334 (*pp)++;
2335 fip -> list -> visibility = *(*pp)++;
2336 }
2337 else
2338 {
2339 /* normal dbx-style format, no explicit visibility */
2340 fip -> list -> visibility = VISIBILITY_PUBLIC;
2341 }
2342
2343 fip -> list -> field.type = read_type (pp, objfile);
2344 if (**pp == ':')
2345 {
2346 p = ++(*pp);
2347 #if 0
2348 /* Possible future hook for nested types. */
2349 if (**pp == '!')
2350 {
2351 fip -> list -> field.bitpos = (long)-2; /* nested type */
2352 p = ++(*pp);
2353 }
2354 else
2355 #endif
2356 {
2357 /* Static class member. */
2358 fip -> list -> field.bitpos = (long) -1;
2359 }
2360 while (*p != ';')
2361 {
2362 p++;
2363 }
2364 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2365 *pp = p + 1;
2366 return;
2367 }
2368 else if (**pp != ',')
2369 {
2370 /* Bad structure-type format. */
2371 complain (&stabs_general_complaint, "bad structure-type format");
2372 return;
2373 }
2374
2375 (*pp)++; /* Skip the comma. */
2376
2377 {
2378 int nbits;
2379 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2380 if (nbits != 0)
2381 {
2382 complain (&stabs_general_complaint, "bad structure-type format");
2383 return;
2384 }
2385 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2386 if (nbits != 0)
2387 {
2388 complain (&stabs_general_complaint, "bad structure-type format");
2389 return;
2390 }
2391 }
2392
2393 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2394 {
2395 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2396 it is a field which has been optimized out. The correct stab for
2397 this case is to use VISIBILITY_IGNORE, but that is a recent
2398 invention. (2) It is a 0-size array. For example
2399 union { int num; char str[0]; } foo. Printing "<no value>" for
2400 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2401 will continue to work, and a 0-size array as a whole doesn't
2402 have any contents to print.
2403
2404 I suspect this probably could also happen with gcc -gstabs (not
2405 -gstabs+) for static fields, and perhaps other C++ extensions.
2406 Hopefully few people use -gstabs with gdb, since it is intended
2407 for dbx compatibility. */
2408
2409 /* Ignore this field. */
2410 fip -> list-> visibility = VISIBILITY_IGNORE;
2411 }
2412 else
2413 {
2414 /* Detect an unpacked field and mark it as such.
2415 dbx gives a bit size for all fields.
2416 Note that forward refs cannot be packed,
2417 and treat enums as if they had the width of ints. */
2418
2419 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2420 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2421 {
2422 fip -> list -> field.bitsize = 0;
2423 }
2424 if ((fip -> list -> field.bitsize
2425 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2426 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2427 && (fip -> list -> field.bitsize
2428 == TARGET_INT_BIT)
2429 )
2430 )
2431 &&
2432 fip -> list -> field.bitpos % 8 == 0)
2433 {
2434 fip -> list -> field.bitsize = 0;
2435 }
2436 }
2437 }
2438
2439
2440 /* Read struct or class data fields. They have the form:
2441
2442 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2443
2444 At the end, we see a semicolon instead of a field.
2445
2446 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2447 a static field.
2448
2449 The optional VISIBILITY is one of:
2450
2451 '/0' (VISIBILITY_PRIVATE)
2452 '/1' (VISIBILITY_PROTECTED)
2453 '/2' (VISIBILITY_PUBLIC)
2454 '/9' (VISIBILITY_IGNORE)
2455
2456 or nothing, for C style fields with public visibility.
2457
2458 Returns 1 for success, 0 for failure. */
2459
2460 static int
2461 read_struct_fields (fip, pp, type, objfile)
2462 struct field_info *fip;
2463 char **pp;
2464 struct type *type;
2465 struct objfile *objfile;
2466 {
2467 register char *p;
2468 struct nextfield *new;
2469
2470 /* We better set p right now, in case there are no fields at all... */
2471
2472 p = *pp;
2473
2474 /* Read each data member type until we find the terminating ';' at the end of
2475 the data member list, or break for some other reason such as finding the
2476 start of the member function list. */
2477
2478 while (**pp != ';')
2479 {
2480 if (os9k_stabs && **pp == ',') break;
2481 STABS_CONTINUE (pp);
2482 /* Get space to record the next field's data. */
2483 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2484 make_cleanup (free, new);
2485 memset (new, 0, sizeof (struct nextfield));
2486 new -> next = fip -> list;
2487 fip -> list = new;
2488
2489 /* Get the field name. */
2490 p = *pp;
2491
2492 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2493 unless the CPLUS_MARKER is followed by an underscore, in
2494 which case it is just the name of an anonymous type, which we
2495 should handle like any other type name. We accept either '$'
2496 or '.', because a field name can never contain one of these
2497 characters except as a CPLUS_MARKER (we probably should be
2498 doing that in most parts of GDB). */
2499
2500 if ((*p == '$' || *p == '.') && p[1] != '_')
2501 {
2502 if (!read_cpp_abbrev (fip, pp, type, objfile))
2503 return 0;
2504 continue;
2505 }
2506
2507 /* Look for the ':' that separates the field name from the field
2508 values. Data members are delimited by a single ':', while member
2509 functions are delimited by a pair of ':'s. When we hit the member
2510 functions (if any), terminate scan loop and return. */
2511
2512 while (*p != ':' && *p != '\0')
2513 {
2514 p++;
2515 }
2516 if (*p == '\0')
2517 return 0;
2518
2519 /* Check to see if we have hit the member functions yet. */
2520 if (p[1] == ':')
2521 {
2522 break;
2523 }
2524 read_one_struct_field (fip, pp, p, type, objfile);
2525 }
2526 if (p[0] == ':' && p[1] == ':')
2527 {
2528 /* chill the list of fields: the last entry (at the head) is a
2529 partially constructed entry which we now scrub. */
2530 fip -> list = fip -> list -> next;
2531 }
2532 return 1;
2533 }
2534
2535 /* The stabs for C++ derived classes contain baseclass information which
2536 is marked by a '!' character after the total size. This function is
2537 called when we encounter the baseclass marker, and slurps up all the
2538 baseclass information.
