f9c619b12cb06004e350149ad9ddf5fc1426f254
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42
43 #include <ctype.h>
44
45 /* Ask stabsread.h to define the vars it normally declares `extern'. */
46 #define EXTERN /**/
47 #include "stabsread.h" /* Our own declarations */
48 #undef EXTERN
49
50 /* The routines that read and process a complete stabs for a C struct or
51 C++ class pass lists of data member fields and lists of member function
52 fields in an instance of a field_info structure, as defined below.
53 This is part of some reorganization of low level C++ support and is
54 expected to eventually go away... (FIXME) */
55
56 struct field_info
57 {
58 struct nextfield
59 {
60 struct nextfield *next;
61
62 /* This is the raw visibility from the stab. It is not checked
63 for being one of the visibilities we recognize, so code which
64 examines this field better be able to deal. */
65 int visibility;
66
67 struct field field;
68 } *list;
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 } *fnlist;
74 };
75
76 static struct type *
77 dbx_alloc_type PARAMS ((int [2], struct objfile *));
78
79 static long read_huge_number PARAMS ((char **, int, int *));
80
81 static struct type *error_type PARAMS ((char **));
82
83 static void
84 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
85 struct objfile *));
86
87 static void
88 fix_common_block PARAMS ((struct symbol *, int));
89
90 static int
91 read_type_number PARAMS ((char **, int *));
92
93 static struct type *
94 read_range_type PARAMS ((char **, int [2], struct objfile *));
95
96 static struct type *
97 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
98
99 static struct type *
100 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
101
102 static struct type *
103 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
104
105 static struct type *
106 rs6000_builtin_type PARAMS ((int));
107
108 static int
109 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
122 struct objfile *));
123
124 static int
125 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
126
127 static int
128 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
129 struct objfile *));
130
131 static struct type *
132 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
133
134 static struct type *
135 read_array_type PARAMS ((char **, struct type *, struct objfile *));
136
137 static struct type **
138 read_args PARAMS ((char **, int, struct objfile *));
139
140 static int
141 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
142 struct objfile *));
143
144 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
145 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
146
147 /* Define this as 1 if a pcc declaration of a char or short argument
148 gives the correct address. Otherwise assume pcc gives the
149 address of the corresponding int, which is not the same on a
150 big-endian machine. */
151
152 #ifndef BELIEVE_PCC_PROMOTION
153 #define BELIEVE_PCC_PROMOTION 0
154 #endif
155
156 struct complaint invalid_cpp_abbrev_complaint =
157 {"invalid C++ abbreviation `%s'", 0, 0};
158
159 struct complaint invalid_cpp_type_complaint =
160 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
161
162 struct complaint member_fn_complaint =
163 {"member function type missing, got '%c'", 0, 0};
164
165 struct complaint const_vol_complaint =
166 {"const/volatile indicator missing, got '%c'", 0, 0};
167
168 struct complaint error_type_complaint =
169 {"debug info mismatch between compiler and debugger", 0, 0};
170
171 struct complaint invalid_member_complaint =
172 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
173
174 struct complaint range_type_base_complaint =
175 {"base type %d of range type is not defined", 0, 0};
176
177 struct complaint reg_value_complaint =
178 {"register number too large in symbol %s", 0, 0};
179
180 struct complaint vtbl_notfound_complaint =
181 {"virtual function table pointer not found when defining class `%s'", 0, 0};
182
183 struct complaint unrecognized_cplus_name_complaint =
184 {"Unknown C++ symbol name `%s'", 0, 0};
185
186 struct complaint rs6000_builtin_complaint =
187 {"Unknown builtin type %d", 0, 0};
188
189 struct complaint unresolved_sym_chain_complaint =
190 {"%s: `%s' from global_sym_chain unresolved", 0, 0};
191
192 struct complaint stabs_general_complaint =
193 {"%s", 0, 0};
194
195 /* Make a list of forward references which haven't been defined. */
196
197 static struct type **undef_types;
198 static int undef_types_allocated;
199 static int undef_types_length;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (); \
206 } while (0)
207 \f
208 /* FIXME: These probably should be our own types (like rs6000_builtin_type
209 has its own types) rather than builtin_type_*. */
210 static struct type **os9k_type_vector[] = {
211 0,
212 &builtin_type_int,
213 &builtin_type_char,
214 &builtin_type_long,
215 &builtin_type_short,
216 &builtin_type_unsigned_char,
217 &builtin_type_unsigned_short,
218 &builtin_type_unsigned_long,
219 &builtin_type_unsigned_int,
220 &builtin_type_float,
221 &builtin_type_double,
222 &builtin_type_void,
223 &builtin_type_long_double
224 };
225
226 static void os9k_init_type_vector PARAMS ((struct type **));
227
228 static void
229 os9k_init_type_vector(tv)
230 struct type **tv;
231 {
232 int i;
233 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
234 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
235 }
236
237 /* Look up a dbx type-number pair. Return the address of the slot
238 where the type for that number-pair is stored.
239 The number-pair is in TYPENUMS.
240
241 This can be used for finding the type associated with that pair
242 or for associating a new type with the pair. */
243
244 struct type **
245 dbx_lookup_type (typenums)
246 int typenums[2];
247 {
248 register int filenum = typenums[0];
249 register int index = typenums[1];
250 unsigned old_len;
251 register int real_filenum;
252 register struct header_file *f;
253 int f_orig_length;
254
255 if (filenum == -1) /* -1,-1 is for temporary types. */
256 return 0;
257
258 if (filenum < 0 || filenum >= n_this_object_header_files)
259 {
260 static struct complaint msg = {"\
261 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
262 0, 0};
263 complain (&msg, filenum, index, symnum);
264 goto error_return;
265 }
266
267 if (filenum == 0)
268 {
269 if (index < 0)
270 {
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
277
278 temp_type = rs6000_builtin_type(index);
279 return &temp_type;
280 }
281
282 /* Type is defined outside of header files.
283 Find it in this object file's type vector. */
284 if (index >= type_vector_length)
285 {
286 old_len = type_vector_length;
287 if (old_len == 0)
288 {
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
290 type_vector = (struct type **)
291 malloc (type_vector_length * sizeof (struct type *));
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302
303 if (os9k_stabs)
304 /* Deal with OS9000 fundamental types. */
305 os9k_init_type_vector (type_vector);
306 }
307 return (&type_vector[index]);
308 }
309 else
310 {
311 real_filenum = this_object_header_files[filenum];
312
313 if (real_filenum >= n_header_files)
314 {
315 struct type *temp_type;
316 struct type **temp_type_p;
317
318 warning ("GDB internal error: bad real_filenum");
319
320 error_return:
321 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
322 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
323 *temp_type_p = temp_type;
324 return temp_type_p;
325 }
326
327 f = &header_files[real_filenum];
328
329 f_orig_length = f->length;
330 if (index >= f_orig_length)
331 {
332 while (index >= f->length)
333 {
334 f->length *= 2;
335 }
336 f->vector = (struct type **)
337 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
338 memset (&f->vector[f_orig_length], 0,
339 (f->length - f_orig_length) * sizeof (struct type *));
340 }
341 return (&f->vector[index]);
342 }
343 }
344
345 /* Make sure there is a type allocated for type numbers TYPENUMS
346 and return the type object.
347 This can create an empty (zeroed) type object.
348 TYPENUMS may be (-1, -1) to return a new type object that is not
349 put into the type vector, and so may not be referred to by number. */
350
351 static struct type *
352 dbx_alloc_type (typenums, objfile)
353 int typenums[2];
354 struct objfile *objfile;
355 {
356 register struct type **type_addr;
357
358 if (typenums[0] == -1)
359 {
360 return (alloc_type (objfile));
361 }
362
363 type_addr = dbx_lookup_type (typenums);
364
365 /* If we are referring to a type not known at all yet,
366 allocate an empty type for it.
367 We will fill it in later if we find out how. */
368 if (*type_addr == 0)
369 {
370 *type_addr = alloc_type (objfile);
371 }
372
373 return (*type_addr);
374 }
375
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
378
379 static void
380 patch_block_stabs (symbols, stabs, objfile)
381 struct pending *symbols;
382 struct pending_stabs *stabs;
383 struct objfile *objfile;
384 {
385 int ii;
386 char *name;
387 char *pp;
388 struct symbol *sym;
389
390 if (stabs)
391 {
392
393 /* for all the stab entries, find their corresponding symbols and
394 patch their types! */
395
396 for (ii = 0; ii < stabs->count; ++ii)
397 {
398 name = stabs->stab[ii];
399 pp = (char*) strchr (name, ':');
400 while (pp[1] == ':')
401 {
402 pp += 2;
403 pp = (char *)strchr(pp, ':');
404 }
405 sym = find_symbol_in_list (symbols, name, pp-name);
406 if (!sym)
407 {
408 /* FIXME-maybe: it would be nice if we noticed whether
409 the variable was defined *anywhere*, not just whether
410 it is defined in this compilation unit. But neither
411 xlc or GCC seem to need such a definition, and until
412 we do psymtabs (so that the minimal symbols from all
413 compilation units are available now), I'm not sure
414 how to get the information. */
415
416 /* On xcoff, if a global is defined and never referenced,
417 ld will remove it from the executable. There is then
418 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
419 sym = (struct symbol *)
420 obstack_alloc (&objfile->symbol_obstack,
421 sizeof (struct symbol));
422
423 memset (sym, 0, sizeof (struct symbol));
424 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
425 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
426 SYMBOL_NAME (sym) =
427 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
428 pp += 2;
429 if (*(pp-1) == 'F' || *(pp-1) == 'f')
430 {
431 /* I don't think the linker does this with functions,
432 so as far as I know this is never executed.
433 But it doesn't hurt to check. */
434 SYMBOL_TYPE (sym) =
435 lookup_function_type (read_type (&pp, objfile));
436 }
437 else
438 {
439 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
440 }
441 add_symbol_to_list (sym, &global_symbols);
442 }
443 else
444 {
445 pp += 2;
446 if (*(pp-1) == 'F' || *(pp-1) == 'f')
447 {
448 SYMBOL_TYPE (sym) =
449 lookup_function_type (read_type (&pp, objfile));
450 }
451 else
452 {
453 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
454 }
455 }
456 }
457 }
458 }
459
460 \f
461 /* Read a number by which a type is referred to in dbx data,
462 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
463 Just a single number N is equivalent to (0,N).
464 Return the two numbers by storing them in the vector TYPENUMS.
465 TYPENUMS will then be used as an argument to dbx_lookup_type.
466
467 Returns 0 for success, -1 for error. */
468
469 static int
470 read_type_number (pp, typenums)
471 register char **pp;
472 register int *typenums;
473 {
474 int nbits;
475 if (**pp == '(')
476 {
477 (*pp)++;
478 typenums[0] = read_huge_number (pp, ',', &nbits);
479 if (nbits != 0) return -1;
480 typenums[1] = read_huge_number (pp, ')', &nbits);
481 if (nbits != 0) return -1;
482 }
483 else
484 {
485 typenums[0] = 0;
486 typenums[1] = read_huge_number (pp, 0, &nbits);
487 if (nbits != 0) return -1;
488 }
489 return 0;
490 }
491
492 \f
493 /* To handle GNU C++ typename abbreviation, we need to be able to
494 fill in a type's name as soon as space for that type is allocated.
495 `type_synonym_name' is the name of the type being allocated.
496 It is cleared as soon as it is used (lest all allocated types
497 get this name). */
498
499 static char *type_synonym_name;
500
501 #if !defined (REG_STRUCT_HAS_ADDR)
502 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
503 #endif
504
505 /* ARGSUSED */
506 struct symbol *
507 define_symbol (valu, string, desc, type, objfile)
508 CORE_ADDR valu;
509 char *string;
510 int desc;
511 int type;
512 struct objfile *objfile;
513 {
514 register struct symbol *sym;
515 char *p = (char *) strchr (string, ':');
516 int deftype;
517 int synonym = 0;
518 register int i;
519
520 /* We would like to eliminate nameless symbols, but keep their types.
521 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
522 to type 2, but, should not create a symbol to address that type. Since
523 the symbol will be nameless, there is no way any user can refer to it. */
524
525 int nameless;
526
527 /* Ignore syms with empty names. */
528 if (string[0] == 0)
529 return 0;
530
531 /* Ignore old-style symbols from cc -go */
532 if (p == 0)
533 return 0;
534
535 while (p[1] == ':')
536 {
537 p += 2;
538 p = strchr(p, ':');
539 }
540
541 /* If a nameless stab entry, all we need is the type, not the symbol.
542 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
543 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
544
545 sym = (struct symbol *)
546 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
547 memset (sym, 0, sizeof (struct symbol));
548
549 switch (type & N_TYPE)
550 {
551 case N_TEXT:
552 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
553 break;
554 case N_DATA:
555 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
556 break;
557 case N_BSS:
558 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
559 break;
560 }
561
562 if (processing_gcc_compilation)
563 {
564 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
565 number of bytes occupied by a type or object, which we ignore. */
566 SYMBOL_LINE(sym) = desc;
567 }
568 else
569 {
570 SYMBOL_LINE(sym) = 0; /* unknown */
571 }
572
573 if (string[0] == CPLUS_MARKER)
574 {
575 /* Special GNU C++ names. */
576 switch (string[1])
577 {
578 case 't':
579 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
580 &objfile -> symbol_obstack);
581 break;
582
583 case 'v': /* $vtbl_ptr_type */
584 /* Was: SYMBOL_NAME (sym) = "vptr"; */
585 goto normal;
586
587 case 'e':
588 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
589 &objfile -> symbol_obstack);
590 break;
591
592 case '_':
593 /* This was an anonymous type that was never fixed up. */
594 goto normal;
595
596 #ifdef STATIC_TRANSFORM_NAME
597 case 'X':
598 /* SunPRO (3.0 at least) static variable encoding. */
599 goto normal;
600 #endif
601
602 default:
603 complain (&unrecognized_cplus_name_complaint, string);
604 goto normal; /* Do *something* with it */
605 }
606 }
607 else
608 {
609 normal:
610 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
611 SYMBOL_NAME (sym) = (char *)
612 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
613 /* Open-coded memcpy--saves function call time. */
614 /* FIXME: Does it really? Try replacing with simple strcpy and
615 try it on an executable with a large symbol table. */
616 /* FIXME: considering that gcc can open code memcpy anyway, I
617 doubt it. xoxorich. */
618 {
619 register char *p1 = string;
620 register char *p2 = SYMBOL_NAME (sym);
621 while (p1 != p)
622 {
623 *p2++ = *p1++;
624 }
625 *p2++ = '\0';
626 }
627
628 /* If this symbol is from a C++ compilation, then attempt to cache the
629 demangled form for future reference. This is a typical time versus
630 space tradeoff, that was decided in favor of time because it sped up
631 C++ symbol lookups by a factor of about 20. */
632
633 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
634 }
635 p++;
636
637 /* Determine the type of name being defined. */
638 #if 0
639 /* Getting GDB to correctly skip the symbol on an undefined symbol
640 descriptor and not ever dump core is a very dodgy proposition if
641 we do things this way. I say the acorn RISC machine can just
642 fix their compiler. */
643 /* The Acorn RISC machine's compiler can put out locals that don't
644 start with "234=" or "(3,4)=", so assume anything other than the
645 deftypes we know how to handle is a local. */
646 if (!strchr ("cfFGpPrStTvVXCR", *p))
647 #else
648 if (isdigit (*p) || *p == '(' || *p == '-')
649 #endif
650 deftype = 'l';
651 else
652 deftype = *p++;
653
654 switch (deftype)
655 {
656 case 'c':
657 /* c is a special case, not followed by a type-number.
