Thu May 21 13:14:25 1998 John Metzler <jmetzler@cygnus.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "expression.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
37 #include "libaout.h"
38 #include "aout/aout64.h"
39 #include "gdb-stabs.h"
40 #include "buildsym.h"
41 #include "complaints.h"
42 #include "demangle.h"
43 #include "language.h"
44
45 #include <ctype.h>
46
47 /* Ask stabsread.h to define the vars it normally declares `extern'. */
48 #define EXTERN /**/
49 #include "stabsread.h" /* Our own declarations */
50 #undef EXTERN
51
52 /* The routines that read and process a complete stabs for a C struct or
53 C++ class pass lists of data member fields and lists of member function
54 fields in an instance of a field_info structure, as defined below.
55 This is part of some reorganization of low level C++ support and is
56 expected to eventually go away... (FIXME) */
57
58 struct field_info
59 {
60 struct nextfield
61 {
62 struct nextfield *next;
63
64 /* This is the raw visibility from the stab. It is not checked
65 for being one of the visibilities we recognize, so code which
66 examines this field better be able to deal. */
67 int visibility;
68
69 struct field field;
70 } *list;
71 struct next_fnfieldlist
72 {
73 struct next_fnfieldlist *next;
74 struct fn_fieldlist fn_fieldlist;
75 } *fnlist;
76 };
77
78 static void
79 read_one_struct_field PARAMS ((struct field_info *, char **, char *,
80 struct type *, struct objfile *));
81
82 static char *
83 get_substring PARAMS ((char **, int));
84
85 static struct type *
86 dbx_alloc_type PARAMS ((int [2], struct objfile *));
87
88 static long read_huge_number PARAMS ((char **, int, int *));
89
90 static struct type *error_type PARAMS ((char **, struct objfile *));
91
92 static void
93 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
94 struct objfile *));
95
96 static void
97 fix_common_block PARAMS ((struct symbol *, int));
98
99 static int
100 read_type_number PARAMS ((char **, int *));
101
102 static struct type *
103 read_range_type PARAMS ((char **, int [2], struct objfile *));
104
105 static struct type *
106 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
107
108 static struct type *
109 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
110
111 static struct type *
112 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
113
114 static struct type *
115 rs6000_builtin_type PARAMS ((int));
116
117 static int
118 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
119 struct objfile *));
120
121 static int
122 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
123 struct objfile *));
124
125 static int
126 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
127 struct objfile *));
128
129 static int
130 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
131 struct objfile *));
132
133 static int
134 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
135
136 static int
137 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
138 struct objfile *));
139
140 static struct type *
141 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
142
143 static struct type *
144 read_array_type PARAMS ((char **, struct type *, struct objfile *));
145
146 static struct type **
147 read_args PARAMS ((char **, int, struct objfile *));
148
149 static int
150 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
151 struct objfile *));
152
153 /* new functions added for cfront support */
154
155 static int
156 copy_cfront_struct_fields PARAMS ((struct field_info *, struct type *,
157 struct objfile *));
158
159 static char *
160 get_cfront_method_physname PARAMS ((char *));
161
162 static int
163 read_cfront_baseclasses PARAMS ((struct field_info *, char **,
164 struct type *, struct objfile *));
165
166 static int
167 read_cfront_static_fields PARAMS ((struct field_info *, char**,
168 struct type *, struct objfile *));
169 static int
170 read_cfront_member_functions PARAMS ((struct field_info *, char **,
171 struct type *, struct objfile *));
172
173 /* end new functions added for cfront support */
174
175 static void
176 add_live_range PARAMS ((struct objfile *, struct symbol *,
177 CORE_ADDR, CORE_ADDR));
178
179 static void
180 resolve_live_range PARAMS ((struct objfile *, struct symbol *, char *));
181
182 static int
183 process_reference PARAMS ((char **string));
184
185 static CORE_ADDR
186 ref_search_value PARAMS ((int refnum));
187
188 static void
189 ref_init PARAMS ((void));
190
191 static int
192 resolve_symbol_reference PARAMS ((struct objfile *, struct symbol *, char *));
193
194 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
195 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
196
197 /* Define this as 1 if a pcc declaration of a char or short argument
198 gives the correct address. Otherwise assume pcc gives the
199 address of the corresponding int, which is not the same on a
200 big-endian machine. */
201
202 #ifndef BELIEVE_PCC_PROMOTION
203 #define BELIEVE_PCC_PROMOTION 0
204 #endif
205
206 struct complaint invalid_cpp_abbrev_complaint =
207 {"invalid C++ abbreviation `%s'", 0, 0};
208
209 struct complaint invalid_cpp_type_complaint =
210 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
211
212 struct complaint member_fn_complaint =
213 {"member function type missing, got '%c'", 0, 0};
214
215 struct complaint const_vol_complaint =
216 {"const/volatile indicator missing, got '%c'", 0, 0};
217
218 struct complaint error_type_complaint =
219 {"debug info mismatch between compiler and debugger", 0, 0};
220
221 struct complaint invalid_member_complaint =
222 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
223
224 struct complaint range_type_base_complaint =
225 {"base type %d of range type is not defined", 0, 0};
226
227 struct complaint reg_value_complaint =
228 {"register number %d too large (max %d) in symbol %s", 0, 0};
229
230 struct complaint vtbl_notfound_complaint =
231 {"virtual function table pointer not found when defining class `%s'", 0, 0};
232
233 struct complaint unrecognized_cplus_name_complaint =
234 {"Unknown C++ symbol name `%s'", 0, 0};
235
236 struct complaint rs6000_builtin_complaint =
237 {"Unknown builtin type %d", 0, 0};
238
239 struct complaint unresolved_sym_chain_complaint =
240 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
241
242 struct complaint stabs_general_complaint =
243 {"%s", 0, 0};
244
245 /* Make a list of forward references which haven't been defined. */
246
247 static struct type **undef_types;
248 static int undef_types_allocated;
249 static int undef_types_length;
250 static struct symbol *current_symbol = NULL;
251
252 /* Check for and handle cretinous stabs symbol name continuation! */
253 #define STABS_CONTINUE(pp,objfile) \
254 do { \
255 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
256 *(pp) = next_symbol_text (objfile); \
257 } while (0)
258 \f
259 /* FIXME: These probably should be our own types (like rs6000_builtin_type
260 has its own types) rather than builtin_type_*. */
261 static struct type **os9k_type_vector[] = {
262 0,
263 &builtin_type_int,
264 &builtin_type_char,
265 &builtin_type_long,
266 &builtin_type_short,
267 &builtin_type_unsigned_char,
268 &builtin_type_unsigned_short,
269 &builtin_type_unsigned_long,
270 &builtin_type_unsigned_int,
271 &builtin_type_float,
272 &builtin_type_double,
273 &builtin_type_void,
274 &builtin_type_long_double
275 };
276
277 static void os9k_init_type_vector PARAMS ((struct type **));
278
279 static void
280 os9k_init_type_vector(tv)
281 struct type **tv;
282 {
283 int i;
284 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
285 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
286 }
287
288 /* Look up a dbx type-number pair. Return the address of the slot
289 where the type for that number-pair is stored.
290 The number-pair is in TYPENUMS.
291
292 This can be used for finding the type associated with that pair
293 or for associating a new type with the pair. */
294
295 struct type **
296 dbx_lookup_type (typenums)
297 int typenums[2];
298 {
299 register int filenum = typenums[0];
300 register int index = typenums[1];
301 unsigned old_len;
302 register int real_filenum;
303 register struct header_file *f;
304 int f_orig_length;
305
306 if (filenum == -1) /* -1,-1 is for temporary types. */
307 return 0;
308
309 if (filenum < 0 || filenum >= n_this_object_header_files)
310 {
311 static struct complaint msg = {"\
312 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
313 0, 0};
314 complain (&msg, filenum, index, symnum);
315 goto error_return;
316 }
317
318 if (filenum == 0)
319 {
320 if (index < 0)
321 {
322 /* Caller wants address of address of type. We think
323 that negative (rs6k builtin) types will never appear as
324 "lvalues", (nor should they), so we stuff the real type
325 pointer into a temp, and return its address. If referenced,
326 this will do the right thing. */
327 static struct type *temp_type;
328
329 temp_type = rs6000_builtin_type(index);
330 return &temp_type;
331 }
332
333 /* Type is defined outside of header files.
334 Find it in this object file's type vector. */
335 if (index >= type_vector_length)
336 {
337 old_len = type_vector_length;
338 if (old_len == 0)
339 {
340 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
341 type_vector = (struct type **)
342 xmalloc (type_vector_length * sizeof (struct type *));
343 }
344 while (index >= type_vector_length)
345 {
346 type_vector_length *= 2;
347 }
348 type_vector = (struct type **)
349 xrealloc ((char *) type_vector,
350 (type_vector_length * sizeof (struct type *)));
351 memset (&type_vector[old_len], 0,
352 (type_vector_length - old_len) * sizeof (struct type *));
353
354 if (os9k_stabs)
355 /* Deal with OS9000 fundamental types. */
356 os9k_init_type_vector (type_vector);
357 }
358 return (&type_vector[index]);
359 }
360 else
361 {
362 real_filenum = this_object_header_files[filenum];
363
364 if (real_filenum >= N_HEADER_FILES (current_objfile))
365 {
366 struct type *temp_type;
367 struct type **temp_type_p;
368
369 warning ("GDB internal error: bad real_filenum");
370
371 error_return:
372 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
373 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
374 *temp_type_p = temp_type;
375 return temp_type_p;
376 }
377
378 f = HEADER_FILES (current_objfile) + real_filenum;
379
380 f_orig_length = f->length;
381 if (index >= f_orig_length)
382 {
383 while (index >= f->length)
384 {
385 f->length *= 2;
386 }
387 f->vector = (struct type **)
388 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
389 memset (&f->vector[f_orig_length], 0,
390 (f->length - f_orig_length) * sizeof (struct type *));
391 }
392 return (&f->vector[index]);
393 }
394 }
395
396 /* Make sure there is a type allocated for type numbers TYPENUMS
397 and return the type object.
398 This can create an empty (zeroed) type object.
399 TYPENUMS may be (-1, -1) to return a new type object that is not
400 put into the type vector, and so may not be referred to by number. */
401
402 static struct type *
403 dbx_alloc_type (typenums, objfile)
404 int typenums[2];
405 struct objfile *objfile;
406 {
407 register struct type **type_addr;
408
409 if (typenums[0] == -1)
410 {
411 return (alloc_type (objfile));
412 }
413
414 type_addr = dbx_lookup_type (typenums);
415
416 /* If we are referring to a type not known at all yet,
417 allocate an empty type for it.
418 We will fill it in later if we find out how. */
419 if (*type_addr == 0)
420 {
421 *type_addr = alloc_type (objfile);
422 }
423
424 return (*type_addr);
425 }
426
427 /* for all the stabs in a given stab vector, build appropriate types
428 and fix their symbols in given symbol vector. */
429
430 static void
431 patch_block_stabs (symbols, stabs, objfile)
432 struct pending *symbols;
433 struct pending_stabs *stabs;
434 struct objfile *objfile;
435 {
436 int ii;
437 char *name;
438 char *pp;
439 struct symbol *sym;
440
441 if (stabs)
442 {
443
444 /* for all the stab entries, find their corresponding symbols and
445 patch their types! */
446
447 for (ii = 0; ii < stabs->count; ++ii)
448 {
449 name = stabs->stab[ii];
450 pp = (char*) strchr (name, ':');
451 while (pp[1] == ':')
452 {
453 pp += 2;
454 pp = (char *)strchr(pp, ':');
455 }
456 sym = find_symbol_in_list (symbols, name, pp-name);
457 if (!sym)
458 {
459 /* FIXME-maybe: it would be nice if we noticed whether
460 the variable was defined *anywhere*, not just whether
461 it is defined in this compilation unit. But neither
462 xlc or GCC seem to need such a definition, and until
463 we do psymtabs (so that the minimal symbols from all
464 compilation units are available now), I'm not sure
465 how to get the information. */
466
467 /* On xcoff, if a global is defined and never referenced,
468 ld will remove it from the executable. There is then
469 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
470 sym = (struct symbol *)
471 obstack_alloc (&objfile->symbol_obstack,
472 sizeof (struct symbol));
473
474 memset (sym, 0, sizeof (struct symbol));
475 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
476 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
477 SYMBOL_NAME (sym) =
478 obsavestring (name, pp - name, &objfile->symbol_obstack);
479 pp += 2;
480 if (*(pp-1) == 'F' || *(pp-1) == 'f')
481 {
482 /* I don't think the linker does this with functions,
483 so as far as I know this is never executed.
484 But it doesn't hurt to check. */
485 SYMBOL_TYPE (sym) =
486 lookup_function_type (read_type (&pp, objfile));
487 }
488 else
489 {
490 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
491 }
492 add_symbol_to_list (sym, &global_symbols);
493 }
494 else
495 {
496 pp += 2;
497 if (*(pp-1) == 'F' || *(pp-1) == 'f')
498 {
499 SYMBOL_TYPE (sym) =
500 lookup_function_type (read_type (&pp, objfile));
501 }
502 else
503 {
504 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
505 }
506 }
507 }
508 }
509 }
510
511 \f
512 /* Read a number by which a type is referred to in dbx data,
513 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
514 Just a single number N is equivalent to (0,N).
515 Return the two numbers by storing them in the vector TYPENUMS.
516 TYPENUMS will then be used as an argument to dbx_lookup_type.
517
518 Returns 0 for success, -1 for error. */
519
520 static int
521 read_type_number (pp, typenums)
522 register char **pp;
523 register int *typenums;
524 {
525 int nbits;
526 if (**pp == '(')
527 {
528 (*pp)++;
529 typenums[0] = read_huge_number (pp, ',', &nbits);
530 if (nbits != 0) return -1;
531 typenums[1] = read_huge_number (pp, ')', &nbits);
532 if (nbits != 0) return -1;
533 }
534 else
535 {
536 typenums[0] = 0;
537 typenums[1] = read_huge_number (pp, 0, &nbits);
538 if (nbits != 0) return -1;
539 }
540 return 0;
541 }
542
543 \f
544 #if !defined (REG_STRUCT_HAS_ADDR)
545 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
546 #endif
547
548 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
549 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
550 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
551 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
552
553 #define CFRONT_VISIBILITY_PRIVATE '2' /* Stabs character for private field */
554 #define CFRONT_VISIBILITY_PUBLIC '1' /* Stabs character for public field */
555
556 /* This code added to support parsing of ARM/Cfront stabs strings */
557
558 /* Get substring from string up to char c, advance string pointer past
559 suibstring. */
560
561 static char *
562 get_substring (p, c)
563 char ** p;
564 int c;
565 {
566 char *str;
567 str = *p;
568 *p = strchr (*p, c);
569 if (*p)
570 {
571 **p = 0;
572 (*p)++;
573 }
574 else
575 str = 0;
576 return str;
577 }
578
579 /* Physname gets strcat'd onto sname in order to recreate the mangled
580 name (see funtion gdb_mangle_name in gdbtypes.c). For cfront, make
581 the physname look like that of g++ - take out the initial mangling
582 eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
583
584 static char *
585 get_cfront_method_physname (fname)
586 char *fname;
587 {
588 int len = 0;
589 /* FIXME would like to make this generic for g++ too, but
590 that is already handled in read_member_funcctions */
591 char * p = fname;
592
593 /* search ahead to find the start of the mangled suffix */
594 if (*p == '_' && *(p+1)=='_') /* compiler generated; probably a ctor/dtor */
595 p += 2;
596 while (p && (unsigned) ((p+1) - fname) < strlen (fname) && *(p+1) != '_')
597 p = strchr (p, '_');
598 if (!(p && *p == '_' && *(p+1) == '_'))
599 error ("Invalid mangled function name %s",fname);
600 p += 2; /* advance past '__' */
601
602 /* struct name length and name of type should come next; advance past it */
603 while (isdigit (*p))
604 {
605 len = len * 10 + (*p - '0');
606 p++;
607 }
608 p += len;
609
610 return p;
611 }
612
613 /* Read base classes within cfront class definition.
614 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
615 ^^^^^^^^^^^^^^^^^^
616
617 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
618 ^
619 */
620
621 static int
622 read_cfront_baseclasses (fip, pp, type, objfile)
623 struct field_info *fip;
624 struct objfile *objfile;
625 char ** pp;
626 struct type *type;
627 {
628 static struct complaint msg_unknown = {"\
629 Unsupported token in stabs string %s.\n",
630 0, 0};
631 static struct complaint msg_notfound = {"\
632 Unable to find base type for %s.\n",
633 0, 0};
634 int bnum = 0;
635 char * p;
636 int i;
637 struct nextfield *new;
638
639 if (**pp == ';') /* no base classes; return */
640 {
641 ++(*pp);
642 return 1;
643 }
644
645 /* first count base classes so we can allocate space before parsing */
646 for (p = *pp; p && *p && *p != ';'; p++)
647 {
648 if (*p == ' ')
649 bnum++;
650 }
651 bnum++; /* add one more for last one */
652
653 /* now parse the base classes until we get to the start of the methods
654 (code extracted and munged from read_baseclasses) */
655 ALLOCATE_CPLUS_STRUCT_TYPE (type);
656 TYPE_N_BASECLASSES(type) = bnum;
657
658 /* allocate space */
659 {
660 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
661 char *pointer;
662
663 pointer = (char *) TYPE_ALLOC (type, num_bytes);
664 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
665 }
666 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
667
668 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
669 {
670 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
671 make_cleanup (free, new);
672 memset (new, 0, sizeof (struct nextfield));
673 new -> next = fip -> list;
674 fip -> list = new;
675 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
676
677 STABS_CONTINUE (pp, objfile);
678
679 /* virtual? eg: v2@Bvir */
680 if (**pp=='v')
681 {
682 SET_TYPE_FIELD_VIRTUAL (type, i);
683 ++(*pp);
684 }
685
686 /* access? eg: 2@Bvir */
687 /* Note: protected inheritance not supported in cfront */
688 switch (*(*pp)++)
689 {
690 case CFRONT_VISIBILITY_PRIVATE:
691 new -> visibility = VISIBILITY_PRIVATE;
692 break;
693 case CFRONT_VISIBILITY_PUBLIC:
694 new -> visibility = VISIBILITY_PUBLIC;
695 break;
696 default:
697 /* Bad visibility format. Complain and treat it as
698 public. */
699 {
700 static struct complaint msg = {
701 "Unknown visibility `%c' for baseclass", 0, 0};
702 complain (&msg, new -> visibility);
703 new -> visibility = VISIBILITY_PUBLIC;
704 }
705 }
706
707 /* "@" comes next - eg: @Bvir */
708 if (**pp!='@')
709 {
710 complain (&msg_unknown, *pp);
711 return 1;
712 }
713 ++(*pp);
714
715
716 /* Set the bit offset of the portion of the object corresponding
717 to this baseclass. Always zero in the absence of
718 multiple inheritance. */
719 /* Unable to read bit position from stabs;
720 Assuming no multiple inheritance for now FIXME! */
721 /* We may have read this in the structure definition;
722 now we should fixup the members to be the actual base classes */
723 FIELD_BITPOS (new->field) = 0;
724
725 /* Get the base class name and type */
726 {
727 char * bname; /* base class name */
728 struct symbol * bsym; /* base class */
729 char * p1, * p2;
730 p1 = strchr (*pp,' ');
731 p2 = strchr (*pp,';');
732 if (p1<p2)
733 bname = get_substring (pp,' ');
734 else
735 bname = get_substring (pp,';');
736 if (!bname || !*bname)
737 {
738 complain (&msg_unknown, *pp);
739 return 1;
740 }
741 /* FIXME! attach base info to type */
742 bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0); /*demangled_name*/
743 if (bsym)
744 {
745 new -> field.type = SYMBOL_TYPE(bsym);
746 new -> field.name = type_name_no_tag (new -> field.type);
747 }
748 else
749 {
750 complain (&msg_notfound, *pp);
751 return 1;
752 }
753 }
754
755 /* If more base classes to parse, loop again.