2539
2540 Immediately following the '!' marker is the number of base classes that
2541 the class is derived from, followed by information for each base class.
2542 For each base class, there are two visibility specifiers, a bit offset
2543 to the base class information within the derived class, a reference to
2544 the type for the base class, and a terminating semicolon.
2545
2546 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2547 ^^ ^ ^ ^ ^ ^ ^
2548 Baseclass information marker __________________|| | | | | | |
2549 Number of baseclasses __________________________| | | | | | |
2550 Visibility specifiers (2) ________________________| | | | | |
2551 Offset in bits from start of class _________________| | | | |
2552 Type number for base class ___________________________| | | |
2553 Visibility specifiers (2) _______________________________| | |
2554 Offset in bits from start of class ________________________| |
2555 Type number of base class ____________________________________|
2556
2557 Return 1 for success, 0 for (error-type-inducing) failure. */
2558
2559 static int
2560 read_baseclasses (fip, pp, type, objfile)
2561 struct field_info *fip;
2562 char **pp;
2563 struct type *type;
2564 struct objfile *objfile;
2565 {
2566 int i;
2567 struct nextfield *new;
2568
2569 if (**pp != '!')
2570 {
2571 return 1;
2572 }
2573 else
2574 {
2575 /* Skip the '!' baseclass information marker. */
2576 (*pp)++;
2577 }
2578
2579 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2580 {
2581 int nbits;
2582 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2583 if (nbits != 0)
2584 return 0;
2585 }
2586
2587 #if 0
2588 /* Some stupid compilers have trouble with the following, so break
2589 it up into simpler expressions. */
2590 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2591 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2592 #else
2593 {
2594 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2595 char *pointer;
2596
2597 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2598 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2599 }
2600 #endif /* 0 */
2601
2602 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2603
2604 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2605 {
2606 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2607 make_cleanup (free, new);
2608 memset (new, 0, sizeof (struct nextfield));
2609 new -> next = fip -> list;
2610 fip -> list = new;
2611 new -> field.bitsize = 0; /* this should be an unpacked field! */
2612
2613 STABS_CONTINUE (pp);
2614 switch (**pp)
2615 {
2616 case '0':
2617 /* Nothing to do. */
2618 break;
2619 case '1':
2620 SET_TYPE_FIELD_VIRTUAL (type, i);
2621 break;
2622 default:
2623 /* Unknown character. Complain and treat it as non-virtual. */
2624 {
2625 static struct complaint msg = {
2626 "Unknown virtual character `%c' for baseclass", 0, 0};
2627 complain (&msg, **pp);
2628 }
2629 }
2630 ++(*pp);
2631
2632 new -> visibility = *(*pp)++;
2633 switch (new -> visibility)
2634 {
2635 case VISIBILITY_PRIVATE:
2636 case VISIBILITY_PROTECTED:
2637 case VISIBILITY_PUBLIC:
2638 break;
2639 default:
2640 /* Bad visibility format. Complain and treat it as
2641 public. */
2642 {
2643 static struct complaint msg = {
2644 "Unknown visibility `%c' for baseclass", 0, 0};
2645 complain (&msg, new -> visibility);
2646 new -> visibility = VISIBILITY_PUBLIC;
2647 }
2648 }
2649
2650 {
2651 int nbits;
2652
2653 /* The remaining value is the bit offset of the portion of the object
2654 corresponding to this baseclass. Always zero in the absence of
2655 multiple inheritance. */
2656
2657 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2658 if (nbits != 0)
2659 return 0;
2660 }
2661
2662 /* The last piece of baseclass information is the type of the
2663 base class. Read it, and remember it's type name as this
2664 field's name. */
2665
2666 new -> field.type = read_type (pp, objfile);
2667 new -> field.name = type_name_no_tag (new -> field.type);
2668
2669 /* skip trailing ';' and bump count of number of fields seen */
2670 if (**pp == ';')
2671 (*pp)++;
2672 else
2673 return 0;
2674 }
2675 return 1;
2676 }
2677
2678 /* The tail end of stabs for C++ classes that contain a virtual function
2679 pointer contains a tilde, a %, and a type number.
2680 The type number refers to the base class (possibly this class itself) which
2681 contains the vtable pointer for the current class.
2682
2683 This function is called when we have parsed all the method declarations,
2684 so we can look for the vptr base class info. */
2685
2686 static int
2687 read_tilde_fields (fip, pp, type, objfile)
2688 struct field_info *fip;
2689 char **pp;
2690 struct type *type;
2691 struct objfile *objfile;
2692 {
2693 register char *p;
2694
2695 STABS_CONTINUE (pp);
2696
2697 /* If we are positioned at a ';', then skip it. */
2698 if (**pp == ';')
2699 {
2700 (*pp)++;
2701 }
2702
2703 if (**pp == '~')
2704 {
2705 (*pp)++;
2706
2707 if (**pp == '=' || **pp == '+' || **pp == '-')
2708 {
2709 /* Obsolete flags that used to indicate the presence
2710 of constructors and/or destructors. */
2711 (*pp)++;
2712 }
2713
2714 /* Read either a '%' or the final ';'. */
2715 if (*(*pp)++ == '%')
2716 {
2717 /* The next number is the type number of the base class
2718 (possibly our own class) which supplies the vtable for
2719 this class. Parse it out, and search that class to find
2720 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2721 and TYPE_VPTR_FIELDNO. */
2722
2723 struct type *t;
2724 int i;
2725
2726 t = read_type (pp, objfile);
2727 p = (*pp)++;
2728 while (*p != '\0' && *p != ';')
2729 {
2730 p++;
2731 }
2732 if (*p == '\0')
2733 {
2734 /* Premature end of symbol. */
2735 return 0;
2736 }
2737
2738 TYPE_VPTR_BASETYPE (type) = t;
2739 if (type == t) /* Our own class provides vtbl ptr */
2740 {
2741 for (i = TYPE_NFIELDS (t) - 1;
2742 i >= TYPE_N_BASECLASSES (t);
2743 --i)
2744 {
2745 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2746 sizeof (vptr_name) - 1))
2747 {
2748 TYPE_VPTR_FIELDNO (type) = i;
2749 goto gotit;
2750 }
2751 }
2752 /* Virtual function table field not found. */
2753 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2754 return 0;
2755 }
2756 else
2757 {
2758 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2759 }
2760
2761 gotit:
2762 *pp = p + 1;
2763 }
2764 }
2765 return 1;
2766 }
2767
2768 static int
2769 attach_fn_fields_to_type (fip, type)
2770 struct field_info *fip;
2771 register struct type *type;
2772 {
2773 register int n;
2774
2775 for (n = TYPE_NFN_FIELDS (type);
2776 fip -> fnlist != NULL;
2777 fip -> fnlist = fip -> fnlist -> next)
2778 {
2779 --n; /* Circumvent Sun3 compiler bug */
2780 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2781 }
2782 return 1;
2783 }
2784
2785 /* Create the vector of fields, and record how big it is.
