gdb/testsuite/ada: Handle missing debug info case
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 #include "stabsread.h"
50
51 /* See stabsread.h for these globals. */
52 unsigned int symnum;
53 const char *(*next_symbol_text_func) (struct objfile *);
54 unsigned char processing_gcc_compilation;
55 int within_function;
56 struct symbol *global_sym_chain[HASHSIZE];
57 struct pending_stabs *global_stabs;
58 int previous_stab_code;
59 int *this_object_header_files;
60 int n_this_object_header_files;
61 int n_allocated_this_object_header_files;
62
63 struct nextfield
64 {
65 struct nextfield *next;
66
67 /* This is the raw visibility from the stab. It is not checked
68 for being one of the visibilities we recognize, so code which
69 examines this field better be able to deal. */
70 int visibility;
71
72 struct field field;
73 };
74
75 struct next_fnfieldlist
76 {
77 struct next_fnfieldlist *next;
78 struct fn_fieldlist fn_fieldlist;
79 };
80
81 /* The routines that read and process a complete stabs for a C struct or
82 C++ class pass lists of data member fields and lists of member function
83 fields in an instance of a field_info structure, as defined below.
84 This is part of some reorganization of low level C++ support and is
85 expected to eventually go away... (FIXME) */
86
87 struct stab_field_info
88 {
89 struct nextfield *list = nullptr;
90 struct next_fnfieldlist *fnlist = nullptr;
91
92 auto_obstack obstack;
93 };
94
95 static void
96 read_one_struct_field (struct stab_field_info *, const char **, const char *,
97 struct type *, struct objfile *);
98
99 static struct type *dbx_alloc_type (int[2], struct objfile *);
100
101 static long read_huge_number (const char **, int, int *, int);
102
103 static struct type *error_type (const char **, struct objfile *);
104
105 static void
106 patch_block_stabs (struct pending *, struct pending_stabs *,
107 struct objfile *);
108
109 static void fix_common_block (struct symbol *, CORE_ADDR);
110
111 static int read_type_number (const char **, int *);
112
113 static struct type *read_type (const char **, struct objfile *);
114
115 static struct type *read_range_type (const char **, int[2],
116 int, struct objfile *);
117
118 static struct type *read_sun_builtin_type (const char **,
119 int[2], struct objfile *);
120
121 static struct type *read_sun_floating_type (const char **, int[2],
122 struct objfile *);
123
124 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
125
126 static struct type *rs6000_builtin_type (int, struct objfile *);
127
128 static int
129 read_member_functions (struct stab_field_info *, const char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_struct_fields (struct stab_field_info *, const char **, struct type *,
134 struct objfile *);
135
136 static int
137 read_baseclasses (struct stab_field_info *, const char **, struct type *,
138 struct objfile *);
139
140 static int
141 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
142 struct objfile *);
143
144 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
145
146 static int attach_fields_to_type (struct stab_field_info *, struct type *,
147 struct objfile *);
148
149 static struct type *read_struct_type (const char **, struct type *,
150 enum type_code,
151 struct objfile *);
152
153 static struct type *read_array_type (const char **, struct type *,
154 struct objfile *);
155
156 static struct field *read_args (const char **, int, struct objfile *,
157 int *, int *);
158
159 static void add_undefined_type (struct type *, int[2]);
160
161 static int
162 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
163 struct objfile *);
164
165 static const char *find_name_end (const char *name);
166
167 static int process_reference (const char **string);
168
169 void stabsread_clear_cache (void);
170
171 static const char vptr_name[] = "_vptr$";
172 static const char vb_name[] = "_vb$";
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (_("invalid C++ abbreviation `%s'"), arg1);
178 }
179
180 static void
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183 complaint (_("bad register number %d (max %d) in symbol %s"),
184 regnum, num_regs - 1, sym);
185 }
186
187 static void
188 stabs_general_complaint (const char *arg1)
189 {
190 complaint ("%s", arg1);
191 }
192
193 /* Make a list of forward references which haven't been defined. */
194
195 static struct type **undef_types;
196 static int undef_types_allocated;
197 static int undef_types_length;
198 static struct symbol *current_symbol = NULL;
199
200 /* Make a list of nameless types that are undefined.
201 This happens when another type is referenced by its number
202 before this type is actually defined. For instance "t(0,1)=k(0,2)"
203 and type (0,2) is defined only later. */
204
205 struct nat
206 {
207 int typenums[2];
208 struct type *type;
209 };
210 static struct nat *noname_undefs;
211 static int noname_undefs_allocated;
212 static int noname_undefs_length;
213
214 /* Check for and handle cretinous stabs symbol name continuation! */
215 #define STABS_CONTINUE(pp,objfile) \
216 do { \
217 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
218 *(pp) = next_symbol_text (objfile); \
219 } while (0)
220
221 /* Vector of types defined so far, indexed by their type numbers.
222 (In newer sun systems, dbx uses a pair of numbers in parens,
223 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
224 Then these numbers must be translated through the type_translations
225 hash table to get the index into the type vector.) */
226
227 static struct type **type_vector;
228
229 /* Number of elements allocated for type_vector currently. */
230
231 static int type_vector_length;
232
233 /* Initial size of type vector. Is realloc'd larger if needed, and
234 realloc'd down to the size actually used, when completed. */
235
236 #define INITIAL_TYPE_VECTOR_LENGTH 160
237 \f
238
239 /* Look up a dbx type-number pair. Return the address of the slot
240 where the type for that number-pair is stored.
241 The number-pair is in TYPENUMS.
242
243 This can be used for finding the type associated with that pair
244 or for associating a new type with the pair. */
245
246 static struct type **
247 dbx_lookup_type (int typenums[2], struct objfile *objfile)
248 {
249 int filenum = typenums[0];
250 int index = typenums[1];
251 unsigned old_len;
252 int real_filenum;
253 struct header_file *f;
254 int f_orig_length;
255
256 if (filenum == -1) /* -1,-1 is for temporary types. */
257 return 0;
258
259 if (filenum < 0 || filenum >= n_this_object_header_files)
260 {
261 complaint (_("Invalid symbol data: type number "
262 "(%d,%d) out of range at symtab pos %d."),
263 filenum, index, symnum);
264 goto error_return;
265 }
266
267 if (filenum == 0)
268 {
269 if (index < 0)
270 {
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
277
278 temp_type = rs6000_builtin_type (index, objfile);
279 return &temp_type;
280 }
281
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
285 {
286 old_len = type_vector_length;
287 if (old_len == 0)
288 {
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = XNEWVEC (struct type *, type_vector_length);
291 }
292 while (index >= type_vector_length)
293 {
294 type_vector_length *= 2;
295 }
296 type_vector = (struct type **)
297 xrealloc ((char *) type_vector,
298 (type_vector_length * sizeof (struct type *)));
299 memset (&type_vector[old_len], 0,
300 (type_vector_length - old_len) * sizeof (struct type *));
301 }
302 return (&type_vector[index]);
303 }
304 else
305 {
306 real_filenum = this_object_header_files[filenum];
307
308 if (real_filenum >= N_HEADER_FILES (objfile))
309 {
310 static struct type *temp_type;
311
312 warning (_("GDB internal error: bad real_filenum"));
313
314 error_return:
315 temp_type = objfile_type (objfile)->builtin_error;
316 return &temp_type;
317 }
318
319 f = HEADER_FILES (objfile) + real_filenum;
320
321 f_orig_length = f->length;
322 if (index >= f_orig_length)
323 {
324 while (index >= f->length)
325 {
326 f->length *= 2;
327 }
328 f->vector = (struct type **)
329 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
330 memset (&f->vector[f_orig_length], 0,
331 (f->length - f_orig_length) * sizeof (struct type *));
332 }
333 return (&f->vector[index]);
334 }
335 }
336
337 /* Make sure there is a type allocated for type numbers TYPENUMS
338 and return the type object.
339 This can create an empty (zeroed) type object.
340 TYPENUMS may be (-1, -1) to return a new type object that is not
341 put into the type vector, and so may not be referred to by number. */
342
343 static struct type *
344 dbx_alloc_type (int typenums[2], struct objfile *objfile)
345 {
346 struct type **type_addr;
347
348 if (typenums[0] == -1)
349 {
350 return (alloc_type (objfile));
351 }
352
353 type_addr = dbx_lookup_type (typenums, objfile);
354
355 /* If we are referring to a type not known at all yet,
356 allocate an empty type for it.
357 We will fill it in later if we find out how. */
358 if (*type_addr == 0)
359 {
360 *type_addr = alloc_type (objfile);
361 }
362
363 return (*type_addr);
364 }
365
366 /* Allocate a floating-point type of size BITS. */
367
368 static struct type *
369 dbx_init_float_type (struct objfile *objfile, int bits)
370 {
371 struct gdbarch *gdbarch = get_objfile_arch (objfile);
372 const struct floatformat **format;
373 struct type *type;
374
375 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
376 if (format)
377 type = init_float_type (objfile, bits, NULL, format);
378 else
379 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
380
381 return type;
382 }
383
384 /* for all the stabs in a given stab vector, build appropriate types
385 and fix their symbols in given symbol vector. */
386
387 static void
388 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
389 struct objfile *objfile)
390 {
391 int ii;
392 char *name;
393 const char *pp;
394 struct symbol *sym;
395
396 if (stabs)
397 {
398 /* for all the stab entries, find their corresponding symbols and
399 patch their types! */
400
401 for (ii = 0; ii < stabs->count; ++ii)
402 {
403 name = stabs->stab[ii];
404 pp = (char *) strchr (name, ':');
405 gdb_assert (pp); /* Must find a ':' or game's over. */
406 while (pp[1] == ':')
407 {
408 pp += 2;
409 pp = (char *) strchr (pp, ':');
410 }
411 sym = find_symbol_in_list (symbols, name, pp - name);
412 if (!sym)
413 {
414 /* FIXME-maybe: it would be nice if we noticed whether
415 the variable was defined *anywhere*, not just whether
416 it is defined in this compilation unit. But neither
417 xlc or GCC seem to need such a definition, and until
418 we do psymtabs (so that the minimal symbols from all
419 compilation units are available now), I'm not sure
420 how to get the information. */
421
422 /* On xcoff, if a global is defined and never referenced,
423 ld will remove it from the executable. There is then
424 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
425 sym = allocate_symbol (objfile);
426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
428 SYMBOL_SET_LINKAGE_NAME
429 (sym, obstack_strndup (&objfile->objfile_obstack,
430 name, pp - name));
431 pp += 2;
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, get_global_symbols ());
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462 \f
463
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (const char **pp, int *typenums)
474 {
475 int nbits;
476
477 if (**pp == '(')
478 {
479 (*pp)++;
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
484 if (nbits != 0)
485 return -1;
486 }
487 else
488 {
489 typenums[0] = 0;
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
491 if (nbits != 0)
492 return -1;
493 }
494 return 0;
495 }
496 \f
497
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
505
506 struct ref_map
507 {
508 const char *stabs;
509 CORE_ADDR value;
510 struct symbol *sym;
511 };
512
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
517 static struct ref_map *ref_map;
518
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
521
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
524
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
528 void
529 stabsread_clear_cache (void)
530 {
531 ref_count = 0;
532 ref_chunk = 0;
533 }
534
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
539 void
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
541 {
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560 }
561
562 /* Return defined sym for the reference REFNUM. */
563 struct symbol *
564 ref_search (int refnum)
565 {
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569 }
570
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
574 static int
575 process_reference (const char **string)
576 {
577 const char *p;
578 int refnum = 0;
579
580 if (**string != '#')
581 return 0;
582
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594 }
595
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599 int
600 symbol_reference_defined (const char **string)
601 {
602 const char *p = *string;
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
607 /* Defining symbols end in '='. */
608 if (*p == '=')
609 {
610 /* Symbol is being defined here. */
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621 }
622
623 static int
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 {
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629 {
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 SYMBOL_PRINT_NAME (sym));
632
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
634 }
635
636 return regno;
637 }
638
639 static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641 };
642
643 /* The "aclass" indices for computed symbols. */
644
645 static int stab_register_index;
646 static int stab_regparm_index;
647
648 struct symbol *
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
651 {
652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
653 struct symbol *sym;
654 const char *p = find_name_end (string);
655 int deftype;
656 int synonym = 0;
657 int i;
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
670 /* Ignore old-style symbols from cc -go. */
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
676 p += 2;
677 p = strchr (p, ':');
678 if (p == NULL)
679 {
680 complaint (
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
690 current_symbol = sym = allocate_symbol (objfile);
691
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
697 }
698 else
699 {
700 SYMBOL_LINE (sym) = 0; /* unknown */
701 }
702
703 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
704 &objfile->objfile_obstack);
705
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
711 case 't':
712 SYMBOL_SET_LINKAGE_NAME (sym, "this");
713 break;
714
715 case 'v': /* $vtbl_ptr_type */
716 goto normal;
717
718 case 'e':
719 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
720 break;
721
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
725
726 case 'X':
727 /* SunPRO (3.0 at least) static variable encoding. */
728 if (gdbarch_static_transform_name_p (gdbarch))
729 goto normal;
730 /* fall through */
731
732 default:
733 complaint (_("Unknown C++ symbol name `%s'"),
734 string);
735 goto normal; /* Do *something* with it. */
736 }
737 }
738 else
739 {
740 normal:
741 std::string new_name;
742
743 if (SYMBOL_LANGUAGE (sym) == language_cplus)
744 {
745 char *name = (char *) alloca (p - string + 1);
746
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
750 }
751 if (!new_name.empty ())
752 {
753 SYMBOL_SET_NAMES (sym,
754 new_name.c_str (), new_name.length (),
755 1, objfile);
756 }
757 else
758 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
759
760 if (SYMBOL_LANGUAGE (sym) == language_cplus)
761 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
762 objfile);
763
764 }
765 p++;
766
767 /* Determine the type of name being defined. */
768 #if 0
769 /* Getting GDB to correctly skip the symbol on an undefined symbol
770 descriptor and not ever dump core is a very dodgy proposition if
771 we do things this way. I say the acorn RISC machine can just
772 fix their compiler. */
773 /* The Acorn RISC machine's compiler can put out locals that don't
774 start with "234=" or "(3,4)=", so assume anything other than the
775 deftypes we know how to handle is a local. */
776 if (!strchr ("cfFGpPrStTvVXCR", *p))
777 #else
778 if (isdigit (*p) || *p == '(' || *p == '-')
779 #endif
780 deftype = 'l';
781 else
782 deftype = *p++;
783
784 switch (deftype)
785 {
786 case 'c':
787 /* c is a special case, not followed by a type-number.
788 SYMBOL:c=iVALUE for an integer constant symbol.
789 SYMBOL:c=rVALUE for a floating constant symbol.
790 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
791 e.g. "b:c=e6,0" for "const b = blob1"
792 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
793 if (*p != '=')
794 {
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
796 SYMBOL_TYPE (sym) = error_type (&p, objfile);
797 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
798 add_symbol_to_list (sym, get_file_symbols ());
799 return sym;
800 }
801 ++p;
802 switch (*p++)
803 {
804 case 'r':
805 {
806 gdb_byte *dbl_valu;
807 struct type *dbl_type;
808
809 dbl_type = objfile_type (objfile)->builtin_double;
810 dbl_valu
811 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
812 TYPE_LENGTH (dbl_type));
813
814 target_float_from_string (dbl_valu, dbl_type, std::string (p));
815
816 SYMBOL_TYPE (sym) = dbl_type;
817 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
818 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
819 }
820 break;
821 case 'i':
822 {
823 /* Defining integer constants this way is kind of silly,
824 since 'e' constants allows the compiler to give not
825 only the value, but the type as well. C has at least
826 int, long, unsigned int, and long long as constant
827 types; other languages probably should have at least
828 unsigned as well as signed constants. */
829
830 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
831 SYMBOL_VALUE (sym) = atoi (p);
832 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
833 }
834 break;
835
836 case 'c':
837 {
838 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
839 SYMBOL_VALUE (sym) = atoi (p);
840 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
841 }
842 break;
843
844 case 's':
845 {
846 struct type *range_type;
847 int ind = 0;
848 char quote = *p++;
849 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
850 gdb_byte *string_value;
851
852 if (quote != '\'' && quote != '"')
853 {
854 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
855 SYMBOL_TYPE (sym) = error_type (&p, objfile);
856 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
857 add_symbol_to_list (sym, get_file_symbols ());
858 return sym;
859 }
860
861 /* Find matching quote, rejecting escaped quotes. */
862 while (*p && *p != quote)
863 {
864 if (*p == '\\' && p[1] == quote)
865 {
866 string_local[ind] = (gdb_byte) quote;
867 ind++;
868 p += 2;
869 }
870 else if (*p)
871 {
872 string_local[ind] = (gdb_byte) (*p);
873 ind++;
874 p++;
875 }
876 }
877 if (*p != quote)
878 {
879 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
880 SYMBOL_TYPE (sym) = error_type (&p, objfile);
881 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
882 add_symbol_to_list (sym, get_file_symbols ());
883 return sym;
884 }
885
886 /* NULL terminate the string. */
887 string_local[ind] = 0;
888 range_type
889 = create_static_range_type (NULL,
890 objfile_type (objfile)->builtin_int,
891 0, ind);
892 SYMBOL_TYPE (sym) = create_array_type (NULL,
893 objfile_type (objfile)->builtin_char,
894 range_type);
895 string_value
896 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
897 memcpy (string_value, string_local, ind + 1);
898 p++;
899
900 SYMBOL_VALUE_BYTES (sym) = string_value;
901 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
902 }
903 break;
904
905 case 'e':
906 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
907 can be represented as integral.