756 We ate the last ' ' or ';' in get_substring,
757 so on exit we will have skipped the trailing ';' */
758 /* if invalid, return 0; add code to detect - FIXME! */
759 }
760 return 1;
761 }
762
763 /* read cfront member functions.
764 pp points to string starting with list of functions
765 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
766 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
767 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
768 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
769 */
770
771 static int
772 read_cfront_member_functions (fip, pp, type, objfile)
773 struct field_info *fip;
774 char **pp;
775 struct type *type;
776 struct objfile *objfile;
777 {
778 /* This code extracted from read_member_functions
779 so as to do the similar thing for our funcs */
780
781 int nfn_fields = 0;
782 int length = 0;
783 /* Total number of member functions defined in this class. If the class
784 defines two `f' functions, and one `g' function, then this will have
785 the value 3. */
786 int total_length = 0;
787 int i;
788 struct next_fnfield
789 {
790 struct next_fnfield *next;
791 struct fn_field fn_field;
792 } *sublist;
793 struct type *look_ahead_type;
794 struct next_fnfieldlist *new_fnlist;
795 struct next_fnfield *new_sublist;
796 char *main_fn_name;
797 char * fname;
798 struct symbol * ref_func = 0;
799
800 /* Process each list until we find the end of the member functions.
801 eg: p = "__ct__1AFv foo__1AFv ;;;" */
802
803 STABS_CONTINUE (pp, objfile); /* handle \\ */
804
805 while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
806 {
807 int is_static = 0;
808 int sublist_count = 0;
809 char * pname;
810 if (fname[0] == '*') /* static member */
811 {
812 is_static=1;
813 sublist_count++;
814 fname++;
815 }
816 ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0); /* demangled name */
817 if (!ref_func)
818 {
819 static struct complaint msg = {"\
820 Unable to find function symbol for %s\n",
821 0, 0};
822 complain (&msg, fname);
823 continue;
824 }
825 sublist = NULL;
826 look_ahead_type = NULL;
827 length = 0;
828
829 new_fnlist = (struct next_fnfieldlist *)
830 xmalloc (sizeof (struct next_fnfieldlist));
831 make_cleanup (free, new_fnlist);
832 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
833
834 /* The following is code to work around cfront generated stabs.
835 The stabs contains full mangled name for each field.
836 We try to demangle the name and extract the field name out of it. */
837 {
838 char *dem, *dem_p, *dem_args;
839 int dem_len;
840 dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
841 if (dem != NULL)
842 {
843 dem_p = strrchr (dem, ':');
844 if (dem_p != 0 && *(dem_p-1) == ':')
845 dem_p++;
846 /* get rid of args */
847 dem_args = strchr (dem_p, '(');
848 if (dem_args == NULL)
849 dem_len = strlen (dem_p);
850 else
851 dem_len = dem_args - dem_p;
852 main_fn_name =
853 obsavestring (dem_p, dem_len, &objfile -> type_obstack);
854 }
855 else
856 {
857 main_fn_name =
858 obsavestring (fname, strlen (fname), &objfile -> type_obstack);
859 }
860 } /* end of code for cfront work around */
861
862 new_fnlist -> fn_fieldlist.name = main_fn_name;
863
864 /*-------------------------------------------------*/
865 /* Set up the sublists
866 Sublists are stuff like args, static, visibility, etc.
867 so in ARM, we have to set that info some other way.
868 Multiple sublists happen if overloading
869 eg: foo::26=##1;:;2A.;
870 In g++, we'd loop here thru all the sublists... */
871
872 new_sublist =
873 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
874 make_cleanup (free, new_sublist);
875 memset (new_sublist, 0, sizeof (struct next_fnfield));
876
877 /* eat 1; from :;2A.; */
878 new_sublist -> fn_field.type = SYMBOL_TYPE(ref_func); /* normally takes a read_type */
879 /* Make this type look like a method stub for gdb */
880 TYPE_FLAGS (new_sublist -> fn_field.type) |= TYPE_FLAG_STUB;
881 TYPE_CODE (new_sublist -> fn_field.type) = TYPE_CODE_METHOD;
882
883 /* If this is just a stub, then we don't have the real name here. */
884 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
885 {
886 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
887 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
888 new_sublist -> fn_field.is_stub = 1;
889 }
890
891 /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
892 physname gets strcat'd in order to recreate the onto mangled name */
893 pname = get_cfront_method_physname (fname);
894 new_sublist -> fn_field.physname = savestring (pname, strlen (pname));
895
896
897 /* Set this member function's visibility fields.
898 Unable to distinguish access from stabs definition!
899 Assuming public for now. FIXME!
900 (for private, set new_sublist->fn_field.is_private = 1,
901 for public, set new_sublist->fn_field.is_protected = 1) */
902
903 /* Unable to distinguish const/volatile from stabs definition!
904 Assuming normal for now. FIXME! */
905
906 new_sublist -> fn_field.is_const = 0;
907 new_sublist -> fn_field.is_volatile = 0; /* volatile not implemented in cfront */
908
909 /* Set virtual/static function info
910 How to get vtable offsets ?
911 Assuming normal for now FIXME!!
912 For vtables, figure out from whence this virtual function came.
913 It may belong to virtual function table of
914 one of its baseclasses.
915 set:
916 new_sublist -> fn_field.voffset = vtable offset,
917 new_sublist -> fn_field.fcontext = look_ahead_type;
918 where look_ahead_type is type of baseclass */
919 if (is_static)
920 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
921 else /* normal member function. */
922 new_sublist -> fn_field.voffset = 0;
923 new_sublist -> fn_field.fcontext = 0;
924
925
926 /* Prepare new sublist */
927 new_sublist -> next = sublist;
928 sublist = new_sublist;
929 length++;
930
931 /* In g++, we loop thu sublists - now we set from functions. */
932 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
933 obstack_alloc (&objfile -> type_obstack,
934 sizeof (struct fn_field) * length);
935 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
936 sizeof (struct fn_field) * length);
937 for (i = length; (i--, sublist); sublist = sublist -> next)
938 {
939 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
940 }
941
942 new_fnlist -> fn_fieldlist.length = length;
943 new_fnlist -> next = fip -> fnlist;
944 fip -> fnlist = new_fnlist;
945 nfn_fields++;
946 total_length += length;
947 STABS_CONTINUE (pp, objfile); /* handle \\ */
948 } /* end of loop */
949
950 if (nfn_fields)
951 {
952 /* type should already have space */
953 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
954 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
955 memset (TYPE_FN_FIELDLISTS (type), 0,
956 sizeof (struct fn_fieldlist) * nfn_fields);
957 TYPE_NFN_FIELDS (type) = nfn_fields;
958 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
959 }
960
961 /* end of scope for reading member func */
962
963 /* eg: ";;" */
964
965 /* Skip trailing ';' and bump count of number of fields seen */
966 if (**pp == ';')
967 (*pp)++;
968 else
969 return 0;
970 return 1;
971 }
972
973 /* This routine fixes up partial cfront types that were created
974 while parsing the stabs. The main need for this function is
975 to add information such as methods to classes.
976 Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
977 int
978 resolve_cfront_continuation (objfile, sym, p)
979 struct objfile * objfile;
980 struct symbol * sym;
981 char * p;
982 {
983 struct symbol * ref_sym=0;
984 char * sname;
985 /* snarfed from read_struct_type */
986 struct field_info fi;
987 struct type *type;
988 struct cleanup *back_to;
989
990 /* Need to make sure that fi isn't gunna conflict with struct
991 in case struct already had some fnfs */
992 fi.list = NULL;
993 fi.fnlist = NULL;
994 back_to = make_cleanup (null_cleanup, 0);
995
996 /* We only accept structs, classes and unions at the moment.
997 Other continuation types include t (typedef), r (long dbl), ...
998 We may want to add support for them as well;
999 right now they are handled by duplicating the symbol information
1000 into the type information (see define_symbol) */
1001 if (*p != 's' /* structs */
1002 && *p != 'c' /* class */
1003 && *p != 'u') /* union */
1004 return 0; /* only handle C++ types */
1005 p++;
1006
1007 /* Get symbol typs name and validate
1008 eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
1009 sname = get_substring (&p, ';');
1010 if (!sname || strcmp (sname, SYMBOL_NAME(sym)))
1011 error ("Internal error: base symbol type name does not match\n");
1012
1013 /* Find symbol's internal gdb reference using demangled_name.
1014 This is the real sym that we want;
1015 sym was a temp hack to make debugger happy */
1016 ref_sym = lookup_symbol (SYMBOL_NAME(sym), 0, STRUCT_NAMESPACE, 0, 0);
1017 type = SYMBOL_TYPE(ref_sym);
1018
1019
1020 /* Now read the baseclasses, if any, read the regular C struct or C++
1021 class member fields, attach the fields to the type, read the C++
1022 member functions, attach them to the type, and then read any tilde
1023 field (baseclass specifier for the class holding the main vtable). */
1024
1025 if (!read_cfront_baseclasses (&fi, &p, type, objfile)
1026 /* g++ does this next, but cfront already did this:
1027 || !read_struct_fields (&fi, &p, type, objfile) */
1028 || !copy_cfront_struct_fields (&fi, type, objfile)
1029 || !read_cfront_member_functions (&fi, &p, type, objfile)
1030 || !read_cfront_static_fields (&fi, &p, type, objfile)
1031 || !attach_fields_to_type (&fi, type, objfile)
1032 || !attach_fn_fields_to_type (&fi, type)
1033 /* g++ does this next, but cfront doesn't seem to have this:
1034 || !read_tilde_fields (&fi, &p, type, objfile) */
1035 )
1036 {
1037 type = error_type (&p, objfile);
1038 }
1039
1040 do_cleanups (back_to);
1041 return 0;
1042 }
1043 /* End of code added to support parsing of ARM/Cfront stabs strings */
1044
1045
1046 /* This routine fixes up symbol references/aliases to point to the original
1047 symbol definition. */
1048
1049 static int
1050 resolve_symbol_reference (objfile, sym, p)
1051 struct objfile *objfile;
1052 struct symbol *sym;
1053 char *p;
1054 {
1055 int refnum;
1056 struct symbol *ref_sym=0;
1057 struct alias_list *alias;
1058
1059 /* If this is not a symbol reference return now. */
1060 if (*p != '#')
1061 return 0;
1062
1063 /* Use "#<num>" as the name; we'll fix the name later.
1064 We stored the original symbol name as "#<id>=<name>"
1065 so we can now search for "#<id>" to resolving the reference.
1066 We'll fix the names later by removing the "#<id>" or "#<id>=" */
1067
1068 /*---------------------------------------------------------*/
1069 /* Get the reference id number, and
1070 advance p past the names so we can parse the rest.
1071 eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
1072 /*---------------------------------------------------------*/
1073
1074 /* This gets reference name from string. sym may not have a name. */
1075
1076 /* Get the reference number associated with the reference id in the
1077 gdb stab string. From that reference number, get the main/primary
1078 symbol for this alias. */
1079 refnum = process_reference (&p);
1080 ref_sym = ref_search (refnum);
1081 if (!ref_sym)
1082 error ("error: symbol for reference not found.\n");
1083
1084
1085 /* Parse the stab of the referencing symbol
1086 now that we have the referenced symbol.
1087 Add it as a new symbol and a link back to the referenced symbol.
1088 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1089
1090
1091 /* If the stab symbol table and string contain:
1092 RSYM 0 5 00000000 868 #15=z:r(0,1)
1093 LBRAC 0 0 00000000 899 #5=
1094 SLINE 0 16 00000003 923 #6=
1095 Then the same symbols can be later referenced by:
1096 RSYM 0 5 00000000 927 #15:r(0,1);l(#5,#6)
1097 This is used in live range splitting to:
1098 1) specify that a symbol (#15) is actually just a new storage
1099 class for a symbol (#15=z) which was previously defined.
1100 2) specify that the beginning and ending ranges for a symbol
1101 (#15) are the values of the beginning (#5) and ending (#6)
1102 symbols. */
1103
1104 /* Read number as reference id.
1105 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1106 /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
1107 in case of "l(0,0)"? */
1108
1109 /*--------------------------------------------------*/
1110 /* Add this symbol to the reference list. */
1111 /*--------------------------------------------------*/
1112
1113 alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
1114 sizeof (struct alias_list));
1115 if (!alias)
1116 error ("Unable to allocate alias list memory");
1117
1118 alias->next = 0;
1119 alias->sym = sym;
1120
1121 if (!SYMBOL_ALIASES (ref_sym))
1122 {
1123 SYMBOL_ALIASES (ref_sym) = alias;
1124 }
1125 else
1126 {
1127 struct alias_list *temp;
1128
1129 /* Get to the end of the list. */
1130 for (temp = SYMBOL_ALIASES (ref_sym);
1131 temp->next;
1132 temp = temp->next);
1133 ;
1134 temp->next = alias;
1135 }
1136
1137 /* Want to fix up name so that other functions (eg. valops)
1138 will correctly print the name.
1139 Don't add_symbol_to_list so that lookup_symbol won't find it.
1140 nope... needed for fixups. */
1141 SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
1142
1143 /* Done! */
1144 return 0;
1145 }
1146
1147 #define MAX_CHUNK_REFS 100
1148 #define REF_CHUNK_SIZE \
1149 MAX_CHUNK_REFS * sizeof (struct ref_map_s)
1150 #define REF_MAP_SIZE(ref_chunk) \
1151 ref_chunk * REF_CHUNK_SIZE
1152
1153 /* Structure for storing pointers to reference definitions for fast lookup
1154 during "process_later". */
1155 static struct ref_map_s
1156 {
1157 char *stabs;
1158 CORE_ADDR value;
1159 struct symbol *sym;
1160 } *ref_map;
1161
1162 /* Ptr to free cell in chunk's linked list. */
1163 static int ref_count = 0;
1164
1165 /* Number of chunks malloced. */
1166 static int ref_chunk = 0;
1167
1168 /* Initialize our list of references.
1169 This should be called before any symbol table is read. */
1170
1171 static void
1172 ref_init ()
1173 {
1174 ref_count = 0;
1175 ref_chunk = 0;
1176 }
1177
1178 /* Create array of pointers mapping refids to symbols and stab strings.
1179 Add pointers to reference definition symbols and/or their values as we
1180 find them, using their reference numbers as our index.
1181 These will be used later when we resolve references. */
1182 void
1183 ref_add (refnum, sym, stabs, value)
1184 int refnum;
1185 struct symbol *sym;
1186 char *stabs;
1187 CORE_ADDR value;
1188 {
1189 if (ref_count == 0)
1190 ref_init ();
1191 if (refnum >= ref_count)
1192 ref_count = refnum + 1;
1193 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
1194 {
1195 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
1196 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
1197 ref_map = (struct ref_map_s *)
1198 xrealloc (ref_map, REF_MAP_SIZE(ref_chunk + new_chunks));
1199 if (!ref_map)
1200 error ("no more free slots in chain\n");
1201 memset (ref_map + REF_MAP_SIZE(ref_chunk), 0, new_chunks * REF_CHUNK_SIZE);
1202 ref_chunk += new_chunks;
1203 }
1204 ref_map[refnum].stabs = stabs;
1205 ref_map[refnum].sym = sym;
1206 ref_map[refnum].value = value;
1207 }
1208
1209 /* Return defined sym for the reference REFNUM. */
1210 struct symbol *
1211 ref_search (refnum)
1212 int refnum;
1213 {
1214 if (refnum < 0 || refnum > ref_count)
1215 return 0;
1216 return ref_map[refnum].sym;
1217 }
1218
1219 /* Return value for the reference REFNUM. */
1220
1221 static CORE_ADDR
1222 ref_search_value (refnum)
1223 int refnum;
1224 {
1225 if (refnum < 0 || refnum > ref_count)
1226 return 0;
1227 return ref_map[refnum].value;
1228 }
1229
1230 /* Parse a reference id in STRING and return the resulting
1231 reference number. Move STRING beyond the reference id. */
1232
1233 static int
1234 process_reference (string)
1235 char **string;
1236 {
1237 char *p;
1238 int refnum = 0;
1239
1240 if (**string != '#')
1241 return 0;
1242
1243 /* Advance beyond the initial '#'. */
1244 p = *string + 1;
1245
1246 /* Read number as reference id. */
1247 while (*p && isdigit (*p))
1248 {
1249 refnum = refnum * 10 + *p - '0';
1250 p++;
1251 }
1252 *string = p;
1253 return refnum;
1254 }
1255
1256 /* If STRING defines a reference, store away a pointer to the reference
1257 definition for later use. Return the reference number. */
1258
1259 int
1260 symbol_reference_defined (string)
1261 char **string;
1262 {
1263 char *p = *string;
1264 int refnum = 0;
1265
1266 refnum = process_reference (&p);
1267
1268 /* Defining symbols end in '=' */
1269 if (*p == '=')
1270 {
1271 /* Symbol is being defined here. */
1272 *string = p + 1;
1273 return refnum;
1274 }
1275 else
1276 {
1277 /* Must be a reference. Either the symbol has already been defined,
1278 or this is a forward reference to it. */
1279 *string = p;
1280 return -1;
1281 }
1282 }
1283
1284 /* ARGSUSED */
1285 struct symbol *
1286 define_symbol (valu, string, desc, type, objfile)
1287 CORE_ADDR valu;
1288 char *string;
1289 int desc;
1290 int type;
1291 struct objfile *objfile;
1292 {
1293 register struct symbol *sym;
1294 char *p = (char *) strchr (string, ':');
1295 int deftype;
1296 int synonym = 0;
1297 register int i;
1298
1299 /* We would like to eliminate nameless symbols, but keep their types.
1300 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1301 to type 2, but, should not create a symbol to address that type. Since
1302 the symbol will be nameless, there is no way any user can refer to it. */
1303
1304 int nameless;
1305
1306 /* Ignore syms with empty names. */
1307 if (string[0] == 0)
1308 return 0;
1309
1310 /* Ignore old-style symbols from cc -go */
1311 if (p == 0)
1312 return 0;
1313
1314 while (p[1] == ':')
1315 {
1316 p += 2;
1317 p = strchr (p, ':');
1318 }
1319
1320 /* If a nameless stab entry, all we need is the type, not the symbol.
