ec931c0639bfd2a75d4343e604179e095afdb047
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Support routines for reading and decoding debugging information in
24 the "stabs" format. This format is used with many systems that use
25 the a.out object file format, as well as some systems that use
26 COFF or ELF where the stabs data is placed in a special section.
27 Avoid placing any object file format specific code in this file. */
28
29 #include "defs.h"
30 #include "gdb_string.h"
31 #include "bfd.h"
32 #include "obstack.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "expression.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "libaout.h"
40 #include "aout/aout64.h"
41 #include "gdb-stabs.h"
42 #include "buildsym.h"
43 #include "complaints.h"
44 #include "demangle.h"
45 #include "language.h"
46 #include "doublest.h"
47
48 #include <ctype.h>
49
50 /* Ask stabsread.h to define the vars it normally declares `extern'. */
51 #define EXTERN
52 /**/
53 #include "stabsread.h" /* Our own declarations */
54 #undef EXTERN
55
56 extern void _initialize_stabsread (void);
57
58 /* The routines that read and process a complete stabs for a C struct or
59 C++ class pass lists of data member fields and lists of member function
60 fields in an instance of a field_info structure, as defined below.
61 This is part of some reorganization of low level C++ support and is
62 expected to eventually go away... (FIXME) */
63
64 struct field_info
65 {
66 struct nextfield
67 {
68 struct nextfield *next;
69
70 /* This is the raw visibility from the stab. It is not checked
71 for being one of the visibilities we recognize, so code which
72 examines this field better be able to deal. */
73 int visibility;
74
75 struct field field;
76 }
77 *list;
78 struct next_fnfieldlist
79 {
80 struct next_fnfieldlist *next;
81 struct fn_fieldlist fn_fieldlist;
82 }
83 *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static char *get_substring (char **, int);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_range_type (char **, int[2], struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int
136 attach_fields_to_type (struct field_info *, struct type *, struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 struct objfile *);
140
141 static struct type *read_array_type (char **, struct type *,
142 struct objfile *);
143
144 static struct type **read_args (char **, int, struct objfile *);
145
146 static int
147 read_cpp_abbrev (struct field_info *, char **, struct type *,
148 struct objfile *);
149
150 /* new functions added for cfront support */
151
152 static int
153 copy_cfront_struct_fields (struct field_info *, struct type *,
154 struct objfile *);
155
156 static char *get_cfront_method_physname (char *);
157
158 static int
159 read_cfront_baseclasses (struct field_info *, char **,
160 struct type *, struct objfile *);
161
162 static int
163 read_cfront_static_fields (struct field_info *, char **,
164 struct type *, struct objfile *);
165 static int
166 read_cfront_member_functions (struct field_info *, char **,
167 struct type *, struct objfile *);
168
169 /* end new functions added for cfront support */
170
171 static void
172 add_live_range (struct objfile *, struct symbol *, CORE_ADDR, CORE_ADDR);
173
174 static int resolve_live_range (struct objfile *, struct symbol *, char *);
175
176 static int process_reference (char **string);
177
178 static CORE_ADDR ref_search_value (int refnum);
179
180 static int
181 resolve_symbol_reference (struct objfile *, struct symbol *, char *);
182
183 void stabsread_clear_cache (void);
184
185 static const char vptr_name[] =
186 {'_', 'v', 'p', 't', 'r', CPLUS_MARKER, '\0'};
187 static const char vb_name[] =
188 {'_', 'v', 'b', CPLUS_MARKER, '\0'};
189
190 /* Define this as 1 if a pcc declaration of a char or short argument
191 gives the correct address. Otherwise assume pcc gives the
192 address of the corresponding int, which is not the same on a
193 big-endian machine. */
194
195 #if !defined (BELIEVE_PCC_PROMOTION)
196 #define BELIEVE_PCC_PROMOTION 0
197 #endif
198 #if !defined (BELIEVE_PCC_PROMOTION_TYPE)
199 #define BELIEVE_PCC_PROMOTION_TYPE 0
200 #endif
201
202 static struct complaint invalid_cpp_abbrev_complaint =
203 {"invalid C++ abbreviation `%s'", 0, 0};
204
205 static struct complaint invalid_cpp_type_complaint =
206 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
207
208 static struct complaint member_fn_complaint =
209 {"member function type missing, got '%c'", 0, 0};
210
211 static struct complaint const_vol_complaint =
212 {"const/volatile indicator missing, got '%c'", 0, 0};
213
214 static struct complaint error_type_complaint =
215 {"debug info mismatch between compiler and debugger", 0, 0};
216
217 static struct complaint invalid_member_complaint =
218 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
219
220 static struct complaint range_type_base_complaint =
221 {"base type %d of range type is not defined", 0, 0};
222
223 static struct complaint reg_value_complaint =
224 {"register number %d too large (max %d) in symbol %s", 0, 0};
225
226 static struct complaint vtbl_notfound_complaint =
227 {"virtual function table pointer not found when defining class `%s'", 0, 0};
228
229 static struct complaint unrecognized_cplus_name_complaint =
230 {"Unknown C++ symbol name `%s'", 0, 0};
231
232 static struct complaint rs6000_builtin_complaint =
233 {"Unknown builtin type %d", 0, 0};
234
235 static struct complaint unresolved_sym_chain_complaint =
236 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
237
238 static struct complaint stabs_general_complaint =
239 {"%s", 0, 0};
240
241 static struct complaint lrs_general_complaint =
242 {"%s", 0, 0};
243
244 /* Make a list of forward references which haven't been defined. */
245
246 static struct type **undef_types;
247 static int undef_types_allocated;
248 static int undef_types_length;
249 static struct symbol *current_symbol = NULL;
250
251 /* Check for and handle cretinous stabs symbol name continuation! */
252 #define STABS_CONTINUE(pp,objfile) \
253 do { \
254 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
255 *(pp) = next_symbol_text (objfile); \
256 } while (0)
257 \f
258 /* FIXME: These probably should be our own types (like rs6000_builtin_type
259 has its own types) rather than builtin_type_*. */
260 static struct type **os9k_type_vector[] =
261 {
262 0,
263 &builtin_type_int,
264 &builtin_type_char,
265 &builtin_type_long,
266 &builtin_type_short,
267 &builtin_type_unsigned_char,
268 &builtin_type_unsigned_short,
269 &builtin_type_unsigned_long,
270 &builtin_type_unsigned_int,
271 &builtin_type_float,
272 &builtin_type_double,
273 &builtin_type_void,
274 &builtin_type_long_double
275 };
276
277 static void os9k_init_type_vector (struct type **);
278
279 static void
280 os9k_init_type_vector (struct type **tv)
281 {
282 unsigned int i;
283 for (i = 0; i < sizeof (os9k_type_vector) / sizeof (struct type **); i++)
284 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
285 }
286
287 /* Look up a dbx type-number pair. Return the address of the slot
288 where the type for that number-pair is stored.
289 The number-pair is in TYPENUMS.
290
291 This can be used for finding the type associated with that pair
292 or for associating a new type with the pair. */
293
294 struct type **
295 dbx_lookup_type (int typenums[2])
296 {
297 register int filenum = typenums[0];
298 register int index = typenums[1];
299 unsigned old_len;
300 register int real_filenum;
301 register struct header_file *f;
302 int f_orig_length;
303
304 if (filenum == -1) /* -1,-1 is for temporary types. */
305 return 0;
306
307 if (filenum < 0 || filenum >= n_this_object_header_files)
308 {
309 static struct complaint msg =
310 {"\
311 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
312 0, 0};
313 complain (&msg, filenum, index, symnum);
314 goto error_return;
315 }
316
317 if (filenum == 0)
318 {
319 if (index < 0)
320 {
321 /* Caller wants address of address of type. We think
322 that negative (rs6k builtin) types will never appear as
323 "lvalues", (nor should they), so we stuff the real type
324 pointer into a temp, and return its address. If referenced,
325 this will do the right thing. */
326 static struct type *temp_type;
327
328 temp_type = rs6000_builtin_type (index);
329 return &temp_type;
330 }
331
332 /* Type is defined outside of header files.
333 Find it in this object file's type vector. */
334 if (index >= type_vector_length)
335 {
336 old_len = type_vector_length;
337 if (old_len == 0)
338 {
339 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
340 type_vector = (struct type **)
341 xmalloc (type_vector_length * sizeof (struct type *));
342 }
343 while (index >= type_vector_length)
344 {
345 type_vector_length *= 2;
346 }
347 type_vector = (struct type **)
348 xrealloc ((char *) type_vector,
349 (type_vector_length * sizeof (struct type *)));
350 memset (&type_vector[old_len], 0,
351 (type_vector_length - old_len) * sizeof (struct type *));
352
353 if (os9k_stabs)
354 /* Deal with OS9000 fundamental types. */
355 os9k_init_type_vector (type_vector);
356 }
357 return (&type_vector[index]);
358 }
359 else
360 {
361 real_filenum = this_object_header_files[filenum];
362
363 if (real_filenum >= N_HEADER_FILES (current_objfile))
364 {
365 struct type *temp_type;
366 struct type **temp_type_p;
367
368 warning ("GDB internal error: bad real_filenum");
369
370 error_return:
371 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
372 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
373 *temp_type_p = temp_type;
374 return temp_type_p;
375 }
376
377 f = HEADER_FILES (current_objfile) + real_filenum;
378
379 f_orig_length = f->length;
380 if (index >= f_orig_length)
381 {
382 while (index >= f->length)
383 {
384 f->length *= 2;
385 }
386 f->vector = (struct type **)
387 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
388 memset (&f->vector[f_orig_length], 0,
389 (f->length - f_orig_length) * sizeof (struct type *));
390 }
391 return (&f->vector[index]);
392 }
393 }
394
395 /* Make sure there is a type allocated for type numbers TYPENUMS
396 and return the type object.
397 This can create an empty (zeroed) type object.
398 TYPENUMS may be (-1, -1) to return a new type object that is not
399 put into the type vector, and so may not be referred to by number. */
400
401 static struct type *
402 dbx_alloc_type (int typenums[2], struct objfile *objfile)
403 {
404 register struct type **type_addr;
405
406 if (typenums[0] == -1)
407 {
408 return (alloc_type (objfile));
409 }
410
411 type_addr = dbx_lookup_type (typenums);
412
413 /* If we are referring to a type not known at all yet,
414 allocate an empty type for it.
415 We will fill it in later if we find out how. */
416 if (*type_addr == 0)
417 {
418 *type_addr = alloc_type (objfile);
419 }
420
421 return (*type_addr);
422 }
423
424 /* for all the stabs in a given stab vector, build appropriate types
425 and fix their symbols in given symbol vector. */
426
427 static void
428 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
429 struct objfile *objfile)
430 {
431 int ii;
432 char *name;
433 char *pp;
434 struct symbol *sym;
435
436 if (stabs)
437 {
438
439 /* for all the stab entries, find their corresponding symbols and
440 patch their types! */
441
442 for (ii = 0; ii < stabs->count; ++ii)
443 {
444 name = stabs->stab[ii];
445 pp = (char *) strchr (name, ':');
446 while (pp[1] == ':')
447 {
448 pp += 2;
449 pp = (char *) strchr (pp, ':');
450 }
451 sym = find_symbol_in_list (symbols, name, pp - name);
452 if (!sym)
453 {
454 /* FIXME-maybe: it would be nice if we noticed whether
455 the variable was defined *anywhere*, not just whether
456 it is defined in this compilation unit. But neither
457 xlc or GCC seem to need such a definition, and until
458 we do psymtabs (so that the minimal symbols from all
459 compilation units are available now), I'm not sure
460 how to get the information. */
461
462 /* On xcoff, if a global is defined and never referenced,
463 ld will remove it from the executable. There is then
464 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
465 sym = (struct symbol *)
466 obstack_alloc (&objfile->symbol_obstack,
467 sizeof (struct symbol));
468
469 memset (sym, 0, sizeof (struct symbol));
470 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
471 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
472 SYMBOL_NAME (sym) =
473 obsavestring (name, pp - name, &objfile->symbol_obstack);
474 pp += 2;
475 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
476 {
477 /* I don't think the linker does this with functions,
478 so as far as I know this is never executed.
479 But it doesn't hurt to check. */
480 SYMBOL_TYPE (sym) =
481 lookup_function_type (read_type (&pp, objfile));
482 }
483 else
484 {
485 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
486 }
487 add_symbol_to_list (sym, &global_symbols);
488 }
489 else
490 {
491 pp += 2;
492 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
493 {
494 SYMBOL_TYPE (sym) =
495 lookup_function_type (read_type (&pp, objfile));
496 }
497 else
498 {
499 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
500 }
501 }
502 }
503 }
504 }
505 \f
506
507 /* Read a number by which a type is referred to in dbx data,
508 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
509 Just a single number N is equivalent to (0,N).
510 Return the two numbers by storing them in the vector TYPENUMS.
511 TYPENUMS will then be used as an argument to dbx_lookup_type.
512
513 Returns 0 for success, -1 for error. */
514
515 static int
516 read_type_number (register char **pp, register int *typenums)
517 {
518 int nbits;
519 if (**pp == '(')
520 {
521 (*pp)++;
522 typenums[0] = read_huge_number (pp, ',', &nbits);
523 if (nbits != 0)
524 return -1;
525 typenums[1] = read_huge_number (pp, ')', &nbits);
526 if (nbits != 0)
527 return -1;
528 }
529 else
530 {
531 typenums[0] = 0;
532 typenums[1] = read_huge_number (pp, 0, &nbits);
533 if (nbits != 0)
534 return -1;
535 }
536 return 0;
537 }
538 \f
539
540 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
541 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
542 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
543 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
544
545 #define CFRONT_VISIBILITY_PRIVATE '2' /* Stabs character for private field */
546 #define CFRONT_VISIBILITY_PUBLIC '1' /* Stabs character for public field */
547
548 /* This code added to support parsing of ARM/Cfront stabs strings */
549
550 /* Get substring from string up to char c, advance string pointer past
551 suibstring. */
552
553 static char *
554 get_substring (char **p, int c)
555 {
556 char *str;
557 str = *p;
558 *p = strchr (*p, c);
559 if (*p)
560 {
561 **p = 0;
562 (*p)++;
563 }
564 else
565 str = 0;
566 return str;
567 }
568
569 /* Physname gets strcat'd onto sname in order to recreate the mangled
570 name (see funtion gdb_mangle_name in gdbtypes.c). For cfront, make
571 the physname look like that of g++ - take out the initial mangling
572 eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
573
574 static char *
575 get_cfront_method_physname (char *fname)
576 {
577 int len = 0;
578 /* FIXME would like to make this generic for g++ too, but
579 that is already handled in read_member_funcctions */
580 char *p = fname;
581
582 /* search ahead to find the start of the mangled suffix */
583 if (*p == '_' && *(p + 1) == '_') /* compiler generated; probably a ctor/dtor */
584 p += 2;
585 while (p && (unsigned) ((p + 1) - fname) < strlen (fname) && *(p + 1) != '_')
586 p = strchr (p, '_');
587 if (!(p && *p == '_' && *(p + 1) == '_'))
588 error ("Invalid mangled function name %s", fname);
589 p += 2; /* advance past '__' */
590
591 /* struct name length and name of type should come next; advance past it */
592 while (isdigit (*p))
593 {
594 len = len * 10 + (*p - '0');
595 p++;
596 }
597 p += len;
598
599 return p;
600 }
601
602 /* Read base classes within cfront class definition.
603 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
604 ^^^^^^^^^^^^^^^^^^
605
606 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
607 ^
608 */
609
610 static int
611 read_cfront_baseclasses (struct field_info *fip, char **pp, struct type *type,
612 struct objfile *objfile)
613 {
614 static struct complaint msg_unknown =
615 {"\
616 Unsupported token in stabs string %s.\n",
617 0, 0};
618 static struct complaint msg_notfound =
619 {"\
620 Unable to find base type for %s.\n",
621 0, 0};
622 int bnum = 0;
623 char *p;
624 int i;
625 struct nextfield *new;
626
627 if (**pp == ';') /* no base classes; return */
628 {
629 ++(*pp);
630 return 1;
631 }
632
633 /* first count base classes so we can allocate space before parsing */
634 for (p = *pp; p && *p && *p != ';'; p++)
635 {
636 if (*p == ' ')
637 bnum++;
638 }
639 bnum++; /* add one more for last one */
640
641 /* now parse the base classes until we get to the start of the methods
642 (code extracted and munged from read_baseclasses) */
643 ALLOCATE_CPLUS_STRUCT_TYPE (type);
644 TYPE_N_BASECLASSES (type) = bnum;
645
646 /* allocate space */
647 {
648 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
649 char *pointer;
650
651 pointer = (char *) TYPE_ALLOC (type, num_bytes);
652 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
653 }
654 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
655
656 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
657 {
658 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
659 make_cleanup (xfree, new);
660 memset (new, 0, sizeof (struct nextfield));
661 new->next = fip->list;
662 fip->list = new;
663 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
664
665 STABS_CONTINUE (pp, objfile);
666
667 /* virtual? eg: v2@Bvir */
668 if (**pp == 'v')
669 {
670 SET_TYPE_FIELD_VIRTUAL (type, i);
671 ++(*pp);
672 }
673
674 /* access? eg: 2@Bvir */
675 /* Note: protected inheritance not supported in cfront */
676 switch (*(*pp)++)
677 {
678 case CFRONT_VISIBILITY_PRIVATE:
679 new->visibility = VISIBILITY_PRIVATE;
680 break;
681 case CFRONT_VISIBILITY_PUBLIC:
682 new->visibility = VISIBILITY_PUBLIC;
683 break;
684 default:
685 /* Bad visibility format. Complain and treat it as
686 public. */
687 {
688 static struct complaint msg =
689 {
690 "Unknown visibility `%c' for baseclass", 0, 0};
691 complain (&msg, new->visibility);
692 new->visibility = VISIBILITY_PUBLIC;
693 }
694 }
695
696 /* "@" comes next - eg: @Bvir */
697 if (**pp != '@')
698 {
699 complain (&msg_unknown, *pp);
700 return 1;
701 }
702 ++(*pp);
703
704
705 /* Set the bit offset of the portion of the object corresponding
706 to this baseclass. Always zero in the absence of
707 multiple inheritance. */
708 /* Unable to read bit position from stabs;
709 Assuming no multiple inheritance for now FIXME! */
710 /* We may have read this in the structure definition;
711 now we should fixup the members to be the actual base classes */
712 FIELD_BITPOS (new->field) = 0;
713
714 /* Get the base class name and type */
715 {
716 char *bname; /* base class name */
717 struct symbol *bsym; /* base class */
718 char *p1, *p2;
719 p1 = strchr (*pp, ' ');
720 p2 = strchr (*pp, ';');
721 if (p1 < p2)
722 bname = get_substring (pp, ' ');
723 else
724 bname = get_substring (pp, ';');
725 if (!bname || !*bname)
726 {
727 complain (&msg_unknown, *pp);
728 return 1;
729 }
730 /* FIXME! attach base info to type */
731 bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0); /*demangled_name */
732 if (bsym)
733 {
734 new->field.type = SYMBOL_TYPE (bsym);
735 new->field.name = type_name_no_tag (new->field.type);
736 }
737 else
738 {
739 complain (&msg_notfound, *pp);
740 return 1;
741 }
742 }
743
744 /* If more base classes to parse, loop again.