908 e.g. "b:c=e6,0" for "const b = blob1"
909 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
910 {
911 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
912 SYMBOL_TYPE (sym) = read_type (&p, objfile);
913
914 if (*p != ',')
915 {
916 SYMBOL_TYPE (sym) = error_type (&p, objfile);
917 break;
918 }
919 ++p;
920
921 /* If the value is too big to fit in an int (perhaps because
922 it is unsigned), or something like that, we silently get
923 a bogus value. The type and everything else about it is
924 correct. Ideally, we should be using whatever we have
925 available for parsing unsigned and long long values,
926 however. */
927 SYMBOL_VALUE (sym) = atoi (p);
928 }
929 break;
930 default:
931 {
932 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
933 SYMBOL_TYPE (sym) = error_type (&p, objfile);
934 }
935 }
936 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
937 add_symbol_to_list (sym, get_file_symbols ());
938 return sym;
939
940 case 'C':
941 /* The name of a caught exception. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
943 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
945 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
946 add_symbol_to_list (sym, get_local_symbols ());
947 break;
948
949 case 'f':
950 /* A static function definition. */
951 SYMBOL_TYPE (sym) = read_type (&p, objfile);
952 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
953 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
954 add_symbol_to_list (sym, get_file_symbols ());
955 /* fall into process_function_types. */
956
957 process_function_types:
958 /* Function result types are described as the result type in stabs.
959 We need to convert this to the function-returning-type-X type
960 in GDB. E.g. "int" is converted to "function returning int". */
961 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
962 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
963
964 /* All functions in C++ have prototypes. Stabs does not offer an
965 explicit way to identify prototyped or unprototyped functions,
966 but both GCC and Sun CC emit stabs for the "call-as" type rather
967 than the "declared-as" type for unprototyped functions, so
968 we treat all functions as if they were prototyped. This is used
969 primarily for promotion when calling the function from GDB. */
970 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
971
972 /* fall into process_prototype_types. */
973
974 process_prototype_types:
975 /* Sun acc puts declared types of arguments here. */
976 if (*p == ';')
977 {
978 struct type *ftype = SYMBOL_TYPE (sym);
979 int nsemi = 0;
980 int nparams = 0;
981 const char *p1 = p;
982
983 /* Obtain a worst case guess for the number of arguments
984 by counting the semicolons. */
985 while (*p1)
986 {
987 if (*p1++ == ';')
988 nsemi++;
989 }
990
991 /* Allocate parameter information fields and fill them in. */
992 TYPE_FIELDS (ftype) = (struct field *)
993 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
994 while (*p++ == ';')
995 {
996 struct type *ptype;
997
998 /* A type number of zero indicates the start of varargs.
999 FIXME: GDB currently ignores vararg functions. */
1000 if (p[0] == '0' && p[1] == '\0')
1001 break;
1002 ptype = read_type (&p, objfile);
1003
1004 /* The Sun compilers mark integer arguments, which should
1005 be promoted to the width of the calling conventions, with
1006 a type which references itself. This type is turned into
1007 a TYPE_CODE_VOID type by read_type, and we have to turn
1008 it back into builtin_int here.
1009 FIXME: Do we need a new builtin_promoted_int_arg ? */
1010 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1011 ptype = objfile_type (objfile)->builtin_int;
1012 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1013 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1014 }
1015 TYPE_NFIELDS (ftype) = nparams;
1016 TYPE_PROTOTYPED (ftype) = 1;
1017 }
1018 break;
1019
1020 case 'F':
1021 /* A global function definition. */
1022 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1023 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 add_symbol_to_list (sym, get_global_symbols ());
1026 goto process_function_types;
1027
1028 case 'G':
1029 /* For a class G (global) symbol, it appears that the
1030 value is not correct. It is necessary to search for the
1031 corresponding linker definition to find the value.
1032 These definitions appear at the end of the namelist. */
1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1035 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1036 /* Don't add symbol references to global_sym_chain.
1037 Symbol references don't have valid names and wont't match up with
1038 minimal symbols when the global_sym_chain is relocated.
1039 We'll fixup symbol references when we fixup the defining symbol. */
1040 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1041 {
1042 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1043 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1044 global_sym_chain[i] = sym;
1045 }
1046 add_symbol_to_list (sym, get_global_symbols ());
1047 break;
1048
1049 /* This case is faked by a conditional above,
1050 when there is no code letter in the dbx data.
1051 Dbx data never actually contains 'l'. */
1052 case 's':
1053 case 'l':
1054 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1055 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1056 SYMBOL_VALUE (sym) = valu;
1057 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1058 add_symbol_to_list (sym, get_local_symbols ());
1059 break;
1060
1061 case 'p':
1062 if (*p == 'F')
1063 /* pF is a two-letter code that means a function parameter in Fortran.
1064 The type-number specifies the type of the return value.
1065 Translate it into a pointer-to-function type. */
1066 {
1067 p++;
1068 SYMBOL_TYPE (sym)
1069 = lookup_pointer_type
1070 (lookup_function_type (read_type (&p, objfile)));
1071 }
1072 else
1073 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1074
1075 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1076 SYMBOL_VALUE (sym) = valu;
1077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1078 SYMBOL_IS_ARGUMENT (sym) = 1;
1079 add_symbol_to_list (sym, get_local_symbols ());
1080
1081 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1082 {
1083 /* On little-endian machines, this crud is never necessary,
1084 and, if the extra bytes contain garbage, is harmful. */
1085 break;
1086 }
1087
1088 /* If it's gcc-compiled, if it says `short', believe it. */
1089 if (processing_gcc_compilation
1090 || gdbarch_believe_pcc_promotion (gdbarch))
1091 break;
1092
1093 if (!gdbarch_believe_pcc_promotion (gdbarch))
1094 {
1095 /* If PCC says a parameter is a short or a char, it is
1096 really an int. */
1097 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1098 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1099 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1100 {
1101 SYMBOL_TYPE (sym) =
1102 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1103 ? objfile_type (objfile)->builtin_unsigned_int
1104 : objfile_type (objfile)->builtin_int;
1105 }
1106 break;
1107 }
1108 /* Fall through. */
1109
1110 case 'P':
1111 /* acc seems to use P to declare the prototypes of functions that
1112 are referenced by this file. gdb is not prepared to deal
1113 with this extra information. FIXME, it ought to. */
1114 if (type == N_FUN)
1115 {
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117 goto process_prototype_types;
1118 }
1119 /*FALLTHROUGH */
1120
1121 case 'R':
1122 /* Parameter which is in a register. */
1123 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1124 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1125 SYMBOL_IS_ARGUMENT (sym) = 1;
1126 SYMBOL_VALUE (sym) = valu;
1127 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1128 add_symbol_to_list (sym, get_local_symbols ());
1129 break;
1130
1131 case 'r':
1132 /* Register variable (either global or local). */
1133 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1134 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1135 SYMBOL_VALUE (sym) = valu;
1136 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1137 if (within_function)
1138 {
1139 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1140 the same name to represent an argument passed in a
1141 register. GCC uses 'P' for the same case. So if we find
1142 such a symbol pair we combine it into one 'P' symbol.
1143 For Sun cc we need to do this regardless of
1144 stabs_argument_has_addr, because the compiler puts out
1145 the 'p' symbol even if it never saves the argument onto
1146 the stack.
1147
1148 On most machines, we want to preserve both symbols, so
1149 that we can still get information about what is going on
1150 with the stack (VAX for computing args_printed, using
1151 stack slots instead of saved registers in backtraces,
1152 etc.).
1153
1154 Note that this code illegally combines
1155 main(argc) struct foo argc; { register struct foo argc; }
1156 but this case is considered pathological and causes a warning
1157 from a decent compiler. */
1158
1159 struct pending *local_symbols = *get_local_symbols ();
1160 if (local_symbols
1161 && local_symbols->nsyms > 0
1162 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1163 {
1164 struct symbol *prev_sym;
1165
1166 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1167 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1168 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1169 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1170 SYMBOL_LINKAGE_NAME (sym)) == 0)
1171 {
1172 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1173 /* Use the type from the LOC_REGISTER; that is the type
1174 that is actually in that register. */
1175 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1176 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1177 sym = prev_sym;
1178 break;
1179 }
1180 }
1181 add_symbol_to_list (sym, get_local_symbols ());
1182 }
1183 else
1184 add_symbol_to_list (sym, get_file_symbols ());
1185 break;
1186
1187 case 'S':
1188 /* Static symbol at top level of file. */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1191 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1192 if (gdbarch_static_transform_name_p (gdbarch)
1193 && gdbarch_static_transform_name (gdbarch,
1194 SYMBOL_LINKAGE_NAME (sym))
1195 != SYMBOL_LINKAGE_NAME (sym))
1196 {
1197 struct bound_minimal_symbol msym;
1198
1199 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1200 NULL, objfile);
1201 if (msym.minsym != NULL)
1202 {
1203 const char *new_name = gdbarch_static_transform_name
1204 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1205
1206 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1207 SET_SYMBOL_VALUE_ADDRESS (sym,
1208 BMSYMBOL_VALUE_ADDRESS (msym));
1209 }
1210 }
1211 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1212 add_symbol_to_list (sym, get_file_symbols ());
1213 break;
1214
1215 case 't':
1216 /* In Ada, there is no distinction between typedef and non-typedef;
1217 any type declaration implicitly has the equivalent of a typedef,
1218 and thus 't' is in fact equivalent to 'Tt'.
1219
1220 Therefore, for Ada units, we check the character immediately
1221 before the 't', and if we do not find a 'T', then make sure to
1222 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1223 will be stored in the VAR_DOMAIN). If the symbol was indeed
1224 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1225 elsewhere, so we don't need to take care of that.
1226
1227 This is important to do, because of forward references:
1228 The cleanup of undefined types stored in undef_types only uses
1229 STRUCT_DOMAIN symbols to perform the replacement. */
1230 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1231
1232 /* Typedef */
1233 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1234
1235 /* For a nameless type, we don't want a create a symbol, thus we
1236 did not use `sym'. Return without further processing. */
1237 if (nameless)
1238 return NULL;
1239
1240 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1241 SYMBOL_VALUE (sym) = valu;
1242 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1243 /* C++ vagaries: we may have a type which is derived from
1244 a base type which did not have its name defined when the
1245 derived class was output. We fill in the derived class's
1246 base part member's name here in that case. */
1247 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1248 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1249 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1250 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1251 {
1252 int j;
1253
1254 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1255 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1256 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1257 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1258 }
1259
1260 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1261 {
1262 /* gcc-2.6 or later (when using -fvtable-thunks)
1263 emits a unique named type for a vtable entry.
1264 Some gdb code depends on that specific name. */
1265 extern const char vtbl_ptr_name[];
1266
1267 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1268 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1269 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1270 {
1271 /* If we are giving a name to a type such as "pointer to
1272 foo" or "function returning foo", we better not set
1273 the TYPE_NAME. If the program contains "typedef char
1274 *caddr_t;", we don't want all variables of type char
1275 * to print as caddr_t. This is not just a
1276 consequence of GDB's type management; PCC and GCC (at
1277 least through version 2.4) both output variables of
1278 either type char * or caddr_t with the type number
1279 defined in the 't' symbol for caddr_t. If a future
1280 compiler cleans this up it GDB is not ready for it
1281 yet, but if it becomes ready we somehow need to
1282 disable this check (without breaking the PCC/GCC2.4
1283 case).
1284
1285 Sigh.
1286
1287 Fortunately, this check seems not to be necessary
1288 for anything except pointers or functions. */
1289 /* ezannoni: 2000-10-26. This seems to apply for
1290 versions of gcc older than 2.8. This was the original
1291 problem: with the following code gdb would tell that
1292 the type for name1 is caddr_t, and func is char().
1293
1294 typedef char *caddr_t;
1295 char *name2;
1296 struct x
1297 {
1298 char *name1;
1299 } xx;
1300 char *func()
1301 {
1302 }
1303 main () {}
1304 */
1305
1306 /* Pascal accepts names for pointer types. */
1307 if (get_current_subfile ()->language == language_pascal)
1308 {
1309 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1310 }
1311 }
1312 else
1313 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1314 }
1315
1316 add_symbol_to_list (sym, get_file_symbols ());
1317
1318 if (synonym)
1319 {
1320 /* Create the STRUCT_DOMAIN clone. */
1321 struct symbol *struct_sym = allocate_symbol (objfile);
1322
1323 *struct_sym = *sym;
1324 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1325 SYMBOL_VALUE (struct_sym) = valu;
1326 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1327 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1328 TYPE_NAME (SYMBOL_TYPE (sym))
1329 = obconcat (&objfile->objfile_obstack,
1330 SYMBOL_LINKAGE_NAME (sym),
1331 (char *) NULL);
1332 add_symbol_to_list (struct_sym, get_file_symbols ());
1333 }
1334
1335 break;
1336
1337 case 'T':
1338 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1339 by 't' which means we are typedef'ing it as well. */
1340 synonym = *p == 't';
1341
1342 if (synonym)
1343 p++;
1344
1345 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1346
1347 /* For a nameless type, we don't want a create a symbol, thus we
1348 did not use `sym'. Return without further processing. */
1349 if (nameless)
1350 return NULL;
1351
1352 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1353 SYMBOL_VALUE (sym) = valu;
1354 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1355 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1356 TYPE_NAME (SYMBOL_TYPE (sym))
1357 = obconcat (&objfile->objfile_obstack,
1358 SYMBOL_LINKAGE_NAME (sym),
1359 (char *) NULL);
1360 add_symbol_to_list (sym, get_file_symbols ());
1361
1362 if (synonym)
1363 {
1364 /* Clone the sym and then modify it. */
1365 struct symbol *typedef_sym = allocate_symbol (objfile);
1366
1367 *typedef_sym = *sym;
1368 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1369 SYMBOL_VALUE (typedef_sym) = valu;
1370 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1371 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1372 TYPE_NAME (SYMBOL_TYPE (sym))
1373 = obconcat (&objfile->objfile_obstack,
1374 SYMBOL_LINKAGE_NAME (sym),
1375 (char *) NULL);
1376 add_symbol_to_list (typedef_sym, get_file_symbols ());
1377 }
1378 break;
1379
1380 case 'V':
1381 /* Static symbol of local scope. */
1382 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1383 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1384 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1385 if (gdbarch_static_transform_name_p (gdbarch)
1386 && gdbarch_static_transform_name (gdbarch,
1387 SYMBOL_LINKAGE_NAME (sym))
1388 != SYMBOL_LINKAGE_NAME (sym))
1389 {
1390 struct bound_minimal_symbol msym;
1391
1392 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1393 NULL, objfile);
1394 if (msym.minsym != NULL)
1395 {
1396 const char *new_name = gdbarch_static_transform_name
1397 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1398
1399 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1400 SET_SYMBOL_VALUE_ADDRESS (sym, BMSYMBOL_VALUE_ADDRESS (msym));
1401 }
1402 }
1403 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1404 add_symbol_to_list (sym, get_local_symbols ());
1405 break;
1406
1407 case 'v':
1408 /* Reference parameter */
1409 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1410 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1411 SYMBOL_IS_ARGUMENT (sym) = 1;
1412 SYMBOL_VALUE (sym) = valu;
1413 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1414 add_symbol_to_list (sym, get_local_symbols ());
1415 break;
1416
1417 case 'a':
1418 /* Reference parameter which is in a register. */
1419 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1420 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1421 SYMBOL_IS_ARGUMENT (sym) = 1;
1422 SYMBOL_VALUE (sym) = valu;
1423 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1424 add_symbol_to_list (sym, get_local_symbols ());
1425 break;
1426
1427 case 'X':
1428 /* This is used by Sun FORTRAN for "function result value".