1321 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
1322 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
1323
1324 current_symbol = sym = (struct symbol *)
1325 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1326 memset (sym, 0, sizeof (struct symbol));
1327
1328 switch (type & N_TYPE)
1329 {
1330 case N_TEXT:
1331 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
1332 break;
1333 case N_DATA:
1334 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
1335 break;
1336 case N_BSS:
1337 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
1338 break;
1339 }
1340
1341 if (processing_gcc_compilation)
1342 {
1343 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1344 number of bytes occupied by a type or object, which we ignore. */
1345 SYMBOL_LINE(sym) = desc;
1346 }
1347 else
1348 {
1349 SYMBOL_LINE(sym) = 0; /* unknown */
1350 }
1351
1352 if (is_cplus_marker (string[0]))
1353 {
1354 /* Special GNU C++ names. */
1355 switch (string[1])
1356 {
1357 case 't':
1358 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1359 &objfile -> symbol_obstack);
1360 break;
1361
1362 case 'v': /* $vtbl_ptr_type */
1363 /* Was: SYMBOL_NAME (sym) = "vptr"; */
1364 goto normal;
1365
1366 case 'e':
1367 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1368 &objfile -> symbol_obstack);
1369 break;
1370
1371 case '_':
1372 /* This was an anonymous type that was never fixed up. */
1373 goto normal;
1374
1375 #ifdef STATIC_TRANSFORM_NAME
1376 case 'X':
1377 /* SunPRO (3.0 at least) static variable encoding. */
1378 goto normal;
1379 #endif
1380
1381 default:
1382 complain (&unrecognized_cplus_name_complaint, string);
1383 goto normal; /* Do *something* with it */
1384 }
1385 }
1386 else if (string[0] == '#')
1387 {
1388 /* Special GNU C extension for referencing symbols. */
1389 char *s;
1390 int refnum, nlen;
1391
1392 /* If STRING defines a new reference id, then add it to the
1393 reference map. Else it must be referring to a previously
1394 defined symbol, so add it to the alias list of the previously
1395 defined symbol. */
1396 s = string;
1397 refnum = symbol_reference_defined (&s);
1398 if (refnum >= 0)
1399 ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
1400 else
1401 resolve_symbol_reference (objfile, sym, string);
1402
1403 /* S..P contains the name of the symbol. We need to store
1404 the correct name into SYMBOL_NAME. */
1405 nlen = p - s;
1406 if (refnum >= 0)
1407 {
1408 if (nlen > 0)
1409 {
1410 SYMBOL_NAME (sym) = (char *)
1411 obstack_alloc (&objfile -> symbol_obstack, nlen);
1412 strncpy (SYMBOL_NAME (sym), s, nlen);
1413 SYMBOL_NAME (sym)[nlen] = '\0';
1414 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1415 }
1416 else
1417 /* FIXME! Want SYMBOL_NAME (sym) = 0;
1418 Get error if leave name 0. So give it something. */
1419 {
1420 nlen = p - string;
1421 SYMBOL_NAME (sym) = (char *)
1422 obstack_alloc (&objfile -> symbol_obstack, nlen);
1423 strncpy (SYMBOL_NAME (sym), string, nlen);
1424 SYMBOL_NAME (sym)[nlen] = '\0';
1425 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1426 }
1427 }
1428 /* Advance STRING beyond the reference id. */
1429 string = s;
1430 }
1431 else
1432 {
1433 normal:
1434 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
1435 SYMBOL_NAME (sym) = (char *)
1436 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
1437 /* Open-coded memcpy--saves function call time. */
1438 /* FIXME: Does it really? Try replacing with simple strcpy and
1439 try it on an executable with a large symbol table. */
1440 /* FIXME: considering that gcc can open code memcpy anyway, I
1441 doubt it. xoxorich. */
1442 {
1443 register char *p1 = string;
1444 register char *p2 = SYMBOL_NAME (sym);
1445 while (p1 != p)
1446 {
1447 *p2++ = *p1++;
1448 }
1449 *p2++ = '\0';
1450 }
1451
1452 /* If this symbol is from a C++ compilation, then attempt to cache the
1453 demangled form for future reference. This is a typical time versus
1454 space tradeoff, that was decided in favor of time because it sped up
1455 C++ symbol lookups by a factor of about 20. */
1456
1457 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1458 }
1459 p++;
1460
1461 /* Determine the type of name being defined. */
1462 #if 0
1463 /* Getting GDB to correctly skip the symbol on an undefined symbol
1464 descriptor and not ever dump core is a very dodgy proposition if
1465 we do things this way. I say the acorn RISC machine can just
1466 fix their compiler. */
1467 /* The Acorn RISC machine's compiler can put out locals that don't
1468 start with "234=" or "(3,4)=", so assume anything other than the
1469 deftypes we know how to handle is a local. */
1470 if (!strchr ("cfFGpPrStTvVXCR", *p))
1471 #else
1472 if (isdigit (*p) || *p == '(' || *p == '-')
1473 #endif
1474 deftype = 'l';
1475 else
1476 deftype = *p++;
1477
1478 switch (deftype)
1479 {
1480 case 'c':
1481 /* c is a special case, not followed by a type-number.
1482 SYMBOL:c=iVALUE for an integer constant symbol.
1483 SYMBOL:c=rVALUE for a floating constant symbol.
1484 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1485 e.g. "b:c=e6,0" for "const b = blob1"
1486 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1487 if (*p != '=')
1488 {
1489 SYMBOL_CLASS (sym) = LOC_CONST;
1490 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1491 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1492 add_symbol_to_list (sym, &file_symbols);
1493 return sym;
1494 }
1495 ++p;
1496 switch (*p++)
1497 {
1498 case 'r':
1499 {
1500 double d = atof (p);
1501 char *dbl_valu;
1502
1503 /* FIXME-if-picky-about-floating-accuracy: Should be using
1504 target arithmetic to get the value. real.c in GCC
1505 probably has the necessary code. */
1506
1507 /* FIXME: lookup_fundamental_type is a hack. We should be
1508 creating a type especially for the type of float constants.
1509 Problem is, what type should it be?
1510
1511 Also, what should the name of this type be? Should we
1512 be using 'S' constants (see stabs.texinfo) instead? */
1513
1514 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1515 FT_DBL_PREC_FLOAT);
1516 dbl_valu = (char *)
1517 obstack_alloc (&objfile -> symbol_obstack,
1518 TYPE_LENGTH (SYMBOL_TYPE (sym)));
1519 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
1520 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1521 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1522 }
1523 break;
1524 case 'i':
1525 {
1526 /* Defining integer constants this way is kind of silly,
1527 since 'e' constants allows the compiler to give not
1528 only the value, but the type as well. C has at least
1529 int, long, unsigned int, and long long as constant
1530 types; other languages probably should have at least
1531 unsigned as well as signed constants. */
1532
1533 /* We just need one int constant type for all objfiles.
1534 It doesn't depend on languages or anything (arguably its
1535 name should be a language-specific name for a type of
1536 that size, but I'm inclined to say that if the compiler
1537 wants a nice name for the type, it can use 'e'). */
1538 static struct type *int_const_type;
1539
1540 /* Yes, this is as long as a *host* int. That is because we
1541 use atoi. */
1542 if (int_const_type == NULL)
1543 int_const_type =
1544 init_type (TYPE_CODE_INT,
1545 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
1546 "integer constant",
1547 (struct objfile *)NULL);
1548 SYMBOL_TYPE (sym) = int_const_type;
1549 SYMBOL_VALUE (sym) = atoi (p);
1550 SYMBOL_CLASS (sym) = LOC_CONST;
1551 }
1552 break;
1553 case 'e':
1554 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
1555 can be represented as integral.
1556 e.g. "b:c=e6,0" for "const b = blob1"
1557 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1558 {
1559 SYMBOL_CLASS (sym) = LOC_CONST;
1560 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1561
1562 if (*p != ',')
1563 {
1564 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1565 break;
1566 }
1567 ++p;
1568
1569 /* If the value is too big to fit in an int (perhaps because
1570 it is unsigned), or something like that, we silently get
1571 a bogus value. The type and everything else about it is
1572 correct. Ideally, we should be using whatever we have
1573 available for parsing unsigned and long long values,
1574 however. */
1575 SYMBOL_VALUE (sym) = atoi (p);
1576 }
1577 break;
1578 default:
1579 {
1580 SYMBOL_CLASS (sym) = LOC_CONST;
1581 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1582 }
1583 }
1584 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1585 add_symbol_to_list (sym, &file_symbols);
1586 return sym;
1587
1588 case 'C':
1589 /* The name of a caught exception. */
1590 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1591 SYMBOL_CLASS (sym) = LOC_LABEL;
1592 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1593 SYMBOL_VALUE_ADDRESS (sym) = valu;
1594 add_symbol_to_list (sym, &local_symbols);
1595 break;
1596
1597 case 'f':
1598 /* A static function definition. */
1599 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1600 SYMBOL_CLASS (sym) = LOC_BLOCK;
1601 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1602 add_symbol_to_list (sym, &file_symbols);
1603 /* fall into process_function_types. */
1604
1605 process_function_types:
1606 /* Function result types are described as the result type in stabs.
1607 We need to convert this to the function-returning-type-X type
1608 in GDB. E.g. "int" is converted to "function returning int". */
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
1610 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
1611
1612 /* All functions in C++ have prototypes. */
1613 if (SYMBOL_LANGUAGE (sym) == language_cplus)
1614 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
1615
1616 /* fall into process_prototype_types */
1617
1618 process_prototype_types:
1619 /* Sun acc puts declared types of arguments here. */
1620 if (*p == ';')
1621 {
1622 struct type *ftype = SYMBOL_TYPE (sym);
1623 int nsemi = 0;
1624 int nparams = 0;
1625 char *p1 = p;
1626
1627 /* Obtain a worst case guess for the number of arguments
1628 by counting the semicolons. */
1629 while (*p1)
1630 {
1631 if (*p1++ == ';')
1632 nsemi++;
1633 }
1634
1635 /* Allocate parameter information fields and fill them in. */
1636 TYPE_FIELDS (ftype) = (struct field *)
1637 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
1638 while (*p++ == ';')
1639 {
1640 struct type *ptype;
1641
1642 /* A type number of zero indicates the start of varargs.
1643 FIXME: GDB currently ignores vararg functions. */
1644 if (p[0] == '0' && p[1] == '\0')
1645 break;
1646 ptype = read_type (&p, objfile);
1647
1648 /* The Sun compilers mark integer arguments, which should
1649 be promoted to the width of the calling conventions, with
1650 a type which references itself. This type is turned into
1651 a TYPE_CODE_VOID type by read_type, and we have to turn
1652 it back into builtin_type_int here.
1653 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
1654 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1655 ptype = builtin_type_int;
1656 TYPE_FIELD_TYPE (ftype, nparams++) = ptype;
1657 }
1658 TYPE_NFIELDS (ftype) = nparams;
1659 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
1660 }
1661 break;
1662
1663 case 'F':
1664 /* A global function definition. */
1665 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1666 SYMBOL_CLASS (sym) = LOC_BLOCK;
1667 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1668 add_symbol_to_list (sym, &global_symbols);
1669 goto process_function_types;
1670
1671 case 'G':
1672 /* For a class G (global) symbol, it appears that the
1673 value is not correct. It is necessary to search for the
1674 corresponding linker definition to find the value.
1675 These definitions appear at the end of the namelist. */
1676 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1677 SYMBOL_CLASS (sym) = LOC_STATIC;
1678 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1679 /* Don't add symbol references to global_sym_chain.
1680 Symbol references don't have valid names and wont't match up with
1681 minimal symbols when the global_sym_chain is relocated.
1682 We'll fixup symbol references when we fixup the defining symbol. */
1683 if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
1684 {
1685 i = hashname (SYMBOL_NAME (sym));
1686 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1687 global_sym_chain[i] = sym;
1688 }
1689 add_symbol_to_list (sym, &global_symbols);
1690 break;
1691
1692 /* This case is faked by a conditional above,
1693 when there is no code letter in the dbx data.
1694 Dbx data never actually contains 'l'. */
1695 case 's':
1696 case 'l':
1697 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1698 SYMBOL_CLASS (sym) = LOC_LOCAL;
1699 SYMBOL_VALUE (sym) = valu;
1700 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1701 add_symbol_to_list (sym, &local_symbols);
1702 break;
1703
1704 case 'p':
1705 if (*p == 'F')
1706 /* pF is a two-letter code that means a function parameter in Fortran.
1707 The type-number specifies the type of the return value.
1708 Translate it into a pointer-to-function type. */
1709 {
1710 p++;
1711 SYMBOL_TYPE (sym)
1712 = lookup_pointer_type
1713 (lookup_function_type (read_type (&p, objfile)));
1714 }
1715 else
1716 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1717
1718 /* Normally this is a parameter, a LOC_ARG. On the i960, it
1719 can also be a LOC_LOCAL_ARG depending on symbol type. */
1720 #ifndef DBX_PARM_SYMBOL_CLASS
1721 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
1722 #endif
1723
1724 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
1725 SYMBOL_VALUE (sym) = valu;
1726 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1727 add_symbol_to_list (sym, &local_symbols);
1728
1729 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
1730 {
1731 /* On little-endian machines, this crud is never necessary,
1732 and, if the extra bytes contain garbage, is harmful. */
1733 break;
1734 }
1735
1736 /* If it's gcc-compiled, if it says `short', believe it. */
1737 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1738 break;
1739
1740 #if !BELIEVE_PCC_PROMOTION
1741 {
1742 /* This is the signed type which arguments get promoted to. */
1743 static struct type *pcc_promotion_type;
1744 /* This is the unsigned type which arguments get promoted to. */
1745 static struct type *pcc_unsigned_promotion_type;
1746
1747 /* Call it "int" because this is mainly C lossage. */
1748 if (pcc_promotion_type == NULL)
1749 pcc_promotion_type =
1750 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1751 0, "int", NULL);
1752
1753 if (pcc_unsigned_promotion_type == NULL)
1754 pcc_unsigned_promotion_type =
1755 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1756 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
1757
1758 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
1759 /* This macro is defined on machines (e.g. sparc) where
1760 we should believe the type of a PCC 'short' argument,
1761 but shouldn't believe the address (the address is
1762 the address of the corresponding int).
1763
1764 My guess is that this correction, as opposed to changing
1765 the parameter to an 'int' (as done below, for PCC
1766 on most machines), is the right thing to do
1767 on all machines, but I don't want to risk breaking
1768 something that already works. On most PCC machines,
1769 the sparc problem doesn't come up because the calling
1770 function has to zero the top bytes (not knowing whether
1771 the called function wants an int or a short), so there
1772 is little practical difference between an int and a short
1773 (except perhaps what happens when the GDB user types
1774 "print short_arg = 0x10000;").
1775
1776 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
1777 actually produces the correct address (we don't need to fix it
1778 up). I made this code adapt so that it will offset the symbol
1779 if it was pointing at an int-aligned location and not
1780 otherwise. This way you can use the same gdb for 4.0.x and
1781 4.1 systems.
1782
1783 If the parameter is shorter than an int, and is integral
1784 (e.g. char, short, or unsigned equivalent), and is claimed to
1785 be passed on an integer boundary, don't believe it! Offset the
1786 parameter's address to the tail-end of that integer. */
1787
1788 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1789 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1790 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1791 {
1792 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1793 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1794 }
1795 break;
1796
1797 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
1798
1799 /* If PCC says a parameter is a short or a char,
1800 it is really an int. */
1801 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1802 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1803 {
1804 SYMBOL_TYPE (sym) =
1805 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1806 ? pcc_unsigned_promotion_type
1807 : pcc_promotion_type;
1808 }
1809 break;
1810
1811 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
1812 }
1813 #endif /* !BELIEVE_PCC_PROMOTION. */
1814
1815 case 'P':
1816 /* acc seems to use P to declare the prototypes of functions that
1817 are referenced by this file. gdb is not prepared to deal
1818 with this extra information. FIXME, it ought to. */
1819 if (type == N_FUN)
1820 {
1821 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1822 goto process_prototype_types;
1823 }
1824 /*FALLTHROUGH*/
1825
1826 case 'R':
1827 /* Parameter which is in a register. */
1828 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1829 SYMBOL_CLASS (sym) = LOC_REGPARM;
1830 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1831 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1832 {
1833 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1834 SYMBOL_SOURCE_NAME (sym));
1835 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1836 }
1837 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1838 add_symbol_to_list (sym, &local_symbols);
1839 break;
1840
1841 case 'r':
1842 /* Register variable (either global or local). */
1843 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1844 SYMBOL_CLASS (sym) = LOC_REGISTER;
1845 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1846 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1847 {
1848 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1849 SYMBOL_SOURCE_NAME (sym));
1850 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1851 }
1852 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1853 if (within_function)
1854 {
1855 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
1856 name to represent an argument passed in a register.
1857 GCC uses 'P' for the same case. So if we find such a symbol pair
1858 we combine it into one 'P' symbol. For Sun cc we need to do this
1859 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
1860 the 'p' symbol even if it never saves the argument onto the stack.
1861
1862 On most machines, we want to preserve both symbols, so that
1863 we can still get information about what is going on with the
1864 stack (VAX for computing args_printed, using stack slots instead
1865 of saved registers in backtraces, etc.).
1866
1867 Note that this code illegally combines
1868 main(argc) struct foo argc; { register struct foo argc; }
1869 but this case is considered pathological and causes a warning
1870 from a decent compiler. */
1871
1872 if (local_symbols
1873 && local_symbols->nsyms > 0
1874 #ifndef USE_REGISTER_NOT_ARG
1875 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1876 SYMBOL_TYPE (sym))
1877 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1878 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1879 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1880 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1881 #endif
1882 )
1883 {
1884 struct symbol *prev_sym;
1885 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1886 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1887 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1888 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1889 {
1890 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1891 /* Use the type from the LOC_REGISTER; that is the type
1892 that is actually in that register. */
1893 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1894 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1895 sym = prev_sym;
1896 break;
1897 }
1898 }
1899 add_symbol_to_list (sym, &local_symbols);
1900 }
1901 else
1902 add_symbol_to_list (sym, &file_symbols);
1903 break;
1904
1905 case 'S':
1906 /* Static symbol at top level of file */
1907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1908 SYMBOL_CLASS (sym) = LOC_STATIC;
1909 SYMBOL_VALUE_ADDRESS (sym) = valu;
1910 #ifdef STATIC_TRANSFORM_NAME
1911 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
1912 {
1913 struct minimal_symbol *msym;
1914 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1915 if (msym != NULL)
1916 {
1917 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1918 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1919 }
1920 }
1921 #endif
1922 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1923 add_symbol_to_list (sym, &file_symbols);
1924 break;
1925
1926 case 't':
1927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1928
1929 /* For a nameless type, we don't want a create a symbol, thus we
1930 did not use `sym'. Return without further processing. */
1931 if (nameless) return NULL;
1932
1933 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1934 SYMBOL_VALUE (sym) = valu;
1935 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1936 /* C++ vagaries: we may have a type which is derived from
1937 a base type which did not have its name defined when the
1938 derived class was output. We fill in the derived class's
1939 base part member's name here in that case. */
1940 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1941 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1942 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1943 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1944 {
1945 int j;
1946 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1947 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1948 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1949 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1950 }
1951
1952 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1953 {
1954 /* gcc-2.6 or later (when using -fvtable-thunks)
1955 emits a unique named type for a vtable entry.
