daily update
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2])
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (current_objfile))
284 {
285 static struct type **temp_type_p;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type_p = &builtin_type_error;
291 return temp_type_p;
292 }
293
294 f = HEADER_FILES (current_objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
393 pp += 2;
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 {
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
399 SYMBOL_TYPE (sym) =
400 lookup_function_type (read_type (&pp, objfile));
401 }
402 else
403 {
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 }
406 add_symbol_to_list (sym, &global_symbols);
407 }
408 else
409 {
410 pp += 2;
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
412 {
413 SYMBOL_TYPE (sym) =
414 lookup_function_type (read_type (&pp, objfile));
415 }
416 else
417 {
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 }
420 }
421 }
422 }
423 }
424 \f
425
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
431
432 Returns 0 for success, -1 for error. */
433
434 static int
435 read_type_number (char **pp, int *typenums)
436 {
437 int nbits;
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 ref_map = (struct ref_map *)
512 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
513 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
514 ref_chunk += new_chunks;
515 }
516 ref_map[refnum].stabs = stabs;
517 ref_map[refnum].sym = sym;
518 ref_map[refnum].value = value;
519 }
520
521 /* Return defined sym for the reference REFNUM. */
522 struct symbol *
523 ref_search (int refnum)
524 {
525 if (refnum < 0 || refnum > ref_count)
526 return 0;
527 return ref_map[refnum].sym;
528 }
529
530 /* Parse a reference id in STRING and return the resulting
531 reference number. Move STRING beyond the reference id. */
532
533 static int
534 process_reference (char **string)
535 {
536 char *p;
537 int refnum = 0;
538
539 if (**string != '#')
540 return 0;
541
542 /* Advance beyond the initial '#'. */
543 p = *string + 1;
544
545 /* Read number as reference id. */
546 while (*p && isdigit (*p))
547 {
548 refnum = refnum * 10 + *p - '0';
549 p++;
550 }
551 *string = p;
552 return refnum;
553 }
554
555 /* If STRING defines a reference, store away a pointer to the reference
556 definition for later use. Return the reference number. */
557
558 int
559 symbol_reference_defined (char **string)
560 {
561 char *p = *string;
562 int refnum = 0;
563
564 refnum = process_reference (&p);
565
566 /* Defining symbols end in '=' */
567 if (*p == '=')
568 {
569 /* Symbol is being defined here. */
570 *string = p + 1;
571 return refnum;
572 }
573 else
574 {
575 /* Must be a reference. Either the symbol has already been defined,
576 or this is a forward reference to it. */
577 *string = p;
578 return -1;
579 }
580 }
581
582 static int
583 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
584 {
585 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
586
587 if (regno >= gdbarch_num_regs (gdbarch)
588 + gdbarch_num_pseudo_regs (gdbarch))
589 {
590 reg_value_complaint (regno,
591 gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch),
593 SYMBOL_PRINT_NAME (sym));
594
595 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
596 }
597
598 return regno;
599 }
600
601 static const struct symbol_register_ops stab_register_funcs = {
602 stab_reg_to_regnum
603 };
604
605 struct symbol *
606 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
607 struct objfile *objfile)
608 {
609 struct gdbarch *gdbarch = get_objfile_arch (objfile);
610 struct symbol *sym;
611 char *p = (char *) find_name_end (string);
612 int deftype;
613 int synonym = 0;
614 int i;
615 char *new_name = NULL;
616
617 /* We would like to eliminate nameless symbols, but keep their types.
618 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
619 to type 2, but, should not create a symbol to address that type. Since
620 the symbol will be nameless, there is no way any user can refer to it. */
621
622 int nameless;
623
624 /* Ignore syms with empty names. */
625 if (string[0] == 0)
626 return 0;
627
628 /* Ignore old-style symbols from cc -go */
629 if (p == 0)
630 return 0;
631
632 while (p[1] == ':')
633 {
634 p += 2;
635 p = strchr (p, ':');
636 }
637
638 /* If a nameless stab entry, all we need is the type, not the symbol.
639 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
640 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
641
642 current_symbol = sym = (struct symbol *)
643 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
644 memset (sym, 0, sizeof (struct symbol));
645
646 switch (type & N_TYPE)
647 {
648 case N_TEXT:
649 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
650 break;
651 case N_DATA:
652 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
653 break;
654 case N_BSS:
655 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
656 break;
657 }
658
659 if (processing_gcc_compilation)
660 {
661 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
662 number of bytes occupied by a type or object, which we ignore. */
663 SYMBOL_LINE (sym) = desc;
664 }
665 else
666 {
667 SYMBOL_LINE (sym) = 0; /* unknown */
668 }
669
670 if (is_cplus_marker (string[0]))
671 {
672 /* Special GNU C++ names. */
673 switch (string[1])
674 {
675 case 't':
676 SYMBOL_SET_LINKAGE_NAME
677 (sym, obsavestring ("this", strlen ("this"),
678 &objfile->objfile_obstack));
679 break;
680
681 case 'v': /* $vtbl_ptr_type */
682 goto normal;
683
684 case 'e':
685 SYMBOL_SET_LINKAGE_NAME
686 (sym, obsavestring ("eh_throw", strlen ("eh_throw"),
687 &objfile->objfile_obstack));
688 break;
689
690 case '_':
691 /* This was an anonymous type that was never fixed up. */
692 goto normal;
693
694 case 'X':
695 /* SunPRO (3.0 at least) static variable encoding. */
696 if (gdbarch_static_transform_name_p (gdbarch))
697 goto normal;
698 /* ... fall through ... */
699
700 default:
701 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
702 string);
703 goto normal; /* Do *something* with it */
704 }
705 }
706 else
707 {
708 normal:
709 SYMBOL_LANGUAGE (sym) = current_subfile->language;
710 if (SYMBOL_LANGUAGE (sym) == language_cplus)
711 {
712 char *name = alloca (p - string + 1);
713 memcpy (name, string, p - string);
714 name[p - string] = '\0';
715 new_name = cp_canonicalize_string (name);
716 cp_scan_for_anonymous_namespaces (sym);
717 }
718 if (new_name != NULL)
719 {
720 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), objfile);
721 xfree (new_name);
722 }
723 else
724 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
725 }
726 p++;
727
728 /* Determine the type of name being defined. */
729 #if 0
730 /* Getting GDB to correctly skip the symbol on an undefined symbol
731 descriptor and not ever dump core is a very dodgy proposition if
732 we do things this way. I say the acorn RISC machine can just
733 fix their compiler. */
734 /* The Acorn RISC machine's compiler can put out locals that don't
735 start with "234=" or "(3,4)=", so assume anything other than the
736 deftypes we know how to handle is a local. */
737 if (!strchr ("cfFGpPrStTvVXCR", *p))
738 #else
739 if (isdigit (*p) || *p == '(' || *p == '-')
740 #endif
741 deftype = 'l';
742 else
743 deftype = *p++;
744
745 switch (deftype)
746 {
747 case 'c':
748 /* c is a special case, not followed by a type-number.
749 SYMBOL:c=iVALUE for an integer constant symbol.
750 SYMBOL:c=rVALUE for a floating constant symbol.
751 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
752 e.g. "b:c=e6,0" for "const b = blob1"
753 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
754 if (*p != '=')
755 {
756 SYMBOL_CLASS (sym) = LOC_CONST;
757 SYMBOL_TYPE (sym) = error_type (&p, objfile);
758 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
759 add_symbol_to_list (sym, &file_symbols);
760 return sym;
761 }
762 ++p;
763 switch (*p++)
764 {
765 case 'r':
766 {
767 double d = atof (p);
768 gdb_byte *dbl_valu;
769 struct type *dbl_type;
770
771 /* FIXME-if-picky-about-floating-accuracy: Should be using
772 target arithmetic to get the value. real.c in GCC
773 probably has the necessary code. */
774
775 dbl_type = builtin_type (gdbarch)->builtin_double;
776 dbl_valu =
777 obstack_alloc (&objfile->objfile_obstack,
778 TYPE_LENGTH (dbl_type));
779 store_typed_floating (dbl_valu, dbl_type, d);
780
781 SYMBOL_TYPE (sym) = dbl_type;
782 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
783 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
784 }
785 break;
786 case 'i':
787 {
788 /* Defining integer constants this way is kind of silly,
789 since 'e' constants allows the compiler to give not
790 only the value, but the type as well. C has at least
791 int, long, unsigned int, and long long as constant
792 types; other languages probably should have at least
793 unsigned as well as signed constants. */
794
795 SYMBOL_TYPE (sym) = builtin_type (gdbarch)->builtin_long;
796 SYMBOL_VALUE (sym) = atoi (p);
797 SYMBOL_CLASS (sym) = LOC_CONST;
798 }
799 break;
800 case 'e':
801 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
802 can be represented as integral.
803 e.g. "b:c=e6,0" for "const b = blob1"
804 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
805 {
806 SYMBOL_CLASS (sym) = LOC_CONST;
807 SYMBOL_TYPE (sym) = read_type (&p, objfile);
808
809 if (*p != ',')
810 {
811 SYMBOL_TYPE (sym) = error_type (&p, objfile);
812 break;
813 }
814 ++p;
815
816 /* If the value is too big to fit in an int (perhaps because
817 it is unsigned), or something like that, we silently get
818 a bogus value. The type and everything else about it is
819 correct. Ideally, we should be using whatever we have
820 available for parsing unsigned and long long values,
821 however. */
822 SYMBOL_VALUE (sym) = atoi (p);
823 }
824 break;
825 default:
826 {
827 SYMBOL_CLASS (sym) = LOC_CONST;
828 SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 }
830 }
831 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
832 add_symbol_to_list (sym, &file_symbols);
833 return sym;
834
835 case 'C':
836 /* The name of a caught exception. */
837 SYMBOL_TYPE (sym) = read_type (&p, objfile);
838 SYMBOL_CLASS (sym) = LOC_LABEL;
839 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
840 SYMBOL_VALUE_ADDRESS (sym) = valu;
841 add_symbol_to_list (sym, &local_symbols);
842 break;
843
844 case 'f':
845 /* A static function definition. */
846 SYMBOL_TYPE (sym) = read_type (&p, objfile);
847 SYMBOL_CLASS (sym) = LOC_BLOCK;
848 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
849 add_symbol_to_list (sym, &file_symbols);
850 /* fall into process_function_types. */
851
852 process_function_types:
853 /* Function result types are described as the result type in stabs.
854 We need to convert this to the function-returning-type-X type
855 in GDB. E.g. "int" is converted to "function returning int". */
856 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
857 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
858
859 /* All functions in C++ have prototypes. Stabs does not offer an
860 explicit way to identify prototyped or unprototyped functions,
861 but both GCC and Sun CC emit stabs for the "call-as" type rather
862 than the "declared-as" type for unprototyped functions, so
863 we treat all functions as if they were prototyped. This is used
864 primarily for promotion when calling the function from GDB. */
865 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
866
867 /* fall into process_prototype_types */
868
869 process_prototype_types:
870 /* Sun acc puts declared types of arguments here. */
871 if (*p == ';')
872 {
873 struct type *ftype = SYMBOL_TYPE (sym);
874 int nsemi = 0;
875 int nparams = 0;
876 char *p1 = p;
877
878 /* Obtain a worst case guess for the number of arguments
879 by counting the semicolons. */
880 while (*p1)
881 {
882 if (*p1++ == ';')
883 nsemi++;
884 }
885
886 /* Allocate parameter information fields and fill them in. */
887 TYPE_FIELDS (ftype) = (struct field *)
888 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
889 while (*p++ == ';')
890 {
891 struct type *ptype;
892
893 /* A type number of zero indicates the start of varargs.
894 FIXME: GDB currently ignores vararg functions. */
895 if (p[0] == '0' && p[1] == '\0')
896 break;
897 ptype = read_type (&p, objfile);
898
899 /* The Sun compilers mark integer arguments, which should
900 be promoted to the width of the calling conventions, with
901 a type which references itself. This type is turned into
902 a TYPE_CODE_VOID type by read_type, and we have to turn
903 it back into builtin_int here.
904 FIXME: Do we need a new builtin_promoted_int_arg ? */
905 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
906 ptype = builtin_type (gdbarch)->builtin_int;
907 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
908 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
909 }
910 TYPE_NFIELDS (ftype) = nparams;
911 TYPE_PROTOTYPED (ftype) = 1;
912 }
913 break;
914
915 case 'F':
916 /* A global function definition. */
917 SYMBOL_TYPE (sym) = read_type (&p, objfile);
918 SYMBOL_CLASS (sym) = LOC_BLOCK;
919 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
920 add_symbol_to_list (sym, &global_symbols);
921 goto process_function_types;
922
923 case 'G':
924 /* For a class G (global) symbol, it appears that the
925 value is not correct. It is necessary to search for the
926 corresponding linker definition to find the value.
927 These definitions appear at the end of the namelist. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_CLASS (sym) = LOC_STATIC;
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 /* Don't add symbol references to global_sym_chain.
932 Symbol references don't have valid names and wont't match up with
933 minimal symbols when the global_sym_chain is relocated.
934 We'll fixup symbol references when we fixup the defining symbol. */
935 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
936 {
937 i = hashname (SYMBOL_LINKAGE_NAME (sym));
938 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
939 global_sym_chain[i] = sym;
940 }
941 add_symbol_to_list (sym, &global_symbols);
942 break;
943
944 /* This case is faked by a conditional above,
945 when there is no code letter in the dbx data.
946 Dbx data never actually contains 'l'. */
947 case 's':
948 case 'l':
949 SYMBOL_TYPE (sym) = read_type (&p, objfile);
950 SYMBOL_CLASS (sym) = LOC_LOCAL;
951 SYMBOL_VALUE (sym) = valu;
952 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
953 add_symbol_to_list (sym, &local_symbols);
954 break;
955
956 case 'p':
957 if (*p == 'F')
958 /* pF is a two-letter code that means a function parameter in Fortran.
959 The type-number specifies the type of the return value.
960 Translate it into a pointer-to-function type. */
961 {
962 p++;
963 SYMBOL_TYPE (sym)
964 = lookup_pointer_type
965 (lookup_function_type (read_type (&p, objfile)));
966 }
967 else
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969
970 SYMBOL_CLASS (sym) = LOC_ARG;
971 SYMBOL_VALUE (sym) = valu;
972 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
973 SYMBOL_IS_ARGUMENT (sym) = 1;
974 add_symbol_to_list (sym, &local_symbols);
975
976 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
977 {
978 /* On little-endian machines, this crud is never necessary,
979 and, if the extra bytes contain garbage, is harmful. */
980 break;
981 }
982
983 /* If it's gcc-compiled, if it says `short', believe it. */
984 if (processing_gcc_compilation
985 || gdbarch_believe_pcc_promotion (gdbarch))
986 break;
987
988 if (!gdbarch_believe_pcc_promotion (gdbarch))
989 {
990 /* If PCC says a parameter is a short or a char, it is
991 really an int. */
992 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
993 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
994 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
995 {
996 SYMBOL_TYPE (sym) =
997 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
998 ? builtin_type (gdbarch)->builtin_unsigned_int
999 : builtin_type (gdbarch)->builtin_int;
1000 }
1001 break;
1002 }
1003
1004 case 'P':
1005 /* acc seems to use P to declare the prototypes of functions that
1006 are referenced by this file. gdb is not prepared to deal
1007 with this extra information. FIXME, it ought to. */
1008 if (type == N_FUN)
1009 {
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 goto process_prototype_types;
1012 }
1013 /*FALLTHROUGH */
1014
1015 case 'R':
1016 /* Parameter which is in a register. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_CLASS (sym) = LOC_REGISTER;
1019 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1020 SYMBOL_IS_ARGUMENT (sym) = 1;
1021 SYMBOL_VALUE (sym) = valu;
1022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1023 add_symbol_to_list (sym, &local_symbols);
1024 break;
1025
1026 case 'r':
1027 /* Register variable (either global or local). */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_CLASS (sym) = LOC_REGISTER;
1030 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1031 SYMBOL_VALUE (sym) = valu;
1032 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1033 if (within_function)
1034 {
1035 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1036 the same name to represent an argument passed in a
1037 register. GCC uses 'P' for the same case. So if we find
1038 such a symbol pair we combine it into one 'P' symbol.