658 SYMBOL:c=iVALUE for an integer constant symbol.
659 SYMBOL:c=rVALUE for a floating constant symbol.
660 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
661 e.g. "b:c=e6,0" for "const b = blob1"
662 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
663 if (*p != '=')
664 {
665 SYMBOL_CLASS (sym) = LOC_CONST;
666 SYMBOL_TYPE (sym) = error_type (&p);
667 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
668 add_symbol_to_list (sym, &file_symbols);
669 return sym;
670 }
671 ++p;
672 switch (*p++)
673 {
674 case 'r':
675 {
676 double d = atof (p);
677 char *dbl_valu;
678
679 /* FIXME-if-picky-about-floating-accuracy: Should be using
680 target arithmetic to get the value. real.c in GCC
681 probably has the necessary code. */
682
683 /* FIXME: lookup_fundamental_type is a hack. We should be
684 creating a type especially for the type of float constants.
685 Problem is, what type should it be?
686
687 Also, what should the name of this type be? Should we
688 be using 'S' constants (see stabs.texinfo) instead? */
689
690 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
691 FT_DBL_PREC_FLOAT);
692 dbl_valu = (char *)
693 obstack_alloc (&objfile -> symbol_obstack,
694 TYPE_LENGTH (SYMBOL_TYPE (sym)));
695 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
696 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
697 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
698 }
699 break;
700 case 'i':
701 {
702 /* Defining integer constants this way is kind of silly,
703 since 'e' constants allows the compiler to give not
704 only the value, but the type as well. C has at least
705 int, long, unsigned int, and long long as constant
706 types; other languages probably should have at least
707 unsigned as well as signed constants. */
708
709 /* We just need one int constant type for all objfiles.
710 It doesn't depend on languages or anything (arguably its
711 name should be a language-specific name for a type of
712 that size, but I'm inclined to say that if the compiler
713 wants a nice name for the type, it can use 'e'). */
714 static struct type *int_const_type;
715
716 /* Yes, this is as long as a *host* int. That is because we
717 use atoi. */
718 if (int_const_type == NULL)
719 int_const_type =
720 init_type (TYPE_CODE_INT,
721 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
722 "integer constant",
723 (struct objfile *)NULL);
724 SYMBOL_TYPE (sym) = int_const_type;
725 SYMBOL_VALUE (sym) = atoi (p);
726 SYMBOL_CLASS (sym) = LOC_CONST;
727 }
728 break;
729 case 'e':
730 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
731 can be represented as integral.
732 e.g. "b:c=e6,0" for "const b = blob1"
733 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
734 {
735 SYMBOL_CLASS (sym) = LOC_CONST;
736 SYMBOL_TYPE (sym) = read_type (&p, objfile);
737
738 if (*p != ',')
739 {
740 SYMBOL_TYPE (sym) = error_type (&p);
741 break;
742 }
743 ++p;
744
745 /* If the value is too big to fit in an int (perhaps because
746 it is unsigned), or something like that, we silently get
747 a bogus value. The type and everything else about it is
748 correct. Ideally, we should be using whatever we have
749 available for parsing unsigned and long long values,
750 however. */
751 SYMBOL_VALUE (sym) = atoi (p);
752 }
753 break;
754 default:
755 {
756 SYMBOL_CLASS (sym) = LOC_CONST;
757 SYMBOL_TYPE (sym) = error_type (&p);
758 }
759 }
760 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
761 add_symbol_to_list (sym, &file_symbols);
762 return sym;
763
764 case 'C':
765 /* The name of a caught exception. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 SYMBOL_CLASS (sym) = LOC_LABEL;
768 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
769 SYMBOL_VALUE_ADDRESS (sym) = valu;
770 add_symbol_to_list (sym, &local_symbols);
771 break;
772
773 case 'f':
774 /* A static function definition. */
775 SYMBOL_TYPE (sym) = read_type (&p, objfile);
776 SYMBOL_CLASS (sym) = LOC_BLOCK;
777 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
778 add_symbol_to_list (sym, &file_symbols);
779 /* fall into process_function_types. */
780
781 process_function_types:
782 /* Function result types are described as the result type in stabs.
783 We need to convert this to the function-returning-type-X type
784 in GDB. E.g. "int" is converted to "function returning int". */
785 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
786 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
787 /* fall into process_prototype_types */
788
789 process_prototype_types:
790 /* Sun acc puts declared types of arguments here. We don't care
791 about their actual types (FIXME -- we should remember the whole
792 function prototype), but the list may define some new types
793 that we have to remember, so we must scan it now. */
794 while (*p == ';') {
795 p++;
796 read_type (&p, objfile);
797 }
798 break;
799
800 case 'F':
801 /* A global function definition. */
802 SYMBOL_TYPE (sym) = read_type (&p, objfile);
803 SYMBOL_CLASS (sym) = LOC_BLOCK;
804 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
805 add_symbol_to_list (sym, &global_symbols);
806 goto process_function_types;
807
808 case 'G':
809 /* For a class G (global) symbol, it appears that the
810 value is not correct. It is necessary to search for the
811 corresponding linker definition to find the value.
812 These definitions appear at the end of the namelist. */
813 SYMBOL_TYPE (sym) = read_type (&p, objfile);
814 i = hashname (SYMBOL_NAME (sym));
815 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
816 global_sym_chain[i] = sym;
817 SYMBOL_CLASS (sym) = LOC_STATIC;
818 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
819 add_symbol_to_list (sym, &global_symbols);
820 break;
821
822 /* This case is faked by a conditional above,
823 when there is no code letter in the dbx data.
824 Dbx data never actually contains 'l'. */
825 case 's':
826 case 'l':
827 SYMBOL_TYPE (sym) = read_type (&p, objfile);
828 SYMBOL_CLASS (sym) = LOC_LOCAL;
829 SYMBOL_VALUE (sym) = valu;
830 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
831 add_symbol_to_list (sym, &local_symbols);
832 break;
833
834 case 'p':
835 if (*p == 'F')
836 /* pF is a two-letter code that means a function parameter in Fortran.
837 The type-number specifies the type of the return value.
838 Translate it into a pointer-to-function type. */
839 {
840 p++;
841 SYMBOL_TYPE (sym)
842 = lookup_pointer_type
843 (lookup_function_type (read_type (&p, objfile)));
844 }
845 else
846 SYMBOL_TYPE (sym) = read_type (&p, objfile);
847
848 /* Normally this is a parameter, a LOC_ARG. On the i960, it
849 can also be a LOC_LOCAL_ARG depending on symbol type. */
850 #ifndef DBX_PARM_SYMBOL_CLASS
851 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
852 #endif
853
854 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
855 SYMBOL_VALUE (sym) = valu;
856 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
857 add_symbol_to_list (sym, &local_symbols);
858
859 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
860 {
861 /* On little-endian machines, this crud is never necessary,
862 and, if the extra bytes contain garbage, is harmful. */
863 break;
864 }
865
866 /* If it's gcc-compiled, if it says `short', believe it. */
867 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
868 break;
869
870 #if !BELIEVE_PCC_PROMOTION
871 {
872 /* This is the signed type which arguments get promoted to. */
873 static struct type *pcc_promotion_type;
874 /* This is the unsigned type which arguments get promoted to. */
875 static struct type *pcc_unsigned_promotion_type;
876
877 /* Call it "int" because this is mainly C lossage. */
878 if (pcc_promotion_type == NULL)
879 pcc_promotion_type =
880 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
881 0, "int", NULL);
882
883 if (pcc_unsigned_promotion_type == NULL)
884 pcc_unsigned_promotion_type =
885 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
886 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
887
888 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
889 /* This macro is defined on machines (e.g. sparc) where
890 we should believe the type of a PCC 'short' argument,
891 but shouldn't believe the address (the address is
892 the address of the corresponding int).
893
894 My guess is that this correction, as opposed to changing
895 the parameter to an 'int' (as done below, for PCC
896 on most machines), is the right thing to do
897 on all machines, but I don't want to risk breaking
898 something that already works. On most PCC machines,
899 the sparc problem doesn't come up because the calling
900 function has to zero the top bytes (not knowing whether
901 the called function wants an int or a short), so there
902 is little practical difference between an int and a short
903 (except perhaps what happens when the GDB user types
904 "print short_arg = 0x10000;").
905
906 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
907 actually produces the correct address (we don't need to fix it
908 up). I made this code adapt so that it will offset the symbol
909 if it was pointing at an int-aligned location and not
910 otherwise. This way you can use the same gdb for 4.0.x and
911 4.1 systems.
912
913 If the parameter is shorter than an int, and is integral
914 (e.g. char, short, or unsigned equivalent), and is claimed to
915 be passed on an integer boundary, don't believe it! Offset the
916 parameter's address to the tail-end of that integer. */
917
918 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
919 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
920 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
921 {
922 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
923 - TYPE_LENGTH (SYMBOL_TYPE (sym));
924 }
925 break;
926
927 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
928
929 /* If PCC says a parameter is a short or a char,
930 it is really an int. */
931 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
932 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
933 {
934 SYMBOL_TYPE (sym) =
935 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
936 ? pcc_unsigned_promotion_type
937 : pcc_promotion_type;
938 }
939 break;
940
941 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
942 }
943 #endif /* !BELIEVE_PCC_PROMOTION. */
944
945 case 'P':
946 /* acc seems to use P to delare the prototypes of functions that
947 are referenced by this file. gdb is not prepared to deal
948 with this extra information. FIXME, it ought to. */
949 if (type == N_FUN)
950 {
951 read_type (&p, objfile);
952 goto process_prototype_types;
953 }
954 /*FALLTHROUGH*/
955
956 case 'R':
957 /* Parameter which is in a register. */
958 SYMBOL_TYPE (sym) = read_type (&p, objfile);
959 SYMBOL_CLASS (sym) = LOC_REGPARM;
960 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
961 if (SYMBOL_VALUE (sym) >= NUM_REGS)
962 {
963 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
964 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
965 }
966 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
967 add_symbol_to_list (sym, &local_symbols);
968 break;
969
970 case 'r':
971 /* Register variable (either global or local). */
972 SYMBOL_TYPE (sym) = read_type (&p, objfile);
973 SYMBOL_CLASS (sym) = LOC_REGISTER;
974 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
975 if (SYMBOL_VALUE (sym) >= NUM_REGS)
976 {
977 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
978 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
979 }
980 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
981 if (within_function)
982 {
983 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
984 name to represent an argument passed in a register.
985 GCC uses 'P' for the same case. So if we find such a symbol pair
986 we combine it into one 'P' symbol. For Sun cc we need to do this
987 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
988 the 'p' symbol even if it never saves the argument onto the stack.
989
990 On most machines, we want to preserve both symbols, so that
991 we can still get information about what is going on with the
992 stack (VAX for computing args_printed, using stack slots instead
993 of saved registers in backtraces, etc.).
994
995 Note that this code illegally combines
996 main(argc) struct foo argc; { register struct foo argc; }
997 but this case is considered pathological and causes a warning
998 from a decent compiler. */
999
1000 if (local_symbols
1001 && local_symbols->nsyms > 0
1002 #ifndef USE_REGISTER_NOT_ARG
1003 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1004 SYMBOL_TYPE (sym))
1005 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1006 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1007 #endif
1008 )
1009 {
1010 struct symbol *prev_sym;
1011 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1012 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1013 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1014 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1015 {
1016 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1017 /* Use the type from the LOC_REGISTER; that is the type
1018 that is actually in that register. */
1019 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1020 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1021 sym = prev_sym;
1022 break;
1023 }
1024 }
1025 add_symbol_to_list (sym, &local_symbols);
1026 }
1027 else
1028 add_symbol_to_list (sym, &file_symbols);
1029 break;
1030
1031 case 'S':
1032 /* Static symbol at top level of file */
1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1034 SYMBOL_CLASS (sym) = LOC_STATIC;
1035 SYMBOL_VALUE_ADDRESS (sym) = valu;
1036 #ifdef STATIC_TRANSFORM_NAME
1037 if (SYMBOL_NAME (sym)[0] == '$')
1038 {
1039 struct minimal_symbol *msym;
1040 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1041 if (msym != NULL)
1042 {
1043 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1044 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1045 }
1046 }
1047 #endif
1048 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1049 add_symbol_to_list (sym, &file_symbols);
1050 break;
1051
1052 case 't':
1053 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1054
1055 /* For a nameless type, we don't want a create a symbol, thus we
1056 did not use `sym'. Return without further processing. */
1057 if (nameless) return NULL;
1058
1059 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1060 SYMBOL_VALUE (sym) = valu;
1061 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1062 /* C++ vagaries: we may have a type which is derived from
1063 a base type which did not have its name defined when the
1064 derived class was output. We fill in the derived class's
1065 base part member's name here in that case. */
1066 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1067 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1068 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1069 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1070 {
1071 int j;
1072 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1073 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1074 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1075 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1076 }
1077
1078 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1079 {
1080 /* gcc-2.6 or later (when using -fvtable-thunks)
1081 emits a unique named type for a vtable entry.