745 We ate the last ' ' or ';' in get_substring,
746 so on exit we will have skipped the trailing ';' */
747 /* if invalid, return 0; add code to detect - FIXME! */
748 }
749 return 1;
750 }
751
752 /* read cfront member functions.
753 pp points to string starting with list of functions
754 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
755 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
756 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
757 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
758 */
759
760 static int
761 read_cfront_member_functions (struct field_info *fip, char **pp,
762 struct type *type, struct objfile *objfile)
763 {
764 /* This code extracted from read_member_functions
765 so as to do the similar thing for our funcs */
766
767 int nfn_fields = 0;
768 int length = 0;
769 /* Total number of member functions defined in this class. If the class
770 defines two `f' functions, and one `g' function, then this will have
771 the value 3. */
772 int total_length = 0;
773 int i;
774 struct next_fnfield
775 {
776 struct next_fnfield *next;
777 struct fn_field fn_field;
778 }
779 *sublist;
780 struct type *look_ahead_type;
781 struct next_fnfieldlist *new_fnlist;
782 struct next_fnfield *new_sublist;
783 char *main_fn_name;
784 char *fname;
785 struct symbol *ref_func = 0;
786
787 /* Process each list until we find the end of the member functions.
788 eg: p = "__ct__1AFv foo__1AFv ;;;" */
789
790 STABS_CONTINUE (pp, objfile); /* handle \\ */
791
792 while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
793 {
794 int is_static = 0;
795 int sublist_count = 0;
796 char *pname;
797 if (fname[0] == '*') /* static member */
798 {
799 is_static = 1;
800 sublist_count++;
801 fname++;
802 }
803 ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0); /* demangled name */
804 if (!ref_func)
805 {
806 static struct complaint msg =
807 {"\
808 Unable to find function symbol for %s\n",
809 0, 0};
810 complain (&msg, fname);
811 continue;
812 }
813 sublist = NULL;
814 look_ahead_type = NULL;
815 length = 0;
816
817 new_fnlist = (struct next_fnfieldlist *)
818 xmalloc (sizeof (struct next_fnfieldlist));
819 make_cleanup (xfree, new_fnlist);
820 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
821
822 /* The following is code to work around cfront generated stabs.
823 The stabs contains full mangled name for each field.
824 We try to demangle the name and extract the field name out of it. */
825 {
826 char *dem, *dem_p, *dem_args;
827 int dem_len;
828 dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
829 if (dem != NULL)
830 {
831 dem_p = strrchr (dem, ':');
832 if (dem_p != 0 && *(dem_p - 1) == ':')
833 dem_p++;
834 /* get rid of args */
835 dem_args = strchr (dem_p, '(');
836 if (dem_args == NULL)
837 dem_len = strlen (dem_p);
838 else
839 dem_len = dem_args - dem_p;
840 main_fn_name =
841 obsavestring (dem_p, dem_len, &objfile->type_obstack);
842 }
843 else
844 {
845 main_fn_name =
846 obsavestring (fname, strlen (fname), &objfile->type_obstack);
847 }
848 } /* end of code for cfront work around */
849
850 new_fnlist->fn_fieldlist.name = main_fn_name;
851
852 /*-------------------------------------------------*/
853 /* Set up the sublists
854 Sublists are stuff like args, static, visibility, etc.
855 so in ARM, we have to set that info some other way.
856 Multiple sublists happen if overloading
857 eg: foo::26=##1;:;2A.;
858 In g++, we'd loop here thru all the sublists... */
859
860 new_sublist =
861 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
862 make_cleanup (xfree, new_sublist);
863 memset (new_sublist, 0, sizeof (struct next_fnfield));
864
865 /* eat 1; from :;2A.; */
866 new_sublist->fn_field.type = SYMBOL_TYPE (ref_func); /* normally takes a read_type */
867 /* Make this type look like a method stub for gdb */
868 TYPE_FLAGS (new_sublist->fn_field.type) |= TYPE_FLAG_STUB;
869 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
870
871 /* If this is just a stub, then we don't have the real name here. */
872 if (TYPE_STUB (new_sublist->fn_field.type))
873 {
874 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
875 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
876 new_sublist->fn_field.is_stub = 1;
877 }
878
879 /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
880 physname gets strcat'd in order to recreate the onto mangled name */
881 pname = get_cfront_method_physname (fname);
882 new_sublist->fn_field.physname = savestring (pname, strlen (pname));
883
884
885 /* Set this member function's visibility fields.
886 Unable to distinguish access from stabs definition!
887 Assuming public for now. FIXME!
888 (for private, set new_sublist->fn_field.is_private = 1,
889 for public, set new_sublist->fn_field.is_protected = 1) */
890
891 /* Unable to distinguish const/volatile from stabs definition!
892 Assuming normal for now. FIXME! */
893
894 new_sublist->fn_field.is_const = 0;
895 new_sublist->fn_field.is_volatile = 0; /* volatile not implemented in cfront */
896
897 /* Set virtual/static function info
898 How to get vtable offsets ?
899 Assuming normal for now FIXME!!
900 For vtables, figure out from whence this virtual function came.
901 It may belong to virtual function table of
902 one of its baseclasses.
903 set:
904 new_sublist -> fn_field.voffset = vtable offset,
905 new_sublist -> fn_field.fcontext = look_ahead_type;
906 where look_ahead_type is type of baseclass */
907 if (is_static)
908 new_sublist->fn_field.voffset = VOFFSET_STATIC;
909 else /* normal member function. */
910 new_sublist->fn_field.voffset = 0;
911 new_sublist->fn_field.fcontext = 0;
912
913
914 /* Prepare new sublist */
915 new_sublist->next = sublist;
916 sublist = new_sublist;
917 length++;
918
919 /* In g++, we loop thu sublists - now we set from functions. */
920 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
921 obstack_alloc (&objfile->type_obstack,
922 sizeof (struct fn_field) * length);
923 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
924 sizeof (struct fn_field) * length);
925 for (i = length; (i--, sublist); sublist = sublist->next)
926 {
927 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
928 }
929
930 new_fnlist->fn_fieldlist.length = length;
931 new_fnlist->next = fip->fnlist;
932 fip->fnlist = new_fnlist;
933 nfn_fields++;
934 total_length += length;
935 STABS_CONTINUE (pp, objfile); /* handle \\ */
936 } /* end of loop */
937
938 if (nfn_fields)
939 {
940 /* type should already have space */
941 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
942 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
943 memset (TYPE_FN_FIELDLISTS (type), 0,
944 sizeof (struct fn_fieldlist) * nfn_fields);
945 TYPE_NFN_FIELDS (type) = nfn_fields;
946 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
947 }
948
949 /* end of scope for reading member func */
950
951 /* eg: ";;" */
952
953 /* Skip trailing ';' and bump count of number of fields seen */
954 if (**pp == ';')
955 (*pp)++;
956 else
957 return 0;
958 return 1;
959 }
960
961 /* This routine fixes up partial cfront types that were created
962 while parsing the stabs. The main need for this function is
963 to add information such as methods to classes.
964 Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
965 int
966 resolve_cfront_continuation (struct objfile *objfile, struct symbol *sym,
967 char *p)
968 {
969 struct symbol *ref_sym = 0;
970 char *sname;
971 /* snarfed from read_struct_type */
972 struct field_info fi;
973 struct type *type;
974 struct cleanup *back_to;
975
976 /* Need to make sure that fi isn't gunna conflict with struct
977 in case struct already had some fnfs */
978 fi.list = NULL;
979 fi.fnlist = NULL;
980 back_to = make_cleanup (null_cleanup, 0);
981
982 /* We only accept structs, classes and unions at the moment.
983 Other continuation types include t (typedef), r (long dbl), ...
984 We may want to add support for them as well;
985 right now they are handled by duplicating the symbol information
986 into the type information (see define_symbol) */
987 if (*p != 's' /* structs */
988 && *p != 'c' /* class */
989 && *p != 'u') /* union */
990 return 0; /* only handle C++ types */
991 p++;
992
993 /* Get symbol typs name and validate
994 eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
995 sname = get_substring (&p, ';');
996 if (!sname || strcmp (sname, SYMBOL_NAME (sym)))
997 error ("Internal error: base symbol type name does not match\n");
998
999 /* Find symbol's internal gdb reference using demangled_name.
1000 This is the real sym that we want;
1001 sym was a temp hack to make debugger happy */
1002 ref_sym = lookup_symbol (SYMBOL_NAME (sym), 0, STRUCT_NAMESPACE, 0, 0);
1003 type = SYMBOL_TYPE (ref_sym);
1004
1005
1006 /* Now read the baseclasses, if any, read the regular C struct or C++
1007 class member fields, attach the fields to the type, read the C++
1008 member functions, attach them to the type, and then read any tilde
1009 field (baseclass specifier for the class holding the main vtable). */
1010
1011 if (!read_cfront_baseclasses (&fi, &p, type, objfile)
1012 /* g++ does this next, but cfront already did this:
1013 || !read_struct_fields (&fi, &p, type, objfile) */
1014 || !copy_cfront_struct_fields (&fi, type, objfile)
1015 || !read_cfront_member_functions (&fi, &p, type, objfile)
1016 || !read_cfront_static_fields (&fi, &p, type, objfile)
1017 || !attach_fields_to_type (&fi, type, objfile)
1018 || !attach_fn_fields_to_type (&fi, type)
1019 /* g++ does this next, but cfront doesn't seem to have this:
1020 || !read_tilde_fields (&fi, &p, type, objfile) */
1021 )
1022 {
1023 type = error_type (&p, objfile);
1024 }
1025
1026 do_cleanups (back_to);
1027 return 0;
1028 }
1029 /* End of code added to support parsing of ARM/Cfront stabs strings */
1030
1031
1032 /* This routine fixes up symbol references/aliases to point to the original
1033 symbol definition. Returns 0 on failure, non-zero on success. */
1034
1035 static int
1036 resolve_symbol_reference (struct objfile *objfile, struct symbol *sym, char *p)
1037 {
1038 int refnum;
1039 struct symbol *ref_sym = 0;
1040 struct alias_list *alias;
1041
1042 /* If this is not a symbol reference return now. */
1043 if (*p != '#')
1044 return 0;
1045
1046 /* Use "#<num>" as the name; we'll fix the name later.
1047 We stored the original symbol name as "#<id>=<name>"
1048 so we can now search for "#<id>" to resolving the reference.
1049 We'll fix the names later by removing the "#<id>" or "#<id>=" */
1050
1051 /*---------------------------------------------------------*/
1052 /* Get the reference id number, and
1053 advance p past the names so we can parse the rest.
1054 eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
1055 /*---------------------------------------------------------*/
1056
1057 /* This gets reference name from string. sym may not have a name. */
1058
1059 /* Get the reference number associated with the reference id in the
1060 gdb stab string. From that reference number, get the main/primary
1061 symbol for this alias. */
1062 refnum = process_reference (&p);
1063 ref_sym = ref_search (refnum);
1064 if (!ref_sym)
1065 {
1066 complain (&lrs_general_complaint, "symbol for reference not found");
1067 return 0;
1068 }
1069
1070 /* Parse the stab of the referencing symbol
1071 now that we have the referenced symbol.
1072 Add it as a new symbol and a link back to the referenced symbol.
1073 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1074
1075
1076 /* If the stab symbol table and string contain:
1077 RSYM 0 5 00000000 868 #15=z:r(0,1)
1078 LBRAC 0 0 00000000 899 #5=
1079 SLINE 0 16 00000003 923 #6=
1080 Then the same symbols can be later referenced by:
1081 RSYM 0 5 00000000 927 #15:r(0,1);l(#5,#6)
1082 This is used in live range splitting to:
1083 1) specify that a symbol (#15) is actually just a new storage
1084 class for a symbol (#15=z) which was previously defined.
1085 2) specify that the beginning and ending ranges for a symbol
1086 (#15) are the values of the beginning (#5) and ending (#6)
1087 symbols. */
1088
1089 /* Read number as reference id.
1090 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1091 /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
1092 in case of "l(0,0)"? */
1093
1094 /*--------------------------------------------------*/
1095 /* Add this symbol to the reference list. */
1096 /*--------------------------------------------------*/
1097
1098 alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
1099 sizeof (struct alias_list));
1100 if (!alias)
1101 {
1102 complain (&lrs_general_complaint, "Unable to allocate alias list memory");
1103 return 0;
1104 }
1105
1106 alias->next = 0;
1107 alias->sym = sym;
1108
1109 if (!SYMBOL_ALIASES (ref_sym))
1110 {
1111 SYMBOL_ALIASES (ref_sym) = alias;
1112 }
1113 else
1114 {
1115 struct alias_list *temp;
1116
1117 /* Get to the end of the list. */
1118 for (temp = SYMBOL_ALIASES (ref_sym);
1119 temp->next;
1120 temp = temp->next)
1121 ;
1122 temp->next = alias;
1123 }
1124
1125 /* Want to fix up name so that other functions (eg. valops)
1126 will correctly print the name.
1127 Don't add_symbol_to_list so that lookup_symbol won't find it.
1128 nope... needed for fixups. */
1129 SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
1130
1131 /* Done! */
1132 return 1;
1133 }
1134
1135 /* Structure for storing pointers to reference definitions for fast lookup
1136 during "process_later". */
1137
1138 struct ref_map
1139 {
1140 char *stabs;
1141 CORE_ADDR value;
1142 struct symbol *sym;
1143 };
1144
1145 #define MAX_CHUNK_REFS 100
1146 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
1147 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
1148
1149 static struct ref_map *ref_map;
1150
1151 /* Ptr to free cell in chunk's linked list. */
1152 static int ref_count = 0;
1153
1154 /* Number of chunks malloced. */
1155 static int ref_chunk = 0;
1156
1157 /* This file maintains a cache of stabs aliases found in the symbol
1158 table. If the symbol table changes, this cache must be cleared
1159 or we are left holding onto data in invalid obstacks. */
1160 void
1161 stabsread_clear_cache (void)
1162 {
1163 ref_count = 0;
1164 ref_chunk = 0;
1165 }
1166
1167 /* Create array of pointers mapping refids to symbols and stab strings.
1168 Add pointers to reference definition symbols and/or their values as we
1169 find them, using their reference numbers as our index.
1170 These will be used later when we resolve references. */
1171 void
1172 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
1173 {
1174 if (ref_count == 0)
1175 ref_chunk = 0;
1176 if (refnum >= ref_count)
1177 ref_count = refnum + 1;
1178 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
1179 {
1180 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
1181 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
1182 ref_map = (struct ref_map *)
1183 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
1184 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
1185 ref_chunk += new_chunks;
1186 }
1187 ref_map[refnum].stabs = stabs;
1188 ref_map[refnum].sym = sym;
1189 ref_map[refnum].value = value;
1190 }
1191
1192 /* Return defined sym for the reference REFNUM. */
1193 struct symbol *
1194 ref_search (int refnum)
1195 {
1196 if (refnum < 0 || refnum > ref_count)
1197 return 0;
1198 return ref_map[refnum].sym;
1199 }
1200
1201 /* Return value for the reference REFNUM. */
1202
1203 static CORE_ADDR
1204 ref_search_value (int refnum)
1205 {
1206 if (refnum < 0 || refnum > ref_count)
1207 return 0;
1208 return ref_map[refnum].value;
1209 }
1210
1211 /* Parse a reference id in STRING and return the resulting
1212 reference number. Move STRING beyond the reference id. */
1213
1214 static int
1215 process_reference (char **string)
1216 {
1217 char *p;
1218 int refnum = 0;
1219
1220 if (**string != '#')
1221 return 0;
1222
1223 /* Advance beyond the initial '#'. */
1224 p = *string + 1;
1225
1226 /* Read number as reference id. */
1227 while (*p && isdigit (*p))
1228 {
1229 refnum = refnum * 10 + *p - '0';
1230 p++;
1231 }
1232 *string = p;
1233 return refnum;
1234 }
1235
1236 /* If STRING defines a reference, store away a pointer to the reference
1237 definition for later use. Return the reference number. */
1238
1239 int
1240 symbol_reference_defined (char **string)
1241 {
1242 char *p = *string;
1243 int refnum = 0;
1244
1245 refnum = process_reference (&p);
1246
1247 /* Defining symbols end in '=' */
1248 if (*p == '=')
1249 {
1250 /* Symbol is being defined here. */
1251 *string = p + 1;
1252 return refnum;
1253 }
1254 else
1255 {
1256 /* Must be a reference. Either the symbol has already been defined,
1257 or this is a forward reference to it. */
1258 *string = p;
1259 return -1;
1260 }
1261 }
1262
1263 /* ARGSUSED */
1264 struct symbol *
1265 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
1266 struct objfile *objfile)
1267 {
1268 register struct symbol *sym;
1269 char *p = (char *) strchr (string, ':');
1270 int deftype;
1271 int synonym = 0;
1272 register int i;
1273
1274 /* We would like to eliminate nameless symbols, but keep their types.
1275 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1276 to type 2, but, should not create a symbol to address that type. Since
1277 the symbol will be nameless, there is no way any user can refer to it. */
1278
1279 int nameless;
1280
1281 /* Ignore syms with empty names. */
1282 if (string[0] == 0)
1283 return 0;
1284
1285 /* Ignore old-style symbols from cc -go */
1286 if (p == 0)
1287 return 0;
1288
1289 while (p[1] == ':')
1290 {
1291 p += 2;
1292 p = strchr (p, ':');
1293 }
1294
1295 /* If a nameless stab entry, all we need is the type, not the symbol.