1039 For Sun cc we need to do this regardless of
1040 stabs_argument_has_addr, because the compiler puts out
1041 the 'p' symbol even if it never saves the argument onto
1042 the stack.
1043
1044 On most machines, we want to preserve both symbols, so
1045 that we can still get information about what is going on
1046 with the stack (VAX for computing args_printed, using
1047 stack slots instead of saved registers in backtraces,
1048 etc.).
1049
1050 Note that this code illegally combines
1051 main(argc) struct foo argc; { register struct foo argc; }
1052 but this case is considered pathological and causes a warning
1053 from a decent compiler. */
1054
1055 if (local_symbols
1056 && local_symbols->nsyms > 0
1057 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1058 {
1059 struct symbol *prev_sym;
1060 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1061 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1062 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1063 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1064 SYMBOL_LINKAGE_NAME (sym)) == 0)
1065 {
1066 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1067 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1068 /* Use the type from the LOC_REGISTER; that is the type
1069 that is actually in that register. */
1070 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1071 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1072 sym = prev_sym;
1073 break;
1074 }
1075 }
1076 add_symbol_to_list (sym, &local_symbols);
1077 }
1078 else
1079 add_symbol_to_list (sym, &file_symbols);
1080 break;
1081
1082 case 'S':
1083 /* Static symbol at top level of file */
1084 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1085 SYMBOL_CLASS (sym) = LOC_STATIC;
1086 SYMBOL_VALUE_ADDRESS (sym) = valu;
1087 if (gdbarch_static_transform_name_p (gdbarch)
1088 && gdbarch_static_transform_name (gdbarch,
1089 SYMBOL_LINKAGE_NAME (sym))
1090 != SYMBOL_LINKAGE_NAME (sym))
1091 {
1092 struct minimal_symbol *msym;
1093 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1094 if (msym != NULL)
1095 {
1096 char *new_name = gdbarch_static_transform_name
1097 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1098 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1099 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1100 }
1101 }
1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1103 add_symbol_to_list (sym, &file_symbols);
1104 break;
1105
1106 case 't':
1107 /* In Ada, there is no distinction between typedef and non-typedef;
1108 any type declaration implicitly has the equivalent of a typedef,
1109 and thus 't' is in fact equivalent to 'Tt'.
1110
1111 Therefore, for Ada units, we check the character immediately
1112 before the 't', and if we do not find a 'T', then make sure to
1113 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1114 will be stored in the VAR_DOMAIN). If the symbol was indeed
1115 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1116 elsewhere, so we don't need to take care of that.
1117
1118 This is important to do, because of forward references:
1119 The cleanup of undefined types stored in undef_types only uses
1120 STRUCT_DOMAIN symbols to perform the replacement. */
1121 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1122
1123 /* Typedef */
1124 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1125
1126 /* For a nameless type, we don't want a create a symbol, thus we
1127 did not use `sym'. Return without further processing. */
1128 if (nameless)
1129 return NULL;
1130
1131 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1132 SYMBOL_VALUE (sym) = valu;
1133 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1134 /* C++ vagaries: we may have a type which is derived from
1135 a base type which did not have its name defined when the
1136 derived class was output. We fill in the derived class's
1137 base part member's name here in that case. */
1138 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1139 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1140 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1141 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1142 {
1143 int j;
1144 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1145 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1146 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1147 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1148 }
1149
1150 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1151 {
1152 /* gcc-2.6 or later (when using -fvtable-thunks)
1153 emits a unique named type for a vtable entry.
1154 Some gdb code depends on that specific name. */
1155 extern const char vtbl_ptr_name[];
1156
1157 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1158 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1159 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1160 {
1161 /* If we are giving a name to a type such as "pointer to
1162 foo" or "function returning foo", we better not set
1163 the TYPE_NAME. If the program contains "typedef char
1164 *caddr_t;", we don't want all variables of type char
1165 * to print as caddr_t. This is not just a
1166 consequence of GDB's type management; PCC and GCC (at
1167 least through version 2.4) both output variables of
1168 either type char * or caddr_t with the type number
1169 defined in the 't' symbol for caddr_t. If a future
1170 compiler cleans this up it GDB is not ready for it
1171 yet, but if it becomes ready we somehow need to
1172 disable this check (without breaking the PCC/GCC2.4
1173 case).
1174
1175 Sigh.
1176
1177 Fortunately, this check seems not to be necessary
1178 for anything except pointers or functions. */
1179 /* ezannoni: 2000-10-26. This seems to apply for
1180 versions of gcc older than 2.8. This was the original
1181 problem: with the following code gdb would tell that
1182 the type for name1 is caddr_t, and func is char()
1183 typedef char *caddr_t;
1184 char *name2;
1185 struct x
1186 {
1187 char *name1;
1188 } xx;
1189 char *func()
1190 {
1191 }
1192 main () {}
1193 */
1194
1195 /* Pascal accepts names for pointer types. */
1196 if (current_subfile->language == language_pascal)
1197 {
1198 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1199 }
1200 }
1201 else
1202 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1203 }
1204
1205 add_symbol_to_list (sym, &file_symbols);
1206
1207 if (synonym)
1208 {
1209 /* Create the STRUCT_DOMAIN clone. */
1210 struct symbol *struct_sym = (struct symbol *)
1211 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1212
1213 *struct_sym = *sym;
1214 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1215 SYMBOL_VALUE (struct_sym) = valu;
1216 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1217 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1218 TYPE_NAME (SYMBOL_TYPE (sym))
1219 = obconcat (&objfile->objfile_obstack, "", "",
1220 SYMBOL_LINKAGE_NAME (sym));
1221 add_symbol_to_list (struct_sym, &file_symbols);
1222 }
1223
1224 break;
1225
1226 case 'T':
1227 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1228 by 't' which means we are typedef'ing it as well. */
1229 synonym = *p == 't';
1230
1231 if (synonym)
1232 p++;
1233
1234 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1235
1236 /* For a nameless type, we don't want a create a symbol, thus we
1237 did not use `sym'. Return without further processing. */
1238 if (nameless)
1239 return NULL;
1240
1241 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1242 SYMBOL_VALUE (sym) = valu;
1243 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1244 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1245 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1246 = obconcat (&objfile->objfile_obstack, "", "",
1247 SYMBOL_LINKAGE_NAME (sym));
1248 add_symbol_to_list (sym, &file_symbols);
1249
1250 if (synonym)
1251 {
1252 /* Clone the sym and then modify it. */
1253 struct symbol *typedef_sym = (struct symbol *)
1254 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1255 *typedef_sym = *sym;
1256 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1257 SYMBOL_VALUE (typedef_sym) = valu;
1258 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1260 TYPE_NAME (SYMBOL_TYPE (sym))
1261 = obconcat (&objfile->objfile_obstack, "", "",
1262 SYMBOL_LINKAGE_NAME (sym));
1263 add_symbol_to_list (typedef_sym, &file_symbols);
1264 }
1265 break;
1266
1267 case 'V':
1268 /* Static symbol of local scope */
1269 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1270 SYMBOL_CLASS (sym) = LOC_STATIC;
1271 SYMBOL_VALUE_ADDRESS (sym) = valu;
1272 if (gdbarch_static_transform_name_p (gdbarch)
1273 && gdbarch_static_transform_name (gdbarch,
1274 SYMBOL_LINKAGE_NAME (sym))
1275 != SYMBOL_LINKAGE_NAME (sym))
1276 {
1277 struct minimal_symbol *msym;
1278 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1279 if (msym != NULL)
1280 {
1281 char *new_name = gdbarch_static_transform_name
1282 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1283 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1284 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1285 }
1286 }
1287 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1288 add_symbol_to_list (sym, &local_symbols);
1289 break;
1290
1291 case 'v':
1292 /* Reference parameter */
1293 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1294 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1295 SYMBOL_IS_ARGUMENT (sym) = 1;
1296 SYMBOL_VALUE (sym) = valu;
1297 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1298 add_symbol_to_list (sym, &local_symbols);
1299 break;
1300
1301 case 'a':
1302 /* Reference parameter which is in a register. */
1303 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1304 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1305 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1306 SYMBOL_IS_ARGUMENT (sym) = 1;
1307 SYMBOL_VALUE (sym) = valu;
1308 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1309 add_symbol_to_list (sym, &local_symbols);
1310 break;
1311
1312 case 'X':
1313 /* This is used by Sun FORTRAN for "function result value".
1314 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1315 that Pascal uses it too, but when I tried it Pascal used
1316 "x:3" (local symbol) instead. */
1317 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1318 SYMBOL_CLASS (sym) = LOC_LOCAL;
1319 SYMBOL_VALUE (sym) = valu;
1320 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1321 add_symbol_to_list (sym, &local_symbols);
1322 break;
1323
1324 default:
1325 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1326 SYMBOL_CLASS (sym) = LOC_CONST;
1327 SYMBOL_VALUE (sym) = 0;
1328 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1329 add_symbol_to_list (sym, &file_symbols);
1330 break;
1331 }
1332
1333 /* Some systems pass variables of certain types by reference instead
1334 of by value, i.e. they will pass the address of a structure (in a
1335 register or on the stack) instead of the structure itself. */
1336
1337 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1338 && SYMBOL_IS_ARGUMENT (sym))
1339 {
1340 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1341 variables passed in a register). */
1342 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1343 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1344 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1345 and subsequent arguments on SPARC, for example). */
1346 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1347 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1348 }
1349
1350 return sym;
1351 }
1352
1353 /* Skip rest of this symbol and return an error type.
1354
1355 General notes on error recovery: error_type always skips to the
1356 end of the symbol (modulo cretinous dbx symbol name continuation).
1357 Thus code like this:
1358
1359 if (*(*pp)++ != ';')
1360 return error_type (pp, objfile);
1361
1362 is wrong because if *pp starts out pointing at '\0' (typically as the
1363 result of an earlier error), it will be incremented to point to the
1364 start of the next symbol, which might produce strange results, at least
1365 if you run off the end of the string table. Instead use
1366
1367 if (**pp != ';')
1368 return error_type (pp, objfile);
1369 ++*pp;
1370
1371 or
1372
1373 if (**pp != ';')
1374 foo = error_type (pp, objfile);
1375 else
1376 ++*pp;
1377
1378 And in case it isn't obvious, the point of all this hair is so the compiler
1379 can define new types and new syntaxes, and old versions of the
1380 debugger will be able to read the new symbol tables. */
1381
1382 static struct type *
1383 error_type (char **pp, struct objfile *objfile)
1384 {
1385 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1386 while (1)
1387 {
1388 /* Skip to end of symbol. */
1389 while (**pp != '\0')
1390 {
1391 (*pp)++;
1392 }
1393
1394 /* Check for and handle cretinous dbx symbol name continuation! */
1395 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1396 {
1397 *pp = next_symbol_text (objfile);
1398 }
1399 else
1400 {
1401 break;
1402 }
1403 }
1404 return (builtin_type_error);
1405 }
1406 \f
1407
1408 /* Read type information or a type definition; return the type. Even
1409 though this routine accepts either type information or a type
1410 definition, the distinction is relevant--some parts of stabsread.c
1411 assume that type information starts with a digit, '-', or '(' in
1412 deciding whether to call read_type. */
1413
1414 static struct type *
1415 read_type (char **pp, struct objfile *objfile)
1416 {
1417 struct type *type = 0;
1418 struct type *type1;
1419 int typenums[2];
1420 char type_descriptor;
1421
1422 /* Size in bits of type if specified by a type attribute, or -1 if
1423 there is no size attribute. */
1424 int type_size = -1;
1425
1426 /* Used to distinguish string and bitstring from char-array and set. */
1427 int is_string = 0;
1428
1429 /* Used to distinguish vector from array. */
1430 int is_vector = 0;
1431
1432 /* Read type number if present. The type number may be omitted.
1433 for instance in a two-dimensional array declared with type
1434 "ar1;1;10;ar1;1;10;4". */
1435 if ((**pp >= '0' && **pp <= '9')
1436 || **pp == '('
1437 || **pp == '-')
1438 {
1439 if (read_type_number (pp, typenums) != 0)
1440 return error_type (pp, objfile);
1441
1442 if (**pp != '=')
1443 {
1444 /* Type is not being defined here. Either it already
1445 exists, or this is a forward reference to it.
1446 dbx_alloc_type handles both cases. */
1447 type = dbx_alloc_type (typenums, objfile);
1448
1449 /* If this is a forward reference, arrange to complain if it
1450 doesn't get patched up by the time we're done
1451 reading. */
1452 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1453 add_undefined_type (type, typenums);
1454
1455 return type;
1456 }
1457
1458 /* Type is being defined here. */
1459 /* Skip the '='.
