Do not pass NULL for the string in catch_errors
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (char **, int, int *, int);
93
94 static struct type *error_type (char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (char **, int *);
103
104 static struct type *read_type (char **, struct objfile *);
105
106 static struct type *read_range_type (char **, int[2], int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int, struct objfile *);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 enum type_code,
140 struct objfile *);
141
142 static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
144
145 static struct field *read_args (char **, int, struct objfile *, int *, int *);
146
147 static void add_undefined_type (struct type *, int[2]);
148
149 static int
150 read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
152
153 static char *find_name_end (char *name);
154
155 static int process_reference (char **string);
156
157 void stabsread_clear_cache (void);
158
159 static const char vptr_name[] = "_vptr$";
160 static const char vb_name[] = "_vb$";
161
162 static void
163 invalid_cpp_abbrev_complaint (const char *arg1)
164 {
165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
166 }
167
168 static void
169 reg_value_complaint (int regnum, int num_regs, const char *sym)
170 {
171 complaint (&symfile_complaints,
172 _("register number %d too large (max %d) in symbol %s"),
173 regnum, num_regs - 1, sym);
174 }
175
176 static void
177 stabs_general_complaint (const char *arg1)
178 {
179 complaint (&symfile_complaints, "%s", arg1);
180 }
181
182 /* Make a list of forward references which haven't been defined. */
183
184 static struct type **undef_types;
185 static int undef_types_allocated;
186 static int undef_types_length;
187 static struct symbol *current_symbol = NULL;
188
189 /* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
192 and type (0,2) is defined only later. */
193
194 struct nat
195 {
196 int typenums[2];
197 struct type *type;
198 };
199 static struct nat *noname_undefs;
200 static int noname_undefs_allocated;
201 static int noname_undefs_length;
202
203 /* Check for and handle cretinous stabs symbol name continuation! */
204 #define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
209
210 /* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216 static struct type **type_vector;
217
218 /* Number of elements allocated for type_vector currently. */
219
220 static int type_vector_length;
221
222 /* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225 #define INITIAL_TYPE_VECTOR_LENGTH 160
226 \f
227
228 /* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
235 static struct type **
236 dbx_lookup_type (int typenums[2], struct objfile *objfile)
237 {
238 int filenum = typenums[0];
239 int index = typenums[1];
240 unsigned old_len;
241 int real_filenum;
242 struct header_file *f;
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
250 complaint (&symfile_complaints,
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
298 if (real_filenum >= N_HEADER_FILES (objfile))
299 {
300 static struct type *temp_type;
301
302 warning (_("GDB internal error: bad real_filenum"));
303
304 error_return:
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
307 }
308
309 f = HEADER_FILES (objfile) + real_filenum;
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
335 {
336 struct type **type_addr;
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
343 type_addr = dbx_lookup_type (typenums, objfile);
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354 }
355
356 /* for all the stabs in a given stab vector, build appropriate types
357 and fix their symbols in given symbol vector. */
358
359 static void
360 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
361 struct objfile *objfile)
362 {
363 int ii;
364 char *name;
365 char *pp;
366 struct symbol *sym;
367
368 if (stabs)
369 {
370 /* for all the stab entries, find their corresponding symbols and
371 patch their types! */
372
373 for (ii = 0; ii < stabs->count; ++ii)
374 {
375 name = stabs->stab[ii];
376 pp = (char *) strchr (name, ':');
377 gdb_assert (pp); /* Must find a ':' or game's over. */
378 while (pp[1] == ':')
379 {
380 pp += 2;
381 pp = (char *) strchr (pp, ':');
382 }
383 sym = find_symbol_in_list (symbols, name, pp - name);
384 if (!sym)
385 {
386 /* FIXME-maybe: it would be nice if we noticed whether
387 the variable was defined *anywhere*, not just whether
388 it is defined in this compilation unit. But neither
389 xlc or GCC seem to need such a definition, and until
390 we do psymtabs (so that the minimal symbols from all
391 compilation units are available now), I'm not sure
392 how to get the information. */
393
394 /* On xcoff, if a global is defined and never referenced,
395 ld will remove it from the executable. There is then
396 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
397 sym = allocate_symbol (objfile);
398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
400 SYMBOL_SET_LINKAGE_NAME
401 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
402 name, pp - name));
403 pp += 2;
404 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
405 {
406 /* I don't think the linker does this with functions,
407 so as far as I know this is never executed.
408 But it doesn't hurt to check. */
409 SYMBOL_TYPE (sym) =
410 lookup_function_type (read_type (&pp, objfile));
411 }
412 else
413 {
414 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
415 }
416 add_symbol_to_list (sym, &global_symbols);
417 }
418 else
419 {
420 pp += 2;
421 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
422 {
423 SYMBOL_TYPE (sym) =
424 lookup_function_type (read_type (&pp, objfile));
425 }
426 else
427 {
428 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
429 }
430 }
431 }
432 }
433 }
434 \f
435
436 /* Read a number by which a type is referred to in dbx data,
437 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
438 Just a single number N is equivalent to (0,N).
439 Return the two numbers by storing them in the vector TYPENUMS.
440 TYPENUMS will then be used as an argument to dbx_lookup_type.
441
442 Returns 0 for success, -1 for error. */
443
444 static int
445 read_type_number (char **pp, int *typenums)
446 {
447 int nbits;
448
449 if (**pp == '(')
450 {
451 (*pp)++;
452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
456 if (nbits != 0)
457 return -1;
458 }
459 else
460 {
461 typenums[0] = 0;
462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
463 if (nbits != 0)
464 return -1;
465 }
466 return 0;
467 }
468 \f
469
470 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
475 /* Structure for storing pointers to reference definitions for fast lookup
476 during "process_later". */
477
478 struct ref_map
479 {
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483 };
484
485 #define MAX_CHUNK_REFS 100
486 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
489 static struct ref_map *ref_map;
490
491 /* Ptr to free cell in chunk's linked list. */
492 static int ref_count = 0;
493
494 /* Number of chunks malloced. */
495 static int ref_chunk = 0;
496
497 /* This file maintains a cache of stabs aliases found in the symbol
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
500 void
501 stabsread_clear_cache (void)
502 {
503 ref_count = 0;
504 ref_chunk = 0;
505 }
506
507 /* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
511 void
512 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
513 {
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
522
523 ref_map = (struct ref_map *)
524 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
525 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
526 new_chunks * REF_CHUNK_SIZE);
527 ref_chunk += new_chunks;
528 }
529 ref_map[refnum].stabs = stabs;
530 ref_map[refnum].sym = sym;
531 ref_map[refnum].value = value;
532 }
533
534 /* Return defined sym for the reference REFNUM. */
535 struct symbol *
536 ref_search (int refnum)
537 {
538 if (refnum < 0 || refnum > ref_count)
539 return 0;
540 return ref_map[refnum].sym;
541 }
542
543 /* Parse a reference id in STRING and return the resulting
544 reference number. Move STRING beyond the reference id. */
545
546 static int
547 process_reference (char **string)
548 {
549 char *p;
550 int refnum = 0;
551
552 if (**string != '#')
553 return 0;
554
555 /* Advance beyond the initial '#'. */
556 p = *string + 1;
557
558 /* Read number as reference id. */
559 while (*p && isdigit (*p))
560 {
561 refnum = refnum * 10 + *p - '0';
562 p++;
563 }
564 *string = p;
565 return refnum;
566 }
567
568 /* If STRING defines a reference, store away a pointer to the reference
569 definition for later use. Return the reference number. */
570
571 int
572 symbol_reference_defined (char **string)
573 {
574 char *p = *string;
575 int refnum = 0;
576
577 refnum = process_reference (&p);
578
579 /* Defining symbols end in '='. */
580 if (*p == '=')
581 {
582 /* Symbol is being defined here. */
583 *string = p + 1;
584 return refnum;
585 }
586 else
587 {
588 /* Must be a reference. Either the symbol has already been defined,
589 or this is a forward reference to it. */
590 *string = p;
591 return -1;
592 }
593 }
594
595 static int
596 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
597 {
598 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
599
600 if (regno >= gdbarch_num_regs (gdbarch)
601 + gdbarch_num_pseudo_regs (gdbarch))
602 {
603 reg_value_complaint (regno,
604 gdbarch_num_regs (gdbarch)
605 + gdbarch_num_pseudo_regs (gdbarch),
606 SYMBOL_PRINT_NAME (sym));
607
608 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
609 }
610
611 return regno;
612 }
613
614 static const struct symbol_register_ops stab_register_funcs = {
615 stab_reg_to_regnum
616 };
617
618 /* The "aclass" indices for computed symbols. */
619
620 static int stab_register_index;
621 static int stab_regparm_index;
622
623 struct symbol *
624 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
625 struct objfile *objfile)
626 {
627 struct gdbarch *gdbarch = get_objfile_arch (objfile);
628 struct symbol *sym;
629 char *p = (char *) find_name_end (string);
630 int deftype;
631 int synonym = 0;
632 int i;
633 char *new_name = NULL;
634
635 /* We would like to eliminate nameless symbols, but keep their types.
636 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
637 to type 2, but, should not create a symbol to address that type. Since
638 the symbol will be nameless, there is no way any user can refer to it. */
639
640 int nameless;
641
642 /* Ignore syms with empty names. */
643 if (string[0] == 0)
644 return 0;
645
646 /* Ignore old-style symbols from cc -go. */
647 if (p == 0)
648 return 0;
649
650 while (p[1] == ':')
651 {
652 p += 2;
653 p = strchr (p, ':');
654 if (p == NULL)
655 {
656 complaint (&symfile_complaints,
657 _("Bad stabs string '%s'"), string);
658 return NULL;
659 }
660 }
661
662 /* If a nameless stab entry, all we need is the type, not the symbol.
663 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
664 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
665
666 current_symbol = sym = allocate_symbol (objfile);
667
668 if (processing_gcc_compilation)
669 {
670 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
671 number of bytes occupied by a type or object, which we ignore. */
672 SYMBOL_LINE (sym) = desc;
673 }
674 else
675 {
676 SYMBOL_LINE (sym) = 0; /* unknown */
677 }
678
679 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
680 &objfile->objfile_obstack);
681
682 if (is_cplus_marker (string[0]))
683 {
684 /* Special GNU C++ names. */
685 switch (string[1])
686 {
687 case 't':
688 SYMBOL_SET_LINKAGE_NAME (sym, "this");
689 break;
690
691 case 'v': /* $vtbl_ptr_type */
692 goto normal;
693
694 case 'e':
695 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
696 break;
697
698 case '_':
699 /* This was an anonymous type that was never fixed up. */
700 goto normal;
701
702 case 'X':
703 /* SunPRO (3.0 at least) static variable encoding. */
704 if (gdbarch_static_transform_name_p (gdbarch))
705 goto normal;
706 /* ... fall through ... */
707
708 default:
709 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
710 string);
711 goto normal; /* Do *something* with it. */
712 }
713 }
714 else
715 {
716 normal:
717 if (SYMBOL_LANGUAGE (sym) == language_cplus)
718 {
719 char *name = (char *) alloca (p - string + 1);
720
721 memcpy (name, string, p - string);
722 name[p - string] = '\0';
723 new_name = cp_canonicalize_string (name);
724 }
725 if (new_name != NULL)
726 {
727 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
728 xfree (new_name);
729 }
730 else
731 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
732
733 if (SYMBOL_LANGUAGE (sym) == language_cplus)
734 cp_scan_for_anonymous_namespaces (sym, objfile);
735
736 }
737 p++;
738
739 /* Determine the type of name being defined. */
740 #if 0
741 /* Getting GDB to correctly skip the symbol on an undefined symbol
742 descriptor and not ever dump core is a very dodgy proposition if
743 we do things this way. I say the acorn RISC machine can just
744 fix their compiler. */
745 /* The Acorn RISC machine's compiler can put out locals that don't
746 start with "234=" or "(3,4)=", so assume anything other than the
747 deftypes we know how to handle is a local. */
748 if (!strchr ("cfFGpPrStTvVXCR", *p))
749 #else
750 if (isdigit (*p) || *p == '(' || *p == '-')
751 #endif
752 deftype = 'l';
753 else
754 deftype = *p++;
755
756 switch (deftype)
757 {
758 case 'c':
759 /* c is a special case, not followed by a type-number.
760 SYMBOL:c=iVALUE for an integer constant symbol.
761 SYMBOL:c=rVALUE for a floating constant symbol.
762 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
763 e.g. "b:c=e6,0" for "const b = blob1"
764 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
765 if (*p != '=')
766 {
767 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
768 SYMBOL_TYPE (sym) = error_type (&p, objfile);
769 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
770 add_symbol_to_list (sym, &file_symbols);
771 return sym;
772 }
773 ++p;
774 switch (*p++)
775 {
776 case 'r':
777 {
778 double d = atof (p);
779 gdb_byte *dbl_valu;
780 struct type *dbl_type;
781
782 /* FIXME-if-picky-about-floating-accuracy: Should be using
783 target arithmetic to get the value. real.c in GCC
784 probably has the necessary code. */
785
786 dbl_type = objfile_type (objfile)->builtin_double;
787 dbl_valu
788 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
789 TYPE_LENGTH (dbl_type));
790 store_typed_floating (dbl_valu, dbl_type, d);
791
792 SYMBOL_TYPE (sym) = dbl_type;
793 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
794 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
795 }
796 break;
797 case 'i':
798 {
799 /* Defining integer constants this way is kind of silly,
800 since 'e' constants allows the compiler to give not
801 only the value, but the type as well. C has at least
802 int, long, unsigned int, and long long as constant
803 types; other languages probably should have at least
804 unsigned as well as signed constants. */
805
806 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
807 SYMBOL_VALUE (sym) = atoi (p);
808 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
809 }
810 break;
811
812 case 'c':
813 {
814 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
815 SYMBOL_VALUE (sym) = atoi (p);
816 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
817 }
818 break;
819
820 case 's':
821 {
822 struct type *range_type;
823 int ind = 0;
824 char quote = *p++;
825 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
826 gdb_byte *string_value;
827
828 if (quote != '\'' && quote != '"')
829 {
830 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
831 SYMBOL_TYPE (sym) = error_type (&p, objfile);
832 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
833 add_symbol_to_list (sym, &file_symbols);
834 return sym;
835 }
836
837 /* Find matching quote, rejecting escaped quotes. */
838 while (*p && *p != quote)
839 {
840 if (*p == '\\' && p[1] == quote)
841 {
842 string_local[ind] = (gdb_byte) quote;
843 ind++;
844 p += 2;
845 }
846 else if (*p)
847 {
848 string_local[ind] = (gdb_byte) (*p);
849 ind++;
850 p++;
851 }
852 }
853 if (*p != quote)
854 {
855 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
856 SYMBOL_TYPE (sym) = error_type (&p, objfile);
857 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
858 add_symbol_to_list (sym, &file_symbols);
859 return sym;
860 }
861
862 /* NULL terminate the string. */
863 string_local[ind] = 0;
864 range_type
865 = create_static_range_type (NULL,
866 objfile_type (objfile)->builtin_int,
867 0, ind);
868 SYMBOL_TYPE (sym) = create_array_type (NULL,
869 objfile_type (objfile)->builtin_char,
870 range_type);
871 string_value
872 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
873 memcpy (string_value, string_local, ind + 1);
874 p++;
875
876 SYMBOL_VALUE_BYTES (sym) = string_value;
877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
878 }
879 break;
880
881 case 'e':
882 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
883 can be represented as integral.
884 e.g. "b:c=e6,0" for "const b = blob1"
885 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
886 {
887 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
888 SYMBOL_TYPE (sym) = read_type (&p, objfile);
889
890 if (*p != ',')
891 {
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
893 break;
894 }
895 ++p;
896
897 /* If the value is too big to fit in an int (perhaps because
898 it is unsigned), or something like that, we silently get
899 a bogus value. The type and everything else about it is
900 correct. Ideally, we should be using whatever we have
901 available for parsing unsigned and long long values,
902 however. */
903 SYMBOL_VALUE (sym) = atoi (p);
904 }
905 break;
906 default:
907 {
908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 }
911 }
912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
913 add_symbol_to_list (sym, &file_symbols);
914 return sym;
915
916 case 'C':
917 /* The name of a caught exception. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
919 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
921 SYMBOL_VALUE_ADDRESS (sym) = valu;
922 add_symbol_to_list (sym, &local_symbols);
923 break;
924
925 case 'f':
926 /* A static function definition. */
927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
928 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &file_symbols);
931 /* fall into process_function_types. */
932
933 process_function_types:
934 /* Function result types are described as the result type in stabs.
