Remove cleanups from link_callbacks_einfo
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
50 #define EXTERN
51 /**/
52 #include "stabsread.h" /* Our own declarations */
53 #undef EXTERN
54
55 struct nextfield
56 {
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65 };
66
67 struct next_fnfieldlist
68 {
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71 };
72
73 /* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
77 expected to eventually go away... (FIXME) */
78
79 struct field_info
80 {
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
83 };
84
85 static void
86 read_one_struct_field (struct field_info *, const char **, const char *,
87 struct type *, struct objfile *);
88
89 static struct type *dbx_alloc_type (int[2], struct objfile *);
90
91 static long read_huge_number (const char **, int, int *, int);
92
93 static struct type *error_type (const char **, struct objfile *);
94
95 static void
96 patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
98
99 static void fix_common_block (struct symbol *, CORE_ADDR);
100
101 static int read_type_number (const char **, int *);
102
103 static struct type *read_type (const char **, struct objfile *);
104
105 static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (const char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, const char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, const char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, const char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, const char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (const char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (const char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, const char **, struct type *,
153 struct objfile *);
154
155 static const char *find_name_end (const char *name);
156
157 static int process_reference (const char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
217
218 static struct type **type_vector;
219
220 /* Number of elements allocated for type_vector currently. */
221
222 static int type_vector_length;
223
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
226
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
228 \f
229
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
233
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
236
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
239 {
240 int filenum = typenums[0];
241 int index = typenums[1];
242 unsigned old_len;
243 int real_filenum;
244 struct header_file *f;
245 int f_orig_length;
246
247 if (filenum == -1) /* -1,-1 is for temporary types. */
248 return 0;
249
250 if (filenum < 0 || filenum >= n_this_object_header_files)
251 {
252 complaint (&symfile_complaints,
253 _("Invalid symbol data: type number "
254 "(%d,%d) out of range at symtab pos %d."),
255 filenum, index, symnum);
256 goto error_return;
257 }
258
259 if (filenum == 0)
260 {
261 if (index < 0)
262 {
263 /* Caller wants address of address of type. We think
264 that negative (rs6k builtin) types will never appear as
265 "lvalues", (nor should they), so we stuff the real type
266 pointer into a temp, and return its address. If referenced,
267 this will do the right thing. */
268 static struct type *temp_type;
269
270 temp_type = rs6000_builtin_type (index, objfile);
271 return &temp_type;
272 }
273
274 /* Type is defined outside of header files.
275 Find it in this object file's type vector. */
276 if (index >= type_vector_length)
277 {
278 old_len = type_vector_length;
279 if (old_len == 0)
280 {
281 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
282 type_vector = XNEWVEC (struct type *, type_vector_length);
283 }
284 while (index >= type_vector_length)
285 {
286 type_vector_length *= 2;
287 }
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
293 }
294 return (&type_vector[index]);
295 }
296 else
297 {
298 real_filenum = this_object_header_files[filenum];
299
300 if (real_filenum >= N_HEADER_FILES (objfile))
301 {
302 static struct type *temp_type;
303
304 warning (_("GDB internal error: bad real_filenum"));
305
306 error_return:
307 temp_type = objfile_type (objfile)->builtin_error;
308 return &temp_type;
309 }
310
311 f = HEADER_FILES (objfile) + real_filenum;
312
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
315 {
316 while (index >= f->length)
317 {
318 f->length *= 2;
319 }
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
324 }
325 return (&f->vector[index]);
326 }
327 }
328
329 /* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
333 put into the type vector, and so may not be referred to by number. */
334
335 static struct type *
336 dbx_alloc_type (int typenums[2], struct objfile *objfile)
337 {
338 struct type **type_addr;
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
345 type_addr = dbx_lookup_type (typenums, objfile);
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356 }
357
358 /* Allocate a floating-point type of size BITS. */
359
360 static struct type *
361 dbx_init_float_type (struct objfile *objfile, int bits)
362 {
363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
364 const struct floatformat **format;
365 struct type *type;
366
367 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
368 if (format)
369 type = init_float_type (objfile, bits, NULL, format);
370 else
371 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
372
373 return type;
374 }
375
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
378
379 static void
380 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
381 struct objfile *objfile)
382 {
383 int ii;
384 char *name;
385 const char *pp;
386 struct symbol *sym;
387
388 if (stabs)
389 {
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char *) strchr (name, ':');
397 gdb_assert (pp); /* Must find a ':' or game's over. */
398 while (pp[1] == ':')
399 {
400 pp += 2;
401 pp = (char *) strchr (pp, ':');
402 }
403 sym = find_symbol_in_list (symbols, name, pp - name);
404 if (!sym)
405 {
406 /* FIXME-maybe: it would be nice if we noticed whether
407 the variable was defined *anywhere*, not just whether
408 it is defined in this compilation unit. But neither
409 xlc or GCC seem to need such a definition, and until
410 we do psymtabs (so that the minimal symbols from all
411 compilation units are available now), I'm not sure
412 how to get the information. */
413
414 /* On xcoff, if a global is defined and never referenced,
415 ld will remove it from the executable. There is then
416 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
417 sym = allocate_symbol (objfile);
418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
419 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
420 SYMBOL_SET_LINKAGE_NAME
421 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
422 name, pp - name));
423 pp += 2;
424 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
425 {
426 /* I don't think the linker does this with functions,
427 so as far as I know this is never executed.
428 But it doesn't hurt to check. */
429 SYMBOL_TYPE (sym) =
430 lookup_function_type (read_type (&pp, objfile));
431 }
432 else
433 {
434 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
435 }
436 add_symbol_to_list (sym, &global_symbols);
437 }
438 else
439 {
440 pp += 2;
441 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
442 {
443 SYMBOL_TYPE (sym) =
444 lookup_function_type (read_type (&pp, objfile));
445 }
446 else
447 {
448 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
449 }
450 }
451 }
452 }
453 }
454 \f
455
456 /* Read a number by which a type is referred to in dbx data,
457 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
458 Just a single number N is equivalent to (0,N).
459 Return the two numbers by storing them in the vector TYPENUMS.
460 TYPENUMS will then be used as an argument to dbx_lookup_type.
461
462 Returns 0 for success, -1 for error. */
463
464 static int
465 read_type_number (const char **pp, int *typenums)
466 {
467 int nbits;
468
469 if (**pp == '(')
470 {
471 (*pp)++;
472 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
473 if (nbits != 0)
474 return -1;
475 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
476 if (nbits != 0)
477 return -1;
478 }
479 else
480 {
481 typenums[0] = 0;
482 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
483 if (nbits != 0)
484 return -1;
485 }
486 return 0;
487 }
488 \f
489
490 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
491 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
492 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
493 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
494
495 /* Structure for storing pointers to reference definitions for fast lookup
496 during "process_later". */
497
498 struct ref_map
499 {
500 const char *stabs;
501 CORE_ADDR value;
502 struct symbol *sym;
503 };
504
505 #define MAX_CHUNK_REFS 100
506 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
507 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
508
509 static struct ref_map *ref_map;
510
511 /* Ptr to free cell in chunk's linked list. */
512 static int ref_count = 0;
513
514 /* Number of chunks malloced. */
515 static int ref_chunk = 0;
516
517 /* This file maintains a cache of stabs aliases found in the symbol
518 table. If the symbol table changes, this cache must be cleared
519 or we are left holding onto data in invalid obstacks. */
520 void
521 stabsread_clear_cache (void)
522 {
523 ref_count = 0;
524 ref_chunk = 0;
525 }
526
527 /* Create array of pointers mapping refids to symbols and stab strings.
528 Add pointers to reference definition symbols and/or their values as we
529 find them, using their reference numbers as our index.
530 These will be used later when we resolve references. */
531 void
532 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
533 {
534 if (ref_count == 0)
535 ref_chunk = 0;
536 if (refnum >= ref_count)
537 ref_count = refnum + 1;
538 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
539 {
540 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
541 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
542
543 ref_map = (struct ref_map *)
544 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
545 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
546 new_chunks * REF_CHUNK_SIZE);
547 ref_chunk += new_chunks;
548 }
549 ref_map[refnum].stabs = stabs;
550 ref_map[refnum].sym = sym;
551 ref_map[refnum].value = value;
552 }
553
554 /* Return defined sym for the reference REFNUM. */
555 struct symbol *
556 ref_search (int refnum)
557 {
558 if (refnum < 0 || refnum > ref_count)
559 return 0;
560 return ref_map[refnum].sym;
561 }
562
563 /* Parse a reference id in STRING and return the resulting
564 reference number. Move STRING beyond the reference id. */
565
566 static int
567 process_reference (const char **string)
568 {
569 const char *p;
570 int refnum = 0;
571
572 if (**string != '#')
573 return 0;
574
575 /* Advance beyond the initial '#'. */
576 p = *string + 1;
577
578 /* Read number as reference id. */
579 while (*p && isdigit (*p))
580 {
581 refnum = refnum * 10 + *p - '0';
582 p++;
583 }
584 *string = p;
585 return refnum;
586 }
587
588 /* If STRING defines a reference, store away a pointer to the reference
589 definition for later use. Return the reference number. */
590
591 int
592 symbol_reference_defined (const char **string)
593 {
594 const char *p = *string;
595 int refnum = 0;
596
597 refnum = process_reference (&p);
598
599 /* Defining symbols end in '='. */
600 if (*p == '=')
601 {
602 /* Symbol is being defined here. */
603 *string = p + 1;
604 return refnum;
605 }
606 else
607 {
608 /* Must be a reference. Either the symbol has already been defined,
609 or this is a forward reference to it. */
610 *string = p;
611 return -1;
612 }
613 }
614
615 static int
616 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
617 {
618 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
619
620 if (regno < 0
621 || regno >= (gdbarch_num_regs (gdbarch)
622 + gdbarch_num_pseudo_regs (gdbarch)))
623 {
624 reg_value_complaint (regno,
625 gdbarch_num_regs (gdbarch)
626 + gdbarch_num_pseudo_regs (gdbarch),
627 SYMBOL_PRINT_NAME (sym));
628
629 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
630 }
631
632 return regno;
633 }
634
635 static const struct symbol_register_ops stab_register_funcs = {
636 stab_reg_to_regnum
637 };
638
639 /* The "aclass" indices for computed symbols. */
640
641 static int stab_register_index;
642 static int stab_regparm_index;
643
644 struct symbol *
645 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
646 struct objfile *objfile)
647 {
648 struct gdbarch *gdbarch = get_objfile_arch (objfile);
649 struct symbol *sym;
650 const char *p = find_name_end (string);
651 int deftype;
652 int synonym = 0;
653 int i;
654
655 /* We would like to eliminate nameless symbols, but keep their types.
656 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
657 to type 2, but, should not create a symbol to address that type. Since
658 the symbol will be nameless, there is no way any user can refer to it. */
659
660 int nameless;
661
662 /* Ignore syms with empty names. */
663 if (string[0] == 0)
664 return 0;
665
666 /* Ignore old-style symbols from cc -go. */
667 if (p == 0)
668 return 0;
669
670 while (p[1] == ':')
671 {
672 p += 2;
673 p = strchr (p, ':');
674 if (p == NULL)
675 {
676 complaint (&symfile_complaints,
677 _("Bad stabs string '%s'"), string);
678 return NULL;
679 }
680 }
681
682 /* If a nameless stab entry, all we need is the type, not the symbol.
683 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
684 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
685
686 current_symbol = sym = allocate_symbol (objfile);
687
688 if (processing_gcc_compilation)
689 {
690 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
691 number of bytes occupied by a type or object, which we ignore. */
692 SYMBOL_LINE (sym) = desc;
693 }
694 else
695 {
696 SYMBOL_LINE (sym) = 0; /* unknown */
697 }
698
699 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
700 &objfile->objfile_obstack);
701
702 if (is_cplus_marker (string[0]))
703 {
704 /* Special GNU C++ names. */
705 switch (string[1])
706 {
707 case 't':
708 SYMBOL_SET_LINKAGE_NAME (sym, "this");
709 break;
710
711 case 'v': /* $vtbl_ptr_type */
712 goto normal;
713
714 case 'e':
715 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
716 break;
717
718 case '_':
719 /* This was an anonymous type that was never fixed up. */
720 goto normal;
721
722 case 'X':
723 /* SunPRO (3.0 at least) static variable encoding. */
724 if (gdbarch_static_transform_name_p (gdbarch))
725 goto normal;
726 /* ... fall through ... */
727
728 default:
729 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
730 string);
731 goto normal; /* Do *something* with it. */
732 }
733 }
734 else
735 {
736 normal:
737 std::string new_name;
738
739 if (SYMBOL_LANGUAGE (sym) == language_cplus)
740 {
741 char *name = (char *) alloca (p - string + 1);
742
743 memcpy (name, string, p - string);
744 name[p - string] = '\0';
745 new_name = cp_canonicalize_string (name);
746 }
747 if (!new_name.empty ())
748 {
749 SYMBOL_SET_NAMES (sym,
750 new_name.c_str (), new_name.length (),
751 1, objfile);
752 }
753 else
754 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
755
756 if (SYMBOL_LANGUAGE (sym) == language_cplus)
757 cp_scan_for_anonymous_namespaces (sym, objfile);
758
759 }
760 p++;
761
762 /* Determine the type of name being defined. */
763 #if 0
764 /* Getting GDB to correctly skip the symbol on an undefined symbol
765 descriptor and not ever dump core is a very dodgy proposition if
766 we do things this way. I say the acorn RISC machine can just
767 fix their compiler. */
768 /* The Acorn RISC machine's compiler can put out locals that don't
769 start with "234=" or "(3,4)=", so assume anything other than the
770 deftypes we know how to handle is a local. */
771 if (!strchr ("cfFGpPrStTvVXCR", *p))
772 #else
773 if (isdigit (*p) || *p == '(' || *p == '-')
774 #endif
775 deftype = 'l';
776 else
777 deftype = *p++;
778
779 switch (deftype)
780 {
781 case 'c':
782 /* c is a special case, not followed by a type-number.
783 SYMBOL:c=iVALUE for an integer constant symbol.
784 SYMBOL:c=rVALUE for a floating constant symbol.
785 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
786 e.g. "b:c=e6,0" for "const b = blob1"
787 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
788 if (*p != '=')
789 {
790 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
791 SYMBOL_TYPE (sym) = error_type (&p, objfile);
792 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
793 add_symbol_to_list (sym, &file_symbols);
794 return sym;
795 }
796 ++p;
797 switch (*p++)
798 {
799 case 'r':
800 {
801 double d = atof (p);
802 gdb_byte *dbl_valu;
803 struct type *dbl_type;
804
805 /* FIXME-if-picky-about-floating-accuracy: Should be using
806 target arithmetic to get the value. real.c in GCC
807 probably has the necessary code. */
808
809 dbl_type = objfile_type (objfile)->builtin_double;
810 dbl_valu
811 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
812 TYPE_LENGTH (dbl_type));
813 store_typed_floating (dbl_valu, dbl_type, d);
814
815 SYMBOL_TYPE (sym) = dbl_type;
816 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
818 }
819 break;
820 case 'i':
821 {
822 /* Defining integer constants this way is kind of silly,
823 since 'e' constants allows the compiler to give not
824 only the value, but the type as well. C has at least
825 int, long, unsigned int, and long long as constant
826 types; other languages probably should have at least
827 unsigned as well as signed constants. */
828
829 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
830 SYMBOL_VALUE (sym) = atoi (p);
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 }
833 break;
834
835 case 'c':
836 {
837 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
838 SYMBOL_VALUE (sym) = atoi (p);
839 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
840 }
841 break;
842
843 case 's':
844 {
845 struct type *range_type;
846 int ind = 0;
847 char quote = *p++;
848 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
849 gdb_byte *string_value;
850
851 if (quote != '\'' && quote != '"')
852 {
853 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
854 SYMBOL_TYPE (sym) = error_type (&p, objfile);
855 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
856 add_symbol_to_list (sym, &file_symbols);
857 return sym;
858 }
859
860 /* Find matching quote, rejecting escaped quotes. */
861 while (*p && *p != quote)
862 {
863 if (*p == '\\' && p[1] == quote)
864 {
865 string_local[ind] = (gdb_byte) quote;
866 ind++;
867 p += 2;
868 }
869 else if (*p)
870 {
871 string_local[ind] = (gdb_byte) (*p);
872 ind++;
873 p++;
874 }
875 }
876 if (*p != quote)
877 {
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
879 SYMBOL_TYPE (sym) = error_type (&p, objfile);
880 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
881 add_symbol_to_list (sym, &file_symbols);
882 return sym;
883 }
884
885 /* NULL terminate the string. */
886 string_local[ind] = 0;
887 range_type
888 = create_static_range_type (NULL,
889 objfile_type (objfile)->builtin_int,
890 0, ind);
891 SYMBOL_TYPE (sym) = create_array_type (NULL,
892 objfile_type (objfile)->builtin_char,
893 range_type);
894 string_value
895 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
896 memcpy (string_value, string_local, ind + 1);
897 p++;
898
899 SYMBOL_VALUE_BYTES (sym) = string_value;
900 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
901 }
902 break;
903
904 case 'e':
905 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
906 can be represented as integral.