1956 Some gdb code depends on that specific name. */
1957 extern const char vtbl_ptr_name[];
1958
1959 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1960 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1961 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1962 {
1963 /* If we are giving a name to a type such as "pointer to
1964 foo" or "function returning foo", we better not set
1965 the TYPE_NAME. If the program contains "typedef char
1966 *caddr_t;", we don't want all variables of type char
1967 * to print as caddr_t. This is not just a
1968 consequence of GDB's type management; PCC and GCC (at
1969 least through version 2.4) both output variables of
1970 either type char * or caddr_t with the type number
1971 defined in the 't' symbol for caddr_t. If a future
1972 compiler cleans this up it GDB is not ready for it
1973 yet, but if it becomes ready we somehow need to
1974 disable this check (without breaking the PCC/GCC2.4
1975 case).
1976
1977 Sigh.
1978
1979 Fortunately, this check seems not to be necessary
1980 for anything except pointers or functions. */
1981 }
1982 else
1983 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1984 }
1985
1986 add_symbol_to_list (sym, &file_symbols);
1987 break;
1988
1989 case 'T':
1990 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1991 by 't' which means we are typedef'ing it as well. */
1992 synonym = *p == 't';
1993
1994 if (synonym)
1995 p++;
1996 /* The semantics of C++ state that "struct foo { ... }" also defines
1997 a typedef for "foo". Unfortunately, cfront never makes the typedef
1998 when translating C++ into C. We make the typedef here so that
1999 "ptype foo" works as expected for cfront translated code. */
2000 else if (current_subfile->language == language_cplus)
2001 synonym = 1;
2002
2003 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2004
2005 /* For a nameless type, we don't want a create a symbol, thus we
2006 did not use `sym'. Return without further processing. */
2007 if (nameless) return NULL;
2008
2009 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2010 SYMBOL_VALUE (sym) = valu;
2011 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2012 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
2013 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
2014 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
2015 add_symbol_to_list (sym, &file_symbols);
2016
2017 if (synonym)
2018 {
2019 /* Clone the sym and then modify it. */
2020 register struct symbol *typedef_sym = (struct symbol *)
2021 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2022 *typedef_sym = *sym;
2023 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
2024 SYMBOL_VALUE (typedef_sym) = valu;
2025 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
2026 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
2027 TYPE_NAME (SYMBOL_TYPE (sym))
2028 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
2029 add_symbol_to_list (typedef_sym, &file_symbols);
2030 }
2031 break;
2032
2033 case 'V':
2034 /* Static symbol of local scope */
2035 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2036 SYMBOL_CLASS (sym) = LOC_STATIC;
2037 SYMBOL_VALUE_ADDRESS (sym) = valu;
2038 #ifdef STATIC_TRANSFORM_NAME
2039 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
2040 {
2041 struct minimal_symbol *msym;
2042 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
2043 if (msym != NULL)
2044 {
2045 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
2046 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
2047 }
2048 }
2049 #endif
2050 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2051 if (os9k_stabs)
2052 add_symbol_to_list (sym, &global_symbols);
2053 else
2054 add_symbol_to_list (sym, &local_symbols);
2055 break;
2056
2057 case 'v':
2058 /* Reference parameter */
2059 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2060 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2061 SYMBOL_VALUE (sym) = valu;
2062 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2063 add_symbol_to_list (sym, &local_symbols);
2064 break;
2065
2066 case 'a':
2067 /* Reference parameter which is in a register. */
2068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2069 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2070 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
2071 if (SYMBOL_VALUE (sym) >= NUM_REGS)
2072 {
2073 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
2074 SYMBOL_SOURCE_NAME (sym));
2075 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
2076 }
2077 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2078 add_symbol_to_list (sym, &local_symbols);
2079 break;
2080
2081 case 'X':
2082 /* This is used by Sun FORTRAN for "function result value".
2083 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
2084 that Pascal uses it too, but when I tried it Pascal used
2085 "x:3" (local symbol) instead. */
2086 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2087 SYMBOL_CLASS (sym) = LOC_LOCAL;
2088 SYMBOL_VALUE (sym) = valu;
2089 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2090 add_symbol_to_list (sym, &local_symbols);
2091 break;
2092
2093 /* New code added to support cfront stabs strings.
2094 Note: case 'P' already handled above */
2095 case 'Z':
2096 /* Cfront type continuation coming up!
2097 Find the original definition and add to it.
2098 We'll have to do this for the typedef too,
2099 since we cloned the symbol to define a type in read_type.
2100 Stabs info examples:
2101 __1C :Ztl
2102 foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
2103 C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
2104 where C is the name of the class.
2105 Unfortunately, we can't lookup the original symbol yet 'cuz
2106 we haven't finished reading all the symbols.
2107 Instead, we save it for processing later */
2108 process_later (sym, p, resolve_cfront_continuation);
2109 SYMBOL_TYPE (sym) = error_type (&p, objfile); /* FIXME! change later */
2110 SYMBOL_CLASS (sym) = LOC_CONST;
2111 SYMBOL_VALUE (sym) = 0;
2112 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2113 /* Don't add to list - we'll delete it later when
2114 we add the continuation to the real sym */
2115 return sym;
2116 /* End of new code added to support cfront stabs strings */
2117
2118 default:
2119 SYMBOL_TYPE (sym) = error_type (&p, objfile);
2120 SYMBOL_CLASS (sym) = LOC_CONST;
2121 SYMBOL_VALUE (sym) = 0;
2122 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2123 add_symbol_to_list (sym, &file_symbols);
2124 break;
2125 }
2126
2127 /* When passing structures to a function, some systems sometimes pass
2128 the address in a register, not the structure itself. */
2129
2130 if (REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
2131 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
2132 {
2133 struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
2134
2135 if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
2136 || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
2137 || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
2138 || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
2139 {
2140 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
2141 LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
2142 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
2143 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2144 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
2145 and subsequent arguments on the sparc, for example). */
2146 else if (SYMBOL_CLASS (sym) == LOC_ARG)
2147 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2148 }
2149 }
2150
2151 /* Is there more to parse? For example LRS/alias information? */
2152 while (*p && *p == ';')
2153 {
2154 p++;
2155 if (*p && *p == 'l')
2156 {
2157 /* GNU extensions for live range splitting may be appended to
2158 the end of the stab string. eg. "l(#1,#2);l(#3,#5)" */
2159
2160 /* Resolve the live range and add it to SYM's live range list. */
2161 resolve_live_range (objfile, sym, p);
2162
2163 /* Find end of live range info. */
2164 p = strchr (p, ')');
2165 if (!*p || *p != ')')
2166 error ("Internal error: live range format not recognized.\n");
2167 p++;
2168 }
2169 }
2170 return sym;
2171 }
2172
2173 /* Add the live range found in P to the symbol SYM in objfile OBJFILE. */
2174
2175 static void
2176 resolve_live_range (objfile, sym, p)
2177 struct objfile * objfile;
2178 struct symbol *sym;
2179 char *p;
2180 {
2181 int refnum;
2182 CORE_ADDR start, end;
2183
2184 /* Sanity check the beginning of the stabs string. */
2185 if (!*p || *p != 'l')
2186 error ("Internal error: live range string.\n");
2187 p++;
2188
2189 if (!*p || *p != '(')
2190 error ("Internal error: live range string.\n");
2191 p++;
2192
2193 /* Get starting value of range and advance P past the reference id.
2194
2195 ?!? In theory, the process_reference should never fail, but we should
2196 catch that case just in case the compiler scrogged the stabs. */
2197 refnum = process_reference (&p);
2198 start = ref_search_value (refnum);
2199 if (!start)
2200 error ("Internal error: live range symbol not found.\n");
2201
2202 if (!*p || *p != ',')
2203 error ("Internal error: live range string.\n");
2204 p++;
2205
2206 /* Get ending value of range and advance P past the reference id.
2207
2208 ?!? In theory, the process_reference should never fail, but we should
2209 catch that case just in case the compiler scrogged the stabs. */
2210 refnum = process_reference (&p);
2211 end = ref_search_value (refnum);
2212 if (!end)
2213 error ("Internal error: live range symbol not found.\n");
2214
2215 if (!*p || *p != ')')
2216 error ("Internal error: live range string.\n");
2217
2218 /* Now that we know the bounds of the range, add it to the
2219 symbol. */
2220 add_live_range (objfile, sym, start, end);
2221 }
2222
2223 /* Add a new live range defined by START and END to the symbol SYM
2224 in objfile OBJFILE. */
2225
2226 static void
2227 add_live_range (objfile, sym, start, end)
2228 struct objfile *objfile;
2229 struct symbol *sym;
2230 CORE_ADDR start, end;
2231 {
2232 struct range_list *r, *rs;
2233
2234 if (start >= end)
2235 error ("Internal error: end of live range follows start.\n");
2236
2237 /* Alloc new live range structure. */
2238 r = (struct range_list *)
2239 obstack_alloc (&objfile->type_obstack,
2240 sizeof (struct range_list));
2241 r->start = start;
2242 r->end = end;
2243 r->next = 0;
2244
2245 /* Append this range to the symbol's range list. */
2246 if (!SYMBOL_RANGES (sym))
2247 {
2248 SYMBOL_RANGES (sym) = r;
2249 }
2250 else
2251 {
2252 /* Get the last range for the symbol. */
2253 for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
2254 ;
2255 rs->next = r;
2256 }
2257 }
2258
2259 \f
2260 /* Skip rest of this symbol and return an error type.
2261
2262 General notes on error recovery: error_type always skips to the
2263 end of the symbol (modulo cretinous dbx symbol name continuation).
2264 Thus code like this:
2265
2266 if (*(*pp)++ != ';')
2267 return error_type (pp, objfile);
2268
2269 is wrong because if *pp starts out pointing at '\0' (typically as the
2270 result of an earlier error), it will be incremented to point to the
2271 start of the next symbol, which might produce strange results, at least
2272 if you run off the end of the string table. Instead use
2273
2274 if (**pp != ';')
2275 return error_type (pp, objfile);
2276 ++*pp;
2277
2278 or
2279
2280 if (**pp != ';')
2281 foo = error_type (pp, objfile);
2282 else
2283 ++*pp;
2284
2285 And in case it isn't obvious, the point of all this hair is so the compiler
2286 can define new types and new syntaxes, and old versions of the
2287 debugger will be able to read the new symbol tables. */
2288
2289 static struct type *
2290 error_type (pp, objfile)
2291 char **pp;
2292 struct objfile *objfile;
2293 {
2294 complain (&error_type_complaint);
2295 while (1)
2296 {
2297 /* Skip to end of symbol. */
2298 while (**pp != '\0')
2299 {
2300 (*pp)++;
2301 }
2302
2303 /* Check for and handle cretinous dbx symbol name continuation! */
2304 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
2305 {
2306 *pp = next_symbol_text (objfile);
2307 }
2308 else
2309 {
2310 break;
2311 }
2312 }
2313 return (builtin_type_error);
2314 }
2315
2316 \f
2317 /* Read type information or a type definition; return the type. Even
2318 though this routine accepts either type information or a type
2319 definition, the distinction is relevant--some parts of stabsread.c
2320 assume that type information starts with a digit, '-', or '(' in
2321 deciding whether to call read_type. */
2322
2323 struct type *
2324 read_type (pp, objfile)
2325 register char **pp;
2326 struct objfile *objfile;
2327 {
2328 register struct type *type = 0;
2329 struct type *type1;
2330 int typenums[2];
2331 char type_descriptor;
2332
2333 /* Size in bits of type if specified by a type attribute, or -1 if
2334 there is no size attribute. */
2335 int type_size = -1;
2336
2337 /* Used to distinguish string and bitstring from char-array and set. */
2338 int is_string = 0;
2339
2340 /* Read type number if present. The type number may be omitted.
2341 for instance in a two-dimensional array declared with type
2342 "ar1;1;10;ar1;1;10;4". */
2343 if ((**pp >= '0' && **pp <= '9')
2344 || **pp == '('
2345 || **pp == '-')
2346 {
2347 if (read_type_number (pp, typenums) != 0)
2348 return error_type (pp, objfile);
2349
2350 /* Type is not being defined here. Either it already exists,
2351 or this is a forward reference to it. dbx_alloc_type handles
2352 both cases. */
2353 if (**pp != '=')
2354 return dbx_alloc_type (typenums, objfile);
2355
2356 /* Type is being defined here. */
2357 /* Skip the '='.
2358 Also skip the type descriptor - we get it below with (*pp)[-1]. */
2359 (*pp)+=2;
2360 }
2361 else
2362 {
2363 /* 'typenums=' not present, type is anonymous. Read and return
2364 the definition, but don't put it in the type vector. */
2365 typenums[0] = typenums[1] = -1;
2366 (*pp)++;
2367 }
2368
2369 again:
2370 type_descriptor = (*pp)[-1];
2371 switch (type_descriptor)
2372 {
2373 case 'x':
2374 {
2375 enum type_code code;
2376
2377 /* Used to index through file_symbols. */
2378 struct pending *ppt;
2379 int i;
2380
2381 /* Name including "struct", etc. */
2382 char *type_name;
2383
2384 {
2385 char *from, *to, *p, *q1, *q2;
2386
2387 /* Set the type code according to the following letter. */
2388 switch ((*pp)[0])
2389 {
2390 case 's':
2391 code = TYPE_CODE_STRUCT;
2392 break;
2393 case 'u':
2394 code = TYPE_CODE_UNION;
2395 break;
2396 case 'e':
2397 code = TYPE_CODE_ENUM;
2398 break;
2399 default:
2400 {
2401 /* Complain and keep going, so compilers can invent new
2402 cross-reference types. */
2403 static struct complaint msg =
2404 {"Unrecognized cross-reference type `%c'", 0, 0};
2405 complain (&msg, (*pp)[0]);
2406 code = TYPE_CODE_STRUCT;
2407 break;
2408 }
2409 }
2410
2411 q1 = strchr (*pp, '<');
2412 p = strchr (*pp, ':');
2413 if (p == NULL)
2414 return error_type (pp, objfile);
2415 if (q1 && p > q1 && p[1] == ':')
2416 {
2417 int nesting_level = 0;
2418 for (q2 = q1; *q2; q2++)
2419 {
2420 if (*q2 == '<')
2421 nesting_level++;
2422 else if (*q2 == '>')
2423 nesting_level--;
2424 else if (*q2 == ':' && nesting_level == 0)
2425 break;
2426 }
2427 p = q2;
2428 if (*p != ':')
2429 return error_type (pp, objfile);
2430 }
2431 to = type_name =
2432 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
2433
2434 /* Copy the name. */
2435 from = *pp + 1;
2436 while (from < p)
2437 *to++ = *from++;
2438 *to = '\0';
2439
2440 /* Set the pointer ahead of the name which we just read, and
2441 the colon. */
2442 *pp = from + 1;
2443 }
2444
2445 /* Now check to see whether the type has already been
2446 declared. This was written for arrays of cross-referenced
2447 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
2448 sure it is not necessary anymore. But it might be a good
2449 idea, to save a little memory. */
2450
2451 for (ppt = file_symbols; ppt; ppt = ppt->next)
2452 for (i = 0; i < ppt->nsyms; i++)
2453 {
2454 struct symbol *sym = ppt->symbol[i];
2455
2456 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2457 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
2458 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
2459 && STREQ (SYMBOL_NAME (sym), type_name))
2460 {
2461 obstack_free (&objfile -> type_obstack, type_name);
2462 type = SYMBOL_TYPE (sym);
2463 return type;
2464 }
2465 }
2466
2467 /* Didn't find the type to which this refers, so we must
2468 be dealing with a forward reference. Allocate a type
2469 structure for it, and keep track of it so we can
2470 fill in the rest of the fields when we get the full
2471 type. */
2472 type = dbx_alloc_type (typenums, objfile);
2473 TYPE_CODE (type) = code;
2474 TYPE_TAG_NAME (type) = type_name;
2475 INIT_CPLUS_SPECIFIC(type);
2476 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
2477
2478 add_undefined_type (type);
2479 return type;
2480 }
2481
2482 case '-': /* RS/6000 built-in type */
2483 case '0':
2484 case '1':
2485 case '2':
2486 case '3':
2487 case '4':
2488 case '5':
2489 case '6':
2490 case '7':
2491 case '8':
2492 case '9':
2493 case '(':
2494 (*pp)--;
2495
2496 /* We deal with something like t(1,2)=(3,4)=... which
2497 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
2498
2499 /* Allocate and enter the typedef type first.
2500 This handles recursive types. */
2501 type = dbx_alloc_type (typenums, objfile);
2502 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
2503 { struct type *xtype = read_type (pp, objfile);
2504 if (type == xtype)
2505 {
2506 /* It's being defined as itself. That means it is "void". */
2507 TYPE_CODE (type) = TYPE_CODE_VOID;
2508 TYPE_LENGTH (type) = 1;
2509 }
2510 else if (type_size >= 0 || is_string)
2511 {
2512 *type = *xtype;
2513 TYPE_NAME (type) = NULL;
2514 TYPE_TAG_NAME (type) = NULL;
2515 }
2516 else
2517 {
2518 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2519 TYPE_TARGET_TYPE (type) = xtype;
2520 }
2521 }
2522 break;
2523
2524 /* In the following types, we must be sure to overwrite any existing
2525 type that the typenums refer to, rather than allocating a new one
2526 and making the typenums point to the new one. This is because there
2527 may already be pointers to the existing type (if it had been
2528 forward-referenced), and we must change it to a pointer, function,
2529 reference, or whatever, *in-place*. */
2530
2531 case '*':
2532 type1 = read_type (pp, objfile);
2533 type = make_pointer_type (type1, dbx_lookup_type (typenums));
2534 break;
2535
2536 case '&': /* Reference to another type */
2537 type1 = read_type (pp, objfile);
2538 type = make_reference_type (type1, dbx_lookup_type (typenums));
2539 break;
2540
2541 case 'f': /* Function returning another type */
2542 if (os9k_stabs && **pp == '(')
2543 {
2544 /* Function prototype; parse it.