2786 We need this info to record proper virtual function table information
2787 for this class's virtual functions. */
2788
2789 static int
2790 attach_fields_to_type (fip, type, objfile)
2791 struct field_info *fip;
2792 register struct type *type;
2793 struct objfile *objfile;
2794 {
2795 register int nfields = 0;
2796 register int non_public_fields = 0;
2797 register struct nextfield *scan;
2798
2799 /* Count up the number of fields that we have, as well as taking note of
2800 whether or not there are any non-public fields, which requires us to
2801 allocate and build the private_field_bits and protected_field_bits
2802 bitfields. */
2803
2804 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2805 {
2806 nfields++;
2807 if (scan -> visibility != VISIBILITY_PUBLIC)
2808 {
2809 non_public_fields++;
2810 }
2811 }
2812
2813 /* Now we know how many fields there are, and whether or not there are any
2814 non-public fields. Record the field count, allocate space for the
2815 array of fields, and create blank visibility bitfields if necessary. */
2816
2817 TYPE_NFIELDS (type) = nfields;
2818 TYPE_FIELDS (type) = (struct field *)
2819 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2820 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2821
2822 if (non_public_fields)
2823 {
2824 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2825
2826 TYPE_FIELD_PRIVATE_BITS (type) =
2827 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2828 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2829
2830 TYPE_FIELD_PROTECTED_BITS (type) =
2831 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2832 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2833
2834 TYPE_FIELD_IGNORE_BITS (type) =
2835 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2836 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2837 }
2838
2839 /* Copy the saved-up fields into the field vector. Start from the head
2840 of the list, adding to the tail of the field array, so that they end
2841 up in the same order in the array in which they were added to the list. */
2842
2843 while (nfields-- > 0)
2844 {
2845 TYPE_FIELD (type, nfields) = fip -> list -> field;
2846 switch (fip -> list -> visibility)
2847 {
2848 case VISIBILITY_PRIVATE:
2849 SET_TYPE_FIELD_PRIVATE (type, nfields);
2850 break;
2851
2852 case VISIBILITY_PROTECTED:
2853 SET_TYPE_FIELD_PROTECTED (type, nfields);
2854 break;
2855
2856 case VISIBILITY_IGNORE:
2857 SET_TYPE_FIELD_IGNORE (type, nfields);
2858 break;
2859
2860 case VISIBILITY_PUBLIC:
2861 break;
2862
2863 default:
2864 /* Unknown visibility. Complain and treat it as public. */
2865 {
2866 static struct complaint msg = {
2867 "Unknown visibility `%c' for field", 0, 0};
2868 complain (&msg, fip -> list -> visibility);
2869 }
2870 break;
2871 }
2872 fip -> list = fip -> list -> next;
2873 }
2874 return 1;
2875 }
2876
2877 /* Read the description of a structure (or union type) and return an object
2878 describing the type.
2879
2880 PP points to a character pointer that points to the next unconsumed token
2881 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2882 *PP will point to "4a:1,0,32;;".
2883
2884 TYPE points to an incomplete type that needs to be filled in.
2885
2886 OBJFILE points to the current objfile from which the stabs information is
2887 being read. (Note that it is redundant in that TYPE also contains a pointer
2888 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2889 */
2890
2891 static struct type *
2892 read_struct_type (pp, type, objfile)
2893 char **pp;
2894 struct type *type;
2895 struct objfile *objfile;
2896 {
2897 struct cleanup *back_to;
2898 struct field_info fi;
2899
2900 fi.list = NULL;
2901 fi.fnlist = NULL;
2902
2903 back_to = make_cleanup (null_cleanup, 0);
2904
2905 INIT_CPLUS_SPECIFIC (type);
2906 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2907
2908 /* First comes the total size in bytes. */
2909
2910 {
2911 int nbits;
2912 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2913 if (nbits != 0)
2914 return error_type (pp);
2915 }
2916
2917 /* Now read the baseclasses, if any, read the regular C struct or C++
2918 class member fields, attach the fields to the type, read the C++
2919 member functions, attach them to the type, and then read any tilde
2920 field (baseclass specifier for the class holding the main vtable). */
2921
2922 if (!read_baseclasses (&fi, pp, type, objfile)
2923 || !read_struct_fields (&fi, pp, type, objfile)
2924 || !attach_fields_to_type (&fi, type, objfile)
2925 || !read_member_functions (&fi, pp, type, objfile)
2926 || !attach_fn_fields_to_type (&fi, type)
2927 || !read_tilde_fields (&fi, pp, type, objfile))
2928 {
2929 do_cleanups (back_to);
2930 return (error_type (pp));
2931 }
2932
2933 do_cleanups (back_to);
2934 return (type);
2935 }
2936
2937 /* Read a definition of an array type,
2938 and create and return a suitable type object.
2939 Also creates a range type which represents the bounds of that
2940 array. */
2941
2942 static struct type *
2943 read_array_type (pp, type, objfile)
2944 register char **pp;
2945 register struct type *type;
2946 struct objfile *objfile;
2947 {
2948 struct type *index_type, *element_type, *range_type;
2949 int lower, upper;
2950 int adjustable = 0;
2951 int nbits;
2952
2953 /* Format of an array type:
2954 "ar<index type>;lower;upper;<array_contents_type>".