1296 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
1297 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
1298
1299 current_symbol = sym = (struct symbol *)
1300 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1301 memset (sym, 0, sizeof (struct symbol));
1302
1303 switch (type & N_TYPE)
1304 {
1305 case N_TEXT:
1306 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
1307 break;
1308 case N_DATA:
1309 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
1310 break;
1311 case N_BSS:
1312 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
1313 break;
1314 }
1315
1316 if (processing_gcc_compilation)
1317 {
1318 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1319 number of bytes occupied by a type or object, which we ignore. */
1320 SYMBOL_LINE (sym) = desc;
1321 }
1322 else
1323 {
1324 SYMBOL_LINE (sym) = 0; /* unknown */
1325 }
1326
1327 if (is_cplus_marker (string[0]))
1328 {
1329 /* Special GNU C++ names. */
1330 switch (string[1])
1331 {
1332 case 't':
1333 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1334 &objfile->symbol_obstack);
1335 break;
1336
1337 case 'v': /* $vtbl_ptr_type */
1338 /* Was: SYMBOL_NAME (sym) = "vptr"; */
1339 goto normal;
1340
1341 case 'e':
1342 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1343 &objfile->symbol_obstack);
1344 break;
1345
1346 case '_':
1347 /* This was an anonymous type that was never fixed up. */
1348 goto normal;
1349
1350 #ifdef STATIC_TRANSFORM_NAME
1351 case 'X':
1352 /* SunPRO (3.0 at least) static variable encoding. */
1353 goto normal;
1354 #endif
1355
1356 default:
1357 complain (&unrecognized_cplus_name_complaint, string);
1358 goto normal; /* Do *something* with it */
1359 }
1360 }
1361 else if (string[0] == '#')
1362 {
1363 /* Special GNU C extension for referencing symbols. */
1364 char *s;
1365 int refnum, nlen;
1366
1367 /* If STRING defines a new reference id, then add it to the
1368 reference map. Else it must be referring to a previously
1369 defined symbol, so add it to the alias list of the previously
1370 defined symbol. */
1371 s = string;
1372 refnum = symbol_reference_defined (&s);
1373 if (refnum >= 0)
1374 ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
1375 else if (!resolve_symbol_reference (objfile, sym, string))
1376 return NULL;
1377
1378 /* S..P contains the name of the symbol. We need to store
1379 the correct name into SYMBOL_NAME. */
1380 nlen = p - s;
1381 if (refnum >= 0)
1382 {
1383 if (nlen > 0)
1384 {
1385 SYMBOL_NAME (sym) = (char *)
1386 obstack_alloc (&objfile->symbol_obstack, nlen);
1387 strncpy (SYMBOL_NAME (sym), s, nlen);
1388 SYMBOL_NAME (sym)[nlen] = '\0';
1389 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1390 }
1391 else
1392 /* FIXME! Want SYMBOL_NAME (sym) = 0;
1393 Get error if leave name 0. So give it something. */
1394 {
1395 nlen = p - string;
1396 SYMBOL_NAME (sym) = (char *)
1397 obstack_alloc (&objfile->symbol_obstack, nlen);
1398 strncpy (SYMBOL_NAME (sym), string, nlen);
1399 SYMBOL_NAME (sym)[nlen] = '\0';
1400 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1401 }
1402 }
1403 /* Advance STRING beyond the reference id. */
1404 string = s;
1405 }
1406 else
1407 {
1408 normal:
1409 SYMBOL_LANGUAGE (sym) = current_subfile->language;
1410 SYMBOL_NAME (sym) = (char *)
1411 obstack_alloc (&objfile->symbol_obstack, ((p - string) + 1));
1412 /* Open-coded memcpy--saves function call time. */
1413 /* FIXME: Does it really? Try replacing with simple strcpy and
1414 try it on an executable with a large symbol table. */
1415 /* FIXME: considering that gcc can open code memcpy anyway, I
1416 doubt it. xoxorich. */
1417 {
1418 register char *p1 = string;
1419 register char *p2 = SYMBOL_NAME (sym);
1420 while (p1 != p)
1421 {
1422 *p2++ = *p1++;
1423 }
1424 *p2++ = '\0';
1425 }
1426
1427 /* If this symbol is from a C++ compilation, then attempt to cache the
1428 demangled form for future reference. This is a typical time versus
1429 space tradeoff, that was decided in favor of time because it sped up
1430 C++ symbol lookups by a factor of about 20. */
1431
1432 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1433 }
1434 p++;
1435
1436 /* Determine the type of name being defined. */
1437 #if 0
1438 /* Getting GDB to correctly skip the symbol on an undefined symbol
1439 descriptor and not ever dump core is a very dodgy proposition if
1440 we do things this way. I say the acorn RISC machine can just
1441 fix their compiler. */
1442 /* The Acorn RISC machine's compiler can put out locals that don't
1443 start with "234=" or "(3,4)=", so assume anything other than the
1444 deftypes we know how to handle is a local. */
1445 if (!strchr ("cfFGpPrStTvVXCR", *p))
1446 #else
1447 if (isdigit (*p) || *p == '(' || *p == '-')
1448 #endif
1449 deftype = 'l';
1450 else
1451 deftype = *p++;
1452
1453 switch (deftype)
1454 {
1455 case 'c':
1456 /* c is a special case, not followed by a type-number.
1457 SYMBOL:c=iVALUE for an integer constant symbol.
1458 SYMBOL:c=rVALUE for a floating constant symbol.
1459 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1460 e.g. "b:c=e6,0" for "const b = blob1"
1461 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1462 if (*p != '=')
1463 {
1464 SYMBOL_CLASS (sym) = LOC_CONST;
1465 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1466 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1467 add_symbol_to_list (sym, &file_symbols);
1468 return sym;
1469 }
1470 ++p;
1471 switch (*p++)
1472 {
1473 case 'r':
1474 {
1475 double d = atof (p);
1476 char *dbl_valu;
1477
1478 /* FIXME-if-picky-about-floating-accuracy: Should be using
1479 target arithmetic to get the value. real.c in GCC
1480 probably has the necessary code. */
1481
1482 /* FIXME: lookup_fundamental_type is a hack. We should be
1483 creating a type especially for the type of float constants.
1484 Problem is, what type should it be?
1485
1486 Also, what should the name of this type be? Should we
1487 be using 'S' constants (see stabs.texinfo) instead? */
1488
1489 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1490 FT_DBL_PREC_FLOAT);
1491 dbl_valu = (char *)
1492 obstack_alloc (&objfile->symbol_obstack,
1493 TYPE_LENGTH (SYMBOL_TYPE (sym)));
1494 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
1495 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1496 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1497 }
1498 break;
1499 case 'i':
1500 {
1501 /* Defining integer constants this way is kind of silly,
1502 since 'e' constants allows the compiler to give not
1503 only the value, but the type as well. C has at least
1504 int, long, unsigned int, and long long as constant
1505 types; other languages probably should have at least
1506 unsigned as well as signed constants. */
1507
1508 /* We just need one int constant type for all objfiles.
1509 It doesn't depend on languages or anything (arguably its
1510 name should be a language-specific name for a type of
1511 that size, but I'm inclined to say that if the compiler
1512 wants a nice name for the type, it can use 'e'). */
1513 static struct type *int_const_type;
1514
1515 /* Yes, this is as long as a *host* int. That is because we
1516 use atoi. */
1517 if (int_const_type == NULL)
1518 int_const_type =
1519 init_type (TYPE_CODE_INT,
1520 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
1521 "integer constant",
1522 (struct objfile *) NULL);
1523 SYMBOL_TYPE (sym) = int_const_type;
1524 SYMBOL_VALUE (sym) = atoi (p);
1525 SYMBOL_CLASS (sym) = LOC_CONST;
1526 }
1527 break;
1528 case 'e':
1529 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
1530 can be represented as integral.
1531 e.g. "b:c=e6,0" for "const b = blob1"
1532 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1533 {
1534 SYMBOL_CLASS (sym) = LOC_CONST;
1535 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1536
1537 if (*p != ',')
1538 {
1539 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1540 break;
1541 }
1542 ++p;
1543
1544 /* If the value is too big to fit in an int (perhaps because
1545 it is unsigned), or something like that, we silently get
1546 a bogus value. The type and everything else about it is
1547 correct. Ideally, we should be using whatever we have
1548 available for parsing unsigned and long long values,
1549 however. */
1550 SYMBOL_VALUE (sym) = atoi (p);
1551 }
1552 break;
1553 default:
1554 {
1555 SYMBOL_CLASS (sym) = LOC_CONST;
1556 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1557 }
1558 }
1559 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1560 add_symbol_to_list (sym, &file_symbols);
1561 return sym;
1562
1563 case 'C':
1564 /* The name of a caught exception. */
1565 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1566 SYMBOL_CLASS (sym) = LOC_LABEL;
1567 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1568 SYMBOL_VALUE_ADDRESS (sym) = valu;
1569 add_symbol_to_list (sym, &local_symbols);
1570 break;
1571
1572 case 'f':
1573 /* A static function definition. */
1574 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1575 SYMBOL_CLASS (sym) = LOC_BLOCK;
1576 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1577 add_symbol_to_list (sym, &file_symbols);
1578 /* fall into process_function_types. */
1579
1580 process_function_types:
1581 /* Function result types are described as the result type in stabs.
1582 We need to convert this to the function-returning-type-X type
1583 in GDB. E.g. "int" is converted to "function returning int". */
1584 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
1585 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
1586
1587 /* All functions in C++ have prototypes. */
1588 if (SYMBOL_LANGUAGE (sym) == language_cplus)
1589 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
1590
1591 /* fall into process_prototype_types */
1592
1593 process_prototype_types:
1594 /* Sun acc puts declared types of arguments here. */
1595 if (*p == ';')
1596 {
1597 struct type *ftype = SYMBOL_TYPE (sym);
1598 int nsemi = 0;
1599 int nparams = 0;
1600 char *p1 = p;
1601
1602 /* Obtain a worst case guess for the number of arguments
1603 by counting the semicolons. */
1604 while (*p1)
1605 {
1606 if (*p1++ == ';')
1607 nsemi++;
1608 }
1609
1610 /* Allocate parameter information fields and fill them in. */
1611 TYPE_FIELDS (ftype) = (struct field *)
1612 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
1613 while (*p++ == ';')
1614 {
1615 struct type *ptype;
1616
1617 /* A type number of zero indicates the start of varargs.
1618 FIXME: GDB currently ignores vararg functions. */
1619 if (p[0] == '0' && p[1] == '\0')
1620 break;
1621 ptype = read_type (&p, objfile);
1622
1623 /* The Sun compilers mark integer arguments, which should
1624 be promoted to the width of the calling conventions, with
1625 a type which references itself. This type is turned into
1626 a TYPE_CODE_VOID type by read_type, and we have to turn
1627 it back into builtin_type_int here.
1628 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
1629 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1630 ptype = builtin_type_int;
1631 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1632 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1633 }
1634 TYPE_NFIELDS (ftype) = nparams;
1635 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
1636 }
1637 break;
1638
1639 case 'F':
1640 /* A global function definition. */
1641 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1642 SYMBOL_CLASS (sym) = LOC_BLOCK;
1643 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1644 add_symbol_to_list (sym, &global_symbols);
1645 goto process_function_types;
1646
1647 case 'G':
1648 /* For a class G (global) symbol, it appears that the
1649 value is not correct. It is necessary to search for the
1650 corresponding linker definition to find the value.
1651 These definitions appear at the end of the namelist. */
1652 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1653 SYMBOL_CLASS (sym) = LOC_STATIC;
1654 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1655 /* Don't add symbol references to global_sym_chain.
1656 Symbol references don't have valid names and wont't match up with
1657 minimal symbols when the global_sym_chain is relocated.
1658 We'll fixup symbol references when we fixup the defining symbol. */
1659 if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
1660 {
1661 i = hashname (SYMBOL_NAME (sym));
1662 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1663 global_sym_chain[i] = sym;
1664 }
1665 add_symbol_to_list (sym, &global_symbols);
1666 break;
1667
1668 /* This case is faked by a conditional above,
1669 when there is no code letter in the dbx data.
1670 Dbx data never actually contains 'l'. */
1671 case 's':
1672 case 'l':
1673 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1674 SYMBOL_CLASS (sym) = LOC_LOCAL;
1675 SYMBOL_VALUE (sym) = valu;
1676 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1677 add_symbol_to_list (sym, &local_symbols);
1678 break;
1679
1680 case 'p':
1681 if (*p == 'F')
1682 /* pF is a two-letter code that means a function parameter in Fortran.
1683 The type-number specifies the type of the return value.
1684 Translate it into a pointer-to-function type. */
1685 {
1686 p++;
1687 SYMBOL_TYPE (sym)
1688 = lookup_pointer_type
1689 (lookup_function_type (read_type (&p, objfile)));
1690 }
1691 else
1692 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1693
1694 /* Normally this is a parameter, a LOC_ARG. On the i960, it
1695 can also be a LOC_LOCAL_ARG depending on symbol type. */
1696 #ifndef DBX_PARM_SYMBOL_CLASS
1697 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
1698 #endif
1699
1700 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
1701 SYMBOL_VALUE (sym) = valu;
1702 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1703 add_symbol_to_list (sym, &local_symbols);
1704
1705 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
1706 {
1707 /* On little-endian machines, this crud is never necessary,
1708 and, if the extra bytes contain garbage, is harmful. */
1709 break;
1710 }
1711
1712 /* If it's gcc-compiled, if it says `short', believe it. */
1713 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1714 break;
1715
1716 if (!BELIEVE_PCC_PROMOTION)
1717 {
1718 /* This is the signed type which arguments get promoted to. */
1719 static struct type *pcc_promotion_type;
1720 /* This is the unsigned type which arguments get promoted to. */
1721 static struct type *pcc_unsigned_promotion_type;
1722
1723 /* Call it "int" because this is mainly C lossage. */
1724 if (pcc_promotion_type == NULL)
1725 pcc_promotion_type =
1726 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1727 0, "int", NULL);
1728
1729 if (pcc_unsigned_promotion_type == NULL)
1730 pcc_unsigned_promotion_type =
1731 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1732 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
1733
1734 if (BELIEVE_PCC_PROMOTION_TYPE)
1735 {
1736 /* This is defined on machines (e.g. sparc) where we
1737 should believe the type of a PCC 'short' argument,
1738 but shouldn't believe the address (the address is the
1739 address of the corresponding int).
1740
1741 My guess is that this correction, as opposed to
1742 changing the parameter to an 'int' (as done below,
1743 for PCC on most machines), is the right thing to do
1744 on all machines, but I don't want to risk breaking
1745 something that already works. On most PCC machines,
1746 the sparc problem doesn't come up because the calling
1747 function has to zero the top bytes (not knowing
1748 whether the called function wants an int or a short),
1749 so there is little practical difference between an
1750 int and a short (except perhaps what happens when the
1751 GDB user types "print short_arg = 0x10000;").
1752
1753 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1754 compiler actually produces the correct address (we
1755 don't need to fix it up). I made this code adapt so
1756 that it will offset the symbol if it was pointing at
1757 an int-aligned location and not otherwise. This way
1758 you can use the same gdb for 4.0.x and 4.1 systems.
1759
1760 If the parameter is shorter than an int, and is
1761 integral (e.g. char, short, or unsigned equivalent),
1762 and is claimed to be passed on an integer boundary,
1763 don't believe it! Offset the parameter's address to
1764 the tail-end of that integer. */
1765
1766 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1767 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1768 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1769 {
1770 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1771 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1772 }
1773 break;
1774 }
1775 else
1776 {
1777 /* If PCC says a parameter is a short or a char,
1778 it is really an int. */
1779 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1780 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1781 {
1782 SYMBOL_TYPE (sym) =
1783 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1784 ? pcc_unsigned_promotion_type
1785 : pcc_promotion_type;
1786 }
1787 break;
1788 }
1789 }
1790
1791 case 'P':
1792 /* acc seems to use P to declare the prototypes of functions that
1793 are referenced by this file. gdb is not prepared to deal
1794 with this extra information. FIXME, it ought to. */
1795 if (type == N_FUN)
1796 {
1797 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1798 goto process_prototype_types;
1799 }
1800 /*FALLTHROUGH */
1801
1802 case 'R':
1803 /* Parameter which is in a register. */
1804 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1805 SYMBOL_CLASS (sym) = LOC_REGPARM;
1806 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1807 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1808 {
1809 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
1810 NUM_REGS + NUM_PSEUDO_REGS,
1811 SYMBOL_SOURCE_NAME (sym));
1812 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1813 }
1814 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1815 add_symbol_to_list (sym, &local_symbols);
1816 break;
1817
1818 case 'r':
1819 /* Register variable (either global or local). */
1820 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1821 SYMBOL_CLASS (sym) = LOC_REGISTER;
1822 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1823 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1824 {
1825 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
1826 NUM_REGS + NUM_PSEUDO_REGS,
1827 SYMBOL_SOURCE_NAME (sym));
1828 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1829 }
1830 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1831 if (within_function)
1832 {
1833 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
1834 name to represent an argument passed in a register.
1835 GCC uses 'P' for the same case. So if we find such a symbol pair
1836 we combine it into one 'P' symbol. For Sun cc we need to do this
1837 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
1838 the 'p' symbol even if it never saves the argument onto the stack.
1839
1840 On most machines, we want to preserve both symbols, so that
1841 we can still get information about what is going on with the
1842 stack (VAX for computing args_printed, using stack slots instead
1843 of saved registers in backtraces, etc.).
1844
1845 Note that this code illegally combines
1846 main(argc) struct foo argc; { register struct foo argc; }
1847 but this case is considered pathological and causes a warning
1848 from a decent compiler. */
1849
1850 if (local_symbols
1851 && local_symbols->nsyms > 0
1852 #ifndef USE_REGISTER_NOT_ARG
1853 && REG_STRUCT_HAS_ADDR_P ()
1854 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1855 SYMBOL_TYPE (sym))
1856 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1857 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1858 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1859 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1860 #endif
1861 )
1862 {
1863 struct symbol *prev_sym;
1864 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1865 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1866 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1867 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME (sym)))
1868 {
1869 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1870 /* Use the type from the LOC_REGISTER; that is the type
1871 that is actually in that register. */
1872 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1873 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1874 sym = prev_sym;
1875 break;
1876 }
1877 }
1878 add_symbol_to_list (sym, &local_symbols);
1879 }
1880 else
1881 add_symbol_to_list (sym, &file_symbols);
1882 break;
1883
1884 case 'S':
1885 /* Static symbol at top level of file */
1886 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1887 SYMBOL_CLASS (sym) = LOC_STATIC;
1888 SYMBOL_VALUE_ADDRESS (sym) = valu;
1889 #ifdef STATIC_TRANSFORM_NAME
1890 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
1891 {
1892 struct minimal_symbol *msym;
1893 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1894 if (msym != NULL)
1895 {
1896 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1897 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1898 }
1899 }
1900 #endif
1901 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1902 add_symbol_to_list (sym, &file_symbols);
1903 break;
1904
1905 case 't':
1906 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1907
1908 /* For a nameless type, we don't want a create a symbol, thus we
1909 did not use `sym'. Return without further processing. */
1910 if (nameless)
1911 return NULL;
1912
1913 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1914 SYMBOL_VALUE (sym) = valu;
1915 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1916 /* C++ vagaries: we may have a type which is derived from
1917 a base type which did not have its name defined when the
1918 derived class was output. We fill in the derived class's
1919 base part member's name here in that case. */
1920 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1921 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1922 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1923 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1924 {
1925 int j;
1926 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1927 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1928 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1929 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1930 }
1931
1932 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1933 {
1934 /* gcc-2.6 or later (when using -fvtable-thunks)
1935 emits a unique named type for a vtable entry.
1936 Some gdb code depends on that specific name. */
1937 extern const char vtbl_ptr_name[];
1938
1939 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1940 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1941 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1942 {
1943 /* If we are giving a name to a type such as "pointer to
1944 foo" or "function returning foo", we better not set
1945 the TYPE_NAME. If the program contains "typedef char
1946 *caddr_t;", we don't want all variables of type char
1947 * to print as caddr_t. This is not just a
1948 consequence of GDB's type management; PCC and GCC (at
1949 least through version 2.4) both output variables of
1950 either type char * or caddr_t with the type number
1951 defined in the 't' symbol for caddr_t. If a future
1952 compiler cleans this up it GDB is not ready for it
1953 yet, but if it becomes ready we somehow need to
1954 disable this check (without breaking the PCC/GCC2.4
1955 case).
