Add "make pdf" and "make install-pdf", from Brooks Moses
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* Support routines for reading and decoding debugging information in
25 the "stabs" format. This format is used with many systems that use
26 the a.out object file format, as well as some systems that use
27 COFF or ELF where the stabs data is placed in a special section.
28 Avoid placing any object file format specific code in this file. */
29
30 #include "defs.h"
31 #include "gdb_string.h"
32 #include "bfd.h"
33 #include "gdb_obstack.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "expression.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
40 #include "libaout.h"
41 #include "aout/aout64.h"
42 #include "gdb-stabs.h"
43 #include "buildsym.h"
44 #include "complaints.h"
45 #include "demangle.h"
46 #include "language.h"
47 #include "doublest.h"
48 #include "cp-abi.h"
49 #include "cp-support.h"
50
51 #include <ctype.h>
52
53 /* Ask stabsread.h to define the vars it normally declares `extern'. */
54 #define EXTERN
55 /**/
56 #include "stabsread.h" /* Our own declarations */
57 #undef EXTERN
58
59 extern void _initialize_stabsread (void);
60
61 /* The routines that read and process a complete stabs for a C struct or
62 C++ class pass lists of data member fields and lists of member function
63 fields in an instance of a field_info structure, as defined below.
64 This is part of some reorganization of low level C++ support and is
65 expected to eventually go away... (FIXME) */
66
67 struct field_info
68 {
69 struct nextfield
70 {
71 struct nextfield *next;
72
73 /* This is the raw visibility from the stab. It is not checked
74 for being one of the visibilities we recognize, so code which
75 examines this field better be able to deal. */
76 int visibility;
77
78 struct field field;
79 }
80 *list;
81 struct next_fnfieldlist
82 {
83 struct next_fnfieldlist *next;
84 struct fn_fieldlist fn_fieldlist;
85 }
86 *fnlist;
87 };
88
89 static void
90 read_one_struct_field (struct field_info *, char **, char *,
91 struct type *, struct objfile *);
92
93 static struct type *dbx_alloc_type (int[2], struct objfile *);
94
95 static long read_huge_number (char **, int, int *, int);
96
97 static struct type *error_type (char **, struct objfile *);
98
99 static void
100 patch_block_stabs (struct pending *, struct pending_stabs *,
101 struct objfile *);
102
103 static void fix_common_block (struct symbol *, int);
104
105 static int read_type_number (char **, int *);
106
107 static struct type *read_type (char **, struct objfile *);
108
109 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110
111 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112
113 static struct type *read_sun_floating_type (char **, int[2],
114 struct objfile *);
115
116 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117
118 static struct type *rs6000_builtin_type (int);
119
120 static int
121 read_member_functions (struct field_info *, char **, struct type *,
122 struct objfile *);
123
124 static int
125 read_struct_fields (struct field_info *, char **, struct type *,
126 struct objfile *);
127
128 static int
129 read_baseclasses (struct field_info *, char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_tilde_fields (struct field_info *, char **, struct type *,
134 struct objfile *);
135
136 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137
138 static int attach_fields_to_type (struct field_info *, struct type *,
139 struct objfile *);
140
141 static struct type *read_struct_type (char **, struct type *,
142 enum type_code,
143 struct objfile *);
144
145 static struct type *read_array_type (char **, struct type *,
146 struct objfile *);
147
148 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149
150 static void add_undefined_type (struct type *);
151
152 static int
153 read_cpp_abbrev (struct field_info *, char **, struct type *,
154 struct objfile *);
155
156 static char *find_name_end (char *name);
157
158 static int process_reference (char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 /* Define this as 1 if a pcc declaration of a char or short argument
166 gives the correct address. Otherwise assume pcc gives the
167 address of the corresponding int, which is not the same on a
168 big-endian machine. */
169
170 #if !defined (BELIEVE_PCC_PROMOTION)
171 #define BELIEVE_PCC_PROMOTION 0
172 #endif
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
178 }
179
180 static void
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183 complaint (&symfile_complaints,
184 _("register number %d too large (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint (&symfile_complaints, "%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp,objfile) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (objfile); \
206 } while (0)
207 \f
208
209 /* Look up a dbx type-number pair. Return the address of the slot
210 where the type for that number-pair is stored.
211 The number-pair is in TYPENUMS.
212
213 This can be used for finding the type associated with that pair
214 or for associating a new type with the pair. */
215
216 static struct type **
217 dbx_lookup_type (int typenums[2])
218 {
219 int filenum = typenums[0];
220 int index = typenums[1];
221 unsigned old_len;
222 int real_filenum;
223 struct header_file *f;
224 int f_orig_length;
225
226 if (filenum == -1) /* -1,-1 is for temporary types. */
227 return 0;
228
229 if (filenum < 0 || filenum >= n_this_object_header_files)
230 {
231 complaint (&symfile_complaints,
232 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
233 filenum, index, symnum);
234 goto error_return;
235 }
236
237 if (filenum == 0)
238 {
239 if (index < 0)
240 {
241 /* Caller wants address of address of type. We think
242 that negative (rs6k builtin) types will never appear as
243 "lvalues", (nor should they), so we stuff the real type
244 pointer into a temp, and return its address. If referenced,
245 this will do the right thing. */
246 static struct type *temp_type;
247
248 temp_type = rs6000_builtin_type (index);
249 return &temp_type;
250 }
251
252 /* Type is defined outside of header files.
253 Find it in this object file's type vector. */
254 if (index >= type_vector_length)
255 {
256 old_len = type_vector_length;
257 if (old_len == 0)
258 {
259 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
260 type_vector = (struct type **)
261 xmalloc (type_vector_length * sizeof (struct type *));
262 }
263 while (index >= type_vector_length)
264 {
265 type_vector_length *= 2;
266 }
267 type_vector = (struct type **)
268 xrealloc ((char *) type_vector,
269 (type_vector_length * sizeof (struct type *)));
270 memset (&type_vector[old_len], 0,
271 (type_vector_length - old_len) * sizeof (struct type *));
272 }
273 return (&type_vector[index]);
274 }
275 else
276 {
277 real_filenum = this_object_header_files[filenum];
278
279 if (real_filenum >= N_HEADER_FILES (current_objfile))
280 {
281 struct type *temp_type;
282 struct type **temp_type_p;
283
284 warning (_("GDB internal error: bad real_filenum"));
285
286 error_return:
287 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
288 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
289 *temp_type_p = temp_type;
290 return temp_type_p;
291 }
292
293 f = HEADER_FILES (current_objfile) + real_filenum;
294
295 f_orig_length = f->length;
296 if (index >= f_orig_length)
297 {
298 while (index >= f->length)
299 {
300 f->length *= 2;
301 }
302 f->vector = (struct type **)
303 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
304 memset (&f->vector[f_orig_length], 0,
305 (f->length - f_orig_length) * sizeof (struct type *));
306 }
307 return (&f->vector[index]);
308 }
309 }
310
311 /* Make sure there is a type allocated for type numbers TYPENUMS
312 and return the type object.
313 This can create an empty (zeroed) type object.
314 TYPENUMS may be (-1, -1) to return a new type object that is not
315 put into the type vector, and so may not be referred to by number. */
316
317 static struct type *
318 dbx_alloc_type (int typenums[2], struct objfile *objfile)
319 {
320 struct type **type_addr;
321
322 if (typenums[0] == -1)
323 {
324 return (alloc_type (objfile));
325 }
326
327 type_addr = dbx_lookup_type (typenums);
328
329 /* If we are referring to a type not known at all yet,
330 allocate an empty type for it.
331 We will fill it in later if we find out how. */
332 if (*type_addr == 0)
333 {
334 *type_addr = alloc_type (objfile);
335 }
336
337 return (*type_addr);
338 }
339
340 /* for all the stabs in a given stab vector, build appropriate types
341 and fix their symbols in given symbol vector. */
342
343 static void
344 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
345 struct objfile *objfile)
346 {
347 int ii;
348 char *name;
349 char *pp;
350 struct symbol *sym;
351
352 if (stabs)
353 {
354
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 while (pp[1] == ':')
363 {
364 pp += 2;
365 pp = (char *) strchr (pp, ':');
366 }
367 sym = find_symbol_in_list (symbols, name, pp - name);
368 if (!sym)
369 {
370 /* FIXME-maybe: it would be nice if we noticed whether
371 the variable was defined *anywhere*, not just whether
372 it is defined in this compilation unit. But neither
373 xlc or GCC seem to need such a definition, and until
374 we do psymtabs (so that the minimal symbols from all
375 compilation units are available now), I'm not sure
376 how to get the information. */
377
378 /* On xcoff, if a global is defined and never referenced,
379 ld will remove it from the executable. There is then
380 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
381 sym = (struct symbol *)
382 obstack_alloc (&objfile->objfile_obstack,
383 sizeof (struct symbol));
384
385 memset (sym, 0, sizeof (struct symbol));
386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
387 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
388 DEPRECATED_SYMBOL_NAME (sym) =
389 obsavestring (name, pp - name, &objfile->objfile_obstack);
390 pp += 2;
391 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
392 {
393 /* I don't think the linker does this with functions,
394 so as far as I know this is never executed.
395 But it doesn't hurt to check. */
396 SYMBOL_TYPE (sym) =
397 lookup_function_type (read_type (&pp, objfile));
398 }
399 else
400 {
401 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
402 }
403 add_symbol_to_list (sym, &global_symbols);
404 }
405 else
406 {
407 pp += 2;
408 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
409 {
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 }
418 }
419 }
420 }
421 \f
422
423 /* Read a number by which a type is referred to in dbx data,
424 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
425 Just a single number N is equivalent to (0,N).
426 Return the two numbers by storing them in the vector TYPENUMS.
427 TYPENUMS will then be used as an argument to dbx_lookup_type.
428
429 Returns 0 for success, -1 for error. */
430
431 static int
432 read_type_number (char **pp, int *typenums)
433 {
434 int nbits;
435 if (**pp == '(')
436 {
437 (*pp)++;
438 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
439 if (nbits != 0)
440 return -1;
441 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 }
445 else
446 {
447 typenums[0] = 0;
448 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
449 if (nbits != 0)
450 return -1;
451 }
452 return 0;
453 }
454 \f
455
456 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
457 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
458 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
459 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
460
461 /* Structure for storing pointers to reference definitions for fast lookup
462 during "process_later". */
463
464 struct ref_map
465 {
466 char *stabs;
467 CORE_ADDR value;
468 struct symbol *sym;
469 };
470
471 #define MAX_CHUNK_REFS 100
472 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
473 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
474
475 static struct ref_map *ref_map;
476
477 /* Ptr to free cell in chunk's linked list. */
478 static int ref_count = 0;
479
480 /* Number of chunks malloced. */
481 static int ref_chunk = 0;
482
483 /* This file maintains a cache of stabs aliases found in the symbol
484 table. If the symbol table changes, this cache must be cleared
485 or we are left holding onto data in invalid obstacks. */
486 void
487 stabsread_clear_cache (void)
488 {
489 ref_count = 0;
490 ref_chunk = 0;
491 }
492
493 /* Create array of pointers mapping refids to symbols and stab strings.
494 Add pointers to reference definition symbols and/or their values as we
495 find them, using their reference numbers as our index.
496 These will be used later when we resolve references. */
497 void
498 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
499 {
500 if (ref_count == 0)
501 ref_chunk = 0;
502 if (refnum >= ref_count)
503 ref_count = refnum + 1;
504 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
505 {
506 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
507 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
508 ref_map = (struct ref_map *)
509 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
510 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
511 ref_chunk += new_chunks;
512 }
513 ref_map[refnum].stabs = stabs;
514 ref_map[refnum].sym = sym;
515 ref_map[refnum].value = value;
516 }
517
518 /* Return defined sym for the reference REFNUM. */
519 struct symbol *
520 ref_search (int refnum)
521 {
522 if (refnum < 0 || refnum > ref_count)
523 return 0;
524 return ref_map[refnum].sym;
525 }
526
527 /* Parse a reference id in STRING and return the resulting
528 reference number. Move STRING beyond the reference id. */
529
530 static int
531 process_reference (char **string)
532 {
533 char *p;
534 int refnum = 0;
535
536 if (**string != '#')
537 return 0;
538
539 /* Advance beyond the initial '#'. */
540 p = *string + 1;
541
542 /* Read number as reference id. */
543 while (*p && isdigit (*p))
544 {
545 refnum = refnum * 10 + *p - '0';
546 p++;
547 }
548 *string = p;
549 return refnum;
550 }
551
552 /* If STRING defines a reference, store away a pointer to the reference
553 definition for later use. Return the reference number. */
554
555 int
556 symbol_reference_defined (char **string)
557 {
558 char *p = *string;
559 int refnum = 0;
560
561 refnum = process_reference (&p);
562
563 /* Defining symbols end in '=' */
564 if (*p == '=')
565 {
566 /* Symbol is being defined here. */
567 *string = p + 1;
568 return refnum;
569 }
570 else
571 {
572 /* Must be a reference. Either the symbol has already been defined,
573 or this is a forward reference to it. */
574 *string = p;
575 return -1;
576 }
577 }
578
579 struct symbol *
580 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
581 struct objfile *objfile)
582 {
583 struct symbol *sym;
584 char *p = (char *) find_name_end (string);
585 int deftype;
586 int synonym = 0;
587 int i;
588
589 /* We would like to eliminate nameless symbols, but keep their types.