935 We need to convert this to the function-returning-type-X type
936 in GDB. E.g. "int" is converted to "function returning int". */
937 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
938 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
939
940 /* All functions in C++ have prototypes. Stabs does not offer an
941 explicit way to identify prototyped or unprototyped functions,
942 but both GCC and Sun CC emit stabs for the "call-as" type rather
943 than the "declared-as" type for unprototyped functions, so
944 we treat all functions as if they were prototyped. This is used
945 primarily for promotion when calling the function from GDB. */
946 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
947
948 /* fall into process_prototype_types. */
949
950 process_prototype_types:
951 /* Sun acc puts declared types of arguments here. */
952 if (*p == ';')
953 {
954 struct type *ftype = SYMBOL_TYPE (sym);
955 int nsemi = 0;
956 int nparams = 0;
957 char *p1 = p;
958
959 /* Obtain a worst case guess for the number of arguments
960 by counting the semicolons. */
961 while (*p1)
962 {
963 if (*p1++ == ';')
964 nsemi++;
965 }
966
967 /* Allocate parameter information fields and fill them in. */
968 TYPE_FIELDS (ftype) = (struct field *)
969 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
970 while (*p++ == ';')
971 {
972 struct type *ptype;
973
974 /* A type number of zero indicates the start of varargs.
975 FIXME: GDB currently ignores vararg functions. */
976 if (p[0] == '0' && p[1] == '\0')
977 break;
978 ptype = read_type (&p, objfile);
979
980 /* The Sun compilers mark integer arguments, which should
981 be promoted to the width of the calling conventions, with
982 a type which references itself. This type is turned into
983 a TYPE_CODE_VOID type by read_type, and we have to turn
984 it back into builtin_int here.
985 FIXME: Do we need a new builtin_promoted_int_arg ? */
986 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
987 ptype = objfile_type (objfile)->builtin_int;
988 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
989 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
990 }
991 TYPE_NFIELDS (ftype) = nparams;
992 TYPE_PROTOTYPED (ftype) = 1;
993 }
994 break;
995
996 case 'F':
997 /* A global function definition. */
998 SYMBOL_TYPE (sym) = read_type (&p, objfile);
999 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1000 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1001 add_symbol_to_list (sym, &global_symbols);
1002 goto process_function_types;
1003
1004 case 'G':
1005 /* For a class G (global) symbol, it appears that the
1006 value is not correct. It is necessary to search for the
1007 corresponding linker definition to find the value.
1008 These definitions appear at the end of the namelist. */
1009 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1010 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1011 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1012 /* Don't add symbol references to global_sym_chain.
1013 Symbol references don't have valid names and wont't match up with
1014 minimal symbols when the global_sym_chain is relocated.
1015 We'll fixup symbol references when we fixup the defining symbol. */
1016 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1017 {
1018 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1019 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1020 global_sym_chain[i] = sym;
1021 }
1022 add_symbol_to_list (sym, &global_symbols);
1023 break;
1024
1025 /* This case is faked by a conditional above,
1026 when there is no code letter in the dbx data.
1027 Dbx data never actually contains 'l'. */
1028 case 's':
1029 case 'l':
1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1031 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1032 SYMBOL_VALUE (sym) = valu;
1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034 add_symbol_to_list (sym, &local_symbols);
1035 break;
1036
1037 case 'p':
1038 if (*p == 'F')
1039 /* pF is a two-letter code that means a function parameter in Fortran.
1040 The type-number specifies the type of the return value.
1041 Translate it into a pointer-to-function type. */
1042 {
1043 p++;
1044 SYMBOL_TYPE (sym)
1045 = lookup_pointer_type
1046 (lookup_function_type (read_type (&p, objfile)));
1047 }
1048 else
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050
1051 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1052 SYMBOL_VALUE (sym) = valu;
1053 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1054 SYMBOL_IS_ARGUMENT (sym) = 1;
1055 add_symbol_to_list (sym, &local_symbols);
1056
1057 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1058 {
1059 /* On little-endian machines, this crud is never necessary,
1060 and, if the extra bytes contain garbage, is harmful. */
1061 break;
1062 }
1063
1064 /* If it's gcc-compiled, if it says `short', believe it. */
1065 if (processing_gcc_compilation
1066 || gdbarch_believe_pcc_promotion (gdbarch))
1067 break;
1068
1069 if (!gdbarch_believe_pcc_promotion (gdbarch))
1070 {
1071 /* If PCC says a parameter is a short or a char, it is
1072 really an int. */
1073 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1074 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1075 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1076 {
1077 SYMBOL_TYPE (sym) =
1078 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1079 ? objfile_type (objfile)->builtin_unsigned_int
1080 : objfile_type (objfile)->builtin_int;
1081 }
1082 break;
1083 }
1084
1085 case 'P':
1086 /* acc seems to use P to declare the prototypes of functions that
1087 are referenced by this file. gdb is not prepared to deal
1088 with this extra information. FIXME, it ought to. */
1089 if (type == N_FUN)
1090 {
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 goto process_prototype_types;
1093 }
1094 /*FALLTHROUGH */
1095
1096 case 'R':
1097 /* Parameter which is in a register. */
1098 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1099 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1100 SYMBOL_IS_ARGUMENT (sym) = 1;
1101 SYMBOL_VALUE (sym) = valu;
1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1103 add_symbol_to_list (sym, &local_symbols);
1104 break;
1105
1106 case 'r':
1107 /* Register variable (either global or local). */
1108 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1109 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1110 SYMBOL_VALUE (sym) = valu;
1111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1112 if (within_function)
1113 {
1114 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1115 the same name to represent an argument passed in a
1116 register. GCC uses 'P' for the same case. So if we find
1117 such a symbol pair we combine it into one 'P' symbol.
1118 For Sun cc we need to do this regardless of
1119 stabs_argument_has_addr, because the compiler puts out
1120 the 'p' symbol even if it never saves the argument onto
1121 the stack.
1122
1123 On most machines, we want to preserve both symbols, so
1124 that we can still get information about what is going on
1125 with the stack (VAX for computing args_printed, using
1126 stack slots instead of saved registers in backtraces,
1127 etc.).
1128
1129 Note that this code illegally combines
1130 main(argc) struct foo argc; { register struct foo argc; }
1131 but this case is considered pathological and causes a warning
1132 from a decent compiler. */
1133
1134 if (local_symbols
1135 && local_symbols->nsyms > 0
1136 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1137 {
1138 struct symbol *prev_sym;
1139
1140 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1141 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1142 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1143 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1144 SYMBOL_LINKAGE_NAME (sym)) == 0)
1145 {
1146 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1147 /* Use the type from the LOC_REGISTER; that is the type
1148 that is actually in that register. */
1149 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1150 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1151 sym = prev_sym;
1152 break;
1153 }
1154 }
1155 add_symbol_to_list (sym, &local_symbols);
1156 }
1157 else
1158 add_symbol_to_list (sym, &file_symbols);
1159 break;
1160
1161 case 'S':
1162 /* Static symbol at top level of file. */
1163 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1164 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1165 SYMBOL_VALUE_ADDRESS (sym) = valu;
1166 if (gdbarch_static_transform_name_p (gdbarch)
1167 && gdbarch_static_transform_name (gdbarch,
1168 SYMBOL_LINKAGE_NAME (sym))
1169 != SYMBOL_LINKAGE_NAME (sym))
1170 {
1171 struct bound_minimal_symbol msym;
1172
1173 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1174 NULL, objfile);
1175 if (msym.minsym != NULL)
1176 {
1177 const char *new_name = gdbarch_static_transform_name
1178 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1179
1180 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1181 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1182 }
1183 }
1184 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1185 add_symbol_to_list (sym, &file_symbols);
1186 break;
1187
1188 case 't':
1189 /* In Ada, there is no distinction between typedef and non-typedef;
1190 any type declaration implicitly has the equivalent of a typedef,
1191 and thus 't' is in fact equivalent to 'Tt'.
1192
1193 Therefore, for Ada units, we check the character immediately
1194 before the 't', and if we do not find a 'T', then make sure to
1195 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1196 will be stored in the VAR_DOMAIN). If the symbol was indeed
1197 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1198 elsewhere, so we don't need to take care of that.
1199
1200 This is important to do, because of forward references:
1201 The cleanup of undefined types stored in undef_types only uses
1202 STRUCT_DOMAIN symbols to perform the replacement. */
1203 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1204
1205 /* Typedef */
1206 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1207
1208 /* For a nameless type, we don't want a create a symbol, thus we
1209 did not use `sym'. Return without further processing. */
1210 if (nameless)
1211 return NULL;
1212
1213 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1214 SYMBOL_VALUE (sym) = valu;
1215 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1216 /* C++ vagaries: we may have a type which is derived from
1217 a base type which did not have its name defined when the
1218 derived class was output. We fill in the derived class's
1219 base part member's name here in that case. */
1220 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1221 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1222 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1223 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1224 {
1225 int j;
1226
1227 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1228 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1229 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1230 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1231 }
1232
1233 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1234 {
1235 /* gcc-2.6 or later (when using -fvtable-thunks)
1236 emits a unique named type for a vtable entry.
1237 Some gdb code depends on that specific name. */
1238 extern const char vtbl_ptr_name[];
1239
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1241 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1243 {
1244 /* If we are giving a name to a type such as "pointer to
1245 foo" or "function returning foo", we better not set
1246 the TYPE_NAME. If the program contains "typedef char
1247 *caddr_t;", we don't want all variables of type char
1248 * to print as caddr_t. This is not just a
1249 consequence of GDB's type management; PCC and GCC (at
1250 least through version 2.4) both output variables of
1251 either type char * or caddr_t with the type number
1252 defined in the 't' symbol for caddr_t. If a future
1253 compiler cleans this up it GDB is not ready for it
1254 yet, but if it becomes ready we somehow need to
1255 disable this check (without breaking the PCC/GCC2.4
1256 case).
1257
1258 Sigh.
1259
1260 Fortunately, this check seems not to be necessary
1261 for anything except pointers or functions. */
1262 /* ezannoni: 2000-10-26. This seems to apply for
1263 versions of gcc older than 2.8. This was the original
1264 problem: with the following code gdb would tell that
1265 the type for name1 is caddr_t, and func is char().
1266
1267 typedef char *caddr_t;
1268 char *name2;
1269 struct x
1270 {
1271 char *name1;
1272 } xx;
1273 char *func()
1274 {
1275 }
1276 main () {}
1277 */
1278
1279 /* Pascal accepts names for pointer types. */
1280 if (current_subfile->language == language_pascal)
1281 {
1282 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1283 }
1284 }
1285 else
1286 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1287 }
1288
1289 add_symbol_to_list (sym, &file_symbols);
1290
1291 if (synonym)
1292 {
1293 /* Create the STRUCT_DOMAIN clone. */
1294 struct symbol *struct_sym = allocate_symbol (objfile);
1295
1296 *struct_sym = *sym;
1297 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1298 SYMBOL_VALUE (struct_sym) = valu;
1299 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1301 TYPE_NAME (SYMBOL_TYPE (sym))
1302 = obconcat (&objfile->objfile_obstack,
1303 SYMBOL_LINKAGE_NAME (sym),
1304 (char *) NULL);
1305 add_symbol_to_list (struct_sym, &file_symbols);
1306 }
1307
1308 break;
1309
1310 case 'T':
1311 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1312 by 't' which means we are typedef'ing it as well. */
1313 synonym = *p == 't';
1314
1315 if (synonym)
1316 p++;
1317
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1319
1320 /* For a nameless type, we don't want a create a symbol, thus we
1321 did not use `sym'. Return without further processing. */
1322 if (nameless)
1323 return NULL;
1324
1325 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1326 SYMBOL_VALUE (sym) = valu;
1327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1328 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1329 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 = obconcat (&objfile->objfile_obstack,
1331 SYMBOL_LINKAGE_NAME (sym),
1332 (char *) NULL);
1333 add_symbol_to_list (sym, &file_symbols);
1334
1335 if (synonym)
1336 {
1337 /* Clone the sym and then modify it. */
1338 struct symbol *typedef_sym = allocate_symbol (objfile);
1339
1340 *typedef_sym = *sym;
1341 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1342 SYMBOL_VALUE (typedef_sym) = valu;
1343 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1344 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1345 TYPE_NAME (SYMBOL_TYPE (sym))
1346 = obconcat (&objfile->objfile_obstack,
1347 SYMBOL_LINKAGE_NAME (sym),
1348 (char *) NULL);
1349 add_symbol_to_list (typedef_sym, &file_symbols);
1350 }
1351 break;
1352
1353 case 'V':
1354 /* Static symbol of local scope. */
1355 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1356 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1357 SYMBOL_VALUE_ADDRESS (sym) = valu;
1358 if (gdbarch_static_transform_name_p (gdbarch)
1359 && gdbarch_static_transform_name (gdbarch,
1360 SYMBOL_LINKAGE_NAME (sym))
1361 != SYMBOL_LINKAGE_NAME (sym))
1362 {
1363 struct bound_minimal_symbol msym;
1364
1365 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1366 NULL, objfile);
1367 if (msym.minsym != NULL)
1368 {
1369 const char *new_name = gdbarch_static_transform_name
1370 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1371
1372 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1373 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1374 }
1375 }
1376 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1377 add_symbol_to_list (sym, &local_symbols);
1378 break;
1379
1380 case 'v':
1381 /* Reference parameter */
1382 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1383 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1384 SYMBOL_IS_ARGUMENT (sym) = 1;
1385 SYMBOL_VALUE (sym) = valu;
1386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1387 add_symbol_to_list (sym, &local_symbols);
1388 break;
1389
1390 case 'a':
1391 /* Reference parameter which is in a register. */
1392 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1393 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1394 SYMBOL_IS_ARGUMENT (sym) = 1;
1395 SYMBOL_VALUE (sym) = valu;
1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1397 add_symbol_to_list (sym, &local_symbols);
1398 break;
1399
1400 case 'X':
1401 /* This is used by Sun FORTRAN for "function result value".
1402 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1403 that Pascal uses it too, but when I tried it Pascal used
1404 "x:3" (local symbol) instead. */
1405 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1406 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1407 SYMBOL_VALUE (sym) = valu;
1408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1409 add_symbol_to_list (sym, &local_symbols);
1410 break;
1411
1412 default:
1413 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1414 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1415 SYMBOL_VALUE (sym) = 0;
1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1417 add_symbol_to_list (sym, &file_symbols);
1418 break;
1419 }
1420
1421 /* Some systems pass variables of certain types by reference instead
1422 of by value, i.e. they will pass the address of a structure (in a
1423 register or on the stack) instead of the structure itself. */
1424
1425 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1426 && SYMBOL_IS_ARGUMENT (sym))
1427 {
1428 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1429 variables passed in a register). */
1430 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1431 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1432 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1433 and subsequent arguments on SPARC, for example). */
1434 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1435 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1436 }
1437
1438 return sym;
1439 }
1440
1441 /* Skip rest of this symbol and return an error type.
1442
1443 General notes on error recovery: error_type always skips to the
1444 end of the symbol (modulo cretinous dbx symbol name continuation).