1429 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1430 that Pascal uses it too, but when I tried it Pascal used
1431 "x:3" (local symbol) instead. */
1432 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1433 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1434 SYMBOL_VALUE (sym) = valu;
1435 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1436 add_symbol_to_list (sym, get_local_symbols ());
1437 break;
1438
1439 default:
1440 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1441 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1442 SYMBOL_VALUE (sym) = 0;
1443 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1444 add_symbol_to_list (sym, get_file_symbols ());
1445 break;
1446 }
1447
1448 /* Some systems pass variables of certain types by reference instead
1449 of by value, i.e. they will pass the address of a structure (in a
1450 register or on the stack) instead of the structure itself. */
1451
1452 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1453 && SYMBOL_IS_ARGUMENT (sym))
1454 {
1455 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1456 variables passed in a register). */
1457 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1458 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1459 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1460 and subsequent arguments on SPARC, for example). */
1461 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1462 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1463 }
1464
1465 return sym;
1466 }
1467
1468 /* Skip rest of this symbol and return an error type.
1469
1470 General notes on error recovery: error_type always skips to the
1471 end of the symbol (modulo cretinous dbx symbol name continuation).
1472 Thus code like this:
1473
1474 if (*(*pp)++ != ';')
1475 return error_type (pp, objfile);
1476
1477 is wrong because if *pp starts out pointing at '\0' (typically as the
1478 result of an earlier error), it will be incremented to point to the
1479 start of the next symbol, which might produce strange results, at least
1480 if you run off the end of the string table. Instead use
1481
1482 if (**pp != ';')
1483 return error_type (pp, objfile);
1484 ++*pp;
1485
1486 or
1487
1488 if (**pp != ';')
1489 foo = error_type (pp, objfile);
1490 else
1491 ++*pp;
1492
1493 And in case it isn't obvious, the point of all this hair is so the compiler
1494 can define new types and new syntaxes, and old versions of the
1495 debugger will be able to read the new symbol tables. */
1496
1497 static struct type *
1498 error_type (const char **pp, struct objfile *objfile)
1499 {
1500 complaint (_("couldn't parse type; debugger out of date?"));
1501 while (1)
1502 {
1503 /* Skip to end of symbol. */
1504 while (**pp != '\0')
1505 {
1506 (*pp)++;
1507 }
1508
1509 /* Check for and handle cretinous dbx symbol name continuation! */
1510 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1511 {
1512 *pp = next_symbol_text (objfile);
1513 }
1514 else
1515 {
1516 break;
1517 }
1518 }
1519 return objfile_type (objfile)->builtin_error;
1520 }
1521 \f
1522
1523 /* Read type information or a type definition; return the type. Even
1524 though this routine accepts either type information or a type
1525 definition, the distinction is relevant--some parts of stabsread.c
1526 assume that type information starts with a digit, '-', or '(' in
1527 deciding whether to call read_type. */
1528
1529 static struct type *
1530 read_type (const char **pp, struct objfile *objfile)
1531 {
1532 struct type *type = 0;
1533 struct type *type1;
1534 int typenums[2];
1535 char type_descriptor;
1536
1537 /* Size in bits of type if specified by a type attribute, or -1 if
1538 there is no size attribute. */
1539 int type_size = -1;
1540
1541 /* Used to distinguish string and bitstring from char-array and set. */
1542 int is_string = 0;
1543
1544 /* Used to distinguish vector from array. */
1545 int is_vector = 0;
1546
1547 /* Read type number if present. The type number may be omitted.
1548 for instance in a two-dimensional array declared with type
1549 "ar1;1;10;ar1;1;10;4". */
1550 if ((**pp >= '0' && **pp <= '9')
1551 || **pp == '('
1552 || **pp == '-')
1553 {
1554 if (read_type_number (pp, typenums) != 0)
1555 return error_type (pp, objfile);
1556
1557 if (**pp != '=')
1558 {
1559 /* Type is not being defined here. Either it already
1560 exists, or this is a forward reference to it.
1561 dbx_alloc_type handles both cases. */
1562 type = dbx_alloc_type (typenums, objfile);
1563
1564 /* If this is a forward reference, arrange to complain if it
1565 doesn't get patched up by the time we're done
1566 reading. */
1567 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1568 add_undefined_type (type, typenums);
1569
1570 return type;
1571 }
1572
1573 /* Type is being defined here. */
1574 /* Skip the '='.
1575 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1576 (*pp) += 2;
1577 }
1578 else
1579 {
1580 /* 'typenums=' not present, type is anonymous. Read and return
1581 the definition, but don't put it in the type vector. */
1582 typenums[0] = typenums[1] = -1;
1583 (*pp)++;
1584 }
1585
1586 again:
1587 type_descriptor = (*pp)[-1];
1588 switch (type_descriptor)
1589 {
1590 case 'x':
1591 {
1592 enum type_code code;
1593
1594 /* Used to index through file_symbols. */
1595 struct pending *ppt;
1596 int i;
1597
1598 /* Name including "struct", etc. */
1599 char *type_name;
1600
1601 {
1602 const char *from, *p, *q1, *q2;
1603
1604 /* Set the type code according to the following letter. */
1605 switch ((*pp)[0])
1606 {
1607 case 's':
1608 code = TYPE_CODE_STRUCT;
1609 break;
1610 case 'u':
1611 code = TYPE_CODE_UNION;
1612 break;
1613 case 'e':
1614 code = TYPE_CODE_ENUM;
1615 break;
1616 default:
1617 {
1618 /* Complain and keep going, so compilers can invent new
1619 cross-reference types. */
1620 complaint (_("Unrecognized cross-reference type `%c'"),
1621 (*pp)[0]);
1622 code = TYPE_CODE_STRUCT;
1623 break;
1624 }
1625 }
1626
1627 q1 = strchr (*pp, '<');
1628 p = strchr (*pp, ':');
1629 if (p == NULL)
1630 return error_type (pp, objfile);
1631 if (q1 && p > q1 && p[1] == ':')
1632 {
1633 int nesting_level = 0;
1634
1635 for (q2 = q1; *q2; q2++)
1636 {
1637 if (*q2 == '<')
1638 nesting_level++;
1639 else if (*q2 == '>')
1640 nesting_level--;
1641 else if (*q2 == ':' && nesting_level == 0)
1642 break;
1643 }
1644 p = q2;
1645 if (*p != ':')
1646 return error_type (pp, objfile);
1647 }
1648 type_name = NULL;
1649 if (get_current_subfile ()->language == language_cplus)
1650 {
1651 char *name = (char *) alloca (p - *pp + 1);
1652
1653 memcpy (name, *pp, p - *pp);
1654 name[p - *pp] = '\0';
1655
1656 std::string new_name = cp_canonicalize_string (name);
1657 if (!new_name.empty ())
1658 type_name = obstack_strdup (&objfile->objfile_obstack,
1659 new_name);
1660 }
1661 if (type_name == NULL)
1662 {
1663 char *to = type_name = (char *)
1664 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1665
1666 /* Copy the name. */
1667 from = *pp + 1;
1668 while (from < p)
1669 *to++ = *from++;
1670 *to = '\0';
1671 }
1672
1673 /* Set the pointer ahead of the name which we just read, and
1674 the colon. */
1675 *pp = p + 1;
1676 }
1677
1678 /* If this type has already been declared, then reuse the same
1679 type, rather than allocating a new one. This saves some
1680 memory. */
1681
1682 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1683 for (i = 0; i < ppt->nsyms; i++)
1684 {
1685 struct symbol *sym = ppt->symbol[i];
1686
1687 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1688 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1689 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1690 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1691 {
1692 obstack_free (&objfile->objfile_obstack, type_name);
1693 type = SYMBOL_TYPE (sym);
1694 if (typenums[0] != -1)
1695 *dbx_lookup_type (typenums, objfile) = type;
1696 return type;
1697 }
1698 }
1699
1700 /* Didn't find the type to which this refers, so we must
1701 be dealing with a forward reference. Allocate a type
1702 structure for it, and keep track of it so we can
1703 fill in the rest of the fields when we get the full
1704 type. */
1705 type = dbx_alloc_type (typenums, objfile);
1706 TYPE_CODE (type) = code;
1707 TYPE_NAME (type) = type_name;
1708 INIT_CPLUS_SPECIFIC (type);
1709 TYPE_STUB (type) = 1;
1710
1711 add_undefined_type (type, typenums);
1712 return type;
1713 }
1714
1715 case '-': /* RS/6000 built-in type */
1716 case '0':
1717 case '1':
1718 case '2':
1719 case '3':
1720 case '4':
1721 case '5':
1722 case '6':
1723 case '7':
1724 case '8':
1725 case '9':
1726 case '(':
1727 (*pp)--;
1728
1729 /* We deal with something like t(1,2)=(3,4)=... which
1730 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1731
1732 /* Allocate and enter the typedef type first.
1733 This handles recursive types. */
1734 type = dbx_alloc_type (typenums, objfile);
1735 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1736 {
1737 struct type *xtype = read_type (pp, objfile);
1738
1739 if (type == xtype)
1740 {
1741 /* It's being defined as itself. That means it is "void". */
1742 TYPE_CODE (type) = TYPE_CODE_VOID;
1743 TYPE_LENGTH (type) = 1;
1744 }
1745 else if (type_size >= 0 || is_string)
1746 {
1747 /* This is the absolute wrong way to construct types. Every
1748 other debug format has found a way around this problem and
1749 the related problems with unnecessarily stubbed types;
1750 someone motivated should attempt to clean up the issue
1751 here as well. Once a type pointed to has been created it
1752 should not be modified.
1753
1754 Well, it's not *absolutely* wrong. Constructing recursive
1755 types (trees, linked lists) necessarily entails modifying
1756 types after creating them. Constructing any loop structure
1757 entails side effects. The Dwarf 2 reader does handle this
1758 more gracefully (it never constructs more than once
1759 instance of a type object, so it doesn't have to copy type
1760 objects wholesale), but it still mutates type objects after
1761 other folks have references to them.
1762
1763 Keep in mind that this circularity/mutation issue shows up
1764 at the source language level, too: C's "incomplete types",
1765 for example. So the proper cleanup, I think, would be to
1766 limit GDB's type smashing to match exactly those required
1767 by the source language. So GDB could have a
1768 "complete_this_type" function, but never create unnecessary
1769 copies of a type otherwise. */
1770 replace_type (type, xtype);
1771 TYPE_NAME (type) = NULL;
1772 }
1773 else
1774 {
1775 TYPE_TARGET_STUB (type) = 1;
1776 TYPE_TARGET_TYPE (type) = xtype;
1777 }
1778 }
1779 break;
1780
1781 /* In the following types, we must be sure to overwrite any existing
1782 type that the typenums refer to, rather than allocating a new one
1783 and making the typenums point to the new one. This is because there
1784 may already be pointers to the existing type (if it had been
1785 forward-referenced), and we must change it to a pointer, function,
1786 reference, or whatever, *in-place*. */
1787
1788 case '*': /* Pointer to another type */
1789 type1 = read_type (pp, objfile);
1790 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1791 break;
1792
1793 case '&': /* Reference to another type */
1794 type1 = read_type (pp, objfile);
1795 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1796 TYPE_CODE_REF);
1797 break;
1798
1799 case 'f': /* Function returning another type */
1800 type1 = read_type (pp, objfile);
1801 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1802 break;
1803
1804 case 'g': /* Prototyped function. (Sun) */
1805 {
1806 /* Unresolved questions:
1807
1808 - According to Sun's ``STABS Interface Manual'', for 'f'
1809 and 'F' symbol descriptors, a `0' in the argument type list
1810 indicates a varargs function. But it doesn't say how 'g'
1811 type descriptors represent that info. Someone with access
1812 to Sun's toolchain should try it out.
1813
1814 - According to the comment in define_symbol (search for
1815 `process_prototype_types:'), Sun emits integer arguments as
1816 types which ref themselves --- like `void' types. Do we
1817 have to deal with that here, too? Again, someone with
1818 access to Sun's toolchain should try it out and let us
1819 know. */
1820
1821 const char *type_start = (*pp) - 1;
1822 struct type *return_type = read_type (pp, objfile);
1823 struct type *func_type
1824 = make_function_type (return_type,
1825 dbx_lookup_type (typenums, objfile));
1826 struct type_list {
1827 struct type *type;
1828 struct type_list *next;
1829 } *arg_types = 0;
1830 int num_args = 0;
1831
1832 while (**pp && **pp != '#')
1833 {
1834 struct type *arg_type = read_type (pp, objfile);
1835 struct type_list *newobj = XALLOCA (struct type_list);
1836 newobj->type = arg_type;
1837 newobj->next = arg_types;
1838 arg_types = newobj;
1839 num_args++;
1840 }
1841 if (**pp == '#')
1842 ++*pp;
1843 else
1844 {
1845 complaint (_("Prototyped function type didn't "
1846 "end arguments with `#':\n%s"),
1847 type_start);
1848 }
1849
1850 /* If there is just one argument whose type is `void', then
1851 that's just an empty argument list. */
1852 if (arg_types
1853 && ! arg_types->next
1854 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1855 num_args = 0;
1856
1857 TYPE_FIELDS (func_type)
1858 = (struct field *) TYPE_ALLOC (func_type,
1859 num_args * sizeof (struct field));
1860 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1861 {
1862 int i;
1863 struct type_list *t;
1864
1865 /* We stuck each argument type onto the front of the list
1866 when we read it, so the list is reversed. Build the
1867 fields array right-to-left. */
1868 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1869 TYPE_FIELD_TYPE (func_type, i) = t->type;
1870 }
1871 TYPE_NFIELDS (func_type) = num_args;
1872 TYPE_PROTOTYPED (func_type) = 1;
1873
1874 type = func_type;
1875 break;
1876 }
1877
1878 case 'k': /* Const qualifier on some type (Sun) */
1879 type = read_type (pp, objfile);
1880 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1881 dbx_lookup_type (typenums, objfile));
1882 break;
1883
1884 case 'B': /* Volatile qual on some type (Sun) */
1885 type = read_type (pp, objfile);
1886 type = make_cv_type (TYPE_CONST (type), 1, type,
1887 dbx_lookup_type (typenums, objfile));
1888 break;
1889
1890 case '@':
1891 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1892 { /* Member (class & variable) type */
1893 /* FIXME -- we should be doing smash_to_XXX types here. */
1894
1895 struct type *domain = read_type (pp, objfile);
1896 struct type *memtype;
1897
1898 if (**pp != ',')
1899 /* Invalid member type data format. */
1900 return error_type (pp, objfile);
1901 ++*pp;
1902
1903 memtype = read_type (pp, objfile);
1904 type = dbx_alloc_type (typenums, objfile);
1905 smash_to_memberptr_type (type, domain, memtype);
1906 }
1907 else
1908 /* type attribute */
1909 {
1910 const char *attr = *pp;
1911
1912 /* Skip to the semicolon. */
1913 while (**pp != ';' && **pp != '\0')
1914 ++(*pp);
1915 if (**pp == '\0')
1916 return error_type (pp, objfile);
1917 else
1918 ++ * pp; /* Skip the semicolon. */
1919
1920 switch (*attr)
1921 {
1922 case 's': /* Size attribute */
1923 type_size = atoi (attr + 1);
1924 if (type_size <= 0)
1925 type_size = -1;
1926 break;
1927
1928 case 'S': /* String attribute */
1929 /* FIXME: check to see if following type is array? */
1930 is_string = 1;
1931 break;
1932
1933 case 'V': /* Vector attribute */
1934 /* FIXME: check to see if following type is array? */
1935 is_vector = 1;
1936 break;
1937
1938 default:
1939 /* Ignore unrecognized type attributes, so future compilers
1940 can invent new ones. */
1941 break;
1942 }
1943 ++*pp;
1944 goto again;
1945 }
1946 break;
1947
1948 case '#': /* Method (class & fn) type */
1949 if ((*pp)[0] == '#')
1950 {
1951 /* We'll get the parameter types from the name. */
1952 struct type *return_type;
1953
1954 (*pp)++;
1955 return_type = read_type (pp, objfile);
1956 if (*(*pp)++ != ';')
1957 complaint (_("invalid (minimal) member type "
1958 "data format at symtab pos %d."),
1959 symnum);
1960 type = allocate_stub_method (return_type);
1961 if (typenums[0] != -1)
1962 *dbx_lookup_type (typenums, objfile) = type;
1963 }
1964 else
1965 {
1966 struct type *domain = read_type (pp, objfile);
1967 struct type *return_type;
1968 struct field *args;
1969 int nargs, varargs;
1970
1971 if (**pp != ',')
1972 /* Invalid member type data format. */
1973 return error_type (pp, objfile);
1974 else
1975 ++(*pp);
1976
1977 return_type = read_type (pp, objfile);
1978 args = read_args (pp, ';', objfile, &nargs, &varargs);
1979 if (args == NULL)
1980 return error_type (pp, objfile);
1981 type = dbx_alloc_type (typenums, objfile);
1982 smash_to_method_type (type, domain, return_type, args,
1983 nargs, varargs);
1984 }
1985 break;
1986
1987 case 'r': /* Range type */
1988 type = read_range_type (pp, typenums, type_size, objfile);
1989 if (typenums[0] != -1)
1990 *dbx_lookup_type (typenums, objfile) = type;
1991 break;
1992
1993 case 'b':
1994 {
1995 /* Sun ACC builtin int type */
1996 type = read_sun_builtin_type (pp, typenums, objfile);
1997 if (typenums[0] != -1)
1998 *dbx_lookup_type (typenums, objfile) = type;
1999 }
2000 break;
2001
2002 case 'R': /* Sun ACC builtin float type */
2003 type = read_sun_floating_type (pp, typenums, objfile);
2004 if (typenums[0] != -1)
2005 *dbx_lookup_type (typenums, objfile) = type;
2006 break;
2007
2008 case 'e': /* Enumeration type */
2009 type = dbx_alloc_type (typenums, objfile);
2010 type = read_enum_type (pp, type, objfile);
2011 if (typenums[0] != -1)
2012 *dbx_lookup_type (typenums, objfile) = type;
2013 break;
2014
2015 case 's': /* Struct type */
2016 case 'u': /* Union type */
2017 {
2018 enum type_code type_code = TYPE_CODE_UNDEF;
2019 type = dbx_alloc_type (typenums, objfile);
2020 switch (type_descriptor)
2021 {
2022 case 's':
2023 type_code = TYPE_CODE_STRUCT;
2024 break;
2025 case 'u':
2026 type_code = TYPE_CODE_UNION;
2027 break;
2028 }
2029 type = read_struct_type (pp, type, type_code, objfile);
2030 break;
2031 }
2032
2033 case 'a': /* Array type */
2034 if (**pp != 'r')
2035 return error_type (pp, objfile);
2036 ++*pp;
2037
2038 type = dbx_alloc_type (typenums, objfile);
2039 type = read_array_type (pp, type, objfile);
2040 if (is_string)
2041 TYPE_CODE (type) = TYPE_CODE_STRING;
2042 if (is_vector)
2043 make_vector_type (type);
2044 break;
2045
2046 case 'S': /* Set type */
2047 type1 = read_type (pp, objfile);
2048 type = create_set_type (NULL, type1);
2049 if (typenums[0] != -1)
2050 *dbx_lookup_type (typenums, objfile) = type;
2051 break;
2052
2053 default:
2054 --*pp; /* Go back to the symbol in error. */
2055 /* Particularly important if it was \0! */
2056 return error_type (pp, objfile);
2057 }
2058
2059 if (type == 0)
2060 {
2061 warning (_("GDB internal error, type is NULL in stabsread.c."));
2062 return error_type (pp, objfile);
2063 }
2064
2065 /* Size specified in a type attribute overrides any other size. */
2066 if (type_size != -1)
2067 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2068
2069 return type;
2070 }
2071 \f
2072 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2073 Return the proper type node for a given builtin type number. */
2074
2075 static const struct objfile_key<struct type *,
2076 gdb::noop_deleter<struct type *>>
2077 rs6000_builtin_type_data;
2078
2079 static struct type *
2080 rs6000_builtin_type (int typenum, struct objfile *objfile)
2081 {
2082 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2083
2084 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2085 #define NUMBER_RECOGNIZED 34
2086 struct type *rettype = NULL;
2087
2088 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2089 {
2090 complaint (_("Unknown builtin type %d"), typenum);
2091 return objfile_type (objfile)->builtin_error;
2092 }
2093
2094 if (!negative_types)
2095 {
2096 /* This includes an empty slot for type number -0. */
2097 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2098 NUMBER_RECOGNIZED + 1, struct type *);
2099 rs6000_builtin_type_data.set (objfile, negative_types);
2100 }
2101
2102 if (negative_types[-typenum] != NULL)
2103 return negative_types[-typenum];
2104
2105 #if TARGET_CHAR_BIT != 8
2106 #error This code wrong for TARGET_CHAR_BIT not 8
2107 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2108 that if that ever becomes not true, the correct fix will be to
2109 make the size in the struct type to be in bits, not in units of
2110 TARGET_CHAR_BIT. */
2111 #endif
2112
2113 switch (-typenum)
2114 {
2115 case 1:
2116 /* The size of this and all the other types are fixed, defined
2117 by the debugging format. If there is a type called "int" which
2118 is other than 32 bits, then it should use a new negative type
2119 number (or avoid negative type numbers for that case).