2955 OS9000: "arlower,upper;<array_contents_type>".
2956
2957 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2958 for these, produce a type like float[][]. */
2959
2960 if (os9k_stabs)
2961 index_type = builtin_type_int;
2962 else
2963 {
2964 index_type = read_type (pp, objfile);
2965 if (**pp != ';')
2966 /* Improper format of array type decl. */
2967 return error_type (pp);
2968 ++*pp;
2969 }
2970
2971 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2972 {
2973 (*pp)++;
2974 adjustable = 1;
2975 }
2976 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
2977 if (nbits != 0)
2978 return error_type (pp);
2979
2980 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2981 {
2982 (*pp)++;
2983 adjustable = 1;
2984 }
2985 upper = read_huge_number (pp, ';', &nbits);
2986 if (nbits != 0)
2987 return error_type (pp);
2988
2989 element_type = read_type (pp, objfile);
2990
2991 if (adjustable)
2992 {
2993 lower = 0;
2994 upper = -1;
2995 }
2996
2997 range_type =
2998 create_range_type ((struct type *) NULL, index_type, lower, upper);
2999 type = create_array_type (type, element_type, range_type);
3000
3001 /* If we have an array whose element type is not yet known, but whose
3002 bounds *are* known, record it to be adjusted at the end of the file. */
3003
3004 if ((TYPE_FLAGS (element_type) & TYPE_FLAG_STUB) && !adjustable)
3005 {
3006 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
3007 add_undefined_type (type);
3008 }
3009
3010 return type;
3011 }
3012
3013
3014 /* Read a definition of an enumeration type,
3015 and create and return a suitable type object.
3016 Also defines the symbols that represent the values of the type. */
3017
3018 static struct type *
3019 read_enum_type (pp, type, objfile)
3020 register char **pp;
3021 register struct type *type;
3022 struct objfile *objfile;
3023 {
3024 register char *p;
3025 char *name;
3026 register long n;
3027 register struct symbol *sym;
3028 int nsyms = 0;
3029 struct pending **symlist;
3030 struct pending *osyms, *syms;
3031 int o_nsyms;
3032 int nbits;
3033
3034 #if 0
3035 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3036 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3037 to do? For now, force all enum values to file scope. */
3038 if (within_function)
3039 symlist = &local_symbols;
3040 else
3041 #endif
3042 symlist = &file_symbols;
3043 osyms = *symlist;
3044 o_nsyms = osyms ? osyms->nsyms : 0;
3045
3046 if (os9k_stabs)
3047 {
3048 /* Size. Perhaps this does not have to be conditionalized on
3049 os9k_stabs (assuming the name of an enum constant can't start
3050 with a digit). */
3051 read_huge_number (pp, 0, &nbits);
3052 if (nbits != 0)
3053 return error_type (pp);
3054 }
3055
3056 /* Read the value-names and their values.
3057 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3058 A semicolon or comma instead of a NAME means the end. */
3059 while (**pp && **pp != ';' && **pp != ',')
3060 {
3061 STABS_CONTINUE (pp);
3062 p = *pp;
3063 while (*p != ':') p++;
3064 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3065 *pp = p + 1;
3066 n = read_huge_number (pp, ',', &nbits);
3067 if (nbits != 0)
3068 return error_type (pp);
3069
3070 sym = (struct symbol *)
3071 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3072 memset (sym, 0, sizeof (struct symbol));
3073 SYMBOL_NAME (sym) = name;
3074 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3075 SYMBOL_CLASS (sym) = LOC_CONST;
3076 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3077 SYMBOL_VALUE (sym) = n;
3078 add_symbol_to_list (sym, symlist);
3079 nsyms++;
3080 }
3081
3082 if (**pp == ';')
3083 (*pp)++; /* Skip the semicolon. */
3084
3085 /* Now fill in the fields of the type-structure. */
3086
3087 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3088 TYPE_CODE (type) = TYPE_CODE_ENUM;
3089 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3090 TYPE_NFIELDS (type) = nsyms;
3091 TYPE_FIELDS (type) = (struct field *)
3092 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3093 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3094
3095 /* Find the symbols for the values and put them into the type.
3096 The symbols can be found in the symlist that we put them on
3097 to cause them to be defined. osyms contains the old value
3098 of that symlist; everything up to there was defined by us. */
3099 /* Note that we preserve the order of the enum constants, so
3100 that in something like "enum {FOO, LAST_THING=FOO}" we print
3101 FOO, not LAST_THING. */
3102
3103 for (syms = *symlist, n = nsyms - 1; ; syms = syms->next)
3104 {
3105 int last = syms == osyms ? o_nsyms : 0;
3106 int j = syms->nsyms;
3107 for (; --j >= last; --n)
3108 {
3109 struct symbol *xsym = syms->symbol[j];
3110 SYMBOL_TYPE (xsym) = type;
3111 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3112 TYPE_FIELD_VALUE (type, n) = 0;
3113 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3114 TYPE_FIELD_BITSIZE (type, n) = 0;
3115 }
3116 if (syms == osyms)
3117 break;
3118 }
3119
3120 return type;
3121 }
3122
3123 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3124 typedefs in every file (for int, long, etc):
3125
3126 type = b <signed> <width>; <offset>; <nbits>
3127 signed = u or s. Possible c in addition to u or s (for char?).
3128 offset = offset from high order bit to start bit of type.
3129 width is # bytes in object of this type, nbits is # bits in type.
3130
3131 The width/offset stuff appears to be for small objects stored in
3132 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3133 FIXME. */
3134
3135 static struct type *
3136 read_sun_builtin_type (pp, typenums, objfile)
3137 char **pp;
3138 int typenums[2];
3139 struct objfile *objfile;
3140 {
3141 int type_bits;
3142 int nbits;
3143 int signed_type;
3144
3145 switch (**pp)
3146 {
3147 case 's':
3148 signed_type = 1;
3149 break;
3150 case 'u':
3151 signed_type = 0;
3152 break;
3153 default:
3154 return error_type (pp);
3155 }
3156 (*pp)++;
3157
3158 /* For some odd reason, all forms of char put a c here. This is strange
3159 because no other type has this honor. We can safely ignore this because
3160 we actually determine 'char'acterness by the number of bits specified in
3161 the descriptor. */
3162
3163 if (**pp == 'c')
3164 (*pp)++;
3165
3166 /* The first number appears to be the number of bytes occupied
3167 by this type, except that unsigned short is 4 instead of 2.