1445 Thus code like this:
1446
1447 if (*(*pp)++ != ';')
1448 return error_type (pp, objfile);
1449
1450 is wrong because if *pp starts out pointing at '\0' (typically as the
1451 result of an earlier error), it will be incremented to point to the
1452 start of the next symbol, which might produce strange results, at least
1453 if you run off the end of the string table. Instead use
1454
1455 if (**pp != ';')
1456 return error_type (pp, objfile);
1457 ++*pp;
1458
1459 or
1460
1461 if (**pp != ';')
1462 foo = error_type (pp, objfile);
1463 else
1464 ++*pp;
1465
1466 And in case it isn't obvious, the point of all this hair is so the compiler
1467 can define new types and new syntaxes, and old versions of the
1468 debugger will be able to read the new symbol tables. */
1469
1470 static struct type *
1471 error_type (char **pp, struct objfile *objfile)
1472 {
1473 complaint (&symfile_complaints,
1474 _("couldn't parse type; debugger out of date?"));
1475 while (1)
1476 {
1477 /* Skip to end of symbol. */
1478 while (**pp != '\0')
1479 {
1480 (*pp)++;
1481 }
1482
1483 /* Check for and handle cretinous dbx symbol name continuation! */
1484 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1485 {
1486 *pp = next_symbol_text (objfile);
1487 }
1488 else
1489 {
1490 break;
1491 }
1492 }
1493 return objfile_type (objfile)->builtin_error;
1494 }
1495 \f
1496
1497 /* Read type information or a type definition; return the type. Even
1498 though this routine accepts either type information or a type
1499 definition, the distinction is relevant--some parts of stabsread.c
1500 assume that type information starts with a digit, '-', or '(' in
1501 deciding whether to call read_type. */
1502
1503 static struct type *
1504 read_type (char **pp, struct objfile *objfile)
1505 {
1506 struct type *type = 0;
1507 struct type *type1;
1508 int typenums[2];
1509 char type_descriptor;
1510
1511 /* Size in bits of type if specified by a type attribute, or -1 if
1512 there is no size attribute. */
1513 int type_size = -1;
1514
1515 /* Used to distinguish string and bitstring from char-array and set. */
1516 int is_string = 0;
1517
1518 /* Used to distinguish vector from array. */
1519 int is_vector = 0;
1520
1521 /* Read type number if present. The type number may be omitted.
1522 for instance in a two-dimensional array declared with type
1523 "ar1;1;10;ar1;1;10;4". */
1524 if ((**pp >= '0' && **pp <= '9')
1525 || **pp == '('
1526 || **pp == '-')
1527 {
1528 if (read_type_number (pp, typenums) != 0)
1529 return error_type (pp, objfile);
1530
1531 if (**pp != '=')
1532 {
1533 /* Type is not being defined here. Either it already
1534 exists, or this is a forward reference to it.
1535 dbx_alloc_type handles both cases. */
1536 type = dbx_alloc_type (typenums, objfile);
1537
1538 /* If this is a forward reference, arrange to complain if it
1539 doesn't get patched up by the time we're done
1540 reading. */
1541 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1542 add_undefined_type (type, typenums);
1543
1544 return type;
1545 }
1546
1547 /* Type is being defined here. */
1548 /* Skip the '='.
1549 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1550 (*pp) += 2;
1551 }
1552 else
1553 {
1554 /* 'typenums=' not present, type is anonymous. Read and return
1555 the definition, but don't put it in the type vector. */
1556 typenums[0] = typenums[1] = -1;
1557 (*pp)++;
1558 }
1559
1560 again:
1561 type_descriptor = (*pp)[-1];
1562 switch (type_descriptor)
1563 {
1564 case 'x':
1565 {
1566 enum type_code code;
1567
1568 /* Used to index through file_symbols. */
1569 struct pending *ppt;
1570 int i;
1571
1572 /* Name including "struct", etc. */
1573 char *type_name;
1574
1575 {
1576 char *from, *to, *p, *q1, *q2;
1577
1578 /* Set the type code according to the following letter. */
1579 switch ((*pp)[0])
1580 {
1581 case 's':
1582 code = TYPE_CODE_STRUCT;
1583 break;
1584 case 'u':
1585 code = TYPE_CODE_UNION;
1586 break;
1587 case 'e':
1588 code = TYPE_CODE_ENUM;
1589 break;
1590 default:
1591 {
1592 /* Complain and keep going, so compilers can invent new
1593 cross-reference types. */
1594 complaint (&symfile_complaints,
1595 _("Unrecognized cross-reference type `%c'"),
1596 (*pp)[0]);
1597 code = TYPE_CODE_STRUCT;
1598 break;
1599 }
1600 }
1601
1602 q1 = strchr (*pp, '<');
1603 p = strchr (*pp, ':');
1604 if (p == NULL)
1605 return error_type (pp, objfile);
1606 if (q1 && p > q1 && p[1] == ':')
1607 {
1608 int nesting_level = 0;
1609
1610 for (q2 = q1; *q2; q2++)
1611 {
1612 if (*q2 == '<')
1613 nesting_level++;
1614 else if (*q2 == '>')
1615 nesting_level--;
1616 else if (*q2 == ':' && nesting_level == 0)
1617 break;
1618 }
1619 p = q2;
1620 if (*p != ':')
1621 return error_type (pp, objfile);
1622 }
1623 type_name = NULL;
1624 if (current_subfile->language == language_cplus)
1625 {
1626 char *new_name, *name = (char *) alloca (p - *pp + 1);
1627
1628 memcpy (name, *pp, p - *pp);
1629 name[p - *pp] = '\0';
1630 new_name = cp_canonicalize_string (name);
1631 if (new_name != NULL)
1632 {
1633 type_name
1634 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1635 new_name, strlen (new_name));
1636 xfree (new_name);
1637 }
1638 }
1639 if (type_name == NULL)
1640 {
1641 to = type_name = (char *)
1642 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1643
1644 /* Copy the name. */
1645 from = *pp + 1;
1646 while (from < p)
1647 *to++ = *from++;
1648 *to = '\0';
1649 }
1650
1651 /* Set the pointer ahead of the name which we just read, and
1652 the colon. */
1653 *pp = p + 1;
1654 }
1655
1656 /* If this type has already been declared, then reuse the same
1657 type, rather than allocating a new one. This saves some
1658 memory. */
1659
1660 for (ppt = file_symbols; ppt; ppt = ppt->next)
1661 for (i = 0; i < ppt->nsyms; i++)
1662 {
1663 struct symbol *sym = ppt->symbol[i];
1664
1665 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1666 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1667 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1668 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1669 {
1670 obstack_free (&objfile->objfile_obstack, type_name);
1671 type = SYMBOL_TYPE (sym);
1672 if (typenums[0] != -1)
1673 *dbx_lookup_type (typenums, objfile) = type;
1674 return type;
1675 }
1676 }
1677
1678 /* Didn't find the type to which this refers, so we must
1679 be dealing with a forward reference. Allocate a type
1680 structure for it, and keep track of it so we can
1681 fill in the rest of the fields when we get the full
1682 type. */
1683 type = dbx_alloc_type (typenums, objfile);
1684 TYPE_CODE (type) = code;
1685 TYPE_TAG_NAME (type) = type_name;
1686 INIT_CPLUS_SPECIFIC (type);
1687 TYPE_STUB (type) = 1;
1688
1689 add_undefined_type (type, typenums);
1690 return type;
1691 }
1692
1693 case '-': /* RS/6000 built-in type */
1694 case '0':
1695 case '1':
1696 case '2':
1697 case '3':
1698 case '4':
1699 case '5':
1700 case '6':
1701 case '7':
1702 case '8':
1703 case '9':
1704 case '(':
1705 (*pp)--;
1706
1707 /* We deal with something like t(1,2)=(3,4)=... which
1708 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1709
1710 /* Allocate and enter the typedef type first.
1711 This handles recursive types. */
1712 type = dbx_alloc_type (typenums, objfile);
1713 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1714 {
1715 struct type *xtype = read_type (pp, objfile);
1716
1717 if (type == xtype)
1718 {
1719 /* It's being defined as itself. That means it is "void". */
1720 TYPE_CODE (type) = TYPE_CODE_VOID;
1721 TYPE_LENGTH (type) = 1;
1722 }
1723 else if (type_size >= 0 || is_string)
1724 {
1725 /* This is the absolute wrong way to construct types. Every
1726 other debug format has found a way around this problem and
1727 the related problems with unnecessarily stubbed types;
1728 someone motivated should attempt to clean up the issue
1729 here as well. Once a type pointed to has been created it
1730 should not be modified.
1731
1732 Well, it's not *absolutely* wrong. Constructing recursive
1733 types (trees, linked lists) necessarily entails modifying
1734 types after creating them. Constructing any loop structure
1735 entails side effects. The Dwarf 2 reader does handle this
1736 more gracefully (it never constructs more than once
1737 instance of a type object, so it doesn't have to copy type
1738 objects wholesale), but it still mutates type objects after
1739 other folks have references to them.
1740
1741 Keep in mind that this circularity/mutation issue shows up
1742 at the source language level, too: C's "incomplete types",
1743 for example. So the proper cleanup, I think, would be to
1744 limit GDB's type smashing to match exactly those required
1745 by the source language. So GDB could have a
1746 "complete_this_type" function, but never create unnecessary
1747 copies of a type otherwise. */
1748 replace_type (type, xtype);
1749 TYPE_NAME (type) = NULL;
1750 TYPE_TAG_NAME (type) = NULL;
1751 }
1752 else
1753 {
1754 TYPE_TARGET_STUB (type) = 1;
1755 TYPE_TARGET_TYPE (type) = xtype;
1756 }
1757 }
1758 break;
1759
1760 /* In the following types, we must be sure to overwrite any existing
1761 type that the typenums refer to, rather than allocating a new one
1762 and making the typenums point to the new one. This is because there
1763 may already be pointers to the existing type (if it had been
1764 forward-referenced), and we must change it to a pointer, function,
1765 reference, or whatever, *in-place*. */
1766
1767 case '*': /* Pointer to another type */
1768 type1 = read_type (pp, objfile);
1769 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1770 break;
1771
1772 case '&': /* Reference to another type */
1773 type1 = read_type (pp, objfile);
1774 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1775 break;
1776
1777 case 'f': /* Function returning another type */
1778 type1 = read_type (pp, objfile);
1779 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1780 break;
1781
1782 case 'g': /* Prototyped function. (Sun) */
1783 {
1784 /* Unresolved questions:
1785
1786 - According to Sun's ``STABS Interface Manual'', for 'f'
1787 and 'F' symbol descriptors, a `0' in the argument type list
1788 indicates a varargs function. But it doesn't say how 'g'
1789 type descriptors represent that info. Someone with access
1790 to Sun's toolchain should try it out.
1791
1792 - According to the comment in define_symbol (search for
1793 `process_prototype_types:'), Sun emits integer arguments as
1794 types which ref themselves --- like `void' types. Do we
1795 have to deal with that here, too? Again, someone with
1796 access to Sun's toolchain should try it out and let us
1797 know. */
1798
1799 const char *type_start = (*pp) - 1;
1800 struct type *return_type = read_type (pp, objfile);
1801 struct type *func_type
1802 = make_function_type (return_type,
1803 dbx_lookup_type (typenums, objfile));
1804 struct type_list {
1805 struct type *type;
1806 struct type_list *next;
1807 } *arg_types = 0;
1808 int num_args = 0;
1809
1810 while (**pp && **pp != '#')
1811 {
1812 struct type *arg_type = read_type (pp, objfile);
1813 struct type_list *newobj = XALLOCA (struct type_list);
1814 newobj->type = arg_type;
1815 newobj->next = arg_types;
1816 arg_types = newobj;
1817 num_args++;
1818 }
1819 if (**pp == '#')
1820 ++*pp;
1821 else
1822 {
1823 complaint (&symfile_complaints,
1824 _("Prototyped function type didn't "
1825 "end arguments with `#':\n%s"),
1826 type_start);
1827 }
1828
1829 /* If there is just one argument whose type is `void', then
1830 that's just an empty argument list. */
1831 if (arg_types
1832 && ! arg_types->next
1833 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1834 num_args = 0;
1835
1836 TYPE_FIELDS (func_type)
1837 = (struct field *) TYPE_ALLOC (func_type,
1838 num_args * sizeof (struct field));
1839 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1840 {
1841 int i;
1842 struct type_list *t;
1843
1844 /* We stuck each argument type onto the front of the list
1845 when we read it, so the list is reversed. Build the
1846 fields array right-to-left. */
1847 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1848 TYPE_FIELD_TYPE (func_type, i) = t->type;
1849 }
1850 TYPE_NFIELDS (func_type) = num_args;
1851 TYPE_PROTOTYPED (func_type) = 1;
1852
1853 type = func_type;
1854 break;
1855 }
1856
1857 case 'k': /* Const qualifier on some type (Sun) */
1858 type = read_type (pp, objfile);
1859 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1860 dbx_lookup_type (typenums, objfile));
1861 break;
1862
1863 case 'B': /* Volatile qual on some type (Sun) */
1864 type = read_type (pp, objfile);
1865 type = make_cv_type (TYPE_CONST (type), 1, type,
1866 dbx_lookup_type (typenums, objfile));
1867 break;
1868
1869 case '@':
1870 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1871 { /* Member (class & variable) type */
1872 /* FIXME -- we should be doing smash_to_XXX types here. */
1873
1874 struct type *domain = read_type (pp, objfile);
1875 struct type *memtype;
1876
1877 if (**pp != ',')
1878 /* Invalid member type data format. */
1879 return error_type (pp, objfile);
1880 ++*pp;
1881
1882 memtype = read_type (pp, objfile);
1883 type = dbx_alloc_type (typenums, objfile);
1884 smash_to_memberptr_type (type, domain, memtype);
1885 }
1886 else
1887 /* type attribute */
1888 {
1889 char *attr = *pp;
1890
1891 /* Skip to the semicolon. */
1892 while (**pp != ';' && **pp != '\0')
1893 ++(*pp);
1894 if (**pp == '\0')
1895 return error_type (pp, objfile);
1896 else
1897 ++ * pp; /* Skip the semicolon. */
1898
1899 switch (*attr)
1900 {
1901 case 's': /* Size attribute */
1902 type_size = atoi (attr + 1);
1903 if (type_size <= 0)
1904 type_size = -1;
1905 break;
1906
1907 case 'S': /* String attribute */
1908 /* FIXME: check to see if following type is array? */
1909 is_string = 1;
1910 break;
1911
1912 case 'V': /* Vector attribute */
1913 /* FIXME: check to see if following type is array? */
1914 is_vector = 1;
1915 break;
1916
1917 default:
1918 /* Ignore unrecognized type attributes, so future compilers
1919 can invent new ones. */
1920 break;
1921 }
1922 ++*pp;
1923 goto again;
1924 }
1925 break;
1926
1927 case '#': /* Method (class & fn) type */
1928 if ((*pp)[0] == '#')
1929 {
1930 /* We'll get the parameter types from the name. */
1931 struct type *return_type;
1932
1933 (*pp)++;
1934 return_type = read_type (pp, objfile);
1935 if (*(*pp)++ != ';')
1936 complaint (&symfile_complaints,
1937 _("invalid (minimal) member type "
1938 "data format at symtab pos %d."),
1939 symnum);
1940 type = allocate_stub_method (return_type);
1941 if (typenums[0] != -1)
1942 *dbx_lookup_type (typenums, objfile) = type;
1943 }
1944 else
1945 {
1946 struct type *domain = read_type (pp, objfile);
1947 struct type *return_type;
1948 struct field *args;
1949 int nargs, varargs;
1950
1951 if (**pp != ',')
1952 /* Invalid member type data format. */
1953 return error_type (pp, objfile);
1954 else
1955 ++(*pp);
1956
1957 return_type = read_type (pp, objfile);
1958 args = read_args (pp, ';', objfile, &nargs, &varargs);
1959 if (args == NULL)
1960 return error_type (pp, objfile);
1961 type = dbx_alloc_type (typenums, objfile);
1962 smash_to_method_type (type, domain, return_type, args,
1963 nargs, varargs);
1964 }
1965 break;
1966
1967 case 'r': /* Range type */
1968 type = read_range_type (pp, typenums, type_size, objfile);
1969 if (typenums[0] != -1)
1970 *dbx_lookup_type (typenums, objfile) = type;
1971 break;
1972
1973 case 'b':
1974 {
1975 /* Sun ACC builtin int type */
1976 type = read_sun_builtin_type (pp, typenums, objfile);
1977 if (typenums[0] != -1)
1978 *dbx_lookup_type (typenums, objfile) = type;
1979 }
1980 break;
1981
1982 case 'R': /* Sun ACC builtin float type */
1983 type = read_sun_floating_type (pp, typenums, objfile);
1984 if (typenums[0] != -1)
1985 *dbx_lookup_type (typenums, objfile) = type;
1986 break;
1987
1988 case 'e': /* Enumeration type */
1989 type = dbx_alloc_type (typenums, objfile);
1990 type = read_enum_type (pp, type, objfile);
1991 if (typenums[0] != -1)
1992 *dbx_lookup_type (typenums, objfile) = type;
1993 break;
1994
1995 case 's': /* Struct type */
1996 case 'u': /* Union type */
1997 {
1998 enum type_code type_code = TYPE_CODE_UNDEF;
1999 type = dbx_alloc_type (typenums, objfile);
2000 switch (type_descriptor)
2001 {
2002 case 's':
2003 type_code = TYPE_CODE_STRUCT;
2004 break;
2005 case 'u':
2006 type_code = TYPE_CODE_UNION;
2007 break;
2008 }
2009 type = read_struct_type (pp, type, type_code, objfile);
2010 break;
2011 }
2012
2013 case 'a': /* Array type */
2014 if (**pp != 'r')
2015 return error_type (pp, objfile);
2016 ++*pp;
2017
2018 type = dbx_alloc_type (typenums, objfile);
2019 type = read_array_type (pp, type, objfile);
2020 if (is_string)
2021 TYPE_CODE (type) = TYPE_CODE_STRING;
2022 if (is_vector)
2023 make_vector_type (type);
2024 break;
2025
2026 case 'S': /* Set type */
2027 type1 = read_type (pp, objfile);
2028 type = create_set_type ((struct type *) NULL, type1);
2029 if (typenums[0] != -1)
2030 *dbx_lookup_type (typenums, objfile) = type;
2031 break;
2032
2033 default:
2034 --*pp; /* Go back to the symbol in error. */
2035 /* Particularly important if it was \0! */
2036 return error_type (pp, objfile);
2037 }
2038
2039 if (type == 0)
2040 {
2041 warning (_("GDB internal error, type is NULL in stabsread.c."));
2042 return error_type (pp, objfile);
2043 }
2044
2045 /* Size specified in a type attribute overrides any other size. */
2046 if (type_size != -1)
2047 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2048
2049 return type;
2050 }
2051 \f
2052 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2053 Return the proper type node for a given builtin type number. */
2054
2055 static const struct objfile_data *rs6000_builtin_type_data;
2056
2057 static struct type *
2058 rs6000_builtin_type (int typenum, struct objfile *objfile)
2059 {
2060 struct type **negative_types
2061 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2062
2063 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2064 #define NUMBER_RECOGNIZED 34
2065 struct type *rettype = NULL;
2066
2067 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2068 {
2069 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2070 return objfile_type (objfile)->builtin_error;
2071 }
2072
2073 if (!negative_types)
2074 {
2075 /* This includes an empty slot for type number -0. */
2076 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2077 NUMBER_RECOGNIZED + 1, struct type *);
2078 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2079 }
2080
2081 if (negative_types[-typenum] != NULL)
2082 return negative_types[-typenum];
2083
2084 #if TARGET_CHAR_BIT != 8
2085 #error This code wrong for TARGET_CHAR_BIT not 8
2086 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2087 that if that ever becomes not true, the correct fix will be to
2088 make the size in the struct type to be in bits, not in units of
2089 TARGET_CHAR_BIT. */
2090 #endif
2091
2092 switch (-typenum)
2093 {
2094 case 1:
2095 /* The size of this and all the other types are fixed, defined
2096 by the debugging format. If there is a type called "int" which
2097 is other than 32 bits, then it should use a new negative type
2098 number (or avoid negative type numbers for that case).
