da4632f5679f1aea6ded7aac2482ee43d3934e8b
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include <string.h>
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42
43 #include <ctype.h>
44
45 /* Ask stabsread.h to define the vars it normally declares `extern'. */
46 #define EXTERN /**/
47 #include "stabsread.h" /* Our own declarations */
48 #undef EXTERN
49
50 /* The routines that read and process a complete stabs for a C struct or
51 C++ class pass lists of data member fields and lists of member function
52 fields in an instance of a field_info structure, as defined below.
53 This is part of some reorganization of low level C++ support and is
54 expected to eventually go away... (FIXME) */
55
56 struct field_info
57 {
58 struct nextfield
59 {
60 struct nextfield *next;
61
62 /* This is the raw visibility from the stab. It is not checked
63 for being one of the visibilities we recognize, so code which
64 examines this field better be able to deal. */
65 int visibility;
66
67 struct field field;
68 } *list;
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 } *fnlist;
74 };
75
76 static struct type *
77 dbx_alloc_type PARAMS ((int [2], struct objfile *));
78
79 static long read_huge_number PARAMS ((char **, int, int *));
80
81 static struct type *error_type PARAMS ((char **));
82
83 static void
84 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
85 struct objfile *));
86
87 static void
88 fix_common_block PARAMS ((struct symbol *, int));
89
90 static int
91 read_type_number PARAMS ((char **, int *));
92
93 static struct type *
94 read_range_type PARAMS ((char **, int [2], struct objfile *));
95
96 static struct type *
97 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
98
99 static struct type *
100 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
101
102 static struct type *
103 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
104
105 static struct type *
106 rs6000_builtin_type PARAMS ((int));
107
108 static int
109 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
122 struct objfile *));
123
124 static int
125 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
126
127 static int
128 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
129 struct objfile *));
130
131 static struct type *
132 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
133
134 static struct type *
135 read_array_type PARAMS ((char **, struct type *, struct objfile *));
136
137 static struct type **
138 read_args PARAMS ((char **, int, struct objfile *));
139
140 static int
141 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
142 struct objfile *));
143
144 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
145 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
146
147 /* Define this as 1 if a pcc declaration of a char or short argument
148 gives the correct address. Otherwise assume pcc gives the
149 address of the corresponding int, which is not the same on a
150 big-endian machine. */
151
152 #ifndef BELIEVE_PCC_PROMOTION
153 #define BELIEVE_PCC_PROMOTION 0
154 #endif
155
156 struct complaint invalid_cpp_abbrev_complaint =
157 {"invalid C++ abbreviation `%s'", 0, 0};
158
159 struct complaint invalid_cpp_type_complaint =
160 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
161
162 struct complaint member_fn_complaint =
163 {"member function type missing, got '%c'", 0, 0};
164
165 struct complaint const_vol_complaint =
166 {"const/volatile indicator missing, got '%c'", 0, 0};
167
168 struct complaint error_type_complaint =
169 {"debug info mismatch between compiler and debugger", 0, 0};
170
171 struct complaint invalid_member_complaint =
172 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
173
174 struct complaint range_type_base_complaint =
175 {"base type %d of range type is not defined", 0, 0};
176
177 struct complaint reg_value_complaint =
178 {"register number too large in symbol %s", 0, 0};
179
180 struct complaint vtbl_notfound_complaint =
181 {"virtual function table pointer not found when defining class `%s'", 0, 0};
182
183 struct complaint unrecognized_cplus_name_complaint =
184 {"Unknown C++ symbol name `%s'", 0, 0};
185
186 struct complaint rs6000_builtin_complaint =
187 {"Unknown builtin type %d", 0, 0};
188
189 struct complaint stabs_general_complaint =
190 {"%s", 0, 0};
191
192 /* Make a list of forward references which haven't been defined. */
193
194 static struct type **undef_types;
195 static int undef_types_allocated;
196 static int undef_types_length;
197
198 /* Check for and handle cretinous stabs symbol name continuation! */
199 #define STABS_CONTINUE(pp) \
200 do { \
201 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
202 *(pp) = next_symbol_text (); \
203 } while (0)
204 \f
205 /* FIXME: These probably should be our own types (like rs6000_builtin_type
206 has its own types) rather than builtin_type_*. */
207 static struct type **os9k_type_vector[] = {
208 0,
209 &builtin_type_int,
210 &builtin_type_char,
211 &builtin_type_long,
212 &builtin_type_short,
213 &builtin_type_unsigned_char,
214 &builtin_type_unsigned_short,
215 &builtin_type_unsigned_long,
216 &builtin_type_unsigned_int,
217 &builtin_type_float,
218 &builtin_type_double,
219 &builtin_type_void,
220 &builtin_type_long_double
221 };
222
223 static void os9k_init_type_vector PARAMS ((struct type **));
224
225 static void
226 os9k_init_type_vector(tv)
227 struct type **tv;
228 {
229 int i;
230 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
231 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
232 }
233
234 /* Look up a dbx type-number pair. Return the address of the slot
235 where the type for that number-pair is stored.
236 The number-pair is in TYPENUMS.
237
238 This can be used for finding the type associated with that pair
239 or for associating a new type with the pair. */
240
241 struct type **
242 dbx_lookup_type (typenums)
243 int typenums[2];
244 {
245 register int filenum = typenums[0];
246 register int index = typenums[1];
247 unsigned old_len;
248 register int real_filenum;
249 register struct header_file *f;
250 int f_orig_length;
251
252 if (filenum == -1) /* -1,-1 is for temporary types. */
253 return 0;
254
255 if (filenum < 0 || filenum >= n_this_object_header_files)
256 {
257 static struct complaint msg = {"\
258 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
259 0, 0};
260 complain (&msg, filenum, index, symnum);
261 goto error_return;
262 }
263
264 if (filenum == 0)
265 {
266 if (index < 0)
267 {
268 /* Caller wants address of address of type. We think
269 that negative (rs6k builtin) types will never appear as
270 "lvalues", (nor should they), so we stuff the real type
271 pointer into a temp, and return its address. If referenced,
272 this will do the right thing. */
273 static struct type *temp_type;
274
275 temp_type = rs6000_builtin_type(index);
276 return &temp_type;
277 }
278
279 /* Type is defined outside of header files.
280 Find it in this object file's type vector. */
281 if (index >= type_vector_length)
282 {
283 old_len = type_vector_length;
284 if (old_len == 0)
285 {
286 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
287 type_vector = (struct type **)
288 malloc (type_vector_length * sizeof (struct type *));
289 }
290 while (index >= type_vector_length)
291 {
292 type_vector_length *= 2;
293 }
294 type_vector = (struct type **)
295 xrealloc ((char *) type_vector,
296 (type_vector_length * sizeof (struct type *)));
297 memset (&type_vector[old_len], 0,
298 (type_vector_length - old_len) * sizeof (struct type *));
299
300 if (os9k_stabs)
301 /* Deal with OS9000 fundamental types. */
302 os9k_init_type_vector (type_vector);
303 }
304 return (&type_vector[index]);
305 }
306 else
307 {
308 real_filenum = this_object_header_files[filenum];
309
310 if (real_filenum >= n_header_files)
311 {
312 struct type *temp_type;
313 struct type **temp_type_p;
314
315 warning ("GDB internal error: bad real_filenum");
316
317 error_return:
318 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
319 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
320 *temp_type_p = temp_type;
321 return temp_type_p;
322 }
323
324 f = &header_files[real_filenum];
325
326 f_orig_length = f->length;
327 if (index >= f_orig_length)
328 {
329 while (index >= f->length)
330 {
331 f->length *= 2;
332 }
333 f->vector = (struct type **)
334 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
335 memset (&f->vector[f_orig_length], 0,
336 (f->length - f_orig_length) * sizeof (struct type *));
337 }
338 return (&f->vector[index]);
339 }
340 }
341
342 /* Make sure there is a type allocated for type numbers TYPENUMS
343 and return the type object.
344 This can create an empty (zeroed) type object.
345 TYPENUMS may be (-1, -1) to return a new type object that is not
346 put into the type vector, and so may not be referred to by number. */
347
348 static struct type *
349 dbx_alloc_type (typenums, objfile)
350 int typenums[2];
351 struct objfile *objfile;
352 {
353 register struct type **type_addr;
354
355 if (typenums[0] == -1)
356 {
357 return (alloc_type (objfile));
358 }
359
360 type_addr = dbx_lookup_type (typenums);
361
362 /* If we are referring to a type not known at all yet,
363 allocate an empty type for it.
364 We will fill it in later if we find out how. */
365 if (*type_addr == 0)
366 {
367 *type_addr = alloc_type (objfile);
368 }
369
370 return (*type_addr);
371 }
372
373 /* for all the stabs in a given stab vector, build appropriate types
374 and fix their symbols in given symbol vector. */
375
376 static void
377 patch_block_stabs (symbols, stabs, objfile)
378 struct pending *symbols;
379 struct pending_stabs *stabs;
380 struct objfile *objfile;
381 {
382 int ii;
383 char *name;
384 char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char*) strchr (name, ':');
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *)strchr(pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp-name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = (struct symbol *)
417 obstack_alloc (&objfile->symbol_obstack,
418 sizeof (struct symbol));
419
420 memset (sym, 0, sizeof (struct symbol));
421 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
422 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
423 SYMBOL_NAME (sym) =
424 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
425 pp += 2;
426 if (*(pp-1) == 'F' || *(pp-1) == 'f')
427 {
428 /* I don't think the linker does this with functions,
429 so as far as I know this is never executed.
430 But it doesn't hurt to check. */
431 SYMBOL_TYPE (sym) =
432 lookup_function_type (read_type (&pp, objfile));
433 }
434 else
435 {
436 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
437 }
438 add_symbol_to_list (sym, &global_symbols);
439 }
440 else
441 {
442 pp += 2;
443 if (*(pp-1) == 'F' || *(pp-1) == 'f')
444 {
445 SYMBOL_TYPE (sym) =
446 lookup_function_type (read_type (&pp, objfile));
447 }
448 else
449 {
450 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
451 }
452 }
453 }
454 }
455 }
456
457 \f
458 /* Read a number by which a type is referred to in dbx data,
459 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
460 Just a single number N is equivalent to (0,N).
461 Return the two numbers by storing them in the vector TYPENUMS.
462 TYPENUMS will then be used as an argument to dbx_lookup_type.
463
464 Returns 0 for success, -1 for error. */
465
466 static int
467 read_type_number (pp, typenums)
468 register char **pp;
469 register int *typenums;
470 {
471 int nbits;
472 if (**pp == '(')
473 {
474 (*pp)++;
475 typenums[0] = read_huge_number (pp, ',', &nbits);
476 if (nbits != 0) return -1;
477 typenums[1] = read_huge_number (pp, ')', &nbits);
478 if (nbits != 0) return -1;
479 }
480 else
481 {
482 typenums[0] = 0;
483 typenums[1] = read_huge_number (pp, 0, &nbits);
484 if (nbits != 0) return -1;
485 }
486 return 0;
487 }
488
489 \f
490 /* To handle GNU C++ typename abbreviation, we need to be able to
491 fill in a type's name as soon as space for that type is allocated.
492 `type_synonym_name' is the name of the type being allocated.
493 It is cleared as soon as it is used (lest all allocated types
494 get this name). */
495
496 static char *type_synonym_name;
497
498 #if !defined (REG_STRUCT_HAS_ADDR)
499 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
500 #endif
501
502 /* ARGSUSED */
503 struct symbol *
504 define_symbol (valu, string, desc, type, objfile)
505 CORE_ADDR valu;
506 char *string;
507 int desc;
508 int type;
509 struct objfile *objfile;
510 {
511 register struct symbol *sym;
512 char *p = (char *) strchr (string, ':');
513 int deftype;
514 int synonym = 0;
515 register int i;
516
517 /* We would like to eliminate nameless symbols, but keep their types.
518 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
519 to type 2, but, should not create a symbol to address that type. Since
520 the symbol will be nameless, there is no way any user can refer to it. */
521
522 int nameless;
523
524 /* Ignore syms with empty names. */
525 if (string[0] == 0)
526 return 0;
527
528 /* Ignore old-style symbols from cc -go */
529 if (p == 0)
530 return 0;
531
532 while (p[1] == ':')
533 {
534 p += 2;
535 p = strchr(p, ':');
536 }
537
538 /* If a nameless stab entry, all we need is the type, not the symbol.
539 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
540 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
541
542 sym = (struct symbol *)
543 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
544 memset (sym, 0, sizeof (struct symbol));
545
546 switch (type & N_TYPE)
547 {
548 case N_TEXT:
549 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
550 break;
551 case N_DATA:
552 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
553 break;
554 case N_BSS:
555 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
556 break;
557 }
558
559 if (processing_gcc_compilation)
560 {
561 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
562 number of bytes occupied by a type or object, which we ignore. */
563 SYMBOL_LINE(sym) = desc;
564 }
565 else
566 {
567 SYMBOL_LINE(sym) = 0; /* unknown */
568 }
569
570 if (string[0] == CPLUS_MARKER)
571 {
572 /* Special GNU C++ names. */
573 switch (string[1])
574 {
575 case 't':
576 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
577 &objfile -> symbol_obstack);
578 break;
579
580 case 'v': /* $vtbl_ptr_type */
581 /* Was: SYMBOL_NAME (sym) = "vptr"; */
582 goto normal;
583
584 case 'e':
585 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
586 &objfile -> symbol_obstack);
587 break;
588
589 case '_':
590 /* This was an anonymous type that was never fixed up. */
591 goto normal;
592
593 default:
594 complain (&unrecognized_cplus_name_complaint, string);
595 goto normal; /* Do *something* with it */
596 }
597 }
598 else
599 {
600 normal:
601 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
602 SYMBOL_NAME (sym) = (char *)
603 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
604 /* Open-coded memcpy--saves function call time. */
605 /* FIXME: Does it really? Try replacing with simple strcpy and
606 try it on an executable with a large symbol table. */
607 /* FIXME: considering that gcc can open code memcpy anyway, I
608 doubt it. xoxorich. */
609 {
610 register char *p1 = string;
611 register char *p2 = SYMBOL_NAME (sym);
612 while (p1 != p)
613 {
614 *p2++ = *p1++;
615 }
616 *p2++ = '\0';
617 }
618
619 /* If this symbol is from a C++ compilation, then attempt to cache the
620 demangled form for future reference. This is a typical time versus
621 space tradeoff, that was decided in favor of time because it sped up
622 C++ symbol lookups by a factor of about 20. */
623
624 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
625 }
626 p++;
627
628 /* Determine the type of name being defined. */
629 #if 0
630 /* Getting GDB to correctly skip the symbol on an undefined symbol
631 descriptor and not ever dump core is a very dodgy proposition if
632 we do things this way. I say the acorn RISC machine can just
633 fix their compiler. */
634 /* The Acorn RISC machine's compiler can put out locals that don't
635 start with "234=" or "(3,4)=", so assume anything other than the
636 deftypes we know how to handle is a local. */
637 if (!strchr ("cfFGpPrStTvVXCR", *p))
638 #else
639 if (isdigit (*p) || *p == '(' || *p == '-')
640 #endif
641 deftype = 'l';
642 else
643 deftype = *p++;
644
645 switch (deftype)
646 {
647 case 'c':
648 /* c is a special case, not followed by a type-number.