590 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
591 to type 2, but, should not create a symbol to address that type. Since
592 the symbol will be nameless, there is no way any user can refer to it. */
593
594 int nameless;
595
596 /* Ignore syms with empty names. */
597 if (string[0] == 0)
598 return 0;
599
600 /* Ignore old-style symbols from cc -go */
601 if (p == 0)
602 return 0;
603
604 while (p[1] == ':')
605 {
606 p += 2;
607 p = strchr (p, ':');
608 }
609
610 /* If a nameless stab entry, all we need is the type, not the symbol.
611 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
612 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
613
614 current_symbol = sym = (struct symbol *)
615 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
616 memset (sym, 0, sizeof (struct symbol));
617
618 switch (type & N_TYPE)
619 {
620 case N_TEXT:
621 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
622 break;
623 case N_DATA:
624 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
625 break;
626 case N_BSS:
627 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
628 break;
629 }
630
631 if (processing_gcc_compilation)
632 {
633 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
634 number of bytes occupied by a type or object, which we ignore. */
635 SYMBOL_LINE (sym) = desc;
636 }
637 else
638 {
639 SYMBOL_LINE (sym) = 0; /* unknown */
640 }
641
642 if (is_cplus_marker (string[0]))
643 {
644 /* Special GNU C++ names. */
645 switch (string[1])
646 {
647 case 't':
648 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
649 &objfile->objfile_obstack);
650 break;
651
652 case 'v': /* $vtbl_ptr_type */
653 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
654 goto normal;
655
656 case 'e':
657 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
658 &objfile->objfile_obstack);
659 break;
660
661 case '_':
662 /* This was an anonymous type that was never fixed up. */
663 goto normal;
664
665 #ifdef STATIC_TRANSFORM_NAME
666 case 'X':
667 /* SunPRO (3.0 at least) static variable encoding. */
668 goto normal;
669 #endif
670
671 default:
672 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
673 string);
674 goto normal; /* Do *something* with it */
675 }
676 }
677 else
678 {
679 normal:
680 SYMBOL_LANGUAGE (sym) = current_subfile->language;
681 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
682 }
683 p++;
684
685 /* Determine the type of name being defined. */
686 #if 0
687 /* Getting GDB to correctly skip the symbol on an undefined symbol
688 descriptor and not ever dump core is a very dodgy proposition if
689 we do things this way. I say the acorn RISC machine can just
690 fix their compiler. */
691 /* The Acorn RISC machine's compiler can put out locals that don't
692 start with "234=" or "(3,4)=", so assume anything other than the
693 deftypes we know how to handle is a local. */
694 if (!strchr ("cfFGpPrStTvVXCR", *p))
695 #else
696 if (isdigit (*p) || *p == '(' || *p == '-')
697 #endif
698 deftype = 'l';
699 else
700 deftype = *p++;
701
702 switch (deftype)
703 {
704 case 'c':
705 /* c is a special case, not followed by a type-number.
706 SYMBOL:c=iVALUE for an integer constant symbol.
707 SYMBOL:c=rVALUE for a floating constant symbol.
708 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
709 e.g. "b:c=e6,0" for "const b = blob1"
710 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
711 if (*p != '=')
712 {
713 SYMBOL_CLASS (sym) = LOC_CONST;
714 SYMBOL_TYPE (sym) = error_type (&p, objfile);
715 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
716 add_symbol_to_list (sym, &file_symbols);
717 return sym;
718 }
719 ++p;
720 switch (*p++)
721 {
722 case 'r':
723 {
724 double d = atof (p);
725 gdb_byte *dbl_valu;
726
727 /* FIXME-if-picky-about-floating-accuracy: Should be using
728 target arithmetic to get the value. real.c in GCC
729 probably has the necessary code. */
730
731 /* FIXME: lookup_fundamental_type is a hack. We should be
732 creating a type especially for the type of float constants.
733 Problem is, what type should it be?
734
735 Also, what should the name of this type be? Should we
736 be using 'S' constants (see stabs.texinfo) instead? */
737
738 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
739 FT_DBL_PREC_FLOAT);
740 dbl_valu =
741 obstack_alloc (&objfile->objfile_obstack,
742 TYPE_LENGTH (SYMBOL_TYPE (sym)));
743 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
744 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
745 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
746 }
747 break;
748 case 'i':
749 {
750 /* Defining integer constants this way is kind of silly,
751 since 'e' constants allows the compiler to give not
752 only the value, but the type as well. C has at least
753 int, long, unsigned int, and long long as constant
754 types; other languages probably should have at least
755 unsigned as well as signed constants. */
756
757 /* We just need one int constant type for all objfiles.
758 It doesn't depend on languages or anything (arguably its
759 name should be a language-specific name for a type of
760 that size, but I'm inclined to say that if the compiler
761 wants a nice name for the type, it can use 'e'). */
762 static struct type *int_const_type;
763
764 /* Yes, this is as long as a *host* int. That is because we
765 use atoi. */
766 if (int_const_type == NULL)
767 int_const_type =
768 init_type (TYPE_CODE_INT,
769 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
770 "integer constant",
771 (struct objfile *) NULL);
772 SYMBOL_TYPE (sym) = int_const_type;
773 SYMBOL_VALUE (sym) = atoi (p);
774 SYMBOL_CLASS (sym) = LOC_CONST;
775 }
776 break;
777 case 'e':
778 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
779 can be represented as integral.
780 e.g. "b:c=e6,0" for "const b = blob1"
781 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
782 {
783 SYMBOL_CLASS (sym) = LOC_CONST;
784 SYMBOL_TYPE (sym) = read_type (&p, objfile);
785
786 if (*p != ',')
787 {
788 SYMBOL_TYPE (sym) = error_type (&p, objfile);
789 break;
790 }
791 ++p;
792
793 /* If the value is too big to fit in an int (perhaps because
794 it is unsigned), or something like that, we silently get
795 a bogus value. The type and everything else about it is
796 correct. Ideally, we should be using whatever we have
797 available for parsing unsigned and long long values,
798 however. */
799 SYMBOL_VALUE (sym) = atoi (p);
800 }
801 break;
802 default:
803 {
804 SYMBOL_CLASS (sym) = LOC_CONST;
805 SYMBOL_TYPE (sym) = error_type (&p, objfile);
806 }
807 }
808 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
809 add_symbol_to_list (sym, &file_symbols);
810 return sym;
811
812 case 'C':
813 /* The name of a caught exception. */
814 SYMBOL_TYPE (sym) = read_type (&p, objfile);
815 SYMBOL_CLASS (sym) = LOC_LABEL;
816 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
817 SYMBOL_VALUE_ADDRESS (sym) = valu;
818 add_symbol_to_list (sym, &local_symbols);
819 break;
820
821 case 'f':
822 /* A static function definition. */
823 SYMBOL_TYPE (sym) = read_type (&p, objfile);
824 SYMBOL_CLASS (sym) = LOC_BLOCK;
825 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
826 add_symbol_to_list (sym, &file_symbols);
827 /* fall into process_function_types. */
828
829 process_function_types:
830 /* Function result types are described as the result type in stabs.
831 We need to convert this to the function-returning-type-X type
832 in GDB. E.g. "int" is converted to "function returning int". */
833 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
834 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
835
836 /* All functions in C++ have prototypes. Stabs does not offer an
837 explicit way to identify prototyped or unprototyped functions,
838 but both GCC and Sun CC emit stabs for the "call-as" type rather
839 than the "declared-as" type for unprototyped functions, so
840 we treat all functions as if they were prototyped. This is used
841 primarily for promotion when calling the function from GDB. */
842 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
843
844 /* fall into process_prototype_types */
845
846 process_prototype_types:
847 /* Sun acc puts declared types of arguments here. */
848 if (*p == ';')
849 {
850 struct type *ftype = SYMBOL_TYPE (sym);
851 int nsemi = 0;
852 int nparams = 0;
853 char *p1 = p;
854
855 /* Obtain a worst case guess for the number of arguments
856 by counting the semicolons. */
857 while (*p1)
858 {
859 if (*p1++ == ';')
860 nsemi++;
861 }
862
863 /* Allocate parameter information fields and fill them in. */
864 TYPE_FIELDS (ftype) = (struct field *)
865 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
866 while (*p++ == ';')
867 {
868 struct type *ptype;
869
870 /* A type number of zero indicates the start of varargs.
871 FIXME: GDB currently ignores vararg functions. */
872 if (p[0] == '0' && p[1] == '\0')
873 break;
874 ptype = read_type (&p, objfile);
875
876 /* The Sun compilers mark integer arguments, which should
877 be promoted to the width of the calling conventions, with
878 a type which references itself. This type is turned into
879 a TYPE_CODE_VOID type by read_type, and we have to turn
880 it back into builtin_type_int here.
881 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
882 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
883 ptype = builtin_type_int;
884 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
885 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
886 }
887 TYPE_NFIELDS (ftype) = nparams;
888 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
889 }
890 break;
891
892 case 'F':
893 /* A global function definition. */
894 SYMBOL_TYPE (sym) = read_type (&p, objfile);
895 SYMBOL_CLASS (sym) = LOC_BLOCK;
896 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
897 add_symbol_to_list (sym, &global_symbols);
898 goto process_function_types;
899
900 case 'G':
901 /* For a class G (global) symbol, it appears that the
902 value is not correct. It is necessary to search for the
903 corresponding linker definition to find the value.
904 These definitions appear at the end of the namelist. */
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906 SYMBOL_CLASS (sym) = LOC_STATIC;
907 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
908 /* Don't add symbol references to global_sym_chain.
909 Symbol references don't have valid names and wont't match up with
910 minimal symbols when the global_sym_chain is relocated.
911 We'll fixup symbol references when we fixup the defining symbol. */
912 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
913 {
914 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
915 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
916 global_sym_chain[i] = sym;
917 }
918 add_symbol_to_list (sym, &global_symbols);
919 break;
920
921 /* This case is faked by a conditional above,
922 when there is no code letter in the dbx data.
923 Dbx data never actually contains 'l'. */
924 case 's':
925 case 'l':
926 SYMBOL_TYPE (sym) = read_type (&p, objfile);
927 SYMBOL_CLASS (sym) = LOC_LOCAL;
928 SYMBOL_VALUE (sym) = valu;
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &local_symbols);
931 break;
932
933 case 'p':
934 if (*p == 'F')
935 /* pF is a two-letter code that means a function parameter in Fortran.
936 The type-number specifies the type of the return value.
937 Translate it into a pointer-to-function type. */
938 {
939 p++;
940 SYMBOL_TYPE (sym)
941 = lookup_pointer_type
942 (lookup_function_type (read_type (&p, objfile)));
943 }
944 else
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946
947 SYMBOL_CLASS (sym) = LOC_ARG;
948 SYMBOL_VALUE (sym) = valu;
949 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
950 add_symbol_to_list (sym, &local_symbols);
951
952 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
953 {
954 /* On little-endian machines, this crud is never necessary,
955 and, if the extra bytes contain garbage, is harmful. */
956 break;
957 }
958
959 /* If it's gcc-compiled, if it says `short', believe it. */
960 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
961 break;
962
963 if (!BELIEVE_PCC_PROMOTION)
964 {
965 /* This is the signed type which arguments get promoted to. */
966 static struct type *pcc_promotion_type;
967 /* This is the unsigned type which arguments get promoted to. */
968 static struct type *pcc_unsigned_promotion_type;
969
970 /* Call it "int" because this is mainly C lossage. */
971 if (pcc_promotion_type == NULL)
972 pcc_promotion_type =
973 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
974 0, "int", NULL);
975
976 if (pcc_unsigned_promotion_type == NULL)
977 pcc_unsigned_promotion_type =
978 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
979 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
980
981 /* If PCC says a parameter is a short or a char, it is
982 really an int. */
983 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
984 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
985 {
986 SYMBOL_TYPE (sym) =
987 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
988 ? pcc_unsigned_promotion_type
989 : pcc_promotion_type;
990 }
991 break;
992 }
993
994 case 'P':
995 /* acc seems to use P to declare the prototypes of functions that
996 are referenced by this file. gdb is not prepared to deal
997 with this extra information. FIXME, it ought to. */
998 if (type == N_FUN)
999 {
1000 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1001 goto process_prototype_types;
1002 }
1003 /*FALLTHROUGH */
1004
1005 case 'R':
1006 /* Parameter which is in a register. */
1007 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1008 SYMBOL_CLASS (sym) = LOC_REGPARM;
1009 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1010 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1011 {
1012 reg_value_complaint (SYMBOL_VALUE (sym),
1013 NUM_REGS + NUM_PSEUDO_REGS,
1014 SYMBOL_PRINT_NAME (sym));
1015 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1016 }
1017 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1018 add_symbol_to_list (sym, &local_symbols);
1019 break;
1020
1021 case 'r':
1022 /* Register variable (either global or local). */
1023 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1024 SYMBOL_CLASS (sym) = LOC_REGISTER;
1025 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1026 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1027 {
1028 reg_value_complaint (SYMBOL_VALUE (sym),
1029 NUM_REGS + NUM_PSEUDO_REGS,
1030 SYMBOL_PRINT_NAME (sym));
1031 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1032 }
1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034 if (within_function)
1035 {
1036 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1037 the same name to represent an argument passed in a
1038 register. GCC uses 'P' for the same case. So if we find
1039 such a symbol pair we combine it into one 'P' symbol.