2120 See stabs.texinfo. */
2121 rettype = init_integer_type (objfile, 32, 0, "int");
2122 break;
2123 case 2:
2124 rettype = init_integer_type (objfile, 8, 0, "char");
2125 TYPE_NOSIGN (rettype) = 1;
2126 break;
2127 case 3:
2128 rettype = init_integer_type (objfile, 16, 0, "short");
2129 break;
2130 case 4:
2131 rettype = init_integer_type (objfile, 32, 0, "long");
2132 break;
2133 case 5:
2134 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2135 break;
2136 case 6:
2137 rettype = init_integer_type (objfile, 8, 0, "signed char");
2138 break;
2139 case 7:
2140 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2141 break;
2142 case 8:
2143 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2144 break;
2145 case 9:
2146 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2147 break;
2148 case 10:
2149 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2150 break;
2151 case 11:
2152 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2153 break;
2154 case 12:
2155 /* IEEE single precision (32 bit). */
2156 rettype = init_float_type (objfile, 32, "float",
2157 floatformats_ieee_single);
2158 break;
2159 case 13:
2160 /* IEEE double precision (64 bit). */
2161 rettype = init_float_type (objfile, 64, "double",
2162 floatformats_ieee_double);
2163 break;
2164 case 14:
2165 /* This is an IEEE double on the RS/6000, and different machines with
2166 different sizes for "long double" should use different negative
2167 type numbers. See stabs.texinfo. */
2168 rettype = init_float_type (objfile, 64, "long double",
2169 floatformats_ieee_double);
2170 break;
2171 case 15:
2172 rettype = init_integer_type (objfile, 32, 0, "integer");
2173 break;
2174 case 16:
2175 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2176 break;
2177 case 17:
2178 rettype = init_float_type (objfile, 32, "short real",
2179 floatformats_ieee_single);
2180 break;
2181 case 18:
2182 rettype = init_float_type (objfile, 64, "real",
2183 floatformats_ieee_double);
2184 break;
2185 case 19:
2186 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2187 break;
2188 case 20:
2189 rettype = init_character_type (objfile, 8, 1, "character");
2190 break;
2191 case 21:
2192 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2193 break;
2194 case 22:
2195 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2196 break;
2197 case 23:
2198 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2199 break;
2200 case 24:
2201 rettype = init_boolean_type (objfile, 32, 1, "logical");
2202 break;
2203 case 25:
2204 /* Complex type consisting of two IEEE single precision values. */
2205 rettype = init_complex_type (objfile, "complex",
2206 rs6000_builtin_type (12, objfile));
2207 break;
2208 case 26:
2209 /* Complex type consisting of two IEEE double precision values. */
2210 rettype = init_complex_type (objfile, "double complex",
2211 rs6000_builtin_type (13, objfile));
2212 break;
2213 case 27:
2214 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2215 break;
2216 case 28:
2217 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2218 break;
2219 case 29:
2220 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2221 break;
2222 case 30:
2223 rettype = init_character_type (objfile, 16, 0, "wchar");
2224 break;
2225 case 31:
2226 rettype = init_integer_type (objfile, 64, 0, "long long");
2227 break;
2228 case 32:
2229 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2230 break;
2231 case 33:
2232 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2233 break;
2234 case 34:
2235 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2236 break;
2237 }
2238 negative_types[-typenum] = rettype;
2239 return rettype;
2240 }
2241 \f
2242 /* This page contains subroutines of read_type. */
2243
2244 /* Wrapper around method_name_from_physname to flag a complaint
2245 if there is an error. */
2246
2247 static char *
2248 stabs_method_name_from_physname (const char *physname)
2249 {
2250 char *method_name;
2251
2252 method_name = method_name_from_physname (physname);
2253
2254 if (method_name == NULL)
2255 {
2256 complaint (_("Method has bad physname %s\n"), physname);
2257 return NULL;
2258 }
2259
2260 return method_name;
2261 }
2262
2263 /* Read member function stabs info for C++ classes. The form of each member
2264 function data is:
2265
2266 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2267
2268 An example with two member functions is:
2269
2270 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2271
2272 For the case of overloaded operators, the format is op$::*.funcs, where
2273 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2274 name (such as `+=') and `.' marks the end of the operator name.
2275
2276 Returns 1 for success, 0 for failure. */
2277
2278 static int
2279 read_member_functions (struct stab_field_info *fip, const char **pp,
2280 struct type *type, struct objfile *objfile)
2281 {
2282 int nfn_fields = 0;
2283 int length = 0;
2284 int i;
2285 struct next_fnfield
2286 {
2287 struct next_fnfield *next;
2288 struct fn_field fn_field;
2289 }
2290 *sublist;
2291 struct type *look_ahead_type;
2292 struct next_fnfieldlist *new_fnlist;
2293 struct next_fnfield *new_sublist;
2294 char *main_fn_name;
2295 const char *p;
2296
2297 /* Process each list until we find something that is not a member function
2298 or find the end of the functions. */
2299
2300 while (**pp != ';')
2301 {
2302 /* We should be positioned at the start of the function name.
2303 Scan forward to find the first ':' and if it is not the
2304 first of a "::" delimiter, then this is not a member function. */
2305 p = *pp;
2306 while (*p != ':')
2307 {
2308 p++;
2309 }
2310 if (p[1] != ':')
2311 {
2312 break;
2313 }
2314
2315 sublist = NULL;
2316 look_ahead_type = NULL;
2317 length = 0;
2318
2319 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2320
2321 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2322 {
2323 /* This is a completely wierd case. In order to stuff in the
2324 names that might contain colons (the usual name delimiter),
2325 Mike Tiemann defined a different name format which is
2326 signalled if the identifier is "op$". In that case, the
2327 format is "op$::XXXX." where XXXX is the name. This is
2328 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2329 /* This lets the user type "break operator+".
2330 We could just put in "+" as the name, but that wouldn't
2331 work for "*". */
2332 static char opname[32] = "op$";
2333 char *o = opname + 3;
2334
2335 /* Skip past '::'. */
2336 *pp = p + 2;
2337
2338 STABS_CONTINUE (pp, objfile);
2339 p = *pp;
2340 while (*p != '.')
2341 {
2342 *o++ = *p++;
2343 }
2344 main_fn_name = savestring (opname, o - opname);
2345 /* Skip past '.' */
2346 *pp = p + 1;
2347 }
2348 else
2349 {
2350 main_fn_name = savestring (*pp, p - *pp);
2351 /* Skip past '::'. */
2352 *pp = p + 2;
2353 }
2354 new_fnlist->fn_fieldlist.name = main_fn_name;
2355
2356 do
2357 {
2358 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2359
2360 /* Check for and handle cretinous dbx symbol name continuation! */
2361 if (look_ahead_type == NULL)
2362 {
2363 /* Normal case. */
2364 STABS_CONTINUE (pp, objfile);
2365
2366 new_sublist->fn_field.type = read_type (pp, objfile);
2367 if (**pp != ':')
2368 {
2369 /* Invalid symtab info for member function. */
2370 return 0;
2371 }
2372 }
2373 else
2374 {
2375 /* g++ version 1 kludge */
2376 new_sublist->fn_field.type = look_ahead_type;
2377 look_ahead_type = NULL;
2378 }
2379
2380 (*pp)++;
2381 p = *pp;
2382 while (*p != ';')
2383 {
2384 p++;
2385 }
2386
2387 /* These are methods, not functions. */
2388 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2389 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2390 else
2391 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2392 == TYPE_CODE_METHOD);
2393
2394 /* If this is just a stub, then we don't have the real name here. */
2395 if (TYPE_STUB (new_sublist->fn_field.type))
2396 {
2397 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2398 set_type_self_type (new_sublist->fn_field.type, type);
2399 new_sublist->fn_field.is_stub = 1;
2400 }
2401
2402 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2403 *pp = p + 1;
2404
2405 /* Set this member function's visibility fields. */
2406 switch (*(*pp)++)
2407 {
2408 case VISIBILITY_PRIVATE:
2409 new_sublist->fn_field.is_private = 1;
2410 break;
2411 case VISIBILITY_PROTECTED:
2412 new_sublist->fn_field.is_protected = 1;
2413 break;
2414 }
2415
2416 STABS_CONTINUE (pp, objfile);
2417 switch (**pp)
2418 {
2419 case 'A': /* Normal functions. */
2420 new_sublist->fn_field.is_const = 0;
2421 new_sublist->fn_field.is_volatile = 0;
2422 (*pp)++;
2423 break;
2424 case 'B': /* `const' member functions. */
2425 new_sublist->fn_field.is_const = 1;
2426 new_sublist->fn_field.is_volatile = 0;
2427 (*pp)++;
2428 break;
2429 case 'C': /* `volatile' member function. */
2430 new_sublist->fn_field.is_const = 0;
2431 new_sublist->fn_field.is_volatile = 1;
2432 (*pp)++;
2433 break;
2434 case 'D': /* `const volatile' member function. */
2435 new_sublist->fn_field.is_const = 1;
2436 new_sublist->fn_field.is_volatile = 1;
2437 (*pp)++;
2438 break;
2439 case '*': /* File compiled with g++ version 1 --
2440 no info. */
2441 case '?':
2442 case '.':
2443 break;
2444 default:
2445 complaint (_("const/volatile indicator missing, got '%c'"),
2446 **pp);
2447 break;
2448 }
2449
2450 switch (*(*pp)++)
2451 {
2452 case '*':
2453 {
2454 int nbits;
2455 /* virtual member function, followed by index.
2456 The sign bit is set to distinguish pointers-to-methods
2457 from virtual function indicies. Since the array is
2458 in words, the quantity must be shifted left by 1
2459 on 16 bit machine, and by 2 on 32 bit machine, forcing
2460 the sign bit out, and usable as a valid index into
2461 the array. Remove the sign bit here. */
2462 new_sublist->fn_field.voffset =
2463 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2464 if (nbits != 0)
2465 return 0;
2466
2467 STABS_CONTINUE (pp, objfile);
2468 if (**pp == ';' || **pp == '\0')
2469 {
2470 /* Must be g++ version 1. */
2471 new_sublist->fn_field.fcontext = 0;
2472 }
2473 else
2474 {
2475 /* Figure out from whence this virtual function came.
2476 It may belong to virtual function table of
2477 one of its baseclasses. */
2478 look_ahead_type = read_type (pp, objfile);
2479 if (**pp == ':')
2480 {
2481 /* g++ version 1 overloaded methods. */
2482 }
2483 else
2484 {
2485 new_sublist->fn_field.fcontext = look_ahead_type;
2486 if (**pp != ';')
2487 {
2488 return 0;
2489 }
2490 else
2491 {
2492 ++*pp;
2493 }
2494 look_ahead_type = NULL;
2495 }
2496 }
2497 break;
2498 }
2499 case '?':
2500 /* static member function. */
2501 {
2502 int slen = strlen (main_fn_name);
2503
2504 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2505
2506 /* For static member functions, we can't tell if they
2507 are stubbed, as they are put out as functions, and not as
2508 methods.
2509 GCC v2 emits the fully mangled name if
2510 dbxout.c:flag_minimal_debug is not set, so we have to
2511 detect a fully mangled physname here and set is_stub
2512 accordingly. Fully mangled physnames in v2 start with
2513 the member function name, followed by two underscores.