649 SYMBOL:c=iVALUE for an integer constant symbol.
650 SYMBOL:c=rVALUE for a floating constant symbol.
651 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
652 e.g. "b:c=e6,0" for "const b = blob1"
653 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
654 if (*p != '=')
655 {
656 SYMBOL_CLASS (sym) = LOC_CONST;
657 SYMBOL_TYPE (sym) = error_type (&p);
658 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
659 add_symbol_to_list (sym, &file_symbols);
660 return sym;
661 }
662 ++p;
663 switch (*p++)
664 {
665 case 'r':
666 {
667 double d = atof (p);
668 char *dbl_valu;
669
670 /* FIXME-if-picky-about-floating-accuracy: Should be using
671 target arithmetic to get the value. real.c in GCC
672 probably has the necessary code. */
673
674 /* FIXME: lookup_fundamental_type is a hack. We should be
675 creating a type especially for the type of float constants.
676 Problem is, what type should it be?
677
678 Also, what should the name of this type be? Should we
679 be using 'S' constants (see stabs.texinfo) instead? */
680
681 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
682 FT_DBL_PREC_FLOAT);
683 dbl_valu = (char *)
684 obstack_alloc (&objfile -> symbol_obstack,
685 TYPE_LENGTH (SYMBOL_TYPE (sym)));
686 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
687 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
688 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
689 }
690 break;
691 case 'i':
692 {
693 /* Defining integer constants this way is kind of silly,
694 since 'e' constants allows the compiler to give not
695 only the value, but the type as well. C has at least
696 int, long, unsigned int, and long long as constant
697 types; other languages probably should have at least
698 unsigned as well as signed constants. */
699
700 /* We just need one int constant type for all objfiles.
701 It doesn't depend on languages or anything (arguably its
702 name should be a language-specific name for a type of
703 that size, but I'm inclined to say that if the compiler
704 wants a nice name for the type, it can use 'e'). */
705 static struct type *int_const_type;
706
707 /* Yes, this is as long as a *host* int. That is because we
708 use atoi. */
709 if (int_const_type == NULL)
710 int_const_type =
711 init_type (TYPE_CODE_INT,
712 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
713 "integer constant",
714 (struct objfile *)NULL);
715 SYMBOL_TYPE (sym) = int_const_type;
716 SYMBOL_VALUE (sym) = atoi (p);
717 SYMBOL_CLASS (sym) = LOC_CONST;
718 }
719 break;
720 case 'e':
721 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
722 can be represented as integral.
723 e.g. "b:c=e6,0" for "const b = blob1"
724 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
725 {
726 SYMBOL_CLASS (sym) = LOC_CONST;
727 SYMBOL_TYPE (sym) = read_type (&p, objfile);
728
729 if (*p != ',')
730 {
731 SYMBOL_TYPE (sym) = error_type (&p);
732 break;
733 }
734 ++p;
735
736 /* If the value is too big to fit in an int (perhaps because
737 it is unsigned), or something like that, we silently get
738 a bogus value. The type and everything else about it is
739 correct. Ideally, we should be using whatever we have
740 available for parsing unsigned and long long values,
741 however. */
742 SYMBOL_VALUE (sym) = atoi (p);
743 }
744 break;
745 default:
746 {
747 SYMBOL_CLASS (sym) = LOC_CONST;
748 SYMBOL_TYPE (sym) = error_type (&p);
749 }
750 }
751 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
752 add_symbol_to_list (sym, &file_symbols);
753 return sym;
754
755 case 'C':
756 /* The name of a caught exception. */
757 SYMBOL_TYPE (sym) = read_type (&p, objfile);
758 SYMBOL_CLASS (sym) = LOC_LABEL;
759 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
760 SYMBOL_VALUE_ADDRESS (sym) = valu;
761 add_symbol_to_list (sym, &local_symbols);
762 break;
763
764 case 'f':
765 /* A static function definition. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 SYMBOL_CLASS (sym) = LOC_BLOCK;
768 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
769 add_symbol_to_list (sym, &file_symbols);
770 /* fall into process_function_types. */
771
772 process_function_types:
773 /* Function result types are described as the result type in stabs.
774 We need to convert this to the function-returning-type-X type
775 in GDB. E.g. "int" is converted to "function returning int". */
776 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
777 {
778 #if 0
779 /* This code doesn't work -- it needs to realloc and can't. */
780 /* Attempt to set up to record a function prototype... */
781 struct type *new = alloc_type (objfile);
782
783 /* Generate a template for the type of this function. The
784 types of the arguments will be added as we read the symbol
785 table. */
786 *new = *lookup_function_type (SYMBOL_TYPE(sym));
787 SYMBOL_TYPE(sym) = new;
788 TYPE_OBJFILE (new) = objfile;
789 in_function_type = new;
790 #else
791 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
792 #endif
793 }
794 /* fall into process_prototype_types */
795
796 process_prototype_types:
797 /* Sun acc puts declared types of arguments here. We don't care
798 about their actual types (FIXME -- we should remember the whole
799 function prototype), but the list may define some new types
800 that we have to remember, so we must scan it now. */
801 while (*p == ';') {
802 p++;
803 read_type (&p, objfile);
804 }
805 break;
806
807 case 'F':
808 /* A global function definition. */
809 SYMBOL_TYPE (sym) = read_type (&p, objfile);
810 SYMBOL_CLASS (sym) = LOC_BLOCK;
811 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
812 add_symbol_to_list (sym, &global_symbols);
813 goto process_function_types;
814
815 case 'G':
816 /* For a class G (global) symbol, it appears that the
817 value is not correct. It is necessary to search for the
818 corresponding linker definition to find the value.
819 These definitions appear at the end of the namelist. */
820 SYMBOL_TYPE (sym) = read_type (&p, objfile);
821 i = hashname (SYMBOL_NAME (sym));
822 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
823 global_sym_chain[i] = sym;
824 SYMBOL_CLASS (sym) = LOC_STATIC;
825 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
826 add_symbol_to_list (sym, &global_symbols);
827 break;
828
829 /* This case is faked by a conditional above,
830 when there is no code letter in the dbx data.
831 Dbx data never actually contains 'l'. */
832 case 's':
833 case 'l':
834 SYMBOL_TYPE (sym) = read_type (&p, objfile);
835 SYMBOL_CLASS (sym) = LOC_LOCAL;
836 SYMBOL_VALUE (sym) = valu;
837 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
838 add_symbol_to_list (sym, &local_symbols);
839 break;
840
841 case 'p':
842 if (*p == 'F')
843 /* pF is a two-letter code that means a function parameter in Fortran.
844 The type-number specifies the type of the return value.
845 Translate it into a pointer-to-function type. */
846 {
847 p++;
848 SYMBOL_TYPE (sym)
849 = lookup_pointer_type
850 (lookup_function_type (read_type (&p, objfile)));
851 }
852 else
853 SYMBOL_TYPE (sym) = read_type (&p, objfile);
854
855 /* Normally this is a parameter, a LOC_ARG. On the i960, it
856 can also be a LOC_LOCAL_ARG depending on symbol type. */
857 #ifndef DBX_PARM_SYMBOL_CLASS
858 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
859 #endif
860
861 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
862 SYMBOL_VALUE (sym) = valu;
863 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
864 #if 0
865 /* This doesn't work yet. */
866 add_param_to_type (&in_function_type, sym);
867 #endif
868 add_symbol_to_list (sym, &local_symbols);
869
870 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
871 /* On little-endian machines, this crud is never necessary, and,
872 if the extra bytes contain garbage, is harmful. */
873 break;
874 #else /* Big endian. */
875 /* If it's gcc-compiled, if it says `short', believe it. */
876 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
877 break;
878
879 #if !BELIEVE_PCC_PROMOTION
880 {
881 /* This is the signed type which arguments get promoted to. */
882 static struct type *pcc_promotion_type;
883 /* This is the unsigned type which arguments get promoted to. */
884 static struct type *pcc_unsigned_promotion_type;
885
886 /* Call it "int" because this is mainly C lossage. */
887 if (pcc_promotion_type == NULL)
888 pcc_promotion_type =
889 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
890 0, "int", NULL);
891
892 if (pcc_unsigned_promotion_type == NULL)
893 pcc_unsigned_promotion_type =
894 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
895 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
896
897 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
898 /* This macro is defined on machines (e.g. sparc) where
899 we should believe the type of a PCC 'short' argument,
900 but shouldn't believe the address (the address is
901 the address of the corresponding int).
902
903 My guess is that this correction, as opposed to changing
904 the parameter to an 'int' (as done below, for PCC
905 on most machines), is the right thing to do
906 on all machines, but I don't want to risk breaking
907 something that already works. On most PCC machines,
908 the sparc problem doesn't come up because the calling
909 function has to zero the top bytes (not knowing whether
910 the called function wants an int or a short), so there
911 is little practical difference between an int and a short
912 (except perhaps what happens when the GDB user types
913 "print short_arg = 0x10000;").
914
915 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
916 actually produces the correct address (we don't need to fix it
917 up). I made this code adapt so that it will offset the symbol
918 if it was pointing at an int-aligned location and not
919 otherwise. This way you can use the same gdb for 4.0.x and
920 4.1 systems.
921
922 If the parameter is shorter than an int, and is integral
923 (e.g. char, short, or unsigned equivalent), and is claimed to
924 be passed on an integer boundary, don't believe it! Offset the
925 parameter's address to the tail-end of that integer. */
926
927 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
928 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
929 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
930 {
931 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
932 - TYPE_LENGTH (SYMBOL_TYPE (sym));
933 }
934 break;
935
936 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
937
938 /* If PCC says a parameter is a short or a char,
939 it is really an int. */
940 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
941 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
942 {
943 SYMBOL_TYPE (sym) =
944 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
945 ? pcc_unsigned_promotion_type
946 : pcc_promotion_type;
947 }
948 break;
949
950 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
951 }
952 #endif /* !BELIEVE_PCC_PROMOTION. */
953 #endif /* Big endian. */
954
955 case 'P':
956 /* acc seems to use P to delare the prototypes of functions that
957 are referenced by this file. gdb is not prepared to deal
958 with this extra information. FIXME, it ought to. */
959 if (type == N_FUN)
960 {
961 read_type (&p, objfile);
962 goto process_prototype_types;
963 }
964 /*FALLTHROUGH*/
965
966 case 'R':
967 /* Parameter which is in a register. */
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969 SYMBOL_CLASS (sym) = LOC_REGPARM;
970 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
971 if (SYMBOL_VALUE (sym) >= NUM_REGS)
972 {
973 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
974 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
975 }
976 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
977 add_symbol_to_list (sym, &local_symbols);
978 break;
979
980 case 'r':
981 /* Register variable (either global or local). */
982 SYMBOL_TYPE (sym) = read_type (&p, objfile);
983 SYMBOL_CLASS (sym) = LOC_REGISTER;
984 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
985 if (SYMBOL_VALUE (sym) >= NUM_REGS)
986 {
987 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
988 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
989 }
990 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
991 if (within_function)
992 {
993 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
994 name to represent an argument passed in a register.
995 GCC uses 'P' for the same case. So if we find such a symbol pair
996 we combine it into one 'P' symbol. For Sun cc we need to do this
997 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
998 the 'p' symbol even if it never saves the argument onto the stack.
999
1000 On most machines, we want to preserve both symbols, so that
1001 we can still get information about what is going on with the
1002 stack (VAX for computing args_printed, using stack slots instead
1003 of saved registers in backtraces, etc.).