3168 Since this information is redundant with the third number,
3169 we will ignore it. */
3170 read_huge_number (pp, ';', &nbits);
3171 if (nbits != 0)
3172 return error_type (pp);
3173
3174 /* The second number is always 0, so ignore it too. */
3175 read_huge_number (pp, ';', &nbits);
3176 if (nbits != 0)
3177 return error_type (pp);
3178
3179 /* The third number is the number of bits for this type. */
3180 type_bits = read_huge_number (pp, 0, &nbits);
3181 if (nbits != 0)
3182 return error_type (pp);
3183 /* The type *should* end with a semicolon. If it are embedded
3184 in a larger type the semicolon may be the only way to know where
3185 the type ends. If this type is at the end of the stabstring we
3186 can deal with the omitted semicolon (but we don't have to like
3187 it). Don't bother to complain(), Sun's compiler omits the semicolon
3188 for "void". */
3189 if (**pp == ';')
3190 ++(*pp);
3191
3192 if (type_bits == 0)
3193 return init_type (TYPE_CODE_VOID, 1,
3194 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3195 objfile);
3196 else
3197 return init_type (TYPE_CODE_INT,
3198 type_bits / TARGET_CHAR_BIT,
3199 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3200 objfile);
3201 }
3202
3203 static struct type *
3204 read_sun_floating_type (pp, typenums, objfile)
3205 char **pp;
3206 int typenums[2];
3207 struct objfile *objfile;
3208 {
3209 int nbits;
3210 int details;
3211 int nbytes;
3212
3213 /* The first number has more details about the type, for example
3214 FN_COMPLEX. */
3215 details = read_huge_number (pp, ';', &nbits);
3216 if (nbits != 0)
3217 return error_type (pp);
3218
3219 /* The second number is the number of bytes occupied by this type */
3220 nbytes = read_huge_number (pp, ';', &nbits);
3221 if (nbits != 0)
3222 return error_type (pp);
3223
3224 if (details == NF_COMPLEX || details == NF_COMPLEX16
3225 || details == NF_COMPLEX32)
3226 /* This is a type we can't handle, but we do know the size.
3227 We also will be able to give it a name. */
3228 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3229
3230 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3231 }
3232
3233 /* Read a number from the string pointed to by *PP.
3234 The value of *PP is advanced over the number.
3235 If END is nonzero, the character that ends the
3236 number must match END, or an error happens;
3237 and that character is skipped if it does match.
3238 If END is zero, *PP is left pointing to that character.
3239
3240 If the number fits in a long, set *BITS to 0 and return the value.
3241 If not, set *BITS to be the number of bits in the number and return 0.
3242
3243 If encounter garbage, set *BITS to -1 and return 0. */
3244
3245 static long
3246 read_huge_number (pp, end, bits)
3247 char **pp;
3248 int end;
3249 int *bits;
3250 {
3251 char *p = *pp;
3252 int sign = 1;
3253 long n = 0;
3254 int radix = 10;
3255 char overflow = 0;
3256 int nbits = 0;
3257 int c;
3258 long upper_limit;
3259
3260 if (*p == '-')
3261 {
3262 sign = -1;
3263 p++;
3264 }
3265
3266 /* Leading zero means octal. GCC uses this to output values larger
3267 than an int (because that would be hard in decimal). */
3268 if (*p == '0')
3269 {
3270 radix = 8;
3271 p++;
3272 }
3273
3274 if (os9k_stabs)
3275 upper_limit = ULONG_MAX / radix;
3276 else
3277 upper_limit = LONG_MAX / radix;
3278
3279 while ((c = *p++) >= '0' && c < ('0' + radix))
3280 {
3281 if (n <= upper_limit)
3282 {
3283 n *= radix;
3284 n += c - '0'; /* FIXME this overflows anyway */
3285 }
3286 else
3287 overflow = 1;
3288
3289 /* This depends on large values being output in octal, which is
3290 what GCC does. */
3291 if (radix == 8)
3292 {
3293 if (nbits == 0)
3294 {
3295 if (c == '0')
3296 /* Ignore leading zeroes. */
3297 ;
3298 else if (c == '1')
3299 nbits = 1;
3300 else if (c == '2' || c == '3')
3301 nbits = 2;
3302 else
3303 nbits = 3;
3304 }
3305 else
3306 nbits += 3;
3307 }
3308 }
3309 if (end)
3310 {
3311 if (c && c != end)
3312 {
3313 if (bits != NULL)
3314 *bits = -1;
3315 return 0;
3316 }
3317 }
3318 else
3319 --p;
3320
3321 *pp = p;
3322 if (overflow)
3323 {
3324 if (nbits == 0)
3325 {
3326 /* Large decimal constants are an error (because it is hard to
3327 count how many bits are in them). */
3328 if (bits != NULL)
3329 *bits = -1;
3330 return 0;
3331 }
3332
3333 /* -0x7f is the same as 0x80. So deal with it by adding one to
3334 the number of bits. */
3335 if (sign == -1)
3336 ++nbits;
3337 if (bits)
3338 *bits = nbits;
3339 }
3340 else
3341 {
3342 if (bits)
3343 *bits = 0;
3344 return n * sign;
3345 }
3346 /* It's *BITS which has the interesting information. */
3347 return 0;
3348 }
3349
3350 static struct type *
3351 read_range_type (pp, typenums, objfile)
3352 char **pp;
3353 int typenums[2];
3354 struct objfile *objfile;
3355 {
3356 int rangenums[2];
3357 long n2, n3;
3358 int n2bits, n3bits;
3359 int self_subrange;
3360 struct type *result_type;
3361 struct type *index_type;
3362
3363 /* First comes a type we are a subrange of.