907 e.g. "b:c=e6,0" for "const b = blob1"
908 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
909 {
910 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
911 SYMBOL_TYPE (sym) = read_type (&p, objfile);
912
913 if (*p != ',')
914 {
915 SYMBOL_TYPE (sym) = error_type (&p, objfile);
916 break;
917 }
918 ++p;
919
920 /* If the value is too big to fit in an int (perhaps because
921 it is unsigned), or something like that, we silently get
922 a bogus value. The type and everything else about it is
923 correct. Ideally, we should be using whatever we have
924 available for parsing unsigned and long long values,
925 however. */
926 SYMBOL_VALUE (sym) = atoi (p);
927 }
928 break;
929 default:
930 {
931 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
932 SYMBOL_TYPE (sym) = error_type (&p, objfile);
933 }
934 }
935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
936 add_symbol_to_list (sym, &file_symbols);
937 return sym;
938
939 case 'C':
940 /* The name of a caught exception. */
941 SYMBOL_TYPE (sym) = read_type (&p, objfile);
942 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
943 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
944 SYMBOL_VALUE_ADDRESS (sym) = valu;
945 add_symbol_to_list (sym, &local_symbols);
946 break;
947
948 case 'f':
949 /* A static function definition. */
950 SYMBOL_TYPE (sym) = read_type (&p, objfile);
951 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
952 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
953 add_symbol_to_list (sym, &file_symbols);
954 /* fall into process_function_types. */
955
956 process_function_types:
957 /* Function result types are described as the result type in stabs.
958 We need to convert this to the function-returning-type-X type
959 in GDB. E.g. "int" is converted to "function returning int". */
960 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
961 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
962
963 /* All functions in C++ have prototypes. Stabs does not offer an
964 explicit way to identify prototyped or unprototyped functions,
965 but both GCC and Sun CC emit stabs for the "call-as" type rather
966 than the "declared-as" type for unprototyped functions, so
967 we treat all functions as if they were prototyped. This is used
968 primarily for promotion when calling the function from GDB. */
969 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
970
971 /* fall into process_prototype_types. */
972
973 process_prototype_types:
974 /* Sun acc puts declared types of arguments here. */
975 if (*p == ';')
976 {
977 struct type *ftype = SYMBOL_TYPE (sym);
978 int nsemi = 0;
979 int nparams = 0;
980 const char *p1 = p;
981
982 /* Obtain a worst case guess for the number of arguments
983 by counting the semicolons. */
984 while (*p1)
985 {
986 if (*p1++ == ';')
987 nsemi++;
988 }
989
990 /* Allocate parameter information fields and fill them in. */
991 TYPE_FIELDS (ftype) = (struct field *)
992 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
993 while (*p++ == ';')
994 {
995 struct type *ptype;
996
997 /* A type number of zero indicates the start of varargs.
998 FIXME: GDB currently ignores vararg functions. */
999 if (p[0] == '0' && p[1] == '\0')
1000 break;
1001 ptype = read_type (&p, objfile);
1002
1003 /* The Sun compilers mark integer arguments, which should
1004 be promoted to the width of the calling conventions, with
1005 a type which references itself. This type is turned into
1006 a TYPE_CODE_VOID type by read_type, and we have to turn
1007 it back into builtin_int here.
1008 FIXME: Do we need a new builtin_promoted_int_arg ? */
1009 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1010 ptype = objfile_type (objfile)->builtin_int;
1011 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1012 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1013 }
1014 TYPE_NFIELDS (ftype) = nparams;
1015 TYPE_PROTOTYPED (ftype) = 1;
1016 }
1017 break;
1018
1019 case 'F':
1020 /* A global function definition. */
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1023 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1024 add_symbol_to_list (sym, &global_symbols);
1025 goto process_function_types;
1026
1027 case 'G':
1028 /* For a class G (global) symbol, it appears that the
1029 value is not correct. It is necessary to search for the
1030 corresponding linker definition to find the value.
1031 These definitions appear at the end of the namelist. */
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 /* Don't add symbol references to global_sym_chain.
1036 Symbol references don't have valid names and wont't match up with
1037 minimal symbols when the global_sym_chain is relocated.
1038 We'll fixup symbol references when we fixup the defining symbol. */
1039 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1040 {
1041 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1042 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1043 global_sym_chain[i] = sym;
1044 }
1045 add_symbol_to_list (sym, &global_symbols);
1046 break;
1047
1048 /* This case is faked by a conditional above,
1049 when there is no code letter in the dbx data.
1050 Dbx data never actually contains 'l'. */
1051 case 's':
1052 case 'l':
1053 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1054 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1055 SYMBOL_VALUE (sym) = valu;
1056 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1057 add_symbol_to_list (sym, &local_symbols);
1058 break;
1059
1060 case 'p':
1061 if (*p == 'F')
1062 /* pF is a two-letter code that means a function parameter in Fortran.
1063 The type-number specifies the type of the return value.
1064 Translate it into a pointer-to-function type. */
1065 {
1066 p++;
1067 SYMBOL_TYPE (sym)
1068 = lookup_pointer_type
1069 (lookup_function_type (read_type (&p, objfile)));
1070 }
1071 else
1072 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1073
1074 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1075 SYMBOL_VALUE (sym) = valu;
1076 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1077 SYMBOL_IS_ARGUMENT (sym) = 1;
1078 add_symbol_to_list (sym, &local_symbols);
1079
1080 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1081 {
1082 /* On little-endian machines, this crud is never necessary,
1083 and, if the extra bytes contain garbage, is harmful. */
1084 break;
1085 }
1086
1087 /* If it's gcc-compiled, if it says `short', believe it. */
1088 if (processing_gcc_compilation
1089 || gdbarch_believe_pcc_promotion (gdbarch))
1090 break;
1091
1092 if (!gdbarch_believe_pcc_promotion (gdbarch))
1093 {
1094 /* If PCC says a parameter is a short or a char, it is
1095 really an int. */
1096 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1097 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1098 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1099 {
1100 SYMBOL_TYPE (sym) =
1101 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1102 ? objfile_type (objfile)->builtin_unsigned_int
1103 : objfile_type (objfile)->builtin_int;
1104 }
1105 break;
1106 }
1107
1108 case 'P':
1109 /* acc seems to use P to declare the prototypes of functions that
1110 are referenced by this file. gdb is not prepared to deal
1111 with this extra information. FIXME, it ought to. */
1112 if (type == N_FUN)
1113 {
1114 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1115 goto process_prototype_types;
1116 }
1117 /*FALLTHROUGH */
1118
1119 case 'R':
1120 /* Parameter which is in a register. */
1121 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1122 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1123 SYMBOL_IS_ARGUMENT (sym) = 1;
1124 SYMBOL_VALUE (sym) = valu;
1125 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1126 add_symbol_to_list (sym, &local_symbols);
1127 break;
1128
1129 case 'r':
1130 /* Register variable (either global or local). */
1131 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1132 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1133 SYMBOL_VALUE (sym) = valu;
1134 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1135 if (within_function)
1136 {
1137 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1138 the same name to represent an argument passed in a
1139 register. GCC uses 'P' for the same case. So if we find
1140 such a symbol pair we combine it into one 'P' symbol.
1141 For Sun cc we need to do this regardless of
1142 stabs_argument_has_addr, because the compiler puts out
1143 the 'p' symbol even if it never saves the argument onto
1144 the stack.
1145
1146 On most machines, we want to preserve both symbols, so
1147 that we can still get information about what is going on
1148 with the stack (VAX for computing args_printed, using
1149 stack slots instead of saved registers in backtraces,
1150 etc.).
1151
1152 Note that this code illegally combines
1153 main(argc) struct foo argc; { register struct foo argc; }
1154 but this case is considered pathological and causes a warning
1155 from a decent compiler. */
1156
1157 if (local_symbols
1158 && local_symbols->nsyms > 0
1159 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1160 {
1161 struct symbol *prev_sym;
1162
1163 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1164 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1165 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1166 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1167 SYMBOL_LINKAGE_NAME (sym)) == 0)
1168 {
1169 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1170 /* Use the type from the LOC_REGISTER; that is the type
1171 that is actually in that register. */
1172 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1173 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1174 sym = prev_sym;
1175 break;
1176 }
1177 }
1178 add_symbol_to_list (sym, &local_symbols);
1179 }
1180 else
1181 add_symbol_to_list (sym, &file_symbols);
1182 break;
1183
1184 case 'S':
1185 /* Static symbol at top level of file. */
1186 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1187 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1188 SYMBOL_VALUE_ADDRESS (sym) = valu;
1189 if (gdbarch_static_transform_name_p (gdbarch)
1190 && gdbarch_static_transform_name (gdbarch,
1191 SYMBOL_LINKAGE_NAME (sym))
1192 != SYMBOL_LINKAGE_NAME (sym))
1193 {
1194 struct bound_minimal_symbol msym;
1195
1196 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1197 NULL, objfile);
1198 if (msym.minsym != NULL)
1199 {
1200 const char *new_name = gdbarch_static_transform_name
1201 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1202
1203 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1204 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1205 }
1206 }
1207 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1208 add_symbol_to_list (sym, &file_symbols);
1209 break;
1210
1211 case 't':
1212 /* In Ada, there is no distinction between typedef and non-typedef;
1213 any type declaration implicitly has the equivalent of a typedef,
1214 and thus 't' is in fact equivalent to 'Tt'.
1215
1216 Therefore, for Ada units, we check the character immediately
1217 before the 't', and if we do not find a 'T', then make sure to
1218 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1219 will be stored in the VAR_DOMAIN). If the symbol was indeed
1220 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1221 elsewhere, so we don't need to take care of that.
1222
1223 This is important to do, because of forward references:
1224 The cleanup of undefined types stored in undef_types only uses
1225 STRUCT_DOMAIN symbols to perform the replacement. */
1226 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1227
1228 /* Typedef */
1229 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1230
1231 /* For a nameless type, we don't want a create a symbol, thus we
1232 did not use `sym'. Return without further processing. */
1233 if (nameless)
1234 return NULL;
1235
1236 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1237 SYMBOL_VALUE (sym) = valu;
1238 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1239 /* C++ vagaries: we may have a type which is derived from
1240 a base type which did not have its name defined when the
1241 derived class was output. We fill in the derived class's
1242 base part member's name here in that case. */
1243 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1244 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1245 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1246 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1247 {
1248 int j;
1249
1250 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1251 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1252 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1253 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1254 }
1255
1256 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1257 {
1258 /* gcc-2.6 or later (when using -fvtable-thunks)
1259 emits a unique named type for a vtable entry.
1260 Some gdb code depends on that specific name. */
1261 extern const char vtbl_ptr_name[];
1262
1263 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1264 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1265 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1266 {
1267 /* If we are giving a name to a type such as "pointer to
1268 foo" or "function returning foo", we better not set
1269 the TYPE_NAME. If the program contains "typedef char
1270 *caddr_t;", we don't want all variables of type char
1271 * to print as caddr_t. This is not just a
1272 consequence of GDB's type management; PCC and GCC (at
1273 least through version 2.4) both output variables of
1274 either type char * or caddr_t with the type number
1275 defined in the 't' symbol for caddr_t. If a future
1276 compiler cleans this up it GDB is not ready for it
1277 yet, but if it becomes ready we somehow need to
1278 disable this check (without breaking the PCC/GCC2.4
1279 case).
1280
1281 Sigh.
1282
1283 Fortunately, this check seems not to be necessary
1284 for anything except pointers or functions. */
1285 /* ezannoni: 2000-10-26. This seems to apply for
1286 versions of gcc older than 2.8. This was the original
1287 problem: with the following code gdb would tell that
1288 the type for name1 is caddr_t, and func is char().
1289
1290 typedef char *caddr_t;
1291 char *name2;
1292 struct x
1293 {
1294 char *name1;
1295 } xx;
1296 char *func()
1297 {
1298 }
1299 main () {}
1300 */
1301
1302 /* Pascal accepts names for pointer types. */
1303 if (current_subfile->language == language_pascal)
1304 {
1305 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1306 }
1307 }
1308 else
1309 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1310 }
1311
1312 add_symbol_to_list (sym, &file_symbols);
1313
1314 if (synonym)
1315 {
1316 /* Create the STRUCT_DOMAIN clone. */
1317 struct symbol *struct_sym = allocate_symbol (objfile);
1318
1319 *struct_sym = *sym;
1320 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1321 SYMBOL_VALUE (struct_sym) = valu;
1322 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1323 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1324 TYPE_NAME (SYMBOL_TYPE (sym))
1325 = obconcat (&objfile->objfile_obstack,
1326 SYMBOL_LINKAGE_NAME (sym),
1327 (char *) NULL);
1328 add_symbol_to_list (struct_sym, &file_symbols);
1329 }
1330
1331 break;
1332
1333 case 'T':
1334 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1335 by 't' which means we are typedef'ing it as well. */
1336 synonym = *p == 't';
1337
1338 if (synonym)
1339 p++;
1340
1341 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1342
1343 /* For a nameless type, we don't want a create a symbol, thus we
1344 did not use `sym'. Return without further processing. */
1345 if (nameless)
1346 return NULL;
1347
1348 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1349 SYMBOL_VALUE (sym) = valu;
1350 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1351 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1352 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1353 = obconcat (&objfile->objfile_obstack,
1354 SYMBOL_LINKAGE_NAME (sym),
1355 (char *) NULL);
1356 add_symbol_to_list (sym, &file_symbols);
1357
1358 if (synonym)
1359 {
1360 /* Clone the sym and then modify it. */
1361 struct symbol *typedef_sym = allocate_symbol (objfile);
1362
1363 *typedef_sym = *sym;
1364 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1365 SYMBOL_VALUE (typedef_sym) = valu;
1366 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1367 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1368 TYPE_NAME (SYMBOL_TYPE (sym))
1369 = obconcat (&objfile->objfile_obstack,
1370 SYMBOL_LINKAGE_NAME (sym),
1371 (char *) NULL);
1372 add_symbol_to_list (typedef_sym, &file_symbols);
1373 }
1374 break;
1375
1376 case 'V':
1377 /* Static symbol of local scope. */
1378 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1379 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1380 SYMBOL_VALUE_ADDRESS (sym) = valu;
1381 if (gdbarch_static_transform_name_p (gdbarch)
1382 && gdbarch_static_transform_name (gdbarch,
1383 SYMBOL_LINKAGE_NAME (sym))
1384 != SYMBOL_LINKAGE_NAME (sym))
1385 {
1386 struct bound_minimal_symbol msym;
1387
1388 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1389 NULL, objfile);
1390 if (msym.minsym != NULL)
1391 {
1392 const char *new_name = gdbarch_static_transform_name
1393 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1394
1395 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1396 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1397 }
1398 }
1399 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1400 add_symbol_to_list (sym, &local_symbols);
1401 break;
1402
1403 case 'v':
1404 /* Reference parameter */
1405 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1406 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1407 SYMBOL_IS_ARGUMENT (sym) = 1;
1408 SYMBOL_VALUE (sym) = valu;
1409 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1410 add_symbol_to_list (sym, &local_symbols);
1411 break;
1412
1413 case 'a':
1414 /* Reference parameter which is in a register. */
1415 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1416 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1417 SYMBOL_IS_ARGUMENT (sym) = 1;
1418 SYMBOL_VALUE (sym) = valu;
1419 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1420 add_symbol_to_list (sym, &local_symbols);
1421 break;
1422
1423 case 'X':
1424 /* This is used by Sun FORTRAN for "function result value".
1425 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1426 that Pascal uses it too, but when I tried it Pascal used
1427 "x:3" (local symbol) instead. */
1428 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1429 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1430 SYMBOL_VALUE (sym) = valu;
1431 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1432 add_symbol_to_list (sym, &local_symbols);
1433 break;
1434
1435 default:
1436 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1437 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1438 SYMBOL_VALUE (sym) = 0;
1439 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1440 add_symbol_to_list (sym, &file_symbols);
1441 break;
1442 }
1443
1444 /* Some systems pass variables of certain types by reference instead
1445 of by value, i.e. they will pass the address of a structure (in a
1446 register or on the stack) instead of the structure itself. */
1447
1448 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1449 && SYMBOL_IS_ARGUMENT (sym))
1450 {
1451 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1452 variables passed in a register). */
1453 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1454 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1455 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1456 and subsequent arguments on SPARC, for example). */
1457 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1458 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1459 }
1460
1461 return sym;
1462 }
1463
1464 /* Skip rest of this symbol and return an error type.