1040 For Sun cc we need to do this regardless of
1041 stabs_argument_has_addr, because the compiler puts out
1042 the 'p' symbol even if it never saves the argument onto
1043 the stack.
1044
1045 On most machines, we want to preserve both symbols, so
1046 that we can still get information about what is going on
1047 with the stack (VAX for computing args_printed, using
1048 stack slots instead of saved registers in backtraces,
1049 etc.).
1050
1051 Note that this code illegally combines
1052 main(argc) struct foo argc; { register struct foo argc; }
1053 but this case is considered pathological and causes a warning
1054 from a decent compiler. */
1055
1056 if (local_symbols
1057 && local_symbols->nsyms > 0
1058 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1059 SYMBOL_TYPE (sym)))
1060 {
1061 struct symbol *prev_sym;
1062 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1063 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1064 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1065 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1066 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1067 {
1068 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1069 /* Use the type from the LOC_REGISTER; that is the type
1070 that is actually in that register. */
1071 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1072 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1073 sym = prev_sym;
1074 break;
1075 }
1076 }
1077 add_symbol_to_list (sym, &local_symbols);
1078 }
1079 else
1080 add_symbol_to_list (sym, &file_symbols);
1081 break;
1082
1083 case 'S':
1084 /* Static symbol at top level of file */
1085 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1086 SYMBOL_CLASS (sym) = LOC_STATIC;
1087 SYMBOL_VALUE_ADDRESS (sym) = valu;
1088 #ifdef STATIC_TRANSFORM_NAME
1089 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1090 {
1091 struct minimal_symbol *msym;
1092 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1093 if (msym != NULL)
1094 {
1095 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1096 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1097 }
1098 }
1099 #endif
1100 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1101 add_symbol_to_list (sym, &file_symbols);
1102 break;
1103
1104 case 't':
1105 /* In Ada, there is no distinction between typedef and non-typedef;
1106 any type declaration implicitly has the equivalent of a typedef,
1107 and thus 't' is in fact equivalent to 'Tt'.
1108
1109 Therefore, for Ada units, we check the character immediately
1110 before the 't', and if we do not find a 'T', then make sure to
1111 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1112 will be stored in the VAR_DOMAIN). If the symbol was indeed
1113 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1114 elsewhere, so we don't need to take care of that.
1115
1116 This is important to do, because of forward references:
1117 The cleanup of undefined types stored in undef_types only uses
1118 STRUCT_DOMAIN symbols to perform the replacement. */
1119 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1120
1121 /* Typedef */
1122 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1123
1124 /* For a nameless type, we don't want a create a symbol, thus we
1125 did not use `sym'. Return without further processing. */
1126 if (nameless)
1127 return NULL;
1128
1129 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1130 SYMBOL_VALUE (sym) = valu;
1131 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1132 /* C++ vagaries: we may have a type which is derived from
1133 a base type which did not have its name defined when the
1134 derived class was output. We fill in the derived class's
1135 base part member's name here in that case. */
1136 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1137 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1138 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1139 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1140 {
1141 int j;
1142 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1143 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1144 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1145 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1146 }
1147
1148 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1149 {
1150 /* gcc-2.6 or later (when using -fvtable-thunks)
1151 emits a unique named type for a vtable entry.
1152 Some gdb code depends on that specific name. */
1153 extern const char vtbl_ptr_name[];
1154
1155 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1156 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1157 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1158 {
1159 /* If we are giving a name to a type such as "pointer to
1160 foo" or "function returning foo", we better not set
1161 the TYPE_NAME. If the program contains "typedef char
1162 *caddr_t;", we don't want all variables of type char
1163 * to print as caddr_t. This is not just a
1164 consequence of GDB's type management; PCC and GCC (at
1165 least through version 2.4) both output variables of
1166 either type char * or caddr_t with the type number
1167 defined in the 't' symbol for caddr_t. If a future
1168 compiler cleans this up it GDB is not ready for it
1169 yet, but if it becomes ready we somehow need to
1170 disable this check (without breaking the PCC/GCC2.4
1171 case).
1172
1173 Sigh.
1174
1175 Fortunately, this check seems not to be necessary
1176 for anything except pointers or functions. */
1177 /* ezannoni: 2000-10-26. This seems to apply for
1178 versions of gcc older than 2.8. This was the original
1179 problem: with the following code gdb would tell that
1180 the type for name1 is caddr_t, and func is char()
1181 typedef char *caddr_t;
1182 char *name2;
1183 struct x
1184 {
1185 char *name1;
1186 } xx;
1187 char *func()
1188 {
1189 }
1190 main () {}
1191 */
1192
1193 /* Pascal accepts names for pointer types. */
1194 if (current_subfile->language == language_pascal)
1195 {
1196 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1197 }
1198 }
1199 else
1200 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1201 }
1202
1203 add_symbol_to_list (sym, &file_symbols);
1204
1205 if (synonym)
1206 {
1207 /* Create the STRUCT_DOMAIN clone. */
1208 struct symbol *struct_sym = (struct symbol *)
1209 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1210
1211 *struct_sym = *sym;
1212 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1213 SYMBOL_VALUE (struct_sym) = valu;
1214 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1215 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1216 TYPE_NAME (SYMBOL_TYPE (sym))
1217 = obconcat (&objfile->objfile_obstack, "", "",
1218 DEPRECATED_SYMBOL_NAME (sym));
1219 add_symbol_to_list (struct_sym, &file_symbols);
1220 }
1221
1222 break;
1223
1224 case 'T':
1225 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1226 by 't' which means we are typedef'ing it as well. */
1227 synonym = *p == 't';
1228
1229 if (synonym)
1230 p++;
1231
1232 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1233
1234 /* For a nameless type, we don't want a create a symbol, thus we
1235 did not use `sym'. Return without further processing. */
1236 if (nameless)
1237 return NULL;
1238
1239 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1240 SYMBOL_VALUE (sym) = valu;
1241 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1242 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1243 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1244 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1245 add_symbol_to_list (sym, &file_symbols);
1246
1247 if (synonym)
1248 {
1249 /* Clone the sym and then modify it. */
1250 struct symbol *typedef_sym = (struct symbol *)
1251 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1252 *typedef_sym = *sym;
1253 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1254 SYMBOL_VALUE (typedef_sym) = valu;
1255 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1256 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1257 TYPE_NAME (SYMBOL_TYPE (sym))
1258 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1259 add_symbol_to_list (typedef_sym, &file_symbols);
1260 }
1261 break;
1262
1263 case 'V':
1264 /* Static symbol of local scope */
1265 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1266 SYMBOL_CLASS (sym) = LOC_STATIC;
1267 SYMBOL_VALUE_ADDRESS (sym) = valu;
1268 #ifdef STATIC_TRANSFORM_NAME
1269 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1270 {
1271 struct minimal_symbol *msym;
1272 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1273 if (msym != NULL)
1274 {
1275 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1276 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1277 }
1278 }
1279 #endif
1280 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1281 add_symbol_to_list (sym, &local_symbols);
1282 break;
1283
1284 case 'v':
1285 /* Reference parameter */
1286 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1287 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1288 SYMBOL_VALUE (sym) = valu;
1289 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1290 add_symbol_to_list (sym, &local_symbols);
1291 break;
1292
1293 case 'a':
1294 /* Reference parameter which is in a register. */
1295 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1296 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1297 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1298 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1299 {
1300 reg_value_complaint (SYMBOL_VALUE (sym),
1301 NUM_REGS + NUM_PSEUDO_REGS,
1302 SYMBOL_PRINT_NAME (sym));
1303 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1304 }
1305 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1306 add_symbol_to_list (sym, &local_symbols);
1307 break;
1308
1309 case 'X':
1310 /* This is used by Sun FORTRAN for "function result value".
1311 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1312 that Pascal uses it too, but when I tried it Pascal used
1313 "x:3" (local symbol) instead. */
1314 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1315 SYMBOL_CLASS (sym) = LOC_LOCAL;
1316 SYMBOL_VALUE (sym) = valu;
1317 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1318 add_symbol_to_list (sym, &local_symbols);
1319 break;
1320
1321 default:
1322 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1323 SYMBOL_CLASS (sym) = LOC_CONST;
1324 SYMBOL_VALUE (sym) = 0;
1325 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1326 add_symbol_to_list (sym, &file_symbols);
1327 break;
1328 }
1329
1330 /* Some systems pass variables of certain types by reference instead
1331 of by value, i.e. they will pass the address of a structure (in a
1332 register or on the stack) instead of the structure itself. */
1333
1334 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1335 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1336 {
1337 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1338 variables passed in a register). */
1339 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1340 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1341 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1342 and subsequent arguments on SPARC, for example). */
1343 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1344 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1345 }
1346
1347 return sym;
1348 }
1349
1350 /* Skip rest of this symbol and return an error type.
1351
1352 General notes on error recovery: error_type always skips to the
1353 end of the symbol (modulo cretinous dbx symbol name continuation).
1354 Thus code like this:
1355
1356 if (*(*pp)++ != ';')
1357 return error_type (pp, objfile);
1358
1359 is wrong because if *pp starts out pointing at '\0' (typically as the
1360 result of an earlier error), it will be incremented to point to the
1361 start of the next symbol, which might produce strange results, at least
1362 if you run off the end of the string table. Instead use
1363
1364 if (**pp != ';')
1365 return error_type (pp, objfile);
1366 ++*pp;
1367
1368 or
1369
1370 if (**pp != ';')
1371 foo = error_type (pp, objfile);
1372 else
1373 ++*pp;
1374
1375 And in case it isn't obvious, the point of all this hair is so the compiler
1376 can define new types and new syntaxes, and old versions of the
1377 debugger will be able to read the new symbol tables. */
1378
1379 static struct type *
1380 error_type (char **pp, struct objfile *objfile)
1381 {
1382 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1383 while (1)
1384 {
1385 /* Skip to end of symbol. */
1386 while (**pp != '\0')
1387 {
1388 (*pp)++;
1389 }
1390
1391 /* Check for and handle cretinous dbx symbol name continuation! */
1392 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1393 {
1394 *pp = next_symbol_text (objfile);
1395 }
1396 else
1397 {
1398 break;
1399 }
1400 }
1401 return (builtin_type_error);
1402 }
1403 \f
1404
1405 /* Read type information or a type definition; return the type. Even
1406 though this routine accepts either type information or a type
1407 definition, the distinction is relevant--some parts of stabsread.c
1408 assume that type information starts with a digit, '-', or '(' in
1409 deciding whether to call read_type. */
1410
1411 static struct type *
1412 read_type (char **pp, struct objfile *objfile)
1413 {
1414 struct type *type = 0;
1415 struct type *type1;
1416 int typenums[2];
1417 char type_descriptor;
1418
1419 /* Size in bits of type if specified by a type attribute, or -1 if
1420 there is no size attribute. */
1421 int type_size = -1;
1422
1423 /* Used to distinguish string and bitstring from char-array and set. */
1424 int is_string = 0;
1425
1426 /* Used to distinguish vector from array. */
1427 int is_vector = 0;
1428
1429 /* Read type number if present. The type number may be omitted.
1430 for instance in a two-dimensional array declared with type
1431 "ar1;1;10;ar1;1;10;4". */
1432 if ((**pp >= '0' && **pp <= '9')
1433 || **pp == '('
1434 || **pp == '-')
1435 {
1436 if (read_type_number (pp, typenums) != 0)
1437 return error_type (pp, objfile);
1438
1439 if (**pp != '=')
1440 {
1441 /* Type is not being defined here. Either it already
1442 exists, or this is a forward reference to it.
1443 dbx_alloc_type handles both cases. */
1444 type = dbx_alloc_type (typenums, objfile);
1445
1446 /* If this is a forward reference, arrange to complain if it
1447 doesn't get patched up by the time we're done
1448 reading. */
1449 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1450 add_undefined_type (type);
1451
1452 return type;
1453 }
1454
1455 /* Type is being defined here. */
1456 /* Skip the '='.