2099 See stabs.texinfo. */
2100 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2101 break;
2102 case 2:
2103 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2104 break;
2105 case 3:
2106 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2107 break;
2108 case 4:
2109 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2110 break;
2111 case 5:
2112 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2113 "unsigned char", objfile);
2114 break;
2115 case 6:
2116 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2117 break;
2118 case 7:
2119 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2120 "unsigned short", objfile);
2121 break;
2122 case 8:
2123 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2124 "unsigned int", objfile);
2125 break;
2126 case 9:
2127 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2128 "unsigned", objfile);
2129 break;
2130 case 10:
2131 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2132 "unsigned long", objfile);
2133 break;
2134 case 11:
2135 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2136 break;
2137 case 12:
2138 /* IEEE single precision (32 bit). */
2139 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2140 break;
2141 case 13:
2142 /* IEEE double precision (64 bit). */
2143 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2144 break;
2145 case 14:
2146 /* This is an IEEE double on the RS/6000, and different machines with
2147 different sizes for "long double" should use different negative
2148 type numbers. See stabs.texinfo. */
2149 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2150 break;
2151 case 15:
2152 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2153 break;
2154 case 16:
2155 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2156 "boolean", objfile);
2157 break;
2158 case 17:
2159 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2160 break;
2161 case 18:
2162 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2163 break;
2164 case 19:
2165 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2166 break;
2167 case 20:
2168 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2169 "character", objfile);
2170 break;
2171 case 21:
2172 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2173 "logical*1", objfile);
2174 break;
2175 case 22:
2176 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2177 "logical*2", objfile);
2178 break;
2179 case 23:
2180 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2181 "logical*4", objfile);
2182 break;
2183 case 24:
2184 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2185 "logical", objfile);
2186 break;
2187 case 25:
2188 /* Complex type consisting of two IEEE single precision values. */
2189 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2190 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2191 objfile);
2192 break;
2193 case 26:
2194 /* Complex type consisting of two IEEE double precision values. */
2195 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2196 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2197 objfile);
2198 break;
2199 case 27:
2200 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2201 break;
2202 case 28:
2203 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2204 break;
2205 case 29:
2206 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2207 break;
2208 case 30:
2209 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2210 break;
2211 case 31:
2212 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2213 break;
2214 case 32:
2215 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2216 "unsigned long long", objfile);
2217 break;
2218 case 33:
2219 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2220 "logical*8", objfile);
2221 break;
2222 case 34:
2223 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2224 break;
2225 }
2226 negative_types[-typenum] = rettype;
2227 return rettype;
2228 }
2229 \f
2230 /* This page contains subroutines of read_type. */
2231
2232 /* Wrapper around method_name_from_physname to flag a complaint
2233 if there is an error. */
2234
2235 static char *
2236 stabs_method_name_from_physname (const char *physname)
2237 {
2238 char *method_name;
2239
2240 method_name = method_name_from_physname (physname);
2241
2242 if (method_name == NULL)
2243 {
2244 complaint (&symfile_complaints,
2245 _("Method has bad physname %s\n"), physname);
2246 return NULL;
2247 }
2248
2249 return method_name;
2250 }
2251
2252 /* Read member function stabs info for C++ classes. The form of each member
2253 function data is:
2254
2255 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2256
2257 An example with two member functions is:
2258
2259 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2260
2261 For the case of overloaded operators, the format is op$::*.funcs, where
2262 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2263 name (such as `+=') and `.' marks the end of the operator name.
2264
2265 Returns 1 for success, 0 for failure. */
2266
2267 static int
2268 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2269 struct objfile *objfile)
2270 {
2271 int nfn_fields = 0;
2272 int length = 0;
2273 int i;
2274 struct next_fnfield
2275 {
2276 struct next_fnfield *next;
2277 struct fn_field fn_field;
2278 }
2279 *sublist;
2280 struct type *look_ahead_type;
2281 struct next_fnfieldlist *new_fnlist;
2282 struct next_fnfield *new_sublist;
2283 char *main_fn_name;
2284 char *p;
2285
2286 /* Process each list until we find something that is not a member function
2287 or find the end of the functions. */
2288
2289 while (**pp != ';')
2290 {
2291 /* We should be positioned at the start of the function name.
2292 Scan forward to find the first ':' and if it is not the
2293 first of a "::" delimiter, then this is not a member function. */
2294 p = *pp;
2295 while (*p != ':')
2296 {
2297 p++;
2298 }
2299 if (p[1] != ':')
2300 {
2301 break;
2302 }
2303
2304 sublist = NULL;
2305 look_ahead_type = NULL;
2306 length = 0;
2307
2308 new_fnlist = XCNEW (struct next_fnfieldlist);
2309 make_cleanup (xfree, new_fnlist);
2310
2311 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2312 {
2313 /* This is a completely wierd case. In order to stuff in the
2314 names that might contain colons (the usual name delimiter),
2315 Mike Tiemann defined a different name format which is
2316 signalled if the identifier is "op$". In that case, the
2317 format is "op$::XXXX." where XXXX is the name. This is
2318 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2319 /* This lets the user type "break operator+".
2320 We could just put in "+" as the name, but that wouldn't
2321 work for "*". */
2322 static char opname[32] = "op$";
2323 char *o = opname + 3;
2324
2325 /* Skip past '::'. */
2326 *pp = p + 2;
2327
2328 STABS_CONTINUE (pp, objfile);
2329 p = *pp;
2330 while (*p != '.')
2331 {
2332 *o++ = *p++;
2333 }
2334 main_fn_name = savestring (opname, o - opname);
2335 /* Skip past '.' */
2336 *pp = p + 1;
2337 }
2338 else
2339 {
2340 main_fn_name = savestring (*pp, p - *pp);
2341 /* Skip past '::'. */
2342 *pp = p + 2;
2343 }
2344 new_fnlist->fn_fieldlist.name = main_fn_name;
2345
2346 do
2347 {
2348 new_sublist = XCNEW (struct next_fnfield);
2349 make_cleanup (xfree, new_sublist);
2350
2351 /* Check for and handle cretinous dbx symbol name continuation! */
2352 if (look_ahead_type == NULL)
2353 {
2354 /* Normal case. */
2355 STABS_CONTINUE (pp, objfile);
2356
2357 new_sublist->fn_field.type = read_type (pp, objfile);
2358 if (**pp != ':')
2359 {
2360 /* Invalid symtab info for member function. */
2361 return 0;
2362 }
2363 }
2364 else
2365 {
2366 /* g++ version 1 kludge */
2367 new_sublist->fn_field.type = look_ahead_type;
2368 look_ahead_type = NULL;
2369 }
2370
2371 (*pp)++;
2372 p = *pp;
2373 while (*p != ';')
2374 {
2375 p++;
2376 }
2377
2378 /* These are methods, not functions. */
2379 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2380 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2381 else
2382 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2383 == TYPE_CODE_METHOD);
2384
2385 /* If this is just a stub, then we don't have the real name here. */
2386 if (TYPE_STUB (new_sublist->fn_field.type))
2387 {
2388 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2389 set_type_self_type (new_sublist->fn_field.type, type);
2390 new_sublist->fn_field.is_stub = 1;
2391 }
2392
2393 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2394 *pp = p + 1;
2395
2396 /* Set this member function's visibility fields. */
2397 switch (*(*pp)++)
2398 {
2399 case VISIBILITY_PRIVATE:
2400 new_sublist->fn_field.is_private = 1;
2401 break;
2402 case VISIBILITY_PROTECTED:
2403 new_sublist->fn_field.is_protected = 1;
2404 break;
2405 }
2406
2407 STABS_CONTINUE (pp, objfile);
2408 switch (**pp)
2409 {
2410 case 'A': /* Normal functions. */
2411 new_sublist->fn_field.is_const = 0;
2412 new_sublist->fn_field.is_volatile = 0;
2413 (*pp)++;
2414 break;
2415 case 'B': /* `const' member functions. */
2416 new_sublist->fn_field.is_const = 1;
2417 new_sublist->fn_field.is_volatile = 0;
2418 (*pp)++;
2419 break;
2420 case 'C': /* `volatile' member function. */
2421 new_sublist->fn_field.is_const = 0;
2422 new_sublist->fn_field.is_volatile = 1;
2423 (*pp)++;
2424 break;
2425 case 'D': /* `const volatile' member function. */
2426 new_sublist->fn_field.is_const = 1;
2427 new_sublist->fn_field.is_volatile = 1;
2428 (*pp)++;
2429 break;
2430 case '*': /* File compiled with g++ version 1 --
2431 no info. */
2432 case '?':
2433 case '.':
2434 break;
2435 default:
2436 complaint (&symfile_complaints,
2437 _("const/volatile indicator missing, got '%c'"),
2438 **pp);
2439 break;
2440 }
2441
2442 switch (*(*pp)++)
2443 {
2444 case '*':
2445 {
2446 int nbits;
2447 /* virtual member function, followed by index.
2448 The sign bit is set to distinguish pointers-to-methods
2449 from virtual function indicies. Since the array is
2450 in words, the quantity must be shifted left by 1
2451 on 16 bit machine, and by 2 on 32 bit machine, forcing
2452 the sign bit out, and usable as a valid index into
2453 the array. Remove the sign bit here. */
2454 new_sublist->fn_field.voffset =
2455 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2456 if (nbits != 0)
2457 return 0;
2458
2459 STABS_CONTINUE (pp, objfile);
2460 if (**pp == ';' || **pp == '\0')
2461 {
2462 /* Must be g++ version 1. */
2463 new_sublist->fn_field.fcontext = 0;
2464 }
2465 else
2466 {
2467 /* Figure out from whence this virtual function came.
2468 It may belong to virtual function table of
2469 one of its baseclasses. */
2470 look_ahead_type = read_type (pp, objfile);
2471 if (**pp == ':')
2472 {
2473 /* g++ version 1 overloaded methods. */
2474 }
2475 else
2476 {
2477 new_sublist->fn_field.fcontext = look_ahead_type;
2478 if (**pp != ';')
2479 {
2480 return 0;
2481 }
2482 else
2483 {
2484 ++*pp;
2485 }
2486 look_ahead_type = NULL;
2487 }
2488 }
2489 break;
2490 }
2491 case '?':
2492 /* static member function. */
2493 {
2494 int slen = strlen (main_fn_name);
2495
2496 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2497
2498 /* For static member functions, we can't tell if they
2499 are stubbed, as they are put out as functions, and not as
2500 methods.
2501 GCC v2 emits the fully mangled name if
2502 dbxout.c:flag_minimal_debug is not set, so we have to
2503 detect a fully mangled physname here and set is_stub
2504 accordingly. Fully mangled physnames in v2 start with
2505 the member function name, followed by two underscores.
2506 GCC v3 currently always emits stubbed member functions,
2507 but with fully mangled physnames, which start with _Z. */
2508 if (!(strncmp (new_sublist->fn_field.physname,
2509 main_fn_name, slen) == 0
2510 && new_sublist->fn_field.physname[slen] == '_'
2511 && new_sublist->fn_field.physname[slen + 1] == '_'))
2512 {
2513 new_sublist->fn_field.is_stub = 1;
2514 }
2515 break;
2516 }
2517
2518 default:
2519 /* error */
2520 complaint (&symfile_complaints,
2521 _("member function type missing, got '%c'"),
2522 (*pp)[-1]);
2523 /* Fall through into normal member function. */
2524
2525 case '.':
2526 /* normal member function. */
2527 new_sublist->fn_field.voffset = 0;
2528 new_sublist->fn_field.fcontext = 0;
2529 break;
2530 }
2531
2532 new_sublist->next = sublist;
2533 sublist = new_sublist;
2534 length++;
2535 STABS_CONTINUE (pp, objfile);
2536 }
2537 while (**pp != ';' && **pp != '\0');
2538
2539 (*pp)++;
2540 STABS_CONTINUE (pp, objfile);
2541
2542 /* Skip GCC 3.X member functions which are duplicates of the callable
2543 constructor/destructor. */
2544 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2545 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2546 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2547 {
2548 xfree (main_fn_name);
2549 }
2550 else
2551 {
2552 int has_stub = 0;
2553 int has_destructor = 0, has_other = 0;
2554 int is_v3 = 0;
2555 struct next_fnfield *tmp_sublist;
2556
2557 /* Various versions of GCC emit various mostly-useless
2558 strings in the name field for special member functions.
2559
2560 For stub methods, we need to defer correcting the name
2561 until we are ready to unstub the method, because the current
2562 name string is used by gdb_mangle_name. The only stub methods
2563 of concern here are GNU v2 operators; other methods have their
2564 names correct (see caveat below).
2565
2566 For non-stub methods, in GNU v3, we have a complete physname.
2567 Therefore we can safely correct the name now. This primarily
2568 affects constructors and destructors, whose name will be
2569 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2570 operators will also have incorrect names; for instance,
2571 "operator int" will be named "operator i" (i.e. the type is
2572 mangled).
2573
2574 For non-stub methods in GNU v2, we have no easy way to
2575 know if we have a complete physname or not. For most
2576 methods the result depends on the platform (if CPLUS_MARKER
2577 can be `$' or `.', it will use minimal debug information, or
2578 otherwise the full physname will be included).
2579
2580 Rather than dealing with this, we take a different approach.
2581 For v3 mangled names, we can use the full physname; for v2,
2582 we use cplus_demangle_opname (which is actually v2 specific),
2583 because the only interesting names are all operators - once again
2584 barring the caveat below. Skip this process if any method in the
2585 group is a stub, to prevent our fouling up the workings of
2586 gdb_mangle_name.