1956
1957 Sigh.
1958
1959 Fortunately, this check seems not to be necessary
1960 for anything except pointers or functions. */
1961 /* ezannoni: 2000-10-26. This seems to apply for
1962 versions of gcc older than 2.8. This was the original
1963 problem: with the following code gdb would tell that
1964 the type for name1 is caddr_t, and func is char()
1965 typedef char *caddr_t;
1966 char *name2;
1967 struct x
1968 {
1969 char *name1;
1970 } xx;
1971 char *func()
1972 {
1973 }
1974 main () {}
1975 */
1976
1977 /* Pascal accepts names for pointer types. */
1978 if (current_subfile->language == language_pascal)
1979 {
1980 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1981 }
1982 }
1983 else
1984 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1985 }
1986
1987 add_symbol_to_list (sym, &file_symbols);
1988 break;
1989
1990 case 'T':
1991 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1992 by 't' which means we are typedef'ing it as well. */
1993 synonym = *p == 't';
1994
1995 if (synonym)
1996 p++;
1997 /* The semantics of C++ state that "struct foo { ... }" also defines
1998 a typedef for "foo". Unfortunately, cfront never makes the typedef
1999 when translating C++ into C. We make the typedef here so that
2000 "ptype foo" works as expected for cfront translated code. */
2001 else if (current_subfile->language == language_cplus)
2002 synonym = 1;
2003
2004 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2005
2006 /* For a nameless type, we don't want a create a symbol, thus we
2007 did not use `sym'. Return without further processing. */
2008 if (nameless)
2009 return NULL;
2010
2011 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2012 SYMBOL_VALUE (sym) = valu;
2013 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2014 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
2015 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
2016 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2017 add_symbol_to_list (sym, &file_symbols);
2018
2019 if (synonym)
2020 {
2021 /* Clone the sym and then modify it. */
2022 register struct symbol *typedef_sym = (struct symbol *)
2023 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
2024 *typedef_sym = *sym;
2025 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
2026 SYMBOL_VALUE (typedef_sym) = valu;
2027 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
2028 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
2029 TYPE_NAME (SYMBOL_TYPE (sym))
2030 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2031 add_symbol_to_list (typedef_sym, &file_symbols);
2032 }
2033 break;
2034
2035 case 'V':
2036 /* Static symbol of local scope */
2037 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2038 SYMBOL_CLASS (sym) = LOC_STATIC;
2039 SYMBOL_VALUE_ADDRESS (sym) = valu;
2040 #ifdef STATIC_TRANSFORM_NAME
2041 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
2042 {
2043 struct minimal_symbol *msym;
2044 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
2045 if (msym != NULL)
2046 {
2047 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
2048 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
2049 }
2050 }
2051 #endif
2052 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2053 if (os9k_stabs)
2054 add_symbol_to_list (sym, &global_symbols);
2055 else
2056 add_symbol_to_list (sym, &local_symbols);
2057 break;
2058
2059 case 'v':
2060 /* Reference parameter */
2061 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2062 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2063 SYMBOL_VALUE (sym) = valu;
2064 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2065 add_symbol_to_list (sym, &local_symbols);
2066 break;
2067
2068 case 'a':
2069 /* Reference parameter which is in a register. */
2070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2071 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2072 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
2073 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
2074 {
2075 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
2076 NUM_REGS + NUM_PSEUDO_REGS,
2077 SYMBOL_SOURCE_NAME (sym));
2078 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
2079 }
2080 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2081 add_symbol_to_list (sym, &local_symbols);
2082 break;
2083
2084 case 'X':
2085 /* This is used by Sun FORTRAN for "function result value".
2086 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
2087 that Pascal uses it too, but when I tried it Pascal used
2088 "x:3" (local symbol) instead. */
2089 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2090 SYMBOL_CLASS (sym) = LOC_LOCAL;
2091 SYMBOL_VALUE (sym) = valu;
2092 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2093 add_symbol_to_list (sym, &local_symbols);
2094 break;
2095
2096 /* New code added to support cfront stabs strings.
2097 Note: case 'P' already handled above */
2098 case 'Z':
2099 /* Cfront type continuation coming up!
2100 Find the original definition and add to it.
2101 We'll have to do this for the typedef too,
2102 since we cloned the symbol to define a type in read_type.
2103 Stabs info examples:
2104 __1C :Ztl
2105 foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
2106 C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
2107 where C is the name of the class.
2108 Unfortunately, we can't lookup the original symbol yet 'cuz
2109 we haven't finished reading all the symbols.
2110 Instead, we save it for processing later */
2111 process_later (sym, p, resolve_cfront_continuation);
2112 SYMBOL_TYPE (sym) = error_type (&p, objfile); /* FIXME! change later */
2113 SYMBOL_CLASS (sym) = LOC_CONST;
2114 SYMBOL_VALUE (sym) = 0;
2115 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2116 /* Don't add to list - we'll delete it later when
2117 we add the continuation to the real sym */
2118 return sym;
2119 /* End of new code added to support cfront stabs strings */
2120
2121 default:
2122 SYMBOL_TYPE (sym) = error_type (&p, objfile);
2123 SYMBOL_CLASS (sym) = LOC_CONST;
2124 SYMBOL_VALUE (sym) = 0;
2125 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2126 add_symbol_to_list (sym, &file_symbols);
2127 break;
2128 }
2129
2130 /* When passing structures to a function, some systems sometimes pass
2131 the address in a register, not the structure itself. */
2132
2133 if (REG_STRUCT_HAS_ADDR_P ()
2134 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
2135 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
2136 {
2137 struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
2138
2139 if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
2140 || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
2141 || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
2142 || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
2143 {
2144 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
2145 LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
2146 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
2147 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2148 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
2149 and subsequent arguments on the sparc, for example). */
2150 else if (SYMBOL_CLASS (sym) == LOC_ARG)
2151 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2152 }
2153 }
2154
2155 /* Is there more to parse? For example LRS/alias information? */
2156 while (*p && *p == ';')
2157 {
2158 p++;
2159 if (*p && p[0] == 'l' && p[1] == '(')
2160 {
2161 /* GNU extensions for live range splitting may be appended to
2162 the end of the stab string. eg. "l(#1,#2);l(#3,#5)" */
2163
2164 /* Resolve the live range and add it to SYM's live range list. */
2165 if (!resolve_live_range (objfile, sym, p))
2166 return NULL;
2167
2168 /* Find end of live range info. */
2169 p = strchr (p, ')');
2170 if (!*p || *p != ')')
2171 {
2172 complain (&lrs_general_complaint, "live range format not recognized");
2173 return NULL;
2174 }
2175 p++;
2176 }
2177 }
2178 return sym;
2179 }
2180
2181 /* Add the live range found in P to the symbol SYM in objfile OBJFILE. Returns
2182 non-zero on success, zero otherwise. */
2183
2184 static int
2185 resolve_live_range (struct objfile *objfile, struct symbol *sym, char *p)
2186 {
2187 int refnum;
2188 CORE_ADDR start, end;
2189
2190 /* Sanity check the beginning of the stabs string. */
2191 if (!*p || *p != 'l')
2192 {
2193 complain (&lrs_general_complaint, "live range string 1");
2194 return 0;
2195 }
2196 p++;
2197
2198 if (!*p || *p != '(')
2199 {
2200 complain (&lrs_general_complaint, "live range string 2");
2201 return 0;
2202 }
2203 p++;
2204
2205 /* Get starting value of range and advance P past the reference id.
2206
2207 ?!? In theory, the process_reference should never fail, but we should
2208 catch that case just in case the compiler scrogged the stabs. */
2209 refnum = process_reference (&p);
2210 start = ref_search_value (refnum);
2211 if (!start)
2212 {
2213 complain (&lrs_general_complaint, "Live range symbol not found 1");
2214 return 0;
2215 }
2216
2217 if (!*p || *p != ',')
2218 {
2219 complain (&lrs_general_complaint, "live range string 3");
2220 return 0;
2221 }
2222 p++;
2223
2224 /* Get ending value of range and advance P past the reference id.
2225
2226 ?!? In theory, the process_reference should never fail, but we should
2227 catch that case just in case the compiler scrogged the stabs. */
2228 refnum = process_reference (&p);
2229 end = ref_search_value (refnum);
2230 if (!end)
2231 {
2232 complain (&lrs_general_complaint, "Live range symbol not found 2");
2233 return 0;
2234 }
2235
2236 if (!*p || *p != ')')
2237 {
2238 complain (&lrs_general_complaint, "live range string 4");
2239 return 0;
2240 }
2241
2242 /* Now that we know the bounds of the range, add it to the
2243 symbol. */
2244 add_live_range (objfile, sym, start, end);
2245
2246 return 1;
2247 }
2248
2249 /* Add a new live range defined by START and END to the symbol SYM
2250 in objfile OBJFILE. */
2251
2252 static void
2253 add_live_range (struct objfile *objfile, struct symbol *sym, CORE_ADDR start,
2254 CORE_ADDR end)
2255 {
2256 struct range_list *r, *rs;
2257
2258 if (start >= end)
2259 {
2260 complain (&lrs_general_complaint, "end of live range follows start");
2261 return;
2262 }
2263
2264 /* Alloc new live range structure. */
2265 r = (struct range_list *)
2266 obstack_alloc (&objfile->type_obstack,
2267 sizeof (struct range_list));
2268 r->start = start;
2269 r->end = end;
2270 r->next = 0;
2271
2272 /* Append this range to the symbol's range list. */
2273 if (!SYMBOL_RANGES (sym))
2274 SYMBOL_RANGES (sym) = r;
2275 else
2276 {
2277 /* Get the last range for the symbol. */
2278 for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
2279 ;
2280 rs->next = r;
2281 }
2282 }
2283 \f
2284
2285 /* Skip rest of this symbol and return an error type.
2286
2287 General notes on error recovery: error_type always skips to the
2288 end of the symbol (modulo cretinous dbx symbol name continuation).
2289 Thus code like this:
2290
2291 if (*(*pp)++ != ';')
2292 return error_type (pp, objfile);
2293
2294 is wrong because if *pp starts out pointing at '\0' (typically as the
2295 result of an earlier error), it will be incremented to point to the
2296 start of the next symbol, which might produce strange results, at least
2297 if you run off the end of the string table. Instead use
2298
2299 if (**pp != ';')
2300 return error_type (pp, objfile);
2301 ++*pp;
2302
2303 or
2304
2305 if (**pp != ';')
2306 foo = error_type (pp, objfile);
2307 else
2308 ++*pp;
2309
2310 And in case it isn't obvious, the point of all this hair is so the compiler
2311 can define new types and new syntaxes, and old versions of the
2312 debugger will be able to read the new symbol tables. */
2313
2314 static struct type *
2315 error_type (char **pp, struct objfile *objfile)
2316 {
2317 complain (&error_type_complaint);
2318 while (1)
2319 {
2320 /* Skip to end of symbol. */
2321 while (**pp != '\0')
2322 {
2323 (*pp)++;
2324 }
2325
2326 /* Check for and handle cretinous dbx symbol name continuation! */
2327 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
2328 {
2329 *pp = next_symbol_text (objfile);
2330 }
2331 else
2332 {
2333 break;
2334 }
2335 }
2336 return (builtin_type_error);
2337 }
2338 \f
2339
2340 /* Read type information or a type definition; return the type. Even
2341 though this routine accepts either type information or a type
2342 definition, the distinction is relevant--some parts of stabsread.c
2343 assume that type information starts with a digit, '-', or '(' in
2344 deciding whether to call read_type. */
2345
2346 struct type *
2347 read_type (register char **pp, struct objfile *objfile)
2348 {
2349 register struct type *type = 0;
2350 struct type *type1;
2351 int typenums[2];
2352 char type_descriptor;
2353
2354 /* Size in bits of type if specified by a type attribute, or -1 if
2355 there is no size attribute. */
2356 int type_size = -1;
2357
2358 /* Used to distinguish string and bitstring from char-array and set. */
2359 int is_string = 0;
2360
2361 /* Read type number if present. The type number may be omitted.
2362 for instance in a two-dimensional array declared with type
2363 "ar1;1;10;ar1;1;10;4". */
2364 if ((**pp >= '0' && **pp <= '9')
2365 || **pp == '('
2366 || **pp == '-')
2367 {
2368 if (read_type_number (pp, typenums) != 0)
2369 return error_type (pp, objfile);
2370
2371 /* Type is not being defined here. Either it already exists,
2372 or this is a forward reference to it. dbx_alloc_type handles
2373 both cases. */
2374 if (**pp != '=')
2375 return dbx_alloc_type (typenums, objfile);
2376
2377 /* Type is being defined here. */
2378 /* Skip the '='.
2379 Also skip the type descriptor - we get it below with (*pp)[-1]. */
2380 (*pp) += 2;
2381 }
2382 else
2383 {
2384 /* 'typenums=' not present, type is anonymous. Read and return
2385 the definition, but don't put it in the type vector. */
2386 typenums[0] = typenums[1] = -1;
2387 (*pp)++;
2388 }
2389
2390 again:
2391 type_descriptor = (*pp)[-1];
2392 switch (type_descriptor)
2393 {
2394 case 'x':
2395 {
2396 enum type_code code;
2397
2398 /* Used to index through file_symbols. */
2399 struct pending *ppt;
2400 int i;
2401
2402 /* Name including "struct", etc. */
2403 char *type_name;
2404
2405 {
2406 char *from, *to, *p, *q1, *q2;
2407
2408 /* Set the type code according to the following letter. */
2409 switch ((*pp)[0])
2410 {
2411 case 's':
2412 code = TYPE_CODE_STRUCT;
2413 break;
2414 case 'u':
2415 code = TYPE_CODE_UNION;
2416 break;
2417 case 'e':
2418 code = TYPE_CODE_ENUM;
2419 break;
2420 default:
2421 {
2422 /* Complain and keep going, so compilers can invent new
2423 cross-reference types. */
2424 static struct complaint msg =
2425 {"Unrecognized cross-reference type `%c'", 0, 0};
2426 complain (&msg, (*pp)[0]);
2427 code = TYPE_CODE_STRUCT;
2428 break;
2429 }
2430 }
2431
2432 q1 = strchr (*pp, '<');
2433 p = strchr (*pp, ':');
2434 if (p == NULL)
2435 return error_type (pp, objfile);
2436 if (q1 && p > q1 && p[1] == ':')
2437 {
2438 int nesting_level = 0;
2439 for (q2 = q1; *q2; q2++)
2440 {
2441 if (*q2 == '<')
2442 nesting_level++;
2443 else if (*q2 == '>')
2444 nesting_level--;
2445 else if (*q2 == ':' && nesting_level == 0)
2446 break;
2447 }
2448 p = q2;
2449 if (*p != ':')
2450 return error_type (pp, objfile);
2451 }
2452 to = type_name =
2453 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
2454
2455 /* Copy the name. */
2456 from = *pp + 1;
2457 while (from < p)
2458 *to++ = *from++;
2459 *to = '\0';
2460
2461 /* Set the pointer ahead of the name which we just read, and
2462 the colon. */
2463 *pp = from + 1;
2464 }
2465
2466 /* Now check to see whether the type has already been
2467 declared. This was written for arrays of cross-referenced
2468 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
2469 sure it is not necessary anymore. But it might be a good
2470 idea, to save a little memory. */
2471
2472 for (ppt = file_symbols; ppt; ppt = ppt->next)
2473 for (i = 0; i < ppt->nsyms; i++)
2474 {
2475 struct symbol *sym = ppt->symbol[i];
2476
2477 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2478 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
2479 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
2480 && STREQ (SYMBOL_NAME (sym), type_name))
2481 {
2482 obstack_free (&objfile->type_obstack, type_name);
2483 type = SYMBOL_TYPE (sym);
2484 return type;
2485 }
2486 }
2487
2488 /* Didn't find the type to which this refers, so we must
2489 be dealing with a forward reference. Allocate a type
2490 structure for it, and keep track of it so we can
2491 fill in the rest of the fields when we get the full
2492 type. */
2493 type = dbx_alloc_type (typenums, objfile);
2494 TYPE_CODE (type) = code;
2495 TYPE_TAG_NAME (type) = type_name;
2496 INIT_CPLUS_SPECIFIC (type);
2497 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
2498
2499 add_undefined_type (type);
2500 return type;
2501 }
2502
2503 case '-': /* RS/6000 built-in type */
2504 case '0':
2505 case '1':
2506 case '2':
2507 case '3':
2508 case '4':
2509 case '5':
2510 case '6':
2511 case '7':
2512 case '8':
2513 case '9':
2514 case '(':
2515 (*pp)--;
2516
2517 /* We deal with something like t(1,2)=(3,4)=... which
2518 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
2519
2520 /* Allocate and enter the typedef type first.
2521 This handles recursive types. */
2522 type = dbx_alloc_type (typenums, objfile);
2523 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
2524 {
2525 struct type *xtype = read_type (pp, objfile);
2526 if (type == xtype)
2527 {
2528 /* It's being defined as itself. That means it is "void". */
2529 TYPE_CODE (type) = TYPE_CODE_VOID;
2530 TYPE_LENGTH (type) = 1;
2531 }
2532 else if (type_size >= 0 || is_string)
2533 {
2534 /* This is the absolute wrong way to construct types. Every
2535 other debug format has found a way around this problem and
2536 the related problems with unnecessarily stubbed types;
2537 someone motivated should attempt to clean up the issue
2538 here as well. Once a type pointed to has been created it
2539 should not be modified. */
2540 replace_type (type, xtype);
2541 TYPE_NAME (type) = NULL;
2542 TYPE_TAG_NAME (type) = NULL;
2543 }
2544 else
2545 {
2546 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2547 TYPE_TARGET_TYPE (type) = xtype;
2548 }
2549 }
2550 break;
2551
2552 /* In the following types, we must be sure to overwrite any existing
2553 type that the typenums refer to, rather than allocating a new one
2554 and making the typenums point to the new one. This is because there
2555 may already be pointers to the existing type (if it had been
2556 forward-referenced), and we must change it to a pointer, function,
2557 reference, or whatever, *in-place*. */
2558
2559 case '*':
2560 type1 = read_type (pp, objfile);
2561 type = make_pointer_type (type1, dbx_lookup_type (typenums));
2562 break;
2563
2564 case '&': /* Reference to another type */
2565 type1 = read_type (pp, objfile);
2566 type = make_reference_type (type1, dbx_lookup_type (typenums));
2567 break;
2568
2569 case 'f': /* Function returning another type */
2570 if (os9k_stabs && **pp == '(')
2571 {
2572 /* Function prototype; parse it.