3364 In C it is usually 0, 1 or the type being defined. */
3365 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3366 not just a type number. */
3367 if (read_type_number (pp, rangenums) != 0)
3368 return error_type (pp);
3369 self_subrange = (rangenums[0] == typenums[0] &&
3370 rangenums[1] == typenums[1]);
3371
3372 /* A semicolon should now follow; skip it. */
3373 if (**pp == ';')
3374 (*pp)++;
3375
3376 /* The remaining two operands are usually lower and upper bounds
3377 of the range. But in some special cases they mean something else. */
3378 n2 = read_huge_number (pp, ';', &n2bits);
3379 n3 = read_huge_number (pp, ';', &n3bits);
3380
3381 if (n2bits == -1 || n3bits == -1)
3382 return error_type (pp);
3383
3384 /* If limits are huge, must be large integral type. */
3385 if (n2bits != 0 || n3bits != 0)
3386 {
3387 char got_signed = 0;
3388 char got_unsigned = 0;
3389 /* Number of bits in the type. */
3390 int nbits = 0;
3391
3392 /* Range from 0 to <large number> is an unsigned large integral type. */
3393 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3394 {
3395 got_unsigned = 1;
3396 nbits = n3bits;
3397 }
3398 /* Range from <large number> to <large number>-1 is a large signed
3399 integral type. Take care of the case where <large number> doesn't
3400 fit in a long but <large number>-1 does. */
3401 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3402 || (n2bits != 0 && n3bits == 0
3403 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3404 && n3 == LONG_MAX))
3405 {
3406 got_signed = 1;
3407 nbits = n2bits;
3408 }
3409
3410 if (got_signed || got_unsigned)
3411 {
3412 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3413 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3414 objfile);
3415 }
3416 else
3417 return error_type (pp);
3418 }
3419
3420 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3421 if (self_subrange && n2 == 0 && n3 == 0)
3422 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3423
3424 /* If n3 is zero and n2 is not, we want a floating type,
3425 and n2 is the width in bytes.
3426
3427 Fortran programs appear to use this for complex types also,
3428 and they give no way to distinguish between double and single-complex!
3429
3430 GDB does not have complex types.
3431
3432 Just return the complex as a float of that size. It won't work right
3433 for the complex values, but at least it makes the file loadable. */
3434
3435 if (n3 == 0 && n2 > 0)
3436 {
3437 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3438 }
3439
3440 /* If the upper bound is -1, it must really be an unsigned int. */
3441
3442 else if (n2 == 0 && n3 == -1)
3443 {
3444 /* It is unsigned int or unsigned long. */
3445 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3446 compatibility hack. */
3447 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3448 TYPE_FLAG_UNSIGNED, NULL, objfile);
3449 }
3450
3451 /* Special case: char is defined (Who knows why) as a subrange of
3452 itself with range 0-127. */
3453 else if (self_subrange && n2 == 0 && n3 == 127)
3454 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3455
3456 /* We used to do this only for subrange of self or subrange of int. */
3457 else if (n2 == 0)
3458 {
3459 if (n3 < 0)
3460 /* n3 actually gives the size. */
3461 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3462 NULL, objfile);
3463 if (n3 == 0xff)
3464 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3465 if (n3 == 0xffff)
3466 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3467
3468 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3469 "unsigned long", and we already checked for that,
3470 so don't need to test for it here. */
3471 }
3472 /* I think this is for Convex "long long". Since I don't know whether
3473 Convex sets self_subrange, I also accept that particular size regardless
3474 of self_subrange. */
3475 else if (n3 == 0 && n2 < 0
3476 && (self_subrange
3477 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3478 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3479 else if (n2 == -n3 -1)
3480 {
3481 if (n3 == 0x7f)
3482 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3483 if (n3 == 0x7fff)
3484 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3485 if (n3 == 0x7fffffff)
3486 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3487 }
3488
3489 /* We have a real range type on our hands. Allocate space and
3490 return a real pointer. */
3491
3492 /* At this point I don't have the faintest idea how to deal with
3493 a self_subrange type; I'm going to assume that this is used
3494 as an idiom, and that all of them are special cases. So . . . */
3495 if (self_subrange)
3496 return error_type (pp);
3497
3498 index_type = *dbx_lookup_type (rangenums);
3499 if (index_type == NULL)
3500 {
3501 /* Does this actually ever happen? Is that why we are worrying
3502 about dealing with it rather than just calling error_type? */
3503
3504 static struct type *range_type_index;
3505
3506 complain (&range_type_base_complaint, rangenums[1]);
3507 if (range_type_index == NULL)
3508 range_type_index =
3509 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3510 0, "range type index type", NULL);
3511 index_type = range_type_index;
3512 }
3513
3514 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3515 return (result_type);
3516 }
3517
3518 /* Read in an argument list. This is a list of types, separated by commas
3519 and terminated with END. Return the list of types read in, or (struct type
3520 **)-1 if there is an error. */
3521
3522 static struct type **
3523 read_args (pp, end, objfile)
3524 char **pp;
3525 int end;
3526 struct objfile *objfile;
3527 {
3528 /* FIXME! Remove this arbitrary limit! */
3529 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3530 int n = 0;
3531
3532 while (**pp != end)
3533 {
3534 if (**pp != ',')
3535 /* Invalid argument list: no ','. */
3536 return (struct type **)-1;
3537 (*pp)++;
3538 STABS_CONTINUE (pp);
3539 types[n++] = read_type (pp, objfile);
3540 }
3541 (*pp)++; /* get past `end' (the ':' character) */
3542
3543 if (n == 1)
3544 {
3545 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3546 }
3547 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3548 {
3549 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3550 memset (rval + n, 0, sizeof (struct type *));
3551 }
3552 else
3553 {
3554 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3555 }
3556 memcpy (rval, types, n * sizeof (struct type *));
3557 return rval;
3558 }
3559 \f
3560 /* Common block handling. */