1004
1005 Note that this code illegally combines
1006 main(argc) struct foo argc; { register struct foo argc; }
1007 but this case is considered pathological and causes a warning
1008 from a decent compiler. */
1009
1010 if (local_symbols
1011 && local_symbols->nsyms > 0
1012 #ifndef USE_REGISTER_NOT_ARG
1013 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1014 SYMBOL_TYPE (sym))
1015 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1016 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1017 #endif
1018 )
1019 {
1020 struct symbol *prev_sym;
1021 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1022 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1023 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1024 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1025 {
1026 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1027 /* Use the type from the LOC_REGISTER; that is the type
1028 that is actually in that register. */
1029 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1030 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1031 sym = prev_sym;
1032 break;
1033 }
1034 }
1035 add_symbol_to_list (sym, &local_symbols);
1036 }
1037 else
1038 add_symbol_to_list (sym, &file_symbols);
1039 break;
1040
1041 case 'S':
1042 /* Static symbol at top level of file */
1043 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1044 SYMBOL_CLASS (sym) = LOC_STATIC;
1045 SYMBOL_VALUE_ADDRESS (sym) = valu;
1046 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1047 add_symbol_to_list (sym, &file_symbols);
1048 break;
1049
1050 case 't':
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052
1053 /* For a nameless type, we don't want a create a symbol, thus we
1054 did not use `sym'. Return without further processing. */
1055 if (nameless) return NULL;
1056
1057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1060 /* C++ vagaries: we may have a type which is derived from
1061 a base type which did not have its name defined when the
1062 derived class was output. We fill in the derived class's
1063 base part member's name here in that case. */
1064 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1065 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1066 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1067 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1068 {
1069 int j;
1070 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1071 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1072 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1073 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1074 }
1075
1076 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1077 {
1078 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1079 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1080 {
1081 /* If we are giving a name to a type such as "pointer to
1082 foo" or "function returning foo", we better not set
1083 the TYPE_NAME. If the program contains "typedef char
1084 *caddr_t;", we don't want all variables of type char
1085 * to print as caddr_t. This is not just a
1086 consequence of GDB's type management; PCC and GCC (at
1087 least through version 2.4) both output variables of
1088 either type char * or caddr_t with the type number
1089 defined in the 't' symbol for caddr_t. If a future
1090 compiler cleans this up it GDB is not ready for it
1091 yet, but if it becomes ready we somehow need to
1092 disable this check (without breaking the PCC/GCC2.4
1093 case).
1094
1095 Sigh.
1096
1097 Fortunately, this check seems not to be necessary
1098 for anything except pointers or functions. */
1099 }
1100 else
1101 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1102 }
1103
1104 add_symbol_to_list (sym, &file_symbols);
1105 break;
1106
1107 case 'T':
1108 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1109 by 't' which means we are typedef'ing it as well. */
1110 synonym = *p == 't';
1111
1112 if (synonym)
1113 {
1114 p++;
1115 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1116 strlen (SYMBOL_NAME (sym)),
1117 &objfile -> symbol_obstack);
1118 }
1119 /* The semantics of C++ state that "struct foo { ... }" also defines
1120 a typedef for "foo". Unfortunately, cfront never makes the typedef
1121 when translating C++ into C. We make the typedef here so that
1122 "ptype foo" works as expected for cfront translated code. */
1123 else if (current_subfile->language == language_cplus)
1124 {
1125 synonym = 1;
1126 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1127 strlen (SYMBOL_NAME (sym)),
1128 &objfile -> symbol_obstack);
1129 }
1130
1131 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1132
1133 /* For a nameless type, we don't want a create a symbol, thus we
1134 did not use `sym'. Return without further processing. */
1135 if (nameless) return NULL;
1136
1137 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1138 SYMBOL_VALUE (sym) = valu;
1139 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1140 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1141 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1142 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1143 add_symbol_to_list (sym, &file_symbols);
1144
1145 if (synonym)
1146 {
1147 /* Clone the sym and then modify it. */
1148 register struct symbol *typedef_sym = (struct symbol *)
1149 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1150 *typedef_sym = *sym;
1151 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1152 SYMBOL_VALUE (typedef_sym) = valu;
1153 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1154 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1155 TYPE_NAME (SYMBOL_TYPE (sym))
1156 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1157 add_symbol_to_list (typedef_sym, &file_symbols);
1158 }
1159 break;
1160
1161 case 'V':
1162 /* Static symbol of local scope */
1163 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1164 SYMBOL_CLASS (sym) = LOC_STATIC;
1165 SYMBOL_VALUE_ADDRESS (sym) = valu;
1166 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1167 if (os9k_stabs)
1168 add_symbol_to_list (sym, &global_symbols);
1169 else
1170 add_symbol_to_list (sym, &local_symbols);
1171 break;
1172
1173 case 'v':
1174 /* Reference parameter */
1175 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1176 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1177 SYMBOL_VALUE (sym) = valu;
1178 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1179 add_symbol_to_list (sym, &local_symbols);
1180 break;
1181
1182 case 'X':
1183 /* This is used by Sun FORTRAN for "function result value".
1184 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1185 that Pascal uses it too, but when I tried it Pascal used
1186 "x:3" (local symbol) instead. */
1187 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1188 SYMBOL_CLASS (sym) = LOC_LOCAL;
1189 SYMBOL_VALUE (sym) = valu;
1190 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1191 add_symbol_to_list (sym, &local_symbols);
1192 break;
1193
1194 default:
1195 SYMBOL_TYPE (sym) = error_type (&p);
1196 SYMBOL_CLASS (sym) = LOC_CONST;
1197 SYMBOL_VALUE (sym) = 0;
1198 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1199 add_symbol_to_list (sym, &file_symbols);
1200 break;
1201 }
1202
1203 /* When passing structures to a function, some systems sometimes pass
1204 the address in a register, not the structure itself.
1205
1206 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1207 to LOC_REGPARM_ADDR for structures and unions. */
1208
1209 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1210 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1211 SYMBOL_TYPE (sym))
1212 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1213 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1214 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1215
1216 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1217 subsequent arguments on the sparc, for example). */
1218 if (SYMBOL_CLASS (sym) == LOC_ARG
1219 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1220 SYMBOL_TYPE (sym))
1221 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1222 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1223 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1224
1225 return sym;
1226 }
1227
1228 \f
1229 /* Skip rest of this symbol and return an error type.
1230
1231 General notes on error recovery: error_type always skips to the
1232 end of the symbol (modulo cretinous dbx symbol name continuation).
1233 Thus code like this:
1234
1235 if (*(*pp)++ != ';')
1236 return error_type (pp);
1237
1238 is wrong because if *pp starts out pointing at '\0' (typically as the
1239 result of an earlier error), it will be incremented to point to the
1240 start of the next symbol, which might produce strange results, at least
1241 if you run off the end of the string table. Instead use
1242
1243 if (**pp != ';')
1244 return error_type (pp);
1245 ++*pp;
1246
1247 or
1248
1249 if (**pp != ';')
1250 foo = error_type (pp);
1251 else
1252 ++*pp;
1253
1254 And in case it isn't obvious, the point of all this hair is so the compiler
1255 can define new types and new syntaxes, and old versions of the
1256 debugger will be able to read the new symbol tables. */
1257
1258 static struct type *
1259 error_type (pp)
1260 char **pp;
1261 {
1262 complain (&error_type_complaint);
1263 while (1)
1264 {
1265 /* Skip to end of symbol. */
1266 while (**pp != '\0')
1267 {
1268 (*pp)++;
1269 }
1270
1271 /* Check for and handle cretinous dbx symbol name continuation! */
1272 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1273 {
1274 *pp = next_symbol_text ();
1275 }
1276 else
1277 {
1278 break;
1279 }
1280 }
1281 return (builtin_type_error);
1282 }
1283
1284 \f
1285 /* Read type information or a type definition; return the type. Even
1286 though this routine accepts either type information or a type
1287 definition, the distinction is relevant--some parts of stabsread.c
1288 assume that type information starts with a digit, '-', or '(' in
1289 deciding whether to call read_type. */
1290
1291 struct type *
1292 read_type (pp, objfile)
1293 register char **pp;
1294 struct objfile *objfile;
1295 {
1296 register struct type *type = 0;
1297 struct type *type1;
1298 int typenums[2];
1299 int xtypenums[2];
1300 char type_descriptor;
1301
1302 /* Size in bits of type if specified by a type attribute, or -1 if
1303 there is no size attribute. */
1304 int type_size = -1;
1305
1306 /* Used to distinguish string and bitstring from char-array and set. */
1307 int is_string = 0;
1308
1309 /* Read type number if present. The type number may be omitted.
1310 for instance in a two-dimensional array declared with type
1311 "ar1;1;10;ar1;1;10;4". */
1312 if ((**pp >= '0' && **pp <= '9')
1313 || **pp == '('
1314 || **pp == '-')
1315 {
1316 if (read_type_number (pp, typenums) != 0)
1317 return error_type (pp);
1318
1319 /* Type is not being defined here. Either it already exists,
1320 or this is a forward reference to it. dbx_alloc_type handles
1321 both cases. */
1322 if (**pp != '=')
1323 return dbx_alloc_type (typenums, objfile);
1324
1325 /* Type is being defined here. */
1326 /* Skip the '='. */
1327 ++(*pp);
1328
1329 while (**pp == '@')
1330 {
1331 char *p = *pp + 1;
1332 /* It might be a type attribute or a member type. */
1333 if (isdigit (*p) || *p == '(' || *p == '-')
1334 /* Member type. */
1335 break;
1336 else
1337 {
1338 /* Type attributes. */
1339 char *attr = p;
1340
1341 /* Skip to the semicolon. */
1342 while (*p != ';' && *p != '\0')
1343 ++p;
1344 *pp = p;
1345 if (*p == '\0')
1346 return error_type (pp);
1347 else
1348 /* Skip the semicolon. */
1349 ++*pp;
1350
1351 switch (*attr)
1352 {
1353 case 's':
1354 type_size = atoi (attr + 1);
1355 if (type_size <= 0)
1356 type_size = -1;
1357 break;
1358
1359 case 'S':
1360 is_string = 1;
1361 break;
1362
1363 default:
1364 /* Ignore unrecognized type attributes, so future compilers
1365 can invent new ones. */
1366 break;
1367 }
1368 }
1369 }
1370 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1371 ++(*pp);
1372 }
1373 else
1374 {
1375 /* 'typenums=' not present, type is anonymous. Read and return
1376 the definition, but don't put it in the type vector. */
1377 typenums[0] = typenums[1] = -1;
1378 (*pp)++;
1379 }
1380
1381 type_descriptor = (*pp)[-1];
1382 switch (type_descriptor)
1383 {
1384 case 'x':
1385 {
1386 enum type_code code;
1387
1388 /* Used to index through file_symbols. */
1389 struct pending *ppt;
1390 int i;
1391
1392 /* Name including "struct", etc. */
1393 char *type_name;
1394
1395 {
1396 char *from, *to, *p, *q1, *q2;
1397
1398 /* Set the type code according to the following letter. */
1399 switch ((*pp)[0])
1400 {
1401 case 's':
1402 code = TYPE_CODE_STRUCT;
1403 break;
1404 case 'u':
1405 code = TYPE_CODE_UNION;
1406 break;
1407 case 'e':
1408 code = TYPE_CODE_ENUM;
1409 break;
1410 default:
1411 {
1412 /* Complain and keep going, so compilers can invent new
1413 cross-reference types. */
1414 static struct complaint msg =
1415 {"Unrecognized cross-reference type `%c'", 0, 0};
1416 complain (&msg, (*pp)[0]);
1417 code = TYPE_CODE_STRUCT;
1418 break;
1419 }
1420 }
1421
1422 q1 = strchr(*pp, '<');
1423 p = strchr(*pp, ':');
1424 if (p == NULL)
1425 return error_type (pp);
1426 while (q1 && p > q1 && p[1] == ':')
1427 {
1428 q2 = strchr(q1, '>');
1429 if (!q2 || q2 < p)
1430 break;
1431 p += 2;
1432 p = strchr(p, ':');
1433 if (p == NULL)
1434 return error_type (pp);
1435 }
1436 to = type_name =
1437 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1438
1439 /* Copy the name. */
1440 from = *pp + 1;
1441 while (from < p)
1442 *to++ = *from++;
1443 *to = '\0';
1444
1445 /* Set the pointer ahead of the name which we just read, and
1446 the colon. */
1447 *pp = from + 1;
1448 }
1449
1450 /* Now check to see whether the type has already been
1451 declared. This was written for arrays of cross-referenced
1452 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1453 sure it is not necessary anymore. But it might be a good
1454 idea, to save a little memory. */
1455
1456 for (ppt = file_symbols; ppt; ppt = ppt->next)
1457 for (i = 0; i < ppt->nsyms; i++)
1458 {
1459 struct symbol *sym = ppt->symbol[i];
1460
1461 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1462 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1463 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1464 && STREQ (SYMBOL_NAME (sym), type_name))
1465 {
1466 obstack_free (&objfile -> type_obstack, type_name);
1467 type = SYMBOL_TYPE (sym);
1468 return type;
1469 }
1470 }
1471
1472 /* Didn't find the type to which this refers, so we must
1473 be dealing with a forward reference. Allocate a type
1474 structure for it, and keep track of it so we can
1475 fill in the rest of the fields when we get the full
1476 type. */
1477 type = dbx_alloc_type (typenums, objfile);
1478 TYPE_CODE (type) = code;
1479 TYPE_TAG_NAME (type) = type_name;
1480 INIT_CPLUS_SPECIFIC(type);
1481 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1482
1483 add_undefined_type (type);
1484 return type;
1485 }
1486
1487 case '-': /* RS/6000 built-in type */
1488 case '0':
1489 case '1':
1490 case '2':
1491 case '3':
1492 case '4':
1493 case '5':
1494 case '6':
1495 case '7':
1496 case '8':
1497 case '9':
1498 case '(':
1499
1500 {
1501 char *pp_saved;
1502
1503 (*pp)--;
1504 pp_saved = *pp;
1505
1506 /* Peek ahead at the number to detect void. */
1507 if (read_type_number (pp, xtypenums) != 0)
1508 return error_type (pp);
1509
1510 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1511 /* It's being defined as itself. That means it is "void". */
1512 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1513 else
1514 {
1515 struct type *xtype;
1516
1517 /* Go back to the number and have read_type get it. This means
1518 that we can deal with something like t(1,2)=(3,4)=... which
1519 the Lucid compiler uses. */
1520 *pp = pp_saved;
1521 xtype = read_type (pp, objfile);
1522
1523 /* The type is being defined to another type. So we copy the type.