2514 GCC v3 currently always emits stubbed member functions,
2515 but with fully mangled physnames, which start with _Z. */
2516 if (!(strncmp (new_sublist->fn_field.physname,
2517 main_fn_name, slen) == 0
2518 && new_sublist->fn_field.physname[slen] == '_'
2519 && new_sublist->fn_field.physname[slen + 1] == '_'))
2520 {
2521 new_sublist->fn_field.is_stub = 1;
2522 }
2523 break;
2524 }
2525
2526 default:
2527 /* error */
2528 complaint (_("member function type missing, got '%c'"),
2529 (*pp)[-1]);
2530 /* Normal member function. */
2531 /* Fall through. */
2532
2533 case '.':
2534 /* normal member function. */
2535 new_sublist->fn_field.voffset = 0;
2536 new_sublist->fn_field.fcontext = 0;
2537 break;
2538 }
2539
2540 new_sublist->next = sublist;
2541 sublist = new_sublist;
2542 length++;
2543 STABS_CONTINUE (pp, objfile);
2544 }
2545 while (**pp != ';' && **pp != '\0');
2546
2547 (*pp)++;
2548 STABS_CONTINUE (pp, objfile);
2549
2550 /* Skip GCC 3.X member functions which are duplicates of the callable
2551 constructor/destructor. */
2552 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2553 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2554 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2555 {
2556 xfree (main_fn_name);
2557 }
2558 else
2559 {
2560 int has_destructor = 0, has_other = 0;
2561 int is_v3 = 0;
2562 struct next_fnfield *tmp_sublist;
2563
2564 /* Various versions of GCC emit various mostly-useless
2565 strings in the name field for special member functions.
2566
2567 For stub methods, we need to defer correcting the name
2568 until we are ready to unstub the method, because the current
2569 name string is used by gdb_mangle_name. The only stub methods
2570 of concern here are GNU v2 operators; other methods have their
2571 names correct (see caveat below).
2572
2573 For non-stub methods, in GNU v3, we have a complete physname.
2574 Therefore we can safely correct the name now. This primarily
2575 affects constructors and destructors, whose name will be
2576 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2577 operators will also have incorrect names; for instance,
2578 "operator int" will be named "operator i" (i.e. the type is
2579 mangled).
2580
2581 For non-stub methods in GNU v2, we have no easy way to
2582 know if we have a complete physname or not. For most
2583 methods the result depends on the platform (if CPLUS_MARKER
2584 can be `$' or `.', it will use minimal debug information, or
2585 otherwise the full physname will be included).
2586
2587 Rather than dealing with this, we take a different approach.
2588 For v3 mangled names, we can use the full physname; for v2,
2589 we use cplus_demangle_opname (which is actually v2 specific),
2590 because the only interesting names are all operators - once again
2591 barring the caveat below. Skip this process if any method in the
2592 group is a stub, to prevent our fouling up the workings of
2593 gdb_mangle_name.
2594
2595 The caveat: GCC 2.95.x (and earlier?) put constructors and
2596 destructors in the same method group. We need to split this
2597 into two groups, because they should have different names.
2598 So for each method group we check whether it contains both
2599 routines whose physname appears to be a destructor (the physnames
2600 for and destructors are always provided, due to quirks in v2
2601 mangling) and routines whose physname does not appear to be a
2602 destructor. If so then we break up the list into two halves.
2603 Even if the constructors and destructors aren't in the same group
2604 the destructor will still lack the leading tilde, so that also
2605 needs to be fixed.
2606
2607 So, to summarize what we expect and handle here:
2608
2609 Given Given Real Real Action
2610 method name physname physname method name
2611
2612 __opi [none] __opi__3Foo operator int opname
2613 [now or later]
2614 Foo _._3Foo _._3Foo ~Foo separate and
2615 rename
2616 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2617 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2618 */
2619
2620 tmp_sublist = sublist;
2621 while (tmp_sublist != NULL)
2622 {
2623 if (tmp_sublist->fn_field.physname[0] == '_'
2624 && tmp_sublist->fn_field.physname[1] == 'Z')
2625 is_v3 = 1;
2626
2627 if (is_destructor_name (tmp_sublist->fn_field.physname))
2628 has_destructor++;
2629 else
2630 has_other++;
2631
2632 tmp_sublist = tmp_sublist->next;
2633 }
2634
2635 if (has_destructor && has_other)
2636 {
2637 struct next_fnfieldlist *destr_fnlist;
2638 struct next_fnfield *last_sublist;
2639
2640 /* Create a new fn_fieldlist for the destructors. */
2641
2642 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2643 struct next_fnfieldlist);
2644
2645 destr_fnlist->fn_fieldlist.name
2646 = obconcat (&objfile->objfile_obstack, "~",
2647 new_fnlist->fn_fieldlist.name, (char *) NULL);
2648
2649 destr_fnlist->fn_fieldlist.fn_fields =
2650 XOBNEWVEC (&objfile->objfile_obstack,
2651 struct fn_field, has_destructor);
2652 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2653 sizeof (struct fn_field) * has_destructor);
2654 tmp_sublist = sublist;
2655 last_sublist = NULL;
2656 i = 0;
2657 while (tmp_sublist != NULL)
2658 {
2659 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2660 {
2661 tmp_sublist = tmp_sublist->next;
2662 continue;
2663 }
2664
2665 destr_fnlist->fn_fieldlist.fn_fields[i++]
2666 = tmp_sublist->fn_field;
2667 if (last_sublist)
2668 last_sublist->next = tmp_sublist->next;
2669 else
2670 sublist = tmp_sublist->next;
2671 last_sublist = tmp_sublist;
2672 tmp_sublist = tmp_sublist->next;
2673 }
2674
2675 destr_fnlist->fn_fieldlist.length = has_destructor;
2676 destr_fnlist->next = fip->fnlist;
2677 fip->fnlist = destr_fnlist;
2678 nfn_fields++;
2679 length -= has_destructor;
2680 }
2681 else if (is_v3)
2682 {
2683 /* v3 mangling prevents the use of abbreviated physnames,
2684 so we can do this here. There are stubbed methods in v3
2685 only:
2686 - in -gstabs instead of -gstabs+
2687 - or for static methods, which are output as a function type
2688 instead of a method type. */
2689 char *new_method_name =
2690 stabs_method_name_from_physname (sublist->fn_field.physname);
2691
2692 if (new_method_name != NULL
2693 && strcmp (new_method_name,
2694 new_fnlist->fn_fieldlist.name) != 0)
2695 {
2696 new_fnlist->fn_fieldlist.name = new_method_name;
2697 xfree (main_fn_name);
2698 }
2699 else
2700 xfree (new_method_name);
2701 }
2702 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2703 {
2704 new_fnlist->fn_fieldlist.name =
2705 obconcat (&objfile->objfile_obstack,
2706 "~", main_fn_name, (char *)NULL);
2707 xfree (main_fn_name);
2708 }
2709
2710 new_fnlist->fn_fieldlist.fn_fields
2711 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2712 for (i = length; (i--, sublist); sublist = sublist->next)
2713 {
2714 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2715 }
2716
2717 new_fnlist->fn_fieldlist.length = length;
2718 new_fnlist->next = fip->fnlist;
2719 fip->fnlist = new_fnlist;
2720 nfn_fields++;
2721 }
2722 }
2723
2724 if (nfn_fields)
2725 {
2726 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2727 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2728 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2729 memset (TYPE_FN_FIELDLISTS (type), 0,
2730 sizeof (struct fn_fieldlist) * nfn_fields);
2731 TYPE_NFN_FIELDS (type) = nfn_fields;
2732 }
2733
2734 return 1;
2735 }
2736
2737 /* Special GNU C++ name.
2738
2739 Returns 1 for success, 0 for failure. "failure" means that we can't
2740 keep parsing and it's time for error_type(). */
2741
2742 static int
2743 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2744 struct type *type, struct objfile *objfile)
2745 {
2746 const char *p;
2747 const char *name;
2748 char cpp_abbrev;
2749 struct type *context;
2750
2751 p = *pp;
2752 if (*++p == 'v')
2753 {
2754 name = NULL;
2755 cpp_abbrev = *++p;
2756
2757 *pp = p + 1;
2758
2759 /* At this point, *pp points to something like "22:23=*22...",
2760 where the type number before the ':' is the "context" and
2761 everything after is a regular type definition. Lookup the
2762 type, find it's name, and construct the field name. */
2763
2764 context = read_type (pp, objfile);
2765
2766 switch (cpp_abbrev)
2767 {
2768 case 'f': /* $vf -- a virtual function table pointer */
2769 name = TYPE_NAME (context);
2770 if (name == NULL)
2771 {
2772 name = "";
2773 }
2774 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2775 vptr_name, name, (char *) NULL);
2776 break;
2777
2778 case 'b': /* $vb -- a virtual bsomethingorother */
2779 name = TYPE_NAME (context);
2780 if (name == NULL)
2781 {
2782 complaint (_("C++ abbreviated type name "
2783 "unknown at symtab pos %d"),
2784 symnum);
2785 name = "FOO";
2786 }
2787 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2788 name, (char *) NULL);
2789 break;
2790
2791 default:
2792 invalid_cpp_abbrev_complaint (*pp);
2793 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2794 "INVALID_CPLUSPLUS_ABBREV",
2795 (char *) NULL);
2796 break;
2797 }
2798
2799 /* At this point, *pp points to the ':'. Skip it and read the
2800 field type. */
2801
2802 p = ++(*pp);
2803 if (p[-1] != ':')
2804 {
2805 invalid_cpp_abbrev_complaint (*pp);
2806 return 0;
2807 }
2808 fip->list->field.type = read_type (pp, objfile);
2809 if (**pp == ',')
2810 (*pp)++; /* Skip the comma. */
2811 else
2812 return 0;
2813
2814 {
2815 int nbits;
2816
2817 SET_FIELD_BITPOS (fip->list->field,
2818 read_huge_number (pp, ';', &nbits, 0));
2819 if (nbits != 0)
2820 return 0;
2821 }
2822 /* This field is unpacked. */
2823 FIELD_BITSIZE (fip->list->field) = 0;
2824 fip->list->visibility = VISIBILITY_PRIVATE;
2825 }
2826 else
2827 {
2828 invalid_cpp_abbrev_complaint (*pp);
2829 /* We have no idea what syntax an unrecognized abbrev would have, so
2830 better return 0. If we returned 1, we would need to at least advance
2831 *pp to avoid an infinite loop. */
2832 return 0;
2833 }
2834 return 1;
2835 }
2836
2837 static void
2838 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2839 const char *p, struct type *type,
2840 struct objfile *objfile)
2841 {
2842 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2843
2844 fip->list->field.name
2845 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
2846 *pp = p + 1;
2847
2848 /* This means we have a visibility for a field coming. */
2849 if (**pp == '/')
2850 {
2851 (*pp)++;
2852 fip->list->visibility = *(*pp)++;
2853 }
2854 else
2855 {
2856 /* normal dbx-style format, no explicit visibility */
2857 fip->list->visibility = VISIBILITY_PUBLIC;
2858 }
2859
2860 fip->list->field.type = read_type (pp, objfile);
2861 if (**pp == ':')
2862 {
2863 p = ++(*pp);
2864 #if 0
2865 /* Possible future hook for nested types. */
2866 if (**pp == '!')
2867 {
2868 fip->list->field.bitpos = (long) -2; /* nested type */
2869 p = ++(*pp);
2870 }
2871 else
2872 ...;
2873 #endif
2874 while (*p != ';')
2875 {
2876 p++;
2877 }
2878 /* Static class member. */
2879 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2880 *pp = p + 1;
2881 return;
2882 }
2883 else if (**pp != ',')
2884 {
2885 /* Bad structure-type format. */
2886 stabs_general_complaint ("bad structure-type format");
2887 return;
2888 }
2889
2890 (*pp)++; /* Skip the comma. */
2891
2892 {
2893 int nbits;
2894
2895 SET_FIELD_BITPOS (fip->list->field,
2896 read_huge_number (pp, ',', &nbits, 0));
2897 if (nbits != 0)
2898 {
2899 stabs_general_complaint ("bad structure-type format");
2900 return;
2901 }
2902 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2903 if (nbits != 0)
2904 {
2905 stabs_general_complaint ("bad structure-type format");
2906 return;
2907 }
2908 }
2909
2910 if (FIELD_BITPOS (fip->list->field) == 0
2911 && FIELD_BITSIZE (fip->list->field) == 0)
2912 {
2913 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2914 it is a field which has been optimized out. The correct stab for
2915 this case is to use VISIBILITY_IGNORE, but that is a recent
2916 invention. (2) It is a 0-size array. For example
2917 union { int num; char str[0]; } foo. Printing _("<no value>" for
2918 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2919 will continue to work, and a 0-size array as a whole doesn't
2920 have any contents to print.
2921
2922 I suspect this probably could also happen with gcc -gstabs (not
2923 -gstabs+) for static fields, and perhaps other C++ extensions.
2924 Hopefully few people use -gstabs with gdb, since it is intended
2925 for dbx compatibility. */
2926
2927 /* Ignore this field. */
2928 fip->list->visibility = VISIBILITY_IGNORE;
2929 }
2930 else
2931 {
2932 /* Detect an unpacked field and mark it as such.
2933 dbx gives a bit size for all fields.
2934 Note that forward refs cannot be packed,
2935 and treat enums as if they had the width of ints. */
2936
2937 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2938
2939 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2940 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2941 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2942 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2943 {
2944 FIELD_BITSIZE (fip->list->field) = 0;
2945 }
2946 if ((FIELD_BITSIZE (fip->list->field)
2947 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2948 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2949 && FIELD_BITSIZE (fip->list->field)
2950 == gdbarch_int_bit (gdbarch))
2951 )
2952 &&
2953 FIELD_BITPOS (fip->list->field) % 8 == 0)
2954 {
2955 FIELD_BITSIZE (fip->list->field) = 0;
2956 }
2957 }
2958 }
2959
2960
2961 /* Read struct or class data fields. They have the form:
2962
2963 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2964
2965 At the end, we see a semicolon instead of a field.
2966
2967 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2968 a static field.
2969
2970 The optional VISIBILITY is one of:
2971
2972 '/0' (VISIBILITY_PRIVATE)
2973 '/1' (VISIBILITY_PROTECTED)
2974 '/2' (VISIBILITY_PUBLIC)
2975 '/9' (VISIBILITY_IGNORE)
2976
2977 or nothing, for C style fields with public visibility.
2978
2979 Returns 1 for success, 0 for failure. */
2980
2981 static int
2982 read_struct_fields (struct stab_field_info *fip, const char **pp,
2983 struct type *type, struct objfile *objfile)
2984 {
2985 const char *p;
2986 struct nextfield *newobj;
2987
2988 /* We better set p right now, in case there are no fields at all... */
2989
2990 p = *pp;
2991
2992 /* Read each data member type until we find the terminating ';' at the end of
2993 the data member list, or break for some other reason such as finding the
2994 start of the member function list. */
2995 /* Stab string for structure/union does not end with two ';' in
2996 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2997
2998 while (**pp != ';' && **pp != '\0')
2999 {
3000 STABS_CONTINUE (pp, objfile);
3001 /* Get space to record the next field's data. */
3002 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3003
3004 newobj->next = fip->list;
3005 fip->list = newobj;
3006
3007 /* Get the field name. */
3008 p = *pp;
3009
3010 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3011 unless the CPLUS_MARKER is followed by an underscore, in
3012 which case it is just the name of an anonymous type, which we
3013 should handle like any other type name. */
3014
3015 if (is_cplus_marker (p[0]) && p[1] != '_')
3016 {
3017 if (!read_cpp_abbrev (fip, pp, type, objfile))
3018 return 0;
3019 continue;
3020 }
3021
3022 /* Look for the ':' that separates the field name from the field
3023 values. Data members are delimited by a single ':', while member
3024 functions are delimited by a pair of ':'s. When we hit the member
3025 functions (if any), terminate scan loop and return. */
3026
3027 while (*p != ':' && *p != '\0')
3028 {
3029 p++;
3030 }
3031 if (*p == '\0')
3032 return 0;
3033
3034 /* Check to see if we have hit the member functions yet. */
3035 if (p[1] == ':')
3036 {
3037 break;
3038 }
3039 read_one_struct_field (fip, pp, p, type, objfile);
3040 }
3041 if (p[0] == ':' && p[1] == ':')
3042 {
3043 /* (the deleted) chill the list of fields: the last entry (at
3044 the head) is a partially constructed entry which we now
3045 scrub. */
3046 fip->list = fip->list->next;
3047 }
3048 return 1;
3049 }
3050 /* *INDENT-OFF* */
3051 /* The stabs for C++ derived classes contain baseclass information which
3052 is marked by a '!' character after the total size. This function is
3053 called when we encounter the baseclass marker, and slurps up all the
3054 baseclass information.
3055
3056 Immediately following the '!' marker is the number of base classes that
3057 the class is derived from, followed by information for each base class.
3058 For each base class, there are two visibility specifiers, a bit offset
3059 to the base class information within the derived class, a reference to
3060 the type for the base class, and a terminating semicolon.