2545 We must conditionalize this on os9k_stabs because otherwise
2546 it could be confused with a Sun-style (1,3) typenumber
2547 (I think). */
2548 struct type *t;
2549 ++*pp;
2550 while (**pp != ')')
2551 {
2552 t = read_type (pp, objfile);
2553 if (**pp == ',') ++*pp;
2554 }
2555 }
2556 type1 = read_type (pp, objfile);
2557 type = make_function_type (type1, dbx_lookup_type (typenums));
2558 break;
2559
2560 case 'k': /* Const qualifier on some type (Sun) */
2561 case 'c': /* Const qualifier on some type (OS9000) */
2562 /* Because 'c' means other things to AIX and 'k' is perfectly good,
2563 only accept 'c' in the os9k_stabs case. */
2564 if (type_descriptor == 'c' && !os9k_stabs)
2565 return error_type (pp, objfile);
2566 type = read_type (pp, objfile);
2567 /* FIXME! For now, we ignore const and volatile qualifiers. */
2568 break;
2569
2570 case 'B': /* Volatile qual on some type (Sun) */
2571 case 'i': /* Volatile qual on some type (OS9000) */
2572 /* Because 'i' means other things to AIX and 'B' is perfectly good,
2573 only accept 'i' in the os9k_stabs case. */
2574 if (type_descriptor == 'i' && !os9k_stabs)
2575 return error_type (pp, objfile);
2576 type = read_type (pp, objfile);
2577 /* FIXME! For now, we ignore const and volatile qualifiers. */
2578 break;
2579
2580 case '@':
2581 if (isdigit (**pp) || **pp == '(' || **pp == '-')
2582 { /* Member (class & variable) type */
2583 /* FIXME -- we should be doing smash_to_XXX types here. */
2584
2585 struct type *domain = read_type (pp, objfile);
2586 struct type *memtype;
2587
2588 if (**pp != ',')
2589 /* Invalid member type data format. */
2590 return error_type (pp, objfile);
2591 ++*pp;
2592
2593 memtype = read_type (pp, objfile);
2594 type = dbx_alloc_type (typenums, objfile);
2595 smash_to_member_type (type, domain, memtype);
2596 }
2597 else /* type attribute */
2598 {
2599 char *attr = *pp;
2600 /* Skip to the semicolon. */
2601 while (**pp != ';' && **pp != '\0')
2602 ++(*pp);
2603 if (**pp == '\0')
2604 return error_type (pp, objfile);
2605 else
2606 ++*pp; /* Skip the semicolon. */
2607
2608 switch (*attr)
2609 {
2610 case 's':
2611 type_size = atoi (attr + 1);
2612 if (type_size <= 0)
2613 type_size = -1;
2614 break;
2615
2616 case 'S':
2617 is_string = 1;
2618 break;
2619
2620 default:
2621 /* Ignore unrecognized type attributes, so future compilers
2622 can invent new ones. */
2623 break;
2624 }
2625 ++*pp;
2626 goto again;
2627 }
2628 break;
2629
2630 case '#': /* Method (class & fn) type */
2631 if ((*pp)[0] == '#')
2632 {
2633 /* We'll get the parameter types from the name. */
2634 struct type *return_type;
2635
2636 (*pp)++;
2637 return_type = read_type (pp, objfile);
2638 if (*(*pp)++ != ';')
2639 complain (&invalid_member_complaint, symnum);
2640 type = allocate_stub_method (return_type);
2641 if (typenums[0] != -1)
2642 *dbx_lookup_type (typenums) = type;
2643 }
2644 else
2645 {
2646 struct type *domain = read_type (pp, objfile);
2647 struct type *return_type;
2648 struct type **args;
2649
2650 if (**pp != ',')
2651 /* Invalid member type data format. */
2652 return error_type (pp, objfile);
2653 else
2654 ++(*pp);
2655
2656 return_type = read_type (pp, objfile);
2657 args = read_args (pp, ';', objfile);
2658 type = dbx_alloc_type (typenums, objfile);
2659 smash_to_method_type (type, domain, return_type, args);
2660 }
2661 break;
2662
2663 case 'r': /* Range type */
2664 type = read_range_type (pp, typenums, objfile);
2665 if (typenums[0] != -1)
2666 *dbx_lookup_type (typenums) = type;
2667 break;
2668
2669 case 'b':
2670 if (os9k_stabs)
2671 /* Const and volatile qualified type. */
2672 type = read_type (pp, objfile);
2673 else
2674 {
2675 /* Sun ACC builtin int type */
2676 type = read_sun_builtin_type (pp, typenums, objfile);
2677 if (typenums[0] != -1)
2678 *dbx_lookup_type (typenums) = type;
2679 }
2680 break;
2681
2682 case 'R': /* Sun ACC builtin float type */
2683 type = read_sun_floating_type (pp, typenums, objfile);
2684 if (typenums[0] != -1)
2685 *dbx_lookup_type (typenums) = type;
2686 break;
2687
2688 case 'e': /* Enumeration type */
2689 type = dbx_alloc_type (typenums, objfile);
2690 type = read_enum_type (pp, type, objfile);
2691 if (typenums[0] != -1)
2692 *dbx_lookup_type (typenums) = type;
2693 break;
2694
2695 case 's': /* Struct type */
2696 case 'u': /* Union type */
2697 type = dbx_alloc_type (typenums, objfile);
2698 switch (type_descriptor)
2699 {
2700 case 's':
2701 TYPE_CODE (type) = TYPE_CODE_STRUCT;
2702 break;
2703 case 'u':
2704 TYPE_CODE (type) = TYPE_CODE_UNION;
2705 break;
2706 }
2707 type = read_struct_type (pp, type, objfile);
2708 break;
2709
2710 case 'a': /* Array type */
2711 if (**pp != 'r')
2712 return error_type (pp, objfile);
2713 ++*pp;
2714
2715 type = dbx_alloc_type (typenums, objfile);
2716 type = read_array_type (pp, type, objfile);
2717 if (is_string)
2718 TYPE_CODE (type) = TYPE_CODE_STRING;
2719 break;
2720
2721 case 'S':
2722 type1 = read_type (pp, objfile);
2723 type = create_set_type ((struct type*) NULL, type1);
2724 if (is_string)
2725 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2726 if (typenums[0] != -1)
2727 *dbx_lookup_type (typenums) = type;
2728 break;
2729
2730 default:
2731 --*pp; /* Go back to the symbol in error */
2732 /* Particularly important if it was \0! */
2733 return error_type (pp, objfile);
2734 }
2735
2736 if (type == 0)
2737 {
2738 warning ("GDB internal error, type is NULL in stabsread.c\n");
2739 return error_type (pp, objfile);
2740 }
2741
2742 /* Size specified in a type attribute overrides any other size. */
2743 if (type_size != -1)
2744 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2745
2746 return type;
2747 }
2748 \f
2749 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2750 Return the proper type node for a given builtin type number. */
2751
2752 static struct type *
2753 rs6000_builtin_type (typenum)
2754 int typenum;
2755 {
2756 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2757 #define NUMBER_RECOGNIZED 34
2758 /* This includes an empty slot for type number -0. */
2759 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
2760 struct type *rettype = NULL;
2761
2762 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2763 {
2764 complain (&rs6000_builtin_complaint, typenum);
2765 return builtin_type_error;
2766 }
2767 if (negative_types[-typenum] != NULL)
2768 return negative_types[-typenum];
2769
2770 #if TARGET_CHAR_BIT != 8
2771 #error This code wrong for TARGET_CHAR_BIT not 8
2772 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2773 that if that ever becomes not true, the correct fix will be to
2774 make the size in the struct type to be in bits, not in units of
2775 TARGET_CHAR_BIT. */
2776 #endif
2777
2778 switch (-typenum)
2779 {
2780 case 1:
2781 /* The size of this and all the other types are fixed, defined
2782 by the debugging format. If there is a type called "int" which
2783 is other than 32 bits, then it should use a new negative type
2784 number (or avoid negative type numbers for that case).
2785 See stabs.texinfo. */
2786 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
2787 break;
2788 case 2:
2789 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
2790 break;
2791 case 3:
2792 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2793 break;
2794 case 4:
2795 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2796 break;
2797 case 5:
2798 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2799 "unsigned char", NULL);
2800 break;
2801 case 6:
2802 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2803 break;
2804 case 7:
2805 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2806 "unsigned short", NULL);
2807 break;
2808 case 8:
2809 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2810 "unsigned int", NULL);
2811 break;
2812 case 9:
2813 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2814 "unsigned", NULL);
2815 case 10:
2816 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2817 "unsigned long", NULL);
2818 break;
2819 case 11:
2820 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2821 break;
2822 case 12:
2823 /* IEEE single precision (32 bit). */
2824 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2825 break;
2826 case 13:
2827 /* IEEE double precision (64 bit). */
2828 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2829 break;
2830 case 14:
2831 /* This is an IEEE double on the RS/6000, and different machines with
2832 different sizes for "long double" should use different negative
2833 type numbers. See stabs.texinfo. */
2834 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2835 break;
2836 case 15:
2837 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2838 break;
2839 case 16:
2840 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2841 "boolean", NULL);
2842 break;
2843 case 17:
2844 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2845 break;
2846 case 18:
2847 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2848 break;
2849 case 19:
2850 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2851 break;
2852 case 20:
2853 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2854 "character", NULL);
2855 break;
2856 case 21:
2857 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2858 "logical*1", NULL);
2859 break;
2860 case 22:
2861 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2862 "logical*2", NULL);
2863 break;
2864 case 23:
2865 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2866 "logical*4", NULL);
2867 break;
2868 case 24:
2869 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2870 "logical", NULL);
2871 break;
2872 case 25:
2873 /* Complex type consisting of two IEEE single precision values. */
2874 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
2875 break;
2876 case 26:
2877 /* Complex type consisting of two IEEE double precision values. */
2878 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
2879 break;
2880 case 27:
2881 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2882 break;
2883 case 28:
2884 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2885 break;
2886 case 29:
2887 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2888 break;
2889 case 30:
2890 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2891 break;
2892 case 31:
2893 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2894 break;
2895 case 32:
2896 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2897 "unsigned long long", NULL);
2898 break;
2899 case 33:
2900 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2901 "logical*8", NULL);
2902 break;
2903 case 34:
2904 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2905 break;
2906 }
2907 negative_types[-typenum] = rettype;
2908 return rettype;
2909 }
2910 \f
2911 /* This page contains subroutines of read_type. */
2912
2913 /* Read member function stabs info for C++ classes. The form of each member
2914 function data is:
2915
2916 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2917
2918 An example with two member functions is:
2919
2920 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2921
2922 For the case of overloaded operators, the format is op$::*.funcs, where
2923 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2924 name (such as `+=') and `.' marks the end of the operator name.
2925
2926 Returns 1 for success, 0 for failure. */
2927
2928 static int
2929 read_member_functions (fip, pp, type, objfile)
2930 struct field_info *fip;
2931 char **pp;
2932 struct type *type;
2933 struct objfile *objfile;
2934 {
2935 int nfn_fields = 0;
2936 int length = 0;
2937 /* Total number of member functions defined in this class. If the class
2938 defines two `f' functions, and one `g' function, then this will have
2939 the value 3. */
2940 int total_length = 0;
2941 int i;
2942 struct next_fnfield
2943 {
2944 struct next_fnfield *next;
2945 struct fn_field fn_field;
2946 } *sublist;
2947 struct type *look_ahead_type;
2948 struct next_fnfieldlist *new_fnlist;
2949 struct next_fnfield *new_sublist;
2950 char *main_fn_name;
2951 register char *p;
2952
2953 /* Process each list until we find something that is not a member function
2954 or find the end of the functions. */
2955
2956 while (**pp != ';')
2957 {
2958 /* We should be positioned at the start of the function name.
2959 Scan forward to find the first ':' and if it is not the
2960 first of a "::" delimiter, then this is not a member function. */
2961 p = *pp;
2962 while (*p != ':')
2963 {
2964 p++;
2965 }
2966 if (p[1] != ':')
2967 {
2968 break;
2969 }
2970
2971 sublist = NULL;
2972 look_ahead_type = NULL;
2973 length = 0;
2974
2975 new_fnlist = (struct next_fnfieldlist *)
2976 xmalloc (sizeof (struct next_fnfieldlist));
2977 make_cleanup (free, new_fnlist);
2978 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2979
2980 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2981 {
2982 /* This is a completely wierd case. In order to stuff in the
2983 names that might contain colons (the usual name delimiter),
2984 Mike Tiemann defined a different name format which is
2985 signalled if the identifier is "op$". In that case, the
2986 format is "op$::XXXX." where XXXX is the name. This is
2987 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2988 /* This lets the user type "break operator+".
2989 We could just put in "+" as the name, but that wouldn't
2990 work for "*". */
2991 static char opname[32] = {'o', 'p', CPLUS_MARKER};
2992 char *o = opname + 3;
2993
2994 /* Skip past '::'. */
2995 *pp = p + 2;
2996
2997 STABS_CONTINUE (pp, objfile);
2998 p = *pp;
2999 while (*p != '.')
3000 {
3001 *o++ = *p++;
3002 }
3003 main_fn_name = savestring (opname, o - opname);
3004 /* Skip past '.' */
3005 *pp = p + 1;
3006 }
3007 else
3008 {
3009 main_fn_name = savestring (*pp, p - *pp);
3010 /* Skip past '::'. */
3011 *pp = p + 2;
3012 }
3013 new_fnlist -> fn_fieldlist.name = main_fn_name;
3014
3015 do
3016 {
3017 new_sublist =
3018 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
3019 make_cleanup (free, new_sublist);
3020 memset (new_sublist, 0, sizeof (struct next_fnfield));
3021
3022 /* Check for and handle cretinous dbx symbol name continuation! */
3023 if (look_ahead_type == NULL)
3024 {
3025 /* Normal case. */
3026 STABS_CONTINUE (pp, objfile);
3027
3028 new_sublist -> fn_field.type = read_type (pp, objfile);
3029 if (**pp != ':')
3030 {
3031 /* Invalid symtab info for member function. */
3032 return 0;
3033 }
3034 }
3035 else
3036 {
3037 /* g++ version 1 kludge */
3038 new_sublist -> fn_field.type = look_ahead_type;
3039 look_ahead_type = NULL;
3040 }
3041
3042 (*pp)++;
3043 p = *pp;
3044 while (*p != ';')
3045 {
3046 p++;
3047 }
3048
3049 /* If this is just a stub, then we don't have the real name here. */
3050
3051 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
3052 {
3053 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
3054 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
3055 new_sublist -> fn_field.is_stub = 1;
3056 }
3057 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
3058 *pp = p + 1;
3059
3060 /* Set this member function's visibility fields. */
3061 switch (*(*pp)++)
3062 {
3063 case VISIBILITY_PRIVATE:
3064 new_sublist -> fn_field.is_private = 1;
3065 break;
3066 case VISIBILITY_PROTECTED:
3067 new_sublist -> fn_field.is_protected = 1;
3068 break;
3069 }
3070
3071 STABS_CONTINUE (pp, objfile);
3072 switch (**pp)
3073 {
3074 case 'A': /* Normal functions. */
3075 new_sublist -> fn_field.is_const = 0;
3076 new_sublist -> fn_field.is_volatile = 0;
3077 (*pp)++;
3078 break;
3079 case 'B': /* `const' member functions. */
3080 new_sublist -> fn_field.is_const = 1;
3081 new_sublist -> fn_field.is_volatile = 0;
3082 (*pp)++;
3083 break;
3084 case 'C': /* `volatile' member function. */
3085 new_sublist -> fn_field.is_const = 0;
3086 new_sublist -> fn_field.is_volatile = 1;
3087 (*pp)++;
3088 break;
3089 case 'D': /* `const volatile' member function. */
3090 new_sublist -> fn_field.is_const = 1;
3091 new_sublist -> fn_field.is_volatile = 1;
3092 (*pp)++;
3093 break;
3094 case '*': /* File compiled with g++ version 1 -- no info */
3095 case '?':
3096 case '.':
3097 break;
3098 default:
3099 complain (&const_vol_complaint, **pp);
3100 break;
3101 }
3102
3103 switch (*(*pp)++)
3104 {
3105 case '*':
3106 {
3107 int nbits;
3108 /* virtual member function, followed by index.
3109 The sign bit is set to distinguish pointers-to-methods
3110 from virtual function indicies. Since the array is
3111 in words, the quantity must be shifted left by 1
3112 on 16 bit machine, and by 2 on 32 bit machine, forcing
3113 the sign bit out, and usable as a valid index into
3114 the array. Remove the sign bit here. */
3115 new_sublist -> fn_field.voffset =
3116 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
3117 if (nbits != 0)
3118 return 0;
3119
3120 STABS_CONTINUE (pp, objfile);
3121 if (**pp == ';' || **pp == '\0')
3122 {
3123 /* Must be g++ version 1. */
3124 new_sublist -> fn_field.fcontext = 0;
3125 }
3126 else
3127 {
3128 /* Figure out from whence this virtual function came.
3129 It may belong to virtual function table of
3130 one of its baseclasses. */
3131 look_ahead_type = read_type (pp, objfile);
3132 if (**pp == ':')
3133 {
3134 /* g++ version 1 overloaded methods. */
3135 }
3136 else
3137 {
3138 new_sublist -> fn_field.fcontext = look_ahead_type;
3139 if (**pp != ';')
3140 {
3141 return 0;
3142 }
3143 else
3144 {
3145 ++*pp;
3146 }
3147 look_ahead_type = NULL;
3148 }
3149 }
3150 break;
3151 }
3152 case '?':
3153 /* static member function. */
3154 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
3155 if (strncmp (new_sublist -> fn_field.physname,
3156 main_fn_name, strlen (main_fn_name)))
3157 {
3158 new_sublist -> fn_field.is_stub = 1;
3159 }
3160 break;
3161
3162 default:
3163 /* error */
3164 complain (&member_fn_complaint, (*pp)[-1]);
3165 /* Fall through into normal member function. */
3166
3167 case '.':
3168 /* normal member function. */
3169 new_sublist -> fn_field.voffset = 0;
3170 new_sublist -> fn_field.fcontext = 0;
3171 break;
3172 }
3173
3174 new_sublist -> next = sublist;
3175 sublist = new_sublist;
3176 length++;
3177 STABS_CONTINUE (pp, objfile);
3178 }
3179 while (**pp != ';' && **pp != '\0');
3180
3181 (*pp)++;
3182
3183 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
3184 obstack_alloc (&objfile -> type_obstack,
3185 sizeof (struct fn_field) * length);
3186 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
3187 sizeof (struct fn_field) * length);
3188 for (i = length; (i--, sublist); sublist = sublist -> next)
3189 {
3190 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
3191 }
3192
3193 new_fnlist -> fn_fieldlist.length = length;
3194 new_fnlist -> next = fip -> fnlist;
3195 fip -> fnlist = new_fnlist;
3196 nfn_fields++;
3197 total_length += length;
3198 STABS_CONTINUE (pp, objfile);
3199 }
3200
3201 if (nfn_fields)
3202 {
3203 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3204 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3205 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
3206 memset (TYPE_FN_FIELDLISTS (type), 0,
3207 sizeof (struct fn_fieldlist) * nfn_fields);
3208 TYPE_NFN_FIELDS (type) = nfn_fields;
3209 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3210 }
3211
3212 return 1;
3213 }
3214
3215 /* Special GNU C++ name.