2587
2588 The caveat: GCC 2.95.x (and earlier?) put constructors and
2589 destructors in the same method group. We need to split this
2590 into two groups, because they should have different names.
2591 So for each method group we check whether it contains both
2592 routines whose physname appears to be a destructor (the physnames
2593 for and destructors are always provided, due to quirks in v2
2594 mangling) and routines whose physname does not appear to be a
2595 destructor. If so then we break up the list into two halves.
2596 Even if the constructors and destructors aren't in the same group
2597 the destructor will still lack the leading tilde, so that also
2598 needs to be fixed.
2599
2600 So, to summarize what we expect and handle here:
2601
2602 Given Given Real Real Action
2603 method name physname physname method name
2604
2605 __opi [none] __opi__3Foo operator int opname
2606 [now or later]
2607 Foo _._3Foo _._3Foo ~Foo separate and
2608 rename
2609 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2610 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2611 */
2612
2613 tmp_sublist = sublist;
2614 while (tmp_sublist != NULL)
2615 {
2616 if (tmp_sublist->fn_field.is_stub)
2617 has_stub = 1;
2618 if (tmp_sublist->fn_field.physname[0] == '_'
2619 && tmp_sublist->fn_field.physname[1] == 'Z')
2620 is_v3 = 1;
2621
2622 if (is_destructor_name (tmp_sublist->fn_field.physname))
2623 has_destructor++;
2624 else
2625 has_other++;
2626
2627 tmp_sublist = tmp_sublist->next;
2628 }
2629
2630 if (has_destructor && has_other)
2631 {
2632 struct next_fnfieldlist *destr_fnlist;
2633 struct next_fnfield *last_sublist;
2634
2635 /* Create a new fn_fieldlist for the destructors. */
2636
2637 destr_fnlist = XCNEW (struct next_fnfieldlist);
2638 make_cleanup (xfree, destr_fnlist);
2639
2640 destr_fnlist->fn_fieldlist.name
2641 = obconcat (&objfile->objfile_obstack, "~",
2642 new_fnlist->fn_fieldlist.name, (char *) NULL);
2643
2644 destr_fnlist->fn_fieldlist.fn_fields =
2645 XOBNEWVEC (&objfile->objfile_obstack,
2646 struct fn_field, has_destructor);
2647 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2648 sizeof (struct fn_field) * has_destructor);
2649 tmp_sublist = sublist;
2650 last_sublist = NULL;
2651 i = 0;
2652 while (tmp_sublist != NULL)
2653 {
2654 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2655 {
2656 tmp_sublist = tmp_sublist->next;
2657 continue;
2658 }
2659
2660 destr_fnlist->fn_fieldlist.fn_fields[i++]
2661 = tmp_sublist->fn_field;
2662 if (last_sublist)
2663 last_sublist->next = tmp_sublist->next;
2664 else
2665 sublist = tmp_sublist->next;
2666 last_sublist = tmp_sublist;
2667 tmp_sublist = tmp_sublist->next;
2668 }
2669
2670 destr_fnlist->fn_fieldlist.length = has_destructor;
2671 destr_fnlist->next = fip->fnlist;
2672 fip->fnlist = destr_fnlist;
2673 nfn_fields++;
2674 length -= has_destructor;
2675 }
2676 else if (is_v3)
2677 {
2678 /* v3 mangling prevents the use of abbreviated physnames,
2679 so we can do this here. There are stubbed methods in v3
2680 only:
2681 - in -gstabs instead of -gstabs+
2682 - or for static methods, which are output as a function type
2683 instead of a method type. */
2684 char *new_method_name =
2685 stabs_method_name_from_physname (sublist->fn_field.physname);
2686
2687 if (new_method_name != NULL
2688 && strcmp (new_method_name,
2689 new_fnlist->fn_fieldlist.name) != 0)
2690 {
2691 new_fnlist->fn_fieldlist.name = new_method_name;
2692 xfree (main_fn_name);
2693 }
2694 else
2695 xfree (new_method_name);
2696 }
2697 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2698 {
2699 new_fnlist->fn_fieldlist.name =
2700 obconcat (&objfile->objfile_obstack,
2701 "~", main_fn_name, (char *)NULL);
2702 xfree (main_fn_name);
2703 }
2704 else if (!has_stub)
2705 {
2706 char dem_opname[256];
2707 int ret;
2708
2709 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2710 dem_opname, DMGL_ANSI);
2711 if (!ret)
2712 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2713 dem_opname, 0);
2714 if (ret)
2715 new_fnlist->fn_fieldlist.name
2716 = ((const char *)
2717 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2718 strlen (dem_opname)));
2719 xfree (main_fn_name);
2720 }
2721
2722 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2723 obstack_alloc (&objfile->objfile_obstack,
2724 sizeof (struct fn_field) * length);
2725 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2726 sizeof (struct fn_field) * length);
2727 for (i = length; (i--, sublist); sublist = sublist->next)
2728 {
2729 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2730 }
2731
2732 new_fnlist->fn_fieldlist.length = length;
2733 new_fnlist->next = fip->fnlist;
2734 fip->fnlist = new_fnlist;
2735 nfn_fields++;
2736 }
2737 }
2738
2739 if (nfn_fields)
2740 {
2741 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2742 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2743 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2744 memset (TYPE_FN_FIELDLISTS (type), 0,
2745 sizeof (struct fn_fieldlist) * nfn_fields);
2746 TYPE_NFN_FIELDS (type) = nfn_fields;
2747 }
2748
2749 return 1;
2750 }
2751
2752 /* Special GNU C++ name.
2753
2754 Returns 1 for success, 0 for failure. "failure" means that we can't
2755 keep parsing and it's time for error_type(). */
2756
2757 static int
2758 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2759 struct objfile *objfile)
2760 {
2761 char *p;
2762 const char *name;
2763 char cpp_abbrev;
2764 struct type *context;
2765
2766 p = *pp;
2767 if (*++p == 'v')
2768 {
2769 name = NULL;
2770 cpp_abbrev = *++p;
2771
2772 *pp = p + 1;
2773
2774 /* At this point, *pp points to something like "22:23=*22...",
2775 where the type number before the ':' is the "context" and
2776 everything after is a regular type definition. Lookup the
2777 type, find it's name, and construct the field name. */
2778
2779 context = read_type (pp, objfile);
2780
2781 switch (cpp_abbrev)
2782 {
2783 case 'f': /* $vf -- a virtual function table pointer */
2784 name = type_name_no_tag (context);
2785 if (name == NULL)
2786 {
2787 name = "";
2788 }
2789 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2790 vptr_name, name, (char *) NULL);
2791 break;
2792
2793 case 'b': /* $vb -- a virtual bsomethingorother */
2794 name = type_name_no_tag (context);
2795 if (name == NULL)
2796 {
2797 complaint (&symfile_complaints,
2798 _("C++ abbreviated type name "
2799 "unknown at symtab pos %d"),
2800 symnum);
2801 name = "FOO";
2802 }
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2804 name, (char *) NULL);
2805 break;
2806
2807 default:
2808 invalid_cpp_abbrev_complaint (*pp);
2809 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2810 "INVALID_CPLUSPLUS_ABBREV",
2811 (char *) NULL);
2812 break;
2813 }
2814
2815 /* At this point, *pp points to the ':'. Skip it and read the
2816 field type. */
2817
2818 p = ++(*pp);
2819 if (p[-1] != ':')
2820 {
2821 invalid_cpp_abbrev_complaint (*pp);
2822 return 0;
2823 }
2824 fip->list->field.type = read_type (pp, objfile);
2825 if (**pp == ',')
2826 (*pp)++; /* Skip the comma. */
2827 else
2828 return 0;
2829
2830 {
2831 int nbits;
2832
2833 SET_FIELD_BITPOS (fip->list->field,
2834 read_huge_number (pp, ';', &nbits, 0));
2835 if (nbits != 0)
2836 return 0;
2837 }
2838 /* This field is unpacked. */
2839 FIELD_BITSIZE (fip->list->field) = 0;
2840 fip->list->visibility = VISIBILITY_PRIVATE;
2841 }
2842 else
2843 {
2844 invalid_cpp_abbrev_complaint (*pp);
2845 /* We have no idea what syntax an unrecognized abbrev would have, so
2846 better return 0. If we returned 1, we would need to at least advance
2847 *pp to avoid an infinite loop. */
2848 return 0;
2849 }
2850 return 1;
2851 }
2852
2853 static void
2854 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2855 struct type *type, struct objfile *objfile)
2856 {
2857 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2858
2859 fip->list->field.name
2860 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2861 *pp = p + 1;
2862
2863 /* This means we have a visibility for a field coming. */
2864 if (**pp == '/')
2865 {
2866 (*pp)++;
2867 fip->list->visibility = *(*pp)++;
2868 }
2869 else
2870 {
2871 /* normal dbx-style format, no explicit visibility */
2872 fip->list->visibility = VISIBILITY_PUBLIC;
2873 }
2874
2875 fip->list->field.type = read_type (pp, objfile);
2876 if (**pp == ':')
2877 {
2878 p = ++(*pp);
2879 #if 0
2880 /* Possible future hook for nested types. */
2881 if (**pp == '!')
2882 {
2883 fip->list->field.bitpos = (long) -2; /* nested type */
2884 p = ++(*pp);
2885 }
2886 else
2887 ...;
2888 #endif
2889 while (*p != ';')
2890 {
2891 p++;
2892 }
2893 /* Static class member. */
2894 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2895 *pp = p + 1;
2896 return;
2897 }
2898 else if (**pp != ',')
2899 {
2900 /* Bad structure-type format. */
2901 stabs_general_complaint ("bad structure-type format");
2902 return;
2903 }
2904
2905 (*pp)++; /* Skip the comma. */
2906
2907 {
2908 int nbits;
2909
2910 SET_FIELD_BITPOS (fip->list->field,
2911 read_huge_number (pp, ',', &nbits, 0));
2912 if (nbits != 0)
2913 {
2914 stabs_general_complaint ("bad structure-type format");
2915 return;
2916 }
2917 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2918 if (nbits != 0)
2919 {
2920 stabs_general_complaint ("bad structure-type format");
2921 return;
2922 }
2923 }
2924
2925 if (FIELD_BITPOS (fip->list->field) == 0
2926 && FIELD_BITSIZE (fip->list->field) == 0)
2927 {
2928 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2929 it is a field which has been optimized out. The correct stab for
2930 this case is to use VISIBILITY_IGNORE, but that is a recent
2931 invention. (2) It is a 0-size array. For example
2932 union { int num; char str[0]; } foo. Printing _("<no value>" for
2933 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2934 will continue to work, and a 0-size array as a whole doesn't
2935 have any contents to print.
2936
2937 I suspect this probably could also happen with gcc -gstabs (not
2938 -gstabs+) for static fields, and perhaps other C++ extensions.
2939 Hopefully few people use -gstabs with gdb, since it is intended
2940 for dbx compatibility. */
2941
2942 /* Ignore this field. */
2943 fip->list->visibility = VISIBILITY_IGNORE;
2944 }
2945 else
2946 {
2947 /* Detect an unpacked field and mark it as such.
2948 dbx gives a bit size for all fields.
2949 Note that forward refs cannot be packed,
2950 and treat enums as if they had the width of ints. */
2951
2952 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2953
2954 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2955 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2956 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2957 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2958 {
2959 FIELD_BITSIZE (fip->list->field) = 0;
2960 }
2961 if ((FIELD_BITSIZE (fip->list->field)
2962 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2963 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2964 && FIELD_BITSIZE (fip->list->field)
2965 == gdbarch_int_bit (gdbarch))
2966 )
2967 &&
2968 FIELD_BITPOS (fip->list->field) % 8 == 0)
2969 {
2970 FIELD_BITSIZE (fip->list->field) = 0;
2971 }
2972 }
2973 }
2974
2975
2976 /* Read struct or class data fields. They have the form:
2977
2978 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2979
2980 At the end, we see a semicolon instead of a field.
2981
2982 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2983 a static field.
2984
2985 The optional VISIBILITY is one of:
2986
2987 '/0' (VISIBILITY_PRIVATE)
2988 '/1' (VISIBILITY_PROTECTED)
2989 '/2' (VISIBILITY_PUBLIC)
2990 '/9' (VISIBILITY_IGNORE)
2991
2992 or nothing, for C style fields with public visibility.
2993
2994 Returns 1 for success, 0 for failure. */
2995
2996 static int
2997 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2998 struct objfile *objfile)
2999 {
3000 char *p;
3001 struct nextfield *newobj;
3002
3003 /* We better set p right now, in case there are no fields at all... */
3004
3005 p = *pp;
3006
3007 /* Read each data member type until we find the terminating ';' at the end of
3008 the data member list, or break for some other reason such as finding the
3009 start of the member function list. */
3010 /* Stab string for structure/union does not end with two ';' in
3011 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3012
3013 while (**pp != ';' && **pp != '\0')
3014 {
3015 STABS_CONTINUE (pp, objfile);
3016 /* Get space to record the next field's data. */
3017 newobj = XCNEW (struct nextfield);
3018 make_cleanup (xfree, newobj);
3019
3020 newobj->next = fip->list;
3021 fip->list = newobj;
3022
3023 /* Get the field name. */
3024 p = *pp;
3025
3026 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3027 unless the CPLUS_MARKER is followed by an underscore, in
3028 which case it is just the name of an anonymous type, which we
3029 should handle like any other type name. */
3030
3031 if (is_cplus_marker (p[0]) && p[1] != '_')
3032 {
3033 if (!read_cpp_abbrev (fip, pp, type, objfile))
3034 return 0;
3035 continue;
3036 }
3037
3038 /* Look for the ':' that separates the field name from the field
3039 values. Data members are delimited by a single ':', while member
3040 functions are delimited by a pair of ':'s. When we hit the member
3041 functions (if any), terminate scan loop and return. */
3042
3043 while (*p != ':' && *p != '\0')
3044 {
3045 p++;
3046 }
3047 if (*p == '\0')
3048 return 0;
3049
3050 /* Check to see if we have hit the member functions yet. */
3051 if (p[1] == ':')
3052 {
3053 break;
3054 }
3055 read_one_struct_field (fip, pp, p, type, objfile);
3056 }
3057 if (p[0] == ':' && p[1] == ':')
3058 {
3059 /* (the deleted) chill the list of fields: the last entry (at
3060 the head) is a partially constructed entry which we now
3061 scrub. */
3062 fip->list = fip->list->next;
3063 }
3064 return 1;
3065 }
3066 /* *INDENT-OFF* */
3067 /* The stabs for C++ derived classes contain baseclass information which
3068 is marked by a '!' character after the total size. This function is
3069 called when we encounter the baseclass marker, and slurps up all the
3070 baseclass information.
3071
3072 Immediately following the '!' marker is the number of base classes that
3073 the class is derived from, followed by information for each base class.
3074 For each base class, there are two visibility specifiers, a bit offset
3075 to the base class information within the derived class, a reference to
3076 the type for the base class, and a terminating semicolon.
3077
3078 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3079 ^^ ^ ^ ^ ^ ^ ^
3080 Baseclass information marker __________________|| | | | | | |
3081 Number of baseclasses __________________________| | | | | | |
3082 Visibility specifiers (2) ________________________| | | | | |
3083 Offset in bits from start of class _________________| | | | |
3084 Type number for base class ___________________________| | | |
3085 Visibility specifiers (2) _______________________________| | |
3086 Offset in bits from start of class ________________________| |
3087 Type number of base class ____________________________________|
3088
3089 Return 1 for success, 0 for (error-type-inducing) failure. */
3090 /* *INDENT-ON* */
3091
3092
3093
3094 static int
3095 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3096 struct objfile *objfile)
3097 {
3098 int i;
3099 struct nextfield *newobj;
3100
3101 if (**pp != '!')