1524 This loses if we copy a C++ class and so we lose track of how
1525 the names are mangled (but g++ doesn't output stabs like this
1526 now anyway). */
1527
1528 type = alloc_type (objfile);
1529 memcpy (type, xtype, sizeof (struct type));
1530
1531 /* The idea behind clearing the names is that the only purpose
1532 for defining a type to another type is so that the name of
1533 one can be different. So we probably don't need to worry much
1534 about the case where the compiler doesn't give a name to the
1535 new type. */
1536 TYPE_NAME (type) = NULL;
1537 TYPE_TAG_NAME (type) = NULL;
1538 }
1539 if (typenums[0] != -1)
1540 *dbx_lookup_type (typenums) = type;
1541 break;
1542 }
1543
1544 /* In the following types, we must be sure to overwrite any existing
1545 type that the typenums refer to, rather than allocating a new one
1546 and making the typenums point to the new one. This is because there
1547 may already be pointers to the existing type (if it had been
1548 forward-referenced), and we must change it to a pointer, function,
1549 reference, or whatever, *in-place*. */
1550
1551 case '*':
1552 type1 = read_type (pp, objfile);
1553 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1554 break;
1555
1556 case '&': /* Reference to another type */
1557 type1 = read_type (pp, objfile);
1558 type = make_reference_type (type1, dbx_lookup_type (typenums));
1559 break;
1560
1561 case 'f': /* Function returning another type */
1562 if (os9k_stabs && **pp == '(')
1563 {
1564 /* Function prototype; parse it.
1565 We must conditionalize this on os9k_stabs because otherwise
1566 it could be confused with a Sun-style (1,3) typenumber
1567 (I think). */
1568 struct type *t;
1569 ++*pp;
1570 while (**pp != ')')
1571 {
1572 t = read_type(pp, objfile);
1573 if (**pp == ',') ++*pp;
1574 }
1575 }
1576 type1 = read_type (pp, objfile);
1577 type = make_function_type (type1, dbx_lookup_type (typenums));
1578 break;
1579
1580 case 'k': /* Const qualifier on some type (Sun) */
1581 case 'c': /* Const qualifier on some type (OS9000) */
1582 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1583 only accept 'c' in the os9k_stabs case. */
1584 if (type_descriptor == 'c' && !os9k_stabs)
1585 return error_type (pp);
1586 type = read_type (pp, objfile);
1587 /* FIXME! For now, we ignore const and volatile qualifiers. */
1588 break;
1589
1590 case 'B': /* Volatile qual on some type (Sun) */
1591 case 'i': /* Volatile qual on some type (OS9000) */
1592 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1593 only accept 'i' in the os9k_stabs case. */
1594 if (type_descriptor == 'i' && !os9k_stabs)
1595 return error_type (pp);
1596 type = read_type (pp, objfile);
1597 /* FIXME! For now, we ignore const and volatile qualifiers. */
1598 break;
1599
1600 /* FIXME -- we should be doing smash_to_XXX types here. */
1601 case '@': /* Member (class & variable) type */
1602 {
1603 struct type *domain = read_type (pp, objfile);
1604 struct type *memtype;
1605
1606 if (**pp != ',')
1607 /* Invalid member type data format. */
1608 return error_type (pp);
1609 ++*pp;
1610
1611 memtype = read_type (pp, objfile);
1612 type = dbx_alloc_type (typenums, objfile);
1613 smash_to_member_type (type, domain, memtype);
1614 }
1615 break;
1616
1617 case '#': /* Method (class & fn) type */
1618 if ((*pp)[0] == '#')
1619 {
1620 /* We'll get the parameter types from the name. */
1621 struct type *return_type;
1622
1623 (*pp)++;
1624 return_type = read_type (pp, objfile);
1625 if (*(*pp)++ != ';')
1626 complain (&invalid_member_complaint, symnum);
1627 type = allocate_stub_method (return_type);
1628 if (typenums[0] != -1)
1629 *dbx_lookup_type (typenums) = type;
1630 }
1631 else
1632 {
1633 struct type *domain = read_type (pp, objfile);
1634 struct type *return_type;
1635 struct type **args;
1636
1637 if (**pp != ',')
1638 /* Invalid member type data format. */
1639 return error_type (pp);
1640 else
1641 ++(*pp);
1642
1643 return_type = read_type (pp, objfile);
1644 args = read_args (pp, ';', objfile);
1645 type = dbx_alloc_type (typenums, objfile);
1646 smash_to_method_type (type, domain, return_type, args);
1647 }
1648 break;
1649
1650 case 'r': /* Range type */
1651 type = read_range_type (pp, typenums, objfile);
1652 if (typenums[0] != -1)
1653 *dbx_lookup_type (typenums) = type;
1654 break;
1655
1656 case 'b':
1657 if (os9k_stabs)
1658 /* Const and volatile qualified type. */
1659 type = read_type (pp, objfile);
1660 else
1661 {
1662 /* Sun ACC builtin int type */
1663 type = read_sun_builtin_type (pp, typenums, objfile);
1664 if (typenums[0] != -1)
1665 *dbx_lookup_type (typenums) = type;
1666 }
1667 break;
1668
1669 case 'R': /* Sun ACC builtin float type */
1670 type = read_sun_floating_type (pp, typenums, objfile);
1671 if (typenums[0] != -1)
1672 *dbx_lookup_type (typenums) = type;
1673 break;
1674
1675 case 'e': /* Enumeration type */
1676 type = dbx_alloc_type (typenums, objfile);
1677 type = read_enum_type (pp, type, objfile);
1678 if (typenums[0] != -1)
1679 *dbx_lookup_type (typenums) = type;
1680 break;
1681
1682 case 's': /* Struct type */
1683 case 'u': /* Union type */
1684 type = dbx_alloc_type (typenums, objfile);
1685 if (!TYPE_NAME (type))
1686 {
1687 TYPE_NAME (type) = type_synonym_name;
1688 }
1689 type_synonym_name = NULL;
1690 switch (type_descriptor)
1691 {
1692 case 's':
1693 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1694 break;
1695 case 'u':
1696 TYPE_CODE (type) = TYPE_CODE_UNION;
1697 break;
1698 }
1699 type = read_struct_type (pp, type, objfile);
1700 break;
1701
1702 case 'a': /* Array type */
1703 if (**pp != 'r')
1704 return error_type (pp);
1705 ++*pp;
1706
1707 type = dbx_alloc_type (typenums, objfile);
1708 type = read_array_type (pp, type, objfile);
1709 if (is_string)
1710 TYPE_CODE (type) = TYPE_CODE_STRING;
1711 break;
1712
1713 case 'S':
1714 type1 = read_type (pp, objfile);
1715 type = create_set_type ((struct type*) NULL, type1);
1716 if (is_string)
1717 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1718 if (typenums[0] != -1)
1719 *dbx_lookup_type (typenums) = type;
1720 break;
1721
1722 default:
1723 --*pp; /* Go back to the symbol in error */
1724 /* Particularly important if it was \0! */
1725 return error_type (pp);
1726 }
1727
1728 if (type == 0)
1729 {
1730 warning ("GDB internal error, type is NULL in stabsread.c\n");
1731 return error_type (pp);
1732 }
1733
1734 /* Size specified in a type attribute overrides any other size. */
1735 if (type_size != -1)
1736 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1737
1738 return type;
1739 }
1740 \f
1741 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1742 Return the proper type node for a given builtin type number. */
1743
1744 static struct type *
1745 rs6000_builtin_type (typenum)
1746 int typenum;
1747 {
1748 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1749 #define NUMBER_RECOGNIZED 30
1750 /* This includes an empty slot for type number -0. */
1751 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1752 struct type *rettype = NULL;
1753
1754 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1755 {
1756 complain (&rs6000_builtin_complaint, typenum);
1757 return builtin_type_error;
1758 }
1759 if (negative_types[-typenum] != NULL)
1760 return negative_types[-typenum];
1761
1762 #if TARGET_CHAR_BIT != 8
1763 #error This code wrong for TARGET_CHAR_BIT not 8
1764 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1765 that if that ever becomes not true, the correct fix will be to
1766 make the size in the struct type to be in bits, not in units of
1767 TARGET_CHAR_BIT. */
1768 #endif
1769
1770 switch (-typenum)
1771 {
1772 case 1:
1773 /* The size of this and all the other types are fixed, defined
1774 by the debugging format. If there is a type called "int" which
1775 is other than 32 bits, then it should use a new negative type
1776 number (or avoid negative type numbers for that case).
1777 See stabs.texinfo. */
1778 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1779 break;
1780 case 2:
1781 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1782 break;
1783 case 3:
1784 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1785 break;
1786 case 4:
1787 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1788 break;
1789 case 5:
1790 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1791 "unsigned char", NULL);
1792 break;
1793 case 6:
1794 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1795 break;
1796 case 7:
1797 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1798 "unsigned short", NULL);
1799 break;
1800 case 8:
1801 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1802 "unsigned int", NULL);
1803 break;
1804 case 9:
1805 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1806 "unsigned", NULL);
1807 case 10:
1808 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1809 "unsigned long", NULL);
1810 break;
1811 case 11:
1812 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1813 break;
1814 case 12:
1815 /* IEEE single precision (32 bit). */
1816 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1817 break;
1818 case 13:
1819 /* IEEE double precision (64 bit). */
1820 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1821 break;
1822 case 14:
1823 /* This is an IEEE double on the RS/6000, and different machines with
1824 different sizes for "long double" should use different negative
1825 type numbers. See stabs.texinfo. */
1826 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1827 break;
1828 case 15:
1829 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1830 break;
1831 case 16:
1832 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1833 break;
1834 case 17:
1835 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1836 break;
1837 case 18:
1838 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1839 break;
1840 case 19:
1841 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1842 break;
1843 case 20:
1844 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1845 "character", NULL);
1846 break;
1847 case 21:
1848 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1849 "logical*1", NULL);
1850 break;
1851 case 22:
1852 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1853 "logical*2", NULL);
1854 break;
1855 case 23:
1856 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1857 "logical*4", NULL);
1858 break;
1859 case 24:
1860 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1861 "logical", NULL);
1862 break;
1863 case 25:
1864 /* Complex type consisting of two IEEE single precision values. */
1865 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1866 break;
1867 case 26:
1868 /* Complex type consisting of two IEEE double precision values. */
1869 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1870 break;
1871 case 27:
1872 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1873 break;
1874 case 28:
1875 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1876 break;
1877 case 29:
1878 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1879 break;
1880 case 30:
1881 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1882 break;
1883 }
1884 negative_types[-typenum] = rettype;
1885 return rettype;
1886 }
1887 \f
1888 /* This page contains subroutines of read_type. */
1889
1890 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1891 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1892 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1893 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1894
1895 /* Read member function stabs info for C++ classes. The form of each member
1896 function data is:
1897
1898 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1899
1900 An example with two member functions is:
1901
1902 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1903
1904 For the case of overloaded operators, the format is op$::*.funcs, where
1905 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1906 name (such as `+=') and `.' marks the end of the operator name.
1907
1908 Returns 1 for success, 0 for failure. */
1909
1910 static int
1911 read_member_functions (fip, pp, type, objfile)
1912 struct field_info *fip;
1913 char **pp;
1914 struct type *type;
1915 struct objfile *objfile;
1916 {
1917 int nfn_fields = 0;
1918 int length = 0;
1919 /* Total number of member functions defined in this class. If the class
1920 defines two `f' functions, and one `g' function, then this will have
1921 the value 3. */
1922 int total_length = 0;
1923 int i;
1924 struct next_fnfield
1925 {
1926 struct next_fnfield *next;
1927 struct fn_field fn_field;
1928 } *sublist;
1929 struct type *look_ahead_type;
1930 struct next_fnfieldlist *new_fnlist;
1931 struct next_fnfield *new_sublist;
1932 char *main_fn_name;
1933 register char *p;
1934
1935 /* Process each list until we find something that is not a member function
1936 or find the end of the functions. */
1937
1938 while (**pp != ';')
1939 {
1940 /* We should be positioned at the start of the function name.
1941 Scan forward to find the first ':' and if it is not the
1942 first of a "::" delimiter, then this is not a member function. */
1943 p = *pp;
1944 while (*p != ':')
1945 {
1946 p++;
1947 }
1948 if (p[1] != ':')
1949 {
1950 break;
1951 }
1952
1953 sublist = NULL;
1954 look_ahead_type = NULL;
1955 length = 0;
1956
1957 new_fnlist = (struct next_fnfieldlist *)
1958 xmalloc (sizeof (struct next_fnfieldlist));
1959 make_cleanup (free, new_fnlist);
1960 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1961
1962 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1963 {
1964 /* This is a completely wierd case. In order to stuff in the
1965 names that might contain colons (the usual name delimiter),
1966 Mike Tiemann defined a different name format which is
1967 signalled if the identifier is "op$". In that case, the
1968 format is "op$::XXXX." where XXXX is the name. This is
1969 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1970 /* This lets the user type "break operator+".
1971 We could just put in "+" as the name, but that wouldn't
1972 work for "*". */
1973 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1974 char *o = opname + 3;
1975
1976 /* Skip past '::'. */
1977 *pp = p + 2;
1978
1979 STABS_CONTINUE (pp);
1980 p = *pp;
1981 while (*p != '.')