1460 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1461 (*pp) += 2;
1462 }
1463 else
1464 {
1465 /* 'typenums=' not present, type is anonymous. Read and return
1466 the definition, but don't put it in the type vector. */
1467 typenums[0] = typenums[1] = -1;
1468 (*pp)++;
1469 }
1470
1471 again:
1472 type_descriptor = (*pp)[-1];
1473 switch (type_descriptor)
1474 {
1475 case 'x':
1476 {
1477 enum type_code code;
1478
1479 /* Used to index through file_symbols. */
1480 struct pending *ppt;
1481 int i;
1482
1483 /* Name including "struct", etc. */
1484 char *type_name;
1485
1486 {
1487 char *from, *to, *p, *q1, *q2;
1488
1489 /* Set the type code according to the following letter. */
1490 switch ((*pp)[0])
1491 {
1492 case 's':
1493 code = TYPE_CODE_STRUCT;
1494 break;
1495 case 'u':
1496 code = TYPE_CODE_UNION;
1497 break;
1498 case 'e':
1499 code = TYPE_CODE_ENUM;
1500 break;
1501 default:
1502 {
1503 /* Complain and keep going, so compilers can invent new
1504 cross-reference types. */
1505 complaint (&symfile_complaints,
1506 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1507 code = TYPE_CODE_STRUCT;
1508 break;
1509 }
1510 }
1511
1512 q1 = strchr (*pp, '<');
1513 p = strchr (*pp, ':');
1514 if (p == NULL)
1515 return error_type (pp, objfile);
1516 if (q1 && p > q1 && p[1] == ':')
1517 {
1518 int nesting_level = 0;
1519 for (q2 = q1; *q2; q2++)
1520 {
1521 if (*q2 == '<')
1522 nesting_level++;
1523 else if (*q2 == '>')
1524 nesting_level--;
1525 else if (*q2 == ':' && nesting_level == 0)
1526 break;
1527 }
1528 p = q2;
1529 if (*p != ':')
1530 return error_type (pp, objfile);
1531 }
1532 type_name = NULL;
1533 if (current_subfile->language == language_cplus)
1534 {
1535 char *new_name, *name = alloca (p - *pp + 1);
1536 memcpy (name, *pp, p - *pp);
1537 name[p - *pp] = '\0';
1538 new_name = cp_canonicalize_string (name);
1539 if (new_name != NULL)
1540 {
1541 type_name = obsavestring (new_name, strlen (new_name),
1542 &objfile->objfile_obstack);
1543 xfree (new_name);
1544 }
1545 }
1546 if (type_name == NULL)
1547 {
1548 to = type_name =
1549 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1550
1551 /* Copy the name. */
1552 from = *pp + 1;
1553 while (from < p)
1554 *to++ = *from++;
1555 *to = '\0';
1556 }
1557
1558 /* Set the pointer ahead of the name which we just read, and
1559 the colon. */
1560 *pp = p + 1;
1561 }
1562
1563 /* If this type has already been declared, then reuse the same
1564 type, rather than allocating a new one. This saves some
1565 memory. */
1566
1567 for (ppt = file_symbols; ppt; ppt = ppt->next)
1568 for (i = 0; i < ppt->nsyms; i++)
1569 {
1570 struct symbol *sym = ppt->symbol[i];
1571
1572 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1573 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1574 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1575 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1576 {
1577 obstack_free (&objfile->objfile_obstack, type_name);
1578 type = SYMBOL_TYPE (sym);
1579 if (typenums[0] != -1)
1580 *dbx_lookup_type (typenums) = type;
1581 return type;
1582 }
1583 }
1584
1585 /* Didn't find the type to which this refers, so we must
1586 be dealing with a forward reference. Allocate a type
1587 structure for it, and keep track of it so we can
1588 fill in the rest of the fields when we get the full
1589 type. */
1590 type = dbx_alloc_type (typenums, objfile);
1591 TYPE_CODE (type) = code;
1592 TYPE_TAG_NAME (type) = type_name;
1593 INIT_CPLUS_SPECIFIC (type);
1594 TYPE_STUB (type) = 1;
1595
1596 add_undefined_type (type, typenums);
1597 return type;
1598 }
1599
1600 case '-': /* RS/6000 built-in type */
1601 case '0':
1602 case '1':
1603 case '2':
1604 case '3':
1605 case '4':
1606 case '5':
1607 case '6':
1608 case '7':
1609 case '8':
1610 case '9':
1611 case '(':
1612 (*pp)--;
1613
1614 /* We deal with something like t(1,2)=(3,4)=... which
1615 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1616
1617 /* Allocate and enter the typedef type first.
1618 This handles recursive types. */
1619 type = dbx_alloc_type (typenums, objfile);
1620 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1621 {
1622 struct type *xtype = read_type (pp, objfile);
1623 if (type == xtype)
1624 {
1625 /* It's being defined as itself. That means it is "void". */
1626 TYPE_CODE (type) = TYPE_CODE_VOID;
1627 TYPE_LENGTH (type) = 1;
1628 }
1629 else if (type_size >= 0 || is_string)
1630 {
1631 /* This is the absolute wrong way to construct types. Every
1632 other debug format has found a way around this problem and
1633 the related problems with unnecessarily stubbed types;
1634 someone motivated should attempt to clean up the issue
1635 here as well. Once a type pointed to has been created it
1636 should not be modified.
1637
1638 Well, it's not *absolutely* wrong. Constructing recursive
1639 types (trees, linked lists) necessarily entails modifying
1640 types after creating them. Constructing any loop structure
1641 entails side effects. The Dwarf 2 reader does handle this
1642 more gracefully (it never constructs more than once
1643 instance of a type object, so it doesn't have to copy type
1644 objects wholesale), but it still mutates type objects after
1645 other folks have references to them.
1646
1647 Keep in mind that this circularity/mutation issue shows up
1648 at the source language level, too: C's "incomplete types",
1649 for example. So the proper cleanup, I think, would be to
1650 limit GDB's type smashing to match exactly those required
1651 by the source language. So GDB could have a
1652 "complete_this_type" function, but never create unnecessary
1653 copies of a type otherwise. */
1654 replace_type (type, xtype);
1655 TYPE_NAME (type) = NULL;
1656 TYPE_TAG_NAME (type) = NULL;
1657 }
1658 else
1659 {
1660 TYPE_TARGET_STUB (type) = 1;
1661 TYPE_TARGET_TYPE (type) = xtype;
1662 }
1663 }
1664 break;
1665
1666 /* In the following types, we must be sure to overwrite any existing
1667 type that the typenums refer to, rather than allocating a new one
1668 and making the typenums point to the new one. This is because there
1669 may already be pointers to the existing type (if it had been
1670 forward-referenced), and we must change it to a pointer, function,
1671 reference, or whatever, *in-place*. */
1672
1673 case '*': /* Pointer to another type */
1674 type1 = read_type (pp, objfile);
1675 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1676 break;
1677
1678 case '&': /* Reference to another type */
1679 type1 = read_type (pp, objfile);
1680 type = make_reference_type (type1, dbx_lookup_type (typenums));
1681 break;
1682
1683 case 'f': /* Function returning another type */
1684 type1 = read_type (pp, objfile);
1685 type = make_function_type (type1, dbx_lookup_type (typenums), objfile);
1686 break;
1687
1688 case 'g': /* Prototyped function. (Sun) */
1689 {
1690 /* Unresolved questions:
1691
1692 - According to Sun's ``STABS Interface Manual'', for 'f'
1693 and 'F' symbol descriptors, a `0' in the argument type list
1694 indicates a varargs function. But it doesn't say how 'g'
1695 type descriptors represent that info. Someone with access
1696 to Sun's toolchain should try it out.
1697
1698 - According to the comment in define_symbol (search for
1699 `process_prototype_types:'), Sun emits integer arguments as
1700 types which ref themselves --- like `void' types. Do we
1701 have to deal with that here, too? Again, someone with
1702 access to Sun's toolchain should try it out and let us
1703 know. */
1704
1705 const char *type_start = (*pp) - 1;
1706 struct type *return_type = read_type (pp, objfile);
1707 struct type *func_type
1708 = make_function_type (return_type, dbx_lookup_type (typenums),
1709 objfile);
1710 struct type_list {
1711 struct type *type;
1712 struct type_list *next;
1713 } *arg_types = 0;
1714 int num_args = 0;
1715
1716 while (**pp && **pp != '#')
1717 {
1718 struct type *arg_type = read_type (pp, objfile);
1719 struct type_list *new = alloca (sizeof (*new));
1720 new->type = arg_type;
1721 new->next = arg_types;
1722 arg_types = new;
1723 num_args++;
1724 }
1725 if (**pp == '#')
1726 ++*pp;
1727 else
1728 {
1729 complaint (&symfile_complaints,
1730 _("Prototyped function type didn't end arguments with `#':\n%s"),
1731 type_start);
1732 }
1733
1734 /* If there is just one argument whose type is `void', then
1735 that's just an empty argument list. */
1736 if (arg_types
1737 && ! arg_types->next
1738 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1739 num_args = 0;
1740
1741 TYPE_FIELDS (func_type)
1742 = (struct field *) TYPE_ALLOC (func_type,
1743 num_args * sizeof (struct field));
1744 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1745 {
1746 int i;
1747 struct type_list *t;
1748
1749 /* We stuck each argument type onto the front of the list
1750 when we read it, so the list is reversed. Build the
1751 fields array right-to-left. */
1752 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1753 TYPE_FIELD_TYPE (func_type, i) = t->type;
1754 }
1755 TYPE_NFIELDS (func_type) = num_args;
1756 TYPE_PROTOTYPED (func_type) = 1;
1757
1758 type = func_type;
1759 break;
1760 }
1761
1762 case 'k': /* Const qualifier on some type (Sun) */
1763 type = read_type (pp, objfile);
1764 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1765 dbx_lookup_type (typenums));
1766 break;
1767
1768 case 'B': /* Volatile qual on some type (Sun) */
1769 type = read_type (pp, objfile);
1770 type = make_cv_type (TYPE_CONST (type), 1, type,
1771 dbx_lookup_type (typenums));
1772 break;
1773
1774 case '@':
1775 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1776 { /* Member (class & variable) type */
1777 /* FIXME -- we should be doing smash_to_XXX types here. */
1778
1779 struct type *domain = read_type (pp, objfile);
1780 struct type *memtype;
1781
1782 if (**pp != ',')
1783 /* Invalid member type data format. */
1784 return error_type (pp, objfile);
1785 ++*pp;
1786
1787 memtype = read_type (pp, objfile);
1788 type = dbx_alloc_type (typenums, objfile);
1789 smash_to_memberptr_type (type, domain, memtype);
1790 }
1791 else
1792 /* type attribute */
1793 {
1794 char *attr = *pp;
1795 /* Skip to the semicolon. */
1796 while (**pp != ';' && **pp != '\0')
1797 ++(*pp);
1798 if (**pp == '\0')
1799 return error_type (pp, objfile);
1800 else
1801 ++ * pp; /* Skip the semicolon. */
1802
1803 switch (*attr)
1804 {
1805 case 's': /* Size attribute */
1806 type_size = atoi (attr + 1);
1807 if (type_size <= 0)
1808 type_size = -1;
1809 break;
1810
1811 case 'S': /* String attribute */
1812 /* FIXME: check to see if following type is array? */
1813 is_string = 1;
1814 break;
1815
1816 case 'V': /* Vector attribute */
1817 /* FIXME: check to see if following type is array? */
1818 is_vector = 1;
1819 break;
1820
1821 default:
1822 /* Ignore unrecognized type attributes, so future compilers
1823 can invent new ones. */
1824 break;
1825 }
1826 ++*pp;
1827 goto again;
1828 }
1829 break;
1830
1831 case '#': /* Method (class & fn) type */
1832 if ((*pp)[0] == '#')
1833 {
1834 /* We'll get the parameter types from the name. */
1835 struct type *return_type;
1836
1837 (*pp)++;
1838 return_type = read_type (pp, objfile);
1839 if (*(*pp)++ != ';')
1840 complaint (&symfile_complaints,
1841 _("invalid (minimal) member type data format at symtab pos %d."),
1842 symnum);
1843 type = allocate_stub_method (return_type);
1844 if (typenums[0] != -1)
1845 *dbx_lookup_type (typenums) = type;
1846 }
1847 else
1848 {
1849 struct type *domain = read_type (pp, objfile);
1850 struct type *return_type;
1851 struct field *args;
1852 int nargs, varargs;
1853
1854 if (**pp != ',')
1855 /* Invalid member type data format. */
1856 return error_type (pp, objfile);
1857 else
1858 ++(*pp);
1859
1860 return_type = read_type (pp, objfile);
1861 args = read_args (pp, ';', objfile, &nargs, &varargs);
1862 if (args == NULL)
1863 return error_type (pp, objfile);
1864 type = dbx_alloc_type (typenums, objfile);
1865 smash_to_method_type (type, domain, return_type, args,
1866 nargs, varargs);
1867 }
1868 break;
1869
1870 case 'r': /* Range type */
1871 type = read_range_type (pp, typenums, type_size, objfile);
1872 if (typenums[0] != -1)
1873 *dbx_lookup_type (typenums) = type;
1874 break;
1875
1876 case 'b':
1877 {
1878 /* Sun ACC builtin int type */
1879 type = read_sun_builtin_type (pp, typenums, objfile);
1880 if (typenums[0] != -1)
1881 *dbx_lookup_type (typenums) = type;
1882 }
1883 break;
1884
1885 case 'R': /* Sun ACC builtin float type */
1886 type = read_sun_floating_type (pp, typenums, objfile);
1887 if (typenums[0] != -1)
1888 *dbx_lookup_type (typenums) = type;
1889 break;
1890
1891 case 'e': /* Enumeration type */
1892 type = dbx_alloc_type (typenums, objfile);
1893 type = read_enum_type (pp, type, objfile);
1894 if (typenums[0] != -1)
1895 *dbx_lookup_type (typenums) = type;
1896 break;
1897
1898 case 's': /* Struct type */
1899 case 'u': /* Union type */
1900 {
1901 enum type_code type_code = TYPE_CODE_UNDEF;
1902 type = dbx_alloc_type (typenums, objfile);
1903 switch (type_descriptor)
1904 {
1905 case 's':
1906 type_code = TYPE_CODE_STRUCT;
1907 break;
1908 case 'u':
1909 type_code = TYPE_CODE_UNION;
1910 break;
1911 }
1912 type = read_struct_type (pp, type, type_code, objfile);
1913 break;
1914 }
1915
1916 case 'a': /* Array type */
1917 if (**pp != 'r')
1918 return error_type (pp, objfile);
1919 ++*pp;
1920
1921 type = dbx_alloc_type (typenums, objfile);
1922 type = read_array_type (pp, type, objfile);
1923 if (is_string)
1924 TYPE_CODE (type) = TYPE_CODE_STRING;
1925 if (is_vector)
1926 make_vector_type (type);
1927 break;
1928
1929 case 'S': /* Set or bitstring type */
1930 type1 = read_type (pp, objfile);
1931 type = create_set_type ((struct type *) NULL, type1);
1932 if (is_string)
1933 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1934 if (typenums[0] != -1)
1935 *dbx_lookup_type (typenums) = type;
1936 break;
1937
1938 default:
1939 --*pp; /* Go back to the symbol in error */
1940 /* Particularly important if it was \0! */
1941 return error_type (pp, objfile);
1942 }
1943
1944 if (type == 0)
1945 {
1946 warning (_("GDB internal error, type is NULL in stabsread.c."));
1947 return error_type (pp, objfile);
1948 }
1949
1950 /* Size specified in a type attribute overrides any other size. */
1951 if (type_size != -1)
1952 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1953
1954 return type;
1955 }
1956 \f
1957 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1958 Return the proper type node for a given builtin type number. */
1959
1960 static struct type *
1961 rs6000_builtin_type (int typenum)
1962 {
1963 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1964 #define NUMBER_RECOGNIZED 34
1965 /* This includes an empty slot for type number -0. */
1966 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1967 struct type *rettype = NULL;
1968
1969 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1970 {
1971 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1972 return builtin_type_error;
1973 }
1974 if (negative_types[-typenum] != NULL)
1975 return negative_types[-typenum];
1976
1977 #if TARGET_CHAR_BIT != 8
1978 #error This code wrong for TARGET_CHAR_BIT not 8
1979 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1980 that if that ever becomes not true, the correct fix will be to
1981 make the size in the struct type to be in bits, not in units of
1982 TARGET_CHAR_BIT. */
1983 #endif
1984
1985 switch (-typenum)
1986 {
1987 case 1:
1988 /* The size of this and all the other types are fixed, defined
1989 by the debugging format. If there is a type called "int" which
1990 is other than 32 bits, then it should use a new negative type
1991 number (or avoid negative type numbers for that case).