1457 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1458 (*pp) += 2;
1459 }
1460 else
1461 {
1462 /* 'typenums=' not present, type is anonymous. Read and return
1463 the definition, but don't put it in the type vector. */
1464 typenums[0] = typenums[1] = -1;
1465 (*pp)++;
1466 }
1467
1468 again:
1469 type_descriptor = (*pp)[-1];
1470 switch (type_descriptor)
1471 {
1472 case 'x':
1473 {
1474 enum type_code code;
1475
1476 /* Used to index through file_symbols. */
1477 struct pending *ppt;
1478 int i;
1479
1480 /* Name including "struct", etc. */
1481 char *type_name;
1482
1483 {
1484 char *from, *to, *p, *q1, *q2;
1485
1486 /* Set the type code according to the following letter. */
1487 switch ((*pp)[0])
1488 {
1489 case 's':
1490 code = TYPE_CODE_STRUCT;
1491 break;
1492 case 'u':
1493 code = TYPE_CODE_UNION;
1494 break;
1495 case 'e':
1496 code = TYPE_CODE_ENUM;
1497 break;
1498 default:
1499 {
1500 /* Complain and keep going, so compilers can invent new
1501 cross-reference types. */
1502 complaint (&symfile_complaints,
1503 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1504 code = TYPE_CODE_STRUCT;
1505 break;
1506 }
1507 }
1508
1509 q1 = strchr (*pp, '<');
1510 p = strchr (*pp, ':');
1511 if (p == NULL)
1512 return error_type (pp, objfile);
1513 if (q1 && p > q1 && p[1] == ':')
1514 {
1515 int nesting_level = 0;
1516 for (q2 = q1; *q2; q2++)
1517 {
1518 if (*q2 == '<')
1519 nesting_level++;
1520 else if (*q2 == '>')
1521 nesting_level--;
1522 else if (*q2 == ':' && nesting_level == 0)
1523 break;
1524 }
1525 p = q2;
1526 if (*p != ':')
1527 return error_type (pp, objfile);
1528 }
1529 to = type_name =
1530 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1531
1532 /* Copy the name. */
1533 from = *pp + 1;
1534 while (from < p)
1535 *to++ = *from++;
1536 *to = '\0';
1537
1538 /* Set the pointer ahead of the name which we just read, and
1539 the colon. */
1540 *pp = from + 1;
1541 }
1542
1543 /* If this type has already been declared, then reuse the same
1544 type, rather than allocating a new one. This saves some
1545 memory. */
1546
1547 for (ppt = file_symbols; ppt; ppt = ppt->next)
1548 for (i = 0; i < ppt->nsyms; i++)
1549 {
1550 struct symbol *sym = ppt->symbol[i];
1551
1552 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1553 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1554 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1555 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1556 {
1557 obstack_free (&objfile->objfile_obstack, type_name);
1558 type = SYMBOL_TYPE (sym);
1559 if (typenums[0] != -1)
1560 *dbx_lookup_type (typenums) = type;
1561 return type;
1562 }
1563 }
1564
1565 /* Didn't find the type to which this refers, so we must
1566 be dealing with a forward reference. Allocate a type
1567 structure for it, and keep track of it so we can
1568 fill in the rest of the fields when we get the full
1569 type. */
1570 type = dbx_alloc_type (typenums, objfile);
1571 TYPE_CODE (type) = code;
1572 TYPE_TAG_NAME (type) = type_name;
1573 INIT_CPLUS_SPECIFIC (type);
1574 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1575
1576 add_undefined_type (type);
1577 return type;
1578 }
1579
1580 case '-': /* RS/6000 built-in type */
1581 case '0':
1582 case '1':
1583 case '2':
1584 case '3':
1585 case '4':
1586 case '5':
1587 case '6':
1588 case '7':
1589 case '8':
1590 case '9':
1591 case '(':
1592 (*pp)--;
1593
1594 /* We deal with something like t(1,2)=(3,4)=... which
1595 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1596
1597 /* Allocate and enter the typedef type first.
1598 This handles recursive types. */
1599 type = dbx_alloc_type (typenums, objfile);
1600 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1601 {
1602 struct type *xtype = read_type (pp, objfile);
1603 if (type == xtype)
1604 {
1605 /* It's being defined as itself. That means it is "void". */
1606 TYPE_CODE (type) = TYPE_CODE_VOID;
1607 TYPE_LENGTH (type) = 1;
1608 }
1609 else if (type_size >= 0 || is_string)
1610 {
1611 /* This is the absolute wrong way to construct types. Every
1612 other debug format has found a way around this problem and
1613 the related problems with unnecessarily stubbed types;
1614 someone motivated should attempt to clean up the issue
1615 here as well. Once a type pointed to has been created it
1616 should not be modified.
1617
1618 Well, it's not *absolutely* wrong. Constructing recursive
1619 types (trees, linked lists) necessarily entails modifying
1620 types after creating them. Constructing any loop structure
1621 entails side effects. The Dwarf 2 reader does handle this
1622 more gracefully (it never constructs more than once
1623 instance of a type object, so it doesn't have to copy type
1624 objects wholesale), but it still mutates type objects after
1625 other folks have references to them.
1626
1627 Keep in mind that this circularity/mutation issue shows up
1628 at the source language level, too: C's "incomplete types",
1629 for example. So the proper cleanup, I think, would be to
1630 limit GDB's type smashing to match exactly those required
1631 by the source language. So GDB could have a
1632 "complete_this_type" function, but never create unnecessary
1633 copies of a type otherwise. */
1634 replace_type (type, xtype);
1635 TYPE_NAME (type) = NULL;
1636 TYPE_TAG_NAME (type) = NULL;
1637 }
1638 else
1639 {
1640 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1641 TYPE_TARGET_TYPE (type) = xtype;
1642 }
1643 }
1644 break;
1645
1646 /* In the following types, we must be sure to overwrite any existing
1647 type that the typenums refer to, rather than allocating a new one
1648 and making the typenums point to the new one. This is because there
1649 may already be pointers to the existing type (if it had been
1650 forward-referenced), and we must change it to a pointer, function,
1651 reference, or whatever, *in-place*. */
1652
1653 case '*': /* Pointer to another type */
1654 type1 = read_type (pp, objfile);
1655 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1656 break;
1657
1658 case '&': /* Reference to another type */
1659 type1 = read_type (pp, objfile);
1660 type = make_reference_type (type1, dbx_lookup_type (typenums));
1661 break;
1662
1663 case 'f': /* Function returning another type */
1664 type1 = read_type (pp, objfile);
1665 type = make_function_type (type1, dbx_lookup_type (typenums));
1666 break;
1667
1668 case 'g': /* Prototyped function. (Sun) */
1669 {
1670 /* Unresolved questions:
1671
1672 - According to Sun's ``STABS Interface Manual'', for 'f'
1673 and 'F' symbol descriptors, a `0' in the argument type list
1674 indicates a varargs function. But it doesn't say how 'g'
1675 type descriptors represent that info. Someone with access
1676 to Sun's toolchain should try it out.
1677
1678 - According to the comment in define_symbol (search for
1679 `process_prototype_types:'), Sun emits integer arguments as
1680 types which ref themselves --- like `void' types. Do we
1681 have to deal with that here, too? Again, someone with
1682 access to Sun's toolchain should try it out and let us
1683 know. */
1684
1685 const char *type_start = (*pp) - 1;
1686 struct type *return_type = read_type (pp, objfile);
1687 struct type *func_type
1688 = make_function_type (return_type, dbx_lookup_type (typenums));
1689 struct type_list {
1690 struct type *type;
1691 struct type_list *next;
1692 } *arg_types = 0;
1693 int num_args = 0;
1694
1695 while (**pp && **pp != '#')
1696 {
1697 struct type *arg_type = read_type (pp, objfile);
1698 struct type_list *new = alloca (sizeof (*new));
1699 new->type = arg_type;
1700 new->next = arg_types;
1701 arg_types = new;
1702 num_args++;
1703 }
1704 if (**pp == '#')
1705 ++*pp;
1706 else
1707 {
1708 complaint (&symfile_complaints,
1709 _("Prototyped function type didn't end arguments with `#':\n%s"),
1710 type_start);
1711 }
1712
1713 /* If there is just one argument whose type is `void', then
1714 that's just an empty argument list. */
1715 if (arg_types
1716 && ! arg_types->next
1717 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1718 num_args = 0;
1719
1720 TYPE_FIELDS (func_type)
1721 = (struct field *) TYPE_ALLOC (func_type,
1722 num_args * sizeof (struct field));
1723 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1724 {
1725 int i;
1726 struct type_list *t;
1727
1728 /* We stuck each argument type onto the front of the list
1729 when we read it, so the list is reversed. Build the
1730 fields array right-to-left. */
1731 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1732 TYPE_FIELD_TYPE (func_type, i) = t->type;
1733 }
1734 TYPE_NFIELDS (func_type) = num_args;
1735 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1736
1737 type = func_type;
1738 break;
1739 }
1740
1741 case 'k': /* Const qualifier on some type (Sun) */
1742 type = read_type (pp, objfile);
1743 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1744 dbx_lookup_type (typenums));
1745 break;
1746
1747 case 'B': /* Volatile qual on some type (Sun) */
1748 type = read_type (pp, objfile);
1749 type = make_cv_type (TYPE_CONST (type), 1, type,
1750 dbx_lookup_type (typenums));
1751 break;
1752
1753 case '@':
1754 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1755 { /* Member (class & variable) type */
1756 /* FIXME -- we should be doing smash_to_XXX types here. */
1757
1758 struct type *domain = read_type (pp, objfile);
1759 struct type *memtype;
1760
1761 if (**pp != ',')
1762 /* Invalid member type data format. */
1763 return error_type (pp, objfile);
1764 ++*pp;
1765
1766 memtype = read_type (pp, objfile);
1767 type = dbx_alloc_type (typenums, objfile);
1768 smash_to_memberptr_type (type, domain, memtype);
1769 }
1770 else
1771 /* type attribute */
1772 {
1773 char *attr = *pp;
1774 /* Skip to the semicolon. */
1775 while (**pp != ';' && **pp != '\0')
1776 ++(*pp);
1777 if (**pp == '\0')
1778 return error_type (pp, objfile);
1779 else
1780 ++ * pp; /* Skip the semicolon. */
1781
1782 switch (*attr)
1783 {
1784 case 's': /* Size attribute */
1785 type_size = atoi (attr + 1);
1786 if (type_size <= 0)
1787 type_size = -1;
1788 break;
1789
1790 case 'S': /* String attribute */
1791 /* FIXME: check to see if following type is array? */
1792 is_string = 1;
1793 break;
1794
1795 case 'V': /* Vector attribute */
1796 /* FIXME: check to see if following type is array? */
1797 is_vector = 1;
1798 break;
1799
1800 default:
1801 /* Ignore unrecognized type attributes, so future compilers
1802 can invent new ones. */
1803 break;
1804 }
1805 ++*pp;
1806 goto again;
1807 }
1808 break;
1809
1810 case '#': /* Method (class & fn) type */
1811 if ((*pp)[0] == '#')
1812 {
1813 /* We'll get the parameter types from the name. */
1814 struct type *return_type;
1815
1816 (*pp)++;
1817 return_type = read_type (pp, objfile);
1818 if (*(*pp)++ != ';')
1819 complaint (&symfile_complaints,
1820 _("invalid (minimal) member type data format at symtab pos %d."),
1821 symnum);
1822 type = allocate_stub_method (return_type);
1823 if (typenums[0] != -1)
1824 *dbx_lookup_type (typenums) = type;
1825 }
1826 else
1827 {
1828 struct type *domain = read_type (pp, objfile);
1829 struct type *return_type;
1830 struct field *args;
1831 int nargs, varargs;
1832
1833 if (**pp != ',')
1834 /* Invalid member type data format. */
1835 return error_type (pp, objfile);
1836 else
1837 ++(*pp);
1838
1839 return_type = read_type (pp, objfile);
1840 args = read_args (pp, ';', objfile, &nargs, &varargs);
1841 if (args == NULL)
1842 return error_type (pp, objfile);
1843 type = dbx_alloc_type (typenums, objfile);
1844 smash_to_method_type (type, domain, return_type, args,
1845 nargs, varargs);
1846 }
1847 break;
1848
1849 case 'r': /* Range type */
1850 type = read_range_type (pp, typenums, type_size, objfile);
1851 if (typenums[0] != -1)
1852 *dbx_lookup_type (typenums) = type;
1853 break;
1854
1855 case 'b':
1856 {
1857 /* Sun ACC builtin int type */
1858 type = read_sun_builtin_type (pp, typenums, objfile);
1859 if (typenums[0] != -1)
1860 *dbx_lookup_type (typenums) = type;
1861 }
1862 break;
1863
1864 case 'R': /* Sun ACC builtin float type */
1865 type = read_sun_floating_type (pp, typenums, objfile);
1866 if (typenums[0] != -1)
1867 *dbx_lookup_type (typenums) = type;
1868 break;
1869
1870 case 'e': /* Enumeration type */
1871 type = dbx_alloc_type (typenums, objfile);
1872 type = read_enum_type (pp, type, objfile);
1873 if (typenums[0] != -1)
1874 *dbx_lookup_type (typenums) = type;
1875 break;
1876
1877 case 's': /* Struct type */
1878 case 'u': /* Union type */
1879 {
1880 enum type_code type_code = TYPE_CODE_UNDEF;
1881 type = dbx_alloc_type (typenums, objfile);
1882 switch (type_descriptor)
1883 {
1884 case 's':
1885 type_code = TYPE_CODE_STRUCT;
1886 break;
1887 case 'u':
1888 type_code = TYPE_CODE_UNION;
1889 break;
1890 }
1891 type = read_struct_type (pp, type, type_code, objfile);
1892 break;
1893 }
1894
1895 case 'a': /* Array type */
1896 if (**pp != 'r')
1897 return error_type (pp, objfile);
1898 ++*pp;
1899
1900 type = dbx_alloc_type (typenums, objfile);
1901 type = read_array_type (pp, type, objfile);
1902 if (is_string)
1903 TYPE_CODE (type) = TYPE_CODE_STRING;
1904 if (is_vector)
1905 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1906 break;
1907
1908 case 'S': /* Set or bitstring type */
1909 type1 = read_type (pp, objfile);
1910 type = create_set_type ((struct type *) NULL, type1);
1911 if (is_string)
1912 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1913 if (typenums[0] != -1)
1914 *dbx_lookup_type (typenums) = type;
1915 break;
1916
1917 default:
1918 --*pp; /* Go back to the symbol in error */
1919 /* Particularly important if it was \0! */
1920 return error_type (pp, objfile);
1921 }
1922
1923 if (type == 0)
1924 {
1925 warning (_("GDB internal error, type is NULL in stabsread.c."));
1926 return error_type (pp, objfile);
1927 }
1928
1929 /* Size specified in a type attribute overrides any other size. */
1930 if (type_size != -1)
1931 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1932
1933 return type;
1934 }
1935 \f
1936 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1937 Return the proper type node for a given builtin type number. */
1938
1939 static struct type *
1940 rs6000_builtin_type (int typenum)
1941 {
1942 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1943 #define NUMBER_RECOGNIZED 34
1944 /* This includes an empty slot for type number -0. */
1945 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1946 struct type *rettype = NULL;
1947
1948 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1949 {
1950 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1951 return builtin_type_error;
1952 }
1953 if (negative_types[-typenum] != NULL)
1954 return negative_types[-typenum];
1955
1956 #if TARGET_CHAR_BIT != 8
1957 #error This code wrong for TARGET_CHAR_BIT not 8
1958 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1959 that if that ever becomes not true, the correct fix will be to
1960 make the size in the struct type to be in bits, not in units of
1961 TARGET_CHAR_BIT. */
1962 #endif
1963
1964 switch (-typenum)
1965 {
1966 case 1:
1967 /* The size of this and all the other types are fixed, defined
1968 by the debugging format. If there is a type called "int" which
1969 is other than 32 bits, then it should use a new negative type
1970 number (or avoid negative type numbers for that case).