1982 {
1983 *o++ = *p++;
1984 }
1985 main_fn_name = savestring (opname, o - opname);
1986 /* Skip past '.' */
1987 *pp = p + 1;
1988 }
1989 else
1990 {
1991 main_fn_name = savestring (*pp, p - *pp);
1992 /* Skip past '::'. */
1993 *pp = p + 2;
1994 }
1995 new_fnlist -> fn_fieldlist.name = main_fn_name;
1996
1997 do
1998 {
1999 new_sublist =
2000 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2001 make_cleanup (free, new_sublist);
2002 memset (new_sublist, 0, sizeof (struct next_fnfield));
2003
2004 /* Check for and handle cretinous dbx symbol name continuation! */
2005 if (look_ahead_type == NULL)
2006 {
2007 /* Normal case. */
2008 STABS_CONTINUE (pp);
2009
2010 new_sublist -> fn_field.type = read_type (pp, objfile);
2011 if (**pp != ':')
2012 {
2013 /* Invalid symtab info for member function. */
2014 return 0;
2015 }
2016 }
2017 else
2018 {
2019 /* g++ version 1 kludge */
2020 new_sublist -> fn_field.type = look_ahead_type;
2021 look_ahead_type = NULL;
2022 }
2023
2024 (*pp)++;
2025 p = *pp;
2026 while (*p != ';')
2027 {
2028 p++;
2029 }
2030
2031 /* If this is just a stub, then we don't have the real name here. */
2032
2033 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2034 {
2035 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2036 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2037 new_sublist -> fn_field.is_stub = 1;
2038 }
2039 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2040 *pp = p + 1;
2041
2042 /* Set this member function's visibility fields. */
2043 switch (*(*pp)++)
2044 {
2045 case VISIBILITY_PRIVATE:
2046 new_sublist -> fn_field.is_private = 1;
2047 break;
2048 case VISIBILITY_PROTECTED:
2049 new_sublist -> fn_field.is_protected = 1;
2050 break;
2051 }
2052
2053 STABS_CONTINUE (pp);
2054 switch (**pp)
2055 {
2056 case 'A': /* Normal functions. */
2057 new_sublist -> fn_field.is_const = 0;
2058 new_sublist -> fn_field.is_volatile = 0;
2059 (*pp)++;
2060 break;
2061 case 'B': /* `const' member functions. */
2062 new_sublist -> fn_field.is_const = 1;
2063 new_sublist -> fn_field.is_volatile = 0;
2064 (*pp)++;
2065 break;
2066 case 'C': /* `volatile' member function. */
2067 new_sublist -> fn_field.is_const = 0;
2068 new_sublist -> fn_field.is_volatile = 1;
2069 (*pp)++;
2070 break;
2071 case 'D': /* `const volatile' member function. */
2072 new_sublist -> fn_field.is_const = 1;
2073 new_sublist -> fn_field.is_volatile = 1;
2074 (*pp)++;
2075 break;
2076 case '*': /* File compiled with g++ version 1 -- no info */
2077 case '?':
2078 case '.':
2079 break;
2080 default:
2081 complain (&const_vol_complaint, **pp);
2082 break;
2083 }
2084
2085 switch (*(*pp)++)
2086 {
2087 case '*':
2088 {
2089 int nbits;
2090 /* virtual member function, followed by index.
2091 The sign bit is set to distinguish pointers-to-methods
2092 from virtual function indicies. Since the array is
2093 in words, the quantity must be shifted left by 1
2094 on 16 bit machine, and by 2 on 32 bit machine, forcing
2095 the sign bit out, and usable as a valid index into
2096 the array. Remove the sign bit here. */
2097 new_sublist -> fn_field.voffset =
2098 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2099 if (nbits != 0)
2100 return 0;
2101
2102 STABS_CONTINUE (pp);
2103 if (**pp == ';' || **pp == '\0')
2104 {
2105 /* Must be g++ version 1. */
2106 new_sublist -> fn_field.fcontext = 0;
2107 }
2108 else
2109 {
2110 /* Figure out from whence this virtual function came.
2111 It may belong to virtual function table of
2112 one of its baseclasses. */
2113 look_ahead_type = read_type (pp, objfile);
2114 if (**pp == ':')
2115 {
2116 /* g++ version 1 overloaded methods. */
2117 }
2118 else
2119 {
2120 new_sublist -> fn_field.fcontext = look_ahead_type;
2121 if (**pp != ';')
2122 {
2123 return 0;
2124 }
2125 else
2126 {
2127 ++*pp;
2128 }
2129 look_ahead_type = NULL;
2130 }
2131 }
2132 break;
2133 }
2134 case '?':
2135 /* static member function. */
2136 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2137 if (strncmp (new_sublist -> fn_field.physname,
2138 main_fn_name, strlen (main_fn_name)))
2139 {
2140 new_sublist -> fn_field.is_stub = 1;
2141 }
2142 break;
2143
2144 default:
2145 /* error */
2146 complain (&member_fn_complaint, (*pp)[-1]);
2147 /* Fall through into normal member function. */
2148
2149 case '.':
2150 /* normal member function. */
2151 new_sublist -> fn_field.voffset = 0;
2152 new_sublist -> fn_field.fcontext = 0;
2153 break;
2154 }
2155
2156 new_sublist -> next = sublist;
2157 sublist = new_sublist;
2158 length++;
2159 STABS_CONTINUE (pp);
2160 }
2161 while (**pp != ';' && **pp != '\0');
2162
2163 (*pp)++;
2164
2165 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2166 obstack_alloc (&objfile -> type_obstack,
2167 sizeof (struct fn_field) * length);
2168 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2169 sizeof (struct fn_field) * length);
2170 for (i = length; (i--, sublist); sublist = sublist -> next)
2171 {
2172 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2173 }
2174
2175 new_fnlist -> fn_fieldlist.length = length;
2176 new_fnlist -> next = fip -> fnlist;
2177 fip -> fnlist = new_fnlist;
2178 nfn_fields++;
2179 total_length += length;
2180 STABS_CONTINUE (pp);
2181 }
2182
2183 if (nfn_fields)
2184 {
2185 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2186 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2187 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2188 memset (TYPE_FN_FIELDLISTS (type), 0,
2189 sizeof (struct fn_fieldlist) * nfn_fields);
2190 TYPE_NFN_FIELDS (type) = nfn_fields;
2191 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2192 }
2193
2194 return 1;
2195 }
2196
2197 /* Special GNU C++ name.
2198
2199 Returns 1 for success, 0 for failure. "failure" means that we can't
2200 keep parsing and it's time for error_type(). */
2201
2202 static int
2203 read_cpp_abbrev (fip, pp, type, objfile)
2204 struct field_info *fip;
2205 char **pp;
2206 struct type *type;
2207 struct objfile *objfile;
2208 {
2209 register char *p;
2210 char *name;
2211 char cpp_abbrev;
2212 struct type *context;
2213
2214 p = *pp;
2215 if (*++p == 'v')
2216 {
2217 name = NULL;
2218 cpp_abbrev = *++p;
2219
2220 *pp = p + 1;
2221
2222 /* At this point, *pp points to something like "22:23=*22...",
2223 where the type number before the ':' is the "context" and
2224 everything after is a regular type definition. Lookup the
2225 type, find it's name, and construct the field name. */
2226
2227 context = read_type (pp, objfile);
2228
2229 switch (cpp_abbrev)
2230 {
2231 case 'f': /* $vf -- a virtual function table pointer */
2232 fip->list->field.name =
2233 obconcat (&objfile->type_obstack, vptr_name, "", "");
2234 break;
2235
2236 case 'b': /* $vb -- a virtual bsomethingorother */
2237 name = type_name_no_tag (context);
2238 if (name == NULL)
2239 {
2240 complain (&invalid_cpp_type_complaint, symnum);
2241 name = "FOO";
2242 }
2243 fip->list->field.name =
2244 obconcat (&objfile->type_obstack, vb_name, name, "");
2245 break;
2246
2247 default:
2248 complain (&invalid_cpp_abbrev_complaint, *pp);
2249 fip->list->field.name =
2250 obconcat (&objfile->type_obstack,
2251 "INVALID_CPLUSPLUS_ABBREV", "", "");
2252 break;
2253 }
2254
2255 /* At this point, *pp points to the ':'. Skip it and read the
2256 field type. */
2257
2258 p = ++(*pp);
2259 if (p[-1] != ':')
2260 {
2261 complain (&invalid_cpp_abbrev_complaint, *pp);
2262 return 0;
2263 }
2264 fip->list->field.type = read_type (pp, objfile);
2265 if (**pp == ',')
2266 (*pp)++; /* Skip the comma. */
2267 else
2268 return 0;
2269
2270 {
2271 int nbits;
2272 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2273 if (nbits != 0)
2274 return 0;
2275 }
2276 /* This field is unpacked. */
2277 fip->list->field.bitsize = 0;
2278 fip->list->visibility = VISIBILITY_PRIVATE;
2279 }
2280 else
2281 {
2282 complain (&invalid_cpp_abbrev_complaint, *pp);
2283 /* We have no idea what syntax an unrecognized abbrev would have, so
2284 better return 0. If we returned 1, we would need to at least advance
2285 *pp to avoid an infinite loop. */
2286 return 0;
2287 }
2288 return 1;
2289 }
2290
2291 static void
2292 read_one_struct_field (fip, pp, p, type, objfile)
2293 struct field_info *fip;
2294 char **pp;
2295 char *p;
2296 struct type *type;
2297 struct objfile *objfile;
2298 {
2299 fip -> list -> field.name =
2300 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2301 *pp = p + 1;
2302
2303 /* This means we have a visibility for a field coming. */
2304 if (**pp == '/')
2305 {
2306 (*pp)++;
2307 fip -> list -> visibility = *(*pp)++;
2308 }
2309 else
2310 {
2311 /* normal dbx-style format, no explicit visibility */
2312 fip -> list -> visibility = VISIBILITY_PUBLIC;
2313 }
2314
2315 fip -> list -> field.type = read_type (pp, objfile);
2316 if (**pp == ':')
2317 {
2318 p = ++(*pp);
2319 #if 0
2320 /* Possible future hook for nested types. */
2321 if (**pp == '!')
2322 {
2323 fip -> list -> field.bitpos = (long)-2; /* nested type */
2324 p = ++(*pp);
2325 }
2326 else
2327 #endif
2328 {
2329 /* Static class member. */
2330 fip -> list -> field.bitpos = (long) -1;
2331 }
2332 while (*p != ';')
2333 {
2334 p++;
2335 }
2336 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2337 *pp = p + 1;
2338 return;
2339 }
2340 else if (**pp != ',')
2341 {
2342 /* Bad structure-type format. */
2343 complain (&stabs_general_complaint, "bad structure-type format");
2344 return;
2345 }
2346
2347 (*pp)++; /* Skip the comma. */
2348
2349 {
2350 int nbits;
2351 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2352 if (nbits != 0)
2353 {
2354 complain (&stabs_general_complaint, "bad structure-type format");
2355 return;
2356 }
2357 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2358 if (nbits != 0)
2359 {
2360 complain (&stabs_general_complaint, "bad structure-type format");
2361 return;
2362 }
2363 }
2364
2365 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2366 {
2367 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2368 it is a field which has been optimized out. The correct stab for
2369 this case is to use VISIBILITY_IGNORE, but that is a recent
2370 invention. (2) It is a 0-size array. For example
2371 union { int num; char str[0]; } foo. Printing "<no value>" for
2372 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2373 will continue to work, and a 0-size array as a whole doesn't
2374 have any contents to print.
2375
2376 I suspect this probably could also happen with gcc -gstabs (not
2377 -gstabs+) for static fields, and perhaps other C++ extensions.
2378 Hopefully few people use -gstabs with gdb, since it is intended
2379 for dbx compatibility. */
2380
2381 /* Ignore this field. */
2382 fip -> list-> visibility = VISIBILITY_IGNORE;
2383 }
2384 else
2385 {
2386 /* Detect an unpacked field and mark it as such.
2387 dbx gives a bit size for all fields.
2388 Note that forward refs cannot be packed,
2389 and treat enums as if they had the width of ints. */
2390
2391 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2392 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2393 {
2394 fip -> list -> field.bitsize = 0;
2395 }
2396 if ((fip -> list -> field.bitsize
2397 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2398 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2399 && (fip -> list -> field.bitsize
2400 == TARGET_INT_BIT)
2401 )
2402 )
2403 &&
2404 fip -> list -> field.bitpos % 8 == 0)
2405 {
2406 fip -> list -> field.bitsize = 0;
2407 }
2408 }
2409 }
2410
2411
2412 /* Read struct or class data fields. They have the form:
2413
2414 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2415
2416 At the end, we see a semicolon instead of a field.
2417
2418 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2419 a static field.
2420
2421 The optional VISIBILITY is one of:
2422
2423 '/0' (VISIBILITY_PRIVATE)
2424 '/1' (VISIBILITY_PROTECTED)
2425 '/2' (VISIBILITY_PUBLIC)
2426 '/9' (VISIBILITY_IGNORE)
2427
2428 or nothing, for C style fields with public visibility.
2429
2430 Returns 1 for success, 0 for failure. */
2431
2432 static int
2433 read_struct_fields (fip, pp, type, objfile)
2434 struct field_info *fip;
2435 char **pp;
2436 struct type *type;
2437 struct objfile *objfile;
2438 {
2439 register char *p;
2440 struct nextfield *new;
2441
2442 /* We better set p right now, in case there are no fields at all... */
2443
2444 p = *pp;
2445
2446 /* Read each data member type until we find the terminating ';' at the end of
2447 the data member list, or break for some other reason such as finding the
2448 start of the member function list. */
2449
2450 while (**pp != ';')
2451 {
2452 STABS_CONTINUE (pp);
2453 /* Get space to record the next field's data. */
2454 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2455 make_cleanup (free, new);
2456 memset (new, 0, sizeof (struct nextfield));
2457 new -> next = fip -> list;
2458 fip -> list = new;
2459
2460 /* Get the field name. */
2461 p = *pp;
2462
2463 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2464 unless the CPLUS_MARKER is followed by an underscore, in
2465 which case it is just the name of an anonymous type, which we
2466 should handle like any other type name. We accept either '$'
2467 or '.', because a field name can never contain one of these
2468 characters except as a CPLUS_MARKER (we probably should be
2469 doing that in most parts of GDB). */
2470
2471 if ((*p == '$' || *p == '.') && p[1] != '_')
2472 {
2473 if (!read_cpp_abbrev (fip, pp, type, objfile))
2474 return 0;
2475 continue;
2476 }
2477
2478 /* Look for the ':' that separates the field name from the field
2479 values. Data members are delimited by a single ':', while member
2480 functions are delimited by a pair of ':'s. When we hit the member
2481 functions (if any), terminate scan loop and return. */
2482
2483 while (*p != ':' && *p != '\0')
2484 {
2485 p++;
2486 }
2487 if (*p == '\0')
2488 return 0;
2489
2490 /* Check to see if we have hit the member functions yet. */
2491 if (p[1] == ':')
2492 {
2493 break;
2494 }
2495 read_one_struct_field (fip, pp, p, type, objfile);
2496 }
2497 if (p[0] == ':' && p[1] == ':')
2498 {
2499 /* chill the list of fields: the last entry (at the head) is a
2500 partially constructed entry which we now scrub. */
2501 fip -> list = fip -> list -> next;
2502 }
2503 return 1;
2504 }
2505
2506 /* The stabs for C++ derived classes contain baseclass information which
2507 is marked by a '!' character after the total size. This function is
2508 called when we encounter the baseclass marker, and slurps up all the
2509 baseclass information.