1082 Some gdb code depends on that specific name. */
1083 extern const char vtbl_ptr_name[];
1084
1085 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1086 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1087 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1088 {
1089 /* If we are giving a name to a type such as "pointer to
1090 foo" or "function returning foo", we better not set
1091 the TYPE_NAME. If the program contains "typedef char
1092 *caddr_t;", we don't want all variables of type char
1093 * to print as caddr_t. This is not just a
1094 consequence of GDB's type management; PCC and GCC (at
1095 least through version 2.4) both output variables of
1096 either type char * or caddr_t with the type number
1097 defined in the 't' symbol for caddr_t. If a future
1098 compiler cleans this up it GDB is not ready for it
1099 yet, but if it becomes ready we somehow need to
1100 disable this check (without breaking the PCC/GCC2.4
1101 case).
1102
1103 Sigh.
1104
1105 Fortunately, this check seems not to be necessary
1106 for anything except pointers or functions. */
1107 }
1108 else
1109 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1110 }
1111
1112 add_symbol_to_list (sym, &file_symbols);
1113 break;
1114
1115 case 'T':
1116 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1117 by 't' which means we are typedef'ing it as well. */
1118 synonym = *p == 't';
1119
1120 if (synonym)
1121 {
1122 p++;
1123 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1124 strlen (SYMBOL_NAME (sym)),
1125 &objfile -> symbol_obstack);
1126 }
1127 /* The semantics of C++ state that "struct foo { ... }" also defines
1128 a typedef for "foo". Unfortunately, cfront never makes the typedef
1129 when translating C++ into C. We make the typedef here so that
1130 "ptype foo" works as expected for cfront translated code. */
1131 else if (current_subfile->language == language_cplus)
1132 {
1133 synonym = 1;
1134 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1135 strlen (SYMBOL_NAME (sym)),
1136 &objfile -> symbol_obstack);
1137 }
1138
1139 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1140
1141 /* For a nameless type, we don't want a create a symbol, thus we
1142 did not use `sym'. Return without further processing. */
1143 if (nameless) return NULL;
1144
1145 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1146 SYMBOL_VALUE (sym) = valu;
1147 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1148 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1149 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1150 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1151 add_symbol_to_list (sym, &file_symbols);
1152
1153 if (synonym)
1154 {
1155 /* Clone the sym and then modify it. */
1156 register struct symbol *typedef_sym = (struct symbol *)
1157 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1158 *typedef_sym = *sym;
1159 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1160 SYMBOL_VALUE (typedef_sym) = valu;
1161 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1162 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1163 TYPE_NAME (SYMBOL_TYPE (sym))
1164 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1165 add_symbol_to_list (typedef_sym, &file_symbols);
1166 }
1167 break;
1168
1169 case 'V':
1170 /* Static symbol of local scope */
1171 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1172 SYMBOL_CLASS (sym) = LOC_STATIC;
1173 SYMBOL_VALUE_ADDRESS (sym) = valu;
1174 #ifdef STATIC_TRANSFORM_NAME
1175 if (SYMBOL_NAME (sym)[0] == '$')
1176 {
1177 struct minimal_symbol *msym;
1178 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1179 if (msym != NULL)
1180 {
1181 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1182 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1183 }
1184 }
1185 #endif
1186 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1187 if (os9k_stabs)
1188 add_symbol_to_list (sym, &global_symbols);
1189 else
1190 add_symbol_to_list (sym, &local_symbols);
1191 break;
1192
1193 case 'v':
1194 /* Reference parameter */
1195 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1196 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1197 SYMBOL_VALUE (sym) = valu;
1198 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1199 add_symbol_to_list (sym, &local_symbols);
1200 break;
1201
1202 case 'a':
1203 /* Reference parameter which is in a register. */
1204 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1205 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1206 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1207 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1208 {
1209 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
1210 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1211 }
1212 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1213 add_symbol_to_list (sym, &local_symbols);
1214 break;
1215
1216 case 'X':
1217 /* This is used by Sun FORTRAN for "function result value".
1218 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1219 that Pascal uses it too, but when I tried it Pascal used
1220 "x:3" (local symbol) instead. */
1221 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1222 SYMBOL_CLASS (sym) = LOC_LOCAL;
1223 SYMBOL_VALUE (sym) = valu;
1224 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1225 add_symbol_to_list (sym, &local_symbols);
1226 break;
1227
1228 default:
1229 SYMBOL_TYPE (sym) = error_type (&p);
1230 SYMBOL_CLASS (sym) = LOC_CONST;
1231 SYMBOL_VALUE (sym) = 0;
1232 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1233 add_symbol_to_list (sym, &file_symbols);
1234 break;
1235 }
1236
1237 /* When passing structures to a function, some systems sometimes pass
1238 the address in a register, not the structure itself.
1239
1240 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1241 to LOC_REGPARM_ADDR for structures and unions. */
1242
1243 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1244 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1245 SYMBOL_TYPE (sym))
1246 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1247 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1248 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1249
1250 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1251 subsequent arguments on the sparc, for example). */
1252 if (SYMBOL_CLASS (sym) == LOC_ARG
1253 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1254 SYMBOL_TYPE (sym))
1255 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1256 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1257 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1258
1259 return sym;
1260 }
1261
1262 \f
1263 /* Skip rest of this symbol and return an error type.
1264
1265 General notes on error recovery: error_type always skips to the
1266 end of the symbol (modulo cretinous dbx symbol name continuation).
1267 Thus code like this:
1268
1269 if (*(*pp)++ != ';')
1270 return error_type (pp);
1271
1272 is wrong because if *pp starts out pointing at '\0' (typically as the
1273 result of an earlier error), it will be incremented to point to the
1274 start of the next symbol, which might produce strange results, at least
1275 if you run off the end of the string table. Instead use
1276
1277 if (**pp != ';')
1278 return error_type (pp);
1279 ++*pp;
1280
1281 or
1282
1283 if (**pp != ';')
1284 foo = error_type (pp);
1285 else
1286 ++*pp;
1287
1288 And in case it isn't obvious, the point of all this hair is so the compiler
1289 can define new types and new syntaxes, and old versions of the
1290 debugger will be able to read the new symbol tables. */
1291
1292 static struct type *
1293 error_type (pp)
1294 char **pp;
1295 {
1296 complain (&error_type_complaint);
1297 while (1)
1298 {
1299 /* Skip to end of symbol. */
1300 while (**pp != '\0')
1301 {
1302 (*pp)++;
1303 }
1304
1305 /* Check for and handle cretinous dbx symbol name continuation! */
1306 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1307 {
1308 *pp = next_symbol_text ();
1309 }
1310 else
1311 {
1312 break;
1313 }
1314 }
1315 return (builtin_type_error);
1316 }
1317
1318 \f
1319 /* Read type information or a type definition; return the type. Even
1320 though this routine accepts either type information or a type
1321 definition, the distinction is relevant--some parts of stabsread.c
1322 assume that type information starts with a digit, '-', or '(' in
1323 deciding whether to call read_type. */
1324
1325 struct type *
1326 read_type (pp, objfile)
1327 register char **pp;
1328 struct objfile *objfile;
1329 {
1330 register struct type *type = 0;
1331 struct type *type1;
1332 int typenums[2];
1333 int xtypenums[2];
1334 char type_descriptor;
1335
1336 /* Size in bits of type if specified by a type attribute, or -1 if
1337 there is no size attribute. */
1338 int type_size = -1;
1339
1340 /* Used to distinguish string and bitstring from char-array and set. */
1341 int is_string = 0;
1342
1343 /* Read type number if present. The type number may be omitted.
1344 for instance in a two-dimensional array declared with type
1345 "ar1;1;10;ar1;1;10;4". */
1346 if ((**pp >= '0' && **pp <= '9')
1347 || **pp == '('
1348 || **pp == '-')
1349 {
1350 if (read_type_number (pp, typenums) != 0)
1351 return error_type (pp);
1352
1353 /* Type is not being defined here. Either it already exists,
1354 or this is a forward reference to it. dbx_alloc_type handles
1355 both cases. */
1356 if (**pp != '=')
1357 return dbx_alloc_type (typenums, objfile);
1358
1359 /* Type is being defined here. */
1360 /* Skip the '='. */
1361 ++(*pp);
1362
1363 while (**pp == '@')
1364 {
1365 char *p = *pp + 1;
1366 /* It might be a type attribute or a member type. */
1367 if (isdigit (*p) || *p == '(' || *p == '-')
1368 /* Member type. */
1369 break;
1370 else
1371 {
1372 /* Type attributes. */
1373 char *attr = p;
1374
1375 /* Skip to the semicolon. */
1376 while (*p != ';' && *p != '\0')
1377 ++p;
1378 *pp = p;
1379 if (*p == '\0')
1380 return error_type (pp);
1381 else
1382 /* Skip the semicolon. */
1383 ++*pp;
1384
1385 switch (*attr)
1386 {
1387 case 's':
1388 type_size = atoi (attr + 1);
1389 if (type_size <= 0)
1390 type_size = -1;
1391 break;
1392
1393 case 'S':
1394 is_string = 1;
1395 break;
1396
1397 default:
1398 /* Ignore unrecognized type attributes, so future compilers
1399 can invent new ones. */
1400 break;
1401 }
1402 }
1403 }
1404 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1405 ++(*pp);
1406 }
1407 else
1408 {
1409 /* 'typenums=' not present, type is anonymous. Read and return
1410 the definition, but don't put it in the type vector. */
1411 typenums[0] = typenums[1] = -1;
1412 (*pp)++;
1413 }
1414
1415 type_descriptor = (*pp)[-1];
1416 switch (type_descriptor)
1417 {
1418 case 'x':
1419 {
1420 enum type_code code;
1421
1422 /* Used to index through file_symbols. */
1423 struct pending *ppt;
1424 int i;
1425
1426 /* Name including "struct", etc. */
1427 char *type_name;
1428
1429 {
1430 char *from, *to, *p, *q1, *q2;
1431
1432 /* Set the type code according to the following letter. */
1433 switch ((*pp)[0])
1434 {
1435 case 's':
1436 code = TYPE_CODE_STRUCT;
1437 break;
1438 case 'u':
1439 code = TYPE_CODE_UNION;
1440 break;
1441 case 'e':
1442 code = TYPE_CODE_ENUM;
1443 break;
1444 default:
1445 {
1446 /* Complain and keep going, so compilers can invent new
1447 cross-reference types. */
1448 static struct complaint msg =
1449 {"Unrecognized cross-reference type `%c'", 0, 0};
1450 complain (&msg, (*pp)[0]);
1451 code = TYPE_CODE_STRUCT;
1452 break;
1453 }
1454 }
1455
1456 q1 = strchr(*pp, '<');
1457 p = strchr(*pp, ':');
1458 if (p == NULL)
1459 return error_type (pp);
1460 while (q1 && p > q1 && p[1] == ':')
1461 {
1462 q2 = strchr(q1, '>');
1463 if (!q2 || q2 < p)
1464 break;
1465 p += 2;
1466 p = strchr(p, ':');
1467 if (p == NULL)
1468 return error_type (pp);
1469 }
1470 to = type_name =
1471 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1472
1473 /* Copy the name. */
1474 from = *pp + 1;
1475 while (from < p)
1476 *to++ = *from++;
1477 *to = '\0';
1478
1479 /* Set the pointer ahead of the name which we just read, and
1480 the colon. */
1481 *pp = from + 1;
1482 }
1483
1484 /* Now check to see whether the type has already been
1485 declared. This was written for arrays of cross-referenced
1486 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1487 sure it is not necessary anymore. But it might be a good
1488 idea, to save a little memory. */
1489
1490 for (ppt = file_symbols; ppt; ppt = ppt->next)
1491 for (i = 0; i < ppt->nsyms; i++)
1492 {
1493 struct symbol *sym = ppt->symbol[i];
1494
1495 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1496 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1497 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1498 && STREQ (SYMBOL_NAME (sym), type_name))
1499 {
1500 obstack_free (&objfile -> type_obstack, type_name);
1501 type = SYMBOL_TYPE (sym);
1502 return type;
1503 }
1504 }
1505
1506 /* Didn't find the type to which this refers, so we must
1507 be dealing with a forward reference. Allocate a type
1508 structure for it, and keep track of it so we can
1509 fill in the rest of the fields when we get the full
1510 type. */
1511 type = dbx_alloc_type (typenums, objfile);
1512 TYPE_CODE (type) = code;
1513 TYPE_TAG_NAME (type) = type_name;
1514 INIT_CPLUS_SPECIFIC(type);
1515 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1516
1517 add_undefined_type (type);
1518 return type;
1519 }
1520
1521 case '-': /* RS/6000 built-in type */
1522 case '0':
1523 case '1':
1524 case '2':
1525 case '3':
1526 case '4':
1527 case '5':
1528 case '6':
1529 case '7':
1530 case '8':
1531 case '9':
1532 case '(':
1533
1534 {
1535 char *pp_saved;
1536
1537 (*pp)--;
1538 pp_saved = *pp;
1539
1540 /* Peek ahead at the number to detect void. */
1541 if (read_type_number (pp, xtypenums) != 0)
1542 return error_type (pp);
1543
1544 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1545 /* It's being defined as itself. That means it is "void". */
1546 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1547 else
1548 {
1549 struct type *xtype;
1550
1551 /* Go back to the number and have read_type get it. This means
1552 that we can deal with something like t(1,2)=(3,4)=... which
1553 the Lucid compiler uses. */
1554 *pp = pp_saved;
1555 xtype = read_type (pp, objfile);
1556
1557 /* The type is being defined to another type. So we copy the type.
1558 This loses if we copy a C++ class and so we lose track of how
1559 the names are mangled (but g++ doesn't output stabs like this
1560 now anyway). */
1561
1562 type = alloc_type (objfile);
1563 memcpy (type, xtype, sizeof (struct type));
1564
1565 /* The idea behind clearing the names is that the only purpose
1566 for defining a type to another type is so that the name of
1567 one can be different. So we probably don't need to worry much
1568 about the case where the compiler doesn't give a name to the
1569 new type. */
1570 TYPE_NAME (type) = NULL;
1571 TYPE_TAG_NAME (type) = NULL;
1572 }
1573 if (typenums[0] != -1)
1574 *dbx_lookup_type (typenums) = type;
1575 break;
1576 }
1577
1578 /* In the following types, we must be sure to overwrite any existing
1579 type that the typenums refer to, rather than allocating a new one
1580 and making the typenums point to the new one. This is because there
1581 may already be pointers to the existing type (if it had been
1582 forward-referenced), and we must change it to a pointer, function,
1583 reference, or whatever, *in-place*. */
1584
1585 case '*':
1586 type1 = read_type (pp, objfile);
1587 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1588 break;
1589
1590 case '&': /* Reference to another type */
1591 type1 = read_type (pp, objfile);
1592 type = make_reference_type (type1, dbx_lookup_type (typenums));
1593 break;
1594
1595 case 'f': /* Function returning another type */
1596 if (os9k_stabs && **pp == '(')
1597 {
1598 /* Function prototype; parse it.