3061
3062 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3063 ^^ ^ ^ ^ ^ ^ ^
3064 Baseclass information marker __________________|| | | | | | |
3065 Number of baseclasses __________________________| | | | | | |
3066 Visibility specifiers (2) ________________________| | | | | |
3067 Offset in bits from start of class _________________| | | | |
3068 Type number for base class ___________________________| | | |
3069 Visibility specifiers (2) _______________________________| | |
3070 Offset in bits from start of class ________________________| |
3071 Type number of base class ____________________________________|
3072
3073 Return 1 for success, 0 for (error-type-inducing) failure. */
3074 /* *INDENT-ON* */
3075
3076
3077
3078 static int
3079 read_baseclasses (struct stab_field_info *fip, const char **pp,
3080 struct type *type, struct objfile *objfile)
3081 {
3082 int i;
3083 struct nextfield *newobj;
3084
3085 if (**pp != '!')
3086 {
3087 return 1;
3088 }
3089 else
3090 {
3091 /* Skip the '!' baseclass information marker. */
3092 (*pp)++;
3093 }
3094
3095 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3096 {
3097 int nbits;
3098
3099 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3100 if (nbits != 0)
3101 return 0;
3102 }
3103
3104 #if 0
3105 /* Some stupid compilers have trouble with the following, so break
3106 it up into simpler expressions. */
3107 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3108 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3109 #else
3110 {
3111 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3112 char *pointer;
3113
3114 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3115 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3116 }
3117 #endif /* 0 */
3118
3119 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3120
3121 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3122 {
3123 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3124
3125 newobj->next = fip->list;
3126 fip->list = newobj;
3127 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3128 field! */
3129
3130 STABS_CONTINUE (pp, objfile);
3131 switch (**pp)
3132 {
3133 case '0':
3134 /* Nothing to do. */
3135 break;
3136 case '1':
3137 SET_TYPE_FIELD_VIRTUAL (type, i);
3138 break;
3139 default:
3140 /* Unknown character. Complain and treat it as non-virtual. */
3141 {
3142 complaint (_("Unknown virtual character `%c' for baseclass"),
3143 **pp);
3144 }
3145 }
3146 ++(*pp);
3147
3148 newobj->visibility = *(*pp)++;
3149 switch (newobj->visibility)
3150 {
3151 case VISIBILITY_PRIVATE:
3152 case VISIBILITY_PROTECTED:
3153 case VISIBILITY_PUBLIC:
3154 break;
3155 default:
3156 /* Bad visibility format. Complain and treat it as
3157 public. */
3158 {
3159 complaint (_("Unknown visibility `%c' for baseclass"),
3160 newobj->visibility);
3161 newobj->visibility = VISIBILITY_PUBLIC;
3162 }
3163 }
3164
3165 {
3166 int nbits;
3167
3168 /* The remaining value is the bit offset of the portion of the object
3169 corresponding to this baseclass. Always zero in the absence of
3170 multiple inheritance. */
3171
3172 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3173 if (nbits != 0)
3174 return 0;
3175 }
3176
3177 /* The last piece of baseclass information is the type of the
3178 base class. Read it, and remember it's type name as this
3179 field's name. */
3180
3181 newobj->field.type = read_type (pp, objfile);
3182 newobj->field.name = TYPE_NAME (newobj->field.type);
3183
3184 /* Skip trailing ';' and bump count of number of fields seen. */
3185 if (**pp == ';')
3186 (*pp)++;
3187 else
3188 return 0;
3189 }
3190 return 1;
3191 }
3192
3193 /* The tail end of stabs for C++ classes that contain a virtual function
3194 pointer contains a tilde, a %, and a type number.
3195 The type number refers to the base class (possibly this class itself) which
3196 contains the vtable pointer for the current class.
3197
3198 This function is called when we have parsed all the method declarations,
3199 so we can look for the vptr base class info. */
3200
3201 static int
3202 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3203 struct type *type, struct objfile *objfile)
3204 {
3205 const char *p;
3206
3207 STABS_CONTINUE (pp, objfile);
3208
3209 /* If we are positioned at a ';', then skip it. */
3210 if (**pp == ';')
3211 {
3212 (*pp)++;
3213 }
3214
3215 if (**pp == '~')
3216 {
3217 (*pp)++;
3218
3219 if (**pp == '=' || **pp == '+' || **pp == '-')
3220 {
3221 /* Obsolete flags that used to indicate the presence
3222 of constructors and/or destructors. */
3223 (*pp)++;
3224 }
3225
3226 /* Read either a '%' or the final ';'. */
3227 if (*(*pp)++ == '%')
3228 {
3229 /* The next number is the type number of the base class
3230 (possibly our own class) which supplies the vtable for
3231 this class. Parse it out, and search that class to find
3232 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3233 and TYPE_VPTR_FIELDNO. */
3234
3235 struct type *t;
3236 int i;
3237
3238 t = read_type (pp, objfile);
3239 p = (*pp)++;
3240 while (*p != '\0' && *p != ';')
3241 {
3242 p++;
3243 }
3244 if (*p == '\0')
3245 {
3246 /* Premature end of symbol. */
3247 return 0;
3248 }
3249
3250 set_type_vptr_basetype (type, t);
3251 if (type == t) /* Our own class provides vtbl ptr. */
3252 {
3253 for (i = TYPE_NFIELDS (t) - 1;
3254 i >= TYPE_N_BASECLASSES (t);
3255 --i)
3256 {
3257 const char *name = TYPE_FIELD_NAME (t, i);
3258
3259 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3260 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3261 {
3262 set_type_vptr_fieldno (type, i);
3263 goto gotit;
3264 }
3265 }
3266 /* Virtual function table field not found. */
3267 complaint (_("virtual function table pointer "
3268 "not found when defining class `%s'"),
3269 TYPE_NAME (type));
3270 return 0;
3271 }
3272 else
3273 {
3274 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3275 }
3276
3277 gotit:
3278 *pp = p + 1;
3279 }
3280 }
3281 return 1;
3282 }
3283
3284 static int
3285 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3286 {
3287 int n;
3288
3289 for (n = TYPE_NFN_FIELDS (type);
3290 fip->fnlist != NULL;
3291 fip->fnlist = fip->fnlist->next)
3292 {
3293 --n; /* Circumvent Sun3 compiler bug. */
3294 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3295 }
3296 return 1;
3297 }
3298
3299 /* Create the vector of fields, and record how big it is.
3300 We need this info to record proper virtual function table information
3301 for this class's virtual functions. */
3302
3303 static int
3304 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3305 struct objfile *objfile)
3306 {
3307 int nfields = 0;
3308 int non_public_fields = 0;
3309 struct nextfield *scan;
3310
3311 /* Count up the number of fields that we have, as well as taking note of
3312 whether or not there are any non-public fields, which requires us to
3313 allocate and build the private_field_bits and protected_field_bits
3314 bitfields. */
3315
3316 for (scan = fip->list; scan != NULL; scan = scan->next)
3317 {
3318 nfields++;
3319 if (scan->visibility != VISIBILITY_PUBLIC)
3320 {
3321 non_public_fields++;
3322 }
3323 }
3324
3325 /* Now we know how many fields there are, and whether or not there are any
3326 non-public fields. Record the field count, allocate space for the
3327 array of fields, and create blank visibility bitfields if necessary. */
3328
3329 TYPE_NFIELDS (type) = nfields;
3330 TYPE_FIELDS (type) = (struct field *)
3331 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3332 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3333
3334 if (non_public_fields)
3335 {
3336 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3337
3338 TYPE_FIELD_PRIVATE_BITS (type) =
3339 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3340 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3341
3342 TYPE_FIELD_PROTECTED_BITS (type) =
3343 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3344 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3345
3346 TYPE_FIELD_IGNORE_BITS (type) =
3347 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3348 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3349 }
3350
3351 /* Copy the saved-up fields into the field vector. Start from the
3352 head of the list, adding to the tail of the field array, so that
3353 they end up in the same order in the array in which they were
3354 added to the list. */
3355
3356 while (nfields-- > 0)
3357 {
3358 TYPE_FIELD (type, nfields) = fip->list->field;
3359 switch (fip->list->visibility)
3360 {
3361 case VISIBILITY_PRIVATE:
3362 SET_TYPE_FIELD_PRIVATE (type, nfields);
3363 break;
3364
3365 case VISIBILITY_PROTECTED:
3366 SET_TYPE_FIELD_PROTECTED (type, nfields);
3367 break;
3368
3369 case VISIBILITY_IGNORE:
3370 SET_TYPE_FIELD_IGNORE (type, nfields);
3371 break;
3372
3373 case VISIBILITY_PUBLIC:
3374 break;
3375
3376 default:
3377 /* Unknown visibility. Complain and treat it as public. */
3378 {
3379 complaint (_("Unknown visibility `%c' for field"),
3380 fip->list->visibility);
3381 }
3382 break;
3383 }
3384 fip->list = fip->list->next;
3385 }
3386 return 1;
3387 }
3388
3389
3390 /* Complain that the compiler has emitted more than one definition for the
3391 structure type TYPE. */
3392 static void
3393 complain_about_struct_wipeout (struct type *type)
3394 {
3395 const char *name = "";
3396 const char *kind = "";
3397
3398 if (TYPE_NAME (type))
3399 {
3400 name = TYPE_NAME (type);
3401 switch (TYPE_CODE (type))
3402 {
3403 case TYPE_CODE_STRUCT: kind = "struct "; break;
3404 case TYPE_CODE_UNION: kind = "union "; break;
3405 case TYPE_CODE_ENUM: kind = "enum "; break;
3406 default: kind = "";
3407 }
3408 }
3409 else
3410 {
3411 name = "<unknown>";
3412 kind = "";
3413 }
3414
3415 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3416 }
3417
3418 /* Set the length for all variants of a same main_type, which are
3419 connected in the closed chain.
3420
3421 This is something that needs to be done when a type is defined *after*
3422 some cross references to this type have already been read. Consider
3423 for instance the following scenario where we have the following two
3424 stabs entries:
3425
3426 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3427 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3428
3429 A stubbed version of type dummy is created while processing the first
3430 stabs entry. The length of that type is initially set to zero, since
3431 it is unknown at this point. Also, a "constant" variation of type
3432 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3433 the stabs line).
3434
3435 The second stabs entry allows us to replace the stubbed definition
3436 with the real definition. However, we still need to adjust the length
3437 of the "constant" variation of that type, as its length was left
3438 untouched during the main type replacement... */
3439
3440 static void
3441 set_length_in_type_chain (struct type *type)
3442 {
3443 struct type *ntype = TYPE_CHAIN (type);
3444
3445 while (ntype != type)
3446 {
3447 if (TYPE_LENGTH(ntype) == 0)
3448 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3449 else
3450 complain_about_struct_wipeout (ntype);
3451 ntype = TYPE_CHAIN (ntype);
3452 }
3453 }
3454
3455 /* Read the description of a structure (or union type) and return an object
3456 describing the type.
3457
3458 PP points to a character pointer that points to the next unconsumed token
3459 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3460 *PP will point to "4a:1,0,32;;".
3461
3462 TYPE points to an incomplete type that needs to be filled in.
3463
3464 OBJFILE points to the current objfile from which the stabs information is
3465 being read. (Note that it is redundant in that TYPE also contains a pointer
3466 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3467 */
3468
3469 static struct type *
3470 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3471 struct objfile *objfile)
3472 {
3473 struct stab_field_info fi;
3474
3475 /* When describing struct/union/class types in stabs, G++ always drops
3476 all qualifications from the name. So if you've got:
3477 struct A { ... struct B { ... }; ... };
3478 then G++ will emit stabs for `struct A::B' that call it simply
3479 `struct B'. Obviously, if you've got a real top-level definition for
3480 `struct B', or other nested definitions, this is going to cause
3481 problems.
3482
3483 Obviously, GDB can't fix this by itself, but it can at least avoid
3484 scribbling on existing structure type objects when new definitions
3485 appear. */
3486 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3487 || TYPE_STUB (type)))
3488 {
3489 complain_about_struct_wipeout (type);
3490
3491 /* It's probably best to return the type unchanged. */
3492 return type;
3493 }
3494
3495 INIT_CPLUS_SPECIFIC (type);
3496 TYPE_CODE (type) = type_code;
3497 TYPE_STUB (type) = 0;
3498
3499 /* First comes the total size in bytes. */
3500
3501 {
3502 int nbits;
3503
3504 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3505 if (nbits != 0)
3506 return error_type (pp, objfile);
3507 set_length_in_type_chain (type);
3508 }
3509
3510 /* Now read the baseclasses, if any, read the regular C struct or C++
3511 class member fields, attach the fields to the type, read the C++
3512 member functions, attach them to the type, and then read any tilde
3513 field (baseclass specifier for the class holding the main vtable). */
3514
3515 if (!read_baseclasses (&fi, pp, type, objfile)
3516 || !read_struct_fields (&fi, pp, type, objfile)
3517 || !attach_fields_to_type (&fi, type, objfile)
3518 || !read_member_functions (&fi, pp, type, objfile)
3519 || !attach_fn_fields_to_type (&fi, type)
3520 || !read_tilde_fields (&fi, pp, type, objfile))
3521 {
3522 type = error_type (pp, objfile);
3523 }
3524
3525 return (type);
3526 }
3527
3528 /* Read a definition of an array type,
3529 and create and return a suitable type object.
3530 Also creates a range type which represents the bounds of that
3531 array. */
3532
3533 static struct type *
3534 read_array_type (const char **pp, struct type *type,
3535 struct objfile *objfile)
3536 {
3537 struct type *index_type, *element_type, *range_type;
3538 int lower, upper;
3539 int adjustable = 0;
3540 int nbits;
3541
3542 /* Format of an array type:
3543 "ar<index type>;lower;upper;<array_contents_type>".
3544 OS9000: "arlower,upper;<array_contents_type>".
3545
3546 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3547 for these, produce a type like float[][]. */
3548
3549 {
3550 index_type = read_type (pp, objfile);
3551 if (**pp != ';')
3552 /* Improper format of array type decl. */
3553 return error_type (pp, objfile);
3554 ++*pp;
3555 }
3556
3557 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3558 {
3559 (*pp)++;
3560 adjustable = 1;
3561 }
3562 lower = read_huge_number (pp, ';', &nbits, 0);
3563
3564 if (nbits != 0)
3565 return error_type (pp, objfile);
3566
3567 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3568 {
3569 (*pp)++;
3570 adjustable = 1;
3571 }
3572 upper = read_huge_number (pp, ';', &nbits, 0);
3573 if (nbits != 0)
3574 return error_type (pp, objfile);
3575
3576 element_type = read_type (pp, objfile);
3577
3578 if (adjustable)
3579 {
3580 lower = 0;
3581 upper = -1;
3582 }
3583
3584 range_type =
3585 create_static_range_type (NULL, index_type, lower, upper);
3586 type = create_array_type (type, element_type, range_type);
3587
3588 return type;
3589 }
3590
3591
3592 /* Read a definition of an enumeration type,
3593 and create and return a suitable type object.
3594 Also defines the symbols that represent the values of the type. */
3595
3596 static struct type *
3597 read_enum_type (const char **pp, struct type *type,
3598 struct objfile *objfile)
3599 {
3600 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3601 const char *p;
3602 char *name;
3603 long n;
3604 struct symbol *sym;
3605 int nsyms = 0;
3606 struct pending **symlist;
3607 struct pending *osyms, *syms;
3608 int o_nsyms;
3609 int nbits;
3610 int unsigned_enum = 1;
3611
3612 #if 0
3613 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3614 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3615 to do? For now, force all enum values to file scope. */
3616 if (within_function)
3617 symlist = get_local_symbols ();
3618 else
3619 #endif
3620 symlist = get_file_symbols ();
3621 osyms = *symlist;
3622 o_nsyms = osyms ? osyms->nsyms : 0;
3623
3624 /* The aix4 compiler emits an extra field before the enum members;
3625 my guess is it's a type of some sort. Just ignore it. */
3626 if (**pp == '-')
3627 {
3628 /* Skip over the type. */
3629 while (**pp != ':')
3630 (*pp)++;
3631
3632 /* Skip over the colon. */
3633 (*pp)++;
3634 }
3635
3636 /* Read the value-names and their values.
3637 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3638 A semicolon or comma instead of a NAME means the end. */
3639 while (**pp && **pp != ';' && **pp != ',')
3640 {
3641 STABS_CONTINUE (pp, objfile);
3642 p = *pp;
3643 while (*p != ':')
3644 p++;
3645 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3646 *pp = p + 1;
3647 n = read_huge_number (pp, ',', &nbits, 0);
3648 if (nbits != 0)
3649 return error_type (pp, objfile);
3650
3651 sym = allocate_symbol (objfile);
3652 SYMBOL_SET_LINKAGE_NAME (sym, name);
3653 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3654 &objfile->objfile_obstack);
3655 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3656 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3657 SYMBOL_VALUE (sym) = n;
3658 if (n < 0)
3659 unsigned_enum = 0;
3660 add_symbol_to_list (sym, symlist);
3661 nsyms++;
3662 }
3663
3664 if (**pp == ';')
3665 (*pp)++; /* Skip the semicolon. */
3666
3667 /* Now fill in the fields of the type-structure. */
3668
3669 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3670 set_length_in_type_chain (type);
3671 TYPE_CODE (type) = TYPE_CODE_ENUM;
3672 TYPE_STUB (type) = 0;
3673 if (unsigned_enum)
3674 TYPE_UNSIGNED (type) = 1;
3675 TYPE_NFIELDS (type) = nsyms;
3676 TYPE_FIELDS (type) = (struct field *)
3677 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3678 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3679
3680 /* Find the symbols for the values and put them into the type.