1971 See stabs.texinfo. */
1972 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1973 break;
1974 case 2:
1975 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1976 break;
1977 case 3:
1978 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1979 break;
1980 case 4:
1981 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1982 break;
1983 case 5:
1984 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1985 "unsigned char", NULL);
1986 break;
1987 case 6:
1988 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1989 break;
1990 case 7:
1991 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1992 "unsigned short", NULL);
1993 break;
1994 case 8:
1995 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1996 "unsigned int", NULL);
1997 break;
1998 case 9:
1999 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2000 "unsigned", NULL);
2001 case 10:
2002 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2003 "unsigned long", NULL);
2004 break;
2005 case 11:
2006 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2007 break;
2008 case 12:
2009 /* IEEE single precision (32 bit). */
2010 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2011 break;
2012 case 13:
2013 /* IEEE double precision (64 bit). */
2014 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2015 break;
2016 case 14:
2017 /* This is an IEEE double on the RS/6000, and different machines with
2018 different sizes for "long double" should use different negative
2019 type numbers. See stabs.texinfo. */
2020 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2021 break;
2022 case 15:
2023 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2024 break;
2025 case 16:
2026 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2027 "boolean", NULL);
2028 break;
2029 case 17:
2030 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2031 break;
2032 case 18:
2033 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2034 break;
2035 case 19:
2036 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2037 break;
2038 case 20:
2039 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2040 "character", NULL);
2041 break;
2042 case 21:
2043 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2044 "logical*1", NULL);
2045 break;
2046 case 22:
2047 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2048 "logical*2", NULL);
2049 break;
2050 case 23:
2051 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2052 "logical*4", NULL);
2053 break;
2054 case 24:
2055 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2056 "logical", NULL);
2057 break;
2058 case 25:
2059 /* Complex type consisting of two IEEE single precision values. */
2060 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2061 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2062 NULL);
2063 break;
2064 case 26:
2065 /* Complex type consisting of two IEEE double precision values. */
2066 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2067 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2068 NULL);
2069 break;
2070 case 27:
2071 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2072 break;
2073 case 28:
2074 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2075 break;
2076 case 29:
2077 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2078 break;
2079 case 30:
2080 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2081 break;
2082 case 31:
2083 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2084 break;
2085 case 32:
2086 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2087 "unsigned long long", NULL);
2088 break;
2089 case 33:
2090 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2091 "logical*8", NULL);
2092 break;
2093 case 34:
2094 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2095 break;
2096 }
2097 negative_types[-typenum] = rettype;
2098 return rettype;
2099 }
2100 \f
2101 /* This page contains subroutines of read_type. */
2102
2103 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2104
2105 static void
2106 update_method_name_from_physname (char **old_name, char *physname)
2107 {
2108 char *method_name;
2109
2110 method_name = method_name_from_physname (physname);
2111
2112 if (method_name == NULL)
2113 {
2114 complaint (&symfile_complaints,
2115 _("Method has bad physname %s\n"), physname);
2116 return;
2117 }
2118
2119 if (strcmp (*old_name, method_name) != 0)
2120 {
2121 xfree (*old_name);
2122 *old_name = method_name;
2123 }
2124 else
2125 xfree (method_name);
2126 }
2127
2128 /* Read member function stabs info for C++ classes. The form of each member
2129 function data is:
2130
2131 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2132
2133 An example with two member functions is:
2134
2135 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2136
2137 For the case of overloaded operators, the format is op$::*.funcs, where
2138 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2139 name (such as `+=') and `.' marks the end of the operator name.
2140
2141 Returns 1 for success, 0 for failure. */
2142
2143 static int
2144 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2145 struct objfile *objfile)
2146 {
2147 int nfn_fields = 0;
2148 int length = 0;
2149 /* Total number of member functions defined in this class. If the class
2150 defines two `f' functions, and one `g' function, then this will have
2151 the value 3. */
2152 int total_length = 0;
2153 int i;
2154 struct next_fnfield
2155 {
2156 struct next_fnfield *next;
2157 struct fn_field fn_field;
2158 }
2159 *sublist;
2160 struct type *look_ahead_type;
2161 struct next_fnfieldlist *new_fnlist;
2162 struct next_fnfield *new_sublist;
2163 char *main_fn_name;
2164 char *p;
2165
2166 /* Process each list until we find something that is not a member function
2167 or find the end of the functions. */
2168
2169 while (**pp != ';')
2170 {
2171 /* We should be positioned at the start of the function name.
2172 Scan forward to find the first ':' and if it is not the
2173 first of a "::" delimiter, then this is not a member function. */
2174 p = *pp;
2175 while (*p != ':')
2176 {
2177 p++;
2178 }
2179 if (p[1] != ':')
2180 {
2181 break;
2182 }
2183
2184 sublist = NULL;
2185 look_ahead_type = NULL;
2186 length = 0;
2187
2188 new_fnlist = (struct next_fnfieldlist *)
2189 xmalloc (sizeof (struct next_fnfieldlist));
2190 make_cleanup (xfree, new_fnlist);
2191 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2192
2193 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2194 {
2195 /* This is a completely wierd case. In order to stuff in the
2196 names that might contain colons (the usual name delimiter),
2197 Mike Tiemann defined a different name format which is
2198 signalled if the identifier is "op$". In that case, the
2199 format is "op$::XXXX." where XXXX is the name. This is
2200 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2201 /* This lets the user type "break operator+".
2202 We could just put in "+" as the name, but that wouldn't
2203 work for "*". */
2204 static char opname[32] = "op$";
2205 char *o = opname + 3;
2206
2207 /* Skip past '::'. */
2208 *pp = p + 2;
2209
2210 STABS_CONTINUE (pp, objfile);
2211 p = *pp;
2212 while (*p != '.')
2213 {
2214 *o++ = *p++;
2215 }
2216 main_fn_name = savestring (opname, o - opname);
2217 /* Skip past '.' */
2218 *pp = p + 1;
2219 }
2220 else
2221 {
2222 main_fn_name = savestring (*pp, p - *pp);
2223 /* Skip past '::'. */
2224 *pp = p + 2;
2225 }
2226 new_fnlist->fn_fieldlist.name = main_fn_name;
2227
2228 do
2229 {
2230 new_sublist =
2231 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2232 make_cleanup (xfree, new_sublist);
2233 memset (new_sublist, 0, sizeof (struct next_fnfield));
2234
2235 /* Check for and handle cretinous dbx symbol name continuation! */
2236 if (look_ahead_type == NULL)
2237 {
2238 /* Normal case. */
2239 STABS_CONTINUE (pp, objfile);
2240
2241 new_sublist->fn_field.type = read_type (pp, objfile);
2242 if (**pp != ':')
2243 {
2244 /* Invalid symtab info for member function. */
2245 return 0;
2246 }
2247 }
2248 else
2249 {
2250 /* g++ version 1 kludge */
2251 new_sublist->fn_field.type = look_ahead_type;
2252 look_ahead_type = NULL;
2253 }
2254
2255 (*pp)++;
2256 p = *pp;
2257 while (*p != ';')
2258 {
2259 p++;
2260 }
2261
2262 /* If this is just a stub, then we don't have the real name here. */
2263
2264 if (TYPE_STUB (new_sublist->fn_field.type))
2265 {
2266 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2267 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2268 new_sublist->fn_field.is_stub = 1;
2269 }
2270 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2271 *pp = p + 1;
2272
2273 /* Set this member function's visibility fields. */
2274 switch (*(*pp)++)
2275 {
2276 case VISIBILITY_PRIVATE:
2277 new_sublist->fn_field.is_private = 1;
2278 break;
2279 case VISIBILITY_PROTECTED:
2280 new_sublist->fn_field.is_protected = 1;
2281 break;
2282 }
2283
2284 STABS_CONTINUE (pp, objfile);
2285 switch (**pp)
2286 {
2287 case 'A': /* Normal functions. */
2288 new_sublist->fn_field.is_const = 0;
2289 new_sublist->fn_field.is_volatile = 0;
2290 (*pp)++;
2291 break;
2292 case 'B': /* `const' member functions. */
2293 new_sublist->fn_field.is_const = 1;
2294 new_sublist->fn_field.is_volatile = 0;
2295 (*pp)++;
2296 break;
2297 case 'C': /* `volatile' member function. */
2298 new_sublist->fn_field.is_const = 0;
2299 new_sublist->fn_field.is_volatile = 1;
2300 (*pp)++;
2301 break;
2302 case 'D': /* `const volatile' member function. */
2303 new_sublist->fn_field.is_const = 1;
2304 new_sublist->fn_field.is_volatile = 1;
2305 (*pp)++;
2306 break;
2307 case '*': /* File compiled with g++ version 1 -- no info */
2308 case '?':
2309 case '.':
2310 break;
2311 default:
2312 complaint (&symfile_complaints,
2313 _("const/volatile indicator missing, got '%c'"), **pp);
2314 break;
2315 }
2316
2317 switch (*(*pp)++)
2318 {
2319 case '*':
2320 {
2321 int nbits;
2322 /* virtual member function, followed by index.
2323 The sign bit is set to distinguish pointers-to-methods
2324 from virtual function indicies. Since the array is
2325 in words, the quantity must be shifted left by 1
2326 on 16 bit machine, and by 2 on 32 bit machine, forcing
2327 the sign bit out, and usable as a valid index into
2328 the array. Remove the sign bit here. */
2329 new_sublist->fn_field.voffset =
2330 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2331 if (nbits != 0)
2332 return 0;
2333
2334 STABS_CONTINUE (pp, objfile);
2335 if (**pp == ';' || **pp == '\0')
2336 {
2337 /* Must be g++ version 1. */
2338 new_sublist->fn_field.fcontext = 0;
2339 }
2340 else
2341 {
2342 /* Figure out from whence this virtual function came.
2343 It may belong to virtual function table of
2344 one of its baseclasses. */
2345 look_ahead_type = read_type (pp, objfile);
2346 if (**pp == ':')
2347 {
2348 /* g++ version 1 overloaded methods. */
2349 }
2350 else
2351 {
2352 new_sublist->fn_field.fcontext = look_ahead_type;
2353 if (**pp != ';')
2354 {
2355 return 0;
2356 }
2357 else
2358 {
2359 ++*pp;
2360 }
2361 look_ahead_type = NULL;
2362 }
2363 }
2364 break;
2365 }
2366 case '?':
2367 /* static member function. */
2368 {
2369 int slen = strlen (main_fn_name);
2370
2371 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2372
2373 /* For static member functions, we can't tell if they
2374 are stubbed, as they are put out as functions, and not as
2375 methods.
2376 GCC v2 emits the fully mangled name if
2377 dbxout.c:flag_minimal_debug is not set, so we have to
2378 detect a fully mangled physname here and set is_stub
2379 accordingly. Fully mangled physnames in v2 start with
2380 the member function name, followed by two underscores.
2381 GCC v3 currently always emits stubbed member functions,
2382 but with fully mangled physnames, which start with _Z. */
2383 if (!(strncmp (new_sublist->fn_field.physname,
2384 main_fn_name, slen) == 0
2385 && new_sublist->fn_field.physname[slen] == '_'
2386 && new_sublist->fn_field.physname[slen + 1] == '_'))
2387 {
2388 new_sublist->fn_field.is_stub = 1;
2389 }
2390 break;
2391 }
2392
2393 default:
2394 /* error */
2395 complaint (&symfile_complaints,
2396 _("member function type missing, got '%c'"), (*pp)[-1]);
2397 /* Fall through into normal member function. */
2398
2399 case '.':
2400 /* normal member function. */
2401 new_sublist->fn_field.voffset = 0;
2402 new_sublist->fn_field.fcontext = 0;
2403 break;
2404 }
2405
2406 new_sublist->next = sublist;
2407 sublist = new_sublist;
2408 length++;
2409 STABS_CONTINUE (pp, objfile);
2410 }
2411 while (**pp != ';' && **pp != '\0');
2412
2413 (*pp)++;
2414 STABS_CONTINUE (pp, objfile);
2415
2416 /* Skip GCC 3.X member functions which are duplicates of the callable
2417 constructor/destructor. */
2418 if (strcmp (main_fn_name, "__base_ctor") == 0
2419 || strcmp (main_fn_name, "__base_dtor") == 0
2420 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2421 {
2422 xfree (main_fn_name);
2423 }
2424 else
2425 {
2426 int has_stub = 0;
2427 int has_destructor = 0, has_other = 0;
2428 int is_v3 = 0;
2429 struct next_fnfield *tmp_sublist;
2430
2431 /* Various versions of GCC emit various mostly-useless
2432 strings in the name field for special member functions.