1992 See stabs.texinfo. */
1993 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1994 break;
1995 case 2:
1996 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1997 break;
1998 case 3:
1999 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2000 break;
2001 case 4:
2002 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2003 break;
2004 case 5:
2005 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2006 "unsigned char", NULL);
2007 break;
2008 case 6:
2009 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2010 break;
2011 case 7:
2012 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2013 "unsigned short", NULL);
2014 break;
2015 case 8:
2016 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2017 "unsigned int", NULL);
2018 break;
2019 case 9:
2020 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2021 "unsigned", NULL);
2022 case 10:
2023 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2024 "unsigned long", NULL);
2025 break;
2026 case 11:
2027 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2028 break;
2029 case 12:
2030 /* IEEE single precision (32 bit). */
2031 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2032 break;
2033 case 13:
2034 /* IEEE double precision (64 bit). */
2035 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2036 break;
2037 case 14:
2038 /* This is an IEEE double on the RS/6000, and different machines with
2039 different sizes for "long double" should use different negative
2040 type numbers. See stabs.texinfo. */
2041 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2042 break;
2043 case 15:
2044 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2045 break;
2046 case 16:
2047 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2048 "boolean", NULL);
2049 break;
2050 case 17:
2051 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2052 break;
2053 case 18:
2054 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2055 break;
2056 case 19:
2057 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2058 break;
2059 case 20:
2060 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2061 "character", NULL);
2062 break;
2063 case 21:
2064 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2065 "logical*1", NULL);
2066 break;
2067 case 22:
2068 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2069 "logical*2", NULL);
2070 break;
2071 case 23:
2072 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2073 "logical*4", NULL);
2074 break;
2075 case 24:
2076 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2077 "logical", NULL);
2078 break;
2079 case 25:
2080 /* Complex type consisting of two IEEE single precision values. */
2081 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2082 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2083 NULL);
2084 break;
2085 case 26:
2086 /* Complex type consisting of two IEEE double precision values. */
2087 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2088 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2089 NULL);
2090 break;
2091 case 27:
2092 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2093 break;
2094 case 28:
2095 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2096 break;
2097 case 29:
2098 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2099 break;
2100 case 30:
2101 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2102 break;
2103 case 31:
2104 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2105 break;
2106 case 32:
2107 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2108 "unsigned long long", NULL);
2109 break;
2110 case 33:
2111 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2112 "logical*8", NULL);
2113 break;
2114 case 34:
2115 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2116 break;
2117 }
2118 negative_types[-typenum] = rettype;
2119 return rettype;
2120 }
2121 \f
2122 /* This page contains subroutines of read_type. */
2123
2124 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2125
2126 static void
2127 update_method_name_from_physname (char **old_name, char *physname)
2128 {
2129 char *method_name;
2130
2131 method_name = method_name_from_physname (physname);
2132
2133 if (method_name == NULL)
2134 {
2135 complaint (&symfile_complaints,
2136 _("Method has bad physname %s\n"), physname);
2137 return;
2138 }
2139
2140 if (strcmp (*old_name, method_name) != 0)
2141 {
2142 xfree (*old_name);
2143 *old_name = method_name;
2144 }
2145 else
2146 xfree (method_name);
2147 }
2148
2149 /* Read member function stabs info for C++ classes. The form of each member
2150 function data is:
2151
2152 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2153
2154 An example with two member functions is:
2155
2156 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2157
2158 For the case of overloaded operators, the format is op$::*.funcs, where
2159 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2160 name (such as `+=') and `.' marks the end of the operator name.
2161
2162 Returns 1 for success, 0 for failure. */
2163
2164 static int
2165 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2166 struct objfile *objfile)
2167 {
2168 int nfn_fields = 0;
2169 int length = 0;
2170 /* Total number of member functions defined in this class. If the class
2171 defines two `f' functions, and one `g' function, then this will have
2172 the value 3. */
2173 int total_length = 0;
2174 int i;
2175 struct next_fnfield
2176 {
2177 struct next_fnfield *next;
2178 struct fn_field fn_field;
2179 }
2180 *sublist;
2181 struct type *look_ahead_type;
2182 struct next_fnfieldlist *new_fnlist;
2183 struct next_fnfield *new_sublist;
2184 char *main_fn_name;
2185 char *p;
2186
2187 /* Process each list until we find something that is not a member function
2188 or find the end of the functions. */
2189
2190 while (**pp != ';')
2191 {
2192 /* We should be positioned at the start of the function name.
2193 Scan forward to find the first ':' and if it is not the
2194 first of a "::" delimiter, then this is not a member function. */
2195 p = *pp;
2196 while (*p != ':')
2197 {
2198 p++;
2199 }
2200 if (p[1] != ':')
2201 {
2202 break;
2203 }
2204
2205 sublist = NULL;
2206 look_ahead_type = NULL;
2207 length = 0;
2208
2209 new_fnlist = (struct next_fnfieldlist *)
2210 xmalloc (sizeof (struct next_fnfieldlist));
2211 make_cleanup (xfree, new_fnlist);
2212 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2213
2214 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2215 {
2216 /* This is a completely wierd case. In order to stuff in the
2217 names that might contain colons (the usual name delimiter),
2218 Mike Tiemann defined a different name format which is
2219 signalled if the identifier is "op$". In that case, the
2220 format is "op$::XXXX." where XXXX is the name. This is
2221 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2222 /* This lets the user type "break operator+".
2223 We could just put in "+" as the name, but that wouldn't
2224 work for "*". */
2225 static char opname[32] = "op$";
2226 char *o = opname + 3;
2227
2228 /* Skip past '::'. */
2229 *pp = p + 2;
2230
2231 STABS_CONTINUE (pp, objfile);
2232 p = *pp;
2233 while (*p != '.')
2234 {
2235 *o++ = *p++;
2236 }
2237 main_fn_name = savestring (opname, o - opname);
2238 /* Skip past '.' */
2239 *pp = p + 1;
2240 }
2241 else
2242 {
2243 main_fn_name = savestring (*pp, p - *pp);
2244 /* Skip past '::'. */
2245 *pp = p + 2;
2246 }
2247 new_fnlist->fn_fieldlist.name = main_fn_name;
2248
2249 do
2250 {
2251 new_sublist =
2252 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2253 make_cleanup (xfree, new_sublist);
2254 memset (new_sublist, 0, sizeof (struct next_fnfield));
2255
2256 /* Check for and handle cretinous dbx symbol name continuation! */
2257 if (look_ahead_type == NULL)
2258 {
2259 /* Normal case. */
2260 STABS_CONTINUE (pp, objfile);
2261
2262 new_sublist->fn_field.type = read_type (pp, objfile);
2263 if (**pp != ':')
2264 {
2265 /* Invalid symtab info for member function. */
2266 return 0;
2267 }
2268 }
2269 else
2270 {
2271 /* g++ version 1 kludge */
2272 new_sublist->fn_field.type = look_ahead_type;
2273 look_ahead_type = NULL;
2274 }
2275
2276 (*pp)++;
2277 p = *pp;
2278 while (*p != ';')
2279 {
2280 p++;
2281 }
2282
2283 /* If this is just a stub, then we don't have the real name here. */
2284
2285 if (TYPE_STUB (new_sublist->fn_field.type))
2286 {
2287 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2288 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2289 new_sublist->fn_field.is_stub = 1;
2290 }
2291 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2292 *pp = p + 1;
2293
2294 /* Set this member function's visibility fields. */
2295 switch (*(*pp)++)
2296 {
2297 case VISIBILITY_PRIVATE:
2298 new_sublist->fn_field.is_private = 1;
2299 break;
2300 case VISIBILITY_PROTECTED:
2301 new_sublist->fn_field.is_protected = 1;
2302 break;
2303 }
2304
2305 STABS_CONTINUE (pp, objfile);
2306 switch (**pp)
2307 {
2308 case 'A': /* Normal functions. */
2309 new_sublist->fn_field.is_const = 0;
2310 new_sublist->fn_field.is_volatile = 0;
2311 (*pp)++;
2312 break;
2313 case 'B': /* `const' member functions. */
2314 new_sublist->fn_field.is_const = 1;
2315 new_sublist->fn_field.is_volatile = 0;
2316 (*pp)++;
2317 break;
2318 case 'C': /* `volatile' member function. */
2319 new_sublist->fn_field.is_const = 0;
2320 new_sublist->fn_field.is_volatile = 1;
2321 (*pp)++;
2322 break;
2323 case 'D': /* `const volatile' member function. */
2324 new_sublist->fn_field.is_const = 1;
2325 new_sublist->fn_field.is_volatile = 1;
2326 (*pp)++;
2327 break;
2328 case '*': /* File compiled with g++ version 1 -- no info */
2329 case '?':
2330 case '.':
2331 break;
2332 default:
2333 complaint (&symfile_complaints,
2334 _("const/volatile indicator missing, got '%c'"), **pp);
2335 break;
2336 }
2337
2338 switch (*(*pp)++)
2339 {
2340 case '*':
2341 {
2342 int nbits;
2343 /* virtual member function, followed by index.
2344 The sign bit is set to distinguish pointers-to-methods
2345 from virtual function indicies. Since the array is
2346 in words, the quantity must be shifted left by 1
2347 on 16 bit machine, and by 2 on 32 bit machine, forcing
2348 the sign bit out, and usable as a valid index into
2349 the array. Remove the sign bit here. */
2350 new_sublist->fn_field.voffset =
2351 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2352 if (nbits != 0)
2353 return 0;
2354
2355 STABS_CONTINUE (pp, objfile);
2356 if (**pp == ';' || **pp == '\0')
2357 {
2358 /* Must be g++ version 1. */
2359 new_sublist->fn_field.fcontext = 0;
2360 }
2361 else
2362 {
2363 /* Figure out from whence this virtual function came.
2364 It may belong to virtual function table of
2365 one of its baseclasses. */
2366 look_ahead_type = read_type (pp, objfile);
2367 if (**pp == ':')
2368 {
2369 /* g++ version 1 overloaded methods. */
2370 }
2371 else
2372 {
2373 new_sublist->fn_field.fcontext = look_ahead_type;
2374 if (**pp != ';')
2375 {
2376 return 0;
2377 }
2378 else
2379 {
2380 ++*pp;
2381 }
2382 look_ahead_type = NULL;
2383 }
2384 }
2385 break;
2386 }
2387 case '?':
2388 /* static member function. */
2389 {
2390 int slen = strlen (main_fn_name);
2391
2392 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2393
2394 /* For static member functions, we can't tell if they
2395 are stubbed, as they are put out as functions, and not as
2396 methods.
2397 GCC v2 emits the fully mangled name if
2398 dbxout.c:flag_minimal_debug is not set, so we have to
2399 detect a fully mangled physname here and set is_stub
2400 accordingly. Fully mangled physnames in v2 start with
2401 the member function name, followed by two underscores.
2402 GCC v3 currently always emits stubbed member functions,
2403 but with fully mangled physnames, which start with _Z. */
2404 if (!(strncmp (new_sublist->fn_field.physname,
2405 main_fn_name, slen) == 0
2406 && new_sublist->fn_field.physname[slen] == '_'
2407 && new_sublist->fn_field.physname[slen + 1] == '_'))
2408 {
2409 new_sublist->fn_field.is_stub = 1;
2410 }
2411 break;
2412 }
2413
2414 default:
2415 /* error */
2416 complaint (&symfile_complaints,
2417 _("member function type missing, got '%c'"), (*pp)[-1]);
2418 /* Fall through into normal member function. */
2419
2420 case '.':
2421 /* normal member function. */
2422 new_sublist->fn_field.voffset = 0;
2423 new_sublist->fn_field.fcontext = 0;
2424 break;
2425 }
2426
2427 new_sublist->next = sublist;
2428 sublist = new_sublist;
2429 length++;
2430 STABS_CONTINUE (pp, objfile);
2431 }
2432 while (**pp != ';' && **pp != '\0');
2433
2434 (*pp)++;
2435 STABS_CONTINUE (pp, objfile);
2436
2437 /* Skip GCC 3.X member functions which are duplicates of the callable
2438 constructor/destructor. */
2439 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2440 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2441 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2442 {
2443 xfree (main_fn_name);
2444 }
2445 else
2446 {
2447 int has_stub = 0;
2448 int has_destructor = 0, has_other = 0;
2449 int is_v3 = 0;
2450 struct next_fnfield *tmp_sublist;
2451
2452 /* Various versions of GCC emit various mostly-useless
2453 strings in the name field for special member functions.
2454
2455 For stub methods, we need to defer correcting the name
2456 until we are ready to unstub the method, because the current
2457 name string is used by gdb_mangle_name. The only stub methods
2458 of concern here are GNU v2 operators; other methods have their
2459 names correct (see caveat below).
2460
2461 For non-stub methods, in GNU v3, we have a complete physname.
2462 Therefore we can safely correct the name now. This primarily
2463 affects constructors and destructors, whose name will be
2464 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2465 operators will also have incorrect names; for instance,
2466 "operator int" will be named "operator i" (i.e. the type is
2467 mangled).
2468
2469 For non-stub methods in GNU v2, we have no easy way to
2470 know if we have a complete physname or not. For most
2471 methods the result depends on the platform (if CPLUS_MARKER
2472 can be `$' or `.', it will use minimal debug information, or
2473 otherwise the full physname will be included).
2474
2475 Rather than dealing with this, we take a different approach.
2476 For v3 mangled names, we can use the full physname; for v2,
2477 we use cplus_demangle_opname (which is actually v2 specific),
2478 because the only interesting names are all operators - once again
2479 barring the caveat below. Skip this process if any method in the
2480 group is a stub, to prevent our fouling up the workings of
2481 gdb_mangle_name.
2482
2483 The caveat: GCC 2.95.x (and earlier?) put constructors and
2484 destructors in the same method group. We need to split this
2485 into two groups, because they should have different names.
2486 So for each method group we check whether it contains both
2487 routines whose physname appears to be a destructor (the physnames
2488 for and destructors are always provided, due to quirks in v2
2489 mangling) and routines whose physname does not appear to be a
2490 destructor. If so then we break up the list into two halves.
2491 Even if the constructors and destructors aren't in the same group
2492 the destructor will still lack the leading tilde, so that also
2493 needs to be fixed.