2573 We must conditionalize this on os9k_stabs because otherwise
2574 it could be confused with a Sun-style (1,3) typenumber
2575 (I think). */
2576 struct type *t;
2577 ++*pp;
2578 while (**pp != ')')
2579 {
2580 t = read_type (pp, objfile);
2581 if (**pp == ',')
2582 ++ * pp;
2583 }
2584 }
2585 type1 = read_type (pp, objfile);
2586 type = make_function_type (type1, dbx_lookup_type (typenums));
2587 break;
2588
2589 case 'k': /* Const qualifier on some type (Sun) */
2590 case 'c': /* Const qualifier on some type (OS9000) */
2591 /* Because 'c' means other things to AIX and 'k' is perfectly good,
2592 only accept 'c' in the os9k_stabs case. */
2593 if (type_descriptor == 'c' && !os9k_stabs)
2594 return error_type (pp, objfile);
2595 type = read_type (pp, objfile);
2596 type = make_cv_type (1, TYPE_VOLATILE (type), type,
2597 dbx_lookup_type (typenums));
2598 break;
2599
2600 case 'B': /* Volatile qual on some type (Sun) */
2601 case 'i': /* Volatile qual on some type (OS9000) */
2602 /* Because 'i' means other things to AIX and 'B' is perfectly good,
2603 only accept 'i' in the os9k_stabs case. */
2604 if (type_descriptor == 'i' && !os9k_stabs)
2605 return error_type (pp, objfile);
2606 type = read_type (pp, objfile);
2607 type = make_cv_type (TYPE_CONST (type), 1, type,
2608 dbx_lookup_type (typenums));
2609 break;
2610
2611 case '@':
2612 if (isdigit (**pp) || **pp == '(' || **pp == '-')
2613 { /* Member (class & variable) type */
2614 /* FIXME -- we should be doing smash_to_XXX types here. */
2615
2616 struct type *domain = read_type (pp, objfile);
2617 struct type *memtype;
2618
2619 if (**pp != ',')
2620 /* Invalid member type data format. */
2621 return error_type (pp, objfile);
2622 ++*pp;
2623
2624 memtype = read_type (pp, objfile);
2625 type = dbx_alloc_type (typenums, objfile);
2626 smash_to_member_type (type, domain, memtype);
2627 }
2628 else
2629 /* type attribute */
2630 {
2631 char *attr = *pp;
2632 /* Skip to the semicolon. */
2633 while (**pp != ';' && **pp != '\0')
2634 ++(*pp);
2635 if (**pp == '\0')
2636 return error_type (pp, objfile);
2637 else
2638 ++ * pp; /* Skip the semicolon. */
2639
2640 switch (*attr)
2641 {
2642 case 's':
2643 type_size = atoi (attr + 1);
2644 if (type_size <= 0)
2645 type_size = -1;
2646 break;
2647
2648 case 'S':
2649 is_string = 1;
2650 break;
2651
2652 default:
2653 /* Ignore unrecognized type attributes, so future compilers
2654 can invent new ones. */
2655 break;
2656 }
2657 ++*pp;
2658 goto again;
2659 }
2660 break;
2661
2662 case '#': /* Method (class & fn) type */
2663 if ((*pp)[0] == '#')
2664 {
2665 /* We'll get the parameter types from the name. */
2666 struct type *return_type;
2667
2668 (*pp)++;
2669 return_type = read_type (pp, objfile);
2670 if (*(*pp)++ != ';')
2671 complain (&invalid_member_complaint, symnum);
2672 type = allocate_stub_method (return_type);
2673 if (typenums[0] != -1)
2674 *dbx_lookup_type (typenums) = type;
2675 }
2676 else
2677 {
2678 struct type *domain = read_type (pp, objfile);
2679 struct type *return_type;
2680 struct type **args;
2681
2682 if (**pp != ',')
2683 /* Invalid member type data format. */
2684 return error_type (pp, objfile);
2685 else
2686 ++(*pp);
2687
2688 return_type = read_type (pp, objfile);
2689 args = read_args (pp, ';', objfile);
2690 type = dbx_alloc_type (typenums, objfile);
2691 smash_to_method_type (type, domain, return_type, args);
2692 }
2693 break;
2694
2695 case 'r': /* Range type */
2696 type = read_range_type (pp, typenums, objfile);
2697 if (typenums[0] != -1)
2698 *dbx_lookup_type (typenums) = type;
2699 break;
2700
2701 case 'b':
2702 if (os9k_stabs)
2703 /* Const and volatile qualified type. */
2704 type = read_type (pp, objfile);
2705 else
2706 {
2707 /* Sun ACC builtin int type */
2708 type = read_sun_builtin_type (pp, typenums, objfile);
2709 if (typenums[0] != -1)
2710 *dbx_lookup_type (typenums) = type;
2711 }
2712 break;
2713
2714 case 'R': /* Sun ACC builtin float type */
2715 type = read_sun_floating_type (pp, typenums, objfile);
2716 if (typenums[0] != -1)
2717 *dbx_lookup_type (typenums) = type;
2718 break;
2719
2720 case 'e': /* Enumeration type */
2721 type = dbx_alloc_type (typenums, objfile);
2722 type = read_enum_type (pp, type, objfile);
2723 if (typenums[0] != -1)
2724 *dbx_lookup_type (typenums) = type;
2725 break;
2726
2727 case 's': /* Struct type */
2728 case 'u': /* Union type */
2729 type = dbx_alloc_type (typenums, objfile);
2730 switch (type_descriptor)
2731 {
2732 case 's':
2733 TYPE_CODE (type) = TYPE_CODE_STRUCT;
2734 break;
2735 case 'u':
2736 TYPE_CODE (type) = TYPE_CODE_UNION;
2737 break;
2738 }
2739 type = read_struct_type (pp, type, objfile);
2740 break;
2741
2742 case 'a': /* Array type */
2743 if (**pp != 'r')
2744 return error_type (pp, objfile);
2745 ++*pp;
2746
2747 type = dbx_alloc_type (typenums, objfile);
2748 type = read_array_type (pp, type, objfile);
2749 if (is_string)
2750 TYPE_CODE (type) = TYPE_CODE_STRING;
2751 break;
2752
2753 case 'S':
2754 type1 = read_type (pp, objfile);
2755 type = create_set_type ((struct type *) NULL, type1);
2756 if (is_string)
2757 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2758 if (typenums[0] != -1)
2759 *dbx_lookup_type (typenums) = type;
2760 break;
2761
2762 default:
2763 --*pp; /* Go back to the symbol in error */
2764 /* Particularly important if it was \0! */
2765 return error_type (pp, objfile);
2766 }
2767
2768 if (type == 0)
2769 {
2770 warning ("GDB internal error, type is NULL in stabsread.c\n");
2771 return error_type (pp, objfile);
2772 }
2773
2774 /* Size specified in a type attribute overrides any other size. */
2775 if (type_size != -1)
2776 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2777
2778 return type;
2779 }
2780 \f
2781 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2782 Return the proper type node for a given builtin type number. */
2783
2784 static struct type *
2785 rs6000_builtin_type (int typenum)
2786 {
2787 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2788 #define NUMBER_RECOGNIZED 34
2789 /* This includes an empty slot for type number -0. */
2790 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
2791 struct type *rettype = NULL;
2792
2793 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2794 {
2795 complain (&rs6000_builtin_complaint, typenum);
2796 return builtin_type_error;
2797 }
2798 if (negative_types[-typenum] != NULL)
2799 return negative_types[-typenum];
2800
2801 #if TARGET_CHAR_BIT != 8
2802 #error This code wrong for TARGET_CHAR_BIT not 8
2803 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2804 that if that ever becomes not true, the correct fix will be to
2805 make the size in the struct type to be in bits, not in units of
2806 TARGET_CHAR_BIT. */
2807 #endif
2808
2809 switch (-typenum)
2810 {
2811 case 1:
2812 /* The size of this and all the other types are fixed, defined
2813 by the debugging format. If there is a type called "int" which
2814 is other than 32 bits, then it should use a new negative type
2815 number (or avoid negative type numbers for that case).
2816 See stabs.texinfo. */
2817 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
2818 break;
2819 case 2:
2820 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
2821 break;
2822 case 3:
2823 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2824 break;
2825 case 4:
2826 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2827 break;
2828 case 5:
2829 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2830 "unsigned char", NULL);
2831 break;
2832 case 6:
2833 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2834 break;
2835 case 7:
2836 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2837 "unsigned short", NULL);
2838 break;
2839 case 8:
2840 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2841 "unsigned int", NULL);
2842 break;
2843 case 9:
2844 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2845 "unsigned", NULL);
2846 case 10:
2847 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2848 "unsigned long", NULL);
2849 break;
2850 case 11:
2851 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2852 break;
2853 case 12:
2854 /* IEEE single precision (32 bit). */
2855 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2856 break;
2857 case 13:
2858 /* IEEE double precision (64 bit). */
2859 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2860 break;
2861 case 14:
2862 /* This is an IEEE double on the RS/6000, and different machines with
2863 different sizes for "long double" should use different negative
2864 type numbers. See stabs.texinfo. */
2865 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2866 break;
2867 case 15:
2868 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2869 break;
2870 case 16:
2871 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2872 "boolean", NULL);
2873 break;
2874 case 17:
2875 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2876 break;
2877 case 18:
2878 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2879 break;
2880 case 19:
2881 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2882 break;
2883 case 20:
2884 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2885 "character", NULL);
2886 break;
2887 case 21:
2888 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2889 "logical*1", NULL);
2890 break;
2891 case 22:
2892 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2893 "logical*2", NULL);
2894 break;
2895 case 23:
2896 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2897 "logical*4", NULL);
2898 break;
2899 case 24:
2900 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2901 "logical", NULL);
2902 break;
2903 case 25:
2904 /* Complex type consisting of two IEEE single precision values. */
2905 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2906 break;
2907 case 26:
2908 /* Complex type consisting of two IEEE double precision values. */
2909 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2910 break;
2911 case 27:
2912 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2913 break;
2914 case 28:
2915 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2916 break;
2917 case 29:
2918 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2919 break;
2920 case 30:
2921 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2922 break;
2923 case 31:
2924 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2925 break;
2926 case 32:
2927 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2928 "unsigned long long", NULL);
2929 break;
2930 case 33:
2931 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2932 "logical*8", NULL);
2933 break;
2934 case 34:
2935 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2936 break;
2937 }
2938 negative_types[-typenum] = rettype;
2939 return rettype;
2940 }
2941 \f
2942 /* This page contains subroutines of read_type. */
2943
2944 /* Read member function stabs info for C++ classes. The form of each member
2945 function data is:
2946
2947 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2948
2949 An example with two member functions is:
2950
2951 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2952
2953 For the case of overloaded operators, the format is op$::*.funcs, where
2954 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2955 name (such as `+=') and `.' marks the end of the operator name.
2956
2957 Returns 1 for success, 0 for failure. */
2958
2959 static int
2960 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2961 struct objfile *objfile)
2962 {
2963 int nfn_fields = 0;
2964 int length = 0;
2965 int skip_method;
2966 /* Total number of member functions defined in this class. If the class
2967 defines two `f' functions, and one `g' function, then this will have
2968 the value 3. */
2969 int total_length = 0;
2970 int i;
2971 struct next_fnfield
2972 {
2973 struct next_fnfield *next;
2974 struct fn_field fn_field;
2975 }
2976 *sublist;
2977 struct type *look_ahead_type;
2978 struct next_fnfieldlist *new_fnlist;
2979 struct next_fnfield *new_sublist;
2980 char *main_fn_name;
2981 register char *p;
2982
2983 /* Process each list until we find something that is not a member function
2984 or find the end of the functions. */
2985
2986 while (**pp != ';')
2987 {
2988 /* We should be positioned at the start of the function name.
2989 Scan forward to find the first ':' and if it is not the
2990 first of a "::" delimiter, then this is not a member function. */
2991 p = *pp;
2992 while (*p != ':')
2993 {
2994 p++;
2995 }
2996 if (p[1] != ':')
2997 {
2998 break;
2999 }
3000
3001 sublist = NULL;
3002 look_ahead_type = NULL;
3003 length = 0;
3004
3005 skip_method = 0;
3006 if (p - *pp == strlen ("__base_ctor")
3007 && strncmp (*pp, "__base_ctor", strlen ("__base_ctor")) == 0)
3008 skip_method = 1;
3009 else if (p - *pp == strlen ("__base_dtor")
3010 && strncmp (*pp, "__base_dtor", strlen ("__base_dtor")) == 0)
3011 skip_method = 1;
3012 else if (p - *pp == strlen ("__deleting_dtor")
3013 && strncmp (*pp, "__deleting_dtor",
3014 strlen ("__deleting_dtor")) == 0)
3015 skip_method = 1;
3016
3017 if (skip_method)
3018 {
3019 /* Skip past '::'. */
3020 *pp = p + 2;
3021 /* Read the type. */
3022 read_type (pp, objfile);
3023 /* Skip past the colon, mangled name, semicolon, flags, and final
3024 semicolon. */
3025 while (**pp != ';')
3026 (*pp) ++;
3027 (*pp) ++;
3028 while (**pp != ';')
3029 (*pp) ++;
3030 (*pp) ++;
3031
3032 continue;
3033 }
3034
3035 new_fnlist = (struct next_fnfieldlist *)
3036 xmalloc (sizeof (struct next_fnfieldlist));
3037 make_cleanup (xfree, new_fnlist);
3038 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
3039
3040 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
3041 {
3042 /* This is a completely wierd case. In order to stuff in the
3043 names that might contain colons (the usual name delimiter),
3044 Mike Tiemann defined a different name format which is
3045 signalled if the identifier is "op$". In that case, the
3046 format is "op$::XXXX." where XXXX is the name. This is
3047 used for names like "+" or "=". YUUUUUUUK! FIXME! */
3048 /* This lets the user type "break operator+".
3049 We could just put in "+" as the name, but that wouldn't
3050 work for "*". */
3051 static char opname[32] =
3052 {'o', 'p', CPLUS_MARKER};
3053 char *o = opname + 3;
3054
3055 /* Skip past '::'. */
3056 *pp = p + 2;
3057
3058 STABS_CONTINUE (pp, objfile);
3059 p = *pp;
3060 while (*p != '.')
3061 {
3062 *o++ = *p++;
3063 }
3064 main_fn_name = savestring (opname, o - opname);
3065 /* Skip past '.' */
3066 *pp = p + 1;
3067 }
3068 else
3069 {
3070 main_fn_name = savestring (*pp, p - *pp);
3071 /* Skip past '::'. */
3072 *pp = p + 2;
3073 }
3074 new_fnlist->fn_fieldlist.name = main_fn_name;
3075
3076 do
3077 {
3078 new_sublist =
3079 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
3080 make_cleanup (xfree, new_sublist);
3081 memset (new_sublist, 0, sizeof (struct next_fnfield));
3082
3083 /* Check for and handle cretinous dbx symbol name continuation! */
3084 if (look_ahead_type == NULL)
3085 {
3086 /* Normal case. */
3087 STABS_CONTINUE (pp, objfile);
3088
3089 new_sublist->fn_field.type = read_type (pp, objfile);
3090 if (**pp != ':')
3091 {
3092 /* Invalid symtab info for member function. */
3093 return 0;
3094 }
3095 }
3096 else
3097 {
3098 /* g++ version 1 kludge */
3099 new_sublist->fn_field.type = look_ahead_type;
3100 look_ahead_type = NULL;
3101 }
3102
3103 (*pp)++;
3104 p = *pp;
3105 while (*p != ';')
3106 {
3107 p++;
3108 }
3109
3110 /* If this is just a stub, then we don't have the real name here. */
3111
3112 if (TYPE_STUB (new_sublist->fn_field.type))
3113 {
3114 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
3115 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
3116 new_sublist->fn_field.is_stub = 1;
3117 }
3118 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
3119 *pp = p + 1;
3120
3121 /* Set this member function's visibility fields. */
3122 switch (*(*pp)++)
3123 {
3124 case VISIBILITY_PRIVATE:
3125 new_sublist->fn_field.is_private = 1;
3126 break;
3127 case VISIBILITY_PROTECTED:
3128 new_sublist->fn_field.is_protected = 1;
3129 break;
3130 }
3131
3132 STABS_CONTINUE (pp, objfile);
3133 switch (**pp)
3134 {
3135 case 'A': /* Normal functions. */
3136 new_sublist->fn_field.is_const = 0;
3137 new_sublist->fn_field.is_volatile = 0;
3138 (*pp)++;
3139 break;
3140 case 'B': /* `const' member functions. */
3141 new_sublist->fn_field.is_const = 1;
3142 new_sublist->fn_field.is_volatile = 0;
3143 (*pp)++;
3144 break;
3145 case 'C': /* `volatile' member function. */
3146 new_sublist->fn_field.is_const = 0;
3147 new_sublist->fn_field.is_volatile = 1;
3148 (*pp)++;
3149 break;
3150 case 'D': /* `const volatile' member function. */
3151 new_sublist->fn_field.is_const = 1;
3152 new_sublist->fn_field.is_volatile = 1;
3153 (*pp)++;
3154 break;
3155 case '*': /* File compiled with g++ version 1 -- no info */
3156 case '?':
3157 case '.':
3158 break;
3159 default:
3160 complain (&const_vol_complaint, **pp);
3161 break;
3162 }
3163
3164 switch (*(*pp)++)
3165 {
3166 case '*':
3167 {
3168 int nbits;
3169 /* virtual member function, followed by index.
3170 The sign bit is set to distinguish pointers-to-methods
3171 from virtual function indicies. Since the array is
3172 in words, the quantity must be shifted left by 1
3173 on 16 bit machine, and by 2 on 32 bit machine, forcing
3174 the sign bit out, and usable as a valid index into
3175 the array. Remove the sign bit here. */
3176 new_sublist->fn_field.voffset =
3177 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
3178 if (nbits != 0)
3179 return 0;
3180
3181 STABS_CONTINUE (pp, objfile);
3182 if (**pp == ';' || **pp == '\0')
3183 {
3184 /* Must be g++ version 1. */
3185 new_sublist->fn_field.fcontext = 0;
3186 }
3187 else
3188 {
3189 /* Figure out from whence this virtual function came.
3190 It may belong to virtual function table of
3191 one of its baseclasses. */
3192 look_ahead_type = read_type (pp, objfile);
3193 if (**pp == ':')
3194 {
3195 /* g++ version 1 overloaded methods. */
3196 }
3197 else
3198 {
3199 new_sublist->fn_field.fcontext = look_ahead_type;
3200 if (**pp != ';')
3201 {
3202 return 0;
3203 }
3204 else
3205 {
3206 ++*pp;
3207 }
3208 look_ahead_type = NULL;
3209 }
3210 }
3211 break;
3212 }
3213 case '?':
3214 /* static member function. */
3215 new_sublist->fn_field.voffset = VOFFSET_STATIC;
3216 if (strncmp (new_sublist->fn_field.physname,
3217 main_fn_name, strlen (main_fn_name)))
3218 {
3219 new_sublist->fn_field.is_stub = 1;
3220 }
3221 break;
3222
3223 default:
3224 /* error */
3225 complain (&member_fn_complaint, (*pp)[-1]);
3226 /* Fall through into normal member function. */
3227
3228 case '.':
3229 /* normal member function. */
3230 new_sublist->fn_field.voffset = 0;
3231 new_sublist->fn_field.fcontext = 0;
3232 break;
3233 }
3234
3235 new_sublist->next = sublist;
3236 sublist = new_sublist;
3237 length++;
3238 STABS_CONTINUE (pp, objfile);
3239 }
3240 while (**pp != ';' && **pp != '\0');
3241
3242 (*pp)++;
3243
3244 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
3245 obstack_alloc (&objfile->type_obstack,
3246 sizeof (struct fn_field) * length);
3247 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
3248 sizeof (struct fn_field) * length);
3249 for (i = length; (i--, sublist); sublist = sublist->next)
3250 {
3251 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
3252 }
3253
3254 new_fnlist->fn_fieldlist.length = length;
3255 new_fnlist->next = fip->fnlist;
3256 fip->fnlist = new_fnlist;
3257 nfn_fields++;
3258 total_length += length;
3259 STABS_CONTINUE (pp, objfile);
3260 }
3261
3262 if (nfn_fields)
3263 {
3264 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3265 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3266 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
3267 memset (TYPE_FN_FIELDLISTS (type), 0,
3268 sizeof (struct fn_fieldlist) * nfn_fields);
3269 TYPE_NFN_FIELDS (type) = nfn_fields;
3270 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3271 }
3272
3273 return 1;
3274 }
3275
3276 /* Special GNU C++ name.