2433
2434 For stub methods, we need to defer correcting the name
2435 until we are ready to unstub the method, because the current
2436 name string is used by gdb_mangle_name. The only stub methods
2437 of concern here are GNU v2 operators; other methods have their
2438 names correct (see caveat below).
2439
2440 For non-stub methods, in GNU v3, we have a complete physname.
2441 Therefore we can safely correct the name now. This primarily
2442 affects constructors and destructors, whose name will be
2443 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2444 operators will also have incorrect names; for instance,
2445 "operator int" will be named "operator i" (i.e. the type is
2446 mangled).
2447
2448 For non-stub methods in GNU v2, we have no easy way to
2449 know if we have a complete physname or not. For most
2450 methods the result depends on the platform (if CPLUS_MARKER
2451 can be `$' or `.', it will use minimal debug information, or
2452 otherwise the full physname will be included).
2453
2454 Rather than dealing with this, we take a different approach.
2455 For v3 mangled names, we can use the full physname; for v2,
2456 we use cplus_demangle_opname (which is actually v2 specific),
2457 because the only interesting names are all operators - once again
2458 barring the caveat below. Skip this process if any method in the
2459 group is a stub, to prevent our fouling up the workings of
2460 gdb_mangle_name.
2461
2462 The caveat: GCC 2.95.x (and earlier?) put constructors and
2463 destructors in the same method group. We need to split this
2464 into two groups, because they should have different names.
2465 So for each method group we check whether it contains both
2466 routines whose physname appears to be a destructor (the physnames
2467 for and destructors are always provided, due to quirks in v2
2468 mangling) and routines whose physname does not appear to be a
2469 destructor. If so then we break up the list into two halves.
2470 Even if the constructors and destructors aren't in the same group
2471 the destructor will still lack the leading tilde, so that also
2472 needs to be fixed.
2473
2474 So, to summarize what we expect and handle here:
2475
2476 Given Given Real Real Action
2477 method name physname physname method name
2478
2479 __opi [none] __opi__3Foo operator int opname
2480 [now or later]
2481 Foo _._3Foo _._3Foo ~Foo separate and
2482 rename
2483 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2484 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2485 */
2486
2487 tmp_sublist = sublist;
2488 while (tmp_sublist != NULL)
2489 {
2490 if (tmp_sublist->fn_field.is_stub)
2491 has_stub = 1;
2492 if (tmp_sublist->fn_field.physname[0] == '_'
2493 && tmp_sublist->fn_field.physname[1] == 'Z')
2494 is_v3 = 1;
2495
2496 if (is_destructor_name (tmp_sublist->fn_field.physname))
2497 has_destructor++;
2498 else
2499 has_other++;
2500
2501 tmp_sublist = tmp_sublist->next;
2502 }
2503
2504 if (has_destructor && has_other)
2505 {
2506 struct next_fnfieldlist *destr_fnlist;
2507 struct next_fnfield *last_sublist;
2508
2509 /* Create a new fn_fieldlist for the destructors. */
2510
2511 destr_fnlist = (struct next_fnfieldlist *)
2512 xmalloc (sizeof (struct next_fnfieldlist));
2513 make_cleanup (xfree, destr_fnlist);
2514 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2515 destr_fnlist->fn_fieldlist.name
2516 = obconcat (&objfile->objfile_obstack, "", "~",
2517 new_fnlist->fn_fieldlist.name);
2518
2519 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2520 obstack_alloc (&objfile->objfile_obstack,
2521 sizeof (struct fn_field) * has_destructor);
2522 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2523 sizeof (struct fn_field) * has_destructor);
2524 tmp_sublist = sublist;
2525 last_sublist = NULL;
2526 i = 0;
2527 while (tmp_sublist != NULL)
2528 {
2529 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2530 {
2531 tmp_sublist = tmp_sublist->next;
2532 continue;
2533 }
2534
2535 destr_fnlist->fn_fieldlist.fn_fields[i++]
2536 = tmp_sublist->fn_field;
2537 if (last_sublist)
2538 last_sublist->next = tmp_sublist->next;
2539 else
2540 sublist = tmp_sublist->next;
2541 last_sublist = tmp_sublist;
2542 tmp_sublist = tmp_sublist->next;
2543 }
2544
2545 destr_fnlist->fn_fieldlist.length = has_destructor;
2546 destr_fnlist->next = fip->fnlist;
2547 fip->fnlist = destr_fnlist;
2548 nfn_fields++;
2549 total_length += has_destructor;
2550 length -= has_destructor;
2551 }
2552 else if (is_v3)
2553 {
2554 /* v3 mangling prevents the use of abbreviated physnames,
2555 so we can do this here. There are stubbed methods in v3
2556 only:
2557 - in -gstabs instead of -gstabs+
2558 - or for static methods, which are output as a function type
2559 instead of a method type. */
2560
2561 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2562 sublist->fn_field.physname);
2563 }
2564 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2565 {
2566 new_fnlist->fn_fieldlist.name =
2567 concat ("~", main_fn_name, (char *)NULL);
2568 xfree (main_fn_name);
2569 }
2570 else if (!has_stub)
2571 {
2572 char dem_opname[256];
2573 int ret;
2574 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2575 dem_opname, DMGL_ANSI);
2576 if (!ret)
2577 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2578 dem_opname, 0);
2579 if (ret)
2580 new_fnlist->fn_fieldlist.name
2581 = obsavestring (dem_opname, strlen (dem_opname),
2582 &objfile->objfile_obstack);
2583 }
2584
2585 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2586 obstack_alloc (&objfile->objfile_obstack,
2587 sizeof (struct fn_field) * length);
2588 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2589 sizeof (struct fn_field) * length);
2590 for (i = length; (i--, sublist); sublist = sublist->next)
2591 {
2592 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2593 }
2594
2595 new_fnlist->fn_fieldlist.length = length;
2596 new_fnlist->next = fip->fnlist;
2597 fip->fnlist = new_fnlist;
2598 nfn_fields++;
2599 total_length += length;
2600 }
2601 }
2602
2603 if (nfn_fields)
2604 {
2605 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2606 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2607 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2608 memset (TYPE_FN_FIELDLISTS (type), 0,
2609 sizeof (struct fn_fieldlist) * nfn_fields);
2610 TYPE_NFN_FIELDS (type) = nfn_fields;
2611 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2612 }
2613
2614 return 1;
2615 }
2616
2617 /* Special GNU C++ name.
2618
2619 Returns 1 for success, 0 for failure. "failure" means that we can't
2620 keep parsing and it's time for error_type(). */
2621
2622 static int
2623 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2624 struct objfile *objfile)
2625 {
2626 char *p;
2627 char *name;
2628 char cpp_abbrev;
2629 struct type *context;
2630
2631 p = *pp;
2632 if (*++p == 'v')
2633 {
2634 name = NULL;
2635 cpp_abbrev = *++p;
2636
2637 *pp = p + 1;
2638
2639 /* At this point, *pp points to something like "22:23=*22...",
2640 where the type number before the ':' is the "context" and
2641 everything after is a regular type definition. Lookup the
2642 type, find it's name, and construct the field name. */
2643
2644 context = read_type (pp, objfile);
2645
2646 switch (cpp_abbrev)
2647 {
2648 case 'f': /* $vf -- a virtual function table pointer */
2649 name = type_name_no_tag (context);
2650 if (name == NULL)
2651 {
2652 name = "";
2653 }
2654 fip->list->field.name =
2655 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2656 break;
2657
2658 case 'b': /* $vb -- a virtual bsomethingorother */
2659 name = type_name_no_tag (context);
2660 if (name == NULL)
2661 {
2662 complaint (&symfile_complaints,
2663 _("C++ abbreviated type name unknown at symtab pos %d"),
2664 symnum);
2665 name = "FOO";
2666 }
2667 fip->list->field.name =
2668 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2669 break;
2670
2671 default:
2672 invalid_cpp_abbrev_complaint (*pp);
2673 fip->list->field.name =
2674 obconcat (&objfile->objfile_obstack,
2675 "INVALID_CPLUSPLUS_ABBREV", "", "");
2676 break;
2677 }
2678
2679 /* At this point, *pp points to the ':'. Skip it and read the
2680 field type. */
2681
2682 p = ++(*pp);
2683 if (p[-1] != ':')
2684 {
2685 invalid_cpp_abbrev_complaint (*pp);
2686 return 0;
2687 }
2688 fip->list->field.type = read_type (pp, objfile);
2689 if (**pp == ',')
2690 (*pp)++; /* Skip the comma. */
2691 else
2692 return 0;
2693
2694 {
2695 int nbits;
2696 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2697 0);
2698 if (nbits != 0)
2699 return 0;
2700 }
2701 /* This field is unpacked. */
2702 FIELD_BITSIZE (fip->list->field) = 0;
2703 fip->list->visibility = VISIBILITY_PRIVATE;
2704 }
2705 else
2706 {
2707 invalid_cpp_abbrev_complaint (*pp);
2708 /* We have no idea what syntax an unrecognized abbrev would have, so
2709 better return 0. If we returned 1, we would need to at least advance
2710 *pp to avoid an infinite loop. */
2711 return 0;
2712 }
2713 return 1;
2714 }
2715
2716 static void
2717 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2718 struct type *type, struct objfile *objfile)
2719 {
2720 fip->list->field.name =
2721 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2722 *pp = p + 1;
2723
2724 /* This means we have a visibility for a field coming. */
2725 if (**pp == '/')
2726 {
2727 (*pp)++;
2728 fip->list->visibility = *(*pp)++;
2729 }
2730 else
2731 {
2732 /* normal dbx-style format, no explicit visibility */
2733 fip->list->visibility = VISIBILITY_PUBLIC;
2734 }
2735
2736 fip->list->field.type = read_type (pp, objfile);
2737 if (**pp == ':')
2738 {
2739 p = ++(*pp);
2740 #if 0
2741 /* Possible future hook for nested types. */
2742 if (**pp == '!')
2743 {
2744 fip->list->field.bitpos = (long) -2; /* nested type */
2745 p = ++(*pp);
2746 }
2747 else
2748 ...;
2749 #endif
2750 while (*p != ';')
2751 {
2752 p++;
2753 }
2754 /* Static class member. */
2755 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2756 *pp = p + 1;
2757 return;
2758 }
2759 else if (**pp != ',')
2760 {
2761 /* Bad structure-type format. */
2762 stabs_general_complaint ("bad structure-type format");
2763 return;
2764 }
2765
2766 (*pp)++; /* Skip the comma. */
2767
2768 {
2769 int nbits;
2770 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2771 if (nbits != 0)
2772 {
2773 stabs_general_complaint ("bad structure-type format");
2774 return;
2775 }
2776 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2777 if (nbits != 0)
2778 {
2779 stabs_general_complaint ("bad structure-type format");
2780 return;
2781 }
2782 }
2783
2784 if (FIELD_BITPOS (fip->list->field) == 0
2785 && FIELD_BITSIZE (fip->list->field) == 0)
2786 {
2787 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2788 it is a field which has been optimized out. The correct stab for
2789 this case is to use VISIBILITY_IGNORE, but that is a recent
2790 invention. (2) It is a 0-size array. For example
2791 union { int num; char str[0]; } foo. Printing _("<no value>" for
2792 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2793 will continue to work, and a 0-size array as a whole doesn't
2794 have any contents to print.
2795
2796 I suspect this probably could also happen with gcc -gstabs (not
2797 -gstabs+) for static fields, and perhaps other C++ extensions.
2798 Hopefully few people use -gstabs with gdb, since it is intended
2799 for dbx compatibility. */
2800
2801 /* Ignore this field. */
2802 fip->list->visibility = VISIBILITY_IGNORE;
2803 }
2804 else
2805 {
2806 /* Detect an unpacked field and mark it as such.
2807 dbx gives a bit size for all fields.
2808 Note that forward refs cannot be packed,
2809 and treat enums as if they had the width of ints. */
2810
2811 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2812
2813 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2814 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2815 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2816 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2817 {
2818 FIELD_BITSIZE (fip->list->field) = 0;
2819 }
2820 if ((FIELD_BITSIZE (fip->list->field)
2821 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2822 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2823 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2824 )
2825 &&
2826 FIELD_BITPOS (fip->list->field) % 8 == 0)
2827 {
2828 FIELD_BITSIZE (fip->list->field) = 0;
2829 }
2830 }
2831 }
2832
2833
2834 /* Read struct or class data fields. They have the form:
2835
2836 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2837
2838 At the end, we see a semicolon instead of a field.
2839
2840 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2841 a static field.
2842
2843 The optional VISIBILITY is one of:
2844
2845 '/0' (VISIBILITY_PRIVATE)
2846 '/1' (VISIBILITY_PROTECTED)
2847 '/2' (VISIBILITY_PUBLIC)
2848 '/9' (VISIBILITY_IGNORE)
2849
2850 or nothing, for C style fields with public visibility.