2510
2511 Immediately following the '!' marker is the number of base classes that
2512 the class is derived from, followed by information for each base class.
2513 For each base class, there are two visibility specifiers, a bit offset
2514 to the base class information within the derived class, a reference to
2515 the type for the base class, and a terminating semicolon.
2516
2517 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2518 ^^ ^ ^ ^ ^ ^ ^
2519 Baseclass information marker __________________|| | | | | | |
2520 Number of baseclasses __________________________| | | | | | |
2521 Visibility specifiers (2) ________________________| | | | | |
2522 Offset in bits from start of class _________________| | | | |
2523 Type number for base class ___________________________| | | |
2524 Visibility specifiers (2) _______________________________| | |
2525 Offset in bits from start of class ________________________| |
2526 Type number of base class ____________________________________|
2527
2528 Return 1 for success, 0 for (error-type-inducing) failure. */
2529
2530 static int
2531 read_baseclasses (fip, pp, type, objfile)
2532 struct field_info *fip;
2533 char **pp;
2534 struct type *type;
2535 struct objfile *objfile;
2536 {
2537 int i;
2538 struct nextfield *new;
2539
2540 if (**pp != '!')
2541 {
2542 return 1;
2543 }
2544 else
2545 {
2546 /* Skip the '!' baseclass information marker. */
2547 (*pp)++;
2548 }
2549
2550 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2551 {
2552 int nbits;
2553 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2554 if (nbits != 0)
2555 return 0;
2556 }
2557
2558 #if 0
2559 /* Some stupid compilers have trouble with the following, so break
2560 it up into simpler expressions. */
2561 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2562 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2563 #else
2564 {
2565 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2566 char *pointer;
2567
2568 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2569 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2570 }
2571 #endif /* 0 */
2572
2573 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2574
2575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2576 {
2577 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2578 make_cleanup (free, new);
2579 memset (new, 0, sizeof (struct nextfield));
2580 new -> next = fip -> list;
2581 fip -> list = new;
2582 new -> field.bitsize = 0; /* this should be an unpacked field! */
2583
2584 STABS_CONTINUE (pp);
2585 switch (**pp)
2586 {
2587 case '0':
2588 /* Nothing to do. */
2589 break;
2590 case '1':
2591 SET_TYPE_FIELD_VIRTUAL (type, i);
2592 break;
2593 default:
2594 /* Unknown character. Complain and treat it as non-virtual. */
2595 {
2596 static struct complaint msg = {
2597 "Unknown virtual character `%c' for baseclass", 0, 0};
2598 complain (&msg, **pp);
2599 }
2600 }
2601 ++(*pp);
2602
2603 new -> visibility = *(*pp)++;
2604 switch (new -> visibility)
2605 {
2606 case VISIBILITY_PRIVATE:
2607 case VISIBILITY_PROTECTED:
2608 case VISIBILITY_PUBLIC:
2609 break;
2610 default:
2611 /* Bad visibility format. Complain and treat it as
2612 public. */
2613 {
2614 static struct complaint msg = {
2615 "Unknown visibility `%c' for baseclass", 0, 0};
2616 complain (&msg, new -> visibility);
2617 new -> visibility = VISIBILITY_PUBLIC;
2618 }
2619 }
2620
2621 {
2622 int nbits;
2623
2624 /* The remaining value is the bit offset of the portion of the object
2625 corresponding to this baseclass. Always zero in the absence of
2626 multiple inheritance. */
2627
2628 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2629 if (nbits != 0)
2630 return 0;
2631 }
2632
2633 /* The last piece of baseclass information is the type of the
2634 base class. Read it, and remember it's type name as this
2635 field's name. */
2636
2637 new -> field.type = read_type (pp, objfile);
2638 new -> field.name = type_name_no_tag (new -> field.type);
2639
2640 /* skip trailing ';' and bump count of number of fields seen */
2641 if (**pp == ';')
2642 (*pp)++;
2643 else
2644 return 0;
2645 }
2646 return 1;
2647 }
2648
2649 /* The tail end of stabs for C++ classes that contain a virtual function
2650 pointer contains a tilde, a %, and a type number.
2651 The type number refers to the base class (possibly this class itself) which
2652 contains the vtable pointer for the current class.
2653
2654 This function is called when we have parsed all the method declarations,
2655 so we can look for the vptr base class info. */
2656
2657 static int
2658 read_tilde_fields (fip, pp, type, objfile)
2659 struct field_info *fip;
2660 char **pp;
2661 struct type *type;
2662 struct objfile *objfile;
2663 {
2664 register char *p;
2665
2666 STABS_CONTINUE (pp);
2667
2668 /* If we are positioned at a ';', then skip it. */
2669 if (**pp == ';')
2670 {
2671 (*pp)++;
2672 }
2673
2674 if (**pp == '~')
2675 {
2676 (*pp)++;
2677
2678 if (**pp == '=' || **pp == '+' || **pp == '-')
2679 {
2680 /* Obsolete flags that used to indicate the presence
2681 of constructors and/or destructors. */
2682 (*pp)++;
2683 }
2684
2685 /* Read either a '%' or the final ';'. */
2686 if (*(*pp)++ == '%')
2687 {
2688 /* The next number is the type number of the base class
2689 (possibly our own class) which supplies the vtable for
2690 this class. Parse it out, and search that class to find
2691 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2692 and TYPE_VPTR_FIELDNO. */
2693
2694 struct type *t;
2695 int i;
2696
2697 t = read_type (pp, objfile);
2698 p = (*pp)++;
2699 while (*p != '\0' && *p != ';')
2700 {
2701 p++;
2702 }
2703 if (*p == '\0')
2704 {
2705 /* Premature end of symbol. */
2706 return 0;
2707 }
2708
2709 TYPE_VPTR_BASETYPE (type) = t;
2710 if (type == t) /* Our own class provides vtbl ptr */
2711 {
2712 for (i = TYPE_NFIELDS (t) - 1;
2713 i >= TYPE_N_BASECLASSES (t);
2714 --i)
2715 {
2716 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2717 sizeof (vptr_name) - 1))
2718 {
2719 TYPE_VPTR_FIELDNO (type) = i;
2720 goto gotit;
2721 }
2722 }
2723 /* Virtual function table field not found. */
2724 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2725 return 0;
2726 }
2727 else
2728 {
2729 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2730 }
2731
2732 gotit:
2733 *pp = p + 1;
2734 }
2735 }
2736 return 1;
2737 }
2738
2739 static int
2740 attach_fn_fields_to_type (fip, type)
2741 struct field_info *fip;
2742 register struct type *type;
2743 {
2744 register int n;
2745
2746 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2747 {
2748 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2749 {
2750 /* @@ Memory leak on objfile -> type_obstack? */
2751 return 0;
2752 }
2753 TYPE_NFN_FIELDS_TOTAL (type) +=
2754 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2755 }
2756
2757 for (n = TYPE_NFN_FIELDS (type);
2758 fip -> fnlist != NULL;
2759 fip -> fnlist = fip -> fnlist -> next)
2760 {
2761 --n; /* Circumvent Sun3 compiler bug */
2762 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2763 }
2764 return 1;
2765 }
2766
2767 /* Create the vector of fields, and record how big it is.
2768 We need this info to record proper virtual function table information
2769 for this class's virtual functions. */
2770
2771 static int
2772 attach_fields_to_type (fip, type, objfile)
2773 struct field_info *fip;
2774 register struct type *type;
2775 struct objfile *objfile;
2776 {
2777 register int nfields = 0;
2778 register int non_public_fields = 0;
2779 register struct nextfield *scan;
2780
2781 /* Count up the number of fields that we have, as well as taking note of
2782 whether or not there are any non-public fields, which requires us to
2783 allocate and build the private_field_bits and protected_field_bits
2784 bitfields. */
2785
2786 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2787 {
2788 nfields++;
2789 if (scan -> visibility != VISIBILITY_PUBLIC)
2790 {
2791 non_public_fields++;
2792 }
2793 }
2794
2795 /* Now we know how many fields there are, and whether or not there are any
2796 non-public fields. Record the field count, allocate space for the
2797 array of fields, and create blank visibility bitfields if necessary. */
2798
2799 TYPE_NFIELDS (type) = nfields;
2800 TYPE_FIELDS (type) = (struct field *)
2801 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2802 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2803
2804 if (non_public_fields)
2805 {
2806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2807
2808 TYPE_FIELD_PRIVATE_BITS (type) =
2809 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2810 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2811
2812 TYPE_FIELD_PROTECTED_BITS (type) =
2813 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2814 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2815
2816 TYPE_FIELD_IGNORE_BITS (type) =
2817 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2818 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2819 }
2820
2821 /* Copy the saved-up fields into the field vector. Start from the head
2822 of the list, adding to the tail of the field array, so that they end
2823 up in the same order in the array in which they were added to the list. */
2824
2825 while (nfields-- > 0)
2826 {
2827 TYPE_FIELD (type, nfields) = fip -> list -> field;
2828 switch (fip -> list -> visibility)
2829 {
2830 case VISIBILITY_PRIVATE:
2831 SET_TYPE_FIELD_PRIVATE (type, nfields);
2832 break;
2833
2834 case VISIBILITY_PROTECTED:
2835 SET_TYPE_FIELD_PROTECTED (type, nfields);
2836 break;
2837
2838 case VISIBILITY_IGNORE:
2839 SET_TYPE_FIELD_IGNORE (type, nfields);
2840 break;
2841
2842 case VISIBILITY_PUBLIC:
2843 break;
2844
2845 default:
2846 /* Unknown visibility. Complain and treat it as public. */
2847 {
2848 static struct complaint msg = {
2849 "Unknown visibility `%c' for field", 0, 0};
2850 complain (&msg, fip -> list -> visibility);
2851 }
2852 break;
2853 }
2854 fip -> list = fip -> list -> next;
2855 }
2856 return 1;
2857 }
2858
2859 /* Read the description of a structure (or union type) and return an object
2860 describing the type.
2861
2862 PP points to a character pointer that points to the next unconsumed token
2863 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2864 *PP will point to "4a:1,0,32;;".
2865
2866 TYPE points to an incomplete type that needs to be filled in.
2867
2868 OBJFILE points to the current objfile from which the stabs information is
2869 being read. (Note that it is redundant in that TYPE also contains a pointer
2870 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2871 */
2872
2873 static struct type *
2874 read_struct_type (pp, type, objfile)
2875 char **pp;
2876 struct type *type;
2877 struct objfile *objfile;
2878 {
2879 struct cleanup *back_to;
2880 struct field_info fi;
2881
2882 fi.list = NULL;
2883 fi.fnlist = NULL;
2884
2885 back_to = make_cleanup (null_cleanup, 0);
2886
2887 INIT_CPLUS_SPECIFIC (type);
2888 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2889
2890 /* First comes the total size in bytes. */
2891
2892 {
2893 int nbits;
2894 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2895 if (nbits != 0)
2896 return error_type (pp);
2897 }
2898
2899 /* Now read the baseclasses, if any, read the regular C struct or C++
2900 class member fields, attach the fields to the type, read the C++
2901 member functions, attach them to the type, and then read any tilde
2902 field (baseclass specifier for the class holding the main vtable). */
2903
2904 if (!read_baseclasses (&fi, pp, type, objfile)
2905 || !read_struct_fields (&fi, pp, type, objfile)
2906 || !attach_fields_to_type (&fi, type, objfile)
2907 || !read_member_functions (&fi, pp, type, objfile)
2908 || !attach_fn_fields_to_type (&fi, type)
2909 || !read_tilde_fields (&fi, pp, type, objfile))
2910 {
2911 do_cleanups (back_to);
2912 return (error_type (pp));
2913 }
2914
2915 do_cleanups (back_to);
2916 return (type);
2917 }
2918
2919 /* Read a definition of an array type,
2920 and create and return a suitable type object.
2921 Also creates a range type which represents the bounds of that
2922 array. */
2923
2924 static struct type *
2925 read_array_type (pp, type, objfile)
2926 register char **pp;
2927 register struct type *type;
2928 struct objfile *objfile;
2929 {
2930 struct type *index_type, *element_type, *range_type;
2931 int lower, upper;
2932 int adjustable = 0;
2933 int nbits;
2934
2935 /* Format of an array type:
2936 "ar<index type>;lower;upper;<array_contents_type>".
2937 OS9000: "arlower,upper;<array_contents_type>".
2938
2939 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2940 for these, produce a type like float[][]. */
2941
2942 if (os9k_stabs)
2943 index_type = builtin_type_int;
2944 else
2945 {
2946 index_type = read_type (pp, objfile);
2947 if (**pp != ';')
2948 /* Improper format of array type decl. */
2949 return error_type (pp);
2950 ++*pp;
2951 }
2952
2953 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2954 {
2955 (*pp)++;
2956 adjustable = 1;
2957 }
2958 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
2959 if (nbits != 0)
2960 return error_type (pp);
2961
2962 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2963 {
2964 (*pp)++;
2965 adjustable = 1;
2966 }
2967 upper = read_huge_number (pp, ';', &nbits);
2968 if (nbits != 0)
2969 return error_type (pp);
2970
2971 element_type = read_type (pp, objfile);
2972
2973 if (adjustable)
2974 {
2975 lower = 0;
2976 upper = -1;
2977 }
2978
2979 range_type =
2980 create_range_type ((struct type *) NULL, index_type, lower, upper);
2981 type = create_array_type (type, element_type, range_type);
2982
2983 /* If we have an array whose element type is not yet known, but whose
2984 bounds *are* known, record it to be adjusted at the end of the file. */
2985 /* FIXME: Why check for zero length rather than TYPE_FLAG_STUB? I think
2986 the two have the same effect except that the latter is cleaner and the
2987 former would be wrong for types which really are zero-length (if we
2988 have any). */
2989
2990 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2991 {
2992 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2993 add_undefined_type (type);
2994 }
2995
2996 return type;
2997 }
2998
2999
3000 /* Read a definition of an enumeration type,
3001 and create and return a suitable type object.