1465
1466 General notes on error recovery: error_type always skips to the
1467 end of the symbol (modulo cretinous dbx symbol name continuation).
1468 Thus code like this:
1469
1470 if (*(*pp)++ != ';')
1471 return error_type (pp, objfile);
1472
1473 is wrong because if *pp starts out pointing at '\0' (typically as the
1474 result of an earlier error), it will be incremented to point to the
1475 start of the next symbol, which might produce strange results, at least
1476 if you run off the end of the string table. Instead use
1477
1478 if (**pp != ';')
1479 return error_type (pp, objfile);
1480 ++*pp;
1481
1482 or
1483
1484 if (**pp != ';')
1485 foo = error_type (pp, objfile);
1486 else
1487 ++*pp;
1488
1489 And in case it isn't obvious, the point of all this hair is so the compiler
1490 can define new types and new syntaxes, and old versions of the
1491 debugger will be able to read the new symbol tables. */
1492
1493 static struct type *
1494 error_type (const char **pp, struct objfile *objfile)
1495 {
1496 complaint (&symfile_complaints,
1497 _("couldn't parse type; debugger out of date?"));
1498 while (1)
1499 {
1500 /* Skip to end of symbol. */
1501 while (**pp != '\0')
1502 {
1503 (*pp)++;
1504 }
1505
1506 /* Check for and handle cretinous dbx symbol name continuation! */
1507 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1508 {
1509 *pp = next_symbol_text (objfile);
1510 }
1511 else
1512 {
1513 break;
1514 }
1515 }
1516 return objfile_type (objfile)->builtin_error;
1517 }
1518 \f
1519
1520 /* Read type information or a type definition; return the type. Even
1521 though this routine accepts either type information or a type
1522 definition, the distinction is relevant--some parts of stabsread.c
1523 assume that type information starts with a digit, '-', or '(' in
1524 deciding whether to call read_type. */
1525
1526 static struct type *
1527 read_type (const char **pp, struct objfile *objfile)
1528 {
1529 struct type *type = 0;
1530 struct type *type1;
1531 int typenums[2];
1532 char type_descriptor;
1533
1534 /* Size in bits of type if specified by a type attribute, or -1 if
1535 there is no size attribute. */
1536 int type_size = -1;
1537
1538 /* Used to distinguish string and bitstring from char-array and set. */
1539 int is_string = 0;
1540
1541 /* Used to distinguish vector from array. */
1542 int is_vector = 0;
1543
1544 /* Read type number if present. The type number may be omitted.
1545 for instance in a two-dimensional array declared with type
1546 "ar1;1;10;ar1;1;10;4". */
1547 if ((**pp >= '0' && **pp <= '9')
1548 || **pp == '('
1549 || **pp == '-')
1550 {
1551 if (read_type_number (pp, typenums) != 0)
1552 return error_type (pp, objfile);
1553
1554 if (**pp != '=')
1555 {
1556 /* Type is not being defined here. Either it already
1557 exists, or this is a forward reference to it.
1558 dbx_alloc_type handles both cases. */
1559 type = dbx_alloc_type (typenums, objfile);
1560
1561 /* If this is a forward reference, arrange to complain if it
1562 doesn't get patched up by the time we're done
1563 reading. */
1564 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1565 add_undefined_type (type, typenums);
1566
1567 return type;
1568 }
1569
1570 /* Type is being defined here. */
1571 /* Skip the '='.
1572 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1573 (*pp) += 2;
1574 }
1575 else
1576 {
1577 /* 'typenums=' not present, type is anonymous. Read and return
1578 the definition, but don't put it in the type vector. */
1579 typenums[0] = typenums[1] = -1;
1580 (*pp)++;
1581 }
1582
1583 again:
1584 type_descriptor = (*pp)[-1];
1585 switch (type_descriptor)
1586 {
1587 case 'x':
1588 {
1589 enum type_code code;
1590
1591 /* Used to index through file_symbols. */
1592 struct pending *ppt;
1593 int i;
1594
1595 /* Name including "struct", etc. */
1596 char *type_name;
1597
1598 {
1599 const char *from, *p, *q1, *q2;
1600
1601 /* Set the type code according to the following letter. */
1602 switch ((*pp)[0])
1603 {
1604 case 's':
1605 code = TYPE_CODE_STRUCT;
1606 break;
1607 case 'u':
1608 code = TYPE_CODE_UNION;
1609 break;
1610 case 'e':
1611 code = TYPE_CODE_ENUM;
1612 break;
1613 default:
1614 {
1615 /* Complain and keep going, so compilers can invent new
1616 cross-reference types. */
1617 complaint (&symfile_complaints,
1618 _("Unrecognized cross-reference type `%c'"),
1619 (*pp)[0]);
1620 code = TYPE_CODE_STRUCT;
1621 break;
1622 }
1623 }
1624
1625 q1 = strchr (*pp, '<');
1626 p = strchr (*pp, ':');
1627 if (p == NULL)
1628 return error_type (pp, objfile);
1629 if (q1 && p > q1 && p[1] == ':')
1630 {
1631 int nesting_level = 0;
1632
1633 for (q2 = q1; *q2; q2++)
1634 {
1635 if (*q2 == '<')
1636 nesting_level++;
1637 else if (*q2 == '>')
1638 nesting_level--;
1639 else if (*q2 == ':' && nesting_level == 0)
1640 break;
1641 }
1642 p = q2;
1643 if (*p != ':')
1644 return error_type (pp, objfile);
1645 }
1646 type_name = NULL;
1647 if (current_subfile->language == language_cplus)
1648 {
1649 char *name = (char *) alloca (p - *pp + 1);
1650
1651 memcpy (name, *pp, p - *pp);
1652 name[p - *pp] = '\0';
1653
1654 std::string new_name = cp_canonicalize_string (name);
1655 if (!new_name.empty ())
1656 {
1657 type_name
1658 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1659 new_name.c_str (),
1660 new_name.length ());
1661 }
1662 }
1663 if (type_name == NULL)
1664 {
1665 char *to = type_name = (char *)
1666 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1667
1668 /* Copy the name. */
1669 from = *pp + 1;
1670 while (from < p)
1671 *to++ = *from++;
1672 *to = '\0';
1673 }
1674
1675 /* Set the pointer ahead of the name which we just read, and
1676 the colon. */
1677 *pp = p + 1;
1678 }
1679
1680 /* If this type has already been declared, then reuse the same
1681 type, rather than allocating a new one. This saves some
1682 memory. */
1683
1684 for (ppt = file_symbols; ppt; ppt = ppt->next)
1685 for (i = 0; i < ppt->nsyms; i++)
1686 {
1687 struct symbol *sym = ppt->symbol[i];
1688
1689 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1690 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1691 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1692 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1693 {
1694 obstack_free (&objfile->objfile_obstack, type_name);
1695 type = SYMBOL_TYPE (sym);
1696 if (typenums[0] != -1)
1697 *dbx_lookup_type (typenums, objfile) = type;
1698 return type;
1699 }
1700 }
1701
1702 /* Didn't find the type to which this refers, so we must
1703 be dealing with a forward reference. Allocate a type
1704 structure for it, and keep track of it so we can
1705 fill in the rest of the fields when we get the full
1706 type. */
1707 type = dbx_alloc_type (typenums, objfile);
1708 TYPE_CODE (type) = code;
1709 TYPE_TAG_NAME (type) = type_name;
1710 INIT_CPLUS_SPECIFIC (type);
1711 TYPE_STUB (type) = 1;
1712
1713 add_undefined_type (type, typenums);
1714 return type;
1715 }
1716
1717 case '-': /* RS/6000 built-in type */
1718 case '0':
1719 case '1':
1720 case '2':
1721 case '3':
1722 case '4':
1723 case '5':
1724 case '6':
1725 case '7':
1726 case '8':
1727 case '9':
1728 case '(':
1729 (*pp)--;
1730
1731 /* We deal with something like t(1,2)=(3,4)=... which
1732 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1733
1734 /* Allocate and enter the typedef type first.
1735 This handles recursive types. */
1736 type = dbx_alloc_type (typenums, objfile);
1737 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1738 {
1739 struct type *xtype = read_type (pp, objfile);
1740
1741 if (type == xtype)
1742 {
1743 /* It's being defined as itself. That means it is "void". */
1744 TYPE_CODE (type) = TYPE_CODE_VOID;
1745 TYPE_LENGTH (type) = 1;
1746 }
1747 else if (type_size >= 0 || is_string)
1748 {
1749 /* This is the absolute wrong way to construct types. Every
1750 other debug format has found a way around this problem and
1751 the related problems with unnecessarily stubbed types;
1752 someone motivated should attempt to clean up the issue
1753 here as well. Once a type pointed to has been created it
1754 should not be modified.
1755
1756 Well, it's not *absolutely* wrong. Constructing recursive
1757 types (trees, linked lists) necessarily entails modifying
1758 types after creating them. Constructing any loop structure
1759 entails side effects. The Dwarf 2 reader does handle this
1760 more gracefully (it never constructs more than once
1761 instance of a type object, so it doesn't have to copy type
1762 objects wholesale), but it still mutates type objects after
1763 other folks have references to them.
1764
1765 Keep in mind that this circularity/mutation issue shows up
1766 at the source language level, too: C's "incomplete types",
1767 for example. So the proper cleanup, I think, would be to
1768 limit GDB's type smashing to match exactly those required
1769 by the source language. So GDB could have a
1770 "complete_this_type" function, but never create unnecessary
1771 copies of a type otherwise. */
1772 replace_type (type, xtype);
1773 TYPE_NAME (type) = NULL;
1774 TYPE_TAG_NAME (type) = NULL;
1775 }
1776 else
1777 {
1778 TYPE_TARGET_STUB (type) = 1;
1779 TYPE_TARGET_TYPE (type) = xtype;
1780 }
1781 }
1782 break;
1783
1784 /* In the following types, we must be sure to overwrite any existing
1785 type that the typenums refer to, rather than allocating a new one
1786 and making the typenums point to the new one. This is because there
1787 may already be pointers to the existing type (if it had been
1788 forward-referenced), and we must change it to a pointer, function,
1789 reference, or whatever, *in-place*. */
1790
1791 case '*': /* Pointer to another type */
1792 type1 = read_type (pp, objfile);
1793 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1794 break;
1795
1796 case '&': /* Reference to another type */
1797 type1 = read_type (pp, objfile);
1798 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1799 TYPE_CODE_REF);
1800 break;
1801
1802 case 'f': /* Function returning another type */
1803 type1 = read_type (pp, objfile);
1804 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1805 break;
1806
1807 case 'g': /* Prototyped function. (Sun) */
1808 {
1809 /* Unresolved questions:
1810
1811 - According to Sun's ``STABS Interface Manual'', for 'f'
1812 and 'F' symbol descriptors, a `0' in the argument type list
1813 indicates a varargs function. But it doesn't say how 'g'
1814 type descriptors represent that info. Someone with access
1815 to Sun's toolchain should try it out.
1816
1817 - According to the comment in define_symbol (search for
1818 `process_prototype_types:'), Sun emits integer arguments as
1819 types which ref themselves --- like `void' types. Do we
1820 have to deal with that here, too? Again, someone with
1821 access to Sun's toolchain should try it out and let us
1822 know. */
1823
1824 const char *type_start = (*pp) - 1;
1825 struct type *return_type = read_type (pp, objfile);
1826 struct type *func_type
1827 = make_function_type (return_type,
1828 dbx_lookup_type (typenums, objfile));
1829 struct type_list {
1830 struct type *type;
1831 struct type_list *next;
1832 } *arg_types = 0;
1833 int num_args = 0;
1834
1835 while (**pp && **pp != '#')
1836 {
1837 struct type *arg_type = read_type (pp, objfile);
1838 struct type_list *newobj = XALLOCA (struct type_list);
1839 newobj->type = arg_type;
1840 newobj->next = arg_types;
1841 arg_types = newobj;
1842 num_args++;
1843 }
1844 if (**pp == '#')
1845 ++*pp;
1846 else
1847 {
1848 complaint (&symfile_complaints,
1849 _("Prototyped function type didn't "
1850 "end arguments with `#':\n%s"),
1851 type_start);
1852 }
1853
1854 /* If there is just one argument whose type is `void', then
1855 that's just an empty argument list. */
1856 if (arg_types
1857 && ! arg_types->next
1858 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1859 num_args = 0;
1860
1861 TYPE_FIELDS (func_type)
1862 = (struct field *) TYPE_ALLOC (func_type,
1863 num_args * sizeof (struct field));
1864 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1865 {
1866 int i;
1867 struct type_list *t;
1868
1869 /* We stuck each argument type onto the front of the list
1870 when we read it, so the list is reversed. Build the
1871 fields array right-to-left. */
1872 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1873 TYPE_FIELD_TYPE (func_type, i) = t->type;
1874 }
1875 TYPE_NFIELDS (func_type) = num_args;
1876 TYPE_PROTOTYPED (func_type) = 1;
1877
1878 type = func_type;
1879 break;
1880 }
1881
1882 case 'k': /* Const qualifier on some type (Sun) */
1883 type = read_type (pp, objfile);
1884 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1885 dbx_lookup_type (typenums, objfile));
1886 break;
1887
1888 case 'B': /* Volatile qual on some type (Sun) */
1889 type = read_type (pp, objfile);
1890 type = make_cv_type (TYPE_CONST (type), 1, type,
1891 dbx_lookup_type (typenums, objfile));
1892 break;
1893
1894 case '@':
1895 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1896 { /* Member (class & variable) type */
1897 /* FIXME -- we should be doing smash_to_XXX types here. */
1898
1899 struct type *domain = read_type (pp, objfile);
1900 struct type *memtype;
1901
1902 if (**pp != ',')
1903 /* Invalid member type data format. */
1904 return error_type (pp, objfile);
1905 ++*pp;
1906
1907 memtype = read_type (pp, objfile);
1908 type = dbx_alloc_type (typenums, objfile);
1909 smash_to_memberptr_type (type, domain, memtype);
1910 }
1911 else
1912 /* type attribute */
1913 {
1914 const char *attr = *pp;
1915
1916 /* Skip to the semicolon. */
1917 while (**pp != ';' && **pp != '\0')
1918 ++(*pp);
1919 if (**pp == '\0')
1920 return error_type (pp, objfile);
1921 else
1922 ++ * pp; /* Skip the semicolon. */
1923
1924 switch (*attr)
1925 {
1926 case 's': /* Size attribute */
1927 type_size = atoi (attr + 1);
1928 if (type_size <= 0)
1929 type_size = -1;
1930 break;
1931
1932 case 'S': /* String attribute */
1933 /* FIXME: check to see if following type is array? */
1934 is_string = 1;
1935 break;
1936
1937 case 'V': /* Vector attribute */
1938 /* FIXME: check to see if following type is array? */
1939 is_vector = 1;
1940 break;
1941
1942 default:
1943 /* Ignore unrecognized type attributes, so future compilers
1944 can invent new ones. */
1945 break;
1946 }
1947 ++*pp;
1948 goto again;
1949 }
1950 break;
1951
1952 case '#': /* Method (class & fn) type */
1953 if ((*pp)[0] == '#')
1954 {
1955 /* We'll get the parameter types from the name. */
1956 struct type *return_type;
1957
1958 (*pp)++;
1959 return_type = read_type (pp, objfile);
1960 if (*(*pp)++ != ';')
1961 complaint (&symfile_complaints,
1962 _("invalid (minimal) member type "
1963 "data format at symtab pos %d."),
1964 symnum);
1965 type = allocate_stub_method (return_type);
1966 if (typenums[0] != -1)
1967 *dbx_lookup_type (typenums, objfile) = type;
1968 }
1969 else
1970 {
1971 struct type *domain = read_type (pp, objfile);
1972 struct type *return_type;
1973 struct field *args;
1974 int nargs, varargs;
1975
1976 if (**pp != ',')
1977 /* Invalid member type data format. */
1978 return error_type (pp, objfile);
1979 else
1980 ++(*pp);
1981
1982 return_type = read_type (pp, objfile);
1983 args = read_args (pp, ';', objfile, &nargs, &varargs);
1984 if (args == NULL)
1985 return error_type (pp, objfile);
1986 type = dbx_alloc_type (typenums, objfile);
1987 smash_to_method_type (type, domain, return_type, args,
1988 nargs, varargs);
1989 }
1990 break;
1991
1992 case 'r': /* Range type */
1993 type = read_range_type (pp, typenums, type_size, objfile);
1994 if (typenums[0] != -1)
1995 *dbx_lookup_type (typenums, objfile) = type;
1996 break;
1997
1998 case 'b':
1999 {
2000 /* Sun ACC builtin int type */
2001 type = read_sun_builtin_type (pp, typenums, objfile);
2002 if (typenums[0] != -1)
2003 *dbx_lookup_type (typenums, objfile) = type;
2004 }
2005 break;
2006
2007 case 'R': /* Sun ACC builtin float type */
2008 type = read_sun_floating_type (pp, typenums, objfile);
2009 if (typenums[0] != -1)
2010 *dbx_lookup_type (typenums, objfile) = type;
2011 break;
2012
2013 case 'e': /* Enumeration type */
2014 type = dbx_alloc_type (typenums, objfile);
2015 type = read_enum_type (pp, type, objfile);
2016 if (typenums[0] != -1)
2017 *dbx_lookup_type (typenums, objfile) = type;
2018 break;
2019
2020 case 's': /* Struct type */
2021 case 'u': /* Union type */
2022 {
2023 enum type_code type_code = TYPE_CODE_UNDEF;
2024 type = dbx_alloc_type (typenums, objfile);
2025 switch (type_descriptor)
2026 {
2027 case 's':
2028 type_code = TYPE_CODE_STRUCT;
2029 break;
2030 case 'u':
2031 type_code = TYPE_CODE_UNION;
2032 break;
2033 }
2034 type = read_struct_type (pp, type, type_code, objfile);
2035 break;
2036 }
2037
2038 case 'a': /* Array type */
2039 if (**pp != 'r')
2040 return error_type (pp, objfile);
2041 ++*pp;
2042
2043 type = dbx_alloc_type (typenums, objfile);
2044 type = read_array_type (pp, type, objfile);
2045 if (is_string)
2046 TYPE_CODE (type) = TYPE_CODE_STRING;
2047 if (is_vector)
2048 make_vector_type (type);
2049 break;
2050
2051 case 'S': /* Set type */
2052 type1 = read_type (pp, objfile);
2053 type = create_set_type ((struct type *) NULL, type1);
2054 if (typenums[0] != -1)
2055 *dbx_lookup_type (typenums, objfile) = type;
2056 break;
2057
2058 default:
2059 --*pp; /* Go back to the symbol in error. */
2060 /* Particularly important if it was \0! */
2061 return error_type (pp, objfile);
2062 }
2063
2064 if (type == 0)
2065 {
2066 warning (_("GDB internal error, type is NULL in stabsread.c."));
2067 return error_type (pp, objfile);
2068 }
2069
2070 /* Size specified in a type attribute overrides any other size. */
2071 if (type_size != -1)
2072 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2073
2074 return type;
2075 }
2076 \f
2077 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2078 Return the proper type node for a given builtin type number. */
2079
2080 static const struct objfile_data *rs6000_builtin_type_data;
2081
2082 static struct type *
2083 rs6000_builtin_type (int typenum, struct objfile *objfile)
2084 {
2085 struct type **negative_types
2086 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2087
2088 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2089 #define NUMBER_RECOGNIZED 34
2090 struct type *rettype = NULL;
2091
2092 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2093 {
2094 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2095 return objfile_type (objfile)->builtin_error;
2096 }
2097
2098 if (!negative_types)
2099 {
2100 /* This includes an empty slot for type number -0. */
2101 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2102 NUMBER_RECOGNIZED + 1, struct type *);
2103 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2104 }
2105
2106 if (negative_types[-typenum] != NULL)
2107 return negative_types[-typenum];
2108
2109 #if TARGET_CHAR_BIT != 8
2110 #error This code wrong for TARGET_CHAR_BIT not 8
2111 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2112 that if that ever becomes not true, the correct fix will be to
2113 make the size in the struct type to be in bits, not in units of
2114 TARGET_CHAR_BIT. */
2115 #endif
2116
2117 switch (-typenum)
2118 {
2119 case 1:
2120 /* The size of this and all the other types are fixed, defined
2121 by the debugging format. If there is a type called "int" which
2122 is other than 32 bits, then it should use a new negative type
2123 number (or avoid negative type numbers for that case).