2851
2852 Returns 1 for success, 0 for failure. */
2853
2854 static int
2855 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2856 struct objfile *objfile)
2857 {
2858 char *p;
2859 struct nextfield *new;
2860
2861 /* We better set p right now, in case there are no fields at all... */
2862
2863 p = *pp;
2864
2865 /* Read each data member type until we find the terminating ';' at the end of
2866 the data member list, or break for some other reason such as finding the
2867 start of the member function list. */
2868 /* Stab string for structure/union does not end with two ';' in
2869 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2870
2871 while (**pp != ';' && **pp != '\0')
2872 {
2873 STABS_CONTINUE (pp, objfile);
2874 /* Get space to record the next field's data. */
2875 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2876 make_cleanup (xfree, new);
2877 memset (new, 0, sizeof (struct nextfield));
2878 new->next = fip->list;
2879 fip->list = new;
2880
2881 /* Get the field name. */
2882 p = *pp;
2883
2884 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2885 unless the CPLUS_MARKER is followed by an underscore, in
2886 which case it is just the name of an anonymous type, which we
2887 should handle like any other type name. */
2888
2889 if (is_cplus_marker (p[0]) && p[1] != '_')
2890 {
2891 if (!read_cpp_abbrev (fip, pp, type, objfile))
2892 return 0;
2893 continue;
2894 }
2895
2896 /* Look for the ':' that separates the field name from the field
2897 values. Data members are delimited by a single ':', while member
2898 functions are delimited by a pair of ':'s. When we hit the member
2899 functions (if any), terminate scan loop and return. */
2900
2901 while (*p != ':' && *p != '\0')
2902 {
2903 p++;
2904 }
2905 if (*p == '\0')
2906 return 0;
2907
2908 /* Check to see if we have hit the member functions yet. */
2909 if (p[1] == ':')
2910 {
2911 break;
2912 }
2913 read_one_struct_field (fip, pp, p, type, objfile);
2914 }
2915 if (p[0] == ':' && p[1] == ':')
2916 {
2917 /* (the deleted) chill the list of fields: the last entry (at
2918 the head) is a partially constructed entry which we now
2919 scrub. */
2920 fip->list = fip->list->next;
2921 }
2922 return 1;
2923 }
2924 /* *INDENT-OFF* */
2925 /* The stabs for C++ derived classes contain baseclass information which
2926 is marked by a '!' character after the total size. This function is
2927 called when we encounter the baseclass marker, and slurps up all the
2928 baseclass information.
2929
2930 Immediately following the '!' marker is the number of base classes that
2931 the class is derived from, followed by information for each base class.
2932 For each base class, there are two visibility specifiers, a bit offset
2933 to the base class information within the derived class, a reference to
2934 the type for the base class, and a terminating semicolon.
2935
2936 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2937 ^^ ^ ^ ^ ^ ^ ^
2938 Baseclass information marker __________________|| | | | | | |
2939 Number of baseclasses __________________________| | | | | | |
2940 Visibility specifiers (2) ________________________| | | | | |
2941 Offset in bits from start of class _________________| | | | |
2942 Type number for base class ___________________________| | | |
2943 Visibility specifiers (2) _______________________________| | |
2944 Offset in bits from start of class ________________________| |
2945 Type number of base class ____________________________________|
2946
2947 Return 1 for success, 0 for (error-type-inducing) failure. */
2948 /* *INDENT-ON* */
2949
2950
2951
2952 static int
2953 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2954 struct objfile *objfile)
2955 {
2956 int i;
2957 struct nextfield *new;
2958
2959 if (**pp != '!')
2960 {
2961 return 1;
2962 }
2963 else
2964 {
2965 /* Skip the '!' baseclass information marker. */
2966 (*pp)++;
2967 }
2968
2969 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2970 {
2971 int nbits;
2972 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2973 if (nbits != 0)
2974 return 0;
2975 }
2976
2977 #if 0
2978 /* Some stupid compilers have trouble with the following, so break
2979 it up into simpler expressions. */
2980 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2981 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2982 #else
2983 {
2984 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2985 char *pointer;
2986
2987 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2988 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2989 }
2990 #endif /* 0 */
2991
2992 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2993
2994 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2995 {
2996 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2997 make_cleanup (xfree, new);
2998 memset (new, 0, sizeof (struct nextfield));
2999 new->next = fip->list;
3000 fip->list = new;
3001 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3002
3003 STABS_CONTINUE (pp, objfile);
3004 switch (**pp)
3005 {
3006 case '0':
3007 /* Nothing to do. */
3008 break;
3009 case '1':
3010 SET_TYPE_FIELD_VIRTUAL (type, i);
3011 break;
3012 default:
3013 /* Unknown character. Complain and treat it as non-virtual. */
3014 {
3015 complaint (&symfile_complaints,
3016 _("Unknown virtual character `%c' for baseclass"), **pp);
3017 }
3018 }
3019 ++(*pp);
3020
3021 new->visibility = *(*pp)++;
3022 switch (new->visibility)
3023 {
3024 case VISIBILITY_PRIVATE:
3025 case VISIBILITY_PROTECTED:
3026 case VISIBILITY_PUBLIC:
3027 break;
3028 default:
3029 /* Bad visibility format. Complain and treat it as
3030 public. */
3031 {
3032 complaint (&symfile_complaints,
3033 _("Unknown visibility `%c' for baseclass"),
3034 new->visibility);
3035 new->visibility = VISIBILITY_PUBLIC;
3036 }
3037 }
3038
3039 {
3040 int nbits;
3041
3042 /* The remaining value is the bit offset of the portion of the object
3043 corresponding to this baseclass. Always zero in the absence of
3044 multiple inheritance. */
3045
3046 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3047 if (nbits != 0)
3048 return 0;
3049 }
3050
3051 /* The last piece of baseclass information is the type of the
3052 base class. Read it, and remember it's type name as this
3053 field's name. */
3054
3055 new->field.type = read_type (pp, objfile);
3056 new->field.name = type_name_no_tag (new->field.type);
3057
3058 /* skip trailing ';' and bump count of number of fields seen */
3059 if (**pp == ';')
3060 (*pp)++;
3061 else
3062 return 0;
3063 }
3064 return 1;
3065 }
3066
3067 /* The tail end of stabs for C++ classes that contain a virtual function
3068 pointer contains a tilde, a %, and a type number.
3069 The type number refers to the base class (possibly this class itself) which
3070 contains the vtable pointer for the current class.
3071
3072 This function is called when we have parsed all the method declarations,
3073 so we can look for the vptr base class info. */
3074
3075 static int
3076 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3077 struct objfile *objfile)
3078 {
3079 char *p;
3080
3081 STABS_CONTINUE (pp, objfile);
3082
3083 /* If we are positioned at a ';', then skip it. */
3084 if (**pp == ';')
3085 {
3086 (*pp)++;
3087 }
3088
3089 if (**pp == '~')
3090 {
3091 (*pp)++;
3092
3093 if (**pp == '=' || **pp == '+' || **pp == '-')
3094 {
3095 /* Obsolete flags that used to indicate the presence
3096 of constructors and/or destructors. */
3097 (*pp)++;
3098 }
3099
3100 /* Read either a '%' or the final ';'. */
3101 if (*(*pp)++ == '%')
3102 {
3103 /* The next number is the type number of the base class
3104 (possibly our own class) which supplies the vtable for
3105 this class. Parse it out, and search that class to find
3106 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3107 and TYPE_VPTR_FIELDNO. */
3108
3109 struct type *t;
3110 int i;
3111
3112 t = read_type (pp, objfile);
3113 p = (*pp)++;
3114 while (*p != '\0' && *p != ';')
3115 {
3116 p++;
3117 }
3118 if (*p == '\0')
3119 {
3120 /* Premature end of symbol. */
3121 return 0;
3122 }
3123
3124 TYPE_VPTR_BASETYPE (type) = t;
3125 if (type == t) /* Our own class provides vtbl ptr */
3126 {
3127 for (i = TYPE_NFIELDS (t) - 1;
3128 i >= TYPE_N_BASECLASSES (t);
3129 --i)
3130 {
3131 char *name = TYPE_FIELD_NAME (t, i);
3132 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3133 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3134 {
3135 TYPE_VPTR_FIELDNO (type) = i;
3136 goto gotit;
3137 }
3138 }
3139 /* Virtual function table field not found. */
3140 complaint (&symfile_complaints,
3141 _("virtual function table pointer not found when defining class `%s'"),
3142 TYPE_NAME (type));
3143 return 0;
3144 }
3145 else
3146 {
3147 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3148 }
3149
3150 gotit:
3151 *pp = p + 1;
3152 }
3153 }
3154 return 1;
3155 }
3156
3157 static int
3158 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3159 {
3160 int n;
3161
3162 for (n = TYPE_NFN_FIELDS (type);
3163 fip->fnlist != NULL;
3164 fip->fnlist = fip->fnlist->next)
3165 {
3166 --n; /* Circumvent Sun3 compiler bug */
3167 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3168 }
3169 return 1;
3170 }
3171
3172 /* Create the vector of fields, and record how big it is.
3173 We need this info to record proper virtual function table information
3174 for this class's virtual functions. */
3175
3176 static int
3177 attach_fields_to_type (struct field_info *fip, struct type *type,
3178 struct objfile *objfile)
3179 {
3180 int nfields = 0;
3181 int non_public_fields = 0;
3182 struct nextfield *scan;
3183
3184 /* Count up the number of fields that we have, as well as taking note of
3185 whether or not there are any non-public fields, which requires us to
3186 allocate and build the private_field_bits and protected_field_bits
3187 bitfields. */
3188
3189 for (scan = fip->list; scan != NULL; scan = scan->next)
3190 {
3191 nfields++;
3192 if (scan->visibility != VISIBILITY_PUBLIC)
3193 {
3194 non_public_fields++;
3195 }
3196 }
3197
3198 /* Now we know how many fields there are, and whether or not there are any
3199 non-public fields. Record the field count, allocate space for the
3200 array of fields, and create blank visibility bitfields if necessary. */
3201
3202 TYPE_NFIELDS (type) = nfields;
3203 TYPE_FIELDS (type) = (struct field *)
3204 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3205 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3206
3207 if (non_public_fields)
3208 {
3209 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3210
3211 TYPE_FIELD_PRIVATE_BITS (type) =
3212 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3213 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3214
3215 TYPE_FIELD_PROTECTED_BITS (type) =
3216 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3217 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3218
3219 TYPE_FIELD_IGNORE_BITS (type) =
3220 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3221 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3222 }
3223
3224 /* Copy the saved-up fields into the field vector. Start from the head
3225 of the list, adding to the tail of the field array, so that they end
3226 up in the same order in the array in which they were added to the list. */
3227
3228 while (nfields-- > 0)
3229 {
3230 TYPE_FIELD (type, nfields) = fip->list->field;
3231 switch (fip->list->visibility)
3232 {
3233 case VISIBILITY_PRIVATE:
3234 SET_TYPE_FIELD_PRIVATE (type, nfields);
3235 break;
3236
3237 case VISIBILITY_PROTECTED:
3238 SET_TYPE_FIELD_PROTECTED (type, nfields);
3239 break;
3240
3241 case VISIBILITY_IGNORE:
3242 SET_TYPE_FIELD_IGNORE (type, nfields);
3243 break;
3244
3245 case VISIBILITY_PUBLIC:
3246 break;
3247
3248 default:
3249 /* Unknown visibility. Complain and treat it as public. */
3250 {
3251 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3252 fip->list->visibility);
3253 }
3254 break;
3255 }
3256 fip->list = fip->list->next;
3257 }
3258 return 1;
3259 }
3260
3261
3262 /* Complain that the compiler has emitted more than one definition for the
3263 structure type TYPE. */
3264 static void
3265 complain_about_struct_wipeout (struct type *type)
3266 {
3267 char *name = "";
3268 char *kind = "";
3269
3270 if (TYPE_TAG_NAME (type))
3271 {
3272 name = TYPE_TAG_NAME (type);
3273 switch (TYPE_CODE (type))
3274 {
3275 case TYPE_CODE_STRUCT: kind = "struct "; break;
3276 case TYPE_CODE_UNION: kind = "union "; break;
3277 case TYPE_CODE_ENUM: kind = "enum "; break;
3278 default: kind = "";
3279 }
3280 }
3281 else if (TYPE_NAME (type))
3282 {
3283 name = TYPE_NAME (type);
3284 kind = "";
3285 }
3286 else
3287 {
3288 name = "<unknown>";
3289 kind = "";
3290 }
3291
3292 complaint (&symfile_complaints,
3293 _("struct/union type gets multiply defined: %s%s"), kind, name);
3294 }
3295
3296
3297 /* Read the description of a structure (or union type) and return an object
3298 describing the type.
3299
3300 PP points to a character pointer that points to the next unconsumed token
3301 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3302 *PP will point to "4a:1,0,32;;".