1599 We must conditionalize this on os9k_stabs because otherwise
1600 it could be confused with a Sun-style (1,3) typenumber
1601 (I think). */
1602 struct type *t;
1603 ++*pp;
1604 while (**pp != ')')
1605 {
1606 t = read_type(pp, objfile);
1607 if (**pp == ',') ++*pp;
1608 }
1609 }
1610 type1 = read_type (pp, objfile);
1611 type = make_function_type (type1, dbx_lookup_type (typenums));
1612 break;
1613
1614 case 'k': /* Const qualifier on some type (Sun) */
1615 case 'c': /* Const qualifier on some type (OS9000) */
1616 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1617 only accept 'c' in the os9k_stabs case. */
1618 if (type_descriptor == 'c' && !os9k_stabs)
1619 return error_type (pp);
1620 type = read_type (pp, objfile);
1621 /* FIXME! For now, we ignore const and volatile qualifiers. */
1622 break;
1623
1624 case 'B': /* Volatile qual on some type (Sun) */
1625 case 'i': /* Volatile qual on some type (OS9000) */
1626 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1627 only accept 'i' in the os9k_stabs case. */
1628 if (type_descriptor == 'i' && !os9k_stabs)
1629 return error_type (pp);
1630 type = read_type (pp, objfile);
1631 /* FIXME! For now, we ignore const and volatile qualifiers. */
1632 break;
1633
1634 /* FIXME -- we should be doing smash_to_XXX types here. */
1635 case '@': /* Member (class & variable) type */
1636 {
1637 struct type *domain = read_type (pp, objfile);
1638 struct type *memtype;
1639
1640 if (**pp != ',')
1641 /* Invalid member type data format. */
1642 return error_type (pp);
1643 ++*pp;
1644
1645 memtype = read_type (pp, objfile);
1646 type = dbx_alloc_type (typenums, objfile);
1647 smash_to_member_type (type, domain, memtype);
1648 }
1649 break;
1650
1651 case '#': /* Method (class & fn) type */
1652 if ((*pp)[0] == '#')
1653 {
1654 /* We'll get the parameter types from the name. */
1655 struct type *return_type;
1656
1657 (*pp)++;
1658 return_type = read_type (pp, objfile);
1659 if (*(*pp)++ != ';')
1660 complain (&invalid_member_complaint, symnum);
1661 type = allocate_stub_method (return_type);
1662 if (typenums[0] != -1)
1663 *dbx_lookup_type (typenums) = type;
1664 }
1665 else
1666 {
1667 struct type *domain = read_type (pp, objfile);
1668 struct type *return_type;
1669 struct type **args;
1670
1671 if (**pp != ',')
1672 /* Invalid member type data format. */
1673 return error_type (pp);
1674 else
1675 ++(*pp);
1676
1677 return_type = read_type (pp, objfile);
1678 args = read_args (pp, ';', objfile);
1679 type = dbx_alloc_type (typenums, objfile);
1680 smash_to_method_type (type, domain, return_type, args);
1681 }
1682 break;
1683
1684 case 'r': /* Range type */
1685 type = read_range_type (pp, typenums, objfile);
1686 if (typenums[0] != -1)
1687 *dbx_lookup_type (typenums) = type;
1688 break;
1689
1690 case 'b':
1691 if (os9k_stabs)
1692 /* Const and volatile qualified type. */
1693 type = read_type (pp, objfile);
1694 else
1695 {
1696 /* Sun ACC builtin int type */
1697 type = read_sun_builtin_type (pp, typenums, objfile);
1698 if (typenums[0] != -1)
1699 *dbx_lookup_type (typenums) = type;
1700 }
1701 break;
1702
1703 case 'R': /* Sun ACC builtin float type */
1704 type = read_sun_floating_type (pp, typenums, objfile);
1705 if (typenums[0] != -1)
1706 *dbx_lookup_type (typenums) = type;
1707 break;
1708
1709 case 'e': /* Enumeration type */
1710 type = dbx_alloc_type (typenums, objfile);
1711 type = read_enum_type (pp, type, objfile);
1712 if (typenums[0] != -1)
1713 *dbx_lookup_type (typenums) = type;
1714 break;
1715
1716 case 's': /* Struct type */
1717 case 'u': /* Union type */
1718 type = dbx_alloc_type (typenums, objfile);
1719 if (!TYPE_NAME (type))
1720 {
1721 TYPE_NAME (type) = type_synonym_name;
1722 }
1723 type_synonym_name = NULL;
1724 switch (type_descriptor)
1725 {
1726 case 's':
1727 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1728 break;
1729 case 'u':
1730 TYPE_CODE (type) = TYPE_CODE_UNION;
1731 break;
1732 }
1733 type = read_struct_type (pp, type, objfile);
1734 break;
1735
1736 case 'a': /* Array type */
1737 if (**pp != 'r')
1738 return error_type (pp);
1739 ++*pp;
1740
1741 type = dbx_alloc_type (typenums, objfile);
1742 type = read_array_type (pp, type, objfile);
1743 if (is_string)
1744 TYPE_CODE (type) = TYPE_CODE_STRING;
1745 break;
1746
1747 case 'S':
1748 type1 = read_type (pp, objfile);
1749 type = create_set_type ((struct type*) NULL, type1);
1750 if (is_string)
1751 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1752 if (typenums[0] != -1)
1753 *dbx_lookup_type (typenums) = type;
1754 break;
1755
1756 default:
1757 --*pp; /* Go back to the symbol in error */
1758 /* Particularly important if it was \0! */
1759 return error_type (pp);
1760 }
1761
1762 if (type == 0)
1763 {
1764 warning ("GDB internal error, type is NULL in stabsread.c\n");
1765 return error_type (pp);
1766 }
1767
1768 /* Size specified in a type attribute overrides any other size. */
1769 if (type_size != -1)
1770 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1771
1772 return type;
1773 }
1774 \f
1775 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1776 Return the proper type node for a given builtin type number. */
1777
1778 static struct type *
1779 rs6000_builtin_type (typenum)
1780 int typenum;
1781 {
1782 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1783 #define NUMBER_RECOGNIZED 34
1784 /* This includes an empty slot for type number -0. */
1785 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1786 struct type *rettype = NULL;
1787
1788 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1789 {
1790 complain (&rs6000_builtin_complaint, typenum);
1791 return builtin_type_error;
1792 }
1793 if (negative_types[-typenum] != NULL)
1794 return negative_types[-typenum];
1795
1796 #if TARGET_CHAR_BIT != 8
1797 #error This code wrong for TARGET_CHAR_BIT not 8
1798 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1799 that if that ever becomes not true, the correct fix will be to
1800 make the size in the struct type to be in bits, not in units of
1801 TARGET_CHAR_BIT. */
1802 #endif
1803
1804 switch (-typenum)
1805 {
1806 case 1:
1807 /* The size of this and all the other types are fixed, defined
1808 by the debugging format. If there is a type called "int" which
1809 is other than 32 bits, then it should use a new negative type
1810 number (or avoid negative type numbers for that case).
1811 See stabs.texinfo. */
1812 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1813 break;
1814 case 2:
1815 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1816 break;
1817 case 3:
1818 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1819 break;
1820 case 4:
1821 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1822 break;
1823 case 5:
1824 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1825 "unsigned char", NULL);
1826 break;
1827 case 6:
1828 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1829 break;
1830 case 7:
1831 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1832 "unsigned short", NULL);
1833 break;
1834 case 8:
1835 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1836 "unsigned int", NULL);
1837 break;
1838 case 9:
1839 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1840 "unsigned", NULL);
1841 case 10:
1842 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1843 "unsigned long", NULL);
1844 break;
1845 case 11:
1846 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1847 break;
1848 case 12:
1849 /* IEEE single precision (32 bit). */
1850 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1851 break;
1852 case 13:
1853 /* IEEE double precision (64 bit). */
1854 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1855 break;
1856 case 14:
1857 /* This is an IEEE double on the RS/6000, and different machines with
1858 different sizes for "long double" should use different negative
1859 type numbers. See stabs.texinfo. */
1860 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1861 break;
1862 case 15:
1863 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1864 break;
1865 case 16:
1866 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1867 break;
1868 case 17:
1869 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1870 break;
1871 case 18:
1872 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1873 break;
1874 case 19:
1875 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1876 break;
1877 case 20:
1878 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1879 "character", NULL);
1880 break;
1881 case 21:
1882 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1883 "logical*1", NULL);
1884 break;
1885 case 22:
1886 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1887 "logical*2", NULL);
1888 break;
1889 case 23:
1890 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1891 "logical*4", NULL);
1892 break;
1893 case 24:
1894 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1895 "logical", NULL);
1896 break;
1897 case 25:
1898 /* Complex type consisting of two IEEE single precision values. */
1899 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1900 break;
1901 case 26:
1902 /* Complex type consisting of two IEEE double precision values. */
1903 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1904 break;
1905 case 27:
1906 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1907 break;
1908 case 28:
1909 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1910 break;
1911 case 29:
1912 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1913 break;
1914 case 30:
1915 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1916 break;
1917 case 31:
1918 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
1919 break;
1920 case 32:
1921 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1922 "unsigned long long", NULL);
1923 break;
1924 case 33:
1925 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1926 "logical*8", NULL);
1927 break;
1928 case 34:
1929 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
1930 break;
1931 }
1932 negative_types[-typenum] = rettype;
1933 return rettype;
1934 }
1935 \f
1936 /* This page contains subroutines of read_type. */
1937
1938 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1939 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1940 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1941 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1942
1943 /* Read member function stabs info for C++ classes. The form of each member
1944 function data is:
1945
1946 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1947
1948 An example with two member functions is:
1949
1950 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1951
1952 For the case of overloaded operators, the format is op$::*.funcs, where
1953 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1954 name (such as `+=') and `.' marks the end of the operator name.
1955
1956 Returns 1 for success, 0 for failure. */
1957
1958 static int
1959 read_member_functions (fip, pp, type, objfile)
1960 struct field_info *fip;
1961 char **pp;
1962 struct type *type;
1963 struct objfile *objfile;
1964 {
1965 int nfn_fields = 0;
1966 int length = 0;
1967 /* Total number of member functions defined in this class. If the class
1968 defines two `f' functions, and one `g' function, then this will have
1969 the value 3. */
1970 int total_length = 0;
1971 int i;
1972 struct next_fnfield
1973 {
1974 struct next_fnfield *next;
1975 struct fn_field fn_field;
1976 } *sublist;
1977 struct type *look_ahead_type;
1978 struct next_fnfieldlist *new_fnlist;
1979 struct next_fnfield *new_sublist;
1980 char *main_fn_name;
1981 register char *p;
1982
1983 /* Process each list until we find something that is not a member function
1984 or find the end of the functions. */
1985
1986 while (**pp != ';')
1987 {
1988 /* We should be positioned at the start of the function name.
1989 Scan forward to find the first ':' and if it is not the
1990 first of a "::" delimiter, then this is not a member function. */
1991 p = *pp;
1992 while (*p != ':')
1993 {
1994 p++;
1995 }
1996 if (p[1] != ':')
1997 {
1998 break;
1999 }
2000
2001 sublist = NULL;
2002 look_ahead_type = NULL;
2003 length = 0;
2004
2005 new_fnlist = (struct next_fnfieldlist *)
2006 xmalloc (sizeof (struct next_fnfieldlist));
2007 make_cleanup (free, new_fnlist);
2008 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2009
2010 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
2011 {
2012 /* This is a completely wierd case. In order to stuff in the
2013 names that might contain colons (the usual name delimiter),
2014 Mike Tiemann defined a different name format which is
2015 signalled if the identifier is "op$". In that case, the
2016 format is "op$::XXXX." where XXXX is the name. This is
2017 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2018 /* This lets the user type "break operator+".
2019 We could just put in "+" as the name, but that wouldn't
2020 work for "*". */
2021 static char opname[32] = {'o', 'p', CPLUS_MARKER};
2022 char *o = opname + 3;
2023
2024 /* Skip past '::'. */
2025 *pp = p + 2;
2026
2027 STABS_CONTINUE (pp);
2028 p = *pp;
2029 while (*p != '.')
2030 {
2031 *o++ = *p++;
2032 }
2033 main_fn_name = savestring (opname, o - opname);
2034 /* Skip past '.' */
2035 *pp = p + 1;
2036 }
2037 else
2038 {
2039 main_fn_name = savestring (*pp, p - *pp);
2040 /* Skip past '::'. */
2041 *pp = p + 2;
2042 }
2043 new_fnlist -> fn_fieldlist.name = main_fn_name;
2044
2045 do
2046 {
2047 new_sublist =
2048 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2049 make_cleanup (free, new_sublist);
2050 memset (new_sublist, 0, sizeof (struct next_fnfield));
2051
2052 /* Check for and handle cretinous dbx symbol name continuation! */
2053 if (look_ahead_type == NULL)
2054 {
2055 /* Normal case. */
2056 STABS_CONTINUE (pp);
2057
2058 new_sublist -> fn_field.type = read_type (pp, objfile);
2059 if (**pp != ':')
2060 {
2061 /* Invalid symtab info for member function. */
2062 return 0;
2063 }
2064 }
2065 else
2066 {
2067 /* g++ version 1 kludge */
2068 new_sublist -> fn_field.type = look_ahead_type;
2069 look_ahead_type = NULL;
2070 }
2071
2072 (*pp)++;
2073 p = *pp;
2074 while (*p != ';')
2075 {
2076 p++;
2077 }
2078
2079 /* If this is just a stub, then we don't have the real name here. */
2080
2081 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2082 {
2083 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2084 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2085 new_sublist -> fn_field.is_stub = 1;
2086 }
2087 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2088 *pp = p + 1;
2089
2090 /* Set this member function's visibility fields. */
2091 switch (*(*pp)++)
2092 {
2093 case VISIBILITY_PRIVATE:
2094 new_sublist -> fn_field.is_private = 1;
2095 break;
2096 case VISIBILITY_PROTECTED:
2097 new_sublist -> fn_field.is_protected = 1;
2098 break;
2099 }
2100
2101 STABS_CONTINUE (pp);
2102 switch (**pp)
2103 {
2104 case 'A': /* Normal functions. */
2105 new_sublist -> fn_field.is_const = 0;
2106 new_sublist -> fn_field.is_volatile = 0;
2107 (*pp)++;
2108 break;
2109 case 'B': /* `const' member functions. */
2110 new_sublist -> fn_field.is_const = 1;
2111 new_sublist -> fn_field.is_volatile = 0;
2112 (*pp)++;
2113 break;
2114 case 'C': /* `volatile' member function. */
2115 new_sublist -> fn_field.is_const = 0;
2116 new_sublist -> fn_field.is_volatile = 1;
2117 (*pp)++;
2118 break;
2119 case 'D': /* `const volatile' member function. */
2120 new_sublist -> fn_field.is_const = 1;
2121 new_sublist -> fn_field.is_volatile = 1;
2122 (*pp)++;
2123 break;
2124 case '*': /* File compiled with g++ version 1 -- no info */
2125 case '?':
2126 case '.':
2127 break;
2128 default:
2129 complain (&const_vol_complaint, **pp);
2130 break;
2131 }
2132
2133 switch (*(*pp)++)
2134 {
2135 case '*':
2136 {
2137 int nbits;
2138 /* virtual member function, followed by index.