2124 See stabs.texinfo. */
2125 rettype = init_integer_type (objfile, 32, 0, "int");
2126 break;
2127 case 2:
2128 rettype = init_integer_type (objfile, 8, 0, "char");
2129 TYPE_NOSIGN (rettype) = 1;
2130 break;
2131 case 3:
2132 rettype = init_integer_type (objfile, 16, 0, "short");
2133 break;
2134 case 4:
2135 rettype = init_integer_type (objfile, 32, 0, "long");
2136 break;
2137 case 5:
2138 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2139 break;
2140 case 6:
2141 rettype = init_integer_type (objfile, 8, 0, "signed char");
2142 break;
2143 case 7:
2144 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2145 break;
2146 case 8:
2147 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2148 break;
2149 case 9:
2150 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2151 break;
2152 case 10:
2153 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2154 break;
2155 case 11:
2156 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2157 break;
2158 case 12:
2159 /* IEEE single precision (32 bit). */
2160 rettype = init_float_type (objfile, 32, "float",
2161 floatformats_ieee_single);
2162 break;
2163 case 13:
2164 /* IEEE double precision (64 bit). */
2165 rettype = init_float_type (objfile, 64, "double",
2166 floatformats_ieee_double);
2167 break;
2168 case 14:
2169 /* This is an IEEE double on the RS/6000, and different machines with
2170 different sizes for "long double" should use different negative
2171 type numbers. See stabs.texinfo. */
2172 rettype = init_float_type (objfile, 64, "long double",
2173 floatformats_ieee_double);
2174 break;
2175 case 15:
2176 rettype = init_integer_type (objfile, 32, 0, "integer");
2177 break;
2178 case 16:
2179 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2180 break;
2181 case 17:
2182 rettype = init_float_type (objfile, 32, "short real",
2183 floatformats_ieee_single);
2184 break;
2185 case 18:
2186 rettype = init_float_type (objfile, 64, "real",
2187 floatformats_ieee_double);
2188 break;
2189 case 19:
2190 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2191 break;
2192 case 20:
2193 rettype = init_character_type (objfile, 8, 1, "character");
2194 break;
2195 case 21:
2196 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2197 break;
2198 case 22:
2199 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2200 break;
2201 case 23:
2202 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2203 break;
2204 case 24:
2205 rettype = init_boolean_type (objfile, 32, 1, "logical");
2206 break;
2207 case 25:
2208 /* Complex type consisting of two IEEE single precision values. */
2209 rettype = init_complex_type (objfile, "complex",
2210 rs6000_builtin_type (12, objfile));
2211 break;
2212 case 26:
2213 /* Complex type consisting of two IEEE double precision values. */
2214 rettype = init_complex_type (objfile, "double complex",
2215 rs6000_builtin_type (13, objfile));
2216 break;
2217 case 27:
2218 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2219 break;
2220 case 28:
2221 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2222 break;
2223 case 29:
2224 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2225 break;
2226 case 30:
2227 rettype = init_character_type (objfile, 16, 0, "wchar");
2228 break;
2229 case 31:
2230 rettype = init_integer_type (objfile, 64, 0, "long long");
2231 break;
2232 case 32:
2233 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2234 break;
2235 case 33:
2236 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2237 break;
2238 case 34:
2239 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2240 break;
2241 }
2242 negative_types[-typenum] = rettype;
2243 return rettype;
2244 }
2245 \f
2246 /* This page contains subroutines of read_type. */
2247
2248 /* Wrapper around method_name_from_physname to flag a complaint
2249 if there is an error. */
2250
2251 static char *
2252 stabs_method_name_from_physname (const char *physname)
2253 {
2254 char *method_name;
2255
2256 method_name = method_name_from_physname (physname);
2257
2258 if (method_name == NULL)
2259 {
2260 complaint (&symfile_complaints,
2261 _("Method has bad physname %s\n"), physname);
2262 return NULL;
2263 }
2264
2265 return method_name;
2266 }
2267
2268 /* Read member function stabs info for C++ classes. The form of each member
2269 function data is:
2270
2271 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2272
2273 An example with two member functions is:
2274
2275 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2276
2277 For the case of overloaded operators, the format is op$::*.funcs, where
2278 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2279 name (such as `+=') and `.' marks the end of the operator name.
2280
2281 Returns 1 for success, 0 for failure. */
2282
2283 static int
2284 read_member_functions (struct field_info *fip, const char **pp,
2285 struct type *type, struct objfile *objfile)
2286 {
2287 int nfn_fields = 0;
2288 int length = 0;
2289 int i;
2290 struct next_fnfield
2291 {
2292 struct next_fnfield *next;
2293 struct fn_field fn_field;
2294 }
2295 *sublist;
2296 struct type *look_ahead_type;
2297 struct next_fnfieldlist *new_fnlist;
2298 struct next_fnfield *new_sublist;
2299 char *main_fn_name;
2300 const char *p;
2301
2302 /* Process each list until we find something that is not a member function
2303 or find the end of the functions. */
2304
2305 while (**pp != ';')
2306 {
2307 /* We should be positioned at the start of the function name.
2308 Scan forward to find the first ':' and if it is not the
2309 first of a "::" delimiter, then this is not a member function. */
2310 p = *pp;
2311 while (*p != ':')
2312 {
2313 p++;
2314 }
2315 if (p[1] != ':')
2316 {
2317 break;
2318 }
2319
2320 sublist = NULL;
2321 look_ahead_type = NULL;
2322 length = 0;
2323
2324 new_fnlist = XCNEW (struct next_fnfieldlist);
2325 make_cleanup (xfree, new_fnlist);
2326
2327 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2328 {
2329 /* This is a completely wierd case. In order to stuff in the
2330 names that might contain colons (the usual name delimiter),
2331 Mike Tiemann defined a different name format which is
2332 signalled if the identifier is "op$". In that case, the
2333 format is "op$::XXXX." where XXXX is the name. This is
2334 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2335 /* This lets the user type "break operator+".
2336 We could just put in "+" as the name, but that wouldn't
2337 work for "*". */
2338 static char opname[32] = "op$";
2339 char *o = opname + 3;
2340
2341 /* Skip past '::'. */
2342 *pp = p + 2;
2343
2344 STABS_CONTINUE (pp, objfile);
2345 p = *pp;
2346 while (*p != '.')
2347 {
2348 *o++ = *p++;
2349 }
2350 main_fn_name = savestring (opname, o - opname);
2351 /* Skip past '.' */
2352 *pp = p + 1;
2353 }
2354 else
2355 {
2356 main_fn_name = savestring (*pp, p - *pp);
2357 /* Skip past '::'. */
2358 *pp = p + 2;
2359 }
2360 new_fnlist->fn_fieldlist.name = main_fn_name;
2361
2362 do
2363 {
2364 new_sublist = XCNEW (struct next_fnfield);
2365 make_cleanup (xfree, new_sublist);
2366
2367 /* Check for and handle cretinous dbx symbol name continuation! */
2368 if (look_ahead_type == NULL)
2369 {
2370 /* Normal case. */
2371 STABS_CONTINUE (pp, objfile);
2372
2373 new_sublist->fn_field.type = read_type (pp, objfile);
2374 if (**pp != ':')
2375 {
2376 /* Invalid symtab info for member function. */
2377 return 0;
2378 }
2379 }
2380 else
2381 {
2382 /* g++ version 1 kludge */
2383 new_sublist->fn_field.type = look_ahead_type;
2384 look_ahead_type = NULL;
2385 }
2386
2387 (*pp)++;
2388 p = *pp;
2389 while (*p != ';')
2390 {
2391 p++;
2392 }
2393
2394 /* These are methods, not functions. */
2395 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2396 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2397 else
2398 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2399 == TYPE_CODE_METHOD);
2400
2401 /* If this is just a stub, then we don't have the real name here. */
2402 if (TYPE_STUB (new_sublist->fn_field.type))
2403 {
2404 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2405 set_type_self_type (new_sublist->fn_field.type, type);
2406 new_sublist->fn_field.is_stub = 1;
2407 }
2408
2409 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2410 *pp = p + 1;
2411
2412 /* Set this member function's visibility fields. */
2413 switch (*(*pp)++)
2414 {
2415 case VISIBILITY_PRIVATE:
2416 new_sublist->fn_field.is_private = 1;
2417 break;
2418 case VISIBILITY_PROTECTED:
2419 new_sublist->fn_field.is_protected = 1;
2420 break;
2421 }
2422
2423 STABS_CONTINUE (pp, objfile);
2424 switch (**pp)
2425 {
2426 case 'A': /* Normal functions. */
2427 new_sublist->fn_field.is_const = 0;
2428 new_sublist->fn_field.is_volatile = 0;
2429 (*pp)++;
2430 break;
2431 case 'B': /* `const' member functions. */
2432 new_sublist->fn_field.is_const = 1;
2433 new_sublist->fn_field.is_volatile = 0;
2434 (*pp)++;
2435 break;
2436 case 'C': /* `volatile' member function. */
2437 new_sublist->fn_field.is_const = 0;
2438 new_sublist->fn_field.is_volatile = 1;
2439 (*pp)++;
2440 break;
2441 case 'D': /* `const volatile' member function. */
2442 new_sublist->fn_field.is_const = 1;
2443 new_sublist->fn_field.is_volatile = 1;
2444 (*pp)++;
2445 break;
2446 case '*': /* File compiled with g++ version 1 --
2447 no info. */
2448 case '?':
2449 case '.':
2450 break;
2451 default:
2452 complaint (&symfile_complaints,
2453 _("const/volatile indicator missing, got '%c'"),
2454 **pp);
2455 break;
2456 }
2457
2458 switch (*(*pp)++)
2459 {
2460 case '*':
2461 {
2462 int nbits;
2463 /* virtual member function, followed by index.
2464 The sign bit is set to distinguish pointers-to-methods
2465 from virtual function indicies. Since the array is
2466 in words, the quantity must be shifted left by 1
2467 on 16 bit machine, and by 2 on 32 bit machine, forcing
2468 the sign bit out, and usable as a valid index into
2469 the array. Remove the sign bit here. */
2470 new_sublist->fn_field.voffset =
2471 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2472 if (nbits != 0)
2473 return 0;
2474
2475 STABS_CONTINUE (pp, objfile);
2476 if (**pp == ';' || **pp == '\0')
2477 {
2478 /* Must be g++ version 1. */
2479 new_sublist->fn_field.fcontext = 0;
2480 }
2481 else
2482 {
2483 /* Figure out from whence this virtual function came.
2484 It may belong to virtual function table of
2485 one of its baseclasses. */
2486 look_ahead_type = read_type (pp, objfile);
2487 if (**pp == ':')
2488 {
2489 /* g++ version 1 overloaded methods. */
2490 }
2491 else
2492 {
2493 new_sublist->fn_field.fcontext = look_ahead_type;
2494 if (**pp != ';')
2495 {
2496 return 0;
2497 }
2498 else
2499 {
2500 ++*pp;
2501 }
2502 look_ahead_type = NULL;
2503 }
2504 }
2505 break;
2506 }
2507 case '?':
2508 /* static member function. */
2509 {
2510 int slen = strlen (main_fn_name);
2511
2512 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2513
2514 /* For static member functions, we can't tell if they
2515 are stubbed, as they are put out as functions, and not as
2516 methods.
2517 GCC v2 emits the fully mangled name if
2518 dbxout.c:flag_minimal_debug is not set, so we have to
2519 detect a fully mangled physname here and set is_stub
2520 accordingly. Fully mangled physnames in v2 start with
2521 the member function name, followed by two underscores.
2522 GCC v3 currently always emits stubbed member functions,
2523 but with fully mangled physnames, which start with _Z. */
2524 if (!(strncmp (new_sublist->fn_field.physname,
2525 main_fn_name, slen) == 0
2526 && new_sublist->fn_field.physname[slen] == '_'
2527 && new_sublist->fn_field.physname[slen + 1] == '_'))
2528 {
2529 new_sublist->fn_field.is_stub = 1;
2530 }
2531 break;
2532 }
2533
2534 default:
2535 /* error */
2536 complaint (&symfile_complaints,
2537 _("member function type missing, got '%c'"),
2538 (*pp)[-1]);
2539 /* Fall through into normal member function. */
2540
2541 case '.':
2542 /* normal member function. */
2543 new_sublist->fn_field.voffset = 0;
2544 new_sublist->fn_field.fcontext = 0;
2545 break;
2546 }
2547
2548 new_sublist->next = sublist;
2549 sublist = new_sublist;
2550 length++;
2551 STABS_CONTINUE (pp, objfile);
2552 }
2553 while (**pp != ';' && **pp != '\0');
2554
2555 (*pp)++;
2556 STABS_CONTINUE (pp, objfile);
2557
2558 /* Skip GCC 3.X member functions which are duplicates of the callable
2559 constructor/destructor. */
2560 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2561 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2562 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2563 {
2564 xfree (main_fn_name);
2565 }
2566 else
2567 {
2568 int has_stub = 0;
2569 int has_destructor = 0, has_other = 0;
2570 int is_v3 = 0;
2571 struct next_fnfield *tmp_sublist;
2572
2573 /* Various versions of GCC emit various mostly-useless
2574 strings in the name field for special member functions.