3102 {
3103 return 1;
3104 }
3105 else
3106 {
3107 /* Skip the '!' baseclass information marker. */
3108 (*pp)++;
3109 }
3110
3111 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3112 {
3113 int nbits;
3114
3115 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3116 if (nbits != 0)
3117 return 0;
3118 }
3119
3120 #if 0
3121 /* Some stupid compilers have trouble with the following, so break
3122 it up into simpler expressions. */
3123 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3124 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3125 #else
3126 {
3127 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3128 char *pointer;
3129
3130 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3131 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3132 }
3133 #endif /* 0 */
3134
3135 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3136
3137 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3138 {
3139 newobj = XCNEW (struct nextfield);
3140 make_cleanup (xfree, newobj);
3141
3142 newobj->next = fip->list;
3143 fip->list = newobj;
3144 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3145 field! */
3146
3147 STABS_CONTINUE (pp, objfile);
3148 switch (**pp)
3149 {
3150 case '0':
3151 /* Nothing to do. */
3152 break;
3153 case '1':
3154 SET_TYPE_FIELD_VIRTUAL (type, i);
3155 break;
3156 default:
3157 /* Unknown character. Complain and treat it as non-virtual. */
3158 {
3159 complaint (&symfile_complaints,
3160 _("Unknown virtual character `%c' for baseclass"),
3161 **pp);
3162 }
3163 }
3164 ++(*pp);
3165
3166 newobj->visibility = *(*pp)++;
3167 switch (newobj->visibility)
3168 {
3169 case VISIBILITY_PRIVATE:
3170 case VISIBILITY_PROTECTED:
3171 case VISIBILITY_PUBLIC:
3172 break;
3173 default:
3174 /* Bad visibility format. Complain and treat it as
3175 public. */
3176 {
3177 complaint (&symfile_complaints,
3178 _("Unknown visibility `%c' for baseclass"),
3179 newobj->visibility);
3180 newobj->visibility = VISIBILITY_PUBLIC;
3181 }
3182 }
3183
3184 {
3185 int nbits;
3186
3187 /* The remaining value is the bit offset of the portion of the object
3188 corresponding to this baseclass. Always zero in the absence of
3189 multiple inheritance. */
3190
3191 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3192 if (nbits != 0)
3193 return 0;
3194 }
3195
3196 /* The last piece of baseclass information is the type of the
3197 base class. Read it, and remember it's type name as this
3198 field's name. */
3199
3200 newobj->field.type = read_type (pp, objfile);
3201 newobj->field.name = type_name_no_tag (newobj->field.type);
3202
3203 /* Skip trailing ';' and bump count of number of fields seen. */
3204 if (**pp == ';')
3205 (*pp)++;
3206 else
3207 return 0;
3208 }
3209 return 1;
3210 }
3211
3212 /* The tail end of stabs for C++ classes that contain a virtual function
3213 pointer contains a tilde, a %, and a type number.
3214 The type number refers to the base class (possibly this class itself) which
3215 contains the vtable pointer for the current class.
3216
3217 This function is called when we have parsed all the method declarations,
3218 so we can look for the vptr base class info. */
3219
3220 static int
3221 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3222 struct objfile *objfile)
3223 {
3224 char *p;
3225
3226 STABS_CONTINUE (pp, objfile);
3227
3228 /* If we are positioned at a ';', then skip it. */
3229 if (**pp == ';')
3230 {
3231 (*pp)++;
3232 }
3233
3234 if (**pp == '~')
3235 {
3236 (*pp)++;
3237
3238 if (**pp == '=' || **pp == '+' || **pp == '-')
3239 {
3240 /* Obsolete flags that used to indicate the presence
3241 of constructors and/or destructors. */
3242 (*pp)++;
3243 }
3244
3245 /* Read either a '%' or the final ';'. */
3246 if (*(*pp)++ == '%')
3247 {
3248 /* The next number is the type number of the base class
3249 (possibly our own class) which supplies the vtable for
3250 this class. Parse it out, and search that class to find
3251 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3252 and TYPE_VPTR_FIELDNO. */
3253
3254 struct type *t;
3255 int i;
3256
3257 t = read_type (pp, objfile);
3258 p = (*pp)++;
3259 while (*p != '\0' && *p != ';')
3260 {
3261 p++;
3262 }
3263 if (*p == '\0')
3264 {
3265 /* Premature end of symbol. */
3266 return 0;
3267 }
3268
3269 set_type_vptr_basetype (type, t);
3270 if (type == t) /* Our own class provides vtbl ptr. */
3271 {
3272 for (i = TYPE_NFIELDS (t) - 1;
3273 i >= TYPE_N_BASECLASSES (t);
3274 --i)
3275 {
3276 const char *name = TYPE_FIELD_NAME (t, i);
3277
3278 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3279 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3280 {
3281 set_type_vptr_fieldno (type, i);
3282 goto gotit;
3283 }
3284 }
3285 /* Virtual function table field not found. */
3286 complaint (&symfile_complaints,
3287 _("virtual function table pointer "
3288 "not found when defining class `%s'"),
3289 TYPE_NAME (type));
3290 return 0;
3291 }
3292 else
3293 {
3294 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3295 }
3296
3297 gotit:
3298 *pp = p + 1;
3299 }
3300 }
3301 return 1;
3302 }
3303
3304 static int
3305 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3306 {
3307 int n;
3308
3309 for (n = TYPE_NFN_FIELDS (type);
3310 fip->fnlist != NULL;
3311 fip->fnlist = fip->fnlist->next)
3312 {
3313 --n; /* Circumvent Sun3 compiler bug. */
3314 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3315 }
3316 return 1;
3317 }
3318
3319 /* Create the vector of fields, and record how big it is.
3320 We need this info to record proper virtual function table information
3321 for this class's virtual functions. */
3322
3323 static int
3324 attach_fields_to_type (struct field_info *fip, struct type *type,
3325 struct objfile *objfile)
3326 {
3327 int nfields = 0;
3328 int non_public_fields = 0;
3329 struct nextfield *scan;
3330
3331 /* Count up the number of fields that we have, as well as taking note of
3332 whether or not there are any non-public fields, which requires us to
3333 allocate and build the private_field_bits and protected_field_bits
3334 bitfields. */
3335
3336 for (scan = fip->list; scan != NULL; scan = scan->next)
3337 {
3338 nfields++;
3339 if (scan->visibility != VISIBILITY_PUBLIC)
3340 {
3341 non_public_fields++;
3342 }
3343 }
3344
3345 /* Now we know how many fields there are, and whether or not there are any
3346 non-public fields. Record the field count, allocate space for the
3347 array of fields, and create blank visibility bitfields if necessary. */
3348
3349 TYPE_NFIELDS (type) = nfields;
3350 TYPE_FIELDS (type) = (struct field *)
3351 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3352 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3353
3354 if (non_public_fields)
3355 {
3356 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3357
3358 TYPE_FIELD_PRIVATE_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3361
3362 TYPE_FIELD_PROTECTED_BITS (type) =
3363 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3364 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3365
3366 TYPE_FIELD_IGNORE_BITS (type) =
3367 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3368 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3369 }
3370
3371 /* Copy the saved-up fields into the field vector. Start from the
3372 head of the list, adding to the tail of the field array, so that
3373 they end up in the same order in the array in which they were
3374 added to the list. */
3375
3376 while (nfields-- > 0)
3377 {
3378 TYPE_FIELD (type, nfields) = fip->list->field;
3379 switch (fip->list->visibility)
3380 {
3381 case VISIBILITY_PRIVATE:
3382 SET_TYPE_FIELD_PRIVATE (type, nfields);
3383 break;
3384
3385 case VISIBILITY_PROTECTED:
3386 SET_TYPE_FIELD_PROTECTED (type, nfields);
3387 break;
3388
3389 case VISIBILITY_IGNORE:
3390 SET_TYPE_FIELD_IGNORE (type, nfields);
3391 break;
3392
3393 case VISIBILITY_PUBLIC:
3394 break;
3395
3396 default:
3397 /* Unknown visibility. Complain and treat it as public. */
3398 {
3399 complaint (&symfile_complaints,
3400 _("Unknown visibility `%c' for field"),
3401 fip->list->visibility);
3402 }
3403 break;
3404 }
3405 fip->list = fip->list->next;
3406 }
3407 return 1;
3408 }
3409
3410
3411 /* Complain that the compiler has emitted more than one definition for the
3412 structure type TYPE. */
3413 static void
3414 complain_about_struct_wipeout (struct type *type)
3415 {
3416 const char *name = "";
3417 const char *kind = "";
3418
3419 if (TYPE_TAG_NAME (type))
3420 {
3421 name = TYPE_TAG_NAME (type);
3422 switch (TYPE_CODE (type))
3423 {
3424 case TYPE_CODE_STRUCT: kind = "struct "; break;
3425 case TYPE_CODE_UNION: kind = "union "; break;
3426 case TYPE_CODE_ENUM: kind = "enum "; break;
3427 default: kind = "";
3428 }
3429 }
3430 else if (TYPE_NAME (type))
3431 {
3432 name = TYPE_NAME (type);
3433 kind = "";
3434 }
3435 else
3436 {
3437 name = "<unknown>";
3438 kind = "";
3439 }
3440
3441 complaint (&symfile_complaints,
3442 _("struct/union type gets multiply defined: %s%s"), kind, name);
3443 }
3444
3445 /* Set the length for all variants of a same main_type, which are
3446 connected in the closed chain.
3447
3448 This is something that needs to be done when a type is defined *after*
3449 some cross references to this type have already been read. Consider
3450 for instance the following scenario where we have the following two
3451 stabs entries:
3452
3453 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3454 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3455
3456 A stubbed version of type dummy is created while processing the first
3457 stabs entry. The length of that type is initially set to zero, since
3458 it is unknown at this point. Also, a "constant" variation of type
3459 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3460 the stabs line).
3461
3462 The second stabs entry allows us to replace the stubbed definition
3463 with the real definition. However, we still need to adjust the length
3464 of the "constant" variation of that type, as its length was left
3465 untouched during the main type replacement... */
3466
3467 static void
3468 set_length_in_type_chain (struct type *type)
3469 {
3470 struct type *ntype = TYPE_CHAIN (type);
3471
3472 while (ntype != type)
3473 {
3474 if (TYPE_LENGTH(ntype) == 0)
3475 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3476 else
3477 complain_about_struct_wipeout (ntype);
3478 ntype = TYPE_CHAIN (ntype);
3479 }
3480 }
3481
3482 /* Read the description of a structure (or union type) and return an object
3483 describing the type.
3484
3485 PP points to a character pointer that points to the next unconsumed token
3486 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3487 *PP will point to "4a:1,0,32;;".
3488
3489 TYPE points to an incomplete type that needs to be filled in.
3490
3491 OBJFILE points to the current objfile from which the stabs information is
3492 being read. (Note that it is redundant in that TYPE also contains a pointer
3493 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3494 */
3495
3496 static struct type *
3497 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3498 struct objfile *objfile)
3499 {
3500 struct cleanup *back_to;
3501 struct field_info fi;
3502
3503 fi.list = NULL;
3504 fi.fnlist = NULL;
3505
3506 /* When describing struct/union/class types in stabs, G++ always drops
3507 all qualifications from the name. So if you've got:
3508 struct A { ... struct B { ... }; ... };
3509 then G++ will emit stabs for `struct A::B' that call it simply
3510 `struct B'. Obviously, if you've got a real top-level definition for
3511 `struct B', or other nested definitions, this is going to cause
3512 problems.
3513
3514 Obviously, GDB can't fix this by itself, but it can at least avoid
3515 scribbling on existing structure type objects when new definitions
3516 appear. */
3517 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3518 || TYPE_STUB (type)))
3519 {
3520 complain_about_struct_wipeout (type);
3521
3522 /* It's probably best to return the type unchanged. */
3523 return type;
3524 }
3525
3526 back_to = make_cleanup (null_cleanup, 0);
3527
3528 INIT_CPLUS_SPECIFIC (type);
3529 TYPE_CODE (type) = type_code;
3530 TYPE_STUB (type) = 0;
3531
3532 /* First comes the total size in bytes. */
3533
3534 {
3535 int nbits;
3536
3537 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3538 if (nbits != 0)
3539 {
3540 do_cleanups (back_to);
3541 return error_type (pp, objfile);
3542 }
3543 set_length_in_type_chain (type);
3544 }
3545
3546 /* Now read the baseclasses, if any, read the regular C struct or C++
3547 class member fields, attach the fields to the type, read the C++
3548 member functions, attach them to the type, and then read any tilde
3549 field (baseclass specifier for the class holding the main vtable). */
3550
3551 if (!read_baseclasses (&fi, pp, type, objfile)
3552 || !read_struct_fields (&fi, pp, type, objfile)
3553 || !attach_fields_to_type (&fi, type, objfile)
3554 || !read_member_functions (&fi, pp, type, objfile)
3555 || !attach_fn_fields_to_type (&fi, type)
3556 || !read_tilde_fields (&fi, pp, type, objfile))
3557 {
3558 type = error_type (pp, objfile);
3559 }
3560
3561 do_cleanups (back_to);
3562 return (type);
3563 }
3564
3565 /* Read a definition of an array type,
3566 and create and return a suitable type object.
3567 Also creates a range type which represents the bounds of that
3568 array. */
3569
3570 static struct type *
3571 read_array_type (char **pp, struct type *type,
3572 struct objfile *objfile)
3573 {
3574 struct type *index_type, *element_type, *range_type;
3575 int lower, upper;
3576 int adjustable = 0;
3577 int nbits;
3578
3579 /* Format of an array type:
3580 "ar<index type>;lower;upper;<array_contents_type>".
3581 OS9000: "arlower,upper;<array_contents_type>".
3582
3583 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3584 for these, produce a type like float[][]. */
3585
3586 {
3587 index_type = read_type (pp, objfile);
3588 if (**pp != ';')
3589 /* Improper format of array type decl. */
3590 return error_type (pp, objfile);
3591 ++*pp;
3592 }
3593
3594 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3595 {
3596 (*pp)++;
3597 adjustable = 1;
3598 }
3599 lower = read_huge_number (pp, ';', &nbits, 0);
3600
3601 if (nbits != 0)
3602 return error_type (pp, objfile);
3603
3604 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3605 {
3606 (*pp)++;
3607 adjustable = 1;
3608 }
3609 upper = read_huge_number (pp, ';', &nbits, 0);
3610 if (nbits != 0)
3611 return error_type (pp, objfile);
3612
3613 element_type = read_type (pp, objfile);
3614
3615 if (adjustable)
3616 {
3617 lower = 0;
3618 upper = -1;
3619 }
3620
3621 range_type =
3622 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3623 type = create_array_type (type, element_type, range_type);
3624
3625 return type;
3626 }
3627
3628
3629 /* Read a definition of an enumeration type,
3630 and create and return a suitable type object.
3631 Also defines the symbols that represent the values of the type. */
3632
3633 static struct type *
3634 read_enum_type (char **pp, struct type *type,
3635 struct objfile *objfile)
3636 {
3637 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3638 char *p;
3639 char *name;
3640 long n;
3641 struct symbol *sym;
3642 int nsyms = 0;
3643 struct pending **symlist;
3644 struct pending *osyms, *syms;
3645 int o_nsyms;
3646 int nbits;
3647 int unsigned_enum = 1;
3648
3649 #if 0
3650 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3651 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3652 to do? For now, force all enum values to file scope. */
3653 if (within_function)
3654 symlist = &local_symbols;
3655 else
3656 #endif
3657 symlist = &file_symbols;
3658 osyms = *symlist;
3659 o_nsyms = osyms ? osyms->nsyms : 0;
3660
3661 /* The aix4 compiler emits an extra field before the enum members;
3662 my guess is it's a type of some sort. Just ignore it. */
3663 if (**pp == '-')
3664 {
3665 /* Skip over the type. */
3666 while (**pp != ':')
3667 (*pp)++;
3668
3669 /* Skip over the colon. */
3670 (*pp)++;
3671 }
3672
3673 /* Read the value-names and their values.
3674 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3675 A semicolon or comma instead of a NAME means the end. */
3676 while (**pp && **pp != ';' && **pp != ',')
3677 {
3678 STABS_CONTINUE (pp, objfile);
3679 p = *pp;
3680 while (*p != ':')
3681 p++;
3682 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3683 *pp = p + 1;
3684 n = read_huge_number (pp, ',', &nbits, 0);
3685 if (nbits != 0)
3686 return error_type (pp, objfile);
3687
3688 sym = allocate_symbol (objfile);
3689 SYMBOL_SET_LINKAGE_NAME (sym, name);
3690 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3691 &objfile->objfile_obstack);
3692 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3693 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3694 SYMBOL_VALUE (sym) = n;
3695 if (n < 0)
3696 unsigned_enum = 0;
3697 add_symbol_to_list (sym, symlist);
3698 nsyms++;
3699 }
3700
3701 if (**pp == ';')
3702 (*pp)++; /* Skip the semicolon. */
3703
3704 /* Now fill in the fields of the type-structure. */
3705
3706 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3707 set_length_in_type_chain (type);
3708 TYPE_CODE (type) = TYPE_CODE_ENUM;
3709 TYPE_STUB (type) = 0;
3710 if (unsigned_enum)
3711 TYPE_UNSIGNED (type) = 1;
3712 TYPE_NFIELDS (type) = nsyms;
3713 TYPE_FIELDS (type) = (struct field *)
3714 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3715 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3716
3717 /* Find the symbols for the values and put them into the type.