3561
3562 /* List of symbols declared since the last BCOMM. This list is a tail
3563 of local_symbols. When ECOMM is seen, the symbols on the list
3564 are noted so their proper addresses can be filled in later,
3565 using the common block base address gotten from the assembler
3566 stabs. */
3567
3568 static struct pending *common_block;
3569 static int common_block_i;
3570
3571 /* Name of the current common block. We get it from the BCOMM instead of the
3572 ECOMM to match IBM documentation (even though IBM puts the name both places
3573 like everyone else). */
3574 static char *common_block_name;
3575
3576 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3577 to remain after this function returns. */
3578
3579 void
3580 common_block_start (name, objfile)
3581 char *name;
3582 struct objfile *objfile;
3583 {
3584 if (common_block_name != NULL)
3585 {
3586 static struct complaint msg = {
3587 "Invalid symbol data: common block within common block",
3588 0, 0};
3589 complain (&msg);
3590 }
3591 common_block = local_symbols;
3592 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3593 common_block_name = obsavestring (name, strlen (name),
3594 &objfile -> symbol_obstack);
3595 }
3596
3597 /* Process a N_ECOMM symbol. */
3598
3599 void
3600 common_block_end (objfile)
3601 struct objfile *objfile;
3602 {
3603 /* Symbols declared since the BCOMM are to have the common block
3604 start address added in when we know it. common_block and
3605 common_block_i point to the first symbol after the BCOMM in
3606 the local_symbols list; copy the list and hang it off the
3607 symbol for the common block name for later fixup. */
3608 int i;
3609 struct symbol *sym;
3610 struct pending *new = 0;
3611 struct pending *next;
3612 int j;
3613
3614 if (common_block_name == NULL)
3615 {
3616 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3617 complain (&msg);
3618 return;
3619 }
3620
3621 sym = (struct symbol *)
3622 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3623 memset (sym, 0, sizeof (struct symbol));
3624 SYMBOL_NAME (sym) = common_block_name;
3625 SYMBOL_CLASS (sym) = LOC_BLOCK;
3626
3627 /* Now we copy all the symbols which have been defined since the BCOMM. */
3628
3629 /* Copy all the struct pendings before common_block. */
3630 for (next = local_symbols;
3631 next != NULL && next != common_block;
3632 next = next->next)
3633 {
3634 for (j = 0; j < next->nsyms; j++)
3635 add_symbol_to_list (next->symbol[j], &new);
3636 }
3637
3638 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3639 NULL, it means copy all the local symbols (which we already did
3640 above). */
3641
3642 if (common_block != NULL)
3643 for (j = common_block_i; j < common_block->nsyms; j++)
3644 add_symbol_to_list (common_block->symbol[j], &new);
3645
3646 SYMBOL_TYPE (sym) = (struct type *) new;
3647
3648 /* Should we be putting local_symbols back to what it was?
3649 Does it matter? */
3650
3651 i = hashname (SYMBOL_NAME (sym));
3652 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3653 global_sym_chain[i] = sym;
3654 common_block_name = NULL;
3655 }
3656
3657 /* Add a common block's start address to the offset of each symbol
3658 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3659 the common block name). */
3660
3661 static void
3662 fix_common_block (sym, valu)
3663 struct symbol *sym;
3664 int valu;
3665 {
3666 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3667 for ( ; next; next = next->next)
3668 {
3669 register int j;
3670 for (j = next->nsyms - 1; j >= 0; j--)
3671 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3672 }
3673 }
3674
3675
3676 \f
3677 /* What about types defined as forward references inside of a small lexical
3678 scope? */
3679 /* Add a type to the list of undefined types to be checked through
3680 once this file has been read in. */
3681
3682 void
3683 add_undefined_type (type)
3684 struct type *type;
3685 {
3686 if (undef_types_length == undef_types_allocated)
3687 {
3688 undef_types_allocated *= 2;
3689 undef_types = (struct type **)
3690 xrealloc ((char *) undef_types,
3691 undef_types_allocated * sizeof (struct type *));
3692 }
3693 undef_types[undef_types_length++] = type;
3694 }
3695
3696 /* Go through each undefined type, see if it's still undefined, and fix it
3697 up if possible. We have two kinds of undefined types:
3698
3699 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3700 Fix: update array length using the element bounds
3701 and the target type's length.
3702 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3703 yet defined at the time a pointer to it was made.
3704 Fix: Do a full lookup on the struct/union tag. */
3705 void
3706 cleanup_undefined_types ()
3707 {
3708 struct type **type;
3709
3710 for (type = undef_types; type < undef_types + undef_types_length; type++)
3711 {
3712 switch (TYPE_CODE (*type))
3713 {
3714
3715 case TYPE_CODE_STRUCT:
3716 case TYPE_CODE_UNION:
3717 case TYPE_CODE_ENUM:
3718 {
3719 /* Check if it has been defined since. Need to do this here
3720 as well as in check_stub_type to deal with the (legitimate in
3721 C though not C++) case of several types with the same name
3722 in different source files. */
3723 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3724 {
3725 struct pending *ppt;
3726 int i;
3727 /* Name of the type, without "struct" or "union" */
3728 char *typename = TYPE_TAG_NAME (*type);
3729
3730 if (typename == NULL)
3731 {
3732 static struct complaint msg = {"need a type name", 0, 0};
3733 complain (&msg);
3734 break;
3735 }
3736 for (ppt = file_symbols; ppt; ppt = ppt->next)
3737 {
3738 for (i = 0; i < ppt->nsyms; i++)
3739 {
3740 struct symbol *sym = ppt->symbol[i];
3741
3742 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3743 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3744 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3745 TYPE_CODE (*type))
3746 && STREQ (SYMBOL_NAME (sym), typename))
3747 {
3748 memcpy (*type, SYMBOL_TYPE (sym),
3749 sizeof (struct type));
3750 }
3751 }
3752 }
3753 }
3754 }
3755 break;
3756
3757 case TYPE_CODE_ARRAY:
3758 {
3759 /* This is a kludge which is here for historical reasons
3760 because I suspect that check_stub_type does not get
3761 called everywhere it needs to be called for arrays. Even
3762 with this kludge, those places are broken for the case
3763 where the stub type is defined in another compilation
3764 unit, but this kludge at least deals with it for the case
3765 in which it is the same compilation unit.