2575
2576 For stub methods, we need to defer correcting the name
2577 until we are ready to unstub the method, because the current
2578 name string is used by gdb_mangle_name. The only stub methods
2579 of concern here are GNU v2 operators; other methods have their
2580 names correct (see caveat below).
2581
2582 For non-stub methods, in GNU v3, we have a complete physname.
2583 Therefore we can safely correct the name now. This primarily
2584 affects constructors and destructors, whose name will be
2585 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2586 operators will also have incorrect names; for instance,
2587 "operator int" will be named "operator i" (i.e. the type is
2588 mangled).
2589
2590 For non-stub methods in GNU v2, we have no easy way to
2591 know if we have a complete physname or not. For most
2592 methods the result depends on the platform (if CPLUS_MARKER
2593 can be `$' or `.', it will use minimal debug information, or
2594 otherwise the full physname will be included).
2595
2596 Rather than dealing with this, we take a different approach.
2597 For v3 mangled names, we can use the full physname; for v2,
2598 we use cplus_demangle_opname (which is actually v2 specific),
2599 because the only interesting names are all operators - once again
2600 barring the caveat below. Skip this process if any method in the
2601 group is a stub, to prevent our fouling up the workings of
2602 gdb_mangle_name.
2603
2604 The caveat: GCC 2.95.x (and earlier?) put constructors and
2605 destructors in the same method group. We need to split this
2606 into two groups, because they should have different names.
2607 So for each method group we check whether it contains both
2608 routines whose physname appears to be a destructor (the physnames
2609 for and destructors are always provided, due to quirks in v2
2610 mangling) and routines whose physname does not appear to be a
2611 destructor. If so then we break up the list into two halves.
2612 Even if the constructors and destructors aren't in the same group
2613 the destructor will still lack the leading tilde, so that also
2614 needs to be fixed.
2615
2616 So, to summarize what we expect and handle here:
2617
2618 Given Given Real Real Action
2619 method name physname physname method name
2620
2621 __opi [none] __opi__3Foo operator int opname
2622 [now or later]
2623 Foo _._3Foo _._3Foo ~Foo separate and
2624 rename
2625 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2626 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2627 */
2628
2629 tmp_sublist = sublist;
2630 while (tmp_sublist != NULL)
2631 {
2632 if (tmp_sublist->fn_field.is_stub)
2633 has_stub = 1;
2634 if (tmp_sublist->fn_field.physname[0] == '_'
2635 && tmp_sublist->fn_field.physname[1] == 'Z')
2636 is_v3 = 1;
2637
2638 if (is_destructor_name (tmp_sublist->fn_field.physname))
2639 has_destructor++;
2640 else
2641 has_other++;
2642
2643 tmp_sublist = tmp_sublist->next;
2644 }
2645
2646 if (has_destructor && has_other)
2647 {
2648 struct next_fnfieldlist *destr_fnlist;
2649 struct next_fnfield *last_sublist;
2650
2651 /* Create a new fn_fieldlist for the destructors. */
2652
2653 destr_fnlist = XCNEW (struct next_fnfieldlist);
2654 make_cleanup (xfree, destr_fnlist);
2655
2656 destr_fnlist->fn_fieldlist.name
2657 = obconcat (&objfile->objfile_obstack, "~",
2658 new_fnlist->fn_fieldlist.name, (char *) NULL);
2659
2660 destr_fnlist->fn_fieldlist.fn_fields =
2661 XOBNEWVEC (&objfile->objfile_obstack,
2662 struct fn_field, has_destructor);
2663 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2664 sizeof (struct fn_field) * has_destructor);
2665 tmp_sublist = sublist;
2666 last_sublist = NULL;
2667 i = 0;
2668 while (tmp_sublist != NULL)
2669 {
2670 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2671 {
2672 tmp_sublist = tmp_sublist->next;
2673 continue;
2674 }
2675
2676 destr_fnlist->fn_fieldlist.fn_fields[i++]
2677 = tmp_sublist->fn_field;
2678 if (last_sublist)
2679 last_sublist->next = tmp_sublist->next;
2680 else
2681 sublist = tmp_sublist->next;
2682 last_sublist = tmp_sublist;
2683 tmp_sublist = tmp_sublist->next;
2684 }
2685
2686 destr_fnlist->fn_fieldlist.length = has_destructor;
2687 destr_fnlist->next = fip->fnlist;
2688 fip->fnlist = destr_fnlist;
2689 nfn_fields++;
2690 length -= has_destructor;
2691 }
2692 else if (is_v3)
2693 {
2694 /* v3 mangling prevents the use of abbreviated physnames,
2695 so we can do this here. There are stubbed methods in v3
2696 only:
2697 - in -gstabs instead of -gstabs+
2698 - or for static methods, which are output as a function type
2699 instead of a method type. */
2700 char *new_method_name =
2701 stabs_method_name_from_physname (sublist->fn_field.physname);
2702
2703 if (new_method_name != NULL
2704 && strcmp (new_method_name,
2705 new_fnlist->fn_fieldlist.name) != 0)
2706 {
2707 new_fnlist->fn_fieldlist.name = new_method_name;
2708 xfree (main_fn_name);
2709 }
2710 else
2711 xfree (new_method_name);
2712 }
2713 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2714 {
2715 new_fnlist->fn_fieldlist.name =
2716 obconcat (&objfile->objfile_obstack,
2717 "~", main_fn_name, (char *)NULL);
2718 xfree (main_fn_name);
2719 }
2720 else if (!has_stub)
2721 {
2722 char dem_opname[256];
2723 int ret;
2724
2725 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2726 dem_opname, DMGL_ANSI);
2727 if (!ret)
2728 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2729 dem_opname, 0);
2730 if (ret)
2731 new_fnlist->fn_fieldlist.name
2732 = ((const char *)
2733 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2734 strlen (dem_opname)));
2735 xfree (main_fn_name);
2736 }
2737
2738 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2739 obstack_alloc (&objfile->objfile_obstack,
2740 sizeof (struct fn_field) * length);
2741 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2742 sizeof (struct fn_field) * length);
2743 for (i = length; (i--, sublist); sublist = sublist->next)
2744 {
2745 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2746 }
2747
2748 new_fnlist->fn_fieldlist.length = length;
2749 new_fnlist->next = fip->fnlist;
2750 fip->fnlist = new_fnlist;
2751 nfn_fields++;
2752 }
2753 }
2754
2755 if (nfn_fields)
2756 {
2757 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2758 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2759 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2760 memset (TYPE_FN_FIELDLISTS (type), 0,
2761 sizeof (struct fn_fieldlist) * nfn_fields);
2762 TYPE_NFN_FIELDS (type) = nfn_fields;
2763 }
2764
2765 return 1;
2766 }
2767
2768 /* Special GNU C++ name.
2769
2770 Returns 1 for success, 0 for failure. "failure" means that we can't
2771 keep parsing and it's time for error_type(). */
2772
2773 static int
2774 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2775 struct objfile *objfile)
2776 {
2777 const char *p;
2778 const char *name;
2779 char cpp_abbrev;
2780 struct type *context;
2781
2782 p = *pp;
2783 if (*++p == 'v')
2784 {
2785 name = NULL;
2786 cpp_abbrev = *++p;
2787
2788 *pp = p + 1;
2789
2790 /* At this point, *pp points to something like "22:23=*22...",
2791 where the type number before the ':' is the "context" and
2792 everything after is a regular type definition. Lookup the
2793 type, find it's name, and construct the field name. */
2794
2795 context = read_type (pp, objfile);
2796
2797 switch (cpp_abbrev)
2798 {
2799 case 'f': /* $vf -- a virtual function table pointer */
2800 name = type_name_no_tag (context);
2801 if (name == NULL)
2802 {
2803 name = "";
2804 }
2805 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2806 vptr_name, name, (char *) NULL);
2807 break;
2808
2809 case 'b': /* $vb -- a virtual bsomethingorother */
2810 name = type_name_no_tag (context);
2811 if (name == NULL)
2812 {
2813 complaint (&symfile_complaints,
2814 _("C++ abbreviated type name "
2815 "unknown at symtab pos %d"),
2816 symnum);
2817 name = "FOO";
2818 }
2819 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2820 name, (char *) NULL);
2821 break;
2822
2823 default:
2824 invalid_cpp_abbrev_complaint (*pp);
2825 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2826 "INVALID_CPLUSPLUS_ABBREV",
2827 (char *) NULL);
2828 break;
2829 }
2830
2831 /* At this point, *pp points to the ':'. Skip it and read the
2832 field type. */
2833
2834 p = ++(*pp);
2835 if (p[-1] != ':')
2836 {
2837 invalid_cpp_abbrev_complaint (*pp);
2838 return 0;
2839 }
2840 fip->list->field.type = read_type (pp, objfile);
2841 if (**pp == ',')
2842 (*pp)++; /* Skip the comma. */
2843 else
2844 return 0;
2845
2846 {
2847 int nbits;
2848
2849 SET_FIELD_BITPOS (fip->list->field,
2850 read_huge_number (pp, ';', &nbits, 0));
2851 if (nbits != 0)
2852 return 0;
2853 }
2854 /* This field is unpacked. */
2855 FIELD_BITSIZE (fip->list->field) = 0;
2856 fip->list->visibility = VISIBILITY_PRIVATE;
2857 }
2858 else
2859 {
2860 invalid_cpp_abbrev_complaint (*pp);
2861 /* We have no idea what syntax an unrecognized abbrev would have, so
2862 better return 0. If we returned 1, we would need to at least advance
2863 *pp to avoid an infinite loop. */
2864 return 0;
2865 }
2866 return 1;
2867 }
2868
2869 static void
2870 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2871 struct type *type, struct objfile *objfile)
2872 {
2873 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2874
2875 fip->list->field.name
2876 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2877 *pp = p + 1;
2878
2879 /* This means we have a visibility for a field coming. */
2880 if (**pp == '/')
2881 {
2882 (*pp)++;
2883 fip->list->visibility = *(*pp)++;
2884 }
2885 else
2886 {
2887 /* normal dbx-style format, no explicit visibility */
2888 fip->list->visibility = VISIBILITY_PUBLIC;
2889 }
2890
2891 fip->list->field.type = read_type (pp, objfile);
2892 if (**pp == ':')
2893 {
2894 p = ++(*pp);
2895 #if 0
2896 /* Possible future hook for nested types. */
2897 if (**pp == '!')
2898 {
2899 fip->list->field.bitpos = (long) -2; /* nested type */
2900 p = ++(*pp);
2901 }
2902 else
2903 ...;
2904 #endif
2905 while (*p != ';')
2906 {
2907 p++;
2908 }
2909 /* Static class member. */
2910 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2911 *pp = p + 1;
2912 return;
2913 }
2914 else if (**pp != ',')
2915 {
2916 /* Bad structure-type format. */
2917 stabs_general_complaint ("bad structure-type format");
2918 return;
2919 }
2920
2921 (*pp)++; /* Skip the comma. */
2922
2923 {
2924 int nbits;
2925
2926 SET_FIELD_BITPOS (fip->list->field,
2927 read_huge_number (pp, ',', &nbits, 0));
2928 if (nbits != 0)
2929 {
2930 stabs_general_complaint ("bad structure-type format");
2931 return;
2932 }
2933 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2934 if (nbits != 0)
2935 {
2936 stabs_general_complaint ("bad structure-type format");
2937 return;
2938 }
2939 }
2940
2941 if (FIELD_BITPOS (fip->list->field) == 0
2942 && FIELD_BITSIZE (fip->list->field) == 0)
2943 {
2944 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2945 it is a field which has been optimized out. The correct stab for
2946 this case is to use VISIBILITY_IGNORE, but that is a recent
2947 invention. (2) It is a 0-size array. For example
2948 union { int num; char str[0]; } foo. Printing _("<no value>" for
2949 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2950 will continue to work, and a 0-size array as a whole doesn't
2951 have any contents to print.
2952
2953 I suspect this probably could also happen with gcc -gstabs (not
2954 -gstabs+) for static fields, and perhaps other C++ extensions.
2955 Hopefully few people use -gstabs with gdb, since it is intended
2956 for dbx compatibility. */
2957
2958 /* Ignore this field. */
2959 fip->list->visibility = VISIBILITY_IGNORE;
2960 }
2961 else
2962 {
2963 /* Detect an unpacked field and mark it as such.
2964 dbx gives a bit size for all fields.
2965 Note that forward refs cannot be packed,
2966 and treat enums as if they had the width of ints. */
2967
2968 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2969
2970 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2971 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2972 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2973 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2974 {
2975 FIELD_BITSIZE (fip->list->field) = 0;
2976 }
2977 if ((FIELD_BITSIZE (fip->list->field)
2978 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2979 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2980 && FIELD_BITSIZE (fip->list->field)
2981 == gdbarch_int_bit (gdbarch))
2982 )
2983 &&
2984 FIELD_BITPOS (fip->list->field) % 8 == 0)
2985 {
2986 FIELD_BITSIZE (fip->list->field) = 0;
2987 }
2988 }
2989 }
2990
2991
2992 /* Read struct or class data fields. They have the form:
2993
2994 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2995
2996 At the end, we see a semicolon instead of a field.
2997
2998 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2999 a static field.
3000
3001 The optional VISIBILITY is one of:
3002
3003 '/0' (VISIBILITY_PRIVATE)
3004 '/1' (VISIBILITY_PROTECTED)
3005 '/2' (VISIBILITY_PUBLIC)
3006 '/9' (VISIBILITY_IGNORE)
3007
3008 or nothing, for C style fields with public visibility.
3009
3010 Returns 1 for success, 0 for failure. */
3011
3012 static int
3013 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
3014 struct objfile *objfile)
3015 {
3016 const char *p;
3017 struct nextfield *newobj;
3018
3019 /* We better set p right now, in case there are no fields at all... */
3020
3021 p = *pp;
3022
3023 /* Read each data member type until we find the terminating ';' at the end of
3024 the data member list, or break for some other reason such as finding the
3025 start of the member function list. */
3026 /* Stab string for structure/union does not end with two ';' in
3027 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3028
3029 while (**pp != ';' && **pp != '\0')
3030 {
3031 STABS_CONTINUE (pp, objfile);
3032 /* Get space to record the next field's data. */
3033 newobj = XCNEW (struct nextfield);
3034 make_cleanup (xfree, newobj);
3035
3036 newobj->next = fip->list;
3037 fip->list = newobj;
3038
3039 /* Get the field name. */
3040 p = *pp;
3041
3042 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3043 unless the CPLUS_MARKER is followed by an underscore, in
3044 which case it is just the name of an anonymous type, which we
3045 should handle like any other type name. */
3046
3047 if (is_cplus_marker (p[0]) && p[1] != '_')
3048 {
3049 if (!read_cpp_abbrev (fip, pp, type, objfile))
3050 return 0;
3051 continue;
3052 }
3053
3054 /* Look for the ':' that separates the field name from the field
3055 values. Data members are delimited by a single ':', while member
3056 functions are delimited by a pair of ':'s. When we hit the member
3057 functions (if any), terminate scan loop and return. */
3058
3059 while (*p != ':' && *p != '\0')
3060 {
3061 p++;
3062 }
3063 if (*p == '\0')
3064 return 0;
3065
3066 /* Check to see if we have hit the member functions yet. */
3067 if (p[1] == ':')
3068 {
3069 break;
3070 }
3071 read_one_struct_field (fip, pp, p, type, objfile);
3072 }
3073 if (p[0] == ':' && p[1] == ':')
3074 {
3075 /* (the deleted) chill the list of fields: the last entry (at
3076 the head) is a partially constructed entry which we now
3077 scrub. */
3078 fip->list = fip->list->next;
3079 }
3080 return 1;
3081 }
3082 /* *INDENT-OFF* */
3083 /* The stabs for C++ derived classes contain baseclass information which
3084 is marked by a '!' character after the total size. This function is
3085 called when we encounter the baseclass marker, and slurps up all the
3086 baseclass information.
3087
3088 Immediately following the '!' marker is the number of base classes that
3089 the class is derived from, followed by information for each base class.
3090 For each base class, there are two visibility specifiers, a bit offset
3091 to the base class information within the derived class, a reference to
3092 the type for the base class, and a terminating semicolon.
3093
3094 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3095 ^^ ^ ^ ^ ^ ^ ^
3096 Baseclass information marker __________________|| | | | | | |
3097 Number of baseclasses __________________________| | | | | | |
3098 Visibility specifiers (2) ________________________| | | | | |
3099 Offset in bits from start of class _________________| | | | |
3100 Type number for base class ___________________________| | | |
3101 Visibility specifiers (2) _______________________________| | |
3102 Offset in bits from start of class ________________________| |
3103 Type number of base class ____________________________________|
3104
3105 Return 1 for success, 0 for (error-type-inducing) failure. */
3106 /* *INDENT-ON* */
3107
3108
3109
3110 static int
3111 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3112 struct objfile *objfile)
3113 {
3114 int i;
3115 struct nextfield *newobj;
3116
3117 if (**pp != '!')