3718 The symbols can be found in the symlist that we put them on
3719 to cause them to be defined. osyms contains the old value
3720 of that symlist; everything up to there was defined by us. */
3721 /* Note that we preserve the order of the enum constants, so
3722 that in something like "enum {FOO, LAST_THING=FOO}" we print
3723 FOO, not LAST_THING. */
3724
3725 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3726 {
3727 int last = syms == osyms ? o_nsyms : 0;
3728 int j = syms->nsyms;
3729
3730 for (; --j >= last; --n)
3731 {
3732 struct symbol *xsym = syms->symbol[j];
3733
3734 SYMBOL_TYPE (xsym) = type;
3735 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3736 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3737 TYPE_FIELD_BITSIZE (type, n) = 0;
3738 }
3739 if (syms == osyms)
3740 break;
3741 }
3742
3743 return type;
3744 }
3745
3746 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3747 typedefs in every file (for int, long, etc):
3748
3749 type = b <signed> <width> <format type>; <offset>; <nbits>
3750 signed = u or s.
3751 optional format type = c or b for char or boolean.
3752 offset = offset from high order bit to start bit of type.
3753 width is # bytes in object of this type, nbits is # bits in type.
3754
3755 The width/offset stuff appears to be for small objects stored in
3756 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3757 FIXME. */
3758
3759 static struct type *
3760 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3761 {
3762 int type_bits;
3763 int nbits;
3764 int signed_type;
3765 enum type_code code = TYPE_CODE_INT;
3766
3767 switch (**pp)
3768 {
3769 case 's':
3770 signed_type = 1;
3771 break;
3772 case 'u':
3773 signed_type = 0;
3774 break;
3775 default:
3776 return error_type (pp, objfile);
3777 }
3778 (*pp)++;
3779
3780 /* For some odd reason, all forms of char put a c here. This is strange
3781 because no other type has this honor. We can safely ignore this because
3782 we actually determine 'char'acterness by the number of bits specified in
3783 the descriptor.
3784 Boolean forms, e.g Fortran logical*X, put a b here. */
3785
3786 if (**pp == 'c')
3787 (*pp)++;
3788 else if (**pp == 'b')
3789 {
3790 code = TYPE_CODE_BOOL;
3791 (*pp)++;
3792 }
3793
3794 /* The first number appears to be the number of bytes occupied
3795 by this type, except that unsigned short is 4 instead of 2.
3796 Since this information is redundant with the third number,
3797 we will ignore it. */
3798 read_huge_number (pp, ';', &nbits, 0);
3799 if (nbits != 0)
3800 return error_type (pp, objfile);
3801
3802 /* The second number is always 0, so ignore it too. */
3803 read_huge_number (pp, ';', &nbits, 0);
3804 if (nbits != 0)
3805 return error_type (pp, objfile);
3806
3807 /* The third number is the number of bits for this type. */
3808 type_bits = read_huge_number (pp, 0, &nbits, 0);
3809 if (nbits != 0)
3810 return error_type (pp, objfile);
3811 /* The type *should* end with a semicolon. If it are embedded
3812 in a larger type the semicolon may be the only way to know where
3813 the type ends. If this type is at the end of the stabstring we
3814 can deal with the omitted semicolon (but we don't have to like
3815 it). Don't bother to complain(), Sun's compiler omits the semicolon
3816 for "void". */
3817 if (**pp == ';')
3818 ++(*pp);
3819
3820 if (type_bits == 0)
3821 return init_type (TYPE_CODE_VOID, 1,
3822 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3823 objfile);
3824 else
3825 return init_type (code,
3826 type_bits / TARGET_CHAR_BIT,
3827 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3828 objfile);
3829 }
3830
3831 static struct type *
3832 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3833 {
3834 int nbits;
3835 int details;
3836 int nbytes;
3837 struct type *rettype;
3838
3839 /* The first number has more details about the type, for example
3840 FN_COMPLEX. */
3841 details = read_huge_number (pp, ';', &nbits, 0);
3842 if (nbits != 0)
3843 return error_type (pp, objfile);
3844
3845 /* The second number is the number of bytes occupied by this type. */
3846 nbytes = read_huge_number (pp, ';', &nbits, 0);
3847 if (nbits != 0)
3848 return error_type (pp, objfile);
3849
3850 if (details == NF_COMPLEX || details == NF_COMPLEX16
3851 || details == NF_COMPLEX32)
3852 {
3853 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3854 TYPE_TARGET_TYPE (rettype)
3855 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3856 return rettype;
3857 }
3858
3859 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3860 }
3861
3862 /* Read a number from the string pointed to by *PP.
3863 The value of *PP is advanced over the number.
3864 If END is nonzero, the character that ends the
3865 number must match END, or an error happens;
3866 and that character is skipped if it does match.
3867 If END is zero, *PP is left pointing to that character.
3868
3869 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3870 the number is represented in an octal representation, assume that
3871 it is represented in a 2's complement representation with a size of
3872 TWOS_COMPLEMENT_BITS.
3873
3874 If the number fits in a long, set *BITS to 0 and return the value.
3875 If not, set *BITS to be the number of bits in the number and return 0.
3876
3877 If encounter garbage, set *BITS to -1 and return 0. */
3878
3879 static long
3880 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3881 {
3882 char *p = *pp;
3883 int sign = 1;
3884 int sign_bit = 0;
3885 long n = 0;
3886 int radix = 10;
3887 char overflow = 0;
3888 int nbits = 0;
3889 int c;
3890 long upper_limit;
3891 int twos_complement_representation = 0;
3892
3893 if (*p == '-')
3894 {
3895 sign = -1;
3896 p++;
3897 }
3898
3899 /* Leading zero means octal. GCC uses this to output values larger
3900 than an int (because that would be hard in decimal). */
3901 if (*p == '0')
3902 {
3903 radix = 8;
3904 p++;
3905 }
3906
3907 /* Skip extra zeros. */
3908 while (*p == '0')
3909 p++;
3910
3911 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3912 {
3913 /* Octal, possibly signed. Check if we have enough chars for a
3914 negative number. */
3915
3916 size_t len;
3917 char *p1 = p;
3918
3919 while ((c = *p1) >= '0' && c < '8')
3920 p1++;
3921
3922 len = p1 - p;
3923 if (len > twos_complement_bits / 3
3924 || (twos_complement_bits % 3 == 0
3925 && len == twos_complement_bits / 3))
3926 {
3927 /* Ok, we have enough characters for a signed value, check
3928 for signness by testing if the sign bit is set. */
3929 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3930 c = *p - '0';
3931 if (c & (1 << sign_bit))
3932 {
3933 /* Definitely signed. */
3934 twos_complement_representation = 1;
3935 sign = -1;
3936 }
3937 }
3938 }
3939
3940 upper_limit = LONG_MAX / radix;
3941
3942 while ((c = *p++) >= '0' && c < ('0' + radix))
3943 {
3944 if (n <= upper_limit)
3945 {
3946 if (twos_complement_representation)
3947 {
3948 /* Octal, signed, twos complement representation. In
3949 this case, n is the corresponding absolute value. */
3950 if (n == 0)
3951 {
3952 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3953
3954 n = -sn;
3955 }
3956 else
3957 {
3958 n *= radix;
3959 n -= c - '0';
3960 }
3961 }
3962 else
3963 {
3964 /* unsigned representation */
3965 n *= radix;
3966 n += c - '0'; /* FIXME this overflows anyway. */
3967 }
3968 }
3969 else
3970 overflow = 1;
3971
3972 /* This depends on large values being output in octal, which is
3973 what GCC does. */
3974 if (radix == 8)
3975 {
3976 if (nbits == 0)
3977 {
3978 if (c == '0')
3979 /* Ignore leading zeroes. */
3980 ;
3981 else if (c == '1')
3982 nbits = 1;
3983 else if (c == '2' || c == '3')
3984 nbits = 2;
3985 else
3986 nbits = 3;
3987 }
3988 else
3989 nbits += 3;
3990 }
3991 }
3992 if (end)
3993 {
3994 if (c && c != end)
3995 {
3996 if (bits != NULL)
3997 *bits = -1;
3998 return 0;
3999 }
4000 }
4001 else
4002 --p;
4003
4004 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4005 {
4006 /* We were supposed to parse a number with maximum
4007 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4008 if (bits != NULL)
4009 *bits = -1;
4010 return 0;
4011 }
4012
4013 *pp = p;
4014 if (overflow)
4015 {
4016 if (nbits == 0)
4017 {
4018 /* Large decimal constants are an error (because it is hard to
4019 count how many bits are in them). */
4020 if (bits != NULL)
4021 *bits = -1;
4022 return 0;
4023 }
4024
4025 /* -0x7f is the same as 0x80. So deal with it by adding one to
4026 the number of bits. Two's complement represention octals
4027 can't have a '-' in front. */
4028 if (sign == -1 && !twos_complement_representation)
4029 ++nbits;
4030 if (bits)
4031 *bits = nbits;
4032 }
4033 else
4034 {
4035 if (bits)
4036 *bits = 0;
4037 return n * sign;
4038 }
4039 /* It's *BITS which has the interesting information. */
4040 return 0;
4041 }
4042
4043 static struct type *
4044 read_range_type (char **pp, int typenums[2], int type_size,
4045 struct objfile *objfile)
4046 {
4047 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4048 char *orig_pp = *pp;
4049 int rangenums[2];
4050 long n2, n3;
4051 int n2bits, n3bits;
4052 int self_subrange;
4053 struct type *result_type;
4054 struct type *index_type = NULL;
4055
4056 /* First comes a type we are a subrange of.
4057 In C it is usually 0, 1 or the type being defined. */
4058 if (read_type_number (pp, rangenums) != 0)
4059 return error_type (pp, objfile);
4060 self_subrange = (rangenums[0] == typenums[0] &&
4061 rangenums[1] == typenums[1]);
4062
4063 if (**pp == '=')
4064 {
4065 *pp = orig_pp;
4066 index_type = read_type (pp, objfile);
4067 }
4068
4069 /* A semicolon should now follow; skip it. */
4070 if (**pp == ';')
4071 (*pp)++;
4072
4073 /* The remaining two operands are usually lower and upper bounds
4074 of the range. But in some special cases they mean something else. */
4075 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4076 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4077
4078 if (n2bits == -1 || n3bits == -1)
4079 return error_type (pp, objfile);
4080
4081 if (index_type)
4082 goto handle_true_range;
4083
4084 /* If limits are huge, must be large integral type. */
4085 if (n2bits != 0 || n3bits != 0)
4086 {
4087 char got_signed = 0;
4088 char got_unsigned = 0;
4089 /* Number of bits in the type. */
4090 int nbits = 0;
4091
4092 /* If a type size attribute has been specified, the bounds of
4093 the range should fit in this size. If the lower bounds needs
4094 more bits than the upper bound, then the type is signed. */
4095 if (n2bits <= type_size && n3bits <= type_size)
4096 {
4097 if (n2bits == type_size && n2bits > n3bits)
4098 got_signed = 1;
4099 else
4100 got_unsigned = 1;
4101 nbits = type_size;
4102 }
4103 /* Range from 0 to <large number> is an unsigned large integral type. */
4104 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4105 {
4106 got_unsigned = 1;
4107 nbits = n3bits;
4108 }
4109 /* Range from <large number> to <large number>-1 is a large signed
4110 integral type. Take care of the case where <large number> doesn't
4111 fit in a long but <large number>-1 does. */
4112 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4113 || (n2bits != 0 && n3bits == 0
4114 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4115 && n3 == LONG_MAX))
4116 {
4117 got_signed = 1;
4118 nbits = n2bits;
4119 }
4120
4121 if (got_signed || got_unsigned)
4122 {
4123 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4124 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4125 objfile);
4126 }
4127 else
4128 return error_type (pp, objfile);
4129 }
4130
4131 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4132 if (self_subrange && n2 == 0 && n3 == 0)
4133 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4134
4135 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4136 is the width in bytes.
4137
4138 Fortran programs appear to use this for complex types also. To
4139 distinguish between floats and complex, g77 (and others?) seem
4140 to use self-subranges for the complexes, and subranges of int for
4141 the floats.
4142
4143 Also note that for complexes, g77 sets n2 to the size of one of
4144 the member floats, not the whole complex beast. My guess is that
4145 this was to work well with pre-COMPLEX versions of gdb. */
4146
4147 if (n3 == 0 && n2 > 0)
4148 {
4149 struct type *float_type
4150 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4151
4152 if (self_subrange)
4153 {
4154 struct type *complex_type =
4155 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4156
4157 TYPE_TARGET_TYPE (complex_type) = float_type;
4158 return complex_type;
4159 }
4160 else
4161 return float_type;
4162 }
4163
4164 /* If the upper bound is -1, it must really be an unsigned integral. */
4165
4166 else if (n2 == 0 && n3 == -1)
4167 {
4168 int bits = type_size;
4169
4170 if (bits <= 0)
4171 {
4172 /* We don't know its size. It is unsigned int or unsigned
4173 long. GCC 2.3.3 uses this for long long too, but that is
4174 just a GDB 3.5 compatibility hack. */
4175 bits = gdbarch_int_bit (gdbarch);
4176 }
4177
4178 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4179 TYPE_FLAG_UNSIGNED, NULL, objfile);
4180 }
4181
4182 /* Special case: char is defined (Who knows why) as a subrange of
4183 itself with range 0-127. */
4184 else if (self_subrange && n2 == 0 && n3 == 127)
4185 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4186
4187 /* We used to do this only for subrange of self or subrange of int. */
4188 else if (n2 == 0)
4189 {
4190 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4191 "unsigned long", and we already checked for that,
4192 so don't need to test for it here. */
4193
4194 if (n3 < 0)
4195 /* n3 actually gives the size. */
4196 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4197 NULL, objfile);
4198
4199 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4200 unsigned n-byte integer. But do require n to be a power of
4201 two; we don't want 3- and 5-byte integers flying around. */
4202 {
4203 int bytes;
4204 unsigned long bits;
4205
4206 bits = n3;
4207 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4208 bits >>= 8;
4209 if (bits == 0
4210 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4211 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4212 objfile);
4213 }
4214 }
4215 /* I think this is for Convex "long long". Since I don't know whether
4216 Convex sets self_subrange, I also accept that particular size regardless
4217 of self_subrange. */
4218 else if (n3 == 0 && n2 < 0
4219 && (self_subrange
4220 || n2 == -gdbarch_long_long_bit
4221 (gdbarch) / TARGET_CHAR_BIT))
4222 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4223 else if (n2 == -n3 - 1)
4224 {
4225 if (n3 == 0x7f)
4226 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4227 if (n3 == 0x7fff)
4228 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4229 if (n3 == 0x7fffffff)
4230 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4231 }
4232
4233 /* We have a real range type on our hands. Allocate space and
4234 return a real pointer. */
4235 handle_true_range:
4236
4237 if (self_subrange)
4238 index_type = objfile_type (objfile)->builtin_int;
4239 else
4240 index_type = *dbx_lookup_type (rangenums, objfile);
4241 if (index_type == NULL)
4242 {
4243 /* Does this actually ever happen? Is that why we are worrying
4244 about dealing with it rather than just calling error_type? */
4245
4246 complaint (&symfile_complaints,
4247 _("base type %d of range type is not defined"), rangenums[1]);
4248
4249 index_type = objfile_type (objfile)->builtin_int;
4250 }
4251
4252 result_type
4253 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4254 return (result_type);
4255 }
4256
4257 /* Read in an argument list. This is a list of types, separated by commas
4258 and terminated with END. Return the list of types read in, or NULL
4259 if there is an error. */
4260
4261 static struct field *
4262 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4263 int *varargsp)
4264 {
4265 /* FIXME! Remove this arbitrary limit! */
4266 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4267 int n = 0, i;
4268 struct field *rval;
4269
4270 while (**pp != end)
4271 {
4272 if (**pp != ',')
4273 /* Invalid argument list: no ','. */
4274 return NULL;
4275 (*pp)++;
4276 STABS_CONTINUE (pp, objfile);
4277 types[n++] = read_type (pp, objfile);
4278 }
4279 (*pp)++; /* get past `end' (the ':' character). */
4280
4281 if (n == 0)
4282 {
4283 /* We should read at least the THIS parameter here. Some broken stabs
4284 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4285 have been present ";-16,(0,43)" reference instead. This way the
4286 excessive ";" marker prematurely stops the parameters parsing. */
4287
4288 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4289 *varargsp = 0;
4290 }
4291 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4292 *varargsp = 1;
4293 else
4294 {
4295 n--;
4296 *varargsp = 0;
4297 }
4298
4299 rval = XCNEWVEC (struct field, n);
4300 for (i = 0; i < n; i++)
4301 rval[i].type = types[i];
4302 *nargsp = n;
4303 return rval;
4304 }
4305 \f
4306 /* Common block handling. */
4307
4308 /* List of symbols declared since the last BCOMM. This list is a tail
4309 of local_symbols. When ECOMM is seen, the symbols on the list
4310 are noted so their proper addresses can be filled in later,
4311 using the common block base address gotten from the assembler
4312 stabs. */
4313
4314 static struct pending *common_block;
4315 static int common_block_i;
4316
4317 /* Name of the current common block. We get it from the BCOMM instead of the
4318 ECOMM to match IBM documentation (even though IBM puts the name both places
4319 like everyone else). */
4320 static char *common_block_name;
4321
4322 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4323 to remain after this function returns. */
4324
4325 void
4326 common_block_start (char *name, struct objfile *objfile)
4327 {
4328 if (common_block_name != NULL)
4329 {
4330 complaint (&symfile_complaints,
4331 _("Invalid symbol data: common block within common block"));
4332 }
4333 common_block = local_symbols;
4334 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4335 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4336 strlen (name));
4337 }
4338
4339 /* Process a N_ECOMM symbol. */
4340
4341 void
4342 common_block_end (struct objfile *objfile)
4343 {
4344 /* Symbols declared since the BCOMM are to have the common block
4345 start address added in when we know it. common_block and
4346 common_block_i point to the first symbol after the BCOMM in
4347 the local_symbols list; copy the list and hang it off the
4348 symbol for the common block name for later fixup. */
4349 int i;
4350 struct symbol *sym;
4351 struct pending *newobj = 0;
4352 struct pending *next;
4353 int j;
4354
4355 if (common_block_name == NULL)
4356 {
4357 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4358 return;
4359 }
4360
4361 sym = allocate_symbol (objfile);
4362 /* Note: common_block_name already saved on objfile_obstack. */
4363 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4364 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4365
4366 /* Now we copy all the symbols which have been defined since the BCOMM. */
4367
4368 /* Copy all the struct pendings before common_block. */
4369 for (next = local_symbols;
4370 next != NULL && next != common_block;
4371 next = next->next)
4372 {
4373 for (j = 0; j < next->nsyms; j++)
4374 add_symbol_to_list (next->symbol[j], &newobj);
4375 }
4376
4377 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4378 NULL, it means copy all the local symbols (which we already did
4379 above). */
4380
4381 if (common_block != NULL)
4382 for (j = common_block_i; j < common_block->nsyms; j++)
4383 add_symbol_to_list (common_block->symbol[j], &newobj);
4384
4385 SYMBOL_TYPE (sym) = (struct type *) newobj;
4386
4387 /* Should we be putting local_symbols back to what it was?