3277
3278 Returns 1 for success, 0 for failure. "failure" means that we can't
3279 keep parsing and it's time for error_type(). */
3280
3281 static int
3282 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
3283 struct objfile *objfile)
3284 {
3285 register char *p;
3286 char *name;
3287 char cpp_abbrev;
3288 struct type *context;
3289
3290 p = *pp;
3291 if (*++p == 'v')
3292 {
3293 name = NULL;
3294 cpp_abbrev = *++p;
3295
3296 *pp = p + 1;
3297
3298 /* At this point, *pp points to something like "22:23=*22...",
3299 where the type number before the ':' is the "context" and
3300 everything after is a regular type definition. Lookup the
3301 type, find it's name, and construct the field name. */
3302
3303 context = read_type (pp, objfile);
3304
3305 switch (cpp_abbrev)
3306 {
3307 case 'f': /* $vf -- a virtual function table pointer */
3308 name = type_name_no_tag (context);
3309 if (name == NULL)
3310 {
3311 name = "";
3312 }
3313 fip->list->field.name =
3314 obconcat (&objfile->type_obstack, vptr_name, name, "");
3315 break;
3316
3317 case 'b': /* $vb -- a virtual bsomethingorother */
3318 name = type_name_no_tag (context);
3319 if (name == NULL)
3320 {
3321 complain (&invalid_cpp_type_complaint, symnum);
3322 name = "FOO";
3323 }
3324 fip->list->field.name =
3325 obconcat (&objfile->type_obstack, vb_name, name, "");
3326 break;
3327
3328 default:
3329 complain (&invalid_cpp_abbrev_complaint, *pp);
3330 fip->list->field.name =
3331 obconcat (&objfile->type_obstack,
3332 "INVALID_CPLUSPLUS_ABBREV", "", "");
3333 break;
3334 }
3335
3336 /* At this point, *pp points to the ':'. Skip it and read the
3337 field type. */
3338
3339 p = ++(*pp);
3340 if (p[-1] != ':')
3341 {
3342 complain (&invalid_cpp_abbrev_complaint, *pp);
3343 return 0;
3344 }
3345 fip->list->field.type = read_type (pp, objfile);
3346 if (**pp == ',')
3347 (*pp)++; /* Skip the comma. */
3348 else
3349 return 0;
3350
3351 {
3352 int nbits;
3353 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
3354 if (nbits != 0)
3355 return 0;
3356 }
3357 /* This field is unpacked. */
3358 FIELD_BITSIZE (fip->list->field) = 0;
3359 fip->list->visibility = VISIBILITY_PRIVATE;
3360 }
3361 else
3362 {
3363 complain (&invalid_cpp_abbrev_complaint, *pp);
3364 /* We have no idea what syntax an unrecognized abbrev would have, so
3365 better return 0. If we returned 1, we would need to at least advance
3366 *pp to avoid an infinite loop. */
3367 return 0;
3368 }
3369 return 1;
3370 }
3371
3372 static void
3373 read_one_struct_field (struct field_info *fip, char **pp, char *p,
3374 struct type *type, struct objfile *objfile)
3375 {
3376 /* The following is code to work around cfront generated stabs.
3377 The stabs contains full mangled name for each field.
3378 We try to demangle the name and extract the field name out of it.
3379 */
3380 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
3381 {
3382 char save_p;
3383 char *dem, *dem_p;
3384 save_p = *p;
3385 *p = '\0';
3386 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
3387 if (dem != NULL)
3388 {
3389 dem_p = strrchr (dem, ':');
3390 if (dem_p != 0 && *(dem_p - 1) == ':')
3391 dem_p++;
3392 FIELD_NAME (fip->list->field) =
3393 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
3394 }
3395 else
3396 {
3397 FIELD_NAME (fip->list->field) =
3398 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3399 }
3400 *p = save_p;
3401 }
3402 /* end of code for cfront work around */
3403
3404 else
3405 fip->list->field.name =
3406 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3407 *pp = p + 1;
3408
3409 /* This means we have a visibility for a field coming. */
3410 if (**pp == '/')
3411 {
3412 (*pp)++;
3413 fip->list->visibility = *(*pp)++;
3414 }
3415 else
3416 {
3417 /* normal dbx-style format, no explicit visibility */
3418 fip->list->visibility = VISIBILITY_PUBLIC;
3419 }
3420
3421 fip->list->field.type = read_type (pp, objfile);
3422 if (**pp == ':')
3423 {
3424 p = ++(*pp);
3425 #if 0
3426 /* Possible future hook for nested types. */
3427 if (**pp == '!')
3428 {
3429 fip->list->field.bitpos = (long) -2; /* nested type */
3430 p = ++(*pp);
3431 }
3432 else
3433 ...;
3434 #endif
3435 while (*p != ';')
3436 {
3437 p++;
3438 }
3439 /* Static class member. */
3440 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
3441 *pp = p + 1;
3442 return;
3443 }
3444 else if (**pp != ',')
3445 {
3446 /* Bad structure-type format. */
3447 complain (&stabs_general_complaint, "bad structure-type format");
3448 return;
3449 }
3450
3451 (*pp)++; /* Skip the comma. */
3452
3453 {
3454 int nbits;
3455 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
3456 if (nbits != 0)
3457 {
3458 complain (&stabs_general_complaint, "bad structure-type format");
3459 return;
3460 }
3461 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
3462 if (nbits != 0)
3463 {
3464 complain (&stabs_general_complaint, "bad structure-type format");
3465 return;
3466 }
3467 }
3468
3469 if (FIELD_BITPOS (fip->list->field) == 0
3470 && FIELD_BITSIZE (fip->list->field) == 0)
3471 {
3472 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
3473 it is a field which has been optimized out. The correct stab for
3474 this case is to use VISIBILITY_IGNORE, but that is a recent
3475 invention. (2) It is a 0-size array. For example
3476 union { int num; char str[0]; } foo. Printing "<no value>" for
3477 str in "p foo" is OK, since foo.str (and thus foo.str[3])
3478 will continue to work, and a 0-size array as a whole doesn't
3479 have any contents to print.
3480
3481 I suspect this probably could also happen with gcc -gstabs (not
3482 -gstabs+) for static fields, and perhaps other C++ extensions.
3483 Hopefully few people use -gstabs with gdb, since it is intended
3484 for dbx compatibility. */
3485
3486 /* Ignore this field. */
3487 fip->list->visibility = VISIBILITY_IGNORE;
3488 }
3489 else
3490 {
3491 /* Detect an unpacked field and mark it as such.
3492 dbx gives a bit size for all fields.
3493 Note that forward refs cannot be packed,
3494 and treat enums as if they had the width of ints. */
3495
3496 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
3497
3498 if (TYPE_CODE (field_type) != TYPE_CODE_INT
3499 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
3500 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
3501 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
3502 {
3503 FIELD_BITSIZE (fip->list->field) = 0;
3504 }
3505 if ((FIELD_BITSIZE (fip->list->field)
3506 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
3507 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
3508 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
3509 )
3510 &&
3511 FIELD_BITPOS (fip->list->field) % 8 == 0)
3512 {
3513 FIELD_BITSIZE (fip->list->field) = 0;
3514 }
3515 }
3516 }
3517
3518
3519 /* Read struct or class data fields. They have the form:
3520
3521 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
3522
3523 At the end, we see a semicolon instead of a field.
3524
3525 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3526 a static field.
3527
3528 The optional VISIBILITY is one of:
3529
3530 '/0' (VISIBILITY_PRIVATE)
3531 '/1' (VISIBILITY_PROTECTED)
3532 '/2' (VISIBILITY_PUBLIC)
3533 '/9' (VISIBILITY_IGNORE)
3534
3535 or nothing, for C style fields with public visibility.
3536
3537 Returns 1 for success, 0 for failure. */
3538
3539 static int
3540 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3541 struct objfile *objfile)
3542 {
3543 register char *p;
3544 struct nextfield *new;
3545
3546 /* We better set p right now, in case there are no fields at all... */
3547
3548 p = *pp;
3549
3550 /* Read each data member type until we find the terminating ';' at the end of
3551 the data member list, or break for some other reason such as finding the
3552 start of the member function list. */
3553 /* Stab string for structure/union does not end with two ';' in
3554 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3555
3556 while (**pp != ';' && **pp != '\0')
3557 {
3558 if (os9k_stabs && **pp == ',')
3559 break;
3560 STABS_CONTINUE (pp, objfile);
3561 /* Get space to record the next field's data. */
3562 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3563 make_cleanup (xfree, new);
3564 memset (new, 0, sizeof (struct nextfield));
3565 new->next = fip->list;
3566 fip->list = new;
3567
3568 /* Get the field name. */
3569 p = *pp;
3570
3571 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3572 unless the CPLUS_MARKER is followed by an underscore, in
3573 which case it is just the name of an anonymous type, which we
3574 should handle like any other type name. */
3575
3576 if (is_cplus_marker (p[0]) && p[1] != '_')
3577 {
3578 if (!read_cpp_abbrev (fip, pp, type, objfile))
3579 return 0;
3580 continue;
3581 }
3582
3583 /* Look for the ':' that separates the field name from the field
3584 values. Data members are delimited by a single ':', while member
3585 functions are delimited by a pair of ':'s. When we hit the member
3586 functions (if any), terminate scan loop and return. */
3587
3588 while (*p != ':' && *p != '\0')
3589 {
3590 p++;
3591 }
3592 if (*p == '\0')
3593 return 0;
3594
3595 /* Check to see if we have hit the member functions yet. */
3596 if (p[1] == ':')
3597 {
3598 break;
3599 }
3600 read_one_struct_field (fip, pp, p, type, objfile);
3601 }
3602 if (p[0] == ':' && p[1] == ':')
3603 {
3604 /* chill the list of fields: the last entry (at the head) is a
3605 partially constructed entry which we now scrub. */
3606 fip->list = fip->list->next;
3607 }
3608 return 1;
3609 }
3610 /* *INDENT-OFF* */
3611 /* The stabs for C++ derived classes contain baseclass information which
3612 is marked by a '!' character after the total size. This function is
3613 called when we encounter the baseclass marker, and slurps up all the
3614 baseclass information.
3615
3616 Immediately following the '!' marker is the number of base classes that
3617 the class is derived from, followed by information for each base class.
3618 For each base class, there are two visibility specifiers, a bit offset
3619 to the base class information within the derived class, a reference to
3620 the type for the base class, and a terminating semicolon.
3621
3622 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3623 ^^ ^ ^ ^ ^ ^ ^
3624 Baseclass information marker __________________|| | | | | | |
3625 Number of baseclasses __________________________| | | | | | |
3626 Visibility specifiers (2) ________________________| | | | | |
3627 Offset in bits from start of class _________________| | | | |
3628 Type number for base class ___________________________| | | |
3629 Visibility specifiers (2) _______________________________| | |
3630 Offset in bits from start of class ________________________| |
3631 Type number of base class ____________________________________|
3632
3633 Return 1 for success, 0 for (error-type-inducing) failure. */
3634 /* *INDENT-ON* */
3635
3636
3637
3638 static int
3639 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3640 struct objfile *objfile)
3641 {
3642 int i;
3643 struct nextfield *new;
3644
3645 if (**pp != '!')
3646 {
3647 return 1;
3648 }
3649 else
3650 {
3651 /* Skip the '!' baseclass information marker. */
3652 (*pp)++;
3653 }
3654
3655 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3656 {
3657 int nbits;
3658 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
3659 if (nbits != 0)
3660 return 0;
3661 }
3662
3663 #if 0
3664 /* Some stupid compilers have trouble with the following, so break
3665 it up into simpler expressions. */
3666 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3667 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3668 #else
3669 {
3670 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3671 char *pointer;
3672
3673 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3674 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3675 }
3676 #endif /* 0 */
3677
3678 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3679
3680 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3681 {
3682 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3683 make_cleanup (xfree, new);
3684 memset (new, 0, sizeof (struct nextfield));
3685 new->next = fip->list;
3686 fip->list = new;
3687 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3688
3689 STABS_CONTINUE (pp, objfile);
3690 switch (**pp)
3691 {
3692 case '0':
3693 /* Nothing to do. */
3694 break;
3695 case '1':
3696 SET_TYPE_FIELD_VIRTUAL (type, i);
3697 break;
3698 default:
3699 /* Unknown character. Complain and treat it as non-virtual. */
3700 {
3701 static struct complaint msg =
3702 {
3703 "Unknown virtual character `%c' for baseclass", 0, 0};
3704 complain (&msg, **pp);
3705 }
3706 }
3707 ++(*pp);
3708
3709 new->visibility = *(*pp)++;
3710 switch (new->visibility)
3711 {
3712 case VISIBILITY_PRIVATE:
3713 case VISIBILITY_PROTECTED:
3714 case VISIBILITY_PUBLIC:
3715 break;
3716 default:
3717 /* Bad visibility format. Complain and treat it as
3718 public. */
3719 {
3720 static struct complaint msg =
3721 {
3722 "Unknown visibility `%c' for baseclass", 0, 0
3723 };
3724 complain (&msg, new->visibility);
3725 new->visibility = VISIBILITY_PUBLIC;
3726 }
3727 }
3728
3729 {
3730 int nbits;
3731
3732 /* The remaining value is the bit offset of the portion of the object
3733 corresponding to this baseclass. Always zero in the absence of
3734 multiple inheritance. */
3735
3736 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3737 if (nbits != 0)
3738 return 0;
3739 }
3740
3741 /* The last piece of baseclass information is the type of the
3742 base class. Read it, and remember it's type name as this
3743 field's name. */
3744
3745 new->field.type = read_type (pp, objfile);
3746 new->field.name = type_name_no_tag (new->field.type);
3747
3748 /* skip trailing ';' and bump count of number of fields seen */
3749 if (**pp == ';')
3750 (*pp)++;
3751 else
3752 return 0;
3753 }
3754 return 1;
3755 }
3756
3757 /* The tail end of stabs for C++ classes that contain a virtual function
3758 pointer contains a tilde, a %, and a type number.
3759 The type number refers to the base class (possibly this class itself) which
3760 contains the vtable pointer for the current class.
3761
3762 This function is called when we have parsed all the method declarations,
3763 so we can look for the vptr base class info. */
3764
3765 static int
3766 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3767 struct objfile *objfile)
3768 {
3769 register char *p;
3770
3771 STABS_CONTINUE (pp, objfile);
3772
3773 /* If we are positioned at a ';', then skip it. */
3774 if (**pp == ';')
3775 {
3776 (*pp)++;
3777 }
3778
3779 if (**pp == '~')
3780 {
3781 (*pp)++;
3782
3783 if (**pp == '=' || **pp == '+' || **pp == '-')
3784 {
3785 /* Obsolete flags that used to indicate the presence
3786 of constructors and/or destructors. */
3787 (*pp)++;
3788 }
3789
3790 /* Read either a '%' or the final ';'. */
3791 if (*(*pp)++ == '%')
3792 {
3793 /* The next number is the type number of the base class
3794 (possibly our own class) which supplies the vtable for
3795 this class. Parse it out, and search that class to find
3796 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3797 and TYPE_VPTR_FIELDNO. */
3798
3799 struct type *t;
3800 int i;
3801
3802 t = read_type (pp, objfile);
3803 p = (*pp)++;
3804 while (*p != '\0' && *p != ';')
3805 {
3806 p++;
3807 }
3808 if (*p == '\0')
3809 {
3810 /* Premature end of symbol. */
3811 return 0;
3812 }
3813
3814 TYPE_VPTR_BASETYPE (type) = t;
3815 if (type == t) /* Our own class provides vtbl ptr */
3816 {
3817 for (i = TYPE_NFIELDS (t) - 1;
3818 i >= TYPE_N_BASECLASSES (t);
3819 --i)
3820 {
3821 if (!strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
3822 sizeof (vptr_name) - 1))
3823 {
3824 TYPE_VPTR_FIELDNO (type) = i;
3825 goto gotit;
3826 }
3827 }
3828 /* Virtual function table field not found. */
3829 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
3830 return 0;
3831 }
3832 else
3833 {
3834 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3835 }
3836
3837 gotit:
3838 *pp = p + 1;
3839 }
3840 }
3841 return 1;
3842 }
3843
3844 static int
3845 attach_fn_fields_to_type (struct field_info *fip, register struct type *type)
3846 {
3847 register int n;
3848
3849 for (n = TYPE_NFN_FIELDS (type);
3850 fip->fnlist != NULL;
3851 fip->fnlist = fip->fnlist->next)
3852 {
3853 --n; /* Circumvent Sun3 compiler bug */
3854 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3855 }
3856 return 1;
3857 }
3858
3859 /* read cfront class static data.
3860 pp points to string starting with the list of static data
3861 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
3862 ^^^^^^^^
3863
3864 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
3865 ^
3866 */
3867
3868 static int
3869 read_cfront_static_fields (struct field_info *fip, char **pp, struct type *type,
3870 struct objfile *objfile)
3871 {
3872 struct nextfield *new;
3873 struct type *stype;
3874 char *sname;
3875 struct symbol *ref_static = 0;
3876
3877 if (**pp == ';') /* no static data; return */
3878 {
3879 ++(*pp);
3880 return 1;
3881 }
3882
3883 /* Process each field in the list until we find the terminating ";" */
3884
3885 /* eg: p = "as__1A ;;;" */
3886 STABS_CONTINUE (pp, objfile); /* handle \\ */
3887 while (**pp != ';' && (sname = get_substring (pp, ' '), sname))
3888 {
3889 ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0); /*demangled_name */
3890 if (!ref_static)
3891 {
3892 static struct complaint msg =
3893 {"\
3894 Unable to find symbol for static data field %s\n",
3895 0, 0};
3896 complain (&msg, sname);
3897 continue;
3898 }
3899 stype = SYMBOL_TYPE (ref_static);
3900
3901 /* allocate a new fip */
3902 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3903 make_cleanup (xfree, new);
3904 memset (new, 0, sizeof (struct nextfield));
3905 new->next = fip->list;
3906 fip->list = new;
3907
3908 /* set visibility */
3909 /* FIXME! no way to tell visibility from stabs??? */
3910 new->visibility = VISIBILITY_PUBLIC;
3911
3912 /* set field info into fip */
3913 fip->list->field.type = stype;
3914
3915 /* set bitpos & bitsize */
3916 SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
3917
3918 /* set name field */
3919 /* The following is code to work around cfront generated stabs.
3920 The stabs contains full mangled name for each field.
3921 We try to demangle the name and extract the field name out of it.
3922 */
3923 if (ARM_DEMANGLING)
3924 {
3925 char *dem, *dem_p;
3926 dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
3927 if (dem != NULL)
3928 {
3929 dem_p = strrchr (dem, ':');
3930 if (dem_p != 0 && *(dem_p - 1) == ':')
3931 dem_p++;
3932 fip->list->field.name =
3933 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
3934 }
3935 else
3936 {
3937 fip->list->field.name =
3938 obsavestring (sname, strlen (sname), &objfile->type_obstack);
3939 }
3940 } /* end of code for cfront work around */
3941 } /* loop again for next static field */
3942 return 1;
3943 }
3944
3945 /* Copy structure fields to fip so attach_fields_to_type will work.