2139 The sign bit is set to distinguish pointers-to-methods
2140 from virtual function indicies. Since the array is
2141 in words, the quantity must be shifted left by 1
2142 on 16 bit machine, and by 2 on 32 bit machine, forcing
2143 the sign bit out, and usable as a valid index into
2144 the array. Remove the sign bit here. */
2145 new_sublist -> fn_field.voffset =
2146 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2147 if (nbits != 0)
2148 return 0;
2149
2150 STABS_CONTINUE (pp);
2151 if (**pp == ';' || **pp == '\0')
2152 {
2153 /* Must be g++ version 1. */
2154 new_sublist -> fn_field.fcontext = 0;
2155 }
2156 else
2157 {
2158 /* Figure out from whence this virtual function came.
2159 It may belong to virtual function table of
2160 one of its baseclasses. */
2161 look_ahead_type = read_type (pp, objfile);
2162 if (**pp == ':')
2163 {
2164 /* g++ version 1 overloaded methods. */
2165 }
2166 else
2167 {
2168 new_sublist -> fn_field.fcontext = look_ahead_type;
2169 if (**pp != ';')
2170 {
2171 return 0;
2172 }
2173 else
2174 {
2175 ++*pp;
2176 }
2177 look_ahead_type = NULL;
2178 }
2179 }
2180 break;
2181 }
2182 case '?':
2183 /* static member function. */
2184 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2185 if (strncmp (new_sublist -> fn_field.physname,
2186 main_fn_name, strlen (main_fn_name)))
2187 {
2188 new_sublist -> fn_field.is_stub = 1;
2189 }
2190 break;
2191
2192 default:
2193 /* error */
2194 complain (&member_fn_complaint, (*pp)[-1]);
2195 /* Fall through into normal member function. */
2196
2197 case '.':
2198 /* normal member function. */
2199 new_sublist -> fn_field.voffset = 0;
2200 new_sublist -> fn_field.fcontext = 0;
2201 break;
2202 }
2203
2204 new_sublist -> next = sublist;
2205 sublist = new_sublist;
2206 length++;
2207 STABS_CONTINUE (pp);
2208 }
2209 while (**pp != ';' && **pp != '\0');
2210
2211 (*pp)++;
2212
2213 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2214 obstack_alloc (&objfile -> type_obstack,
2215 sizeof (struct fn_field) * length);
2216 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2217 sizeof (struct fn_field) * length);
2218 for (i = length; (i--, sublist); sublist = sublist -> next)
2219 {
2220 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2221 }
2222
2223 new_fnlist -> fn_fieldlist.length = length;
2224 new_fnlist -> next = fip -> fnlist;
2225 fip -> fnlist = new_fnlist;
2226 nfn_fields++;
2227 total_length += length;
2228 STABS_CONTINUE (pp);
2229 }
2230
2231 if (nfn_fields)
2232 {
2233 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2234 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2235 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2236 memset (TYPE_FN_FIELDLISTS (type), 0,
2237 sizeof (struct fn_fieldlist) * nfn_fields);
2238 TYPE_NFN_FIELDS (type) = nfn_fields;
2239 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2240 }
2241
2242 return 1;
2243 }
2244
2245 /* Special GNU C++ name.
2246
2247 Returns 1 for success, 0 for failure. "failure" means that we can't
2248 keep parsing and it's time for error_type(). */
2249
2250 static int
2251 read_cpp_abbrev (fip, pp, type, objfile)
2252 struct field_info *fip;
2253 char **pp;
2254 struct type *type;
2255 struct objfile *objfile;
2256 {
2257 register char *p;
2258 char *name;
2259 char cpp_abbrev;
2260 struct type *context;
2261
2262 p = *pp;
2263 if (*++p == 'v')
2264 {
2265 name = NULL;
2266 cpp_abbrev = *++p;
2267
2268 *pp = p + 1;
2269
2270 /* At this point, *pp points to something like "22:23=*22...",
2271 where the type number before the ':' is the "context" and
2272 everything after is a regular type definition. Lookup the
2273 type, find it's name, and construct the field name. */
2274
2275 context = read_type (pp, objfile);
2276
2277 switch (cpp_abbrev)
2278 {
2279 case 'f': /* $vf -- a virtual function table pointer */
2280 fip->list->field.name =
2281 obconcat (&objfile->type_obstack, vptr_name, "", "");
2282 break;
2283
2284 case 'b': /* $vb -- a virtual bsomethingorother */
2285 name = type_name_no_tag (context);
2286 if (name == NULL)
2287 {
2288 complain (&invalid_cpp_type_complaint, symnum);
2289 name = "FOO";
2290 }
2291 fip->list->field.name =
2292 obconcat (&objfile->type_obstack, vb_name, name, "");
2293 break;
2294
2295 default:
2296 complain (&invalid_cpp_abbrev_complaint, *pp);
2297 fip->list->field.name =
2298 obconcat (&objfile->type_obstack,
2299 "INVALID_CPLUSPLUS_ABBREV", "", "");
2300 break;
2301 }
2302
2303 /* At this point, *pp points to the ':'. Skip it and read the
2304 field type. */
2305
2306 p = ++(*pp);
2307 if (p[-1] != ':')
2308 {
2309 complain (&invalid_cpp_abbrev_complaint, *pp);
2310 return 0;
2311 }
2312 fip->list->field.type = read_type (pp, objfile);
2313 if (**pp == ',')
2314 (*pp)++; /* Skip the comma. */
2315 else
2316 return 0;
2317
2318 {
2319 int nbits;
2320 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2321 if (nbits != 0)
2322 return 0;
2323 }
2324 /* This field is unpacked. */
2325 fip->list->field.bitsize = 0;
2326 fip->list->visibility = VISIBILITY_PRIVATE;
2327 }
2328 else
2329 {
2330 complain (&invalid_cpp_abbrev_complaint, *pp);
2331 /* We have no idea what syntax an unrecognized abbrev would have, so
2332 better return 0. If we returned 1, we would need to at least advance
2333 *pp to avoid an infinite loop. */
2334 return 0;
2335 }
2336 return 1;
2337 }
2338
2339 static void
2340 read_one_struct_field (fip, pp, p, type, objfile)
2341 struct field_info *fip;
2342 char **pp;
2343 char *p;
2344 struct type *type;
2345 struct objfile *objfile;
2346 {
2347 /* The following is code to work around cfront generated stabs.
2348 The stabs contains full mangled name for each field.
2349 We try to demangle the name and extract the field name out of it.
2350 */
2351 if (current_language->la_language == language_cplus)
2352 {
2353 char save_p;
2354 char *dem, *dem_p;
2355 save_p = *p;
2356 *p = '\0';
2357 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
2358 if (dem != NULL)
2359 {
2360 dem_p = strrchr (dem, ':');
2361 if (dem_p != 0 && *(dem_p-1)==':')
2362 dem_p++;
2363 fip->list->field.name =
2364 obsavestring (dem_p, strlen(dem_p), &objfile -> type_obstack);
2365 }
2366 else
2367 {
2368 fip->list->field.name =
2369 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2370 }
2371 *p = save_p;
2372 }
2373 /* end of code for cfront work around */
2374
2375 else
2376 fip -> list -> field.name =
2377 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2378 *pp = p + 1;
2379
2380 /* This means we have a visibility for a field coming. */
2381 if (**pp == '/')
2382 {
2383 (*pp)++;
2384 fip -> list -> visibility = *(*pp)++;
2385 }
2386 else
2387 {
2388 /* normal dbx-style format, no explicit visibility */
2389 fip -> list -> visibility = VISIBILITY_PUBLIC;
2390 }
2391
2392 fip -> list -> field.type = read_type (pp, objfile);
2393 if (**pp == ':')
2394 {
2395 p = ++(*pp);
2396 #if 0
2397 /* Possible future hook for nested types. */
2398 if (**pp == '!')
2399 {
2400 fip -> list -> field.bitpos = (long)-2; /* nested type */
2401 p = ++(*pp);
2402 }
2403 else
2404 #endif
2405 {
2406 /* Static class member. */
2407 fip -> list -> field.bitpos = (long) -1;
2408 }
2409 while (*p != ';')
2410 {
2411 p++;
2412 }
2413 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2414 *pp = p + 1;
2415 return;
2416 }
2417 else if (**pp != ',')
2418 {
2419 /* Bad structure-type format. */
2420 complain (&stabs_general_complaint, "bad structure-type format");
2421 return;
2422 }
2423
2424 (*pp)++; /* Skip the comma. */
2425
2426 {
2427 int nbits;
2428 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2429 if (nbits != 0)
2430 {
2431 complain (&stabs_general_complaint, "bad structure-type format");
2432 return;
2433 }
2434 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2435 if (nbits != 0)
2436 {
2437 complain (&stabs_general_complaint, "bad structure-type format");
2438 return;
2439 }
2440 }
2441
2442 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2443 {
2444 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2445 it is a field which has been optimized out. The correct stab for
2446 this case is to use VISIBILITY_IGNORE, but that is a recent
2447 invention. (2) It is a 0-size array. For example
2448 union { int num; char str[0]; } foo. Printing "<no value>" for
2449 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2450 will continue to work, and a 0-size array as a whole doesn't
2451 have any contents to print.
2452
2453 I suspect this probably could also happen with gcc -gstabs (not
2454 -gstabs+) for static fields, and perhaps other C++ extensions.
2455 Hopefully few people use -gstabs with gdb, since it is intended
2456 for dbx compatibility. */
2457
2458 /* Ignore this field. */
2459 fip -> list-> visibility = VISIBILITY_IGNORE;
2460 }
2461 else
2462 {
2463 /* Detect an unpacked field and mark it as such.
2464 dbx gives a bit size for all fields.
2465 Note that forward refs cannot be packed,
2466 and treat enums as if they had the width of ints. */
2467
2468 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2469 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2470 {
2471 fip -> list -> field.bitsize = 0;
2472 }
2473 if ((fip -> list -> field.bitsize
2474 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2475 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2476 && (fip -> list -> field.bitsize
2477 == TARGET_INT_BIT)
2478 )
2479 )
2480 &&
2481 fip -> list -> field.bitpos % 8 == 0)
2482 {
2483 fip -> list -> field.bitsize = 0;
2484 }
2485 }
2486 }
2487
2488
2489 /* Read struct or class data fields. They have the form:
2490
2491 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2492
2493 At the end, we see a semicolon instead of a field.
2494
2495 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2496 a static field.
2497
2498 The optional VISIBILITY is one of:
2499
2500 '/0' (VISIBILITY_PRIVATE)
2501 '/1' (VISIBILITY_PROTECTED)
2502 '/2' (VISIBILITY_PUBLIC)
2503 '/9' (VISIBILITY_IGNORE)
2504
2505 or nothing, for C style fields with public visibility.
2506
2507 Returns 1 for success, 0 for failure. */
2508
2509 static int
2510 read_struct_fields (fip, pp, type, objfile)
2511 struct field_info *fip;
2512 char **pp;
2513 struct type *type;
2514 struct objfile *objfile;
2515 {
2516 register char *p;
2517 struct nextfield *new;
2518
2519 /* We better set p right now, in case there are no fields at all... */
2520
2521 p = *pp;
2522
2523 /* Read each data member type until we find the terminating ';' at the end of
2524 the data member list, or break for some other reason such as finding the
2525 start of the member function list. */
2526
2527 while (**pp != ';')
2528 {
2529 if (os9k_stabs && **pp == ',') break;
2530 STABS_CONTINUE (pp);
2531 /* Get space to record the next field's data. */
2532 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2533 make_cleanup (free, new);
2534 memset (new, 0, sizeof (struct nextfield));
2535 new -> next = fip -> list;
2536 fip -> list = new;
2537
2538 /* Get the field name. */
2539 p = *pp;
2540
2541 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2542 unless the CPLUS_MARKER is followed by an underscore, in
2543 which case it is just the name of an anonymous type, which we
2544 should handle like any other type name. We accept either '$'
2545 or '.', because a field name can never contain one of these
2546 characters except as a CPLUS_MARKER (we probably should be
2547 doing that in most parts of GDB). */
2548
2549 if ((*p == '$' || *p == '.') && p[1] != '_')
2550 {
2551 if (!read_cpp_abbrev (fip, pp, type, objfile))
2552 return 0;
2553 continue;
2554 }
2555
2556 /* Look for the ':' that separates the field name from the field
2557 values. Data members are delimited by a single ':', while member
2558 functions are delimited by a pair of ':'s. When we hit the member
2559 functions (if any), terminate scan loop and return. */
2560
2561 while (*p != ':' && *p != '\0')
2562 {
2563 p++;
2564 }
2565 if (*p == '\0')
2566 return 0;
2567
2568 /* Check to see if we have hit the member functions yet. */
2569 if (p[1] == ':')
2570 {
2571 break;
2572 }
2573 read_one_struct_field (fip, pp, p, type, objfile);
2574 }
2575 if (p[0] == ':' && p[1] == ':')
2576 {
2577 /* chill the list of fields: the last entry (at the head) is a
2578 partially constructed entry which we now scrub. */
2579 fip -> list = fip -> list -> next;
2580 }
2581 return 1;
2582 }
2583
2584 /* The stabs for C++ derived classes contain baseclass information which
2585 is marked by a '!' character after the total size. This function is
2586 called when we encounter the baseclass marker, and slurps up all the
2587 baseclass information.