3118 {
3119 return 1;
3120 }
3121 else
3122 {
3123 /* Skip the '!' baseclass information marker. */
3124 (*pp)++;
3125 }
3126
3127 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3128 {
3129 int nbits;
3130
3131 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3132 if (nbits != 0)
3133 return 0;
3134 }
3135
3136 #if 0
3137 /* Some stupid compilers have trouble with the following, so break
3138 it up into simpler expressions. */
3139 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3140 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3141 #else
3142 {
3143 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3144 char *pointer;
3145
3146 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3147 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3148 }
3149 #endif /* 0 */
3150
3151 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3152
3153 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3154 {
3155 newobj = XCNEW (struct nextfield);
3156 make_cleanup (xfree, newobj);
3157
3158 newobj->next = fip->list;
3159 fip->list = newobj;
3160 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3161 field! */
3162
3163 STABS_CONTINUE (pp, objfile);
3164 switch (**pp)
3165 {
3166 case '0':
3167 /* Nothing to do. */
3168 break;
3169 case '1':
3170 SET_TYPE_FIELD_VIRTUAL (type, i);
3171 break;
3172 default:
3173 /* Unknown character. Complain and treat it as non-virtual. */
3174 {
3175 complaint (&symfile_complaints,
3176 _("Unknown virtual character `%c' for baseclass"),
3177 **pp);
3178 }
3179 }
3180 ++(*pp);
3181
3182 newobj->visibility = *(*pp)++;
3183 switch (newobj->visibility)
3184 {
3185 case VISIBILITY_PRIVATE:
3186 case VISIBILITY_PROTECTED:
3187 case VISIBILITY_PUBLIC:
3188 break;
3189 default:
3190 /* Bad visibility format. Complain and treat it as
3191 public. */
3192 {
3193 complaint (&symfile_complaints,
3194 _("Unknown visibility `%c' for baseclass"),
3195 newobj->visibility);
3196 newobj->visibility = VISIBILITY_PUBLIC;
3197 }
3198 }
3199
3200 {
3201 int nbits;
3202
3203 /* The remaining value is the bit offset of the portion of the object
3204 corresponding to this baseclass. Always zero in the absence of
3205 multiple inheritance. */
3206
3207 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3208 if (nbits != 0)
3209 return 0;
3210 }
3211
3212 /* The last piece of baseclass information is the type of the
3213 base class. Read it, and remember it's type name as this
3214 field's name. */
3215
3216 newobj->field.type = read_type (pp, objfile);
3217 newobj->field.name = type_name_no_tag (newobj->field.type);
3218
3219 /* Skip trailing ';' and bump count of number of fields seen. */
3220 if (**pp == ';')
3221 (*pp)++;
3222 else
3223 return 0;
3224 }
3225 return 1;
3226 }
3227
3228 /* The tail end of stabs for C++ classes that contain a virtual function
3229 pointer contains a tilde, a %, and a type number.
3230 The type number refers to the base class (possibly this class itself) which
3231 contains the vtable pointer for the current class.
3232
3233 This function is called when we have parsed all the method declarations,
3234 so we can look for the vptr base class info. */
3235
3236 static int
3237 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3238 struct objfile *objfile)
3239 {
3240 const char *p;
3241
3242 STABS_CONTINUE (pp, objfile);
3243
3244 /* If we are positioned at a ';', then skip it. */
3245 if (**pp == ';')
3246 {
3247 (*pp)++;
3248 }
3249
3250 if (**pp == '~')
3251 {
3252 (*pp)++;
3253
3254 if (**pp == '=' || **pp == '+' || **pp == '-')
3255 {
3256 /* Obsolete flags that used to indicate the presence
3257 of constructors and/or destructors. */
3258 (*pp)++;
3259 }
3260
3261 /* Read either a '%' or the final ';'. */
3262 if (*(*pp)++ == '%')
3263 {
3264 /* The next number is the type number of the base class
3265 (possibly our own class) which supplies the vtable for
3266 this class. Parse it out, and search that class to find
3267 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3268 and TYPE_VPTR_FIELDNO. */
3269
3270 struct type *t;
3271 int i;
3272
3273 t = read_type (pp, objfile);
3274 p = (*pp)++;
3275 while (*p != '\0' && *p != ';')
3276 {
3277 p++;
3278 }
3279 if (*p == '\0')
3280 {
3281 /* Premature end of symbol. */
3282 return 0;
3283 }
3284
3285 set_type_vptr_basetype (type, t);
3286 if (type == t) /* Our own class provides vtbl ptr. */
3287 {
3288 for (i = TYPE_NFIELDS (t) - 1;
3289 i >= TYPE_N_BASECLASSES (t);
3290 --i)
3291 {
3292 const char *name = TYPE_FIELD_NAME (t, i);
3293
3294 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3295 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3296 {
3297 set_type_vptr_fieldno (type, i);
3298 goto gotit;
3299 }
3300 }
3301 /* Virtual function table field not found. */
3302 complaint (&symfile_complaints,
3303 _("virtual function table pointer "
3304 "not found when defining class `%s'"),
3305 TYPE_NAME (type));
3306 return 0;
3307 }
3308 else
3309 {
3310 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3311 }
3312
3313 gotit:
3314 *pp = p + 1;
3315 }
3316 }
3317 return 1;
3318 }
3319
3320 static int
3321 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3322 {
3323 int n;
3324
3325 for (n = TYPE_NFN_FIELDS (type);
3326 fip->fnlist != NULL;
3327 fip->fnlist = fip->fnlist->next)
3328 {
3329 --n; /* Circumvent Sun3 compiler bug. */
3330 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3331 }
3332 return 1;
3333 }
3334
3335 /* Create the vector of fields, and record how big it is.
3336 We need this info to record proper virtual function table information
3337 for this class's virtual functions. */
3338
3339 static int
3340 attach_fields_to_type (struct field_info *fip, struct type *type,
3341 struct objfile *objfile)
3342 {
3343 int nfields = 0;
3344 int non_public_fields = 0;
3345 struct nextfield *scan;
3346
3347 /* Count up the number of fields that we have, as well as taking note of
3348 whether or not there are any non-public fields, which requires us to
3349 allocate and build the private_field_bits and protected_field_bits
3350 bitfields. */
3351
3352 for (scan = fip->list; scan != NULL; scan = scan->next)
3353 {
3354 nfields++;
3355 if (scan->visibility != VISIBILITY_PUBLIC)
3356 {
3357 non_public_fields++;
3358 }
3359 }
3360
3361 /* Now we know how many fields there are, and whether or not there are any
3362 non-public fields. Record the field count, allocate space for the
3363 array of fields, and create blank visibility bitfields if necessary. */
3364
3365 TYPE_NFIELDS (type) = nfields;
3366 TYPE_FIELDS (type) = (struct field *)
3367 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3368 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3369
3370 if (non_public_fields)
3371 {
3372 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3373
3374 TYPE_FIELD_PRIVATE_BITS (type) =
3375 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3376 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3377
3378 TYPE_FIELD_PROTECTED_BITS (type) =
3379 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3380 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3381
3382 TYPE_FIELD_IGNORE_BITS (type) =
3383 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3384 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3385 }
3386
3387 /* Copy the saved-up fields into the field vector. Start from the
3388 head of the list, adding to the tail of the field array, so that
3389 they end up in the same order in the array in which they were
3390 added to the list. */
3391
3392 while (nfields-- > 0)
3393 {
3394 TYPE_FIELD (type, nfields) = fip->list->field;
3395 switch (fip->list->visibility)
3396 {
3397 case VISIBILITY_PRIVATE:
3398 SET_TYPE_FIELD_PRIVATE (type, nfields);
3399 break;
3400
3401 case VISIBILITY_PROTECTED:
3402 SET_TYPE_FIELD_PROTECTED (type, nfields);
3403 break;
3404
3405 case VISIBILITY_IGNORE:
3406 SET_TYPE_FIELD_IGNORE (type, nfields);
3407 break;
3408
3409 case VISIBILITY_PUBLIC:
3410 break;
3411
3412 default:
3413 /* Unknown visibility. Complain and treat it as public. */
3414 {
3415 complaint (&symfile_complaints,
3416 _("Unknown visibility `%c' for field"),
3417 fip->list->visibility);
3418 }
3419 break;
3420 }
3421 fip->list = fip->list->next;
3422 }
3423 return 1;
3424 }
3425
3426
3427 /* Complain that the compiler has emitted more than one definition for the
3428 structure type TYPE. */
3429 static void
3430 complain_about_struct_wipeout (struct type *type)
3431 {
3432 const char *name = "";
3433 const char *kind = "";
3434
3435 if (TYPE_TAG_NAME (type))
3436 {
3437 name = TYPE_TAG_NAME (type);
3438 switch (TYPE_CODE (type))
3439 {
3440 case TYPE_CODE_STRUCT: kind = "struct "; break;
3441 case TYPE_CODE_UNION: kind = "union "; break;
3442 case TYPE_CODE_ENUM: kind = "enum "; break;
3443 default: kind = "";
3444 }
3445 }
3446 else if (TYPE_NAME (type))
3447 {
3448 name = TYPE_NAME (type);
3449 kind = "";
3450 }
3451 else
3452 {
3453 name = "<unknown>";
3454 kind = "";
3455 }
3456
3457 complaint (&symfile_complaints,
3458 _("struct/union type gets multiply defined: %s%s"), kind, name);
3459 }
3460
3461 /* Set the length for all variants of a same main_type, which are
3462 connected in the closed chain.
3463
3464 This is something that needs to be done when a type is defined *after*
3465 some cross references to this type have already been read. Consider
3466 for instance the following scenario where we have the following two
3467 stabs entries:
3468
3469 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3470 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3471
3472 A stubbed version of type dummy is created while processing the first
3473 stabs entry. The length of that type is initially set to zero, since
3474 it is unknown at this point. Also, a "constant" variation of type
3475 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3476 the stabs line).
3477
3478 The second stabs entry allows us to replace the stubbed definition
3479 with the real definition. However, we still need to adjust the length
3480 of the "constant" variation of that type, as its length was left
3481 untouched during the main type replacement... */
3482
3483 static void
3484 set_length_in_type_chain (struct type *type)
3485 {
3486 struct type *ntype = TYPE_CHAIN (type);
3487
3488 while (ntype != type)
3489 {
3490 if (TYPE_LENGTH(ntype) == 0)
3491 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3492 else
3493 complain_about_struct_wipeout (ntype);
3494 ntype = TYPE_CHAIN (ntype);
3495 }
3496 }
3497
3498 /* Read the description of a structure (or union type) and return an object
3499 describing the type.
3500
3501 PP points to a character pointer that points to the next unconsumed token
3502 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3503 *PP will point to "4a:1,0,32;;".
3504
3505 TYPE points to an incomplete type that needs to be filled in.
3506
3507 OBJFILE points to the current objfile from which the stabs information is
3508 being read. (Note that it is redundant in that TYPE also contains a pointer
3509 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3510 */
3511
3512 static struct type *
3513 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3514 struct objfile *objfile)
3515 {
3516 struct cleanup *back_to;
3517 struct field_info fi;
3518
3519 fi.list = NULL;
3520 fi.fnlist = NULL;
3521
3522 /* When describing struct/union/class types in stabs, G++ always drops
3523 all qualifications from the name. So if you've got:
3524 struct A { ... struct B { ... }; ... };
3525 then G++ will emit stabs for `struct A::B' that call it simply
3526 `struct B'. Obviously, if you've got a real top-level definition for
3527 `struct B', or other nested definitions, this is going to cause
3528 problems.
3529
3530 Obviously, GDB can't fix this by itself, but it can at least avoid
3531 scribbling on existing structure type objects when new definitions
3532 appear. */
3533 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3534 || TYPE_STUB (type)))
3535 {
3536 complain_about_struct_wipeout (type);
3537
3538 /* It's probably best to return the type unchanged. */
3539 return type;
3540 }
3541
3542 back_to = make_cleanup (null_cleanup, 0);
3543
3544 INIT_CPLUS_SPECIFIC (type);
3545 TYPE_CODE (type) = type_code;
3546 TYPE_STUB (type) = 0;
3547
3548 /* First comes the total size in bytes. */
3549
3550 {
3551 int nbits;
3552
3553 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3554 if (nbits != 0)
3555 {
3556 do_cleanups (back_to);
3557 return error_type (pp, objfile);
3558 }
3559 set_length_in_type_chain (type);
3560 }
3561
3562 /* Now read the baseclasses, if any, read the regular C struct or C++
3563 class member fields, attach the fields to the type, read the C++
3564 member functions, attach them to the type, and then read any tilde
3565 field (baseclass specifier for the class holding the main vtable). */
3566
3567 if (!read_baseclasses (&fi, pp, type, objfile)
3568 || !read_struct_fields (&fi, pp, type, objfile)
3569 || !attach_fields_to_type (&fi, type, objfile)
3570 || !read_member_functions (&fi, pp, type, objfile)
3571 || !attach_fn_fields_to_type (&fi, type)
3572 || !read_tilde_fields (&fi, pp, type, objfile))
3573 {
3574 type = error_type (pp, objfile);
3575 }
3576
3577 do_cleanups (back_to);
3578 return (type);
3579 }
3580
3581 /* Read a definition of an array type,
3582 and create and return a suitable type object.
3583 Also creates a range type which represents the bounds of that
3584 array. */
3585
3586 static struct type *
3587 read_array_type (const char **pp, struct type *type,
3588 struct objfile *objfile)
3589 {
3590 struct type *index_type, *element_type, *range_type;
3591 int lower, upper;
3592 int adjustable = 0;
3593 int nbits;
3594
3595 /* Format of an array type:
3596 "ar<index type>;lower;upper;<array_contents_type>".
3597 OS9000: "arlower,upper;<array_contents_type>".
3598
3599 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3600 for these, produce a type like float[][]. */
3601
3602 {
3603 index_type = read_type (pp, objfile);
3604 if (**pp != ';')
3605 /* Improper format of array type decl. */
3606 return error_type (pp, objfile);
3607 ++*pp;
3608 }
3609
3610 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3611 {
3612 (*pp)++;
3613 adjustable = 1;
3614 }
3615 lower = read_huge_number (pp, ';', &nbits, 0);
3616
3617 if (nbits != 0)
3618 return error_type (pp, objfile);
3619
3620 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3621 {
3622 (*pp)++;
3623 adjustable = 1;
3624 }
3625 upper = read_huge_number (pp, ';', &nbits, 0);
3626 if (nbits != 0)
3627 return error_type (pp, objfile);
3628
3629 element_type = read_type (pp, objfile);
3630
3631 if (adjustable)
3632 {
3633 lower = 0;
3634 upper = -1;
3635 }
3636
3637 range_type =
3638 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3639 type = create_array_type (type, element_type, range_type);
3640
3641 return type;
3642 }
3643
3644
3645 /* Read a definition of an enumeration type,
3646 and create and return a suitable type object.
3647 Also defines the symbols that represent the values of the type. */
3648
3649 static struct type *
3650 read_enum_type (const char **pp, struct type *type,
3651 struct objfile *objfile)
3652 {
3653 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3654 const char *p;
3655 char *name;
3656 long n;
3657 struct symbol *sym;
3658 int nsyms = 0;
3659 struct pending **symlist;
3660 struct pending *osyms, *syms;
3661 int o_nsyms;
3662 int nbits;
3663 int unsigned_enum = 1;
3664
3665 #if 0
3666 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3667 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3668 to do? For now, force all enum values to file scope. */
3669 if (within_function)
3670 symlist = &local_symbols;
3671 else
3672 #endif
3673 symlist = &file_symbols;
3674 osyms = *symlist;
3675 o_nsyms = osyms ? osyms->nsyms : 0;
3676
3677 /* The aix4 compiler emits an extra field before the enum members;
3678 my guess is it's a type of some sort. Just ignore it. */
3679 if (**pp == '-')
3680 {
3681 /* Skip over the type. */
3682 while (**pp != ':')
3683 (*pp)++;
3684
3685 /* Skip over the colon. */
3686 (*pp)++;
3687 }
3688
3689 /* Read the value-names and their values.