2494
2495 So, to summarize what we expect and handle here:
2496
2497 Given Given Real Real Action
2498 method name physname physname method name
2499
2500 __opi [none] __opi__3Foo operator int opname
2501 [now or later]
2502 Foo _._3Foo _._3Foo ~Foo separate and
2503 rename
2504 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2505 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2506 */
2507
2508 tmp_sublist = sublist;
2509 while (tmp_sublist != NULL)
2510 {
2511 if (tmp_sublist->fn_field.is_stub)
2512 has_stub = 1;
2513 if (tmp_sublist->fn_field.physname[0] == '_'
2514 && tmp_sublist->fn_field.physname[1] == 'Z')
2515 is_v3 = 1;
2516
2517 if (is_destructor_name (tmp_sublist->fn_field.physname))
2518 has_destructor++;
2519 else
2520 has_other++;
2521
2522 tmp_sublist = tmp_sublist->next;
2523 }
2524
2525 if (has_destructor && has_other)
2526 {
2527 struct next_fnfieldlist *destr_fnlist;
2528 struct next_fnfield *last_sublist;
2529
2530 /* Create a new fn_fieldlist for the destructors. */
2531
2532 destr_fnlist = (struct next_fnfieldlist *)
2533 xmalloc (sizeof (struct next_fnfieldlist));
2534 make_cleanup (xfree, destr_fnlist);
2535 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2536 destr_fnlist->fn_fieldlist.name
2537 = obconcat (&objfile->objfile_obstack, "", "~",
2538 new_fnlist->fn_fieldlist.name);
2539
2540 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2541 obstack_alloc (&objfile->objfile_obstack,
2542 sizeof (struct fn_field) * has_destructor);
2543 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2544 sizeof (struct fn_field) * has_destructor);
2545 tmp_sublist = sublist;
2546 last_sublist = NULL;
2547 i = 0;
2548 while (tmp_sublist != NULL)
2549 {
2550 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2551 {
2552 tmp_sublist = tmp_sublist->next;
2553 continue;
2554 }
2555
2556 destr_fnlist->fn_fieldlist.fn_fields[i++]
2557 = tmp_sublist->fn_field;
2558 if (last_sublist)
2559 last_sublist->next = tmp_sublist->next;
2560 else
2561 sublist = tmp_sublist->next;
2562 last_sublist = tmp_sublist;
2563 tmp_sublist = tmp_sublist->next;
2564 }
2565
2566 destr_fnlist->fn_fieldlist.length = has_destructor;
2567 destr_fnlist->next = fip->fnlist;
2568 fip->fnlist = destr_fnlist;
2569 nfn_fields++;
2570 total_length += has_destructor;
2571 length -= has_destructor;
2572 }
2573 else if (is_v3)
2574 {
2575 /* v3 mangling prevents the use of abbreviated physnames,
2576 so we can do this here. There are stubbed methods in v3
2577 only:
2578 - in -gstabs instead of -gstabs+
2579 - or for static methods, which are output as a function type
2580 instead of a method type. */
2581
2582 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2583 sublist->fn_field.physname);
2584 }
2585 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2586 {
2587 new_fnlist->fn_fieldlist.name =
2588 concat ("~", main_fn_name, (char *)NULL);
2589 xfree (main_fn_name);
2590 }
2591 else if (!has_stub)
2592 {
2593 char dem_opname[256];
2594 int ret;
2595 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2596 dem_opname, DMGL_ANSI);
2597 if (!ret)
2598 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2599 dem_opname, 0);
2600 if (ret)
2601 new_fnlist->fn_fieldlist.name
2602 = obsavestring (dem_opname, strlen (dem_opname),
2603 &objfile->objfile_obstack);
2604 }
2605
2606 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2607 obstack_alloc (&objfile->objfile_obstack,
2608 sizeof (struct fn_field) * length);
2609 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2610 sizeof (struct fn_field) * length);
2611 for (i = length; (i--, sublist); sublist = sublist->next)
2612 {
2613 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2614 }
2615
2616 new_fnlist->fn_fieldlist.length = length;
2617 new_fnlist->next = fip->fnlist;
2618 fip->fnlist = new_fnlist;
2619 nfn_fields++;
2620 total_length += length;
2621 }
2622 }
2623
2624 if (nfn_fields)
2625 {
2626 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2627 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2628 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2629 memset (TYPE_FN_FIELDLISTS (type), 0,
2630 sizeof (struct fn_fieldlist) * nfn_fields);
2631 TYPE_NFN_FIELDS (type) = nfn_fields;
2632 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2633 }
2634
2635 return 1;
2636 }
2637
2638 /* Special GNU C++ name.
2639
2640 Returns 1 for success, 0 for failure. "failure" means that we can't
2641 keep parsing and it's time for error_type(). */
2642
2643 static int
2644 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2645 struct objfile *objfile)
2646 {
2647 char *p;
2648 char *name;
2649 char cpp_abbrev;
2650 struct type *context;
2651
2652 p = *pp;
2653 if (*++p == 'v')
2654 {
2655 name = NULL;
2656 cpp_abbrev = *++p;
2657
2658 *pp = p + 1;
2659
2660 /* At this point, *pp points to something like "22:23=*22...",
2661 where the type number before the ':' is the "context" and
2662 everything after is a regular type definition. Lookup the
2663 type, find it's name, and construct the field name. */
2664
2665 context = read_type (pp, objfile);
2666
2667 switch (cpp_abbrev)
2668 {
2669 case 'f': /* $vf -- a virtual function table pointer */
2670 name = type_name_no_tag (context);
2671 if (name == NULL)
2672 {
2673 name = "";
2674 }
2675 fip->list->field.name =
2676 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2677 break;
2678
2679 case 'b': /* $vb -- a virtual bsomethingorother */
2680 name = type_name_no_tag (context);
2681 if (name == NULL)
2682 {
2683 complaint (&symfile_complaints,
2684 _("C++ abbreviated type name unknown at symtab pos %d"),
2685 symnum);
2686 name = "FOO";
2687 }
2688 fip->list->field.name =
2689 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2690 break;
2691
2692 default:
2693 invalid_cpp_abbrev_complaint (*pp);
2694 fip->list->field.name =
2695 obconcat (&objfile->objfile_obstack,
2696 "INVALID_CPLUSPLUS_ABBREV", "", "");
2697 break;
2698 }
2699
2700 /* At this point, *pp points to the ':'. Skip it and read the
2701 field type. */
2702
2703 p = ++(*pp);
2704 if (p[-1] != ':')
2705 {
2706 invalid_cpp_abbrev_complaint (*pp);
2707 return 0;
2708 }
2709 fip->list->field.type = read_type (pp, objfile);
2710 if (**pp == ',')
2711 (*pp)++; /* Skip the comma. */
2712 else
2713 return 0;
2714
2715 {
2716 int nbits;
2717 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2718 0);
2719 if (nbits != 0)
2720 return 0;
2721 }
2722 /* This field is unpacked. */
2723 FIELD_BITSIZE (fip->list->field) = 0;
2724 fip->list->visibility = VISIBILITY_PRIVATE;
2725 }
2726 else
2727 {
2728 invalid_cpp_abbrev_complaint (*pp);
2729 /* We have no idea what syntax an unrecognized abbrev would have, so
2730 better return 0. If we returned 1, we would need to at least advance
2731 *pp to avoid an infinite loop. */
2732 return 0;
2733 }
2734 return 1;
2735 }
2736
2737 static void
2738 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2739 struct type *type, struct objfile *objfile)
2740 {
2741 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2742
2743 fip->list->field.name =
2744 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2745 *pp = p + 1;
2746
2747 /* This means we have a visibility for a field coming. */
2748 if (**pp == '/')
2749 {
2750 (*pp)++;
2751 fip->list->visibility = *(*pp)++;
2752 }
2753 else
2754 {
2755 /* normal dbx-style format, no explicit visibility */
2756 fip->list->visibility = VISIBILITY_PUBLIC;
2757 }
2758
2759 fip->list->field.type = read_type (pp, objfile);
2760 if (**pp == ':')
2761 {
2762 p = ++(*pp);
2763 #if 0
2764 /* Possible future hook for nested types. */
2765 if (**pp == '!')
2766 {
2767 fip->list->field.bitpos = (long) -2; /* nested type */
2768 p = ++(*pp);
2769 }
2770 else
2771 ...;
2772 #endif
2773 while (*p != ';')
2774 {
2775 p++;
2776 }
2777 /* Static class member. */
2778 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2779 *pp = p + 1;
2780 return;
2781 }
2782 else if (**pp != ',')
2783 {
2784 /* Bad structure-type format. */
2785 stabs_general_complaint ("bad structure-type format");
2786 return;
2787 }
2788
2789 (*pp)++; /* Skip the comma. */
2790
2791 {
2792 int nbits;
2793 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2794 if (nbits != 0)
2795 {
2796 stabs_general_complaint ("bad structure-type format");
2797 return;
2798 }
2799 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2800 if (nbits != 0)
2801 {
2802 stabs_general_complaint ("bad structure-type format");
2803 return;
2804 }
2805 }
2806
2807 if (FIELD_BITPOS (fip->list->field) == 0
2808 && FIELD_BITSIZE (fip->list->field) == 0)
2809 {
2810 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2811 it is a field which has been optimized out. The correct stab for
2812 this case is to use VISIBILITY_IGNORE, but that is a recent
2813 invention. (2) It is a 0-size array. For example
2814 union { int num; char str[0]; } foo. Printing _("<no value>" for
2815 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2816 will continue to work, and a 0-size array as a whole doesn't
2817 have any contents to print.
2818
2819 I suspect this probably could also happen with gcc -gstabs (not
2820 -gstabs+) for static fields, and perhaps other C++ extensions.
2821 Hopefully few people use -gstabs with gdb, since it is intended
2822 for dbx compatibility. */
2823
2824 /* Ignore this field. */
2825 fip->list->visibility = VISIBILITY_IGNORE;
2826 }
2827 else
2828 {
2829 /* Detect an unpacked field and mark it as such.
2830 dbx gives a bit size for all fields.
2831 Note that forward refs cannot be packed,
2832 and treat enums as if they had the width of ints. */
2833
2834 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2835
2836 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2837 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2838 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2839 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2840 {
2841 FIELD_BITSIZE (fip->list->field) = 0;
2842 }
2843 if ((FIELD_BITSIZE (fip->list->field)
2844 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2845 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2846 && FIELD_BITSIZE (fip->list->field)
2847 == gdbarch_int_bit (gdbarch))
2848 )
2849 &&
2850 FIELD_BITPOS (fip->list->field) % 8 == 0)
2851 {
2852 FIELD_BITSIZE (fip->list->field) = 0;
2853 }
2854 }
2855 }
2856
2857
2858 /* Read struct or class data fields. They have the form:
2859
2860 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2861
2862 At the end, we see a semicolon instead of a field.
2863
2864 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2865 a static field.
2866
2867 The optional VISIBILITY is one of:
2868
2869 '/0' (VISIBILITY_PRIVATE)
2870 '/1' (VISIBILITY_PROTECTED)
2871 '/2' (VISIBILITY_PUBLIC)
2872 '/9' (VISIBILITY_IGNORE)
2873
2874 or nothing, for C style fields with public visibility.
2875
2876 Returns 1 for success, 0 for failure. */
2877
2878 static int
2879 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2880 struct objfile *objfile)
2881 {
2882 char *p;
2883 struct nextfield *new;
2884
2885 /* We better set p right now, in case there are no fields at all... */
2886
2887 p = *pp;
2888
2889 /* Read each data member type until we find the terminating ';' at the end of
2890 the data member list, or break for some other reason such as finding the
2891 start of the member function list. */
2892 /* Stab string for structure/union does not end with two ';' in
2893 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2894
2895 while (**pp != ';' && **pp != '\0')
2896 {
2897 STABS_CONTINUE (pp, objfile);
2898 /* Get space to record the next field's data. */
2899 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2900 make_cleanup (xfree, new);
2901 memset (new, 0, sizeof (struct nextfield));
2902 new->next = fip->list;
2903 fip->list = new;
2904
2905 /* Get the field name. */
2906 p = *pp;
2907
2908 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2909 unless the CPLUS_MARKER is followed by an underscore, in
2910 which case it is just the name of an anonymous type, which we
2911 should handle like any other type name. */
2912
2913 if (is_cplus_marker (p[0]) && p[1] != '_')
2914 {
2915 if (!read_cpp_abbrev (fip, pp, type, objfile))
2916 return 0;
2917 continue;
2918 }
2919
2920 /* Look for the ':' that separates the field name from the field
2921 values. Data members are delimited by a single ':', while member
2922 functions are delimited by a pair of ':'s. When we hit the member
2923 functions (if any), terminate scan loop and return. */
2924
2925 while (*p != ':' && *p != '\0')
2926 {
2927 p++;
2928 }
2929 if (*p == '\0')
2930 return 0;
2931
2932 /* Check to see if we have hit the member functions yet. */
2933 if (p[1] == ':')
2934 {
2935 break;
2936 }
2937 read_one_struct_field (fip, pp, p, type, objfile);
2938 }
2939 if (p[0] == ':' && p[1] == ':')
2940 {
2941 /* (the deleted) chill the list of fields: the last entry (at
2942 the head) is a partially constructed entry which we now
2943 scrub. */
2944 fip->list = fip->list->next;
2945 }
2946 return 1;
2947 }
2948 /* *INDENT-OFF* */
2949 /* The stabs for C++ derived classes contain baseclass information which
2950 is marked by a '!' character after the total size. This function is
2951 called when we encounter the baseclass marker, and slurps up all the
2952 baseclass information.
2953
2954 Immediately following the '!' marker is the number of base classes that
2955 the class is derived from, followed by information for each base class.
2956 For each base class, there are two visibility specifiers, a bit offset
2957 to the base class information within the derived class, a reference to
2958 the type for the base class, and a terminating semicolon.
2959
2960 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2961 ^^ ^ ^ ^ ^ ^ ^
2962 Baseclass information marker __________________|| | | | | | |
2963 Number of baseclasses __________________________| | | | | | |
2964 Visibility specifiers (2) ________________________| | | | | |
2965 Offset in bits from start of class _________________| | | | |
2966 Type number for base class ___________________________| | | |
2967 Visibility specifiers (2) _______________________________| | |
2968 Offset in bits from start of class ________________________| |
2969 Type number of base class ____________________________________|
2970
2971 Return 1 for success, 0 for (error-type-inducing) failure. */
2972 /* *INDENT-ON* */
2973
2974
2975
2976 static int
2977 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2978 struct objfile *objfile)
2979 {
2980 int i;
2981 struct nextfield *new;
2982
2983 if (**pp != '!')
2984 {
2985 return 1;
2986 }
2987 else
2988 {
2989 /* Skip the '!' baseclass information marker. */
2990 (*pp)++;
2991 }
2992
2993 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2994 {
2995 int nbits;
2996 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2997 if (nbits != 0)
2998 return 0;
2999 }
3000
3001 #if 0
3002 /* Some stupid compilers have trouble with the following, so break
3003 it up into simpler expressions. */
3004 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3005 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3006 #else
3007 {
3008 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3009 char *pointer;
3010
3011 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3012 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3013 }
3014 #endif /* 0 */
3015
3016 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3017
3018 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3019 {
3020 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3021 make_cleanup (xfree, new);
3022 memset (new, 0, sizeof (struct nextfield));
3023 new->next = fip->list;
3024 fip->list = new;
3025 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3026
3027 STABS_CONTINUE (pp, objfile);
3028 switch (**pp)
3029 {
3030 case '0':
3031 /* Nothing to do. */
3032 break;
3033 case '1':
3034 SET_TYPE_FIELD_VIRTUAL (type, i);
3035 break;
3036 default:
3037 /* Unknown character. Complain and treat it as non-virtual. */
3038 {
3039 complaint (&symfile_complaints,
3040 _("Unknown virtual character `%c' for baseclass"), **pp);
3041 }
3042 }
3043 ++(*pp);
3044
3045 new->visibility = *(*pp)++;
3046 switch (new->visibility)
3047 {
3048 case VISIBILITY_PRIVATE:
3049 case VISIBILITY_PROTECTED:
3050 case VISIBILITY_PUBLIC:
3051 break;
3052 default:
3053 /* Bad visibility format. Complain and treat it as
3054 public. */
3055 {
3056 complaint (&symfile_complaints,
3057 _("Unknown visibility `%c' for baseclass"),
3058 new->visibility);
3059 new->visibility = VISIBILITY_PUBLIC;
3060 }
3061 }
3062
3063 {
3064 int nbits;
3065
3066 /* The remaining value is the bit offset of the portion of the object
3067 corresponding to this baseclass. Always zero in the absence of
3068 multiple inheritance. */
3069
3070 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3071 if (nbits != 0)
3072 return 0;
3073 }
3074
3075 /* The last piece of baseclass information is the type of the
3076 base class. Read it, and remember it's type name as this
3077 field's name. */
3078
3079 new->field.type = read_type (pp, objfile);
3080 new->field.name = type_name_no_tag (new->field.type);
3081
3082 /* skip trailing ';' and bump count of number of fields seen */
3083 if (**pp == ';')
3084 (*pp)++;
3085 else
3086 return 0;
3087 }
3088 return 1;
3089 }
3090
3091 /* The tail end of stabs for C++ classes that contain a virtual function
3092 pointer contains a tilde, a %, and a type number.