2588
2589 Immediately following the '!' marker is the number of base classes that
2590 the class is derived from, followed by information for each base class.
2591 For each base class, there are two visibility specifiers, a bit offset
2592 to the base class information within the derived class, a reference to
2593 the type for the base class, and a terminating semicolon.
2594
2595 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2596 ^^ ^ ^ ^ ^ ^ ^
2597 Baseclass information marker __________________|| | | | | | |
2598 Number of baseclasses __________________________| | | | | | |
2599 Visibility specifiers (2) ________________________| | | | | |
2600 Offset in bits from start of class _________________| | | | |
2601 Type number for base class ___________________________| | | |
2602 Visibility specifiers (2) _______________________________| | |
2603 Offset in bits from start of class ________________________| |
2604 Type number of base class ____________________________________|
2605
2606 Return 1 for success, 0 for (error-type-inducing) failure. */
2607
2608 static int
2609 read_baseclasses (fip, pp, type, objfile)
2610 struct field_info *fip;
2611 char **pp;
2612 struct type *type;
2613 struct objfile *objfile;
2614 {
2615 int i;
2616 struct nextfield *new;
2617
2618 if (**pp != '!')
2619 {
2620 return 1;
2621 }
2622 else
2623 {
2624 /* Skip the '!' baseclass information marker. */
2625 (*pp)++;
2626 }
2627
2628 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2629 {
2630 int nbits;
2631 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2632 if (nbits != 0)
2633 return 0;
2634 }
2635
2636 #if 0
2637 /* Some stupid compilers have trouble with the following, so break
2638 it up into simpler expressions. */
2639 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2640 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2641 #else
2642 {
2643 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2644 char *pointer;
2645
2646 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2647 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2648 }
2649 #endif /* 0 */
2650
2651 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2652
2653 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2654 {
2655 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2656 make_cleanup (free, new);
2657 memset (new, 0, sizeof (struct nextfield));
2658 new -> next = fip -> list;
2659 fip -> list = new;
2660 new -> field.bitsize = 0; /* this should be an unpacked field! */
2661
2662 STABS_CONTINUE (pp);
2663 switch (**pp)
2664 {
2665 case '0':
2666 /* Nothing to do. */
2667 break;
2668 case '1':
2669 SET_TYPE_FIELD_VIRTUAL (type, i);
2670 break;
2671 default:
2672 /* Unknown character. Complain and treat it as non-virtual. */
2673 {
2674 static struct complaint msg = {
2675 "Unknown virtual character `%c' for baseclass", 0, 0};
2676 complain (&msg, **pp);
2677 }
2678 }
2679 ++(*pp);
2680
2681 new -> visibility = *(*pp)++;
2682 switch (new -> visibility)
2683 {
2684 case VISIBILITY_PRIVATE:
2685 case VISIBILITY_PROTECTED:
2686 case VISIBILITY_PUBLIC:
2687 break;
2688 default:
2689 /* Bad visibility format. Complain and treat it as
2690 public. */
2691 {
2692 static struct complaint msg = {
2693 "Unknown visibility `%c' for baseclass", 0, 0};
2694 complain (&msg, new -> visibility);
2695 new -> visibility = VISIBILITY_PUBLIC;
2696 }
2697 }
2698
2699 {
2700 int nbits;
2701
2702 /* The remaining value is the bit offset of the portion of the object
2703 corresponding to this baseclass. Always zero in the absence of
2704 multiple inheritance. */
2705
2706 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2707 if (nbits != 0)
2708 return 0;
2709 }
2710
2711 /* The last piece of baseclass information is the type of the
2712 base class. Read it, and remember it's type name as this
2713 field's name. */
2714
2715 new -> field.type = read_type (pp, objfile);
2716 new -> field.name = type_name_no_tag (new -> field.type);
2717
2718 /* skip trailing ';' and bump count of number of fields seen */
2719 if (**pp == ';')
2720 (*pp)++;
2721 else
2722 return 0;
2723 }
2724 return 1;
2725 }
2726
2727 /* The tail end of stabs for C++ classes that contain a virtual function
2728 pointer contains a tilde, a %, and a type number.
2729 The type number refers to the base class (possibly this class itself) which
2730 contains the vtable pointer for the current class.
2731
2732 This function is called when we have parsed all the method declarations,
2733 so we can look for the vptr base class info. */
2734
2735 static int
2736 read_tilde_fields (fip, pp, type, objfile)
2737 struct field_info *fip;
2738 char **pp;
2739 struct type *type;
2740 struct objfile *objfile;
2741 {
2742 register char *p;
2743
2744 STABS_CONTINUE (pp);
2745
2746 /* If we are positioned at a ';', then skip it. */
2747 if (**pp == ';')
2748 {
2749 (*pp)++;
2750 }
2751
2752 if (**pp == '~')
2753 {
2754 (*pp)++;
2755
2756 if (**pp == '=' || **pp == '+' || **pp == '-')
2757 {
2758 /* Obsolete flags that used to indicate the presence
2759 of constructors and/or destructors. */
2760 (*pp)++;
2761 }
2762
2763 /* Read either a '%' or the final ';'. */
2764 if (*(*pp)++ == '%')
2765 {
2766 /* The next number is the type number of the base class
2767 (possibly our own class) which supplies the vtable for
2768 this class. Parse it out, and search that class to find
2769 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2770 and TYPE_VPTR_FIELDNO. */
2771
2772 struct type *t;
2773 int i;
2774
2775 t = read_type (pp, objfile);
2776 p = (*pp)++;
2777 while (*p != '\0' && *p != ';')
2778 {
2779 p++;
2780 }
2781 if (*p == '\0')
2782 {
2783 /* Premature end of symbol. */
2784 return 0;
2785 }
2786
2787 TYPE_VPTR_BASETYPE (type) = t;
2788 if (type == t) /* Our own class provides vtbl ptr */
2789 {
2790 for (i = TYPE_NFIELDS (t) - 1;
2791 i >= TYPE_N_BASECLASSES (t);
2792 --i)
2793 {
2794 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2795 sizeof (vptr_name) - 1))
2796 {
2797 TYPE_VPTR_FIELDNO (type) = i;
2798 goto gotit;
2799 }
2800 }
2801 /* Virtual function table field not found. */
2802 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2803 return 0;
2804 }
2805 else
2806 {
2807 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2808 }
2809
2810 gotit:
2811 *pp = p + 1;
2812 }
2813 }
2814 return 1;
2815 }
2816
2817 static int
2818 attach_fn_fields_to_type (fip, type)
2819 struct field_info *fip;
2820 register struct type *type;
2821 {
2822 register int n;
2823
2824 for (n = TYPE_NFN_FIELDS (type);
2825 fip -> fnlist != NULL;
2826 fip -> fnlist = fip -> fnlist -> next)
2827 {
2828 --n; /* Circumvent Sun3 compiler bug */
2829 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2830 }
2831 return 1;
2832 }
2833
2834 /* Create the vector of fields, and record how big it is.
2835 We need this info to record proper virtual function table information
2836 for this class's virtual functions. */
2837
2838 static int
2839 attach_fields_to_type (fip, type, objfile)
2840 struct field_info *fip;
2841 register struct type *type;
2842 struct objfile *objfile;
2843 {
2844 register int nfields = 0;
2845 register int non_public_fields = 0;
2846 register struct nextfield *scan;
2847
2848 /* Count up the number of fields that we have, as well as taking note of
2849 whether or not there are any non-public fields, which requires us to
2850 allocate and build the private_field_bits and protected_field_bits
2851 bitfields. */
2852
2853 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2854 {
2855 nfields++;
2856 if (scan -> visibility != VISIBILITY_PUBLIC)
2857 {
2858 non_public_fields++;
2859 }
2860 }
2861
2862 /* Now we know how many fields there are, and whether or not there are any
2863 non-public fields. Record the field count, allocate space for the
2864 array of fields, and create blank visibility bitfields if necessary. */
2865
2866 TYPE_NFIELDS (type) = nfields;
2867 TYPE_FIELDS (type) = (struct field *)
2868 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2869 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2870
2871 if (non_public_fields)
2872 {
2873 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2874
2875 TYPE_FIELD_PRIVATE_BITS (type) =
2876 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2877 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2878
2879 TYPE_FIELD_PROTECTED_BITS (type) =
2880 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2881 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2882
2883 TYPE_FIELD_IGNORE_BITS (type) =
2884 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2885 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2886 }
2887
2888 /* Copy the saved-up fields into the field vector. Start from the head
2889 of the list, adding to the tail of the field array, so that they end
2890 up in the same order in the array in which they were added to the list. */
2891
2892 while (nfields-- > 0)
2893 {
2894 TYPE_FIELD (type, nfields) = fip -> list -> field;
2895 switch (fip -> list -> visibility)
2896 {
2897 case VISIBILITY_PRIVATE:
2898 SET_TYPE_FIELD_PRIVATE (type, nfields);
2899 break;
2900
2901 case VISIBILITY_PROTECTED:
2902 SET_TYPE_FIELD_PROTECTED (type, nfields);
2903 break;
2904
2905 case VISIBILITY_IGNORE:
2906 SET_TYPE_FIELD_IGNORE (type, nfields);
2907 break;
2908
2909 case VISIBILITY_PUBLIC:
2910 break;
2911
2912 default:
2913 /* Unknown visibility. Complain and treat it as public. */
2914 {
2915 static struct complaint msg = {
2916 "Unknown visibility `%c' for field", 0, 0};
2917 complain (&msg, fip -> list -> visibility);
2918 }
2919 break;
2920 }
2921 fip -> list = fip -> list -> next;
2922 }
2923 return 1;
2924 }
2925
2926 /* Read the description of a structure (or union type) and return an object
2927 describing the type.
2928
2929 PP points to a character pointer that points to the next unconsumed token
2930 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2931 *PP will point to "4a:1,0,32;;".
2932
2933 TYPE points to an incomplete type that needs to be filled in.
2934
2935 OBJFILE points to the current objfile from which the stabs information is
2936 being read. (Note that it is redundant in that TYPE also contains a pointer
2937 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2938 */
2939
2940 static struct type *
2941 read_struct_type (pp, type, objfile)
2942 char **pp;
2943 struct type *type;
2944 struct objfile *objfile;
2945 {
2946 struct cleanup *back_to;
2947 struct field_info fi;
2948
2949 fi.list = NULL;
2950 fi.fnlist = NULL;
2951
2952 back_to = make_cleanup (null_cleanup, 0);
2953
2954 INIT_CPLUS_SPECIFIC (type);
2955 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2956
2957 /* First comes the total size in bytes. */
2958
2959 {
2960 int nbits;
2961 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2962 if (nbits != 0)
2963 return error_type (pp);
2964 }
2965
2966 /* Now read the baseclasses, if any, read the regular C struct or C++
2967 class member fields, attach the fields to the type, read the C++
2968 member functions, attach them to the type, and then read any tilde
2969 field (baseclass specifier for the class holding the main vtable). */
2970
2971 if (!read_baseclasses (&fi, pp, type, objfile)
2972 || !read_struct_fields (&fi, pp, type, objfile)
2973 || !attach_fields_to_type (&fi, type, objfile)
2974 || !read_member_functions (&fi, pp, type, objfile)
2975 || !attach_fn_fields_to_type (&fi, type)
2976 || !read_tilde_fields (&fi, pp, type, objfile))
2977 {
2978 do_cleanups (back_to);
2979 return (error_type (pp));
2980 }
2981
2982 do_cleanups (back_to);
2983 return (type);
2984 }
2985
2986 /* Read a definition of an array type,
2987 and create and return a suitable type object.
2988 Also creates a range type which represents the bounds of that
2989 array. */
2990
2991 static struct type *
2992 read_array_type (pp, type, objfile)
2993 register char **pp;
2994 register struct type *type;
2995 struct objfile *objfile;
2996 {
2997 struct type *index_type, *element_type, *range_type;
2998 int lower, upper;
2999 int adjustable = 0;
3000 int nbits;
3001
3002 /* Format of an array type:
3003 "ar<index type>;lower;upper;<array_contents_type>".
3004 OS9000: "arlower,upper;<array_contents_type>".
3005
3006 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3007 for these, produce a type like float[][]. */
3008
3009 if (os9k_stabs)
3010 index_type = builtin_type_int;
3011 else
3012 {
3013 index_type = read_type (pp, objfile);
3014 if (**pp != ';')
3015 /* Improper format of array type decl. */
3016 return error_type (pp);
3017 ++*pp;
3018 }
3019
3020 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3021 {
3022 (*pp)++;
3023 adjustable = 1;
3024 }
3025 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
3026 if (nbits != 0)
3027 return error_type (pp);
3028
3029 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3030 {
3031 (*pp)++;
3032 adjustable = 1;
3033 }
3034 upper = read_huge_number (pp, ';', &nbits);
3035 if (nbits != 0)
3036 return error_type (pp);
3037
3038 element_type = read_type (pp, objfile);
3039
3040 if (adjustable)
3041 {
3042 lower = 0;
3043 upper = -1;
3044 }
3045
3046 range_type =
3047 create_range_type ((struct type *) NULL, index_type, lower, upper);
3048 type = create_array_type (type, element_type, range_type);
3049
3050 /* If we have an array whose element type is not yet known, but whose
3051 bounds *are* known, record it to be adjusted at the end of the file. */
3052
3053 if ((TYPE_FLAGS (element_type) & TYPE_FLAG_STUB) && !adjustable)
3054 {
3055 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
3056 add_undefined_type (type);
3057 }
3058
3059 return type;
3060 }
3061
3062
3063 /* Read a definition of an enumeration type,
3064 and create and return a suitable type object.