3216
3217 Returns 1 for success, 0 for failure. "failure" means that we can't
3218 keep parsing and it's time for error_type(). */
3219
3220 static int
3221 read_cpp_abbrev (fip, pp, type, objfile)
3222 struct field_info *fip;
3223 char **pp;
3224 struct type *type;
3225 struct objfile *objfile;
3226 {
3227 register char *p;
3228 char *name;
3229 char cpp_abbrev;
3230 struct type *context;
3231
3232 p = *pp;
3233 if (*++p == 'v')
3234 {
3235 name = NULL;
3236 cpp_abbrev = *++p;
3237
3238 *pp = p + 1;
3239
3240 /* At this point, *pp points to something like "22:23=*22...",
3241 where the type number before the ':' is the "context" and
3242 everything after is a regular type definition. Lookup the
3243 type, find it's name, and construct the field name. */
3244
3245 context = read_type (pp, objfile);
3246
3247 switch (cpp_abbrev)
3248 {
3249 case 'f': /* $vf -- a virtual function table pointer */
3250 fip->list->field.name =
3251 obconcat (&objfile->type_obstack, vptr_name, "", "");
3252 break;
3253
3254 case 'b': /* $vb -- a virtual bsomethingorother */
3255 name = type_name_no_tag (context);
3256 if (name == NULL)
3257 {
3258 complain (&invalid_cpp_type_complaint, symnum);
3259 name = "FOO";
3260 }
3261 fip->list->field.name =
3262 obconcat (&objfile->type_obstack, vb_name, name, "");
3263 break;
3264
3265 default:
3266 complain (&invalid_cpp_abbrev_complaint, *pp);
3267 fip->list->field.name =
3268 obconcat (&objfile->type_obstack,
3269 "INVALID_CPLUSPLUS_ABBREV", "", "");
3270 break;
3271 }
3272
3273 /* At this point, *pp points to the ':'. Skip it and read the
3274 field type. */
3275
3276 p = ++(*pp);
3277 if (p[-1] != ':')
3278 {
3279 complain (&invalid_cpp_abbrev_complaint, *pp);
3280 return 0;
3281 }
3282 fip->list->field.type = read_type (pp, objfile);
3283 if (**pp == ',')
3284 (*pp)++; /* Skip the comma. */
3285 else
3286 return 0;
3287
3288 {
3289 int nbits;
3290 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
3291 if (nbits != 0)
3292 return 0;
3293 }
3294 /* This field is unpacked. */
3295 FIELD_BITSIZE (fip->list->field) = 0;
3296 fip->list->visibility = VISIBILITY_PRIVATE;
3297 }
3298 else
3299 {
3300 complain (&invalid_cpp_abbrev_complaint, *pp);
3301 /* We have no idea what syntax an unrecognized abbrev would have, so
3302 better return 0. If we returned 1, we would need to at least advance
3303 *pp to avoid an infinite loop. */
3304 return 0;
3305 }
3306 return 1;
3307 }
3308
3309 static void
3310 read_one_struct_field (fip, pp, p, type, objfile)
3311 struct field_info *fip;
3312 char **pp;
3313 char *p;
3314 struct type *type;
3315 struct objfile *objfile;
3316 {
3317 /* The following is code to work around cfront generated stabs.
3318 The stabs contains full mangled name for each field.
3319 We try to demangle the name and extract the field name out of it.
3320 */
3321 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
3322 {
3323 char save_p;
3324 char *dem, *dem_p;
3325 save_p = *p;
3326 *p = '\0';
3327 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
3328 if (dem != NULL)
3329 {
3330 dem_p = strrchr (dem, ':');
3331 if (dem_p != 0 && *(dem_p-1)==':')
3332 dem_p++;
3333 FIELD_NAME (fip->list->field) =
3334 obsavestring (dem_p, strlen (dem_p), &objfile -> type_obstack);
3335 }
3336 else
3337 {
3338 FIELD_NAME (fip->list->field) =
3339 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
3340 }
3341 *p = save_p;
3342 }
3343 /* end of code for cfront work around */
3344
3345 else
3346 fip -> list -> field.name =
3347 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
3348 *pp = p + 1;
3349
3350 /* This means we have a visibility for a field coming. */
3351 if (**pp == '/')
3352 {
3353 (*pp)++;
3354 fip -> list -> visibility = *(*pp)++;
3355 }
3356 else
3357 {
3358 /* normal dbx-style format, no explicit visibility */
3359 fip -> list -> visibility = VISIBILITY_PUBLIC;
3360 }
3361
3362 fip -> list -> field.type = read_type (pp, objfile);
3363 if (**pp == ':')
3364 {
3365 p = ++(*pp);
3366 #if 0
3367 /* Possible future hook for nested types. */
3368 if (**pp == '!')
3369 {
3370 fip -> list -> field.bitpos = (long)-2; /* nested type */
3371 p = ++(*pp);
3372 }
3373 else ...;
3374 #endif
3375 while (*p != ';')
3376 {
3377 p++;
3378 }
3379 /* Static class member. */
3380 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
3381 *pp = p + 1;
3382 return;
3383 }
3384 else if (**pp != ',')
3385 {
3386 /* Bad structure-type format. */
3387 complain (&stabs_general_complaint, "bad structure-type format");
3388 return;
3389 }
3390
3391 (*pp)++; /* Skip the comma. */
3392
3393 {
3394 int nbits;
3395 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
3396 if (nbits != 0)
3397 {
3398 complain (&stabs_general_complaint, "bad structure-type format");
3399 return;
3400 }
3401 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
3402 if (nbits != 0)
3403 {
3404 complain (&stabs_general_complaint, "bad structure-type format");
3405 return;
3406 }
3407 }
3408
3409 if (FIELD_BITPOS (fip->list->field) == 0
3410 && FIELD_BITSIZE (fip->list->field) == 0)
3411 {
3412 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
3413 it is a field which has been optimized out. The correct stab for
3414 this case is to use VISIBILITY_IGNORE, but that is a recent
3415 invention. (2) It is a 0-size array. For example
3416 union { int num; char str[0]; } foo. Printing "<no value>" for
3417 str in "p foo" is OK, since foo.str (and thus foo.str[3])
3418 will continue to work, and a 0-size array as a whole doesn't
3419 have any contents to print.
3420
3421 I suspect this probably could also happen with gcc -gstabs (not
3422 -gstabs+) for static fields, and perhaps other C++ extensions.
3423 Hopefully few people use -gstabs with gdb, since it is intended
3424 for dbx compatibility. */
3425
3426 /* Ignore this field. */
3427 fip -> list-> visibility = VISIBILITY_IGNORE;
3428 }
3429 else
3430 {
3431 /* Detect an unpacked field and mark it as such.
3432 dbx gives a bit size for all fields.
3433 Note that forward refs cannot be packed,
3434 and treat enums as if they had the width of ints. */
3435
3436 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
3437
3438 if (TYPE_CODE (field_type) != TYPE_CODE_INT
3439 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
3440 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
3441 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
3442 {
3443 FIELD_BITSIZE (fip->list->field) = 0;
3444 }
3445 if ((FIELD_BITSIZE (fip->list->field)
3446 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
3447 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
3448 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT )
3449 )
3450 &&
3451 FIELD_BITPOS (fip->list->field) % 8 == 0)
3452 {
3453 FIELD_BITSIZE (fip->list->field) = 0;
3454 }
3455 }
3456 }
3457
3458
3459 /* Read struct or class data fields. They have the form:
3460
3461 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
3462
3463 At the end, we see a semicolon instead of a field.
3464
3465 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3466 a static field.
3467
3468 The optional VISIBILITY is one of:
3469
3470 '/0' (VISIBILITY_PRIVATE)
3471 '/1' (VISIBILITY_PROTECTED)
3472 '/2' (VISIBILITY_PUBLIC)
3473 '/9' (VISIBILITY_IGNORE)
3474
3475 or nothing, for C style fields with public visibility.
3476
3477 Returns 1 for success, 0 for failure. */
3478
3479 static int
3480 read_struct_fields (fip, pp, type, objfile)
3481 struct field_info *fip;
3482 char **pp;
3483 struct type *type;
3484 struct objfile *objfile;
3485 {
3486 register char *p;
3487 struct nextfield *new;
3488
3489 /* We better set p right now, in case there are no fields at all... */
3490
3491 p = *pp;
3492
3493 /* Read each data member type until we find the terminating ';' at the end of
3494 the data member list, or break for some other reason such as finding the
3495 start of the member function list. */
3496
3497 while (**pp != ';')
3498 {
3499 if (os9k_stabs && **pp == ',') break;
3500 STABS_CONTINUE (pp, objfile);
3501 /* Get space to record the next field's data. */
3502 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3503 make_cleanup (free, new);
3504 memset (new, 0, sizeof (struct nextfield));
3505 new -> next = fip -> list;
3506 fip -> list = new;
3507
3508 /* Get the field name. */
3509 p = *pp;
3510
3511 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3512 unless the CPLUS_MARKER is followed by an underscore, in
3513 which case it is just the name of an anonymous type, which we
3514 should handle like any other type name. */
3515
3516 if (is_cplus_marker (p[0]) && p[1] != '_')
3517 {
3518 if (!read_cpp_abbrev (fip, pp, type, objfile))
3519 return 0;
3520 continue;
3521 }
3522
3523 /* Look for the ':' that separates the field name from the field
3524 values. Data members are delimited by a single ':', while member
3525 functions are delimited by a pair of ':'s. When we hit the member
3526 functions (if any), terminate scan loop and return. */
3527
3528 while (*p != ':' && *p != '\0')
3529 {
3530 p++;
3531 }
3532 if (*p == '\0')
3533 return 0;
3534
3535 /* Check to see if we have hit the member functions yet. */
3536 if (p[1] == ':')
3537 {
3538 break;
3539 }
3540 read_one_struct_field (fip, pp, p, type, objfile);
3541 }
3542 if (p[0] == ':' && p[1] == ':')
3543 {
3544 /* chill the list of fields: the last entry (at the head) is a
3545 partially constructed entry which we now scrub. */
3546 fip -> list = fip -> list -> next;
3547 }
3548 return 1;
3549 }
3550
3551 /* The stabs for C++ derived classes contain baseclass information which
3552 is marked by a '!' character after the total size. This function is
3553 called when we encounter the baseclass marker, and slurps up all the
3554 baseclass information.
3555
3556 Immediately following the '!' marker is the number of base classes that
3557 the class is derived from, followed by information for each base class.
3558 For each base class, there are two visibility specifiers, a bit offset
3559 to the base class information within the derived class, a reference to
3560 the type for the base class, and a terminating semicolon.
3561
3562 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3563 ^^ ^ ^ ^ ^ ^ ^
3564 Baseclass information marker __________________|| | | | | | |
3565 Number of baseclasses __________________________| | | | | | |
3566 Visibility specifiers (2) ________________________| | | | | |
3567 Offset in bits from start of class _________________| | | | |
3568 Type number for base class ___________________________| | | |
3569 Visibility specifiers (2) _______________________________| | |
3570 Offset in bits from start of class ________________________| |
3571 Type number of base class ____________________________________|
3572
3573 Return 1 for success, 0 for (error-type-inducing) failure. */
3574
3575 static int
3576 read_baseclasses (fip, pp, type, objfile)
3577 struct field_info *fip;
3578 char **pp;
3579 struct type *type;
3580 struct objfile *objfile;
3581 {
3582 int i;
3583 struct nextfield *new;
3584
3585 if (**pp != '!')
3586 {
3587 return 1;
3588 }
3589 else
3590 {
3591 /* Skip the '!' baseclass information marker. */
3592 (*pp)++;
3593 }
3594
3595 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3596 {
3597 int nbits;
3598 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
3599 if (nbits != 0)
3600 return 0;
3601 }
3602
3603 #if 0
3604 /* Some stupid compilers have trouble with the following, so break
3605 it up into simpler expressions. */
3606 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3607 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3608 #else
3609 {
3610 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3611 char *pointer;
3612
3613 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3614 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3615 }
3616 #endif /* 0 */
3617
3618 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3619
3620 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3621 {
3622 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3623 make_cleanup (free, new);
3624 memset (new, 0, sizeof (struct nextfield));
3625 new -> next = fip -> list;
3626 fip -> list = new;
3627 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3628
3629 STABS_CONTINUE (pp, objfile);
3630 switch (**pp)
3631 {
3632 case '0':
3633 /* Nothing to do. */
3634 break;
3635 case '1':
3636 SET_TYPE_FIELD_VIRTUAL (type, i);
3637 break;
3638 default:
3639 /* Unknown character. Complain and treat it as non-virtual. */
3640 {
3641 static struct complaint msg = {
3642 "Unknown virtual character `%c' for baseclass", 0, 0};
3643 complain (&msg, **pp);
3644 }
3645 }
3646 ++(*pp);
3647
3648 new -> visibility = *(*pp)++;
3649 switch (new -> visibility)
3650 {
3651 case VISIBILITY_PRIVATE:
3652 case VISIBILITY_PROTECTED:
3653 case VISIBILITY_PUBLIC:
3654 break;
3655 default:
3656 /* Bad visibility format. Complain and treat it as
3657 public. */
3658 {
3659 static struct complaint msg = {
3660 "Unknown visibility `%c' for baseclass", 0, 0};
3661 complain (&msg, new -> visibility);
3662 new -> visibility = VISIBILITY_PUBLIC;
3663 }
3664 }
3665
3666 {
3667 int nbits;
3668
3669 /* The remaining value is the bit offset of the portion of the object
3670 corresponding to this baseclass. Always zero in the absence of
3671 multiple inheritance. */
3672
3673 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3674 if (nbits != 0)
3675 return 0;
3676 }
3677
3678 /* The last piece of baseclass information is the type of the
3679 base class. Read it, and remember it's type name as this
3680 field's name. */
3681
3682 new -> field.type = read_type (pp, objfile);
3683 new -> field.name = type_name_no_tag (new -> field.type);
3684
3685 /* skip trailing ';' and bump count of number of fields seen */
3686 if (**pp == ';')
3687 (*pp)++;
3688 else
3689 return 0;
3690 }
3691 return 1;
3692 }
3693
3694 /* The tail end of stabs for C++ classes that contain a virtual function
3695 pointer contains a tilde, a %, and a type number.
3696 The type number refers to the base class (possibly this class itself) which
3697 contains the vtable pointer for the current class.
3698
3699 This function is called when we have parsed all the method declarations,
3700 so we can look for the vptr base class info. */
3701
3702 static int
3703 read_tilde_fields (fip, pp, type, objfile)
3704 struct field_info *fip;
3705 char **pp;
3706 struct type *type;
3707 struct objfile *objfile;
3708 {
3709 register char *p;
3710
3711 STABS_CONTINUE (pp, objfile);
3712
3713 /* If we are positioned at a ';', then skip it. */
3714 if (**pp == ';')
3715 {
3716 (*pp)++;
3717 }
3718
3719 if (**pp == '~')
3720 {
3721 (*pp)++;
3722
3723 if (**pp == '=' || **pp == '+' || **pp == '-')
3724 {
3725 /* Obsolete flags that used to indicate the presence
3726 of constructors and/or destructors. */
3727 (*pp)++;
3728 }
3729
3730 /* Read either a '%' or the final ';'. */
3731 if (*(*pp)++ == '%')
3732 {
3733 /* The next number is the type number of the base class
3734 (possibly our own class) which supplies the vtable for
3735 this class. Parse it out, and search that class to find
3736 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3737 and TYPE_VPTR_FIELDNO. */
3738
3739 struct type *t;
3740 int i;
3741
3742 t = read_type (pp, objfile);
3743 p = (*pp)++;
3744 while (*p != '\0' && *p != ';')
3745 {
3746 p++;
3747 }
3748 if (*p == '\0')
3749 {
3750 /* Premature end of symbol. */
3751 return 0;
3752 }
3753
3754 TYPE_VPTR_BASETYPE (type) = t;
3755 if (type == t) /* Our own class provides vtbl ptr */
3756 {
3757 for (i = TYPE_NFIELDS (t) - 1;
3758 i >= TYPE_N_BASECLASSES (t);
3759 --i)
3760 {
3761 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
3762 sizeof (vptr_name) - 1))
3763 {
3764 TYPE_VPTR_FIELDNO (type) = i;
3765 goto gotit;
3766 }
3767 }
3768 /* Virtual function table field not found. */
3769 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
3770 return 0;
3771 }
3772 else
3773 {
3774 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3775 }
3776
3777 gotit:
3778 *pp = p + 1;
3779 }
3780 }
3781 return 1;
3782 }
3783
3784 static int
3785 attach_fn_fields_to_type (fip, type)
3786 struct field_info *fip;
3787 register struct type *type;
3788 {
3789 register int n;
3790
3791 for (n = TYPE_NFN_FIELDS (type);
3792 fip -> fnlist != NULL;
3793 fip -> fnlist = fip -> fnlist -> next)
3794 {
3795 --n; /* Circumvent Sun3 compiler bug */
3796 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
3797 }
3798 return 1;
3799 }
3800
3801 /* read cfront class static data.
3802 pp points to string starting with the list of static data
3803 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
3804 ^^^^^^^^
3805
3806 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
3807 ^
3808 */
3809
3810 static int
3811 read_cfront_static_fields (fip, pp, type, objfile)
3812 struct field_info *fip;
3813 char **pp;
3814 struct type *type;
3815 struct objfile *objfile;
3816 {
3817 struct nextfield * new;
3818 struct type *stype;
3819 char * sname;
3820 struct symbol * ref_static=0;
3821
3822 if (**pp==';') /* no static data; return */
3823 {
3824 ++(*pp);
3825 return 1;
3826 }
3827
3828 /* Process each field in the list until we find the terminating ";" */
3829
3830 /* eg: p = "as__1A ;;;" */
3831 STABS_CONTINUE (pp, objfile); /* handle \\ */
3832 while (**pp!=';' && (sname = get_substring (pp, ' '), sname))
3833 {
3834 ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0); /*demangled_name*/
3835 if (!ref_static)
3836 {
3837 static struct complaint msg = {"\
3838 Unable to find symbol for static data field %s\n",
3839 0, 0};
3840 complain (&msg, sname);
3841 continue;
3842 }
3843 stype = SYMBOL_TYPE(ref_static);
3844
3845 /* allocate a new fip */
3846 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3847 make_cleanup (free, new);
3848 memset (new, 0, sizeof (struct nextfield));
3849 new -> next = fip -> list;
3850 fip -> list = new;
3851
3852 /* set visibility */
3853 /* FIXME! no way to tell visibility from stabs??? */
3854 new -> visibility = VISIBILITY_PUBLIC;
3855
3856 /* set field info into fip */
3857 fip -> list -> field.type = stype;
3858
3859 /* set bitpos & bitsize */
3860 SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
3861
3862 /* set name field */
3863 /* The following is code to work around cfront generated stabs.
3864 The stabs contains full mangled name for each field.
3865 We try to demangle the name and extract the field name out of it.
3866 */
3867 if (ARM_DEMANGLING)
3868 {
3869 char *dem, *dem_p;
3870 dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
3871 if (dem != NULL)
3872 {
3873 dem_p = strrchr (dem, ':');
3874 if (dem_p != 0 && *(dem_p-1)==':')
3875 dem_p++;
3876 fip->list->field.name =
3877 obsavestring (dem_p, strlen (dem_p), &objfile -> type_obstack);
3878 }
3879 else
3880 {
3881 fip->list->field.name =
3882 obsavestring (sname, strlen (sname), &objfile -> type_obstack);
3883 }
3884 } /* end of code for cfront work around */
3885 } /* loop again for next static field */
3886 return 1;
3887 }
3888
3889 /* Copy structure fields to fip so attach_fields_to_type will work.