3690 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3691 A semicolon or comma instead of a NAME means the end. */
3692 while (**pp && **pp != ';' && **pp != ',')
3693 {
3694 STABS_CONTINUE (pp, objfile);
3695 p = *pp;
3696 while (*p != ':')
3697 p++;
3698 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3699 *pp = p + 1;
3700 n = read_huge_number (pp, ',', &nbits, 0);
3701 if (nbits != 0)
3702 return error_type (pp, objfile);
3703
3704 sym = allocate_symbol (objfile);
3705 SYMBOL_SET_LINKAGE_NAME (sym, name);
3706 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3707 &objfile->objfile_obstack);
3708 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3709 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3710 SYMBOL_VALUE (sym) = n;
3711 if (n < 0)
3712 unsigned_enum = 0;
3713 add_symbol_to_list (sym, symlist);
3714 nsyms++;
3715 }
3716
3717 if (**pp == ';')
3718 (*pp)++; /* Skip the semicolon. */
3719
3720 /* Now fill in the fields of the type-structure. */
3721
3722 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3723 set_length_in_type_chain (type);
3724 TYPE_CODE (type) = TYPE_CODE_ENUM;
3725 TYPE_STUB (type) = 0;
3726 if (unsigned_enum)
3727 TYPE_UNSIGNED (type) = 1;
3728 TYPE_NFIELDS (type) = nsyms;
3729 TYPE_FIELDS (type) = (struct field *)
3730 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3731 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3732
3733 /* Find the symbols for the values and put them into the type.
3734 The symbols can be found in the symlist that we put them on
3735 to cause them to be defined. osyms contains the old value
3736 of that symlist; everything up to there was defined by us. */
3737 /* Note that we preserve the order of the enum constants, so
3738 that in something like "enum {FOO, LAST_THING=FOO}" we print
3739 FOO, not LAST_THING. */
3740
3741 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3742 {
3743 int last = syms == osyms ? o_nsyms : 0;
3744 int j = syms->nsyms;
3745
3746 for (; --j >= last; --n)
3747 {
3748 struct symbol *xsym = syms->symbol[j];
3749
3750 SYMBOL_TYPE (xsym) = type;
3751 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3752 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3753 TYPE_FIELD_BITSIZE (type, n) = 0;
3754 }
3755 if (syms == osyms)
3756 break;
3757 }
3758
3759 return type;
3760 }
3761
3762 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3763 typedefs in every file (for int, long, etc):
3764
3765 type = b <signed> <width> <format type>; <offset>; <nbits>
3766 signed = u or s.
3767 optional format type = c or b for char or boolean.
3768 offset = offset from high order bit to start bit of type.
3769 width is # bytes in object of this type, nbits is # bits in type.
3770
3771 The width/offset stuff appears to be for small objects stored in
3772 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3773 FIXME. */
3774
3775 static struct type *
3776 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3777 {
3778 int type_bits;
3779 int nbits;
3780 int unsigned_type;
3781 int boolean_type = 0;
3782
3783 switch (**pp)
3784 {
3785 case 's':
3786 unsigned_type = 0;
3787 break;
3788 case 'u':
3789 unsigned_type = 1;
3790 break;
3791 default:
3792 return error_type (pp, objfile);
3793 }
3794 (*pp)++;
3795
3796 /* For some odd reason, all forms of char put a c here. This is strange
3797 because no other type has this honor. We can safely ignore this because
3798 we actually determine 'char'acterness by the number of bits specified in
3799 the descriptor.
3800 Boolean forms, e.g Fortran logical*X, put a b here. */
3801
3802 if (**pp == 'c')
3803 (*pp)++;
3804 else if (**pp == 'b')
3805 {
3806 boolean_type = 1;
3807 (*pp)++;
3808 }
3809
3810 /* The first number appears to be the number of bytes occupied
3811 by this type, except that unsigned short is 4 instead of 2.
3812 Since this information is redundant with the third number,
3813 we will ignore it. */
3814 read_huge_number (pp, ';', &nbits, 0);
3815 if (nbits != 0)
3816 return error_type (pp, objfile);
3817
3818 /* The second number is always 0, so ignore it too. */
3819 read_huge_number (pp, ';', &nbits, 0);
3820 if (nbits != 0)
3821 return error_type (pp, objfile);
3822
3823 /* The third number is the number of bits for this type. */
3824 type_bits = read_huge_number (pp, 0, &nbits, 0);
3825 if (nbits != 0)
3826 return error_type (pp, objfile);
3827 /* The type *should* end with a semicolon. If it are embedded
3828 in a larger type the semicolon may be the only way to know where
3829 the type ends. If this type is at the end of the stabstring we
3830 can deal with the omitted semicolon (but we don't have to like
3831 it). Don't bother to complain(), Sun's compiler omits the semicolon
3832 for "void". */
3833 if (**pp == ';')
3834 ++(*pp);
3835
3836 if (type_bits == 0)
3837 {
3838 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3839 TARGET_CHAR_BIT, NULL);
3840 if (unsigned_type)
3841 TYPE_UNSIGNED (type) = 1;
3842 return type;
3843 }
3844
3845 if (boolean_type)
3846 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3847 else
3848 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3849 }
3850
3851 static struct type *
3852 read_sun_floating_type (const char **pp, int typenums[2],
3853 struct objfile *objfile)
3854 {
3855 int nbits;
3856 int details;
3857 int nbytes;
3858 struct type *rettype;
3859
3860 /* The first number has more details about the type, for example
3861 FN_COMPLEX. */
3862 details = read_huge_number (pp, ';', &nbits, 0);
3863 if (nbits != 0)
3864 return error_type (pp, objfile);
3865
3866 /* The second number is the number of bytes occupied by this type. */
3867 nbytes = read_huge_number (pp, ';', &nbits, 0);
3868 if (nbits != 0)
3869 return error_type (pp, objfile);
3870
3871 nbits = nbytes * TARGET_CHAR_BIT;
3872
3873 if (details == NF_COMPLEX || details == NF_COMPLEX16
3874 || details == NF_COMPLEX32)
3875 {
3876 rettype = dbx_init_float_type (objfile, nbits / 2);
3877 return init_complex_type (objfile, NULL, rettype);
3878 }
3879
3880 return dbx_init_float_type (objfile, nbits);
3881 }
3882
3883 /* Read a number from the string pointed to by *PP.
3884 The value of *PP is advanced over the number.
3885 If END is nonzero, the character that ends the
3886 number must match END, or an error happens;
3887 and that character is skipped if it does match.
3888 If END is zero, *PP is left pointing to that character.
3889
3890 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3891 the number is represented in an octal representation, assume that
3892 it is represented in a 2's complement representation with a size of
3893 TWOS_COMPLEMENT_BITS.
3894
3895 If the number fits in a long, set *BITS to 0 and return the value.
3896 If not, set *BITS to be the number of bits in the number and return 0.
3897
3898 If encounter garbage, set *BITS to -1 and return 0. */
3899
3900 static long
3901 read_huge_number (const char **pp, int end, int *bits,
3902 int twos_complement_bits)
3903 {
3904 const char *p = *pp;
3905 int sign = 1;
3906 int sign_bit = 0;
3907 long n = 0;
3908 int radix = 10;
3909 char overflow = 0;
3910 int nbits = 0;
3911 int c;
3912 long upper_limit;
3913 int twos_complement_representation = 0;
3914
3915 if (*p == '-')
3916 {
3917 sign = -1;
3918 p++;
3919 }
3920
3921 /* Leading zero means octal. GCC uses this to output values larger
3922 than an int (because that would be hard in decimal). */
3923 if (*p == '0')
3924 {
3925 radix = 8;
3926 p++;
3927 }
3928
3929 /* Skip extra zeros. */
3930 while (*p == '0')
3931 p++;
3932
3933 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3934 {
3935 /* Octal, possibly signed. Check if we have enough chars for a
3936 negative number. */
3937
3938 size_t len;
3939 const char *p1 = p;
3940
3941 while ((c = *p1) >= '0' && c < '8')
3942 p1++;
3943
3944 len = p1 - p;
3945 if (len > twos_complement_bits / 3
3946 || (twos_complement_bits % 3 == 0
3947 && len == twos_complement_bits / 3))
3948 {
3949 /* Ok, we have enough characters for a signed value, check
3950 for signness by testing if the sign bit is set. */
3951 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3952 c = *p - '0';
3953 if (c & (1 << sign_bit))
3954 {
3955 /* Definitely signed. */
3956 twos_complement_representation = 1;
3957 sign = -1;
3958 }
3959 }
3960 }
3961
3962 upper_limit = LONG_MAX / radix;
3963
3964 while ((c = *p++) >= '0' && c < ('0' + radix))
3965 {
3966 if (n <= upper_limit)
3967 {
3968 if (twos_complement_representation)
3969 {
3970 /* Octal, signed, twos complement representation. In
3971 this case, n is the corresponding absolute value. */
3972 if (n == 0)
3973 {
3974 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3975
3976 n = -sn;
3977 }
3978 else
3979 {
3980 n *= radix;
3981 n -= c - '0';
3982 }
3983 }
3984 else
3985 {
3986 /* unsigned representation */
3987 n *= radix;
3988 n += c - '0'; /* FIXME this overflows anyway. */
3989 }
3990 }
3991 else
3992 overflow = 1;
3993
3994 /* This depends on large values being output in octal, which is
3995 what GCC does. */
3996 if (radix == 8)
3997 {
3998 if (nbits == 0)
3999 {
4000 if (c == '0')
4001 /* Ignore leading zeroes. */
4002 ;
4003 else if (c == '1')
4004 nbits = 1;
4005 else if (c == '2' || c == '3')
4006 nbits = 2;
4007 else
4008 nbits = 3;
4009 }
4010 else
4011 nbits += 3;
4012 }
4013 }
4014 if (end)
4015 {
4016 if (c && c != end)
4017 {
4018 if (bits != NULL)
4019 *bits = -1;
4020 return 0;
4021 }
4022 }
4023 else
4024 --p;
4025
4026 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4027 {
4028 /* We were supposed to parse a number with maximum
4029 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4030 if (bits != NULL)
4031 *bits = -1;
4032 return 0;
4033 }
4034
4035 *pp = p;
4036 if (overflow)
4037 {
4038 if (nbits == 0)
4039 {
4040 /* Large decimal constants are an error (because it is hard to
4041 count how many bits are in them). */
4042 if (bits != NULL)
4043 *bits = -1;
4044 return 0;
4045 }
4046
4047 /* -0x7f is the same as 0x80. So deal with it by adding one to
4048 the number of bits. Two's complement represention octals
4049 can't have a '-' in front. */
4050 if (sign == -1 && !twos_complement_representation)
4051 ++nbits;
4052 if (bits)
4053 *bits = nbits;
4054 }
4055 else
4056 {
4057 if (bits)
4058 *bits = 0;
4059 return n * sign;
4060 }
4061 /* It's *BITS which has the interesting information. */
4062 return 0;
4063 }
4064
4065 static struct type *
4066 read_range_type (const char **pp, int typenums[2], int type_size,
4067 struct objfile *objfile)
4068 {
4069 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4070 const char *orig_pp = *pp;
4071 int rangenums[2];
4072 long n2, n3;
4073 int n2bits, n3bits;
4074 int self_subrange;
4075 struct type *result_type;
4076 struct type *index_type = NULL;
4077
4078 /* First comes a type we are a subrange of.
4079 In C it is usually 0, 1 or the type being defined. */
4080 if (read_type_number (pp, rangenums) != 0)
4081 return error_type (pp, objfile);
4082 self_subrange = (rangenums[0] == typenums[0] &&
4083 rangenums[1] == typenums[1]);
4084
4085 if (**pp == '=')
4086 {
4087 *pp = orig_pp;
4088 index_type = read_type (pp, objfile);
4089 }
4090
4091 /* A semicolon should now follow; skip it. */
4092 if (**pp == ';')
4093 (*pp)++;
4094
4095 /* The remaining two operands are usually lower and upper bounds
4096 of the range. But in some special cases they mean something else. */
4097 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4098 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4099
4100 if (n2bits == -1 || n3bits == -1)
4101 return error_type (pp, objfile);
4102
4103 if (index_type)
4104 goto handle_true_range;
4105
4106 /* If limits are huge, must be large integral type. */
4107 if (n2bits != 0 || n3bits != 0)
4108 {
4109 char got_signed = 0;
4110 char got_unsigned = 0;
4111 /* Number of bits in the type. */
4112 int nbits = 0;
4113
4114 /* If a type size attribute has been specified, the bounds of
4115 the range should fit in this size. If the lower bounds needs
4116 more bits than the upper bound, then the type is signed. */
4117 if (n2bits <= type_size && n3bits <= type_size)
4118 {
4119 if (n2bits == type_size && n2bits > n3bits)
4120 got_signed = 1;
4121 else
4122 got_unsigned = 1;
4123 nbits = type_size;
4124 }
4125 /* Range from 0 to <large number> is an unsigned large integral type. */
4126 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4127 {
4128 got_unsigned = 1;
4129 nbits = n3bits;
4130 }
4131 /* Range from <large number> to <large number>-1 is a large signed
4132 integral type. Take care of the case where <large number> doesn't
4133 fit in a long but <large number>-1 does. */
4134 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4135 || (n2bits != 0 && n3bits == 0
4136 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4137 && n3 == LONG_MAX))
4138 {
4139 got_signed = 1;
4140 nbits = n2bits;
4141 }
4142
4143 if (got_signed || got_unsigned)
4144 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4145 else
4146 return error_type (pp, objfile);
4147 }
4148
4149 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4150 if (self_subrange && n2 == 0 && n3 == 0)
4151 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4152
4153 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4154 is the width in bytes.
4155
4156 Fortran programs appear to use this for complex types also. To
4157 distinguish between floats and complex, g77 (and others?) seem
4158 to use self-subranges for the complexes, and subranges of int for
4159 the floats.