3065 Also defines the symbols that represent the values of the type. */
3066
3067 static struct type *
3068 read_enum_type (pp, type, objfile)
3069 register char **pp;
3070 register struct type *type;
3071 struct objfile *objfile;
3072 {
3073 register char *p;
3074 char *name;
3075 register long n;
3076 register struct symbol *sym;
3077 int nsyms = 0;
3078 struct pending **symlist;
3079 struct pending *osyms, *syms;
3080 int o_nsyms;
3081 int nbits;
3082 int unsigned_enum = 1;
3083
3084 #if 0
3085 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3086 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3087 to do? For now, force all enum values to file scope. */
3088 if (within_function)
3089 symlist = &local_symbols;
3090 else
3091 #endif
3092 symlist = &file_symbols;
3093 osyms = *symlist;
3094 o_nsyms = osyms ? osyms->nsyms : 0;
3095
3096 if (os9k_stabs)
3097 {
3098 /* Size. Perhaps this does not have to be conditionalized on
3099 os9k_stabs (assuming the name of an enum constant can't start
3100 with a digit). */
3101 read_huge_number (pp, 0, &nbits);
3102 if (nbits != 0)
3103 return error_type (pp);
3104 }
3105
3106 /* The aix4 compiler emits an extra field before the enum members;
3107 my guess is it's a type of some sort. Just ignore it. */
3108 if (**pp == '-')
3109 {
3110 /* Skip over the type. */
3111 while (**pp != ':')
3112 (*pp)++;
3113
3114 /* Skip over the colon. */
3115 (*pp)++;
3116 }
3117
3118 /* Read the value-names and their values.
3119 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3120 A semicolon or comma instead of a NAME means the end. */
3121 while (**pp && **pp != ';' && **pp != ',')
3122 {
3123 STABS_CONTINUE (pp);
3124 p = *pp;
3125 while (*p != ':') p++;
3126 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3127 *pp = p + 1;
3128 n = read_huge_number (pp, ',', &nbits);
3129 if (nbits != 0)
3130 return error_type (pp);
3131
3132 sym = (struct symbol *)
3133 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3134 memset (sym, 0, sizeof (struct symbol));
3135 SYMBOL_NAME (sym) = name;
3136 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3137 SYMBOL_CLASS (sym) = LOC_CONST;
3138 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3139 SYMBOL_VALUE (sym) = n;
3140 if (n < 0)
3141 unsigned_enum = 0;
3142 add_symbol_to_list (sym, symlist);
3143 nsyms++;
3144 }
3145
3146 if (**pp == ';')
3147 (*pp)++; /* Skip the semicolon. */
3148
3149 /* Now fill in the fields of the type-structure. */
3150
3151 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3152 TYPE_CODE (type) = TYPE_CODE_ENUM;
3153 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3154 if (unsigned_enum)
3155 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3156 TYPE_NFIELDS (type) = nsyms;
3157 TYPE_FIELDS (type) = (struct field *)
3158 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3159 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3160
3161 /* Find the symbols for the values and put them into the type.
3162 The symbols can be found in the symlist that we put them on
3163 to cause them to be defined. osyms contains the old value
3164 of that symlist; everything up to there was defined by us. */
3165 /* Note that we preserve the order of the enum constants, so
3166 that in something like "enum {FOO, LAST_THING=FOO}" we print
3167 FOO, not LAST_THING. */
3168
3169 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3170 {
3171 int last = syms == osyms ? o_nsyms : 0;
3172 int j = syms->nsyms;
3173 for (; --j >= last; --n)
3174 {
3175 struct symbol *xsym = syms->symbol[j];
3176 SYMBOL_TYPE (xsym) = type;
3177 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3178 TYPE_FIELD_VALUE (type, n) = 0;
3179 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3180 TYPE_FIELD_BITSIZE (type, n) = 0;
3181 }
3182 if (syms == osyms)
3183 break;
3184 }
3185
3186 return type;
3187 }
3188
3189 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3190 typedefs in every file (for int, long, etc):
3191
3192 type = b <signed> <width>; <offset>; <nbits>
3193 signed = u or s. Possible c in addition to u or s (for char?).
3194 offset = offset from high order bit to start bit of type.
3195 width is # bytes in object of this type, nbits is # bits in type.
3196
3197 The width/offset stuff appears to be for small objects stored in
3198 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3199 FIXME. */
3200
3201 static struct type *
3202 read_sun_builtin_type (pp, typenums, objfile)
3203 char **pp;
3204 int typenums[2];
3205 struct objfile *objfile;
3206 {
3207 int type_bits;
3208 int nbits;
3209 int signed_type;
3210
3211 switch (**pp)
3212 {
3213 case 's':
3214 signed_type = 1;
3215 break;
3216 case 'u':
3217 signed_type = 0;
3218 break;
3219 default:
3220 return error_type (pp);
3221 }
3222 (*pp)++;
3223
3224 /* For some odd reason, all forms of char put a c here. This is strange
3225 because no other type has this honor. We can safely ignore this because
3226 we actually determine 'char'acterness by the number of bits specified in
3227 the descriptor. */
3228
3229 if (**pp == 'c')
3230 (*pp)++;
3231
3232 /* The first number appears to be the number of bytes occupied
3233 by this type, except that unsigned short is 4 instead of 2.
3234 Since this information is redundant with the third number,
3235 we will ignore it. */
3236 read_huge_number (pp, ';', &nbits);
3237 if (nbits != 0)
3238 return error_type (pp);
3239
3240 /* The second number is always 0, so ignore it too. */
3241 read_huge_number (pp, ';', &nbits);
3242 if (nbits != 0)
3243 return error_type (pp);
3244
3245 /* The third number is the number of bits for this type. */
3246 type_bits = read_huge_number (pp, 0, &nbits);
3247 if (nbits != 0)
3248 return error_type (pp);
3249 /* The type *should* end with a semicolon. If it are embedded
3250 in a larger type the semicolon may be the only way to know where
3251 the type ends. If this type is at the end of the stabstring we
3252 can deal with the omitted semicolon (but we don't have to like
3253 it). Don't bother to complain(), Sun's compiler omits the semicolon
3254 for "void". */
3255 if (**pp == ';')
3256 ++(*pp);
3257
3258 if (type_bits == 0)
3259 return init_type (TYPE_CODE_VOID, 1,
3260 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3261 objfile);
3262 else
3263 return init_type (TYPE_CODE_INT,
3264 type_bits / TARGET_CHAR_BIT,
3265 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3266 objfile);
3267 }
3268
3269 static struct type *
3270 read_sun_floating_type (pp, typenums, objfile)
3271 char **pp;
3272 int typenums[2];
3273 struct objfile *objfile;
3274 {
3275 int nbits;
3276 int details;
3277 int nbytes;
3278
3279 /* The first number has more details about the type, for example
3280 FN_COMPLEX. */
3281 details = read_huge_number (pp, ';', &nbits);
3282 if (nbits != 0)
3283 return error_type (pp);
3284
3285 /* The second number is the number of bytes occupied by this type */
3286 nbytes = read_huge_number (pp, ';', &nbits);
3287 if (nbits != 0)
3288 return error_type (pp);
3289
3290 if (details == NF_COMPLEX || details == NF_COMPLEX16
3291 || details == NF_COMPLEX32)
3292 /* This is a type we can't handle, but we do know the size.
3293 We also will be able to give it a name. */
3294 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3295
3296 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3297 }
3298
3299 /* Read a number from the string pointed to by *PP.
3300 The value of *PP is advanced over the number.
3301 If END is nonzero, the character that ends the
3302 number must match END, or an error happens;
3303 and that character is skipped if it does match.
3304 If END is zero, *PP is left pointing to that character.
3305
3306 If the number fits in a long, set *BITS to 0 and return the value.
3307 If not, set *BITS to be the number of bits in the number and return 0.
3308
3309 If encounter garbage, set *BITS to -1 and return 0. */
3310
3311 static long
3312 read_huge_number (pp, end, bits)
3313 char **pp;
3314 int end;
3315 int *bits;
3316 {
3317 char *p = *pp;
3318 int sign = 1;
3319 long n = 0;
3320 int radix = 10;
3321 char overflow = 0;
3322 int nbits = 0;
3323 int c;
3324 long upper_limit;
3325
3326 if (*p == '-')
3327 {
3328 sign = -1;
3329 p++;
3330 }
3331
3332 /* Leading zero means octal. GCC uses this to output values larger
3333 than an int (because that would be hard in decimal). */
3334 if (*p == '0')
3335 {
3336 radix = 8;
3337 p++;
3338 }
3339
3340 if (os9k_stabs)
3341 upper_limit = ULONG_MAX / radix;
3342 else
3343 upper_limit = LONG_MAX / radix;
3344
3345 while ((c = *p++) >= '0' && c < ('0' + radix))
3346 {
3347 if (n <= upper_limit)
3348 {
3349 n *= radix;
3350 n += c - '0'; /* FIXME this overflows anyway */
3351 }
3352 else
3353 overflow = 1;
3354
3355 /* This depends on large values being output in octal, which is
3356 what GCC does. */
3357 if (radix == 8)
3358 {
3359 if (nbits == 0)
3360 {
3361 if (c == '0')
3362 /* Ignore leading zeroes. */
3363 ;
3364 else if (c == '1')
3365 nbits = 1;
3366 else if (c == '2' || c == '3')
3367 nbits = 2;
3368 else
3369 nbits = 3;
3370 }
3371 else
3372 nbits += 3;
3373 }
3374 }
3375 if (end)
3376 {
3377 if (c && c != end)
3378 {
3379 if (bits != NULL)
3380 *bits = -1;
3381 return 0;
3382 }
3383 }
3384 else
3385 --p;
3386
3387 *pp = p;
3388 if (overflow)
3389 {
3390 if (nbits == 0)
3391 {
3392 /* Large decimal constants are an error (because it is hard to
3393 count how many bits are in them). */
3394 if (bits != NULL)
3395 *bits = -1;
3396 return 0;
3397 }
3398
3399 /* -0x7f is the same as 0x80. So deal with it by adding one to
3400 the number of bits. */
3401 if (sign == -1)
3402 ++nbits;
3403 if (bits)
3404 *bits = nbits;
3405 }
3406 else
3407 {
3408 if (bits)
3409 *bits = 0;
3410 return n * sign;
3411 }
3412 /* It's *BITS which has the interesting information. */
3413 return 0;
3414 }
3415
3416 static struct type *
3417 read_range_type (pp, typenums, objfile)
3418 char **pp;
3419 int typenums[2];
3420 struct objfile *objfile;
3421 {
3422 char *orig_pp = *pp;
3423 int rangenums[2];
3424 long n2, n3;
3425 int n2bits, n3bits;
3426 int self_subrange;
3427 struct type *result_type;
3428 struct type *index_type = NULL;
3429
3430 /* First comes a type we are a subrange of.
3431 In C it is usually 0, 1 or the type being defined. */
3432 if (read_type_number (pp, rangenums) != 0)
3433 return error_type (pp);
3434 self_subrange = (rangenums[0] == typenums[0] &&
3435 rangenums[1] == typenums[1]);
3436
3437 if (**pp == '=')
3438 {
3439 *pp = orig_pp;
3440 index_type = read_type (pp, objfile);
3441 }
3442
3443 /* A semicolon should now follow; skip it. */
3444 if (**pp == ';')
3445 (*pp)++;
3446
3447 /* The remaining two operands are usually lower and upper bounds
3448 of the range. But in some special cases they mean something else. */
3449 n2 = read_huge_number (pp, ';', &n2bits);
3450 n3 = read_huge_number (pp, ';', &n3bits);
3451
3452 if (n2bits == -1 || n3bits == -1)
3453 return error_type (pp);
3454
3455 if (index_type)
3456 goto handle_true_range;
3457
3458 /* If limits are huge, must be large integral type. */
3459 if (n2bits != 0 || n3bits != 0)
3460 {
3461 char got_signed = 0;
3462 char got_unsigned = 0;
3463 /* Number of bits in the type. */
3464 int nbits = 0;
3465
3466 /* Range from 0 to <large number> is an unsigned large integral type. */
3467 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3468 {
3469 got_unsigned = 1;
3470 nbits = n3bits;
3471 }
3472 /* Range from <large number> to <large number>-1 is a large signed
3473 integral type. Take care of the case where <large number> doesn't
3474 fit in a long but <large number>-1 does. */
3475 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3476 || (n2bits != 0 && n3bits == 0
3477 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3478 && n3 == LONG_MAX))
3479 {
3480 got_signed = 1;
3481 nbits = n2bits;
3482 }
3483
3484 if (got_signed || got_unsigned)
3485 {
3486 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3487 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3488 objfile);
3489 }
3490 else
3491 return error_type (pp);
3492 }
3493
3494 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3495 if (self_subrange && n2 == 0 && n3 == 0)
3496 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3497
3498 /* If n3 is zero and n2 is not, we want a floating type,
3499 and n2 is the width in bytes.
3500
3501 Fortran programs appear to use this for complex types also,
3502 and they give no way to distinguish between double and single-complex!