3093 The type number refers to the base class (possibly this class itself) which
3094 contains the vtable pointer for the current class.
3095
3096 This function is called when we have parsed all the method declarations,
3097 so we can look for the vptr base class info. */
3098
3099 static int
3100 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3101 struct objfile *objfile)
3102 {
3103 char *p;
3104
3105 STABS_CONTINUE (pp, objfile);
3106
3107 /* If we are positioned at a ';', then skip it. */
3108 if (**pp == ';')
3109 {
3110 (*pp)++;
3111 }
3112
3113 if (**pp == '~')
3114 {
3115 (*pp)++;
3116
3117 if (**pp == '=' || **pp == '+' || **pp == '-')
3118 {
3119 /* Obsolete flags that used to indicate the presence
3120 of constructors and/or destructors. */
3121 (*pp)++;
3122 }
3123
3124 /* Read either a '%' or the final ';'. */
3125 if (*(*pp)++ == '%')
3126 {
3127 /* The next number is the type number of the base class
3128 (possibly our own class) which supplies the vtable for
3129 this class. Parse it out, and search that class to find
3130 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3131 and TYPE_VPTR_FIELDNO. */
3132
3133 struct type *t;
3134 int i;
3135
3136 t = read_type (pp, objfile);
3137 p = (*pp)++;
3138 while (*p != '\0' && *p != ';')
3139 {
3140 p++;
3141 }
3142 if (*p == '\0')
3143 {
3144 /* Premature end of symbol. */
3145 return 0;
3146 }
3147
3148 TYPE_VPTR_BASETYPE (type) = t;
3149 if (type == t) /* Our own class provides vtbl ptr */
3150 {
3151 for (i = TYPE_NFIELDS (t) - 1;
3152 i >= TYPE_N_BASECLASSES (t);
3153 --i)
3154 {
3155 char *name = TYPE_FIELD_NAME (t, i);
3156 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3157 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3158 {
3159 TYPE_VPTR_FIELDNO (type) = i;
3160 goto gotit;
3161 }
3162 }
3163 /* Virtual function table field not found. */
3164 complaint (&symfile_complaints,
3165 _("virtual function table pointer not found when defining class `%s'"),
3166 TYPE_NAME (type));
3167 return 0;
3168 }
3169 else
3170 {
3171 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3172 }
3173
3174 gotit:
3175 *pp = p + 1;
3176 }
3177 }
3178 return 1;
3179 }
3180
3181 static int
3182 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3183 {
3184 int n;
3185
3186 for (n = TYPE_NFN_FIELDS (type);
3187 fip->fnlist != NULL;
3188 fip->fnlist = fip->fnlist->next)
3189 {
3190 --n; /* Circumvent Sun3 compiler bug */
3191 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3192 }
3193 return 1;
3194 }
3195
3196 /* Create the vector of fields, and record how big it is.
3197 We need this info to record proper virtual function table information
3198 for this class's virtual functions. */
3199
3200 static int
3201 attach_fields_to_type (struct field_info *fip, struct type *type,
3202 struct objfile *objfile)
3203 {
3204 int nfields = 0;
3205 int non_public_fields = 0;
3206 struct nextfield *scan;
3207
3208 /* Count up the number of fields that we have, as well as taking note of
3209 whether or not there are any non-public fields, which requires us to
3210 allocate and build the private_field_bits and protected_field_bits
3211 bitfields. */
3212
3213 for (scan = fip->list; scan != NULL; scan = scan->next)
3214 {
3215 nfields++;
3216 if (scan->visibility != VISIBILITY_PUBLIC)
3217 {
3218 non_public_fields++;
3219 }
3220 }
3221
3222 /* Now we know how many fields there are, and whether or not there are any
3223 non-public fields. Record the field count, allocate space for the
3224 array of fields, and create blank visibility bitfields if necessary. */
3225
3226 TYPE_NFIELDS (type) = nfields;
3227 TYPE_FIELDS (type) = (struct field *)
3228 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3229 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3230
3231 if (non_public_fields)
3232 {
3233 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3234
3235 TYPE_FIELD_PRIVATE_BITS (type) =
3236 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3237 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3238
3239 TYPE_FIELD_PROTECTED_BITS (type) =
3240 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3241 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3242
3243 TYPE_FIELD_IGNORE_BITS (type) =
3244 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3245 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3246 }
3247
3248 /* Copy the saved-up fields into the field vector. Start from the head
3249 of the list, adding to the tail of the field array, so that they end
3250 up in the same order in the array in which they were added to the list. */
3251
3252 while (nfields-- > 0)
3253 {
3254 TYPE_FIELD (type, nfields) = fip->list->field;
3255 switch (fip->list->visibility)
3256 {
3257 case VISIBILITY_PRIVATE:
3258 SET_TYPE_FIELD_PRIVATE (type, nfields);
3259 break;
3260
3261 case VISIBILITY_PROTECTED:
3262 SET_TYPE_FIELD_PROTECTED (type, nfields);
3263 break;
3264
3265 case VISIBILITY_IGNORE:
3266 SET_TYPE_FIELD_IGNORE (type, nfields);
3267 break;
3268
3269 case VISIBILITY_PUBLIC:
3270 break;
3271
3272 default:
3273 /* Unknown visibility. Complain and treat it as public. */
3274 {
3275 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3276 fip->list->visibility);
3277 }
3278 break;
3279 }
3280 fip->list = fip->list->next;
3281 }
3282 return 1;
3283 }
3284
3285
3286 /* Complain that the compiler has emitted more than one definition for the
3287 structure type TYPE. */
3288 static void
3289 complain_about_struct_wipeout (struct type *type)
3290 {
3291 char *name = "";
3292 char *kind = "";
3293
3294 if (TYPE_TAG_NAME (type))
3295 {
3296 name = TYPE_TAG_NAME (type);
3297 switch (TYPE_CODE (type))
3298 {
3299 case TYPE_CODE_STRUCT: kind = "struct "; break;
3300 case TYPE_CODE_UNION: kind = "union "; break;
3301 case TYPE_CODE_ENUM: kind = "enum "; break;
3302 default: kind = "";
3303 }
3304 }
3305 else if (TYPE_NAME (type))
3306 {
3307 name = TYPE_NAME (type);
3308 kind = "";
3309 }
3310 else
3311 {
3312 name = "<unknown>";
3313 kind = "";
3314 }
3315
3316 complaint (&symfile_complaints,
3317 _("struct/union type gets multiply defined: %s%s"), kind, name);
3318 }
3319
3320
3321 /* Read the description of a structure (or union type) and return an object
3322 describing the type.
3323
3324 PP points to a character pointer that points to the next unconsumed token
3325 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3326 *PP will point to "4a:1,0,32;;".
3327
3328 TYPE points to an incomplete type that needs to be filled in.
3329
3330 OBJFILE points to the current objfile from which the stabs information is
3331 being read. (Note that it is redundant in that TYPE also contains a pointer
3332 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3333 */
3334
3335 static struct type *
3336 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3337 struct objfile *objfile)
3338 {
3339 struct cleanup *back_to;
3340 struct field_info fi;
3341
3342 fi.list = NULL;
3343 fi.fnlist = NULL;
3344
3345 /* When describing struct/union/class types in stabs, G++ always drops
3346 all qualifications from the name. So if you've got:
3347 struct A { ... struct B { ... }; ... };
3348 then G++ will emit stabs for `struct A::B' that call it simply
3349 `struct B'. Obviously, if you've got a real top-level definition for
3350 `struct B', or other nested definitions, this is going to cause
3351 problems.
3352
3353 Obviously, GDB can't fix this by itself, but it can at least avoid
3354 scribbling on existing structure type objects when new definitions
3355 appear. */
3356 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3357 || TYPE_STUB (type)))
3358 {
3359 complain_about_struct_wipeout (type);
3360
3361 /* It's probably best to return the type unchanged. */
3362 return type;
3363 }
3364
3365 back_to = make_cleanup (null_cleanup, 0);
3366
3367 INIT_CPLUS_SPECIFIC (type);
3368 TYPE_CODE (type) = type_code;
3369 TYPE_STUB (type) = 0;
3370
3371 /* First comes the total size in bytes. */
3372
3373 {
3374 int nbits;
3375 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3376 if (nbits != 0)
3377 return error_type (pp, objfile);
3378 }
3379
3380 /* Now read the baseclasses, if any, read the regular C struct or C++
3381 class member fields, attach the fields to the type, read the C++
3382 member functions, attach them to the type, and then read any tilde
3383 field (baseclass specifier for the class holding the main vtable). */
3384
3385 if (!read_baseclasses (&fi, pp, type, objfile)
3386 || !read_struct_fields (&fi, pp, type, objfile)
3387 || !attach_fields_to_type (&fi, type, objfile)
3388 || !read_member_functions (&fi, pp, type, objfile)
3389 || !attach_fn_fields_to_type (&fi, type)
3390 || !read_tilde_fields (&fi, pp, type, objfile))
3391 {
3392 type = error_type (pp, objfile);
3393 }
3394
3395 do_cleanups (back_to);
3396 return (type);
3397 }
3398
3399 /* Read a definition of an array type,
3400 and create and return a suitable type object.
3401 Also creates a range type which represents the bounds of that
3402 array. */
3403
3404 static struct type *
3405 read_array_type (char **pp, struct type *type,
3406 struct objfile *objfile)
3407 {
3408 struct type *index_type, *element_type, *range_type;
3409 int lower, upper;
3410 int adjustable = 0;
3411 int nbits;
3412
3413 /* Format of an array type:
3414 "ar<index type>;lower;upper;<array_contents_type>".
3415 OS9000: "arlower,upper;<array_contents_type>".
3416
3417 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3418 for these, produce a type like float[][]. */
3419
3420 {
3421 index_type = read_type (pp, objfile);
3422 if (**pp != ';')
3423 /* Improper format of array type decl. */
3424 return error_type (pp, objfile);
3425 ++*pp;
3426 }
3427
3428 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3429 {
3430 (*pp)++;
3431 adjustable = 1;
3432 }
3433 lower = read_huge_number (pp, ';', &nbits, 0);
3434
3435 if (nbits != 0)
3436 return error_type (pp, objfile);
3437
3438 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3439 {
3440 (*pp)++;
3441 adjustable = 1;
3442 }
3443 upper = read_huge_number (pp, ';', &nbits, 0);
3444 if (nbits != 0)
3445 return error_type (pp, objfile);
3446
3447 element_type = read_type (pp, objfile);
3448
3449 if (adjustable)
3450 {
3451 lower = 0;
3452 upper = -1;
3453 }
3454
3455 range_type =
3456 create_range_type ((struct type *) NULL, index_type, lower, upper);
3457 type = create_array_type (type, element_type, range_type);
3458
3459 return type;
3460 }
3461
3462
3463 /* Read a definition of an enumeration type,
3464 and create and return a suitable type object.
3465 Also defines the symbols that represent the values of the type. */
3466
3467 static struct type *
3468 read_enum_type (char **pp, struct type *type,
3469 struct objfile *objfile)
3470 {
3471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3472 char *p;
3473 char *name;
3474 long n;
3475 struct symbol *sym;
3476 int nsyms = 0;
3477 struct pending **symlist;
3478 struct pending *osyms, *syms;
3479 int o_nsyms;
3480 int nbits;
3481 int unsigned_enum = 1;
3482
3483 #if 0
3484 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3485 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3486 to do? For now, force all enum values to file scope. */
3487 if (within_function)
3488 symlist = &local_symbols;
3489 else
3490 #endif
3491 symlist = &file_symbols;
3492 osyms = *symlist;
3493 o_nsyms = osyms ? osyms->nsyms : 0;
3494
3495 /* The aix4 compiler emits an extra field before the enum members;
3496 my guess is it's a type of some sort. Just ignore it. */
3497 if (**pp == '-')
3498 {
3499 /* Skip over the type. */
3500 while (**pp != ':')
3501 (*pp)++;
3502
3503 /* Skip over the colon. */
3504 (*pp)++;
3505 }
3506
3507 /* Read the value-names and their values.
3508 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3509 A semicolon or comma instead of a NAME means the end. */
3510 while (**pp && **pp != ';' && **pp != ',')
3511 {
3512 STABS_CONTINUE (pp, objfile);
3513 p = *pp;
3514 while (*p != ':')
3515 p++;
3516 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3517 *pp = p + 1;
3518 n = read_huge_number (pp, ',', &nbits, 0);
3519 if (nbits != 0)
3520 return error_type (pp, objfile);
3521
3522 sym = (struct symbol *)
3523 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3524 memset (sym, 0, sizeof (struct symbol));
3525 SYMBOL_SET_LINKAGE_NAME (sym, name);
3526 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3527 SYMBOL_CLASS (sym) = LOC_CONST;
3528 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3529 SYMBOL_VALUE (sym) = n;
3530 if (n < 0)
3531 unsigned_enum = 0;
3532 add_symbol_to_list (sym, symlist);
3533 nsyms++;
3534 }
3535
3536 if (**pp == ';')
3537 (*pp)++; /* Skip the semicolon. */
3538
3539 /* Now fill in the fields of the type-structure. */
3540
3541 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3542 TYPE_CODE (type) = TYPE_CODE_ENUM;
3543 TYPE_STUB (type) = 0;
3544 if (unsigned_enum)
3545 TYPE_UNSIGNED (type) = 1;
3546 TYPE_NFIELDS (type) = nsyms;
3547 TYPE_FIELDS (type) = (struct field *)
3548 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3549 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3550
3551 /* Find the symbols for the values and put them into the type.
3552 The symbols can be found in the symlist that we put them on
3553 to cause them to be defined. osyms contains the old value
3554 of that symlist; everything up to there was defined by us. */
3555 /* Note that we preserve the order of the enum constants, so
3556 that in something like "enum {FOO, LAST_THING=FOO}" we print
3557 FOO, not LAST_THING. */
3558
3559 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3560 {
3561 int last = syms == osyms ? o_nsyms : 0;
3562 int j = syms->nsyms;
3563 for (; --j >= last; --n)
3564 {
3565 struct symbol *xsym = syms->symbol[j];
3566 SYMBOL_TYPE (xsym) = type;
3567 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3568 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3569 TYPE_FIELD_BITSIZE (type, n) = 0;
3570 }
3571 if (syms == osyms)
3572 break;
3573 }
3574
3575 return type;
3576 }
3577
3578 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3579 typedefs in every file (for int, long, etc):
3580
3581 type = b <signed> <width> <format type>; <offset>; <nbits>
3582 signed = u or s.
3583 optional format type = c or b for char or boolean.
3584 offset = offset from high order bit to start bit of type.
3585 width is # bytes in object of this type, nbits is # bits in type.