4160
4161 Also note that for complexes, g77 sets n2 to the size of one of
4162 the member floats, not the whole complex beast. My guess is that
4163 this was to work well with pre-COMPLEX versions of gdb. */
4164
4165 if (n3 == 0 && n2 > 0)
4166 {
4167 struct type *float_type
4168 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4169
4170 if (self_subrange)
4171 return init_complex_type (objfile, NULL, float_type);
4172 else
4173 return float_type;
4174 }
4175
4176 /* If the upper bound is -1, it must really be an unsigned integral. */
4177
4178 else if (n2 == 0 && n3 == -1)
4179 {
4180 int bits = type_size;
4181
4182 if (bits <= 0)
4183 {
4184 /* We don't know its size. It is unsigned int or unsigned
4185 long. GCC 2.3.3 uses this for long long too, but that is
4186 just a GDB 3.5 compatibility hack. */
4187 bits = gdbarch_int_bit (gdbarch);
4188 }
4189
4190 return init_integer_type (objfile, bits, 1, NULL);
4191 }
4192
4193 /* Special case: char is defined (Who knows why) as a subrange of
4194 itself with range 0-127. */
4195 else if (self_subrange && n2 == 0 && n3 == 127)
4196 {
4197 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4198 0, NULL);
4199 TYPE_NOSIGN (type) = 1;
4200 return type;
4201 }
4202 /* We used to do this only for subrange of self or subrange of int. */
4203 else if (n2 == 0)
4204 {
4205 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4206 "unsigned long", and we already checked for that,
4207 so don't need to test for it here. */
4208
4209 if (n3 < 0)
4210 /* n3 actually gives the size. */
4211 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4212
4213 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4214 unsigned n-byte integer. But do require n to be a power of
4215 two; we don't want 3- and 5-byte integers flying around. */
4216 {
4217 int bytes;
4218 unsigned long bits;
4219
4220 bits = n3;
4221 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4222 bits >>= 8;
4223 if (bits == 0
4224 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4225 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4226 }
4227 }
4228 /* I think this is for Convex "long long". Since I don't know whether
4229 Convex sets self_subrange, I also accept that particular size regardless
4230 of self_subrange. */
4231 else if (n3 == 0 && n2 < 0
4232 && (self_subrange
4233 || n2 == -gdbarch_long_long_bit
4234 (gdbarch) / TARGET_CHAR_BIT))
4235 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4236 else if (n2 == -n3 - 1)
4237 {
4238 if (n3 == 0x7f)
4239 return init_integer_type (objfile, 8, 0, NULL);
4240 if (n3 == 0x7fff)
4241 return init_integer_type (objfile, 16, 0, NULL);
4242 if (n3 == 0x7fffffff)
4243 return init_integer_type (objfile, 32, 0, NULL);
4244 }
4245
4246 /* We have a real range type on our hands. Allocate space and
4247 return a real pointer. */
4248 handle_true_range:
4249
4250 if (self_subrange)
4251 index_type = objfile_type (objfile)->builtin_int;
4252 else
4253 index_type = *dbx_lookup_type (rangenums, objfile);
4254 if (index_type == NULL)
4255 {
4256 /* Does this actually ever happen? Is that why we are worrying
4257 about dealing with it rather than just calling error_type? */
4258
4259 complaint (&symfile_complaints,
4260 _("base type %d of range type is not defined"), rangenums[1]);
4261
4262 index_type = objfile_type (objfile)->builtin_int;
4263 }
4264
4265 result_type
4266 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4267 return (result_type);
4268 }
4269
4270 /* Read in an argument list. This is a list of types, separated by commas
4271 and terminated with END. Return the list of types read in, or NULL
4272 if there is an error. */
4273
4274 static struct field *
4275 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4276 int *varargsp)
4277 {
4278 /* FIXME! Remove this arbitrary limit! */
4279 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4280 int n = 0, i;
4281 struct field *rval;
4282
4283 while (**pp != end)
4284 {
4285 if (**pp != ',')
4286 /* Invalid argument list: no ','. */
4287 return NULL;
4288 (*pp)++;
4289 STABS_CONTINUE (pp, objfile);
4290 types[n++] = read_type (pp, objfile);
4291 }
4292 (*pp)++; /* get past `end' (the ':' character). */
4293
4294 if (n == 0)
4295 {
4296 /* We should read at least the THIS parameter here. Some broken stabs
4297 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4298 have been present ";-16,(0,43)" reference instead. This way the
4299 excessive ";" marker prematurely stops the parameters parsing. */
4300
4301 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4302 *varargsp = 0;
4303 }
4304 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4305 *varargsp = 1;
4306 else
4307 {
4308 n--;
4309 *varargsp = 0;
4310 }
4311
4312 rval = XCNEWVEC (struct field, n);
4313 for (i = 0; i < n; i++)
4314 rval[i].type = types[i];
4315 *nargsp = n;
4316 return rval;
4317 }
4318 \f
4319 /* Common block handling. */
4320
4321 /* List of symbols declared since the last BCOMM. This list is a tail
4322 of local_symbols. When ECOMM is seen, the symbols on the list
4323 are noted so their proper addresses can be filled in later,
4324 using the common block base address gotten from the assembler
4325 stabs. */
4326
4327 static struct pending *common_block;
4328 static int common_block_i;
4329
4330 /* Name of the current common block. We get it from the BCOMM instead of the
4331 ECOMM to match IBM documentation (even though IBM puts the name both places
4332 like everyone else). */
4333 static char *common_block_name;
4334
4335 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4336 to remain after this function returns. */
4337
4338 void
4339 common_block_start (const char *name, struct objfile *objfile)
4340 {
4341 if (common_block_name != NULL)
4342 {
4343 complaint (&symfile_complaints,
4344 _("Invalid symbol data: common block within common block"));
4345 }
4346 common_block = local_symbols;
4347 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4348 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4349 strlen (name));
4350 }
4351
4352 /* Process a N_ECOMM symbol. */
4353
4354 void
4355 common_block_end (struct objfile *objfile)
4356 {
4357 /* Symbols declared since the BCOMM are to have the common block
4358 start address added in when we know it. common_block and
4359 common_block_i point to the first symbol after the BCOMM in
4360 the local_symbols list; copy the list and hang it off the
4361 symbol for the common block name for later fixup. */
4362 int i;
4363 struct symbol *sym;
4364 struct pending *newobj = 0;
4365 struct pending *next;
4366 int j;
4367
4368 if (common_block_name == NULL)
4369 {
4370 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4371 return;
4372 }
4373
4374 sym = allocate_symbol (objfile);
4375 /* Note: common_block_name already saved on objfile_obstack. */
4376 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4377 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4378
4379 /* Now we copy all the symbols which have been defined since the BCOMM. */
4380
4381 /* Copy all the struct pendings before common_block. */
4382 for (next = local_symbols;
4383 next != NULL && next != common_block;
4384 next = next->next)
4385 {
4386 for (j = 0; j < next->nsyms; j++)
4387 add_symbol_to_list (next->symbol[j], &newobj);
4388 }
4389
4390 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4391 NULL, it means copy all the local symbols (which we already did
4392 above). */
4393
4394 if (common_block != NULL)
4395 for (j = common_block_i; j < common_block->nsyms; j++)
4396 add_symbol_to_list (common_block->symbol[j], &newobj);
4397
4398 SYMBOL_TYPE (sym) = (struct type *) newobj;
4399
4400 /* Should we be putting local_symbols back to what it was?
4401 Does it matter? */
4402
4403 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4404 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4405 global_sym_chain[i] = sym;
4406 common_block_name = NULL;
4407 }
4408
4409 /* Add a common block's start address to the offset of each symbol
4410 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4411 the common block name). */
4412
4413 static void
4414 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4415 {
4416 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4417
4418 for (; next; next = next->next)
4419 {
4420 int j;
4421
4422 for (j = next->nsyms - 1; j >= 0; j--)
4423 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4424 }
4425 }
4426 \f
4427
4428
4429 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4430 See add_undefined_type for more details. */
4431
4432 static void
4433 add_undefined_type_noname (struct type *type, int typenums[2])
4434 {
4435 struct nat nat;
4436
4437 nat.typenums[0] = typenums [0];
4438 nat.typenums[1] = typenums [1];
4439 nat.type = type;
4440
4441 if (noname_undefs_length == noname_undefs_allocated)
4442 {
4443 noname_undefs_allocated *= 2;
4444 noname_undefs = (struct nat *)
4445 xrealloc ((char *) noname_undefs,
4446 noname_undefs_allocated * sizeof (struct nat));
4447 }
4448 noname_undefs[noname_undefs_length++] = nat;
4449 }
4450
4451 /* Add TYPE to the UNDEF_TYPES vector.
4452 See add_undefined_type for more details. */
4453
4454 static void
4455 add_undefined_type_1 (struct type *type)
4456 {
4457 if (undef_types_length == undef_types_allocated)
4458 {
4459 undef_types_allocated *= 2;
4460 undef_types = (struct type **)
4461 xrealloc ((char *) undef_types,
4462 undef_types_allocated * sizeof (struct type *));
4463 }
4464 undef_types[undef_types_length++] = type;
4465 }
4466
4467 /* What about types defined as forward references inside of a small lexical
4468 scope? */
4469 /* Add a type to the list of undefined types to be checked through
4470 once this file has been read in.
4471
4472 In practice, we actually maintain two such lists: The first list
4473 (UNDEF_TYPES) is used for types whose name has been provided, and
4474 concerns forward references (eg 'xs' or 'xu' forward references);
4475 the second list (NONAME_UNDEFS) is used for types whose name is
4476 unknown at creation time, because they were referenced through
4477 their type number before the actual type was declared.
4478 This function actually adds the given type to the proper list. */
4479
4480 static void
4481 add_undefined_type (struct type *type, int typenums[2])
4482 {
4483 if (TYPE_TAG_NAME (type) == NULL)
4484 add_undefined_type_noname (type, typenums);
4485 else
4486 add_undefined_type_1 (type);
4487 }
4488
4489 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4490
4491 static void
4492 cleanup_undefined_types_noname (struct objfile *objfile)
4493 {
4494 int i;
4495
4496 for (i = 0; i < noname_undefs_length; i++)
4497 {
4498 struct nat nat = noname_undefs[i];
4499 struct type **type;
4500
4501 type = dbx_lookup_type (nat.typenums, objfile);
4502 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4503 {
4504 /* The instance flags of the undefined type are still unset,
4505 and needs to be copied over from the reference type.
4506 Since replace_type expects them to be identical, we need
4507 to set these flags manually before hand. */
4508 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4509 replace_type (nat.type, *type);
4510 }
4511 }
4512
4513 noname_undefs_length = 0;
4514 }
4515
4516 /* Go through each undefined type, see if it's still undefined, and fix it
4517 up if possible. We have two kinds of undefined types:
4518
4519 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4520 Fix: update array length using the element bounds
4521 and the target type's length.
4522 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4523 yet defined at the time a pointer to it was made.
4524 Fix: Do a full lookup on the struct/union tag. */
4525
4526 static void
4527 cleanup_undefined_types_1 (void)
4528 {
4529 struct type **type;
4530
4531 /* Iterate over every undefined type, and look for a symbol whose type
4532 matches our undefined type. The symbol matches if:
4533 1. It is a typedef in the STRUCT domain;
4534 2. It has the same name, and same type code;
4535 3. The instance flags are identical.
4536
4537 It is important to check the instance flags, because we have seen
4538 examples where the debug info contained definitions such as:
4539
4540 "foo_t:t30=B31=xefoo_t:"
4541
4542 In this case, we have created an undefined type named "foo_t" whose
4543 instance flags is null (when processing "xefoo_t"), and then created
4544 another type with the same name, but with different instance flags
4545 ('B' means volatile). I think that the definition above is wrong,
4546 since the same type cannot be volatile and non-volatile at the same
4547 time, but we need to be able to cope with it when it happens. The
4548 approach taken here is to treat these two types as different. */
4549
4550 for (type = undef_types; type < undef_types + undef_types_length; type++)
4551 {
4552 switch (TYPE_CODE (*type))
4553 {
4554
4555 case TYPE_CODE_STRUCT:
4556 case TYPE_CODE_UNION:
4557 case TYPE_CODE_ENUM:
4558 {
4559 /* Check if it has been defined since. Need to do this here
4560 as well as in check_typedef to deal with the (legitimate in
4561 C though not C++) case of several types with the same name
4562 in different source files. */
4563 if (TYPE_STUB (*type))
4564 {
4565 struct pending *ppt;
4566 int i;
4567 /* Name of the type, without "struct" or "union". */
4568 const char *type_name = TYPE_TAG_NAME (*type);
4569
4570 if (type_name == NULL)
4571 {
4572 complaint (&symfile_complaints, _("need a type name"));
4573 break;
4574 }
4575 for (ppt = file_symbols; ppt; ppt = ppt->next)
4576 {
4577 for (i = 0; i < ppt->nsyms; i++)
4578 {
4579 struct symbol *sym = ppt->symbol[i];
4580
4581 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4582 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4583 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4584 TYPE_CODE (*type))
4585 && (TYPE_INSTANCE_FLAGS (*type) ==
4586 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4587 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4588 type_name) == 0)
4589 replace_type (*type, SYMBOL_TYPE (sym));
4590 }
4591 }
4592 }
4593 }
4594 break;
4595
4596 default:
4597 {
4598 complaint (&symfile_complaints,
4599 _("forward-referenced types left unresolved, "
4600 "type code %d."),
4601 TYPE_CODE (*type));
4602 }
4603 break;
4604 }
4605 }
4606
4607 undef_types_length = 0;
4608 }
4609
4610 /* Try to fix all the undefined types we ecountered while processing
4611 this unit. */
4612
4613 void
4614 cleanup_undefined_stabs_types (struct objfile *objfile)
4615 {
4616 cleanup_undefined_types_1 ();
4617 cleanup_undefined_types_noname (objfile);
4618 }
4619
4620 /* Scan through all of the global symbols defined in the object file,
4621 assigning values to the debugging symbols that need to be assigned
4622 to. Get these symbols from the minimal symbol table. */
4623
4624 void
4625 scan_file_globals (struct objfile *objfile)
4626 {
4627 int hash;
4628 struct minimal_symbol *msymbol;
4629 struct symbol *sym, *prev;
4630 struct objfile *resolve_objfile;
4631
4632 /* SVR4 based linkers copy referenced global symbols from shared
4633 libraries to the main executable.
4634 If we are scanning the symbols for a shared library, try to resolve
4635 them from the minimal symbols of the main executable first. */
4636
4637 if (symfile_objfile && objfile != symfile_objfile)
4638 resolve_objfile = symfile_objfile;
4639 else
4640 resolve_objfile = objfile;
4641
4642 while (1)
4643 {
4644 /* Avoid expensive loop through all minimal symbols if there are
4645 no unresolved symbols. */
4646 for (hash = 0; hash < HASHSIZE; hash++)
4647 {
4648 if (global_sym_chain[hash])
4649 break;
4650 }
4651 if (hash >= HASHSIZE)
4652 return;
4653
4654 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4655 {
4656 QUIT;
4657
4658 /* Skip static symbols. */
4659 switch (MSYMBOL_TYPE (msymbol))
4660 {
4661 case mst_file_text:
4662 case mst_file_data:
4663 case mst_file_bss:
4664 continue;
4665 default:
4666 break;
4667 }
4668
4669 prev = NULL;
4670
4671 /* Get the hash index and check all the symbols
4672 under that hash index. */
4673
4674 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4675
4676 for (sym = global_sym_chain[hash]; sym;)
4677 {
4678 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4679 SYMBOL_LINKAGE_NAME (sym)) == 0)
4680 {
4681 /* Splice this symbol out of the hash chain and
4682 assign the value we have to it. */
4683 if (prev)
4684 {
4685 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4686 }
4687 else
4688 {
4689 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4690 }
4691
4692 /* Check to see whether we need to fix up a common block. */
4693 /* Note: this code might be executed several times for
4694 the same symbol if there are multiple references. */
4695 if (sym)
4696 {
4697 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4698 {
4699 fix_common_block (sym,
4700 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4701 msymbol));
4702 }
4703 else
4704 {
4705 SYMBOL_VALUE_ADDRESS (sym)
4706 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4707 }
4708 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4709 }
4710
4711 if (prev)
4712 {
4713 sym = SYMBOL_VALUE_CHAIN (prev);
4714 }
4715 else
4716 {
4717 sym = global_sym_chain[hash];
4718 }
4719 }
4720 else
4721 {
4722 prev = sym;
4723 sym = SYMBOL_VALUE_CHAIN (sym);
4724 }
4725 }
4726 }
4727 if (resolve_objfile == objfile)
4728 break;
4729 resolve_objfile = objfile;
4730 }
4731
4732 /* Change the storage class of any remaining unresolved globals to
4733 LOC_UNRESOLVED and remove them from the chain. */
4734 for (hash = 0; hash < HASHSIZE; hash++)
4735 {
4736 sym = global_sym_chain[hash];
4737 while (sym)
4738 {
4739 prev = sym;
4740 sym = SYMBOL_VALUE_CHAIN (sym);
4741
4742 /* Change the symbol address from the misleading chain value
4743 to address zero. */
4744 SYMBOL_VALUE_ADDRESS (prev) = 0;
4745
4746 /* Complain about unresolved common block symbols. */
4747 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4748 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4749 else
4750 complaint (&symfile_complaints,
4751 _("%s: common block `%s' from "
4752 "global_sym_chain unresolved"),
4753 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4754 }
4755 }
4756 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4757 }
4758
4759 /* Initialize anything that needs initializing when starting to read
4760 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4761 to a psymtab. */
4762
4763 void
4764 stabsread_init (void)
4765 {
4766 }
4767
4768 /* Initialize anything that needs initializing when a completely new
4769 symbol file is specified (not just adding some symbols from another
4770 file, e.g. a shared library). */
4771
4772 void
4773 stabsread_new_init (void)
4774 {
4775 /* Empty the hash table of global syms looking for values. */
4776 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4777 }
4778
4779 /* Initialize anything that needs initializing at the same time as
4780 start_symtab() is called. */
4781
4782 void
4783 start_stabs (void)
4784 {
4785 global_stabs = NULL; /* AIX COFF */
4786 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4787 n_this_object_header_files = 1;
4788 type_vector_length = 0;
4789 type_vector = (struct type **) 0;
4790
4791 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4792 common_block_name = NULL;
4793 }
4794
4795 /* Call after end_symtab(). */
4796
4797 void
4798 end_stabs (void)
4799 {
4800 if (type_vector)
4801 {
4802 xfree (type_vector);
4803 }
4804 type_vector = 0;
4805 type_vector_length = 0;
4806 previous_stab_code = 0;
4807 }
4808
4809 void
4810 finish_global_stabs (struct objfile *objfile)
4811 {
4812 if (global_stabs)
4813 {
4814 patch_block_stabs (global_symbols, global_stabs, objfile);
4815 xfree (global_stabs);
4816 global_stabs = NULL;
4817 }
4818 }
4819
4820 /* Find the end of the name, delimited by a ':', but don't match
4821 ObjC symbols which look like -[Foo bar::]:bla. */
4822 static const char *
4823 find_name_end (const char *name)
4824 {
4825 const char *s = name;
4826
4827 if (s[0] == '-' || *s == '+')
4828 {
4829 /* Must be an ObjC method symbol. */
4830 if (s[1] != '[')
4831 {
4832 error (_("invalid symbol name \"%s\""), name);
4833 }
4834 s = strchr (s, ']');
4835 if (s == NULL)
4836 {
4837 error (_("invalid symbol name \"%s\""), name);
4838 }
4839 return strchr (s, ':');
4840 }
4841 else
4842 {
4843 return strchr (s, ':');
4844 }
4845 }
4846
4847 /* Initializer for this module. */
4848
4849 void
4850 _initialize_stabsread (void)
4851 {
4852 rs6000_builtin_type_data = register_objfile_data ();
4853
4854 undef_types_allocated = 20;
4855 undef_types_length = 0;
4856 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4857
4858 noname_undefs_allocated = 20;
4859 noname_undefs_length = 0;
4860 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4861
4862 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4863 &stab_register_funcs);
4864 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4865 &stab_register_funcs);
4866 }
This page took 0.203017 seconds and 4 git commands to generate.