3002 Also defines the symbols that represent the values of the type. */
3003
3004 static struct type *
3005 read_enum_type (pp, type, objfile)
3006 register char **pp;
3007 register struct type *type;
3008 struct objfile *objfile;
3009 {
3010 register char *p;
3011 char *name;
3012 register long n;
3013 register struct symbol *sym;
3014 int nsyms = 0;
3015 struct pending **symlist;
3016 struct pending *osyms, *syms;
3017 int o_nsyms;
3018 int nbits;
3019
3020 #if 0
3021 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3022 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3023 to do? For now, force all enum values to file scope. */
3024 if (within_function)
3025 symlist = &local_symbols;
3026 else
3027 #endif
3028 symlist = &file_symbols;
3029 osyms = *symlist;
3030 o_nsyms = osyms ? osyms->nsyms : 0;
3031
3032 if (os9k_stabs)
3033 {
3034 /* Size. Perhaps this does not have to be conditionalized on
3035 os9k_stabs (assuming the name of an enum constant can't start
3036 with a digit). */
3037 read_huge_number (pp, 0, &nbits);
3038 if (nbits != 0)
3039 return error_type (pp);
3040 }
3041
3042 /* Read the value-names and their values.
3043 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3044 A semicolon or comma instead of a NAME means the end. */
3045 while (**pp && **pp != ';' && **pp != ',')
3046 {
3047 STABS_CONTINUE (pp);
3048 p = *pp;
3049 while (*p != ':') p++;
3050 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3051 *pp = p + 1;
3052 n = read_huge_number (pp, ',', &nbits);
3053 if (nbits != 0)
3054 return error_type (pp);
3055
3056 sym = (struct symbol *)
3057 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3058 memset (sym, 0, sizeof (struct symbol));
3059 SYMBOL_NAME (sym) = name;
3060 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3061 SYMBOL_CLASS (sym) = LOC_CONST;
3062 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3063 SYMBOL_VALUE (sym) = n;
3064 add_symbol_to_list (sym, symlist);
3065 nsyms++;
3066 }
3067
3068 if (**pp == ';')
3069 (*pp)++; /* Skip the semicolon. */
3070
3071 /* Now fill in the fields of the type-structure. */
3072
3073 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3074 TYPE_CODE (type) = TYPE_CODE_ENUM;
3075 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3076 TYPE_NFIELDS (type) = nsyms;
3077 TYPE_FIELDS (type) = (struct field *)
3078 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3079 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3080
3081 /* Find the symbols for the values and put them into the type.
3082 The symbols can be found in the symlist that we put them on
3083 to cause them to be defined. osyms contains the old value
3084 of that symlist; everything up to there was defined by us. */
3085 /* Note that we preserve the order of the enum constants, so
3086 that in something like "enum {FOO, LAST_THING=FOO}" we print
3087 FOO, not LAST_THING. */
3088
3089 for (syms = *symlist, n = 0; syms; syms = syms->next)
3090 {
3091 int j = 0;
3092 if (syms == osyms)
3093 j = o_nsyms;
3094 for (; j < syms->nsyms; j++,n++)
3095 {
3096 struct symbol *xsym = syms->symbol[j];
3097 SYMBOL_TYPE (xsym) = type;
3098 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3099 TYPE_FIELD_VALUE (type, n) = 0;
3100 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3101 TYPE_FIELD_BITSIZE (type, n) = 0;
3102 }
3103 if (syms == osyms)
3104 break;
3105 }
3106
3107 return type;
3108 }
3109
3110 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3111 typedefs in every file (for int, long, etc):
3112
3113 type = b <signed> <width>; <offset>; <nbits>
3114 signed = u or s. Possible c in addition to u or s (for char?).
3115 offset = offset from high order bit to start bit of type.
3116 width is # bytes in object of this type, nbits is # bits in type.
3117
3118 The width/offset stuff appears to be for small objects stored in
3119 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3120 FIXME. */
3121
3122 static struct type *
3123 read_sun_builtin_type (pp, typenums, objfile)
3124 char **pp;
3125 int typenums[2];
3126 struct objfile *objfile;
3127 {
3128 int type_bits;
3129 int nbits;
3130 int signed_type;
3131
3132 switch (**pp)
3133 {
3134 case 's':
3135 signed_type = 1;
3136 break;
3137 case 'u':
3138 signed_type = 0;
3139 break;
3140 default:
3141 return error_type (pp);
3142 }
3143 (*pp)++;
3144
3145 /* For some odd reason, all forms of char put a c here. This is strange
3146 because no other type has this honor. We can safely ignore this because
3147 we actually determine 'char'acterness by the number of bits specified in
3148 the descriptor. */
3149
3150 if (**pp == 'c')
3151 (*pp)++;
3152
3153 /* The first number appears to be the number of bytes occupied
3154 by this type, except that unsigned short is 4 instead of 2.
3155 Since this information is redundant with the third number,
3156 we will ignore it. */
3157 read_huge_number (pp, ';', &nbits);
3158 if (nbits != 0)
3159 return error_type (pp);
3160
3161 /* The second number is always 0, so ignore it too. */
3162 read_huge_number (pp, ';', &nbits);
3163 if (nbits != 0)
3164 return error_type (pp);
3165
3166 /* The third number is the number of bits for this type. */
3167 type_bits = read_huge_number (pp, 0, &nbits);
3168 if (nbits != 0)
3169 return error_type (pp);
3170 /* The type *should* end with a semicolon. If it are embedded
3171 in a larger type the semicolon may be the only way to know where
3172 the type ends. If this type is at the end of the stabstring we
3173 can deal with the omitted semicolon (but we don't have to like
3174 it). Don't bother to complain(), Sun's compiler omits the semicolon
3175 for "void". */
3176 if (**pp == ';')
3177 ++(*pp);
3178
3179 if (type_bits == 0)
3180 return init_type (TYPE_CODE_VOID, 1,
3181 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3182 objfile);
3183 else
3184 return init_type (TYPE_CODE_INT,
3185 type_bits / TARGET_CHAR_BIT,
3186 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3187 objfile);
3188 }
3189
3190 static struct type *
3191 read_sun_floating_type (pp, typenums, objfile)
3192 char **pp;
3193 int typenums[2];
3194 struct objfile *objfile;
3195 {
3196 int nbits;
3197 int details;
3198 int nbytes;
3199
3200 /* The first number has more details about the type, for example
3201 FN_COMPLEX. */
3202 details = read_huge_number (pp, ';', &nbits);
3203 if (nbits != 0)
3204 return error_type (pp);
3205
3206 /* The second number is the number of bytes occupied by this type */
3207 nbytes = read_huge_number (pp, ';', &nbits);
3208 if (nbits != 0)
3209 return error_type (pp);
3210
3211 if (details == NF_COMPLEX || details == NF_COMPLEX16
3212 || details == NF_COMPLEX32)
3213 /* This is a type we can't handle, but we do know the size.
3214 We also will be able to give it a name. */
3215 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3216
3217 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3218 }
3219
3220 /* Read a number from the string pointed to by *PP.
3221 The value of *PP is advanced over the number.
3222 If END is nonzero, the character that ends the
3223 number must match END, or an error happens;
3224 and that character is skipped if it does match.
3225 If END is zero, *PP is left pointing to that character.
3226
3227 If the number fits in a long, set *BITS to 0 and return the value.
3228 If not, set *BITS to be the number of bits in the number and return 0.
3229
3230 If encounter garbage, set *BITS to -1 and return 0. */
3231
3232 static long
3233 read_huge_number (pp, end, bits)
3234 char **pp;
3235 int end;
3236 int *bits;
3237 {
3238 char *p = *pp;
3239 int sign = 1;
3240 long n = 0;
3241 int radix = 10;
3242 char overflow = 0;
3243 int nbits = 0;
3244 int c;
3245 long upper_limit;
3246
3247 if (*p == '-')
3248 {
3249 sign = -1;
3250 p++;
3251 }
3252
3253 /* Leading zero means octal. GCC uses this to output values larger
3254 than an int (because that would be hard in decimal). */
3255 if (*p == '0')
3256 {
3257 radix = 8;
3258 p++;
3259 }
3260
3261 upper_limit = LONG_MAX / radix;
3262 while ((c = *p++) >= '0' && c < ('0' + radix))
3263 {
3264 if (n <= upper_limit)
3265 {
3266 n *= radix;
3267 n += c - '0'; /* FIXME this overflows anyway */
3268 }
3269 else
3270 overflow = 1;
3271
3272 /* This depends on large values being output in octal, which is
3273 what GCC does. */
3274 if (radix == 8)
3275 {
3276 if (nbits == 0)
3277 {
3278 if (c == '0')
3279 /* Ignore leading zeroes. */
3280 ;
3281 else if (c == '1')
3282 nbits = 1;
3283 else if (c == '2' || c == '3')
3284 nbits = 2;
3285 else
3286 nbits = 3;
3287 }
3288 else
3289 nbits += 3;
3290 }
3291 }
3292 if (end)
3293 {
3294 if (c && c != end)
3295 {
3296 if (bits != NULL)
3297 *bits = -1;
3298 return 0;
3299 }
3300 }
3301 else
3302 --p;
3303
3304 *pp = p;
3305 if (overflow)
3306 {
3307 if (nbits == 0)
3308 {
3309 /* Large decimal constants are an error (because it is hard to
3310 count how many bits are in them). */
3311 if (bits != NULL)
3312 *bits = -1;
3313 return 0;
3314 }
3315
3316 /* -0x7f is the same as 0x80. So deal with it by adding one to
3317 the number of bits. */
3318 if (sign == -1)
3319 ++nbits;
3320 if (bits)
3321 *bits = nbits;
3322 }
3323 else
3324 {
3325 if (bits)
3326 *bits = 0;
3327 return n * sign;
3328 }
3329 /* It's *BITS which has the interesting information. */
3330 return 0;
3331 }
3332
3333 static struct type *
3334 read_range_type (pp, typenums, objfile)
3335 char **pp;
3336 int typenums[2];
3337 struct objfile *objfile;
3338 {
3339 int rangenums[2];
3340 long n2, n3;
3341 int n2bits, n3bits;
3342 int self_subrange;
3343 struct type *result_type;
3344 struct type *index_type;
3345
3346 /* First comes a type we are a subrange of.
3347 In C it is usually 0, 1 or the type being defined. */
3348 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3349 not just a type number. */
3350 if (read_type_number (pp, rangenums) != 0)
3351 return error_type (pp);
3352 self_subrange = (rangenums[0] == typenums[0] &&
3353 rangenums[1] == typenums[1]);
3354
3355 /* A semicolon should now follow; skip it. */
3356 if (**pp == ';')
3357 (*pp)++;
3358
3359 /* The remaining two operands are usually lower and upper bounds
3360 of the range. But in some special cases they mean something else. */
3361 n2 = read_huge_number (pp, ';', &n2bits);
3362 n3 = read_huge_number (pp, ';', &n3bits);
3363
3364 if (n2bits == -1 || n3bits == -1)
3365 return error_type (pp);
3366
3367 /* If limits are huge, must be large integral type. */
3368 if (n2bits != 0 || n3bits != 0)
3369 {
3370 char got_signed = 0;
3371 char got_unsigned = 0;
3372 /* Number of bits in the type. */
3373 int nbits = 0;
3374
3375 /* Range from 0 to <large number> is an unsigned large integral type. */
3376 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3377 {
3378 got_unsigned = 1;
3379 nbits = n3bits;
3380 }
3381 /* Range from <large number> to <large number>-1 is a large signed
3382 integral type. Take care of the case where <large number> doesn't
3383 fit in a long but <large number>-1 does. */
3384 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3385 || (n2bits != 0 && n3bits == 0
3386 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3387 && n3 == LONG_MAX))
3388 {
3389 got_signed = 1;
3390 nbits = n2bits;
3391 }
3392
3393 if (got_signed || got_unsigned)
3394 {
3395 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3396 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3397 objfile);
3398 }
3399 else
3400 return error_type (pp);
3401 }
3402
3403 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3404 if (self_subrange && n2 == 0 && n3 == 0)
3405 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3406
3407 /* If n3 is zero and n2 is not, we want a floating type,
3408 and n2 is the width in bytes.
3409
3410 Fortran programs appear to use this for complex types also,
3411 and they give no way to distinguish between double and single-complex!