3766
3767 Don't try to do this by calling check_stub_type; it might
3768 cause symbols to be read in lookup_symbol, and the symbol
3769 reader is not reentrant. */
3770
3771 struct type *range_type;
3772 int lower, upper;
3773
3774 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3775 goto badtype;
3776 if (TYPE_NFIELDS (*type) != 1)
3777 goto badtype;
3778 range_type = TYPE_FIELD_TYPE (*type, 0);
3779 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3780 goto badtype;
3781
3782 /* Now recompute the length of the array type, based on its
3783 number of elements and the target type's length. */
3784 lower = TYPE_FIELD_BITPOS (range_type, 0);
3785 upper = TYPE_FIELD_BITPOS (range_type, 1);
3786 TYPE_LENGTH (*type) = (upper - lower + 1)
3787 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3788
3789 /* If the target type is not a stub, we could be clearing
3790 TYPE_FLAG_TARGET_STUB for *type. */
3791 }
3792 break;
3793
3794 default:
3795 badtype:
3796 {
3797 static struct complaint msg = {"\
3798 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3799 complain (&msg, TYPE_CODE (*type));
3800 }
3801 break;
3802 }
3803 }
3804
3805 undef_types_length = 0;
3806 }
3807
3808 /* Scan through all of the global symbols defined in the object file,
3809 assigning values to the debugging symbols that need to be assigned
3810 to. Get these symbols from the minimal symbol table.
3811 Return 1 if there might still be unresolved debugging symbols, else 0. */
3812
3813 static int scan_file_globals_1 PARAMS ((struct objfile *));
3814
3815 static int
3816 scan_file_globals_1 (objfile)
3817 struct objfile *objfile;
3818 {
3819 int hash;
3820 struct minimal_symbol *msymbol;
3821 struct symbol *sym, *prev;
3822
3823 /* Avoid expensive loop through all minimal symbols if there are
3824 no unresolved symbols. */
3825 for (hash = 0; hash < HASHSIZE; hash++)
3826 {
3827 if (global_sym_chain[hash])
3828 break;
3829 }
3830 if (hash >= HASHSIZE)
3831 return 0;
3832
3833 if (objfile->msymbols == 0) /* Beware the null file. */
3834 return 1;
3835
3836 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3837 {
3838 QUIT;
3839
3840 /* Skip static symbols. */
3841 switch (MSYMBOL_TYPE (msymbol))
3842 {
3843 case mst_file_text:
3844 case mst_file_data:
3845 case mst_file_bss:
3846 continue;
3847 default:
3848 break;
3849 }
3850
3851 prev = NULL;
3852
3853 /* Get the hash index and check all the symbols
3854 under that hash index. */
3855
3856 hash = hashname (SYMBOL_NAME (msymbol));
3857
3858 for (sym = global_sym_chain[hash]; sym;)
3859 {
3860 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3861 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3862 {
3863 /* Splice this symbol out of the hash chain and
3864 assign the value we have to it. */
3865 if (prev)
3866 {
3867 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3868 }
3869 else
3870 {
3871 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3872 }
3873
3874 /* Check to see whether we need to fix up a common block. */
3875 /* Note: this code might be executed several times for
3876 the same symbol if there are multiple references. */
3877
3878 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3879 {
3880 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3881 }
3882 else
3883 {
3884 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3885 }
3886
3887 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3888
3889 if (prev)
3890 {
3891 sym = SYMBOL_VALUE_CHAIN (prev);
3892 }
3893 else
3894 {
3895 sym = global_sym_chain[hash];
3896 }
3897 }
3898 else
3899 {
3900 prev = sym;
3901 sym = SYMBOL_VALUE_CHAIN (sym);
3902 }
3903 }
3904 }
3905 return 1;
3906 }
3907
3908 /* Assign values to global debugging symbols.
3909 Search the passed objfile first, then try the runtime common symbols.
3910 Complain about any remaining unresolved symbols and remove them
3911 from the chain. */
3912
3913 void
3914 scan_file_globals (objfile)
3915 struct objfile *objfile;
3916 {
3917 int hash;
3918 struct symbol *sym, *prev;
3919
3920 if (scan_file_globals_1 (objfile) == 0)
3921 return;
3922 if (rt_common_objfile && scan_file_globals_1 (rt_common_objfile) == 0)
3923 return;
3924
3925 for (hash = 0; hash < HASHSIZE; hash++)
3926 {
3927 sym = global_sym_chain[hash];
3928 while (sym)
3929 {
3930 complain (&unresolved_sym_chain_complaint,
3931 objfile->name, SYMBOL_NAME (sym));
3932
3933 /* Change the symbol address from the misleading chain value
3934 to address zero. */
3935 prev = sym;
3936 sym = SYMBOL_VALUE_CHAIN (sym);
3937 SYMBOL_VALUE_ADDRESS (prev) = 0;
3938 }
3939 }
3940 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3941 }
3942
3943 /* Initialize anything that needs initializing when starting to read
3944 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3945 to a psymtab. */
3946
3947 void
3948 stabsread_init ()
3949 {
3950 }
3951
3952 /* Initialize anything that needs initializing when a completely new
3953 symbol file is specified (not just adding some symbols from another
3954 file, e.g. a shared library). */
3955
3956 void
3957 stabsread_new_init ()
3958 {
3959 /* Empty the hash table of global syms looking for values. */
3960 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3961 }
3962
3963 /* Initialize anything that needs initializing at the same time as
3964 start_symtab() is called. */
3965
3966 void start_stabs ()
3967 {
3968 global_stabs = NULL; /* AIX COFF */
3969 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3970 n_this_object_header_files = 1;
3971 type_vector_length = 0;
3972 type_vector = (struct type **) 0;
3973
3974 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3975 common_block_name = NULL;
3976
3977 os9k_stabs = 0;
3978 }
3979
3980 /* Call after end_symtab() */
3981
3982 void end_stabs ()
3983 {
3984 if (type_vector)
3985 {
3986 free ((char *) type_vector);
3987 }
3988 type_vector = 0;
3989 type_vector_length = 0;
3990 previous_stab_code = 0;
3991 }
3992
3993 void
3994 finish_global_stabs (objfile)
3995 struct objfile *objfile;
3996 {
3997 if (global_stabs)
3998 {
3999 patch_block_stabs (global_symbols, global_stabs, objfile);
4000 free ((PTR) global_stabs);
4001 global_stabs = NULL;
4002 }
4003 }
4004
4005 /* Initializer for this module */
4006
4007 void
4008 _initialize_stabsread ()
4009 {
4010 undef_types_allocated = 20;
4011 undef_types_length = 0;
4012 undef_types = (struct type **)
4013 xmalloc (undef_types_allocated * sizeof (struct type *));
4014 }
This page took 0.111529 seconds and 4 git commands to generate.