3946 type has already been created with the initial instance data fields.
3947 Now we want to be able to add the other members to the class,
3948 so we want to add them back to the fip and reattach them again
3949 once we have collected all the class members. */
3950
3951 static int
3952 copy_cfront_struct_fields (struct field_info *fip, struct type *type,
3953 struct objfile *objfile)
3954 {
3955 int nfields = TYPE_NFIELDS (type);
3956 int i;
3957 struct nextfield *new;
3958
3959 /* Copy the fields into the list of fips and reset the types
3960 to remove the old fields */
3961
3962 for (i = 0; i < nfields; i++)
3963 {
3964 /* allocate a new fip */
3965 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3966 make_cleanup (xfree, new);
3967 memset (new, 0, sizeof (struct nextfield));
3968 new->next = fip->list;
3969 fip->list = new;
3970
3971 /* copy field info into fip */
3972 new->field = TYPE_FIELD (type, i);
3973 /* set visibility */
3974 if (TYPE_FIELD_PROTECTED (type, i))
3975 new->visibility = VISIBILITY_PROTECTED;
3976 else if (TYPE_FIELD_PRIVATE (type, i))
3977 new->visibility = VISIBILITY_PRIVATE;
3978 else
3979 new->visibility = VISIBILITY_PUBLIC;
3980 }
3981 /* Now delete the fields from the type since we will be
3982 allocing new space once we get the rest of the fields
3983 in attach_fields_to_type.
3984 The pointer TYPE_FIELDS(type) is left dangling but should
3985 be freed later by objstack_free */
3986 TYPE_FIELDS (type) = 0;
3987 TYPE_NFIELDS (type) = 0;
3988
3989 return 1;
3990 }
3991
3992 /* Create the vector of fields, and record how big it is.
3993 We need this info to record proper virtual function table information
3994 for this class's virtual functions. */
3995
3996 static int
3997 attach_fields_to_type (struct field_info *fip, register struct type *type,
3998 struct objfile *objfile)
3999 {
4000 register int nfields = 0;
4001 register int non_public_fields = 0;
4002 register struct nextfield *scan;
4003
4004 /* Count up the number of fields that we have, as well as taking note of
4005 whether or not there are any non-public fields, which requires us to
4006 allocate and build the private_field_bits and protected_field_bits
4007 bitfields. */
4008
4009 for (scan = fip->list; scan != NULL; scan = scan->next)
4010 {
4011 nfields++;
4012 if (scan->visibility != VISIBILITY_PUBLIC)
4013 {
4014 non_public_fields++;
4015 }
4016 }
4017
4018 /* Now we know how many fields there are, and whether or not there are any
4019 non-public fields. Record the field count, allocate space for the
4020 array of fields, and create blank visibility bitfields if necessary. */
4021
4022 TYPE_NFIELDS (type) = nfields;
4023 TYPE_FIELDS (type) = (struct field *)
4024 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4025 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4026
4027 if (non_public_fields)
4028 {
4029 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4030
4031 TYPE_FIELD_PRIVATE_BITS (type) =
4032 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4033 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4034
4035 TYPE_FIELD_PROTECTED_BITS (type) =
4036 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4037 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4038
4039 TYPE_FIELD_IGNORE_BITS (type) =
4040 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4041 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4042 }
4043
4044 /* Copy the saved-up fields into the field vector. Start from the head
4045 of the list, adding to the tail of the field array, so that they end
4046 up in the same order in the array in which they were added to the list. */
4047
4048 while (nfields-- > 0)
4049 {
4050 TYPE_FIELD (type, nfields) = fip->list->field;
4051 switch (fip->list->visibility)
4052 {
4053 case VISIBILITY_PRIVATE:
4054 SET_TYPE_FIELD_PRIVATE (type, nfields);
4055 break;
4056
4057 case VISIBILITY_PROTECTED:
4058 SET_TYPE_FIELD_PROTECTED (type, nfields);
4059 break;
4060
4061 case VISIBILITY_IGNORE:
4062 SET_TYPE_FIELD_IGNORE (type, nfields);
4063 break;
4064
4065 case VISIBILITY_PUBLIC:
4066 break;
4067
4068 default:
4069 /* Unknown visibility. Complain and treat it as public. */
4070 {
4071 static struct complaint msg =
4072 {
4073 "Unknown visibility `%c' for field", 0, 0};
4074 complain (&msg, fip->list->visibility);
4075 }
4076 break;
4077 }
4078 fip->list = fip->list->next;
4079 }
4080 return 1;
4081 }
4082
4083 /* Read the description of a structure (or union type) and return an object
4084 describing the type.
4085
4086 PP points to a character pointer that points to the next unconsumed token
4087 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
4088 *PP will point to "4a:1,0,32;;".
4089
4090 TYPE points to an incomplete type that needs to be filled in.
4091
4092 OBJFILE points to the current objfile from which the stabs information is
4093 being read. (Note that it is redundant in that TYPE also contains a pointer
4094 to this same objfile, so it might be a good idea to eliminate it. FIXME).
4095 */
4096
4097 static struct type *
4098 read_struct_type (char **pp, struct type *type, struct objfile *objfile)
4099 {
4100 struct cleanup *back_to;
4101 struct field_info fi;
4102
4103 fi.list = NULL;
4104 fi.fnlist = NULL;
4105
4106 back_to = make_cleanup (null_cleanup, 0);
4107
4108 INIT_CPLUS_SPECIFIC (type);
4109 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4110
4111 /* First comes the total size in bytes. */
4112
4113 {
4114 int nbits;
4115 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
4116 if (nbits != 0)
4117 return error_type (pp, objfile);
4118 }
4119
4120 /* Now read the baseclasses, if any, read the regular C struct or C++
4121 class member fields, attach the fields to the type, read the C++
4122 member functions, attach them to the type, and then read any tilde
4123 field (baseclass specifier for the class holding the main vtable). */
4124
4125 if (!read_baseclasses (&fi, pp, type, objfile)
4126 || !read_struct_fields (&fi, pp, type, objfile)
4127 || !attach_fields_to_type (&fi, type, objfile)
4128 || !read_member_functions (&fi, pp, type, objfile)
4129 || !attach_fn_fields_to_type (&fi, type)
4130 || !read_tilde_fields (&fi, pp, type, objfile))
4131 {
4132 type = error_type (pp, objfile);
4133 }
4134
4135 /* Fix up any cv-qualified versions of this type. */
4136 finish_cv_type (type);
4137 do_cleanups (back_to);
4138 return (type);
4139 }
4140
4141 /* Read a definition of an array type,
4142 and create and return a suitable type object.
4143 Also creates a range type which represents the bounds of that
4144 array. */
4145
4146 static struct type *
4147 read_array_type (register char **pp, register struct type *type,
4148 struct objfile *objfile)
4149 {
4150 struct type *index_type, *element_type, *range_type;
4151 int lower, upper;
4152 int adjustable = 0;
4153 int nbits;
4154
4155 /* Format of an array type:
4156 "ar<index type>;lower;upper;<array_contents_type>".
4157 OS9000: "arlower,upper;<array_contents_type>".
4158
4159 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4160 for these, produce a type like float[][]. */
4161
4162 if (os9k_stabs)
4163 index_type = builtin_type_int;
4164 else
4165 {
4166 index_type = read_type (pp, objfile);
4167 if (**pp != ';')
4168 /* Improper format of array type decl. */
4169 return error_type (pp, objfile);
4170 ++*pp;
4171 }
4172
4173 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4174 {
4175 (*pp)++;
4176 adjustable = 1;
4177 }
4178 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
4179 if (nbits != 0)
4180 return error_type (pp, objfile);
4181
4182 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4183 {
4184 (*pp)++;
4185 adjustable = 1;
4186 }
4187 upper = read_huge_number (pp, ';', &nbits);
4188 if (nbits != 0)
4189 return error_type (pp, objfile);
4190
4191 element_type = read_type (pp, objfile);
4192
4193 if (adjustable)
4194 {
4195 lower = 0;
4196 upper = -1;
4197 }
4198
4199 range_type =
4200 create_range_type ((struct type *) NULL, index_type, lower, upper);
4201 type = create_array_type (type, element_type, range_type);
4202
4203 return type;
4204 }
4205
4206
4207 /* Read a definition of an enumeration type,
4208 and create and return a suitable type object.
4209 Also defines the symbols that represent the values of the type. */
4210
4211 static struct type *
4212 read_enum_type (register char **pp, register struct type *type,
4213 struct objfile *objfile)
4214 {
4215 register char *p;
4216 char *name;
4217 register long n;
4218 register struct symbol *sym;
4219 int nsyms = 0;
4220 struct pending **symlist;
4221 struct pending *osyms, *syms;
4222 int o_nsyms;
4223 int nbits;
4224 int unsigned_enum = 1;
4225
4226 #if 0
4227 /* FIXME! The stabs produced by Sun CC merrily define things that ought
4228 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
4229 to do? For now, force all enum values to file scope. */
4230 if (within_function)
4231 symlist = &local_symbols;
4232 else
4233 #endif
4234 symlist = &file_symbols;
4235 osyms = *symlist;
4236 o_nsyms = osyms ? osyms->nsyms : 0;
4237
4238 if (os9k_stabs)
4239 {
4240 /* Size. Perhaps this does not have to be conditionalized on
4241 os9k_stabs (assuming the name of an enum constant can't start
4242 with a digit). */
4243 read_huge_number (pp, 0, &nbits);
4244 if (nbits != 0)
4245 return error_type (pp, objfile);
4246 }
4247
4248 /* The aix4 compiler emits an extra field before the enum members;
4249 my guess is it's a type of some sort. Just ignore it. */
4250 if (**pp == '-')
4251 {
4252 /* Skip over the type. */
4253 while (**pp != ':')
4254 (*pp)++;
4255
4256 /* Skip over the colon. */
4257 (*pp)++;
4258 }
4259
4260 /* Read the value-names and their values.
4261 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4262 A semicolon or comma instead of a NAME means the end. */
4263 while (**pp && **pp != ';' && **pp != ',')
4264 {
4265 STABS_CONTINUE (pp, objfile);
4266 p = *pp;
4267 while (*p != ':')
4268 p++;
4269 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
4270 *pp = p + 1;
4271 n = read_huge_number (pp, ',', &nbits);
4272 if (nbits != 0)
4273 return error_type (pp, objfile);
4274
4275 sym = (struct symbol *)
4276 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4277 memset (sym, 0, sizeof (struct symbol));
4278 SYMBOL_NAME (sym) = name;
4279 SYMBOL_LANGUAGE (sym) = current_subfile->language;
4280 SYMBOL_CLASS (sym) = LOC_CONST;
4281 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4282 SYMBOL_VALUE (sym) = n;
4283 if (n < 0)
4284 unsigned_enum = 0;
4285 add_symbol_to_list (sym, symlist);
4286 nsyms++;
4287 }
4288
4289 if (**pp == ';')
4290 (*pp)++; /* Skip the semicolon. */
4291
4292 /* Now fill in the fields of the type-structure. */
4293
4294 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
4295 TYPE_CODE (type) = TYPE_CODE_ENUM;
4296 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4297 if (unsigned_enum)
4298 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
4299 TYPE_NFIELDS (type) = nsyms;
4300 TYPE_FIELDS (type) = (struct field *)
4301 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
4302 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
4303
4304 /* Find the symbols for the values and put them into the type.
4305 The symbols can be found in the symlist that we put them on
4306 to cause them to be defined. osyms contains the old value
4307 of that symlist; everything up to there was defined by us. */
4308 /* Note that we preserve the order of the enum constants, so
4309 that in something like "enum {FOO, LAST_THING=FOO}" we print
4310 FOO, not LAST_THING. */
4311
4312 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
4313 {
4314 int last = syms == osyms ? o_nsyms : 0;
4315 int j = syms->nsyms;
4316 for (; --j >= last; --n)
4317 {
4318 struct symbol *xsym = syms->symbol[j];
4319 SYMBOL_TYPE (xsym) = type;
4320 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4321 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4322 TYPE_FIELD_BITSIZE (type, n) = 0;
4323 }
4324 if (syms == osyms)
4325 break;
4326 }
4327
4328 return type;
4329 }
4330
4331 /* Sun's ACC uses a somewhat saner method for specifying the builtin
4332 typedefs in every file (for int, long, etc):
4333
4334 type = b <signed> <width> <format type>; <offset>; <nbits>
4335 signed = u or s.
4336 optional format type = c or b for char or boolean.
4337 offset = offset from high order bit to start bit of type.
4338 width is # bytes in object of this type, nbits is # bits in type.
4339
4340 The width/offset stuff appears to be for small objects stored in
4341 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
4342 FIXME. */
4343
4344 static struct type *
4345 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
4346 {
4347 int type_bits;
4348 int nbits;
4349 int signed_type;
4350 enum type_code code = TYPE_CODE_INT;
4351
4352 switch (**pp)
4353 {
4354 case 's':
4355 signed_type = 1;
4356 break;
4357 case 'u':
4358 signed_type = 0;
4359 break;
4360 default:
4361 return error_type (pp, objfile);
4362 }
4363 (*pp)++;
4364
4365 /* For some odd reason, all forms of char put a c here. This is strange
4366 because no other type has this honor. We can safely ignore this because
4367 we actually determine 'char'acterness by the number of bits specified in
4368 the descriptor.
4369 Boolean forms, e.g Fortran logical*X, put a b here. */
4370
4371 if (**pp == 'c')
4372 (*pp)++;
4373 else if (**pp == 'b')
4374 {
4375 code = TYPE_CODE_BOOL;
4376 (*pp)++;
4377 }
4378
4379 /* The first number appears to be the number of bytes occupied
4380 by this type, except that unsigned short is 4 instead of 2.
4381 Since this information is redundant with the third number,
4382 we will ignore it. */
4383 read_huge_number (pp, ';', &nbits);
4384 if (nbits != 0)
4385 return error_type (pp, objfile);
4386
4387 /* The second number is always 0, so ignore it too. */
4388 read_huge_number (pp, ';', &nbits);
4389 if (nbits != 0)
4390 return error_type (pp, objfile);
4391
4392 /* The third number is the number of bits for this type. */
4393 type_bits = read_huge_number (pp, 0, &nbits);
4394 if (nbits != 0)
4395 return error_type (pp, objfile);
4396 /* The type *should* end with a semicolon. If it are embedded
4397 in a larger type the semicolon may be the only way to know where
4398 the type ends. If this type is at the end of the stabstring we
4399 can deal with the omitted semicolon (but we don't have to like
4400 it). Don't bother to complain(), Sun's compiler omits the semicolon
4401 for "void". */
4402 if (**pp == ';')
4403 ++(*pp);
4404
4405 if (type_bits == 0)
4406 return init_type (TYPE_CODE_VOID, 1,
4407 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4408 objfile);
4409 else
4410 return init_type (code,
4411 type_bits / TARGET_CHAR_BIT,
4412 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4413 objfile);
4414 }
4415
4416 static struct type *
4417 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
4418 {
4419 int nbits;
4420 int details;
4421 int nbytes;
4422
4423 /* The first number has more details about the type, for example
4424 FN_COMPLEX. */
4425 details = read_huge_number (pp, ';', &nbits);
4426 if (nbits != 0)
4427 return error_type (pp, objfile);
4428
4429 /* The second number is the number of bytes occupied by this type */
4430 nbytes = read_huge_number (pp, ';', &nbits);
4431 if (nbits != 0)
4432 return error_type (pp, objfile);
4433
4434 if (details == NF_COMPLEX || details == NF_COMPLEX16
4435 || details == NF_COMPLEX32)
4436 /* This is a type we can't handle, but we do know the size.
4437 We also will be able to give it a name. */
4438 return init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
4439
4440 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
4441 }
4442
4443 /* Read a number from the string pointed to by *PP.
4444 The value of *PP is advanced over the number.
4445 If END is nonzero, the character that ends the
4446 number must match END, or an error happens;
4447 and that character is skipped if it does match.
4448 If END is zero, *PP is left pointing to that character.
4449
4450 If the number fits in a long, set *BITS to 0 and return the value.
4451 If not, set *BITS to be the number of bits in the number and return 0.
4452
4453 If encounter garbage, set *BITS to -1 and return 0. */
4454
4455 static long
4456 read_huge_number (char **pp, int end, int *bits)
4457 {
4458 char *p = *pp;
4459 int sign = 1;
4460 long n = 0;
4461 int radix = 10;
4462 char overflow = 0;
4463 int nbits = 0;
4464 int c;
4465 long upper_limit;
4466
4467 if (*p == '-')
4468 {
4469 sign = -1;
4470 p++;
4471 }
4472
4473 /* Leading zero means octal. GCC uses this to output values larger
4474 than an int (because that would be hard in decimal). */
4475 if (*p == '0')
4476 {
4477 radix = 8;
4478 p++;
4479 }
4480
4481 if (os9k_stabs)
4482 upper_limit = ULONG_MAX / radix;
4483 else
4484 upper_limit = LONG_MAX / radix;
4485
4486 while ((c = *p++) >= '0' && c < ('0' + radix))
4487 {
4488 if (n <= upper_limit)
4489 {
4490 n *= radix;
4491 n += c - '0'; /* FIXME this overflows anyway */
4492 }
4493 else
4494 overflow = 1;
4495
4496 /* This depends on large values being output in octal, which is
4497 what GCC does. */
4498 if (radix == 8)
4499 {
4500 if (nbits == 0)
4501 {
4502 if (c == '0')
4503 /* Ignore leading zeroes. */
4504 ;
4505 else if (c == '1')
4506 nbits = 1;
4507 else if (c == '2' || c == '3')
4508 nbits = 2;
4509 else
4510 nbits = 3;
4511 }
4512 else
4513 nbits += 3;
4514 }
4515 }
4516 if (end)
4517 {
4518 if (c && c != end)
4519 {
4520 if (bits != NULL)
4521 *bits = -1;
4522 return 0;
4523 }
4524 }
4525 else
4526 --p;
4527
4528 *pp = p;
4529 if (overflow)
4530 {
4531 if (nbits == 0)
4532 {
4533 /* Large decimal constants are an error (because it is hard to
4534 count how many bits are in them). */
4535 if (bits != NULL)
4536 *bits = -1;
4537 return 0;
4538 }
4539
4540 /* -0x7f is the same as 0x80. So deal with it by adding one to
4541 the number of bits. */
4542 if (sign == -1)
4543 ++nbits;
4544 if (bits)
4545 *bits = nbits;
4546 }
4547 else
4548 {
4549 if (bits)
4550 *bits = 0;
4551 return n * sign;
4552 }
4553 /* It's *BITS which has the interesting information. */
4554 return 0;
4555 }
4556
4557 static struct type *
4558 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
4559 {
4560 char *orig_pp = *pp;
4561 int rangenums[2];
4562 long n2, n3;
4563 int n2bits, n3bits;
4564 int self_subrange;
4565 struct type *result_type;
4566 struct type *index_type = NULL;
4567
4568 /* First comes a type we are a subrange of.