3681 The symbols can be found in the symlist that we put them on
3682 to cause them to be defined. osyms contains the old value
3683 of that symlist; everything up to there was defined by us. */
3684 /* Note that we preserve the order of the enum constants, so
3685 that in something like "enum {FOO, LAST_THING=FOO}" we print
3686 FOO, not LAST_THING. */
3687
3688 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3689 {
3690 int last = syms == osyms ? o_nsyms : 0;
3691 int j = syms->nsyms;
3692
3693 for (; --j >= last; --n)
3694 {
3695 struct symbol *xsym = syms->symbol[j];
3696
3697 SYMBOL_TYPE (xsym) = type;
3698 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3699 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3700 TYPE_FIELD_BITSIZE (type, n) = 0;
3701 }
3702 if (syms == osyms)
3703 break;
3704 }
3705
3706 return type;
3707 }
3708
3709 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3710 typedefs in every file (for int, long, etc):
3711
3712 type = b <signed> <width> <format type>; <offset>; <nbits>
3713 signed = u or s.
3714 optional format type = c or b for char or boolean.
3715 offset = offset from high order bit to start bit of type.
3716 width is # bytes in object of this type, nbits is # bits in type.
3717
3718 The width/offset stuff appears to be for small objects stored in
3719 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3720 FIXME. */
3721
3722 static struct type *
3723 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3724 {
3725 int type_bits;
3726 int nbits;
3727 int unsigned_type;
3728 int boolean_type = 0;
3729
3730 switch (**pp)
3731 {
3732 case 's':
3733 unsigned_type = 0;
3734 break;
3735 case 'u':
3736 unsigned_type = 1;
3737 break;
3738 default:
3739 return error_type (pp, objfile);
3740 }
3741 (*pp)++;
3742
3743 /* For some odd reason, all forms of char put a c here. This is strange
3744 because no other type has this honor. We can safely ignore this because
3745 we actually determine 'char'acterness by the number of bits specified in
3746 the descriptor.
3747 Boolean forms, e.g Fortran logical*X, put a b here. */
3748
3749 if (**pp == 'c')
3750 (*pp)++;
3751 else if (**pp == 'b')
3752 {
3753 boolean_type = 1;
3754 (*pp)++;
3755 }
3756
3757 /* The first number appears to be the number of bytes occupied
3758 by this type, except that unsigned short is 4 instead of 2.
3759 Since this information is redundant with the third number,
3760 we will ignore it. */
3761 read_huge_number (pp, ';', &nbits, 0);
3762 if (nbits != 0)
3763 return error_type (pp, objfile);
3764
3765 /* The second number is always 0, so ignore it too. */
3766 read_huge_number (pp, ';', &nbits, 0);
3767 if (nbits != 0)
3768 return error_type (pp, objfile);
3769
3770 /* The third number is the number of bits for this type. */
3771 type_bits = read_huge_number (pp, 0, &nbits, 0);
3772 if (nbits != 0)
3773 return error_type (pp, objfile);
3774 /* The type *should* end with a semicolon. If it are embedded
3775 in a larger type the semicolon may be the only way to know where
3776 the type ends. If this type is at the end of the stabstring we
3777 can deal with the omitted semicolon (but we don't have to like
3778 it). Don't bother to complain(), Sun's compiler omits the semicolon
3779 for "void". */
3780 if (**pp == ';')
3781 ++(*pp);
3782
3783 if (type_bits == 0)
3784 {
3785 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3786 TARGET_CHAR_BIT, NULL);
3787 if (unsigned_type)
3788 TYPE_UNSIGNED (type) = 1;
3789 return type;
3790 }
3791
3792 if (boolean_type)
3793 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3794 else
3795 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3796 }
3797
3798 static struct type *
3799 read_sun_floating_type (const char **pp, int typenums[2],
3800 struct objfile *objfile)
3801 {
3802 int nbits;
3803 int details;
3804 int nbytes;
3805 struct type *rettype;
3806
3807 /* The first number has more details about the type, for example
3808 FN_COMPLEX. */
3809 details = read_huge_number (pp, ';', &nbits, 0);
3810 if (nbits != 0)
3811 return error_type (pp, objfile);
3812
3813 /* The second number is the number of bytes occupied by this type. */
3814 nbytes = read_huge_number (pp, ';', &nbits, 0);
3815 if (nbits != 0)
3816 return error_type (pp, objfile);
3817
3818 nbits = nbytes * TARGET_CHAR_BIT;
3819
3820 if (details == NF_COMPLEX || details == NF_COMPLEX16
3821 || details == NF_COMPLEX32)
3822 {
3823 rettype = dbx_init_float_type (objfile, nbits / 2);
3824 return init_complex_type (objfile, NULL, rettype);
3825 }
3826
3827 return dbx_init_float_type (objfile, nbits);
3828 }
3829
3830 /* Read a number from the string pointed to by *PP.
3831 The value of *PP is advanced over the number.
3832 If END is nonzero, the character that ends the
3833 number must match END, or an error happens;
3834 and that character is skipped if it does match.
3835 If END is zero, *PP is left pointing to that character.
3836
3837 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3838 the number is represented in an octal representation, assume that
3839 it is represented in a 2's complement representation with a size of
3840 TWOS_COMPLEMENT_BITS.
3841
3842 If the number fits in a long, set *BITS to 0 and return the value.
3843 If not, set *BITS to be the number of bits in the number and return 0.
3844
3845 If encounter garbage, set *BITS to -1 and return 0. */
3846
3847 static long
3848 read_huge_number (const char **pp, int end, int *bits,
3849 int twos_complement_bits)
3850 {
3851 const char *p = *pp;
3852 int sign = 1;
3853 int sign_bit = 0;
3854 long n = 0;
3855 int radix = 10;
3856 char overflow = 0;
3857 int nbits = 0;
3858 int c;
3859 long upper_limit;
3860 int twos_complement_representation = 0;
3861
3862 if (*p == '-')
3863 {
3864 sign = -1;
3865 p++;
3866 }
3867
3868 /* Leading zero means octal. GCC uses this to output values larger
3869 than an int (because that would be hard in decimal). */
3870 if (*p == '0')
3871 {
3872 radix = 8;
3873 p++;
3874 }
3875
3876 /* Skip extra zeros. */
3877 while (*p == '0')
3878 p++;
3879
3880 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3881 {
3882 /* Octal, possibly signed. Check if we have enough chars for a
3883 negative number. */
3884
3885 size_t len;
3886 const char *p1 = p;
3887
3888 while ((c = *p1) >= '0' && c < '8')
3889 p1++;
3890
3891 len = p1 - p;
3892 if (len > twos_complement_bits / 3
3893 || (twos_complement_bits % 3 == 0
3894 && len == twos_complement_bits / 3))
3895 {
3896 /* Ok, we have enough characters for a signed value, check
3897 for signness by testing if the sign bit is set. */
3898 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3899 c = *p - '0';
3900 if (c & (1 << sign_bit))
3901 {
3902 /* Definitely signed. */
3903 twos_complement_representation = 1;
3904 sign = -1;
3905 }
3906 }
3907 }
3908
3909 upper_limit = LONG_MAX / radix;
3910
3911 while ((c = *p++) >= '0' && c < ('0' + radix))
3912 {
3913 if (n <= upper_limit)
3914 {
3915 if (twos_complement_representation)
3916 {
3917 /* Octal, signed, twos complement representation. In
3918 this case, n is the corresponding absolute value. */
3919 if (n == 0)
3920 {
3921 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3922
3923 n = -sn;
3924 }
3925 else
3926 {
3927 n *= radix;
3928 n -= c - '0';
3929 }
3930 }
3931 else
3932 {
3933 /* unsigned representation */
3934 n *= radix;
3935 n += c - '0'; /* FIXME this overflows anyway. */
3936 }
3937 }
3938 else
3939 overflow = 1;
3940
3941 /* This depends on large values being output in octal, which is
3942 what GCC does. */
3943 if (radix == 8)
3944 {
3945 if (nbits == 0)
3946 {
3947 if (c == '0')
3948 /* Ignore leading zeroes. */
3949 ;
3950 else if (c == '1')
3951 nbits = 1;
3952 else if (c == '2' || c == '3')
3953 nbits = 2;
3954 else
3955 nbits = 3;
3956 }
3957 else
3958 nbits += 3;
3959 }
3960 }
3961 if (end)
3962 {
3963 if (c && c != end)
3964 {
3965 if (bits != NULL)
3966 *bits = -1;
3967 return 0;
3968 }
3969 }
3970 else
3971 --p;
3972
3973 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3974 {
3975 /* We were supposed to parse a number with maximum
3976 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3977 if (bits != NULL)
3978 *bits = -1;
3979 return 0;
3980 }
3981
3982 *pp = p;
3983 if (overflow)
3984 {
3985 if (nbits == 0)
3986 {
3987 /* Large decimal constants are an error (because it is hard to
3988 count how many bits are in them). */
3989 if (bits != NULL)
3990 *bits = -1;
3991 return 0;
3992 }
3993
3994 /* -0x7f is the same as 0x80. So deal with it by adding one to
3995 the number of bits. Two's complement represention octals
3996 can't have a '-' in front. */
3997 if (sign == -1 && !twos_complement_representation)
3998 ++nbits;
3999 if (bits)
4000 *bits = nbits;
4001 }
4002 else
4003 {
4004 if (bits)
4005 *bits = 0;
4006 return n * sign;
4007 }
4008 /* It's *BITS which has the interesting information. */
4009 return 0;
4010 }
4011
4012 static struct type *
4013 read_range_type (const char **pp, int typenums[2], int type_size,
4014 struct objfile *objfile)
4015 {
4016 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4017 const char *orig_pp = *pp;
4018 int rangenums[2];
4019 long n2, n3;
4020 int n2bits, n3bits;
4021 int self_subrange;
4022 struct type *result_type;
4023 struct type *index_type = NULL;
4024
4025 /* First comes a type we are a subrange of.
4026 In C it is usually 0, 1 or the type being defined. */
4027 if (read_type_number (pp, rangenums) != 0)
4028 return error_type (pp, objfile);
4029 self_subrange = (rangenums[0] == typenums[0] &&
4030 rangenums[1] == typenums[1]);
4031
4032 if (**pp == '=')
4033 {
4034 *pp = orig_pp;
4035 index_type = read_type (pp, objfile);
4036 }
4037
4038 /* A semicolon should now follow; skip it. */
4039 if (**pp == ';')
4040 (*pp)++;
4041
4042 /* The remaining two operands are usually lower and upper bounds
4043 of the range. But in some special cases they mean something else. */
4044 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4045 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4046
4047 if (n2bits == -1 || n3bits == -1)
4048 return error_type (pp, objfile);
4049
4050 if (index_type)
4051 goto handle_true_range;
4052
4053 /* If limits are huge, must be large integral type. */
4054 if (n2bits != 0 || n3bits != 0)
4055 {
4056 char got_signed = 0;
4057 char got_unsigned = 0;
4058 /* Number of bits in the type. */
4059 int nbits = 0;
4060
4061 /* If a type size attribute has been specified, the bounds of
4062 the range should fit in this size. If the lower bounds needs
4063 more bits than the upper bound, then the type is signed. */
4064 if (n2bits <= type_size && n3bits <= type_size)
4065 {
4066 if (n2bits == type_size && n2bits > n3bits)
4067 got_signed = 1;
4068 else
4069 got_unsigned = 1;
4070 nbits = type_size;
4071 }
4072 /* Range from 0 to <large number> is an unsigned large integral type. */
4073 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4074 {
4075 got_unsigned = 1;
4076 nbits = n3bits;
4077 }
4078 /* Range from <large number> to <large number>-1 is a large signed
4079 integral type. Take care of the case where <large number> doesn't
4080 fit in a long but <large number>-1 does. */
4081 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4082 || (n2bits != 0 && n3bits == 0
4083 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4084 && n3 == LONG_MAX))
4085 {
4086 got_signed = 1;
4087 nbits = n2bits;
4088 }
4089
4090 if (got_signed || got_unsigned)
4091 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4092 else
4093 return error_type (pp, objfile);
4094 }
4095
4096 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4097 if (self_subrange && n2 == 0 && n3 == 0)
4098 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4099
4100 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4101 is the width in bytes.
4102
4103 Fortran programs appear to use this for complex types also. To
4104 distinguish between floats and complex, g77 (and others?) seem
4105 to use self-subranges for the complexes, and subranges of int for
4106 the floats.