3890 type has already been created with the initial instance data fields.
3891 Now we want to be able to add the other members to the class,
3892 so we want to add them back to the fip and reattach them again
3893 once we have collected all the class members. */
3894
3895 static int
3896 copy_cfront_struct_fields (fip, type, objfile)
3897 struct field_info *fip;
3898 struct type *type;
3899 struct objfile *objfile;
3900 {
3901 int nfields = TYPE_NFIELDS(type);
3902 int i;
3903 struct nextfield * new;
3904
3905 /* Copy the fields into the list of fips and reset the types
3906 to remove the old fields */
3907
3908 for (i=0; i<nfields; i++)
3909 {
3910 /* allocate a new fip */
3911 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3912 make_cleanup (free, new);
3913 memset (new, 0, sizeof (struct nextfield));
3914 new -> next = fip -> list;
3915 fip -> list = new;
3916
3917 /* copy field info into fip */
3918 new -> field = TYPE_FIELD (type, i);
3919 /* set visibility */
3920 if (TYPE_FIELD_PROTECTED (type, i))
3921 new -> visibility = VISIBILITY_PROTECTED;
3922 else if (TYPE_FIELD_PRIVATE (type, i))
3923 new -> visibility = VISIBILITY_PRIVATE;
3924 else
3925 new -> visibility = VISIBILITY_PUBLIC;
3926 }
3927 /* Now delete the fields from the type since we will be
3928 allocing new space once we get the rest of the fields
3929 in attach_fields_to_type.
3930 The pointer TYPE_FIELDS(type) is left dangling but should
3931 be freed later by objstack_free */
3932 TYPE_FIELDS (type)=0;
3933 TYPE_NFIELDS (type) = 0;
3934
3935 return 1;
3936 }
3937
3938 /* Create the vector of fields, and record how big it is.
3939 We need this info to record proper virtual function table information
3940 for this class's virtual functions. */
3941
3942 static int
3943 attach_fields_to_type (fip, type, objfile)
3944 struct field_info *fip;
3945 register struct type *type;
3946 struct objfile *objfile;
3947 {
3948 register int nfields = 0;
3949 register int non_public_fields = 0;
3950 register struct nextfield *scan;
3951
3952 /* Count up the number of fields that we have, as well as taking note of
3953 whether or not there are any non-public fields, which requires us to
3954 allocate and build the private_field_bits and protected_field_bits
3955 bitfields. */
3956
3957 for (scan = fip -> list; scan != NULL; scan = scan -> next)
3958 {
3959 nfields++;
3960 if (scan -> visibility != VISIBILITY_PUBLIC)
3961 {
3962 non_public_fields++;
3963 }
3964 }
3965
3966 /* Now we know how many fields there are, and whether or not there are any
3967 non-public fields. Record the field count, allocate space for the
3968 array of fields, and create blank visibility bitfields if necessary. */
3969
3970 TYPE_NFIELDS (type) = nfields;
3971 TYPE_FIELDS (type) = (struct field *)
3972 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3973 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3974
3975 if (non_public_fields)
3976 {
3977 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3978
3979 TYPE_FIELD_PRIVATE_BITS (type) =
3980 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3981 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3982
3983 TYPE_FIELD_PROTECTED_BITS (type) =
3984 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3985 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3986
3987 TYPE_FIELD_IGNORE_BITS (type) =
3988 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3989 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3990 }
3991
3992 /* Copy the saved-up fields into the field vector. Start from the head
3993 of the list, adding to the tail of the field array, so that they end
3994 up in the same order in the array in which they were added to the list. */
3995
3996 while (nfields-- > 0)
3997 {
3998 TYPE_FIELD (type, nfields) = fip -> list -> field;
3999 switch (fip -> list -> visibility)
4000 {
4001 case VISIBILITY_PRIVATE:
4002 SET_TYPE_FIELD_PRIVATE (type, nfields);
4003 break;
4004
4005 case VISIBILITY_PROTECTED:
4006 SET_TYPE_FIELD_PROTECTED (type, nfields);
4007 break;
4008
4009 case VISIBILITY_IGNORE:
4010 SET_TYPE_FIELD_IGNORE (type, nfields);
4011 break;
4012
4013 case VISIBILITY_PUBLIC:
4014 break;
4015
4016 default:
4017 /* Unknown visibility. Complain and treat it as public. */
4018 {
4019 static struct complaint msg = {
4020 "Unknown visibility `%c' for field", 0, 0};
4021 complain (&msg, fip -> list -> visibility);
4022 }
4023 break;
4024 }
4025 fip -> list = fip -> list -> next;
4026 }
4027 return 1;
4028 }
4029
4030 /* Read the description of a structure (or union type) and return an object
4031 describing the type.
4032
4033 PP points to a character pointer that points to the next unconsumed token
4034 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
4035 *PP will point to "4a:1,0,32;;".
4036
4037 TYPE points to an incomplete type that needs to be filled in.
4038
4039 OBJFILE points to the current objfile from which the stabs information is
4040 being read. (Note that it is redundant in that TYPE also contains a pointer
4041 to this same objfile, so it might be a good idea to eliminate it. FIXME).
4042 */
4043
4044 static struct type *
4045 read_struct_type (pp, type, objfile)
4046 char **pp;
4047 struct type *type;
4048 struct objfile *objfile;
4049 {
4050 struct cleanup *back_to;
4051 struct field_info fi;
4052
4053 fi.list = NULL;
4054 fi.fnlist = NULL;
4055
4056 back_to = make_cleanup (null_cleanup, 0);
4057
4058 INIT_CPLUS_SPECIFIC (type);
4059 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4060
4061 /* First comes the total size in bytes. */
4062
4063 {
4064 int nbits;
4065 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
4066 if (nbits != 0)
4067 return error_type (pp, objfile);
4068 }
4069
4070 /* Now read the baseclasses, if any, read the regular C struct or C++
4071 class member fields, attach the fields to the type, read the C++
4072 member functions, attach them to the type, and then read any tilde
4073 field (baseclass specifier for the class holding the main vtable). */
4074
4075 if (!read_baseclasses (&fi, pp, type, objfile)
4076 || !read_struct_fields (&fi, pp, type, objfile)
4077 || !attach_fields_to_type (&fi, type, objfile)
4078 || !read_member_functions (&fi, pp, type, objfile)
4079 || !attach_fn_fields_to_type (&fi, type)
4080 || !read_tilde_fields (&fi, pp, type, objfile))
4081 {
4082 type = error_type (pp, objfile);
4083 }
4084
4085 do_cleanups (back_to);
4086 return (type);
4087 }
4088
4089 /* Read a definition of an array type,
4090 and create and return a suitable type object.
4091 Also creates a range type which represents the bounds of that
4092 array. */
4093
4094 static struct type *
4095 read_array_type (pp, type, objfile)
4096 register char **pp;
4097 register struct type *type;
4098 struct objfile *objfile;
4099 {
4100 struct type *index_type, *element_type, *range_type;
4101 int lower, upper;
4102 int adjustable = 0;
4103 int nbits;
4104
4105 /* Format of an array type:
4106 "ar<index type>;lower;upper;<array_contents_type>".
4107 OS9000: "arlower,upper;<array_contents_type>".
4108
4109 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4110 for these, produce a type like float[][]. */
4111
4112 if (os9k_stabs)
4113 index_type = builtin_type_int;
4114 else
4115 {
4116 index_type = read_type (pp, objfile);
4117 if (**pp != ';')
4118 /* Improper format of array type decl. */
4119 return error_type (pp, objfile);
4120 ++*pp;
4121 }
4122
4123 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4124 {
4125 (*pp)++;
4126 adjustable = 1;
4127 }
4128 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
4129 if (nbits != 0)
4130 return error_type (pp, objfile);
4131
4132 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4133 {
4134 (*pp)++;
4135 adjustable = 1;
4136 }
4137 upper = read_huge_number (pp, ';', &nbits);
4138 if (nbits != 0)
4139 return error_type (pp, objfile);
4140
4141 element_type = read_type (pp, objfile);
4142
4143 if (adjustable)
4144 {
4145 lower = 0;
4146 upper = -1;
4147 }
4148
4149 range_type =
4150 create_range_type ((struct type *) NULL, index_type, lower, upper);
4151 type = create_array_type (type, element_type, range_type);
4152
4153 return type;
4154 }
4155
4156
4157 /* Read a definition of an enumeration type,
4158 and create and return a suitable type object.
4159 Also defines the symbols that represent the values of the type. */
4160
4161 static struct type *
4162 read_enum_type (pp, type, objfile)
4163 register char **pp;
4164 register struct type *type;
4165 struct objfile *objfile;
4166 {
4167 register char *p;
4168 char *name;
4169 register long n;
4170 register struct symbol *sym;
4171 int nsyms = 0;
4172 struct pending **symlist;
4173 struct pending *osyms, *syms;
4174 int o_nsyms;
4175 int nbits;
4176 int unsigned_enum = 1;
4177
4178 #if 0
4179 /* FIXME! The stabs produced by Sun CC merrily define things that ought
4180 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
4181 to do? For now, force all enum values to file scope. */
4182 if (within_function)
4183 symlist = &local_symbols;
4184 else
4185 #endif
4186 symlist = &file_symbols;
4187 osyms = *symlist;
4188 o_nsyms = osyms ? osyms->nsyms : 0;
4189
4190 if (os9k_stabs)
4191 {
4192 /* Size. Perhaps this does not have to be conditionalized on
4193 os9k_stabs (assuming the name of an enum constant can't start
4194 with a digit). */
4195 read_huge_number (pp, 0, &nbits);
4196 if (nbits != 0)
4197 return error_type (pp, objfile);
4198 }
4199
4200 /* The aix4 compiler emits an extra field before the enum members;
4201 my guess is it's a type of some sort. Just ignore it. */
4202 if (**pp == '-')
4203 {
4204 /* Skip over the type. */
4205 while (**pp != ':')
4206 (*pp)++;
4207
4208 /* Skip over the colon. */
4209 (*pp)++;
4210 }
4211
4212 /* Read the value-names and their values.
4213 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4214 A semicolon or comma instead of a NAME means the end. */
4215 while (**pp && **pp != ';' && **pp != ',')
4216 {
4217 STABS_CONTINUE (pp, objfile);
4218 p = *pp;
4219 while (*p != ':') p++;
4220 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
4221 *pp = p + 1;
4222 n = read_huge_number (pp, ',', &nbits);
4223 if (nbits != 0)
4224 return error_type (pp, objfile);
4225
4226 sym = (struct symbol *)
4227 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
4228 memset (sym, 0, sizeof (struct symbol));
4229 SYMBOL_NAME (sym) = name;
4230 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
4231 SYMBOL_CLASS (sym) = LOC_CONST;
4232 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4233 SYMBOL_VALUE (sym) = n;
4234 if (n < 0)
4235 unsigned_enum = 0;
4236 add_symbol_to_list (sym, symlist);
4237 nsyms++;
4238 }
4239
4240 if (**pp == ';')
4241 (*pp)++; /* Skip the semicolon. */
4242
4243 /* Now fill in the fields of the type-structure. */
4244
4245 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
4246 TYPE_CODE (type) = TYPE_CODE_ENUM;
4247 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4248 if (unsigned_enum)
4249 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
4250 TYPE_NFIELDS (type) = nsyms;
4251 TYPE_FIELDS (type) = (struct field *)
4252 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
4253 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
4254
4255 /* Find the symbols for the values and put them into the type.
4256 The symbols can be found in the symlist that we put them on
4257 to cause them to be defined. osyms contains the old value
4258 of that symlist; everything up to there was defined by us. */
4259 /* Note that we preserve the order of the enum constants, so
4260 that in something like "enum {FOO, LAST_THING=FOO}" we print
4261 FOO, not LAST_THING. */
4262
4263 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
4264 {
4265 int last = syms == osyms ? o_nsyms : 0;
4266 int j = syms->nsyms;
4267 for (; --j >= last; --n)
4268 {
4269 struct symbol *xsym = syms->symbol[j];
4270 SYMBOL_TYPE (xsym) = type;
4271 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4272 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4273 TYPE_FIELD_BITSIZE (type, n) = 0;
4274 }
4275 if (syms == osyms)
4276 break;
4277 }
4278
4279 return type;
4280 }
4281
4282 /* Sun's ACC uses a somewhat saner method for specifying the builtin
4283 typedefs in every file (for int, long, etc):
4284
4285 type = b <signed> <width>; <offset>; <nbits>
4286 signed = u or s. Possible c in addition to u or s (for char?).
4287 offset = offset from high order bit to start bit of type.
4288 width is # bytes in object of this type, nbits is # bits in type.
4289
4290 The width/offset stuff appears to be for small objects stored in
4291 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
4292 FIXME. */
4293
4294 static struct type *
4295 read_sun_builtin_type (pp, typenums, objfile)
4296 char **pp;
4297 int typenums[2];
4298 struct objfile *objfile;
4299 {
4300 int type_bits;
4301 int nbits;
4302 int signed_type;
4303
4304 switch (**pp)
4305 {
4306 case 's':
4307 signed_type = 1;
4308 break;
4309 case 'u':
4310 signed_type = 0;
4311 break;
4312 default:
4313 return error_type (pp, objfile);
4314 }
4315 (*pp)++;
4316
4317 /* For some odd reason, all forms of char put a c here. This is strange
4318 because no other type has this honor. We can safely ignore this because
4319 we actually determine 'char'acterness by the number of bits specified in
4320 the descriptor. */
4321
4322 if (**pp == 'c')
4323 (*pp)++;
4324
4325 /* The first number appears to be the number of bytes occupied
4326 by this type, except that unsigned short is 4 instead of 2.
4327 Since this information is redundant with the third number,
4328 we will ignore it. */
4329 read_huge_number (pp, ';', &nbits);
4330 if (nbits != 0)
4331 return error_type (pp, objfile);
4332
4333 /* The second number is always 0, so ignore it too. */
4334 read_huge_number (pp, ';', &nbits);
4335 if (nbits != 0)
4336 return error_type (pp, objfile);
4337
4338 /* The third number is the number of bits for this type. */
4339 type_bits = read_huge_number (pp, 0, &nbits);
4340 if (nbits != 0)
4341 return error_type (pp, objfile);
4342 /* The type *should* end with a semicolon. If it are embedded
4343 in a larger type the semicolon may be the only way to know where
4344 the type ends. If this type is at the end of the stabstring we
4345 can deal with the omitted semicolon (but we don't have to like
4346 it). Don't bother to complain(), Sun's compiler omits the semicolon
4347 for "void". */
4348 if (**pp == ';')
4349 ++(*pp);
4350
4351 if (type_bits == 0)
4352 return init_type (TYPE_CODE_VOID, 1,
4353 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
4354 objfile);
4355 else
4356 return init_type (TYPE_CODE_INT,
4357 type_bits / TARGET_CHAR_BIT,
4358 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
4359 objfile);
4360 }
4361
4362 static struct type *
4363 read_sun_floating_type (pp, typenums, objfile)
4364 char **pp;
4365 int typenums[2];
4366 struct objfile *objfile;
4367 {
4368 int nbits;
4369 int details;
4370 int nbytes;
4371
4372 /* The first number has more details about the type, for example
4373 FN_COMPLEX. */
4374 details = read_huge_number (pp, ';', &nbits);
4375 if (nbits != 0)
4376 return error_type (pp, objfile);
4377
4378 /* The second number is the number of bytes occupied by this type */
4379 nbytes = read_huge_number (pp, ';', &nbits);
4380 if (nbits != 0)
4381 return error_type (pp, objfile);
4382
4383 if (details == NF_COMPLEX || details == NF_COMPLEX16
4384 || details == NF_COMPLEX32)
4385 /* This is a type we can't handle, but we do know the size.
4386 We also will be able to give it a name. */
4387 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
4388
4389 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
4390 }
4391
4392 /* Read a number from the string pointed to by *PP.
4393 The value of *PP is advanced over the number.
4394 If END is nonzero, the character that ends the
4395 number must match END, or an error happens;
4396 and that character is skipped if it does match.
4397 If END is zero, *PP is left pointing to that character.
4398
4399 If the number fits in a long, set *BITS to 0 and return the value.
4400 If not, set *BITS to be the number of bits in the number and return 0.
4401
4402 If encounter garbage, set *BITS to -1 and return 0. */
4403
4404 static long
4405 read_huge_number (pp, end, bits)
4406 char **pp;
4407 int end;
4408 int *bits;
4409 {
4410 char *p = *pp;
4411 int sign = 1;
4412 long n = 0;
4413 int radix = 10;
4414 char overflow = 0;
4415 int nbits = 0;
4416 int c;
4417 long upper_limit;
4418
4419 if (*p == '-')
4420 {
4421 sign = -1;
4422 p++;
4423 }
4424
4425 /* Leading zero means octal. GCC uses this to output values larger
4426 than an int (because that would be hard in decimal). */
4427 if (*p == '0')
4428 {
4429 radix = 8;
4430 p++;
4431 }
4432
4433 if (os9k_stabs)
4434 upper_limit = ULONG_MAX / radix;
4435 else
4436 upper_limit = LONG_MAX / radix;
4437
4438 while ((c = *p++) >= '0' && c < ('0' + radix))
4439 {
4440 if (n <= upper_limit)
4441 {
4442 n *= radix;
4443 n += c - '0'; /* FIXME this overflows anyway */
4444 }
4445 else
4446 overflow = 1;
4447
4448 /* This depends on large values being output in octal, which is
4449 what GCC does. */
4450 if (radix == 8)
4451 {
4452 if (nbits == 0)
4453 {
4454 if (c == '0')
4455 /* Ignore leading zeroes. */
4456 ;
4457 else if (c == '1')
4458 nbits = 1;
4459 else if (c == '2' || c == '3')
4460 nbits = 2;
4461 else
4462 nbits = 3;
4463 }
4464 else
4465 nbits += 3;
4466 }
4467 }
4468 if (end)
4469 {
4470 if (c && c != end)
4471 {
4472 if (bits != NULL)
4473 *bits = -1;
4474 return 0;
4475 }
4476 }
4477 else
4478 --p;
4479
4480 *pp = p;
4481 if (overflow)
4482 {
4483 if (nbits == 0)
4484 {
4485 /* Large decimal constants are an error (because it is hard to
4486 count how many bits are in them). */
4487 if (bits != NULL)
4488 *bits = -1;
4489 return 0;
4490 }
4491
4492 /* -0x7f is the same as 0x80. So deal with it by adding one to
4493 the number of bits. */
4494 if (sign == -1)
4495 ++nbits;
4496 if (bits)
4497 *bits = nbits;
4498 }
4499 else
4500 {
4501 if (bits)
4502 *bits = 0;
4503 return n * sign;
4504 }
4505 /* It's *BITS which has the interesting information. */
4506 return 0;
4507 }
4508
4509 static struct type *
4510 read_range_type (pp, typenums, objfile)
4511 char **pp;
4512 int typenums[2];
4513 struct objfile *objfile;
4514 {
4515 char *orig_pp = *pp;
4516 int rangenums[2];
4517 long n2, n3;
4518 int n2bits, n3bits;
4519 int self_subrange;
4520 struct type *result_type;
4521 struct type *index_type = NULL;
4522
4523 /* First comes a type we are a subrange of.