3586
3587 The width/offset stuff appears to be for small objects stored in
3588 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3589 FIXME. */
3590
3591 static struct type *
3592 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3593 {
3594 int type_bits;
3595 int nbits;
3596 int signed_type;
3597 enum type_code code = TYPE_CODE_INT;
3598
3599 switch (**pp)
3600 {
3601 case 's':
3602 signed_type = 1;
3603 break;
3604 case 'u':
3605 signed_type = 0;
3606 break;
3607 default:
3608 return error_type (pp, objfile);
3609 }
3610 (*pp)++;
3611
3612 /* For some odd reason, all forms of char put a c here. This is strange
3613 because no other type has this honor. We can safely ignore this because
3614 we actually determine 'char'acterness by the number of bits specified in
3615 the descriptor.
3616 Boolean forms, e.g Fortran logical*X, put a b here. */
3617
3618 if (**pp == 'c')
3619 (*pp)++;
3620 else if (**pp == 'b')
3621 {
3622 code = TYPE_CODE_BOOL;
3623 (*pp)++;
3624 }
3625
3626 /* The first number appears to be the number of bytes occupied
3627 by this type, except that unsigned short is 4 instead of 2.
3628 Since this information is redundant with the third number,
3629 we will ignore it. */
3630 read_huge_number (pp, ';', &nbits, 0);
3631 if (nbits != 0)
3632 return error_type (pp, objfile);
3633
3634 /* The second number is always 0, so ignore it too. */
3635 read_huge_number (pp, ';', &nbits, 0);
3636 if (nbits != 0)
3637 return error_type (pp, objfile);
3638
3639 /* The third number is the number of bits for this type. */
3640 type_bits = read_huge_number (pp, 0, &nbits, 0);
3641 if (nbits != 0)
3642 return error_type (pp, objfile);
3643 /* The type *should* end with a semicolon. If it are embedded
3644 in a larger type the semicolon may be the only way to know where
3645 the type ends. If this type is at the end of the stabstring we
3646 can deal with the omitted semicolon (but we don't have to like
3647 it). Don't bother to complain(), Sun's compiler omits the semicolon
3648 for "void". */
3649 if (**pp == ';')
3650 ++(*pp);
3651
3652 if (type_bits == 0)
3653 return init_type (TYPE_CODE_VOID, 1,
3654 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3655 objfile);
3656 else
3657 return init_type (code,
3658 type_bits / TARGET_CHAR_BIT,
3659 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3660 objfile);
3661 }
3662
3663 static struct type *
3664 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3665 {
3666 int nbits;
3667 int details;
3668 int nbytes;
3669 struct type *rettype;
3670
3671 /* The first number has more details about the type, for example
3672 FN_COMPLEX. */
3673 details = read_huge_number (pp, ';', &nbits, 0);
3674 if (nbits != 0)
3675 return error_type (pp, objfile);
3676
3677 /* The second number is the number of bytes occupied by this type */
3678 nbytes = read_huge_number (pp, ';', &nbits, 0);
3679 if (nbits != 0)
3680 return error_type (pp, objfile);
3681
3682 if (details == NF_COMPLEX || details == NF_COMPLEX16
3683 || details == NF_COMPLEX32)
3684 {
3685 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3686 TYPE_TARGET_TYPE (rettype)
3687 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3688 return rettype;
3689 }
3690
3691 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3692 }
3693
3694 /* Read a number from the string pointed to by *PP.
3695 The value of *PP is advanced over the number.
3696 If END is nonzero, the character that ends the
3697 number must match END, or an error happens;
3698 and that character is skipped if it does match.
3699 If END is zero, *PP is left pointing to that character.
3700
3701 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3702 the number is represented in an octal representation, assume that
3703 it is represented in a 2's complement representation with a size of
3704 TWOS_COMPLEMENT_BITS.
3705
3706 If the number fits in a long, set *BITS to 0 and return the value.
3707 If not, set *BITS to be the number of bits in the number and return 0.
3708
3709 If encounter garbage, set *BITS to -1 and return 0. */
3710
3711 static long
3712 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3713 {
3714 char *p = *pp;
3715 int sign = 1;
3716 int sign_bit = 0;
3717 long n = 0;
3718 int radix = 10;
3719 char overflow = 0;
3720 int nbits = 0;
3721 int c;
3722 long upper_limit;
3723 int twos_complement_representation = 0;
3724
3725 if (*p == '-')
3726 {
3727 sign = -1;
3728 p++;
3729 }
3730
3731 /* Leading zero means octal. GCC uses this to output values larger
3732 than an int (because that would be hard in decimal). */
3733 if (*p == '0')
3734 {
3735 radix = 8;
3736 p++;
3737 }
3738
3739 /* Skip extra zeros. */
3740 while (*p == '0')
3741 p++;
3742
3743 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3744 {
3745 /* Octal, possibly signed. Check if we have enough chars for a
3746 negative number. */
3747
3748 size_t len;
3749 char *p1 = p;
3750 while ((c = *p1) >= '0' && c < '8')
3751 p1++;
3752
3753 len = p1 - p;
3754 if (len > twos_complement_bits / 3
3755 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3756 {
3757 /* Ok, we have enough characters for a signed value, check
3758 for signness by testing if the sign bit is set. */
3759 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3760 c = *p - '0';
3761 if (c & (1 << sign_bit))
3762 {
3763 /* Definitely signed. */
3764 twos_complement_representation = 1;
3765 sign = -1;
3766 }
3767 }
3768 }
3769
3770 upper_limit = LONG_MAX / radix;
3771
3772 while ((c = *p++) >= '0' && c < ('0' + radix))
3773 {
3774 if (n <= upper_limit)
3775 {
3776 if (twos_complement_representation)
3777 {
3778 /* Octal, signed, twos complement representation. In
3779 this case, n is the corresponding absolute value. */
3780 if (n == 0)
3781 {
3782 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3783 n = -sn;
3784 }
3785 else
3786 {
3787 n *= radix;
3788 n -= c - '0';
3789 }
3790 }
3791 else
3792 {
3793 /* unsigned representation */
3794 n *= radix;
3795 n += c - '0'; /* FIXME this overflows anyway */
3796 }
3797 }
3798 else
3799 overflow = 1;
3800
3801 /* This depends on large values being output in octal, which is
3802 what GCC does. */
3803 if (radix == 8)
3804 {
3805 if (nbits == 0)
3806 {
3807 if (c == '0')
3808 /* Ignore leading zeroes. */
3809 ;
3810 else if (c == '1')
3811 nbits = 1;
3812 else if (c == '2' || c == '3')
3813 nbits = 2;
3814 else
3815 nbits = 3;
3816 }
3817 else
3818 nbits += 3;
3819 }
3820 }
3821 if (end)
3822 {
3823 if (c && c != end)
3824 {
3825 if (bits != NULL)
3826 *bits = -1;
3827 return 0;
3828 }
3829 }
3830 else
3831 --p;
3832
3833 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3834 {
3835 /* We were supposed to parse a number with maximum
3836 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3837 if (bits != NULL)
3838 *bits = -1;
3839 return 0;
3840 }
3841
3842 *pp = p;
3843 if (overflow)
3844 {
3845 if (nbits == 0)
3846 {
3847 /* Large decimal constants are an error (because it is hard to
3848 count how many bits are in them). */
3849 if (bits != NULL)
3850 *bits = -1;
3851 return 0;
3852 }
3853
3854 /* -0x7f is the same as 0x80. So deal with it by adding one to
3855 the number of bits. Two's complement represention octals
3856 can't have a '-' in front. */
3857 if (sign == -1 && !twos_complement_representation)
3858 ++nbits;
3859 if (bits)
3860 *bits = nbits;
3861 }
3862 else
3863 {
3864 if (bits)
3865 *bits = 0;
3866 return n * sign;
3867 }
3868 /* It's *BITS which has the interesting information. */
3869 return 0;
3870 }
3871
3872 static struct type *
3873 read_range_type (char **pp, int typenums[2], int type_size,
3874 struct objfile *objfile)
3875 {
3876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3877 char *orig_pp = *pp;
3878 int rangenums[2];
3879 long n2, n3;
3880 int n2bits, n3bits;
3881 int self_subrange;
3882 struct type *result_type;
3883 struct type *index_type = NULL;
3884
3885 /* First comes a type we are a subrange of.
3886 In C it is usually 0, 1 or the type being defined. */
3887 if (read_type_number (pp, rangenums) != 0)
3888 return error_type (pp, objfile);
3889 self_subrange = (rangenums[0] == typenums[0] &&
3890 rangenums[1] == typenums[1]);
3891
3892 if (**pp == '=')
3893 {
3894 *pp = orig_pp;
3895 index_type = read_type (pp, objfile);
3896 }
3897
3898 /* A semicolon should now follow; skip it. */
3899 if (**pp == ';')
3900 (*pp)++;
3901
3902 /* The remaining two operands are usually lower and upper bounds
3903 of the range. But in some special cases they mean something else. */
3904 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3905 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3906
3907 if (n2bits == -1 || n3bits == -1)
3908 return error_type (pp, objfile);
3909
3910 if (index_type)
3911 goto handle_true_range;
3912
3913 /* If limits are huge, must be large integral type. */
3914 if (n2bits != 0 || n3bits != 0)
3915 {
3916 char got_signed = 0;
3917 char got_unsigned = 0;
3918 /* Number of bits in the type. */
3919 int nbits = 0;
3920
3921 /* If a type size attribute has been specified, the bounds of
3922 the range should fit in this size. If the lower bounds needs
3923 more bits than the upper bound, then the type is signed. */
3924 if (n2bits <= type_size && n3bits <= type_size)
3925 {
3926 if (n2bits == type_size && n2bits > n3bits)
3927 got_signed = 1;
3928 else
3929 got_unsigned = 1;
3930 nbits = type_size;
3931 }
3932 /* Range from 0 to <large number> is an unsigned large integral type. */
3933 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3934 {
3935 got_unsigned = 1;
3936 nbits = n3bits;
3937 }
3938 /* Range from <large number> to <large number>-1 is a large signed
3939 integral type. Take care of the case where <large number> doesn't
3940 fit in a long but <large number>-1 does. */
3941 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3942 || (n2bits != 0 && n3bits == 0
3943 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3944 && n3 == LONG_MAX))
3945 {
3946 got_signed = 1;
3947 nbits = n2bits;
3948 }
3949
3950 if (got_signed || got_unsigned)
3951 {
3952 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3953 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3954 objfile);
3955 }
3956 else
3957 return error_type (pp, objfile);
3958 }
3959
3960 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3961 if (self_subrange && n2 == 0 && n3 == 0)
3962 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3963
3964 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3965 is the width in bytes.
3966
3967 Fortran programs appear to use this for complex types also. To
3968 distinguish between floats and complex, g77 (and others?) seem
3969 to use self-subranges for the complexes, and subranges of int for
3970 the floats.
3971
3972 Also note that for complexes, g77 sets n2 to the size of one of
3973 the member floats, not the whole complex beast. My guess is that
3974 this was to work well with pre-COMPLEX versions of gdb. */
3975
3976 if (n3 == 0 && n2 > 0)
3977 {
3978 struct type *float_type
3979 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3980
3981 if (self_subrange)
3982 {
3983 struct type *complex_type =
3984 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3985 TYPE_TARGET_TYPE (complex_type) = float_type;
3986 return complex_type;
3987 }
3988 else
3989 return float_type;
3990 }
3991
3992 /* If the upper bound is -1, it must really be an unsigned integral. */
3993
3994 else if (n2 == 0 && n3 == -1)
3995 {
3996 int bits = type_size;
3997 if (bits <= 0)
3998 {
3999 /* We don't know its size. It is unsigned int or unsigned
4000 long. GCC 2.3.3 uses this for long long too, but that is
4001 just a GDB 3.5 compatibility hack. */
4002 bits = gdbarch_int_bit (gdbarch);
4003 }
4004
4005 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4006 TYPE_FLAG_UNSIGNED, NULL, objfile);
4007 }
4008
4009 /* Special case: char is defined (Who knows why) as a subrange of
4010 itself with range 0-127. */
4011 else if (self_subrange && n2 == 0 && n3 == 127)
4012 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4013
4014 /* We used to do this only for subrange of self or subrange of int. */
4015 else if (n2 == 0)
4016 {
4017 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4018 "unsigned long", and we already checked for that,
4019 so don't need to test for it here. */
4020
4021 if (n3 < 0)
4022 /* n3 actually gives the size. */
4023 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4024 NULL, objfile);
4025
4026 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4027 unsigned n-byte integer. But do require n to be a power of
4028 two; we don't want 3- and 5-byte integers flying around. */
4029 {
4030 int bytes;
4031 unsigned long bits;
4032
4033 bits = n3;
4034 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4035 bits >>= 8;
4036 if (bits == 0
4037 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4038 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4039 objfile);
4040 }
4041 }
4042 /* I think this is for Convex "long long". Since I don't know whether
4043 Convex sets self_subrange, I also accept that particular size regardless
4044 of self_subrange. */
4045 else if (n3 == 0 && n2 < 0
4046 && (self_subrange
4047 || n2 == -gdbarch_long_long_bit
4048 (gdbarch) / TARGET_CHAR_BIT))
4049 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4050 else if (n2 == -n3 - 1)
4051 {
4052 if (n3 == 0x7f)
4053 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4054 if (n3 == 0x7fff)
4055 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4056 if (n3 == 0x7fffffff)
4057 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4058 }
4059
4060 /* We have a real range type on our hands. Allocate space and
4061 return a real pointer. */
4062 handle_true_range:
4063
4064 if (self_subrange)
4065 index_type = builtin_type (gdbarch)->builtin_int;
4066 else
4067 index_type = *dbx_lookup_type (rangenums);
4068 if (index_type == NULL)
4069 {
4070 /* Does this actually ever happen? Is that why we are worrying
4071 about dealing with it rather than just calling error_type? */
4072
4073 complaint (&symfile_complaints,
4074 _("base type %d of range type is not defined"), rangenums[1]);
4075
4076 index_type = builtin_type (gdbarch)->builtin_int;
4077 }
4078
4079 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4080 return (result_type);
4081 }
4082
4083 /* Read in an argument list. This is a list of types, separated by commas
4084 and terminated with END. Return the list of types read in, or NULL
4085 if there is an error. */
4086
4087 static struct field *
4088 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4089 int *varargsp)
4090 {
4091 /* FIXME! Remove this arbitrary limit! */
4092 struct type *types[1024]; /* allow for fns of 1023 parameters */
4093 int n = 0, i;
4094 struct field *rval;
4095
4096 while (**pp != end)
4097 {
4098 if (**pp != ',')
4099 /* Invalid argument list: no ','. */
4100 return NULL;
4101 (*pp)++;
4102 STABS_CONTINUE (pp, objfile);
4103 types[n++] = read_type (pp, objfile);
4104 }
4105 (*pp)++; /* get past `end' (the ':' character) */
4106
4107 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4108 *varargsp = 1;
4109 else
4110 {
4111 n--;
4112 *varargsp = 0;
4113 }
4114
4115 rval = (struct field *) xmalloc (n * sizeof (struct field));
4116 memset (rval, 0, n * sizeof (struct field));
4117 for (i = 0; i < n; i++)
4118 rval[i].type = types[i];
4119 *nargsp = n;
4120 return rval;
4121 }
4122 \f
4123 /* Common block handling. */
4124
4125 /* List of symbols declared since the last BCOMM. This list is a tail
4126 of local_symbols. When ECOMM is seen, the symbols on the list
4127 are noted so their proper addresses can be filled in later,
4128 using the common block base address gotten from the assembler
4129 stabs. */
4130
4131 static struct pending *common_block;
4132 static int common_block_i;
4133
4134 /* Name of the current common block. We get it from the BCOMM instead of the
4135 ECOMM to match IBM documentation (even though IBM puts the name both places
4136 like everyone else). */
4137 static char *common_block_name;
4138
4139 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4140 to remain after this function returns. */
4141
4142 void
4143 common_block_start (char *name, struct objfile *objfile)
4144 {
4145 if (common_block_name != NULL)
4146 {
4147 complaint (&symfile_complaints,
4148 _("Invalid symbol data: common block within common block"));
4149 }
4150 common_block = local_symbols;
4151 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4152 common_block_name = obsavestring (name, strlen (name),
4153 &objfile->objfile_obstack);
4154 }
4155
4156 /* Process a N_ECOMM symbol. */
4157
4158 void
4159 common_block_end (struct objfile *objfile)
4160 {
4161 /* Symbols declared since the BCOMM are to have the common block
4162 start address added in when we know it. common_block and
4163 common_block_i point to the first symbol after the BCOMM in
4164 the local_symbols list; copy the list and hang it off the
4165 symbol for the common block name for later fixup. */
4166 int i;
4167 struct symbol *sym;
4168 struct pending *new = 0;
4169 struct pending *next;
4170 int j;
4171
4172 if (common_block_name == NULL)
4173 {
4174 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4175 return;
4176 }
4177
4178 sym = (struct symbol *)
4179 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4180 memset (sym, 0, sizeof (struct symbol));
4181 /* Note: common_block_name already saved on objfile_obstack */
4182 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4183 SYMBOL_CLASS (sym) = LOC_BLOCK;
4184
4185 /* Now we copy all the symbols which have been defined since the BCOMM. */
4186
4187 /* Copy all the struct pendings before common_block. */
4188 for (next = local_symbols;
4189 next != NULL && next != common_block;
4190 next = next->next)
4191 {
4192 for (j = 0; j < next->nsyms; j++)
4193 add_symbol_to_list (next->symbol[j], &new);
4194 }
4195
4196 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4197 NULL, it means copy all the local symbols (which we already did
4198 above). */
4199
4200 if (common_block != NULL)
4201 for (j = common_block_i; j < common_block->nsyms; j++)
4202 add_symbol_to_list (common_block->symbol[j], &new);
4203
4204 SYMBOL_TYPE (sym) = (struct type *) new;
4205
4206 /* Should we be putting local_symbols back to what it was?