4107
4108 Also note that for complexes, g77 sets n2 to the size of one of
4109 the member floats, not the whole complex beast. My guess is that
4110 this was to work well with pre-COMPLEX versions of gdb. */
4111
4112 if (n3 == 0 && n2 > 0)
4113 {
4114 struct type *float_type
4115 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4116
4117 if (self_subrange)
4118 return init_complex_type (objfile, NULL, float_type);
4119 else
4120 return float_type;
4121 }
4122
4123 /* If the upper bound is -1, it must really be an unsigned integral. */
4124
4125 else if (n2 == 0 && n3 == -1)
4126 {
4127 int bits = type_size;
4128
4129 if (bits <= 0)
4130 {
4131 /* We don't know its size. It is unsigned int or unsigned
4132 long. GCC 2.3.3 uses this for long long too, but that is
4133 just a GDB 3.5 compatibility hack. */
4134 bits = gdbarch_int_bit (gdbarch);
4135 }
4136
4137 return init_integer_type (objfile, bits, 1, NULL);
4138 }
4139
4140 /* Special case: char is defined (Who knows why) as a subrange of
4141 itself with range 0-127. */
4142 else if (self_subrange && n2 == 0 && n3 == 127)
4143 {
4144 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4145 0, NULL);
4146 TYPE_NOSIGN (type) = 1;
4147 return type;
4148 }
4149 /* We used to do this only for subrange of self or subrange of int. */
4150 else if (n2 == 0)
4151 {
4152 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4153 "unsigned long", and we already checked for that,
4154 so don't need to test for it here. */
4155
4156 if (n3 < 0)
4157 /* n3 actually gives the size. */
4158 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4159
4160 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4161 unsigned n-byte integer. But do require n to be a power of
4162 two; we don't want 3- and 5-byte integers flying around. */
4163 {
4164 int bytes;
4165 unsigned long bits;
4166
4167 bits = n3;
4168 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4169 bits >>= 8;
4170 if (bits == 0
4171 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4172 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4173 }
4174 }
4175 /* I think this is for Convex "long long". Since I don't know whether
4176 Convex sets self_subrange, I also accept that particular size regardless
4177 of self_subrange. */
4178 else if (n3 == 0 && n2 < 0
4179 && (self_subrange
4180 || n2 == -gdbarch_long_long_bit
4181 (gdbarch) / TARGET_CHAR_BIT))
4182 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4183 else if (n2 == -n3 - 1)
4184 {
4185 if (n3 == 0x7f)
4186 return init_integer_type (objfile, 8, 0, NULL);
4187 if (n3 == 0x7fff)
4188 return init_integer_type (objfile, 16, 0, NULL);
4189 if (n3 == 0x7fffffff)
4190 return init_integer_type (objfile, 32, 0, NULL);
4191 }
4192
4193 /* We have a real range type on our hands. Allocate space and
4194 return a real pointer. */
4195 handle_true_range:
4196
4197 if (self_subrange)
4198 index_type = objfile_type (objfile)->builtin_int;
4199 else
4200 index_type = *dbx_lookup_type (rangenums, objfile);
4201 if (index_type == NULL)
4202 {
4203 /* Does this actually ever happen? Is that why we are worrying
4204 about dealing with it rather than just calling error_type? */
4205
4206 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4207
4208 index_type = objfile_type (objfile)->builtin_int;
4209 }
4210
4211 result_type
4212 = create_static_range_type (NULL, index_type, n2, n3);
4213 return (result_type);
4214 }
4215
4216 /* Read in an argument list. This is a list of types, separated by commas
4217 and terminated with END. Return the list of types read in, or NULL
4218 if there is an error. */
4219
4220 static struct field *
4221 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4222 int *varargsp)
4223 {
4224 /* FIXME! Remove this arbitrary limit! */
4225 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4226 int n = 0, i;
4227 struct field *rval;
4228
4229 while (**pp != end)
4230 {
4231 if (**pp != ',')
4232 /* Invalid argument list: no ','. */
4233 return NULL;
4234 (*pp)++;
4235 STABS_CONTINUE (pp, objfile);
4236 types[n++] = read_type (pp, objfile);
4237 }
4238 (*pp)++; /* get past `end' (the ':' character). */
4239
4240 if (n == 0)
4241 {
4242 /* We should read at least the THIS parameter here. Some broken stabs
4243 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4244 have been present ";-16,(0,43)" reference instead. This way the
4245 excessive ";" marker prematurely stops the parameters parsing. */
4246
4247 complaint (_("Invalid (empty) method arguments"));
4248 *varargsp = 0;
4249 }
4250 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4251 *varargsp = 1;
4252 else
4253 {
4254 n--;
4255 *varargsp = 0;
4256 }
4257
4258 rval = XCNEWVEC (struct field, n);
4259 for (i = 0; i < n; i++)
4260 rval[i].type = types[i];
4261 *nargsp = n;
4262 return rval;
4263 }
4264 \f
4265 /* Common block handling. */
4266
4267 /* List of symbols declared since the last BCOMM. This list is a tail
4268 of local_symbols. When ECOMM is seen, the symbols on the list
4269 are noted so their proper addresses can be filled in later,
4270 using the common block base address gotten from the assembler
4271 stabs. */
4272
4273 static struct pending *common_block;
4274 static int common_block_i;
4275
4276 /* Name of the current common block. We get it from the BCOMM instead of the
4277 ECOMM to match IBM documentation (even though IBM puts the name both places
4278 like everyone else). */
4279 static char *common_block_name;
4280
4281 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4282 to remain after this function returns. */
4283
4284 void
4285 common_block_start (const char *name, struct objfile *objfile)
4286 {
4287 if (common_block_name != NULL)
4288 {
4289 complaint (_("Invalid symbol data: common block within common block"));
4290 }
4291 common_block = *get_local_symbols ();
4292 common_block_i = common_block ? common_block->nsyms : 0;
4293 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4294 }
4295
4296 /* Process a N_ECOMM symbol. */
4297
4298 void
4299 common_block_end (struct objfile *objfile)
4300 {
4301 /* Symbols declared since the BCOMM are to have the common block
4302 start address added in when we know it. common_block and
4303 common_block_i point to the first symbol after the BCOMM in
4304 the local_symbols list; copy the list and hang it off the
4305 symbol for the common block name for later fixup. */
4306 int i;
4307 struct symbol *sym;
4308 struct pending *newobj = 0;
4309 struct pending *next;
4310 int j;
4311
4312 if (common_block_name == NULL)
4313 {
4314 complaint (_("ECOMM symbol unmatched by BCOMM"));
4315 return;
4316 }
4317
4318 sym = allocate_symbol (objfile);
4319 /* Note: common_block_name already saved on objfile_obstack. */
4320 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4321 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4322
4323 /* Now we copy all the symbols which have been defined since the BCOMM. */
4324
4325 /* Copy all the struct pendings before common_block. */
4326 for (next = *get_local_symbols ();
4327 next != NULL && next != common_block;
4328 next = next->next)
4329 {
4330 for (j = 0; j < next->nsyms; j++)
4331 add_symbol_to_list (next->symbol[j], &newobj);
4332 }
4333
4334 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4335 NULL, it means copy all the local symbols (which we already did
4336 above). */
4337
4338 if (common_block != NULL)
4339 for (j = common_block_i; j < common_block->nsyms; j++)
4340 add_symbol_to_list (common_block->symbol[j], &newobj);
4341
4342 SYMBOL_TYPE (sym) = (struct type *) newobj;
4343
4344 /* Should we be putting local_symbols back to what it was?
4345 Does it matter? */
4346
4347 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4348 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4349 global_sym_chain[i] = sym;
4350 common_block_name = NULL;
4351 }
4352
4353 /* Add a common block's start address to the offset of each symbol
4354 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4355 the common block name). */
4356
4357 static void
4358 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4359 {
4360 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4361
4362 for (; next; next = next->next)
4363 {
4364 int j;
4365
4366 for (j = next->nsyms - 1; j >= 0; j--)
4367 SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
4368 SYMBOL_VALUE_ADDRESS (next->symbol[j])
4369 + valu);
4370 }
4371 }
4372 \f
4373
4374
4375 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4376 See add_undefined_type for more details. */
4377
4378 static void
4379 add_undefined_type_noname (struct type *type, int typenums[2])
4380 {
4381 struct nat nat;
4382
4383 nat.typenums[0] = typenums [0];
4384 nat.typenums[1] = typenums [1];
4385 nat.type = type;
4386
4387 if (noname_undefs_length == noname_undefs_allocated)
4388 {
4389 noname_undefs_allocated *= 2;
4390 noname_undefs = (struct nat *)
4391 xrealloc ((char *) noname_undefs,
4392 noname_undefs_allocated * sizeof (struct nat));
4393 }
4394 noname_undefs[noname_undefs_length++] = nat;
4395 }
4396
4397 /* Add TYPE to the UNDEF_TYPES vector.
4398 See add_undefined_type for more details. */
4399
4400 static void
4401 add_undefined_type_1 (struct type *type)
4402 {
4403 if (undef_types_length == undef_types_allocated)
4404 {
4405 undef_types_allocated *= 2;
4406 undef_types = (struct type **)
4407 xrealloc ((char *) undef_types,
4408 undef_types_allocated * sizeof (struct type *));
4409 }
4410 undef_types[undef_types_length++] = type;
4411 }
4412
4413 /* What about types defined as forward references inside of a small lexical
4414 scope? */
4415 /* Add a type to the list of undefined types to be checked through
4416 once this file has been read in.
4417
4418 In practice, we actually maintain two such lists: The first list
4419 (UNDEF_TYPES) is used for types whose name has been provided, and
4420 concerns forward references (eg 'xs' or 'xu' forward references);
4421 the second list (NONAME_UNDEFS) is used for types whose name is
4422 unknown at creation time, because they were referenced through
4423 their type number before the actual type was declared.
4424 This function actually adds the given type to the proper list. */
4425
4426 static void
4427 add_undefined_type (struct type *type, int typenums[2])
4428 {
4429 if (TYPE_NAME (type) == NULL)
4430 add_undefined_type_noname (type, typenums);
4431 else
4432 add_undefined_type_1 (type);
4433 }
4434
4435 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4436
4437 static void
4438 cleanup_undefined_types_noname (struct objfile *objfile)
4439 {
4440 int i;
4441
4442 for (i = 0; i < noname_undefs_length; i++)
4443 {
4444 struct nat nat = noname_undefs[i];
4445 struct type **type;
4446
4447 type = dbx_lookup_type (nat.typenums, objfile);
4448 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4449 {
4450 /* The instance flags of the undefined type are still unset,
4451 and needs to be copied over from the reference type.
4452 Since replace_type expects them to be identical, we need
4453 to set these flags manually before hand. */
4454 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4455 replace_type (nat.type, *type);
4456 }
4457 }
4458
4459 noname_undefs_length = 0;
4460 }
4461
4462 /* Go through each undefined type, see if it's still undefined, and fix it
4463 up if possible. We have two kinds of undefined types:
4464
4465 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4466 Fix: update array length using the element bounds
4467 and the target type's length.
4468 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4469 yet defined at the time a pointer to it was made.
4470 Fix: Do a full lookup on the struct/union tag. */
4471
4472 static void
4473 cleanup_undefined_types_1 (void)
4474 {
4475 struct type **type;
4476
4477 /* Iterate over every undefined type, and look for a symbol whose type
4478 matches our undefined type. The symbol matches if:
4479 1. It is a typedef in the STRUCT domain;
4480 2. It has the same name, and same type code;
4481 3. The instance flags are identical.
4482
4483 It is important to check the instance flags, because we have seen
4484 examples where the debug info contained definitions such as:
4485
4486 "foo_t:t30=B31=xefoo_t:"
4487
4488 In this case, we have created an undefined type named "foo_t" whose
4489 instance flags is null (when processing "xefoo_t"), and then created
4490 another type with the same name, but with different instance flags
4491 ('B' means volatile). I think that the definition above is wrong,
4492 since the same type cannot be volatile and non-volatile at the same
4493 time, but we need to be able to cope with it when it happens. The
4494 approach taken here is to treat these two types as different. */
4495
4496 for (type = undef_types; type < undef_types + undef_types_length; type++)
4497 {
4498 switch (TYPE_CODE (*type))
4499 {
4500
4501 case TYPE_CODE_STRUCT:
4502 case TYPE_CODE_UNION:
4503 case TYPE_CODE_ENUM:
4504 {
4505 /* Check if it has been defined since. Need to do this here
4506 as well as in check_typedef to deal with the (legitimate in
4507 C though not C++) case of several types with the same name
4508 in different source files. */
4509 if (TYPE_STUB (*type))
4510 {
4511 struct pending *ppt;
4512 int i;
4513 /* Name of the type, without "struct" or "union". */
4514 const char *type_name = TYPE_NAME (*type);
4515
4516 if (type_name == NULL)
4517 {
4518 complaint (_("need a type name"));
4519 break;
4520 }
4521 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4522 {
4523 for (i = 0; i < ppt->nsyms; i++)
4524 {
4525 struct symbol *sym = ppt->symbol[i];
4526
4527 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4528 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4529 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4530 TYPE_CODE (*type))
4531 && (TYPE_INSTANCE_FLAGS (*type) ==
4532 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4533 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4534 type_name) == 0)
4535 replace_type (*type, SYMBOL_TYPE (sym));
4536 }
4537 }
4538 }
4539 }
4540 break;
4541
4542 default:
4543 {
4544 complaint (_("forward-referenced types left unresolved, "
4545 "type code %d."),
4546 TYPE_CODE (*type));
4547 }
4548 break;
4549 }
4550 }
4551
4552 undef_types_length = 0;
4553 }
4554
4555 /* Try to fix all the undefined types we ecountered while processing
4556 this unit. */
4557
4558 void
4559 cleanup_undefined_stabs_types (struct objfile *objfile)
4560 {
4561 cleanup_undefined_types_1 ();
4562 cleanup_undefined_types_noname (objfile);
4563 }
4564
4565 /* See stabsread.h. */
4566
4567 void
4568 scan_file_globals (struct objfile *objfile)
4569 {
4570 int hash;
4571 struct symbol *sym, *prev;
4572 struct objfile *resolve_objfile;
4573
4574 /* SVR4 based linkers copy referenced global symbols from shared
4575 libraries to the main executable.
4576 If we are scanning the symbols for a shared library, try to resolve
4577 them from the minimal symbols of the main executable first. */
4578
4579 if (symfile_objfile && objfile != symfile_objfile)
4580 resolve_objfile = symfile_objfile;
4581 else
4582 resolve_objfile = objfile;
4583
4584 while (1)
4585 {
4586 /* Avoid expensive loop through all minimal symbols if there are
4587 no unresolved symbols. */
4588 for (hash = 0; hash < HASHSIZE; hash++)
4589 {
4590 if (global_sym_chain[hash])
4591 break;
4592 }
4593 if (hash >= HASHSIZE)
4594 return;
4595
4596 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4597 {
4598 QUIT;
4599
4600 /* Skip static symbols. */
4601 switch (MSYMBOL_TYPE (msymbol))
4602 {
4603 case mst_file_text:
4604 case mst_file_data:
4605 case mst_file_bss:
4606 continue;
4607 default:
4608 break;
4609 }
4610
4611 prev = NULL;
4612
4613 /* Get the hash index and check all the symbols
4614 under that hash index. */
4615
4616 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4617
4618 for (sym = global_sym_chain[hash]; sym;)
4619 {
4620 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4621 SYMBOL_LINKAGE_NAME (sym)) == 0)
4622 {
4623 /* Splice this symbol out of the hash chain and
4624 assign the value we have to it. */
4625 if (prev)
4626 {
4627 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4628 }
4629 else
4630 {
4631 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4632 }
4633
4634 /* Check to see whether we need to fix up a common block. */
4635 /* Note: this code might be executed several times for
4636 the same symbol if there are multiple references. */
4637 if (sym)
4638 {
4639 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4640 {
4641 fix_common_block (sym,
4642 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4643 msymbol));
4644 }
4645 else
4646 {
4647 SET_SYMBOL_VALUE_ADDRESS
4648 (sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4649 msymbol));
4650 }
4651 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4652 }
4653
4654 if (prev)
4655 {
4656 sym = SYMBOL_VALUE_CHAIN (prev);
4657 }
4658 else
4659 {
4660 sym = global_sym_chain[hash];
4661 }
4662 }
4663 else
4664 {
4665 prev = sym;
4666 sym = SYMBOL_VALUE_CHAIN (sym);
4667 }
4668 }
4669 }
4670 if (resolve_objfile == objfile)
4671 break;
4672 resolve_objfile = objfile;
4673 }
4674
4675 /* Change the storage class of any remaining unresolved globals to
4676 LOC_UNRESOLVED and remove them from the chain. */
4677 for (hash = 0; hash < HASHSIZE; hash++)
4678 {
4679 sym = global_sym_chain[hash];
4680 while (sym)
4681 {
4682 prev = sym;
4683 sym = SYMBOL_VALUE_CHAIN (sym);
4684
4685 /* Change the symbol address from the misleading chain value
4686 to address zero. */
4687 SET_SYMBOL_VALUE_ADDRESS (prev, 0);
4688
4689 /* Complain about unresolved common block symbols. */
4690 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4691 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4692 else
4693 complaint (_("%s: common block `%s' from "
4694 "global_sym_chain unresolved"),
4695 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4696 }
4697 }
4698 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4699 }
4700
4701 /* Initialize anything that needs initializing when starting to read
4702 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4703 to a psymtab. */
4704
4705 void
4706 stabsread_init (void)
4707 {
4708 }
4709
4710 /* Initialize anything that needs initializing when a completely new
4711 symbol file is specified (not just adding some symbols from another
4712 file, e.g. a shared library). */
4713
4714 void
4715 stabsread_new_init (void)
4716 {
4717 /* Empty the hash table of global syms looking for values. */
4718 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4719 }
4720
4721 /* Initialize anything that needs initializing at the same time as
4722 start_symtab() is called. */
4723
4724 void
4725 start_stabs (void)
4726 {
4727 global_stabs = NULL; /* AIX COFF */
4728 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4729 n_this_object_header_files = 1;
4730 type_vector_length = 0;
4731 type_vector = (struct type **) 0;
4732 within_function = 0;
4733
4734 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4735 common_block_name = NULL;
4736 }
4737
4738 /* Call after end_symtab(). */
4739
4740 void
4741 end_stabs (void)
4742 {
4743 if (type_vector)
4744 {
4745 xfree (type_vector);
4746 }
4747 type_vector = 0;
4748 type_vector_length = 0;
4749 previous_stab_code = 0;
4750 }
4751
4752 void
4753 finish_global_stabs (struct objfile *objfile)
4754 {
4755 if (global_stabs)
4756 {
4757 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4758 xfree (global_stabs);
4759 global_stabs = NULL;
4760 }
4761 }
4762
4763 /* Find the end of the name, delimited by a ':', but don't match
4764 ObjC symbols which look like -[Foo bar::]:bla. */
4765 static const char *
4766 find_name_end (const char *name)
4767 {
4768 const char *s = name;
4769
4770 if (s[0] == '-' || *s == '+')
4771 {
4772 /* Must be an ObjC method symbol. */
4773 if (s[1] != '[')
4774 {
4775 error (_("invalid symbol name \"%s\""), name);
4776 }
4777 s = strchr (s, ']');
4778 if (s == NULL)
4779 {
4780 error (_("invalid symbol name \"%s\""), name);
4781 }
4782 return strchr (s, ':');
4783 }
4784 else
4785 {
4786 return strchr (s, ':');
4787 }
4788 }
4789
4790 /* See stabsread.h. */
4791
4792 int
4793 hashname (const char *name)
4794 {
4795 return hash (name, strlen (name)) % HASHSIZE;
4796 }
4797
4798 /* Initializer for this module. */
4799
4800 void
4801 _initialize_stabsread (void)
4802 {
4803 undef_types_allocated = 20;
4804 undef_types_length = 0;
4805 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4806
4807 noname_undefs_allocated = 20;
4808 noname_undefs_length = 0;
4809 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4810
4811 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4812 &stab_register_funcs);
4813 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4814 &stab_register_funcs);
4815 }
This page took 0.13074 seconds and 4 git commands to generate.