4569 In C it is usually 0, 1 or the type being defined. */
4570 if (read_type_number (pp, rangenums) != 0)
4571 return error_type (pp, objfile);
4572 self_subrange = (rangenums[0] == typenums[0] &&
4573 rangenums[1] == typenums[1]);
4574
4575 if (**pp == '=')
4576 {
4577 *pp = orig_pp;
4578 index_type = read_type (pp, objfile);
4579 }
4580
4581 /* A semicolon should now follow; skip it. */
4582 if (**pp == ';')
4583 (*pp)++;
4584
4585 /* The remaining two operands are usually lower and upper bounds
4586 of the range. But in some special cases they mean something else. */
4587 n2 = read_huge_number (pp, ';', &n2bits);
4588 n3 = read_huge_number (pp, ';', &n3bits);
4589
4590 if (n2bits == -1 || n3bits == -1)
4591 return error_type (pp, objfile);
4592
4593 if (index_type)
4594 goto handle_true_range;
4595
4596 /* If limits are huge, must be large integral type. */
4597 if (n2bits != 0 || n3bits != 0)
4598 {
4599 char got_signed = 0;
4600 char got_unsigned = 0;
4601 /* Number of bits in the type. */
4602 int nbits = 0;
4603
4604 /* Range from 0 to <large number> is an unsigned large integral type. */
4605 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4606 {
4607 got_unsigned = 1;
4608 nbits = n3bits;
4609 }
4610 /* Range from <large number> to <large number>-1 is a large signed
4611 integral type. Take care of the case where <large number> doesn't
4612 fit in a long but <large number>-1 does. */
4613 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4614 || (n2bits != 0 && n3bits == 0
4615 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4616 && n3 == LONG_MAX))
4617 {
4618 got_signed = 1;
4619 nbits = n2bits;
4620 }
4621
4622 if (got_signed || got_unsigned)
4623 {
4624 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4625 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4626 objfile);
4627 }
4628 else
4629 return error_type (pp, objfile);
4630 }
4631
4632 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4633 if (self_subrange && n2 == 0 && n3 == 0)
4634 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4635
4636 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4637 is the width in bytes.
4638
4639 Fortran programs appear to use this for complex types also. To
4640 distinguish between floats and complex, g77 (and others?) seem
4641 to use self-subranges for the complexes, and subranges of int for
4642 the floats.
4643
4644 Also note that for complexes, g77 sets n2 to the size of one of
4645 the member floats, not the whole complex beast. My guess is that
4646 this was to work well with pre-COMPLEX versions of gdb. */
4647
4648 if (n3 == 0 && n2 > 0)
4649 {
4650 struct type *float_type
4651 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4652
4653 if (self_subrange)
4654 {
4655 struct type *complex_type =
4656 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4657 TYPE_TARGET_TYPE (complex_type) = float_type;
4658 return complex_type;
4659 }
4660 else
4661 return float_type;
4662 }
4663
4664 /* If the upper bound is -1, it must really be an unsigned int. */
4665
4666 else if (n2 == 0 && n3 == -1)
4667 {
4668 /* It is unsigned int or unsigned long. */
4669 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
4670 compatibility hack. */
4671 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4672 TYPE_FLAG_UNSIGNED, NULL, objfile);
4673 }
4674
4675 /* Special case: char is defined (Who knows why) as a subrange of
4676 itself with range 0-127. */
4677 else if (self_subrange && n2 == 0 && n3 == 127)
4678 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4679
4680 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
4681 && !self_subrange)
4682 goto handle_true_range;
4683
4684 /* We used to do this only for subrange of self or subrange of int. */
4685 else if (n2 == 0)
4686 {
4687 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4688 "unsigned long", and we already checked for that,
4689 so don't need to test for it here. */
4690
4691 if (n3 < 0)
4692 /* n3 actually gives the size. */
4693 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4694 NULL, objfile);
4695
4696 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4697 unsigned n-byte integer. But do require n to be a power of
4698 two; we don't want 3- and 5-byte integers flying around. */
4699 {
4700 int bytes;
4701 unsigned long bits;
4702
4703 bits = n3;
4704 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4705 bits >>= 8;
4706 if (bits == 0
4707 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4708 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4709 objfile);
4710 }
4711 }
4712 /* I think this is for Convex "long long". Since I don't know whether
4713 Convex sets self_subrange, I also accept that particular size regardless
4714 of self_subrange. */
4715 else if (n3 == 0 && n2 < 0
4716 && (self_subrange
4717 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4718 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4719 else if (n2 == -n3 - 1)
4720 {
4721 if (n3 == 0x7f)
4722 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4723 if (n3 == 0x7fff)
4724 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4725 if (n3 == 0x7fffffff)
4726 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4727 }
4728
4729 /* We have a real range type on our hands. Allocate space and
4730 return a real pointer. */
4731 handle_true_range:
4732
4733 if (self_subrange)
4734 index_type = builtin_type_int;
4735 else
4736 index_type = *dbx_lookup_type (rangenums);
4737 if (index_type == NULL)
4738 {
4739 /* Does this actually ever happen? Is that why we are worrying
4740 about dealing with it rather than just calling error_type? */
4741
4742 static struct type *range_type_index;
4743
4744 complain (&range_type_base_complaint, rangenums[1]);
4745 if (range_type_index == NULL)
4746 range_type_index =
4747 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4748 0, "range type index type", NULL);
4749 index_type = range_type_index;
4750 }
4751
4752 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4753 return (result_type);
4754 }
4755
4756 /* Read in an argument list. This is a list of types, separated by commas
4757 and terminated with END. Return the list of types read in, or (struct type
4758 **)-1 if there is an error. */
4759
4760 static struct type **
4761 read_args (char **pp, int end, struct objfile *objfile)
4762 {
4763 /* FIXME! Remove this arbitrary limit! */
4764 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
4765 int n = 0;
4766
4767 while (**pp != end)
4768 {
4769 if (**pp != ',')
4770 /* Invalid argument list: no ','. */
4771 return (struct type **) -1;
4772 (*pp)++;
4773 STABS_CONTINUE (pp, objfile);
4774 types[n++] = read_type (pp, objfile);
4775 }
4776 (*pp)++; /* get past `end' (the ':' character) */
4777
4778 if (n == 1)
4779 {
4780 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
4781 }
4782 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4783 {
4784 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
4785 memset (rval + n, 0, sizeof (struct type *));
4786 }
4787 else
4788 {
4789 rval = (struct type **) xmalloc (n * sizeof (struct type *));
4790 }
4791 memcpy (rval, types, n * sizeof (struct type *));
4792 return rval;
4793 }
4794 \f
4795 /* Common block handling. */
4796
4797 /* List of symbols declared since the last BCOMM. This list is a tail
4798 of local_symbols. When ECOMM is seen, the symbols on the list
4799 are noted so their proper addresses can be filled in later,
4800 using the common block base address gotten from the assembler
4801 stabs. */
4802
4803 static struct pending *common_block;
4804 static int common_block_i;
4805
4806 /* Name of the current common block. We get it from the BCOMM instead of the
4807 ECOMM to match IBM documentation (even though IBM puts the name both places
4808 like everyone else). */
4809 static char *common_block_name;
4810
4811 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4812 to remain after this function returns. */
4813
4814 void
4815 common_block_start (char *name, struct objfile *objfile)
4816 {
4817 if (common_block_name != NULL)
4818 {
4819 static struct complaint msg =
4820 {
4821 "Invalid symbol data: common block within common block",
4822 0, 0};
4823 complain (&msg);
4824 }
4825 common_block = local_symbols;
4826 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4827 common_block_name = obsavestring (name, strlen (name),
4828 &objfile->symbol_obstack);
4829 }
4830
4831 /* Process a N_ECOMM symbol. */
4832
4833 void
4834 common_block_end (struct objfile *objfile)
4835 {
4836 /* Symbols declared since the BCOMM are to have the common block
4837 start address added in when we know it. common_block and
4838 common_block_i point to the first symbol after the BCOMM in
4839 the local_symbols list; copy the list and hang it off the
4840 symbol for the common block name for later fixup. */
4841 int i;
4842 struct symbol *sym;
4843 struct pending *new = 0;
4844 struct pending *next;
4845 int j;
4846
4847 if (common_block_name == NULL)
4848 {
4849 static struct complaint msg =
4850 {"ECOMM symbol unmatched by BCOMM", 0, 0};
4851 complain (&msg);
4852 return;
4853 }
4854
4855 sym = (struct symbol *)
4856 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4857 memset (sym, 0, sizeof (struct symbol));
4858 /* Note: common_block_name already saved on symbol_obstack */
4859 SYMBOL_NAME (sym) = common_block_name;
4860 SYMBOL_CLASS (sym) = LOC_BLOCK;
4861
4862 /* Now we copy all the symbols which have been defined since the BCOMM. */
4863
4864 /* Copy all the struct pendings before common_block. */
4865 for (next = local_symbols;
4866 next != NULL && next != common_block;
4867 next = next->next)
4868 {
4869 for (j = 0; j < next->nsyms; j++)
4870 add_symbol_to_list (next->symbol[j], &new);
4871 }
4872
4873 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4874 NULL, it means copy all the local symbols (which we already did
4875 above). */
4876
4877 if (common_block != NULL)
4878 for (j = common_block_i; j < common_block->nsyms; j++)
4879 add_symbol_to_list (common_block->symbol[j], &new);
4880
4881 SYMBOL_TYPE (sym) = (struct type *) new;
4882
4883 /* Should we be putting local_symbols back to what it was?
4884 Does it matter? */
4885
4886 i = hashname (SYMBOL_NAME (sym));
4887 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4888 global_sym_chain[i] = sym;
4889 common_block_name = NULL;
4890 }
4891
4892 /* Add a common block's start address to the offset of each symbol
4893 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4894 the common block name). */
4895
4896 static void
4897 fix_common_block (struct symbol *sym, int valu)
4898 {
4899 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4900 for (; next; next = next->next)
4901 {
4902 register int j;
4903 for (j = next->nsyms - 1; j >= 0; j--)
4904 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4905 }
4906 }
4907 \f
4908
4909
4910 /* What about types defined as forward references inside of a small lexical
4911 scope? */
4912 /* Add a type to the list of undefined types to be checked through
4913 once this file has been read in. */
4914
4915 void
4916 add_undefined_type (struct type *type)
4917 {
4918 if (undef_types_length == undef_types_allocated)
4919 {
4920 undef_types_allocated *= 2;
4921 undef_types = (struct type **)
4922 xrealloc ((char *) undef_types,
4923 undef_types_allocated * sizeof (struct type *));
4924 }
4925 undef_types[undef_types_length++] = type;
4926 }
4927
4928 /* Go through each undefined type, see if it's still undefined, and fix it
4929 up if possible. We have two kinds of undefined types:
4930
4931 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4932 Fix: update array length using the element bounds
4933 and the target type's length.
4934 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4935 yet defined at the time a pointer to it was made.
4936 Fix: Do a full lookup on the struct/union tag. */
4937 void
4938 cleanup_undefined_types (void)
4939 {
4940 struct type **type;
4941
4942 for (type = undef_types; type < undef_types + undef_types_length; type++)
4943 {
4944 switch (TYPE_CODE (*type))
4945 {
4946
4947 case TYPE_CODE_STRUCT:
4948 case TYPE_CODE_UNION:
4949 case TYPE_CODE_ENUM:
4950 {
4951 /* Check if it has been defined since. Need to do this here
4952 as well as in check_typedef to deal with the (legitimate in
4953 C though not C++) case of several types with the same name
4954 in different source files. */
4955 if (TYPE_STUB (*type))
4956 {
4957 struct pending *ppt;
4958 int i;
4959 /* Name of the type, without "struct" or "union" */
4960 char *typename = TYPE_TAG_NAME (*type);
4961
4962 if (typename == NULL)
4963 {
4964 static struct complaint msg =
4965 {"need a type name", 0, 0};
4966 complain (&msg);
4967 break;
4968 }
4969 for (ppt = file_symbols; ppt; ppt = ppt->next)
4970 {
4971 for (i = 0; i < ppt->nsyms; i++)
4972 {
4973 struct symbol *sym = ppt->symbol[i];
4974
4975 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4976 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
4977 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4978 TYPE_CODE (*type))
4979 && STREQ (SYMBOL_NAME (sym), typename))
4980 {
4981 memcpy (*type, SYMBOL_TYPE (sym),
4982 sizeof (struct type));
4983 }
4984 }
4985 }
4986 }
4987 }
4988 break;
4989
4990 default:
4991 {
4992 static struct complaint msg =
4993 {"\
4994 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
4995 complain (&msg, TYPE_CODE (*type));
4996 }
4997 break;
4998 }
4999 }
5000
5001 undef_types_length = 0;
5002 }
5003
5004 /* Scan through all of the global symbols defined in the object file,
5005 assigning values to the debugging symbols that need to be assigned
5006 to. Get these symbols from the minimal symbol table. */
5007
5008 void
5009 scan_file_globals (struct objfile *objfile)
5010 {
5011 int hash;
5012 struct minimal_symbol *msymbol;
5013 struct symbol *sym, *prev, *rsym;
5014 struct objfile *resolve_objfile;
5015
5016 /* SVR4 based linkers copy referenced global symbols from shared
5017 libraries to the main executable.
5018 If we are scanning the symbols for a shared library, try to resolve
5019 them from the minimal symbols of the main executable first. */
5020
5021 if (symfile_objfile && objfile != symfile_objfile)
5022 resolve_objfile = symfile_objfile;
5023 else
5024 resolve_objfile = objfile;
5025
5026 while (1)
5027 {
5028 /* Avoid expensive loop through all minimal symbols if there are
5029 no unresolved symbols. */
5030 for (hash = 0; hash < HASHSIZE; hash++)
5031 {
5032 if (global_sym_chain[hash])
5033 break;
5034 }
5035 if (hash >= HASHSIZE)
5036 return;
5037
5038 for (msymbol = resolve_objfile->msymbols;
5039 msymbol && SYMBOL_NAME (msymbol) != NULL;
5040 msymbol++)
5041 {
5042 QUIT;
5043
5044 /* Skip static symbols. */
5045 switch (MSYMBOL_TYPE (msymbol))
5046 {
5047 case mst_file_text:
5048 case mst_file_data:
5049 case mst_file_bss:
5050 continue;
5051 default:
5052 break;
5053 }
5054
5055 prev = NULL;
5056
5057 /* Get the hash index and check all the symbols
5058 under that hash index. */
5059
5060 hash = hashname (SYMBOL_NAME (msymbol));
5061
5062 for (sym = global_sym_chain[hash]; sym;)
5063 {
5064 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
5065 STREQ (SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
5066 {
5067
5068 struct alias_list *aliases;
5069
5070 /* Splice this symbol out of the hash chain and
5071 assign the value we have to it. */
5072 if (prev)
5073 {
5074 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
5075 }
5076 else
5077 {
5078 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
5079 }
5080
5081 /* Check to see whether we need to fix up a common block. */
5082 /* Note: this code might be executed several times for
5083 the same symbol if there are multiple references. */
5084
5085 /* If symbol has aliases, do minimal symbol fixups for each.
5086 These live aliases/references weren't added to
5087 global_sym_chain hash but may also need to be fixed up. */
5088 /* FIXME: Maybe should have added aliases to the global chain, resolved symbol name, then treated aliases as normal
5089 symbols? Still, we wouldn't want to add_to_list. */
5090 /* Now do the same for each alias of this symbol */
5091 rsym = sym;
5092 aliases = SYMBOL_ALIASES (sym);
5093 while (rsym)
5094 {
5095 if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
5096 {
5097 fix_common_block (rsym,
5098 SYMBOL_VALUE_ADDRESS (msymbol));
5099 }
5100 else
5101 {
5102 SYMBOL_VALUE_ADDRESS (rsym)
5103 = SYMBOL_VALUE_ADDRESS (msymbol);
5104 }
5105 SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
5106 if (aliases)
5107 {
5108 rsym = aliases->sym;
5109 aliases = aliases->next;
5110 }
5111 else
5112 rsym = NULL;
5113 }
5114
5115
5116 if (prev)
5117 {
5118 sym = SYMBOL_VALUE_CHAIN (prev);
5119 }
5120 else
5121 {
5122 sym = global_sym_chain[hash];
5123 }
5124 }
5125 else
5126 {
5127 prev = sym;
5128 sym = SYMBOL_VALUE_CHAIN (sym);
5129 }
5130 }
5131 }
5132 if (resolve_objfile == objfile)
5133 break;
5134 resolve_objfile = objfile;
5135 }
5136
5137 /* Change the storage class of any remaining unresolved globals to
5138 LOC_UNRESOLVED and remove them from the chain. */
5139 for (hash = 0; hash < HASHSIZE; hash++)
5140 {
5141 sym = global_sym_chain[hash];
5142 while (sym)
5143 {
5144 prev = sym;
5145 sym = SYMBOL_VALUE_CHAIN (sym);
5146
5147 /* Change the symbol address from the misleading chain value
5148 to address zero. */
5149 SYMBOL_VALUE_ADDRESS (prev) = 0;
5150
5151 /* Complain about unresolved common block symbols. */
5152 if (SYMBOL_CLASS (prev) == LOC_STATIC)
5153 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
5154 else
5155 complain (&unresolved_sym_chain_complaint,
5156 objfile->name, SYMBOL_NAME (prev));
5157 }
5158 }
5159 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5160 }
5161
5162 /* Initialize anything that needs initializing when starting to read
5163 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
5164 to a psymtab. */
5165
5166 void
5167 stabsread_init (void)
5168 {
5169 }
5170
5171 /* Initialize anything that needs initializing when a completely new
5172 symbol file is specified (not just adding some symbols from another
5173 file, e.g. a shared library). */
5174
5175 void
5176 stabsread_new_init (void)
5177 {
5178 /* Empty the hash table of global syms looking for values. */
5179 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5180 }
5181
5182 /* Initialize anything that needs initializing at the same time as
5183 start_symtab() is called. */
5184
5185 void
5186 start_stabs (void)
5187 {
5188 global_stabs = NULL; /* AIX COFF */
5189 /* Leave FILENUM of 0 free for builtin types and this file's types. */
5190 n_this_object_header_files = 1;
5191 type_vector_length = 0;
5192 type_vector = (struct type **) 0;
5193
5194 /* FIXME: If common_block_name is not already NULL, we should complain(). */
5195 common_block_name = NULL;
5196
5197 os9k_stabs = 0;
5198 }
5199
5200 /* Call after end_symtab() */
5201
5202 void
5203 end_stabs (void)
5204 {
5205 if (type_vector)
5206 {
5207 xfree (type_vector);
5208 }
5209 type_vector = 0;
5210 type_vector_length = 0;
5211 previous_stab_code = 0;
5212 }
5213
5214 void
5215 finish_global_stabs (struct objfile *objfile)
5216 {
5217 if (global_stabs)
5218 {
5219 patch_block_stabs (global_symbols, global_stabs, objfile);
5220 xfree (global_stabs);
5221 global_stabs = NULL;
5222 }
5223 }
5224
5225 /* Initializer for this module */
5226
5227 void
5228 _initialize_stabsread (void)
5229 {
5230 undef_types_allocated = 20;
5231 undef_types_length = 0;
5232 undef_types = (struct type **)
5233 xmalloc (undef_types_allocated * sizeof (struct type *));
5234 }
This page took 0.137145 seconds and 4 git commands to generate.