4388 Does it matter? */
4389
4390 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4391 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4392 global_sym_chain[i] = sym;
4393 common_block_name = NULL;
4394 }
4395
4396 /* Add a common block's start address to the offset of each symbol
4397 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4398 the common block name). */
4399
4400 static void
4401 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4402 {
4403 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4404
4405 for (; next; next = next->next)
4406 {
4407 int j;
4408
4409 for (j = next->nsyms - 1; j >= 0; j--)
4410 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4411 }
4412 }
4413 \f
4414
4415
4416 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4417 See add_undefined_type for more details. */
4418
4419 static void
4420 add_undefined_type_noname (struct type *type, int typenums[2])
4421 {
4422 struct nat nat;
4423
4424 nat.typenums[0] = typenums [0];
4425 nat.typenums[1] = typenums [1];
4426 nat.type = type;
4427
4428 if (noname_undefs_length == noname_undefs_allocated)
4429 {
4430 noname_undefs_allocated *= 2;
4431 noname_undefs = (struct nat *)
4432 xrealloc ((char *) noname_undefs,
4433 noname_undefs_allocated * sizeof (struct nat));
4434 }
4435 noname_undefs[noname_undefs_length++] = nat;
4436 }
4437
4438 /* Add TYPE to the UNDEF_TYPES vector.
4439 See add_undefined_type for more details. */
4440
4441 static void
4442 add_undefined_type_1 (struct type *type)
4443 {
4444 if (undef_types_length == undef_types_allocated)
4445 {
4446 undef_types_allocated *= 2;
4447 undef_types = (struct type **)
4448 xrealloc ((char *) undef_types,
4449 undef_types_allocated * sizeof (struct type *));
4450 }
4451 undef_types[undef_types_length++] = type;
4452 }
4453
4454 /* What about types defined as forward references inside of a small lexical
4455 scope? */
4456 /* Add a type to the list of undefined types to be checked through
4457 once this file has been read in.
4458
4459 In practice, we actually maintain two such lists: The first list
4460 (UNDEF_TYPES) is used for types whose name has been provided, and
4461 concerns forward references (eg 'xs' or 'xu' forward references);
4462 the second list (NONAME_UNDEFS) is used for types whose name is
4463 unknown at creation time, because they were referenced through
4464 their type number before the actual type was declared.
4465 This function actually adds the given type to the proper list. */
4466
4467 static void
4468 add_undefined_type (struct type *type, int typenums[2])
4469 {
4470 if (TYPE_TAG_NAME (type) == NULL)
4471 add_undefined_type_noname (type, typenums);
4472 else
4473 add_undefined_type_1 (type);
4474 }
4475
4476 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4477
4478 static void
4479 cleanup_undefined_types_noname (struct objfile *objfile)
4480 {
4481 int i;
4482
4483 for (i = 0; i < noname_undefs_length; i++)
4484 {
4485 struct nat nat = noname_undefs[i];
4486 struct type **type;
4487
4488 type = dbx_lookup_type (nat.typenums, objfile);
4489 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4490 {
4491 /* The instance flags of the undefined type are still unset,
4492 and needs to be copied over from the reference type.
4493 Since replace_type expects them to be identical, we need
4494 to set these flags manually before hand. */
4495 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4496 replace_type (nat.type, *type);
4497 }
4498 }
4499
4500 noname_undefs_length = 0;
4501 }
4502
4503 /* Go through each undefined type, see if it's still undefined, and fix it
4504 up if possible. We have two kinds of undefined types:
4505
4506 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4507 Fix: update array length using the element bounds
4508 and the target type's length.
4509 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4510 yet defined at the time a pointer to it was made.
4511 Fix: Do a full lookup on the struct/union tag. */
4512
4513 static void
4514 cleanup_undefined_types_1 (void)
4515 {
4516 struct type **type;
4517
4518 /* Iterate over every undefined type, and look for a symbol whose type
4519 matches our undefined type. The symbol matches if:
4520 1. It is a typedef in the STRUCT domain;
4521 2. It has the same name, and same type code;
4522 3. The instance flags are identical.
4523
4524 It is important to check the instance flags, because we have seen
4525 examples where the debug info contained definitions such as:
4526
4527 "foo_t:t30=B31=xefoo_t:"
4528
4529 In this case, we have created an undefined type named "foo_t" whose
4530 instance flags is null (when processing "xefoo_t"), and then created
4531 another type with the same name, but with different instance flags
4532 ('B' means volatile). I think that the definition above is wrong,
4533 since the same type cannot be volatile and non-volatile at the same
4534 time, but we need to be able to cope with it when it happens. The
4535 approach taken here is to treat these two types as different. */
4536
4537 for (type = undef_types; type < undef_types + undef_types_length; type++)
4538 {
4539 switch (TYPE_CODE (*type))
4540 {
4541
4542 case TYPE_CODE_STRUCT:
4543 case TYPE_CODE_UNION:
4544 case TYPE_CODE_ENUM:
4545 {
4546 /* Check if it has been defined since. Need to do this here
4547 as well as in check_typedef to deal with the (legitimate in
4548 C though not C++) case of several types with the same name
4549 in different source files. */
4550 if (TYPE_STUB (*type))
4551 {
4552 struct pending *ppt;
4553 int i;
4554 /* Name of the type, without "struct" or "union". */
4555 const char *type_name = TYPE_TAG_NAME (*type);
4556
4557 if (type_name == NULL)
4558 {
4559 complaint (&symfile_complaints, _("need a type name"));
4560 break;
4561 }
4562 for (ppt = file_symbols; ppt; ppt = ppt->next)
4563 {
4564 for (i = 0; i < ppt->nsyms; i++)
4565 {
4566 struct symbol *sym = ppt->symbol[i];
4567
4568 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4569 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4570 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4571 TYPE_CODE (*type))
4572 && (TYPE_INSTANCE_FLAGS (*type) ==
4573 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4574 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4575 type_name) == 0)
4576 replace_type (*type, SYMBOL_TYPE (sym));
4577 }
4578 }
4579 }
4580 }
4581 break;
4582
4583 default:
4584 {
4585 complaint (&symfile_complaints,
4586 _("forward-referenced types left unresolved, "
4587 "type code %d."),
4588 TYPE_CODE (*type));
4589 }
4590 break;
4591 }
4592 }
4593
4594 undef_types_length = 0;
4595 }
4596
4597 /* Try to fix all the undefined types we ecountered while processing
4598 this unit. */
4599
4600 void
4601 cleanup_undefined_stabs_types (struct objfile *objfile)
4602 {
4603 cleanup_undefined_types_1 ();
4604 cleanup_undefined_types_noname (objfile);
4605 }
4606
4607 /* Scan through all of the global symbols defined in the object file,
4608 assigning values to the debugging symbols that need to be assigned
4609 to. Get these symbols from the minimal symbol table. */
4610
4611 void
4612 scan_file_globals (struct objfile *objfile)
4613 {
4614 int hash;
4615 struct minimal_symbol *msymbol;
4616 struct symbol *sym, *prev;
4617 struct objfile *resolve_objfile;
4618
4619 /* SVR4 based linkers copy referenced global symbols from shared
4620 libraries to the main executable.
4621 If we are scanning the symbols for a shared library, try to resolve
4622 them from the minimal symbols of the main executable first. */
4623
4624 if (symfile_objfile && objfile != symfile_objfile)
4625 resolve_objfile = symfile_objfile;
4626 else
4627 resolve_objfile = objfile;
4628
4629 while (1)
4630 {
4631 /* Avoid expensive loop through all minimal symbols if there are
4632 no unresolved symbols. */
4633 for (hash = 0; hash < HASHSIZE; hash++)
4634 {
4635 if (global_sym_chain[hash])
4636 break;
4637 }
4638 if (hash >= HASHSIZE)
4639 return;
4640
4641 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4642 {
4643 QUIT;
4644
4645 /* Skip static symbols. */
4646 switch (MSYMBOL_TYPE (msymbol))
4647 {
4648 case mst_file_text:
4649 case mst_file_data:
4650 case mst_file_bss:
4651 continue;
4652 default:
4653 break;
4654 }
4655
4656 prev = NULL;
4657
4658 /* Get the hash index and check all the symbols
4659 under that hash index. */
4660
4661 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4662
4663 for (sym = global_sym_chain[hash]; sym;)
4664 {
4665 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4666 SYMBOL_LINKAGE_NAME (sym)) == 0)
4667 {
4668 /* Splice this symbol out of the hash chain and
4669 assign the value we have to it. */
4670 if (prev)
4671 {
4672 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4673 }
4674 else
4675 {
4676 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4677 }
4678
4679 /* Check to see whether we need to fix up a common block. */
4680 /* Note: this code might be executed several times for
4681 the same symbol if there are multiple references. */
4682 if (sym)
4683 {
4684 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4685 {
4686 fix_common_block (sym,
4687 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4688 msymbol));
4689 }
4690 else
4691 {
4692 SYMBOL_VALUE_ADDRESS (sym)
4693 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4694 }
4695 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4696 }
4697
4698 if (prev)
4699 {
4700 sym = SYMBOL_VALUE_CHAIN (prev);
4701 }
4702 else
4703 {
4704 sym = global_sym_chain[hash];
4705 }
4706 }
4707 else
4708 {
4709 prev = sym;
4710 sym = SYMBOL_VALUE_CHAIN (sym);
4711 }
4712 }
4713 }
4714 if (resolve_objfile == objfile)
4715 break;
4716 resolve_objfile = objfile;
4717 }
4718
4719 /* Change the storage class of any remaining unresolved globals to
4720 LOC_UNRESOLVED and remove them from the chain. */
4721 for (hash = 0; hash < HASHSIZE; hash++)
4722 {
4723 sym = global_sym_chain[hash];
4724 while (sym)
4725 {
4726 prev = sym;
4727 sym = SYMBOL_VALUE_CHAIN (sym);
4728
4729 /* Change the symbol address from the misleading chain value
4730 to address zero. */
4731 SYMBOL_VALUE_ADDRESS (prev) = 0;
4732
4733 /* Complain about unresolved common block symbols. */
4734 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4735 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4736 else
4737 complaint (&symfile_complaints,
4738 _("%s: common block `%s' from "
4739 "global_sym_chain unresolved"),
4740 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4741 }
4742 }
4743 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4744 }
4745
4746 /* Initialize anything that needs initializing when starting to read
4747 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4748 to a psymtab. */
4749
4750 void
4751 stabsread_init (void)
4752 {
4753 }
4754
4755 /* Initialize anything that needs initializing when a completely new
4756 symbol file is specified (not just adding some symbols from another
4757 file, e.g. a shared library). */
4758
4759 void
4760 stabsread_new_init (void)
4761 {
4762 /* Empty the hash table of global syms looking for values. */
4763 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4764 }
4765
4766 /* Initialize anything that needs initializing at the same time as
4767 start_symtab() is called. */
4768
4769 void
4770 start_stabs (void)
4771 {
4772 global_stabs = NULL; /* AIX COFF */
4773 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4774 n_this_object_header_files = 1;
4775 type_vector_length = 0;
4776 type_vector = (struct type **) 0;
4777
4778 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4779 common_block_name = NULL;
4780 }
4781
4782 /* Call after end_symtab(). */
4783
4784 void
4785 end_stabs (void)
4786 {
4787 if (type_vector)
4788 {
4789 xfree (type_vector);
4790 }
4791 type_vector = 0;
4792 type_vector_length = 0;
4793 previous_stab_code = 0;
4794 }
4795
4796 void
4797 finish_global_stabs (struct objfile *objfile)
4798 {
4799 if (global_stabs)
4800 {
4801 patch_block_stabs (global_symbols, global_stabs, objfile);
4802 xfree (global_stabs);
4803 global_stabs = NULL;
4804 }
4805 }
4806
4807 /* Find the end of the name, delimited by a ':', but don't match
4808 ObjC symbols which look like -[Foo bar::]:bla. */
4809 static char *
4810 find_name_end (char *name)
4811 {
4812 char *s = name;
4813
4814 if (s[0] == '-' || *s == '+')
4815 {
4816 /* Must be an ObjC method symbol. */
4817 if (s[1] != '[')
4818 {
4819 error (_("invalid symbol name \"%s\""), name);
4820 }
4821 s = strchr (s, ']');
4822 if (s == NULL)
4823 {
4824 error (_("invalid symbol name \"%s\""), name);
4825 }
4826 return strchr (s, ':');
4827 }
4828 else
4829 {
4830 return strchr (s, ':');
4831 }
4832 }
4833
4834 /* Initializer for this module. */
4835
4836 void
4837 _initialize_stabsread (void)
4838 {
4839 rs6000_builtin_type_data = register_objfile_data ();
4840
4841 undef_types_allocated = 20;
4842 undef_types_length = 0;
4843 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4844
4845 noname_undefs_allocated = 20;
4846 noname_undefs_length = 0;
4847 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4848
4849 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4850 &stab_register_funcs);
4851 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4852 &stab_register_funcs);
4853 }
This page took 0.12838 seconds and 4 git commands to generate.