3503
3504 GDB does not have complex types.
3505
3506 Just return the complex as a float of that size. It won't work right
3507 for the complex values, but at least it makes the file loadable. */
3508
3509 if (n3 == 0 && n2 > 0)
3510 {
3511 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3512 }
3513
3514 /* If the upper bound is -1, it must really be an unsigned int. */
3515
3516 else if (n2 == 0 && n3 == -1)
3517 {
3518 /* It is unsigned int or unsigned long. */
3519 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3520 compatibility hack. */
3521 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3522 TYPE_FLAG_UNSIGNED, NULL, objfile);
3523 }
3524
3525 /* Special case: char is defined (Who knows why) as a subrange of
3526 itself with range 0-127. */
3527 else if (self_subrange && n2 == 0 && n3 == 127)
3528 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3529
3530 /* We used to do this only for subrange of self or subrange of int. */
3531 else if (n2 == 0)
3532 {
3533 if (n3 < 0)
3534 /* n3 actually gives the size. */
3535 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3536 NULL, objfile);
3537 if (n3 == 0xff)
3538 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3539 if (n3 == 0xffff)
3540 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3541
3542 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3543 "unsigned long", and we already checked for that,
3544 so don't need to test for it here. */
3545 }
3546 /* I think this is for Convex "long long". Since I don't know whether
3547 Convex sets self_subrange, I also accept that particular size regardless
3548 of self_subrange. */
3549 else if (n3 == 0 && n2 < 0
3550 && (self_subrange
3551 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3552 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3553 else if (n2 == -n3 -1)
3554 {
3555 if (n3 == 0x7f)
3556 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3557 if (n3 == 0x7fff)
3558 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3559 if (n3 == 0x7fffffff)
3560 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3561 }
3562
3563 /* We have a real range type on our hands. Allocate space and
3564 return a real pointer. */
3565 handle_true_range:
3566
3567 /* At this point I don't have the faintest idea how to deal with
3568 a self_subrange type; I'm going to assume that this is used
3569 as an idiom, and that all of them are special cases. So . . . */
3570 if (self_subrange)
3571 return error_type (pp);
3572
3573 index_type = *dbx_lookup_type (rangenums);
3574 if (index_type == NULL)
3575 {
3576 /* Does this actually ever happen? Is that why we are worrying
3577 about dealing with it rather than just calling error_type? */
3578
3579 static struct type *range_type_index;
3580
3581 complain (&range_type_base_complaint, rangenums[1]);
3582 if (range_type_index == NULL)
3583 range_type_index =
3584 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3585 0, "range type index type", NULL);
3586 index_type = range_type_index;
3587 }
3588
3589 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3590 return (result_type);
3591 }
3592
3593 /* Read in an argument list. This is a list of types, separated by commas
3594 and terminated with END. Return the list of types read in, or (struct type
3595 **)-1 if there is an error. */
3596
3597 static struct type **
3598 read_args (pp, end, objfile)
3599 char **pp;
3600 int end;
3601 struct objfile *objfile;
3602 {
3603 /* FIXME! Remove this arbitrary limit! */
3604 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3605 int n = 0;
3606
3607 while (**pp != end)
3608 {
3609 if (**pp != ',')
3610 /* Invalid argument list: no ','. */
3611 return (struct type **)-1;
3612 (*pp)++;
3613 STABS_CONTINUE (pp);
3614 types[n++] = read_type (pp, objfile);
3615 }
3616 (*pp)++; /* get past `end' (the ':' character) */
3617
3618 if (n == 1)
3619 {
3620 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3621 }
3622 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3623 {
3624 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3625 memset (rval + n, 0, sizeof (struct type *));
3626 }
3627 else
3628 {
3629 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3630 }
3631 memcpy (rval, types, n * sizeof (struct type *));
3632 return rval;
3633 }
3634 \f
3635 /* Common block handling. */
3636
3637 /* List of symbols declared since the last BCOMM. This list is a tail
3638 of local_symbols. When ECOMM is seen, the symbols on the list
3639 are noted so their proper addresses can be filled in later,
3640 using the common block base address gotten from the assembler
3641 stabs. */
3642
3643 static struct pending *common_block;
3644 static int common_block_i;
3645
3646 /* Name of the current common block. We get it from the BCOMM instead of the
3647 ECOMM to match IBM documentation (even though IBM puts the name both places
3648 like everyone else). */
3649 static char *common_block_name;
3650
3651 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3652 to remain after this function returns. */
3653
3654 void
3655 common_block_start (name, objfile)
3656 char *name;
3657 struct objfile *objfile;
3658 {
3659 if (common_block_name != NULL)
3660 {
3661 static struct complaint msg = {
3662 "Invalid symbol data: common block within common block",
3663 0, 0};
3664 complain (&msg);
3665 }
3666 common_block = local_symbols;
3667 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3668 common_block_name = obsavestring (name, strlen (name),
3669 &objfile -> symbol_obstack);
3670 }
3671
3672 /* Process a N_ECOMM symbol. */
3673
3674 void
3675 common_block_end (objfile)
3676 struct objfile *objfile;
3677 {
3678 /* Symbols declared since the BCOMM are to have the common block
3679 start address added in when we know it. common_block and
3680 common_block_i point to the first symbol after the BCOMM in
3681 the local_symbols list; copy the list and hang it off the
3682 symbol for the common block name for later fixup. */
3683 int i;
3684 struct symbol *sym;
3685 struct pending *new = 0;
3686 struct pending *next;
3687 int j;
3688
3689 if (common_block_name == NULL)
3690 {
3691 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3692 complain (&msg);
3693 return;
3694 }
3695
3696 sym = (struct symbol *)
3697 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3698 memset (sym, 0, sizeof (struct symbol));
3699 SYMBOL_NAME (sym) = common_block_name;
3700 SYMBOL_CLASS (sym) = LOC_BLOCK;
3701
3702 /* Now we copy all the symbols which have been defined since the BCOMM. */
3703
3704 /* Copy all the struct pendings before common_block. */
3705 for (next = local_symbols;
3706 next != NULL && next != common_block;
3707 next = next->next)
3708 {
3709 for (j = 0; j < next->nsyms; j++)
3710 add_symbol_to_list (next->symbol[j], &new);
3711 }
3712
3713 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3714 NULL, it means copy all the local symbols (which we already did
3715 above). */
3716
3717 if (common_block != NULL)
3718 for (j = common_block_i; j < common_block->nsyms; j++)
3719 add_symbol_to_list (common_block->symbol[j], &new);
3720
3721 SYMBOL_TYPE (sym) = (struct type *) new;
3722
3723 /* Should we be putting local_symbols back to what it was?
3724 Does it matter? */
3725
3726 i = hashname (SYMBOL_NAME (sym));
3727 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3728 global_sym_chain[i] = sym;
3729 common_block_name = NULL;
3730 }
3731
3732 /* Add a common block's start address to the offset of each symbol
3733 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3734 the common block name). */
3735
3736 static void
3737 fix_common_block (sym, valu)
3738 struct symbol *sym;
3739 int valu;
3740 {
3741 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3742 for ( ; next; next = next->next)
3743 {
3744 register int j;
3745 for (j = next->nsyms - 1; j >= 0; j--)
3746 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3747 }
3748 }
3749
3750
3751 \f
3752 /* What about types defined as forward references inside of a small lexical
3753 scope? */
3754 /* Add a type to the list of undefined types to be checked through
3755 once this file has been read in. */
3756
3757 void
3758 add_undefined_type (type)
3759 struct type *type;
3760 {
3761 if (undef_types_length == undef_types_allocated)
3762 {
3763 undef_types_allocated *= 2;
3764 undef_types = (struct type **)
3765 xrealloc ((char *) undef_types,
3766 undef_types_allocated * sizeof (struct type *));
3767 }
3768 undef_types[undef_types_length++] = type;
3769 }
3770
3771 /* Go through each undefined type, see if it's still undefined, and fix it
3772 up if possible. We have two kinds of undefined types:
3773
3774 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3775 Fix: update array length using the element bounds
3776 and the target type's length.
3777 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3778 yet defined at the time a pointer to it was made.
3779 Fix: Do a full lookup on the struct/union tag. */
3780 void
3781 cleanup_undefined_types ()
3782 {
3783 struct type **type;
3784
3785 for (type = undef_types; type < undef_types + undef_types_length; type++)
3786 {
3787 switch (TYPE_CODE (*type))
3788 {
3789
3790 case TYPE_CODE_STRUCT:
3791 case TYPE_CODE_UNION:
3792 case TYPE_CODE_ENUM:
3793 {
3794 /* Check if it has been defined since. Need to do this here
3795 as well as in check_stub_type to deal with the (legitimate in
3796 C though not C++) case of several types with the same name
3797 in different source files. */
3798 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3799 {
3800 struct pending *ppt;
3801 int i;
3802 /* Name of the type, without "struct" or "union" */
3803 char *typename = TYPE_TAG_NAME (*type);
3804
3805 if (typename == NULL)
3806 {
3807 static struct complaint msg = {"need a type name", 0, 0};
3808 complain (&msg);
3809 break;
3810 }
3811 for (ppt = file_symbols; ppt; ppt = ppt->next)
3812 {
3813 for (i = 0; i < ppt->nsyms; i++)
3814 {
3815 struct symbol *sym = ppt->symbol[i];
3816
3817 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3818 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3819 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3820 TYPE_CODE (*type))
3821 && STREQ (SYMBOL_NAME (sym), typename))
3822 {
3823 memcpy (*type, SYMBOL_TYPE (sym),
3824 sizeof (struct type));
3825 }
3826 }
3827 }
3828 }
3829 }
3830 break;
3831
3832 case TYPE_CODE_ARRAY:
3833 {
3834 /* This is a kludge which is here for historical reasons
3835 because I suspect that check_stub_type does not get
3836 called everywhere it needs to be called for arrays. Even
3837 with this kludge, those places are broken for the case
3838 where the stub type is defined in another compilation
3839 unit, but this kludge at least deals with it for the case
3840 in which it is the same compilation unit.
3841
3842 Don't try to do this by calling check_stub_type; it might
3843 cause symbols to be read in lookup_symbol, and the symbol
3844 reader is not reentrant. */
3845
3846 struct type *range_type;
3847 int lower, upper;
3848
3849 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3850 goto badtype;
3851 if (TYPE_NFIELDS (*type) != 1)
3852 goto badtype;
3853 range_type = TYPE_FIELD_TYPE (*type, 0);
3854 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3855 goto badtype;
3856
3857 /* Now recompute the length of the array type, based on its
3858 number of elements and the target type's length. */
3859 lower = TYPE_FIELD_BITPOS (range_type, 0);
3860 upper = TYPE_FIELD_BITPOS (range_type, 1);
3861 TYPE_LENGTH (*type) = (upper - lower + 1)
3862 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3863
3864 /* If the target type is not a stub, we could be clearing
3865 TYPE_FLAG_TARGET_STUB for *type. */
3866 }
3867 break;
3868
3869 default:
3870 badtype:
3871 {
3872 static struct complaint msg = {"\
3873 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3874 complain (&msg, TYPE_CODE (*type));
3875 }
3876 break;
3877 }
3878 }
3879
3880 undef_types_length = 0;
3881 }
3882
3883 /* Scan through all of the global symbols defined in the object file,
3884 assigning values to the debugging symbols that need to be assigned
3885 to. Get these symbols from the minimal symbol table.
3886 Return 1 if there might still be unresolved debugging symbols, else 0. */
3887
3888 static int scan_file_globals_1 PARAMS ((struct objfile *));
3889
3890 static int
3891 scan_file_globals_1 (objfile)
3892 struct objfile *objfile;
3893 {
3894 int hash;
3895 struct minimal_symbol *msymbol;
3896 struct symbol *sym, *prev;
3897
3898 /* Avoid expensive loop through all minimal symbols if there are
3899 no unresolved symbols. */
3900 for (hash = 0; hash < HASHSIZE; hash++)
3901 {
3902 if (global_sym_chain[hash])
3903 break;
3904 }
3905 if (hash >= HASHSIZE)
3906 return 0;
3907
3908 if (objfile->msymbols == 0) /* Beware the null file. */
3909 return 1;
3910
3911 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3912 {
3913 QUIT;
3914
3915 /* Skip static symbols. */
3916 switch (MSYMBOL_TYPE (msymbol))
3917 {
3918 case mst_file_text:
3919 case mst_file_data:
3920 case mst_file_bss:
3921 continue;
3922 default:
3923 break;
3924 }
3925
3926 prev = NULL;
3927
3928 /* Get the hash index and check all the symbols
3929 under that hash index. */
3930
3931 hash = hashname (SYMBOL_NAME (msymbol));
3932
3933 for (sym = global_sym_chain[hash]; sym;)
3934 {
3935 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3936 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3937 {
3938 /* Splice this symbol out of the hash chain and
3939 assign the value we have to it. */
3940 if (prev)
3941 {
3942 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3943 }
3944 else
3945 {
3946 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3947 }
3948
3949 /* Check to see whether we need to fix up a common block. */
3950 /* Note: this code might be executed several times for
3951 the same symbol if there are multiple references. */
3952
3953 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3954 {
3955 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3956 }
3957 else
3958 {
3959 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3960 }
3961
3962 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3963
3964 if (prev)
3965 {
3966 sym = SYMBOL_VALUE_CHAIN (prev);
3967 }
3968 else
3969 {
3970 sym = global_sym_chain[hash];
3971 }
3972 }
3973 else
3974 {
3975 prev = sym;
3976 sym = SYMBOL_VALUE_CHAIN (sym);
3977 }
3978 }
3979 }
3980 return 1;
3981 }
3982
3983 /* Assign values to global debugging symbols.
3984 Search the passed objfile first, then try the runtime common symbols.
3985 Complain about any remaining unresolved symbols and remove them
3986 from the chain. */
3987
3988 void
3989 scan_file_globals (objfile)
3990 struct objfile *objfile;
3991 {
3992 int hash;
3993 struct symbol *sym, *prev;
3994
3995 if (scan_file_globals_1 (objfile) == 0)
3996 return;
3997 if (rt_common_objfile && scan_file_globals_1 (rt_common_objfile) == 0)
3998 return;
3999
4000 for (hash = 0; hash < HASHSIZE; hash++)
4001 {
4002 sym = global_sym_chain[hash];
4003 while (sym)
4004 {
4005 complain (&unresolved_sym_chain_complaint,
4006 objfile->name, SYMBOL_NAME (sym));
4007
4008 /* Change the symbol address from the misleading chain value
4009 to address zero. */
4010 prev = sym;
4011 sym = SYMBOL_VALUE_CHAIN (sym);
4012 SYMBOL_VALUE_ADDRESS (prev) = 0;
4013 }
4014 }
4015 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4016 }
4017
4018 /* Initialize anything that needs initializing when starting to read
4019 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4020 to a psymtab. */
4021
4022 void
4023 stabsread_init ()
4024 {
4025 }
4026
4027 /* Initialize anything that needs initializing when a completely new
4028 symbol file is specified (not just adding some symbols from another
4029 file, e.g. a shared library). */
4030
4031 void
4032 stabsread_new_init ()
4033 {
4034 /* Empty the hash table of global syms looking for values. */
4035 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4036 }
4037
4038 /* Initialize anything that needs initializing at the same time as
4039 start_symtab() is called. */
4040
4041 void start_stabs ()
4042 {
4043 global_stabs = NULL; /* AIX COFF */
4044 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4045 n_this_object_header_files = 1;
4046 type_vector_length = 0;
4047 type_vector = (struct type **) 0;
4048
4049 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4050 common_block_name = NULL;
4051
4052 os9k_stabs = 0;
4053 }
4054
4055 /* Call after end_symtab() */
4056
4057 void end_stabs ()
4058 {
4059 if (type_vector)
4060 {
4061 free ((char *) type_vector);
4062 }
4063 type_vector = 0;
4064 type_vector_length = 0;
4065 previous_stab_code = 0;
4066 }
4067
4068 void
4069 finish_global_stabs (objfile)
4070 struct objfile *objfile;
4071 {
4072 if (global_stabs)
4073 {
4074 patch_block_stabs (global_symbols, global_stabs, objfile);
4075 free ((PTR) global_stabs);
4076 global_stabs = NULL;
4077 }
4078 }
4079
4080 /* Initializer for this module */
4081
4082 void
4083 _initialize_stabsread ()
4084 {
4085 undef_types_allocated = 20;
4086 undef_types_length = 0;
4087 undef_types = (struct type **)
4088 xmalloc (undef_types_allocated * sizeof (struct type *));
4089 }
This page took 0.115396 seconds and 4 git commands to generate.