4207 Does it matter? */
4208
4209 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4210 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4211 global_sym_chain[i] = sym;
4212 common_block_name = NULL;
4213 }
4214
4215 /* Add a common block's start address to the offset of each symbol
4216 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4217 the common block name). */
4218
4219 static void
4220 fix_common_block (struct symbol *sym, int valu)
4221 {
4222 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4223 for (; next; next = next->next)
4224 {
4225 int j;
4226 for (j = next->nsyms - 1; j >= 0; j--)
4227 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4228 }
4229 }
4230 \f
4231
4232
4233 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4234 See add_undefined_type for more details. */
4235
4236 static void
4237 add_undefined_type_noname (struct type *type, int typenums[2])
4238 {
4239 struct nat nat;
4240
4241 nat.typenums[0] = typenums [0];
4242 nat.typenums[1] = typenums [1];
4243 nat.type = type;
4244
4245 if (noname_undefs_length == noname_undefs_allocated)
4246 {
4247 noname_undefs_allocated *= 2;
4248 noname_undefs = (struct nat *)
4249 xrealloc ((char *) noname_undefs,
4250 noname_undefs_allocated * sizeof (struct nat));
4251 }
4252 noname_undefs[noname_undefs_length++] = nat;
4253 }
4254
4255 /* Add TYPE to the UNDEF_TYPES vector.
4256 See add_undefined_type for more details. */
4257
4258 static void
4259 add_undefined_type_1 (struct type *type)
4260 {
4261 if (undef_types_length == undef_types_allocated)
4262 {
4263 undef_types_allocated *= 2;
4264 undef_types = (struct type **)
4265 xrealloc ((char *) undef_types,
4266 undef_types_allocated * sizeof (struct type *));
4267 }
4268 undef_types[undef_types_length++] = type;
4269 }
4270
4271 /* What about types defined as forward references inside of a small lexical
4272 scope? */
4273 /* Add a type to the list of undefined types to be checked through
4274 once this file has been read in.
4275
4276 In practice, we actually maintain two such lists: The first list
4277 (UNDEF_TYPES) is used for types whose name has been provided, and
4278 concerns forward references (eg 'xs' or 'xu' forward references);
4279 the second list (NONAME_UNDEFS) is used for types whose name is
4280 unknown at creation time, because they were referenced through
4281 their type number before the actual type was declared.
4282 This function actually adds the given type to the proper list. */
4283
4284 static void
4285 add_undefined_type (struct type *type, int typenums[2])
4286 {
4287 if (TYPE_TAG_NAME (type) == NULL)
4288 add_undefined_type_noname (type, typenums);
4289 else
4290 add_undefined_type_1 (type);
4291 }
4292
4293 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4294
4295 static void
4296 cleanup_undefined_types_noname (void)
4297 {
4298 int i;
4299
4300 for (i = 0; i < noname_undefs_length; i++)
4301 {
4302 struct nat nat = noname_undefs[i];
4303 struct type **type;
4304
4305 type = dbx_lookup_type (nat.typenums);
4306 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4307 {
4308 /* The instance flags of the undefined type are still unset,
4309 and needs to be copied over from the reference type.
4310 Since replace_type expects them to be identical, we need
4311 to set these flags manually before hand. */
4312 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4313 replace_type (nat.type, *type);
4314 }
4315 }
4316
4317 noname_undefs_length = 0;
4318 }
4319
4320 /* Go through each undefined type, see if it's still undefined, and fix it
4321 up if possible. We have two kinds of undefined types:
4322
4323 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4324 Fix: update array length using the element bounds
4325 and the target type's length.
4326 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4327 yet defined at the time a pointer to it was made.
4328 Fix: Do a full lookup on the struct/union tag. */
4329
4330 static void
4331 cleanup_undefined_types_1 (void)
4332 {
4333 struct type **type;
4334
4335 /* Iterate over every undefined type, and look for a symbol whose type
4336 matches our undefined type. The symbol matches if:
4337 1. It is a typedef in the STRUCT domain;
4338 2. It has the same name, and same type code;
4339 3. The instance flags are identical.
4340
4341 It is important to check the instance flags, because we have seen
4342 examples where the debug info contained definitions such as:
4343
4344 "foo_t:t30=B31=xefoo_t:"
4345
4346 In this case, we have created an undefined type named "foo_t" whose
4347 instance flags is null (when processing "xefoo_t"), and then created
4348 another type with the same name, but with different instance flags
4349 ('B' means volatile). I think that the definition above is wrong,
4350 since the same type cannot be volatile and non-volatile at the same
4351 time, but we need to be able to cope with it when it happens. The
4352 approach taken here is to treat these two types as different. */
4353
4354 for (type = undef_types; type < undef_types + undef_types_length; type++)
4355 {
4356 switch (TYPE_CODE (*type))
4357 {
4358
4359 case TYPE_CODE_STRUCT:
4360 case TYPE_CODE_UNION:
4361 case TYPE_CODE_ENUM:
4362 {
4363 /* Check if it has been defined since. Need to do this here
4364 as well as in check_typedef to deal with the (legitimate in
4365 C though not C++) case of several types with the same name
4366 in different source files. */
4367 if (TYPE_STUB (*type))
4368 {
4369 struct pending *ppt;
4370 int i;
4371 /* Name of the type, without "struct" or "union" */
4372 char *typename = TYPE_TAG_NAME (*type);
4373
4374 if (typename == NULL)
4375 {
4376 complaint (&symfile_complaints, _("need a type name"));
4377 break;
4378 }
4379 for (ppt = file_symbols; ppt; ppt = ppt->next)
4380 {
4381 for (i = 0; i < ppt->nsyms; i++)
4382 {
4383 struct symbol *sym = ppt->symbol[i];
4384
4385 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4386 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4387 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4388 TYPE_CODE (*type))
4389 && (TYPE_INSTANCE_FLAGS (*type) ==
4390 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4391 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4392 typename) == 0)
4393 replace_type (*type, SYMBOL_TYPE (sym));
4394 }
4395 }
4396 }
4397 }
4398 break;
4399
4400 default:
4401 {
4402 complaint (&symfile_complaints,
4403 _("forward-referenced types left unresolved, "
4404 "type code %d."),
4405 TYPE_CODE (*type));
4406 }
4407 break;
4408 }
4409 }
4410
4411 undef_types_length = 0;
4412 }
4413
4414 /* Try to fix all the undefined types we ecountered while processing
4415 this unit. */
4416
4417 void
4418 cleanup_undefined_types (void)
4419 {
4420 cleanup_undefined_types_1 ();
4421 cleanup_undefined_types_noname ();
4422 }
4423
4424 /* Scan through all of the global symbols defined in the object file,
4425 assigning values to the debugging symbols that need to be assigned
4426 to. Get these symbols from the minimal symbol table. */
4427
4428 void
4429 scan_file_globals (struct objfile *objfile)
4430 {
4431 int hash;
4432 struct minimal_symbol *msymbol;
4433 struct symbol *sym, *prev;
4434 struct objfile *resolve_objfile;
4435
4436 /* SVR4 based linkers copy referenced global symbols from shared
4437 libraries to the main executable.
4438 If we are scanning the symbols for a shared library, try to resolve
4439 them from the minimal symbols of the main executable first. */
4440
4441 if (symfile_objfile && objfile != symfile_objfile)
4442 resolve_objfile = symfile_objfile;
4443 else
4444 resolve_objfile = objfile;
4445
4446 while (1)
4447 {
4448 /* Avoid expensive loop through all minimal symbols if there are
4449 no unresolved symbols. */
4450 for (hash = 0; hash < HASHSIZE; hash++)
4451 {
4452 if (global_sym_chain[hash])
4453 break;
4454 }
4455 if (hash >= HASHSIZE)
4456 return;
4457
4458 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4459 {
4460 QUIT;
4461
4462 /* Skip static symbols. */
4463 switch (MSYMBOL_TYPE (msymbol))
4464 {
4465 case mst_file_text:
4466 case mst_file_data:
4467 case mst_file_bss:
4468 continue;
4469 default:
4470 break;
4471 }
4472
4473 prev = NULL;
4474
4475 /* Get the hash index and check all the symbols
4476 under that hash index. */
4477
4478 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4479
4480 for (sym = global_sym_chain[hash]; sym;)
4481 {
4482 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4483 SYMBOL_LINKAGE_NAME (sym)) == 0)
4484 {
4485 /* Splice this symbol out of the hash chain and
4486 assign the value we have to it. */
4487 if (prev)
4488 {
4489 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4490 }
4491 else
4492 {
4493 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4494 }
4495
4496 /* Check to see whether we need to fix up a common block. */
4497 /* Note: this code might be executed several times for
4498 the same symbol if there are multiple references. */
4499 if (sym)
4500 {
4501 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4502 {
4503 fix_common_block (sym,
4504 SYMBOL_VALUE_ADDRESS (msymbol));
4505 }
4506 else
4507 {
4508 SYMBOL_VALUE_ADDRESS (sym)
4509 = SYMBOL_VALUE_ADDRESS (msymbol);
4510 }
4511 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4512 }
4513
4514 if (prev)
4515 {
4516 sym = SYMBOL_VALUE_CHAIN (prev);
4517 }
4518 else
4519 {
4520 sym = global_sym_chain[hash];
4521 }
4522 }
4523 else
4524 {
4525 prev = sym;
4526 sym = SYMBOL_VALUE_CHAIN (sym);
4527 }
4528 }
4529 }
4530 if (resolve_objfile == objfile)
4531 break;
4532 resolve_objfile = objfile;
4533 }
4534
4535 /* Change the storage class of any remaining unresolved globals to
4536 LOC_UNRESOLVED and remove them from the chain. */
4537 for (hash = 0; hash < HASHSIZE; hash++)
4538 {
4539 sym = global_sym_chain[hash];
4540 while (sym)
4541 {
4542 prev = sym;
4543 sym = SYMBOL_VALUE_CHAIN (sym);
4544
4545 /* Change the symbol address from the misleading chain value
4546 to address zero. */
4547 SYMBOL_VALUE_ADDRESS (prev) = 0;
4548
4549 /* Complain about unresolved common block symbols. */
4550 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4551 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4552 else
4553 complaint (&symfile_complaints,
4554 _("%s: common block `%s' from global_sym_chain unresolved"),
4555 objfile->name, SYMBOL_PRINT_NAME (prev));
4556 }
4557 }
4558 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4559 }
4560
4561 /* Initialize anything that needs initializing when starting to read
4562 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4563 to a psymtab. */
4564
4565 void
4566 stabsread_init (void)
4567 {
4568 }
4569
4570 /* Initialize anything that needs initializing when a completely new
4571 symbol file is specified (not just adding some symbols from another
4572 file, e.g. a shared library). */
4573
4574 void
4575 stabsread_new_init (void)
4576 {
4577 /* Empty the hash table of global syms looking for values. */
4578 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4579 }
4580
4581 /* Initialize anything that needs initializing at the same time as
4582 start_symtab() is called. */
4583
4584 void
4585 start_stabs (void)
4586 {
4587 global_stabs = NULL; /* AIX COFF */
4588 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4589 n_this_object_header_files = 1;
4590 type_vector_length = 0;
4591 type_vector = (struct type **) 0;
4592
4593 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4594 common_block_name = NULL;
4595 }
4596
4597 /* Call after end_symtab() */
4598
4599 void
4600 end_stabs (void)
4601 {
4602 if (type_vector)
4603 {
4604 xfree (type_vector);
4605 }
4606 type_vector = 0;
4607 type_vector_length = 0;
4608 previous_stab_code = 0;
4609 }
4610
4611 void
4612 finish_global_stabs (struct objfile *objfile)
4613 {
4614 if (global_stabs)
4615 {
4616 patch_block_stabs (global_symbols, global_stabs, objfile);
4617 xfree (global_stabs);
4618 global_stabs = NULL;
4619 }
4620 }
4621
4622 /* Find the end of the name, delimited by a ':', but don't match
4623 ObjC symbols which look like -[Foo bar::]:bla. */
4624 static char *
4625 find_name_end (char *name)
4626 {
4627 char *s = name;
4628 if (s[0] == '-' || *s == '+')
4629 {
4630 /* Must be an ObjC method symbol. */
4631 if (s[1] != '[')
4632 {
4633 error (_("invalid symbol name \"%s\""), name);
4634 }
4635 s = strchr (s, ']');
4636 if (s == NULL)
4637 {
4638 error (_("invalid symbol name \"%s\""), name);
4639 }
4640 return strchr (s, ':');
4641 }
4642 else
4643 {
4644 return strchr (s, ':');
4645 }
4646 }
4647
4648 /* Initializer for this module */
4649
4650 void
4651 _initialize_stabsread (void)
4652 {
4653 undef_types_allocated = 20;
4654 undef_types_length = 0;
4655 undef_types = (struct type **)
4656 xmalloc (undef_types_allocated * sizeof (struct type *));
4657
4658 noname_undefs_allocated = 20;
4659 noname_undefs_length = 0;
4660 noname_undefs = (struct nat *)
4661 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4662 }
This page took 0.143565 seconds and 4 git commands to generate.