4524 In C it is usually 0, 1 or the type being defined. */
4525 if (read_type_number (pp, rangenums) != 0)
4526 return error_type (pp, objfile);
4527 self_subrange = (rangenums[0] == typenums[0] &&
4528 rangenums[1] == typenums[1]);
4529
4530 if (**pp == '=')
4531 {
4532 *pp = orig_pp;
4533 index_type = read_type (pp, objfile);
4534 }
4535
4536 /* A semicolon should now follow; skip it. */
4537 if (**pp == ';')
4538 (*pp)++;
4539
4540 /* The remaining two operands are usually lower and upper bounds
4541 of the range. But in some special cases they mean something else. */
4542 n2 = read_huge_number (pp, ';', &n2bits);
4543 n3 = read_huge_number (pp, ';', &n3bits);
4544
4545 if (n2bits == -1 || n3bits == -1)
4546 return error_type (pp, objfile);
4547
4548 if (index_type)
4549 goto handle_true_range;
4550
4551 /* If limits are huge, must be large integral type. */
4552 if (n2bits != 0 || n3bits != 0)
4553 {
4554 char got_signed = 0;
4555 char got_unsigned = 0;
4556 /* Number of bits in the type. */
4557 int nbits = 0;
4558
4559 /* Range from 0 to <large number> is an unsigned large integral type. */
4560 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4561 {
4562 got_unsigned = 1;
4563 nbits = n3bits;
4564 }
4565 /* Range from <large number> to <large number>-1 is a large signed
4566 integral type. Take care of the case where <large number> doesn't
4567 fit in a long but <large number>-1 does. */
4568 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4569 || (n2bits != 0 && n3bits == 0
4570 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4571 && n3 == LONG_MAX))
4572 {
4573 got_signed = 1;
4574 nbits = n2bits;
4575 }
4576
4577 if (got_signed || got_unsigned)
4578 {
4579 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4580 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4581 objfile);
4582 }
4583 else
4584 return error_type (pp, objfile);
4585 }
4586
4587 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4588 if (self_subrange && n2 == 0 && n3 == 0)
4589 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4590
4591 /* If n3 is zero and n2 is positive, we want a floating type,
4592 and n2 is the width in bytes.
4593
4594 Fortran programs appear to use this for complex types also,
4595 and they give no way to distinguish between double and single-complex!
4596
4597 GDB does not have complex types.
4598
4599 Just return the complex as a float of that size. It won't work right
4600 for the complex values, but at least it makes the file loadable. */
4601
4602 if (n3 == 0 && n2 > 0)
4603 {
4604 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4605 }
4606
4607 /* If the upper bound is -1, it must really be an unsigned int. */
4608
4609 else if (n2 == 0 && n3 == -1)
4610 {
4611 /* It is unsigned int or unsigned long. */
4612 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
4613 compatibility hack. */
4614 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4615 TYPE_FLAG_UNSIGNED, NULL, objfile);
4616 }
4617
4618 /* Special case: char is defined (Who knows why) as a subrange of
4619 itself with range 0-127. */
4620 else if (self_subrange && n2 == 0 && n3 == 127)
4621 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4622
4623 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
4624 && !self_subrange)
4625 goto handle_true_range;
4626
4627 /* We used to do this only for subrange of self or subrange of int. */
4628 else if (n2 == 0)
4629 {
4630 if (n3 < 0)
4631 /* n3 actually gives the size. */
4632 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
4633 NULL, objfile);
4634 if (n3 == 0xff)
4635 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
4636 if (n3 == 0xffff)
4637 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
4638
4639 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4640 "unsigned long", and we already checked for that,
4641 so don't need to test for it here. */
4642 }
4643 /* I think this is for Convex "long long". Since I don't know whether
4644 Convex sets self_subrange, I also accept that particular size regardless
4645 of self_subrange. */
4646 else if (n3 == 0 && n2 < 0
4647 && (self_subrange
4648 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4649 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
4650 else if (n2 == -n3 -1)
4651 {
4652 if (n3 == 0x7f)
4653 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4654 if (n3 == 0x7fff)
4655 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4656 if (n3 == 0x7fffffff)
4657 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4658 }
4659
4660 /* We have a real range type on our hands. Allocate space and
4661 return a real pointer. */
4662 handle_true_range:
4663
4664 if (self_subrange)
4665 index_type = builtin_type_int;
4666 else
4667 index_type = *dbx_lookup_type (rangenums);
4668 if (index_type == NULL)
4669 {
4670 /* Does this actually ever happen? Is that why we are worrying
4671 about dealing with it rather than just calling error_type? */
4672
4673 static struct type *range_type_index;
4674
4675 complain (&range_type_base_complaint, rangenums[1]);
4676 if (range_type_index == NULL)
4677 range_type_index =
4678 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4679 0, "range type index type", NULL);
4680 index_type = range_type_index;
4681 }
4682
4683 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4684 return (result_type);
4685 }
4686
4687 /* Read in an argument list. This is a list of types, separated by commas
4688 and terminated with END. Return the list of types read in, or (struct type
4689 **)-1 if there is an error. */
4690
4691 static struct type **
4692 read_args (pp, end, objfile)
4693 char **pp;
4694 int end;
4695 struct objfile *objfile;
4696 {
4697 /* FIXME! Remove this arbitrary limit! */
4698 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
4699 int n = 0;
4700
4701 while (**pp != end)
4702 {
4703 if (**pp != ',')
4704 /* Invalid argument list: no ','. */
4705 return (struct type **)-1;
4706 (*pp)++;
4707 STABS_CONTINUE (pp, objfile);
4708 types[n++] = read_type (pp, objfile);
4709 }
4710 (*pp)++; /* get past `end' (the ':' character) */
4711
4712 if (n == 1)
4713 {
4714 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
4715 }
4716 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
4717 {
4718 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
4719 memset (rval + n, 0, sizeof (struct type *));
4720 }
4721 else
4722 {
4723 rval = (struct type **) xmalloc (n * sizeof (struct type *));
4724 }
4725 memcpy (rval, types, n * sizeof (struct type *));
4726 return rval;
4727 }
4728 \f
4729 /* Common block handling. */
4730
4731 /* List of symbols declared since the last BCOMM. This list is a tail
4732 of local_symbols. When ECOMM is seen, the symbols on the list
4733 are noted so their proper addresses can be filled in later,
4734 using the common block base address gotten from the assembler
4735 stabs. */
4736
4737 static struct pending *common_block;
4738 static int common_block_i;
4739
4740 /* Name of the current common block. We get it from the BCOMM instead of the
4741 ECOMM to match IBM documentation (even though IBM puts the name both places
4742 like everyone else). */
4743 static char *common_block_name;
4744
4745 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4746 to remain after this function returns. */
4747
4748 void
4749 common_block_start (name, objfile)
4750 char *name;
4751 struct objfile *objfile;
4752 {
4753 if (common_block_name != NULL)
4754 {
4755 static struct complaint msg = {
4756 "Invalid symbol data: common block within common block",
4757 0, 0};
4758 complain (&msg);
4759 }
4760 common_block = local_symbols;
4761 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4762 common_block_name = obsavestring (name, strlen (name),
4763 &objfile -> symbol_obstack);
4764 }
4765
4766 /* Process a N_ECOMM symbol. */
4767
4768 void
4769 common_block_end (objfile)
4770 struct objfile *objfile;
4771 {
4772 /* Symbols declared since the BCOMM are to have the common block
4773 start address added in when we know it. common_block and
4774 common_block_i point to the first symbol after the BCOMM in
4775 the local_symbols list; copy the list and hang it off the
4776 symbol for the common block name for later fixup. */
4777 int i;
4778 struct symbol *sym;
4779 struct pending *new = 0;
4780 struct pending *next;
4781 int j;
4782
4783 if (common_block_name == NULL)
4784 {
4785 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
4786 complain (&msg);
4787 return;
4788 }
4789
4790 sym = (struct symbol *)
4791 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
4792 memset (sym, 0, sizeof (struct symbol));
4793 /* Note: common_block_name already saved on symbol_obstack */
4794 SYMBOL_NAME (sym) = common_block_name;
4795 SYMBOL_CLASS (sym) = LOC_BLOCK;
4796
4797 /* Now we copy all the symbols which have been defined since the BCOMM. */
4798
4799 /* Copy all the struct pendings before common_block. */
4800 for (next = local_symbols;
4801 next != NULL && next != common_block;
4802 next = next->next)
4803 {
4804 for (j = 0; j < next->nsyms; j++)
4805 add_symbol_to_list (next->symbol[j], &new);
4806 }
4807
4808 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4809 NULL, it means copy all the local symbols (which we already did
4810 above). */
4811
4812 if (common_block != NULL)
4813 for (j = common_block_i; j < common_block->nsyms; j++)
4814 add_symbol_to_list (common_block->symbol[j], &new);
4815
4816 SYMBOL_TYPE (sym) = (struct type *) new;
4817
4818 /* Should we be putting local_symbols back to what it was?
4819 Does it matter? */
4820
4821 i = hashname (SYMBOL_NAME (sym));
4822 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4823 global_sym_chain[i] = sym;
4824 common_block_name = NULL;
4825 }
4826
4827 /* Add a common block's start address to the offset of each symbol
4828 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4829 the common block name). */
4830
4831 static void
4832 fix_common_block (sym, valu)
4833 struct symbol *sym;
4834 int valu;
4835 {
4836 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4837 for ( ; next; next = next->next)
4838 {
4839 register int j;
4840 for (j = next->nsyms - 1; j >= 0; j--)
4841 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4842 }
4843 }
4844
4845
4846 \f
4847 /* What about types defined as forward references inside of a small lexical
4848 scope? */
4849 /* Add a type to the list of undefined types to be checked through
4850 once this file has been read in. */
4851
4852 void
4853 add_undefined_type (type)
4854 struct type *type;
4855 {
4856 if (undef_types_length == undef_types_allocated)
4857 {
4858 undef_types_allocated *= 2;
4859 undef_types = (struct type **)
4860 xrealloc ((char *) undef_types,
4861 undef_types_allocated * sizeof (struct type *));
4862 }
4863 undef_types[undef_types_length++] = type;
4864 }
4865
4866 /* Go through each undefined type, see if it's still undefined, and fix it
4867 up if possible. We have two kinds of undefined types:
4868
4869 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4870 Fix: update array length using the element bounds
4871 and the target type's length.
4872 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4873 yet defined at the time a pointer to it was made.
4874 Fix: Do a full lookup on the struct/union tag. */
4875 void
4876 cleanup_undefined_types ()
4877 {
4878 struct type **type;
4879
4880 for (type = undef_types; type < undef_types + undef_types_length; type++)
4881 {
4882 switch (TYPE_CODE (*type))
4883 {
4884
4885 case TYPE_CODE_STRUCT:
4886 case TYPE_CODE_UNION:
4887 case TYPE_CODE_ENUM:
4888 {
4889 /* Check if it has been defined since. Need to do this here
4890 as well as in check_typedef to deal with the (legitimate in
4891 C though not C++) case of several types with the same name
4892 in different source files. */
4893 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
4894 {
4895 struct pending *ppt;
4896 int i;
4897 /* Name of the type, without "struct" or "union" */
4898 char *typename = TYPE_TAG_NAME (*type);
4899
4900 if (typename == NULL)
4901 {
4902 static struct complaint msg = {"need a type name", 0, 0};
4903 complain (&msg);
4904 break;
4905 }
4906 for (ppt = file_symbols; ppt; ppt = ppt->next)
4907 {
4908 for (i = 0; i < ppt->nsyms; i++)
4909 {
4910 struct symbol *sym = ppt->symbol[i];
4911
4912 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4913 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
4914 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4915 TYPE_CODE (*type))
4916 && STREQ (SYMBOL_NAME (sym), typename))
4917 {
4918 memcpy (*type, SYMBOL_TYPE (sym),
4919 sizeof (struct type));
4920 }
4921 }
4922 }
4923 }
4924 }
4925 break;
4926
4927 default:
4928 {
4929 static struct complaint msg = {"\
4930 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
4931 complain (&msg, TYPE_CODE (*type));
4932 }
4933 break;
4934 }
4935 }
4936
4937 undef_types_length = 0;
4938 }
4939
4940 /* Scan through all of the global symbols defined in the object file,
4941 assigning values to the debugging symbols that need to be assigned
4942 to. Get these symbols from the minimal symbol table. */
4943
4944 void
4945 scan_file_globals (objfile)
4946 struct objfile *objfile;
4947 {
4948 int hash;
4949 struct minimal_symbol *msymbol;
4950 struct symbol *sym, *prev, *rsym;
4951 struct objfile *resolve_objfile;
4952
4953 /* SVR4 based linkers copy referenced global symbols from shared
4954 libraries to the main executable.
4955 If we are scanning the symbols for a shared library, try to resolve
4956 them from the minimal symbols of the main executable first. */
4957
4958 if (symfile_objfile && objfile != symfile_objfile)
4959 resolve_objfile = symfile_objfile;
4960 else
4961 resolve_objfile = objfile;
4962
4963 while (1)
4964 {
4965 /* Avoid expensive loop through all minimal symbols if there are
4966 no unresolved symbols. */
4967 for (hash = 0; hash < HASHSIZE; hash++)
4968 {
4969 if (global_sym_chain[hash])
4970 break;
4971 }
4972 if (hash >= HASHSIZE)
4973 return;
4974
4975 for (msymbol = resolve_objfile -> msymbols;
4976 msymbol && SYMBOL_NAME (msymbol) != NULL;
4977 msymbol++)
4978 {
4979 QUIT;
4980
4981 /* Skip static symbols. */
4982 switch (MSYMBOL_TYPE (msymbol))
4983 {
4984 case mst_file_text:
4985 case mst_file_data:
4986 case mst_file_bss:
4987 continue;
4988 default:
4989 break;
4990 }
4991
4992 prev = NULL;
4993
4994 /* Get the hash index and check all the symbols
4995 under that hash index. */
4996
4997 hash = hashname (SYMBOL_NAME (msymbol));
4998
4999 for (sym = global_sym_chain[hash]; sym;)
5000 {
5001 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
5002 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
5003 {
5004
5005 struct alias_list *aliases;
5006
5007 /* Splice this symbol out of the hash chain and
5008 assign the value we have to it. */
5009 if (prev)
5010 {
5011 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
5012 }
5013 else
5014 {
5015 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
5016 }
5017
5018 /* Check to see whether we need to fix up a common block. */
5019 /* Note: this code might be executed several times for
5020 the same symbol if there are multiple references. */
5021
5022 /* If symbol has aliases, do minimal symbol fixups for each.
5023 These live aliases/references weren't added to
5024 global_sym_chain hash but may also need to be fixed up. */
5025 /* FIXME: Maybe should have added aliases to the global chain, resolved symbol name, then treated aliases as normal
5026 symbols? Still, we wouldn't want to add_to_list. */
5027 /* Now do the same for each alias of this symbol */
5028 rsym = sym;
5029 aliases = SYMBOL_ALIASES (sym);
5030 while (rsym)
5031 {
5032 if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
5033 {
5034 fix_common_block (rsym,
5035 SYMBOL_VALUE_ADDRESS (msymbol));
5036 }
5037 else
5038 {
5039 SYMBOL_VALUE_ADDRESS (rsym)
5040 = SYMBOL_VALUE_ADDRESS (msymbol);
5041 }
5042 SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
5043 if (aliases)
5044 {
5045 rsym = aliases->sym;
5046 aliases = aliases->next;
5047 }
5048 else
5049 rsym = NULL;
5050 }
5051
5052
5053 if (prev)
5054 {
5055 sym = SYMBOL_VALUE_CHAIN (prev);
5056 }
5057 else
5058 {
5059 sym = global_sym_chain[hash];
5060 }
5061 }
5062 else
5063 {
5064 prev = sym;
5065 sym = SYMBOL_VALUE_CHAIN (sym);
5066 }
5067 }
5068 }
5069 if (resolve_objfile == objfile)
5070 break;
5071 resolve_objfile = objfile;
5072 }
5073
5074 /* Change the storage class of any remaining unresolved globals to
5075 LOC_UNRESOLVED and remove them from the chain. */
5076 for (hash = 0; hash < HASHSIZE; hash++)
5077 {
5078 sym = global_sym_chain[hash];
5079 while (sym)
5080 {
5081 prev = sym;
5082 sym = SYMBOL_VALUE_CHAIN (sym);
5083
5084 /* Change the symbol address from the misleading chain value
5085 to address zero. */
5086 SYMBOL_VALUE_ADDRESS (prev) = 0;
5087
5088 /* Complain about unresolved common block symbols. */
5089 if (SYMBOL_CLASS (prev) == LOC_STATIC)
5090 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
5091 else
5092 complain (&unresolved_sym_chain_complaint,
5093 objfile -> name, SYMBOL_NAME (prev));
5094 }
5095 }
5096 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5097 }
5098
5099 /* Initialize anything that needs initializing when starting to read
5100 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
5101 to a psymtab. */
5102
5103 void
5104 stabsread_init ()
5105 {
5106 }
5107
5108 /* Initialize anything that needs initializing when a completely new
5109 symbol file is specified (not just adding some symbols from another
5110 file, e.g. a shared library). */
5111
5112 void
5113 stabsread_new_init ()
5114 {
5115 /* Empty the hash table of global syms looking for values. */
5116 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5117 }
5118
5119 /* Initialize anything that needs initializing at the same time as
5120 start_symtab() is called. */
5121
5122 void start_stabs ()
5123 {
5124 global_stabs = NULL; /* AIX COFF */
5125 /* Leave FILENUM of 0 free for builtin types and this file's types. */
5126 n_this_object_header_files = 1;
5127 type_vector_length = 0;
5128 type_vector = (struct type **) 0;
5129
5130 /* FIXME: If common_block_name is not already NULL, we should complain(). */
5131 common_block_name = NULL;
5132
5133 os9k_stabs = 0;
5134 }
5135
5136 /* Call after end_symtab() */
5137
5138 void end_stabs ()
5139 {
5140 if (type_vector)
5141 {
5142 free ((char *) type_vector);
5143 }
5144 type_vector = 0;
5145 type_vector_length = 0;
5146 previous_stab_code = 0;
5147 }
5148
5149 void
5150 finish_global_stabs (objfile)
5151 struct objfile *objfile;
5152 {
5153 if (global_stabs)
5154 {
5155 patch_block_stabs (global_symbols, global_stabs, objfile);
5156 free ((PTR) global_stabs);
5157 global_stabs = NULL;
5158 }
5159 }
5160
5161 /* Initializer for this module */
5162
5163 void
5164 _initialize_stabsread ()
5165 {
5166 undef_types_allocated = 20;
5167 undef_types_length = 0;
5168 undef_types = (struct type **)
5169 xmalloc (undef_types_allocated * sizeof (struct type *));
5170 }
This page took 0.241155 seconds and 4 git commands to generate.