3412
3413 GDB does not have complex types.
3414
3415 Just return the complex as a float of that size. It won't work right
3416 for the complex values, but at least it makes the file loadable. */
3417
3418 if (n3 == 0 && n2 > 0)
3419 {
3420 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3421 }
3422
3423 /* If the upper bound is -1, it must really be an unsigned int. */
3424
3425 else if (n2 == 0 && n3 == -1)
3426 {
3427 /* It is unsigned int or unsigned long. */
3428 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3429 compatibility hack. */
3430 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3431 TYPE_FLAG_UNSIGNED, NULL, objfile);
3432 }
3433
3434 /* Special case: char is defined (Who knows why) as a subrange of
3435 itself with range 0-127. */
3436 else if (self_subrange && n2 == 0 && n3 == 127)
3437 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3438
3439 /* We used to do this only for subrange of self or subrange of int. */
3440 else if (n2 == 0)
3441 {
3442 if (n3 < 0)
3443 /* n3 actually gives the size. */
3444 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3445 NULL, objfile);
3446 if (n3 == 0xff)
3447 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3448 if (n3 == 0xffff)
3449 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3450
3451 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3452 "unsigned long", and we already checked for that,
3453 so don't need to test for it here. */
3454 }
3455 /* I think this is for Convex "long long". Since I don't know whether
3456 Convex sets self_subrange, I also accept that particular size regardless
3457 of self_subrange. */
3458 else if (n3 == 0 && n2 < 0
3459 && (self_subrange
3460 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3461 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3462 else if (n2 == -n3 -1)
3463 {
3464 if (n3 == 0x7f)
3465 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3466 if (n3 == 0x7fff)
3467 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3468 if (n3 == 0x7fffffff)
3469 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3470 }
3471
3472 /* We have a real range type on our hands. Allocate space and
3473 return a real pointer. */
3474
3475 /* At this point I don't have the faintest idea how to deal with
3476 a self_subrange type; I'm going to assume that this is used
3477 as an idiom, and that all of them are special cases. So . . . */
3478 if (self_subrange)
3479 return error_type (pp);
3480
3481 index_type = *dbx_lookup_type (rangenums);
3482 if (index_type == NULL)
3483 {
3484 /* Does this actually ever happen? Is that why we are worrying
3485 about dealing with it rather than just calling error_type? */
3486
3487 static struct type *range_type_index;
3488
3489 complain (&range_type_base_complaint, rangenums[1]);
3490 if (range_type_index == NULL)
3491 range_type_index =
3492 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3493 0, "range type index type", NULL);
3494 index_type = range_type_index;
3495 }
3496
3497 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3498 return (result_type);
3499 }
3500
3501 /* Read in an argument list. This is a list of types, separated by commas
3502 and terminated with END. Return the list of types read in, or (struct type
3503 **)-1 if there is an error. */
3504
3505 static struct type **
3506 read_args (pp, end, objfile)
3507 char **pp;
3508 int end;
3509 struct objfile *objfile;
3510 {
3511 /* FIXME! Remove this arbitrary limit! */
3512 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3513 int n = 0;
3514
3515 while (**pp != end)
3516 {
3517 if (**pp != ',')
3518 /* Invalid argument list: no ','. */
3519 return (struct type **)-1;
3520 (*pp)++;
3521 STABS_CONTINUE (pp);
3522 types[n++] = read_type (pp, objfile);
3523 }
3524 (*pp)++; /* get past `end' (the ':' character) */
3525
3526 if (n == 1)
3527 {
3528 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3529 }
3530 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3531 {
3532 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3533 memset (rval + n, 0, sizeof (struct type *));
3534 }
3535 else
3536 {
3537 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3538 }
3539 memcpy (rval, types, n * sizeof (struct type *));
3540 return rval;
3541 }
3542 \f
3543 /* Common block handling. */
3544
3545 /* List of symbols declared since the last BCOMM. This list is a tail
3546 of local_symbols. When ECOMM is seen, the symbols on the list
3547 are noted so their proper addresses can be filled in later,
3548 using the common block base address gotten from the assembler
3549 stabs. */
3550
3551 static struct pending *common_block;
3552 static int common_block_i;
3553
3554 /* Name of the current common block. We get it from the BCOMM instead of the
3555 ECOMM to match IBM documentation (even though IBM puts the name both places
3556 like everyone else). */
3557 static char *common_block_name;
3558
3559 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3560 to remain after this function returns. */
3561
3562 void
3563 common_block_start (name, objfile)
3564 char *name;
3565 struct objfile *objfile;
3566 {
3567 if (common_block_name != NULL)
3568 {
3569 static struct complaint msg = {
3570 "Invalid symbol data: common block within common block",
3571 0, 0};
3572 complain (&msg);
3573 }
3574 common_block = local_symbols;
3575 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3576 common_block_name = obsavestring (name, strlen (name),
3577 &objfile -> symbol_obstack);
3578 }
3579
3580 /* Process a N_ECOMM symbol. */
3581
3582 void
3583 common_block_end (objfile)
3584 struct objfile *objfile;
3585 {
3586 /* Symbols declared since the BCOMM are to have the common block
3587 start address added in when we know it. common_block and
3588 common_block_i point to the first symbol after the BCOMM in
3589 the local_symbols list; copy the list and hang it off the
3590 symbol for the common block name for later fixup. */
3591 int i;
3592 struct symbol *sym;
3593 struct pending *new = 0;
3594 struct pending *next;
3595 int j;
3596
3597 if (common_block_name == NULL)
3598 {
3599 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3600 complain (&msg);
3601 return;
3602 }
3603
3604 sym = (struct symbol *)
3605 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3606 memset (sym, 0, sizeof (struct symbol));
3607 SYMBOL_NAME (sym) = common_block_name;
3608 SYMBOL_CLASS (sym) = LOC_BLOCK;
3609
3610 /* Now we copy all the symbols which have been defined since the BCOMM. */
3611
3612 /* Copy all the struct pendings before common_block. */
3613 for (next = local_symbols;
3614 next != NULL && next != common_block;
3615 next = next->next)
3616 {
3617 for (j = 0; j < next->nsyms; j++)
3618 add_symbol_to_list (next->symbol[j], &new);
3619 }
3620
3621 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3622 NULL, it means copy all the local symbols (which we already did
3623 above). */
3624
3625 if (common_block != NULL)
3626 for (j = common_block_i; j < common_block->nsyms; j++)
3627 add_symbol_to_list (common_block->symbol[j], &new);
3628
3629 SYMBOL_TYPE (sym) = (struct type *) new;
3630
3631 /* Should we be putting local_symbols back to what it was?
3632 Does it matter? */
3633
3634 i = hashname (SYMBOL_NAME (sym));
3635 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3636 global_sym_chain[i] = sym;
3637 common_block_name = NULL;
3638 }
3639
3640 /* Add a common block's start address to the offset of each symbol
3641 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3642 the common block name). */
3643
3644 static void
3645 fix_common_block (sym, valu)
3646 struct symbol *sym;
3647 int valu;
3648 {
3649 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3650 for ( ; next; next = next->next)
3651 {
3652 register int j;
3653 for (j = next->nsyms - 1; j >= 0; j--)
3654 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3655 }
3656 }
3657
3658
3659 \f
3660 /* What about types defined as forward references inside of a small lexical
3661 scope? */
3662 /* Add a type to the list of undefined types to be checked through
3663 once this file has been read in. */
3664
3665 void
3666 add_undefined_type (type)
3667 struct type *type;
3668 {
3669 if (undef_types_length == undef_types_allocated)
3670 {
3671 undef_types_allocated *= 2;
3672 undef_types = (struct type **)
3673 xrealloc ((char *) undef_types,
3674 undef_types_allocated * sizeof (struct type *));
3675 }
3676 undef_types[undef_types_length++] = type;
3677 }
3678
3679 /* Go through each undefined type, see if it's still undefined, and fix it
3680 up if possible. We have two kinds of undefined types:
3681
3682 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3683 Fix: update array length using the element bounds
3684 and the target type's length.
3685 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3686 yet defined at the time a pointer to it was made.
3687 Fix: Do a full lookup on the struct/union tag. */
3688 void
3689 cleanup_undefined_types ()
3690 {
3691 struct type **type;
3692
3693 for (type = undef_types; type < undef_types + undef_types_length; type++)
3694 {
3695 switch (TYPE_CODE (*type))
3696 {
3697
3698 case TYPE_CODE_STRUCT:
3699 case TYPE_CODE_UNION:
3700 case TYPE_CODE_ENUM:
3701 {
3702 /* Check if it has been defined since. Need to do this here
3703 as well as in check_stub_type to deal with the (legitimate in
3704 C though not C++) case of several types with the same name
3705 in different source files. */
3706 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3707 {
3708 struct pending *ppt;
3709 int i;
3710 /* Name of the type, without "struct" or "union" */
3711 char *typename = TYPE_TAG_NAME (*type);
3712
3713 if (typename == NULL)
3714 {
3715 static struct complaint msg = {"need a type name", 0, 0};
3716 complain (&msg);
3717 break;
3718 }
3719 for (ppt = file_symbols; ppt; ppt = ppt->next)
3720 {
3721 for (i = 0; i < ppt->nsyms; i++)
3722 {
3723 struct symbol *sym = ppt->symbol[i];
3724
3725 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3726 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3727 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3728 TYPE_CODE (*type))
3729 && STREQ (SYMBOL_NAME (sym), typename))
3730 {
3731 memcpy (*type, SYMBOL_TYPE (sym),
3732 sizeof (struct type));
3733 }
3734 }
3735 }
3736 }
3737 }
3738 break;
3739
3740 case TYPE_CODE_ARRAY:
3741 {
3742 /* This is a kludge which is here for historical reasons
3743 because I suspect that check_stub_type does not get
3744 called everywhere it needs to be called for arrays. Even
3745 with this kludge, those places are broken for the case
3746 where the stub type is defined in another compilation
3747 unit, but this kludge at least deals with it for the case
3748 in which it is the same compilation unit.
3749
3750 Don't try to do this by calling check_stub_type; it might
3751 cause symbols to be read in lookup_symbol, and the symbol
3752 reader is not reentrant. */
3753
3754 struct type *range_type;
3755 int lower, upper;
3756
3757 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3758 goto badtype;
3759 if (TYPE_NFIELDS (*type) != 1)
3760 goto badtype;
3761 range_type = TYPE_FIELD_TYPE (*type, 0);
3762 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3763 goto badtype;
3764
3765 /* Now recompute the length of the array type, based on its
3766 number of elements and the target type's length. */
3767 lower = TYPE_FIELD_BITPOS (range_type, 0);
3768 upper = TYPE_FIELD_BITPOS (range_type, 1);
3769 TYPE_LENGTH (*type) = (upper - lower + 1)
3770 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3771
3772 /* If the target type is not a stub, we could be clearing
3773 TYPE_FLAG_TARGET_STUB for *type. */
3774 }
3775 break;
3776
3777 default:
3778 badtype:
3779 {
3780 static struct complaint msg = {"\
3781 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3782 complain (&msg, TYPE_CODE (*type));
3783 }
3784 break;
3785 }
3786 }
3787
3788 undef_types_length = 0;
3789 }
3790
3791 /* Scan through all of the global symbols defined in the object file,
3792 assigning values to the debugging symbols that need to be assigned
3793 to. Get these symbols from the minimal symbol table. */
3794
3795 void
3796 scan_file_globals (objfile)
3797 struct objfile *objfile;
3798 {
3799 int hash;
3800 struct minimal_symbol *msymbol;
3801 struct symbol *sym, *prev;
3802
3803 if (objfile->msymbols == 0) /* Beware the null file. */
3804 return;
3805
3806 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3807 {
3808 QUIT;
3809
3810 prev = NULL;
3811
3812 /* Get the hash index and check all the symbols
3813 under that hash index. */
3814
3815 hash = hashname (SYMBOL_NAME (msymbol));
3816
3817 for (sym = global_sym_chain[hash]; sym;)
3818 {
3819 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3820 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3821 {
3822 /* Splice this symbol out of the hash chain and
3823 assign the value we have to it. */
3824 if (prev)
3825 {
3826 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3827 }
3828 else
3829 {
3830 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3831 }
3832
3833 /* Check to see whether we need to fix up a common block. */
3834 /* Note: this code might be executed several times for
3835 the same symbol if there are multiple references. */
3836
3837 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3838 {
3839 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3840 }
3841 else
3842 {
3843 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3844 }
3845
3846 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3847
3848 if (prev)
3849 {
3850 sym = SYMBOL_VALUE_CHAIN (prev);
3851 }
3852 else
3853 {
3854 sym = global_sym_chain[hash];
3855 }
3856 }
3857 else
3858 {
3859 prev = sym;
3860 sym = SYMBOL_VALUE_CHAIN (sym);
3861 }
3862 }
3863 }
3864 }
3865
3866 /* Initialize anything that needs initializing when starting to read
3867 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3868 to a psymtab. */
3869
3870 void
3871 stabsread_init ()
3872 {
3873 }
3874
3875 /* Initialize anything that needs initializing when a completely new
3876 symbol file is specified (not just adding some symbols from another
3877 file, e.g. a shared library). */
3878
3879 void
3880 stabsread_new_init ()
3881 {
3882 /* Empty the hash table of global syms looking for values. */
3883 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3884 }
3885
3886 /* Initialize anything that needs initializing at the same time as
3887 start_symtab() is called. */
3888
3889 void start_stabs ()
3890 {
3891 global_stabs = NULL; /* AIX COFF */
3892 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3893 n_this_object_header_files = 1;
3894 type_vector_length = 0;
3895 type_vector = (struct type **) 0;
3896
3897 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3898 common_block_name = NULL;
3899
3900 os9k_stabs = 0;
3901 }
3902
3903 /* Call after end_symtab() */
3904
3905 void end_stabs ()
3906 {
3907 if (type_vector)
3908 {
3909 free ((char *) type_vector);
3910 }
3911 type_vector = 0;
3912 type_vector_length = 0;
3913 previous_stab_code = 0;
3914 }
3915
3916 void
3917 finish_global_stabs (objfile)
3918 struct objfile *objfile;
3919 {
3920 if (global_stabs)
3921 {
3922 patch_block_stabs (global_symbols, global_stabs, objfile);
3923 free ((PTR) global_stabs);
3924 global_stabs = NULL;
3925 }
3926 }
3927
3928 /* Initializer for this module */
3929
3930 void
3931 _initialize_stabsread ()
3932 {
3933 undef_types_allocated = 20;
3934 undef_types_length = 0;
3935 undef_types = (struct type **)
3936 xmalloc (undef_types_allocated * sizeof (struct type *));
3937 }
This page took 0.112633 seconds and 4 git commands to generate.