3303
3304 TYPE points to an incomplete type that needs to be filled in.
3305
3306 OBJFILE points to the current objfile from which the stabs information is
3307 being read. (Note that it is redundant in that TYPE also contains a pointer
3308 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3309 */
3310
3311 static struct type *
3312 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3313 struct objfile *objfile)
3314 {
3315 struct cleanup *back_to;
3316 struct field_info fi;
3317
3318 fi.list = NULL;
3319 fi.fnlist = NULL;
3320
3321 /* When describing struct/union/class types in stabs, G++ always drops
3322 all qualifications from the name. So if you've got:
3323 struct A { ... struct B { ... }; ... };
3324 then G++ will emit stabs for `struct A::B' that call it simply
3325 `struct B'. Obviously, if you've got a real top-level definition for
3326 `struct B', or other nested definitions, this is going to cause
3327 problems.
3328
3329 Obviously, GDB can't fix this by itself, but it can at least avoid
3330 scribbling on existing structure type objects when new definitions
3331 appear. */
3332 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3333 || TYPE_STUB (type)))
3334 {
3335 complain_about_struct_wipeout (type);
3336
3337 /* It's probably best to return the type unchanged. */
3338 return type;
3339 }
3340
3341 back_to = make_cleanup (null_cleanup, 0);
3342
3343 INIT_CPLUS_SPECIFIC (type);
3344 TYPE_CODE (type) = type_code;
3345 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3346
3347 /* First comes the total size in bytes. */
3348
3349 {
3350 int nbits;
3351 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3352 if (nbits != 0)
3353 return error_type (pp, objfile);
3354 }
3355
3356 /* Now read the baseclasses, if any, read the regular C struct or C++
3357 class member fields, attach the fields to the type, read the C++
3358 member functions, attach them to the type, and then read any tilde
3359 field (baseclass specifier for the class holding the main vtable). */
3360
3361 if (!read_baseclasses (&fi, pp, type, objfile)
3362 || !read_struct_fields (&fi, pp, type, objfile)
3363 || !attach_fields_to_type (&fi, type, objfile)
3364 || !read_member_functions (&fi, pp, type, objfile)
3365 || !attach_fn_fields_to_type (&fi, type)
3366 || !read_tilde_fields (&fi, pp, type, objfile))
3367 {
3368 type = error_type (pp, objfile);
3369 }
3370
3371 do_cleanups (back_to);
3372 return (type);
3373 }
3374
3375 /* Read a definition of an array type,
3376 and create and return a suitable type object.
3377 Also creates a range type which represents the bounds of that
3378 array. */
3379
3380 static struct type *
3381 read_array_type (char **pp, struct type *type,
3382 struct objfile *objfile)
3383 {
3384 struct type *index_type, *element_type, *range_type;
3385 int lower, upper;
3386 int adjustable = 0;
3387 int nbits;
3388
3389 /* Format of an array type:
3390 "ar<index type>;lower;upper;<array_contents_type>".
3391 OS9000: "arlower,upper;<array_contents_type>".
3392
3393 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3394 for these, produce a type like float[][]. */
3395
3396 {
3397 index_type = read_type (pp, objfile);
3398 if (**pp != ';')
3399 /* Improper format of array type decl. */
3400 return error_type (pp, objfile);
3401 ++*pp;
3402 }
3403
3404 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3405 {
3406 (*pp)++;
3407 adjustable = 1;
3408 }
3409 lower = read_huge_number (pp, ';', &nbits, 0);
3410
3411 if (nbits != 0)
3412 return error_type (pp, objfile);
3413
3414 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3415 {
3416 (*pp)++;
3417 adjustable = 1;
3418 }
3419 upper = read_huge_number (pp, ';', &nbits, 0);
3420 if (nbits != 0)
3421 return error_type (pp, objfile);
3422
3423 element_type = read_type (pp, objfile);
3424
3425 if (adjustable)
3426 {
3427 lower = 0;
3428 upper = -1;
3429 }
3430
3431 range_type =
3432 create_range_type ((struct type *) NULL, index_type, lower, upper);
3433 type = create_array_type (type, element_type, range_type);
3434
3435 return type;
3436 }
3437
3438
3439 /* Read a definition of an enumeration type,
3440 and create and return a suitable type object.
3441 Also defines the symbols that represent the values of the type. */
3442
3443 static struct type *
3444 read_enum_type (char **pp, struct type *type,
3445 struct objfile *objfile)
3446 {
3447 char *p;
3448 char *name;
3449 long n;
3450 struct symbol *sym;
3451 int nsyms = 0;
3452 struct pending **symlist;
3453 struct pending *osyms, *syms;
3454 int o_nsyms;
3455 int nbits;
3456 int unsigned_enum = 1;
3457
3458 #if 0
3459 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3460 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3461 to do? For now, force all enum values to file scope. */
3462 if (within_function)
3463 symlist = &local_symbols;
3464 else
3465 #endif
3466 symlist = &file_symbols;
3467 osyms = *symlist;
3468 o_nsyms = osyms ? osyms->nsyms : 0;
3469
3470 /* The aix4 compiler emits an extra field before the enum members;
3471 my guess is it's a type of some sort. Just ignore it. */
3472 if (**pp == '-')
3473 {
3474 /* Skip over the type. */
3475 while (**pp != ':')
3476 (*pp)++;
3477
3478 /* Skip over the colon. */
3479 (*pp)++;
3480 }
3481
3482 /* Read the value-names and their values.
3483 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3484 A semicolon or comma instead of a NAME means the end. */
3485 while (**pp && **pp != ';' && **pp != ',')
3486 {
3487 STABS_CONTINUE (pp, objfile);
3488 p = *pp;
3489 while (*p != ':')
3490 p++;
3491 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3492 *pp = p + 1;
3493 n = read_huge_number (pp, ',', &nbits, 0);
3494 if (nbits != 0)
3495 return error_type (pp, objfile);
3496
3497 sym = (struct symbol *)
3498 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3499 memset (sym, 0, sizeof (struct symbol));
3500 DEPRECATED_SYMBOL_NAME (sym) = name;
3501 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3502 SYMBOL_CLASS (sym) = LOC_CONST;
3503 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3504 SYMBOL_VALUE (sym) = n;
3505 if (n < 0)
3506 unsigned_enum = 0;
3507 add_symbol_to_list (sym, symlist);
3508 nsyms++;
3509 }
3510
3511 if (**pp == ';')
3512 (*pp)++; /* Skip the semicolon. */
3513
3514 /* Now fill in the fields of the type-structure. */
3515
3516 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3517 TYPE_CODE (type) = TYPE_CODE_ENUM;
3518 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3519 if (unsigned_enum)
3520 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3521 TYPE_NFIELDS (type) = nsyms;
3522 TYPE_FIELDS (type) = (struct field *)
3523 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3524 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3525
3526 /* Find the symbols for the values and put them into the type.
3527 The symbols can be found in the symlist that we put them on
3528 to cause them to be defined. osyms contains the old value
3529 of that symlist; everything up to there was defined by us. */
3530 /* Note that we preserve the order of the enum constants, so
3531 that in something like "enum {FOO, LAST_THING=FOO}" we print
3532 FOO, not LAST_THING. */
3533
3534 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3535 {
3536 int last = syms == osyms ? o_nsyms : 0;
3537 int j = syms->nsyms;
3538 for (; --j >= last; --n)
3539 {
3540 struct symbol *xsym = syms->symbol[j];
3541 SYMBOL_TYPE (xsym) = type;
3542 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3543 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3544 TYPE_FIELD_BITSIZE (type, n) = 0;
3545 }
3546 if (syms == osyms)
3547 break;
3548 }
3549
3550 return type;
3551 }
3552
3553 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3554 typedefs in every file (for int, long, etc):
3555
3556 type = b <signed> <width> <format type>; <offset>; <nbits>
3557 signed = u or s.
3558 optional format type = c or b for char or boolean.
3559 offset = offset from high order bit to start bit of type.
3560 width is # bytes in object of this type, nbits is # bits in type.
3561
3562 The width/offset stuff appears to be for small objects stored in
3563 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3564 FIXME. */
3565
3566 static struct type *
3567 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3568 {
3569 int type_bits;
3570 int nbits;
3571 int signed_type;
3572 enum type_code code = TYPE_CODE_INT;
3573
3574 switch (**pp)
3575 {
3576 case 's':
3577 signed_type = 1;
3578 break;
3579 case 'u':
3580 signed_type = 0;
3581 break;
3582 default:
3583 return error_type (pp, objfile);
3584 }
3585 (*pp)++;
3586
3587 /* For some odd reason, all forms of char put a c here. This is strange
3588 because no other type has this honor. We can safely ignore this because
3589 we actually determine 'char'acterness by the number of bits specified in
3590 the descriptor.
3591 Boolean forms, e.g Fortran logical*X, put a b here. */
3592
3593 if (**pp == 'c')
3594 (*pp)++;
3595 else if (**pp == 'b')
3596 {
3597 code = TYPE_CODE_BOOL;
3598 (*pp)++;
3599 }
3600
3601 /* The first number appears to be the number of bytes occupied
3602 by this type, except that unsigned short is 4 instead of 2.
3603 Since this information is redundant with the third number,
3604 we will ignore it. */
3605 read_huge_number (pp, ';', &nbits, 0);
3606 if (nbits != 0)
3607 return error_type (pp, objfile);
3608
3609 /* The second number is always 0, so ignore it too. */
3610 read_huge_number (pp, ';', &nbits, 0);
3611 if (nbits != 0)
3612 return error_type (pp, objfile);
3613
3614 /* The third number is the number of bits for this type. */
3615 type_bits = read_huge_number (pp, 0, &nbits, 0);
3616 if (nbits != 0)
3617 return error_type (pp, objfile);
3618 /* The type *should* end with a semicolon. If it are embedded
3619 in a larger type the semicolon may be the only way to know where
3620 the type ends. If this type is at the end of the stabstring we
3621 can deal with the omitted semicolon (but we don't have to like
3622 it). Don't bother to complain(), Sun's compiler omits the semicolon
3623 for "void". */
3624 if (**pp == ';')
3625 ++(*pp);
3626
3627 if (type_bits == 0)
3628 return init_type (TYPE_CODE_VOID, 1,
3629 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3630 objfile);
3631 else
3632 return init_type (code,
3633 type_bits / TARGET_CHAR_BIT,
3634 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3635 objfile);
3636 }
3637
3638 static struct type *
3639 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3640 {
3641 int nbits;
3642 int details;
3643 int nbytes;
3644 struct type *rettype;
3645
3646 /* The first number has more details about the type, for example
3647 FN_COMPLEX. */
3648 details = read_huge_number (pp, ';', &nbits, 0);
3649 if (nbits != 0)
3650 return error_type (pp, objfile);
3651
3652 /* The second number is the number of bytes occupied by this type */
3653 nbytes = read_huge_number (pp, ';', &nbits, 0);
3654 if (nbits != 0)
3655 return error_type (pp, objfile);
3656
3657 if (details == NF_COMPLEX || details == NF_COMPLEX16
3658 || details == NF_COMPLEX32)
3659 {
3660 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3661 TYPE_TARGET_TYPE (rettype)
3662 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3663 return rettype;
3664 }
3665
3666 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3667 }
3668
3669 /* Read a number from the string pointed to by *PP.
3670 The value of *PP is advanced over the number.
3671 If END is nonzero, the character that ends the
3672 number must match END, or an error happens;
3673 and that character is skipped if it does match.
3674 If END is zero, *PP is left pointing to that character.
3675
3676 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3677 the number is represented in an octal representation, assume that
3678 it is represented in a 2's complement representation with a size of
3679 TWOS_COMPLEMENT_BITS.
3680
3681 If the number fits in a long, set *BITS to 0 and return the value.
3682 If not, set *BITS to be the number of bits in the number and return 0.
3683
3684 If encounter garbage, set *BITS to -1 and return 0. */
3685
3686 static long
3687 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3688 {
3689 char *p = *pp;
3690 int sign = 1;
3691 int sign_bit;
3692 long n = 0;
3693 long sn = 0;
3694 int radix = 10;
3695 char overflow = 0;
3696 int nbits = 0;
3697 int c;
3698 long upper_limit;
3699 int twos_complement_representation = radix == 8 && twos_complement_bits > 0;
3700
3701 if (*p == '-')
3702 {
3703 sign = -1;
3704 p++;
3705 }
3706
3707 /* Leading zero means octal. GCC uses this to output values larger
3708 than an int (because that would be hard in decimal). */
3709 if (*p == '0')
3710 {
3711 radix = 8;
3712 p++;
3713 }
3714
3715 upper_limit = LONG_MAX / radix;
3716
3717 while ((c = *p++) >= '0' && c < ('0' + radix))
3718 {
3719 if (n <= upper_limit)
3720 {
3721 if (twos_complement_representation)
3722 {
3723 /* Octal, signed, twos complement representation. In this case,
3724 sn is the signed value, n is the corresponding absolute
3725 value. signed_bit is the position of the sign bit in the
3726 first three bits. */
3727 if (sn == 0)
3728 {
3729 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3730 sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3731 }
3732 else
3733 {
3734 sn *= radix;
3735 sn += c - '0';
3736 }
3737
3738 if (sn < 0)
3739 n = -sn;
3740 }
3741 else
3742 {
3743 /* unsigned representation */
3744 n *= radix;
3745 n += c - '0'; /* FIXME this overflows anyway */
3746 }
3747 }
3748 else
3749 overflow = 1;
3750
3751 /* This depends on large values being output in octal, which is
3752 what GCC does. */
3753 if (radix == 8)
3754 {
3755 if (nbits == 0)
3756 {
3757 if (c == '0')
3758 /* Ignore leading zeroes. */
3759 ;
3760 else if (c == '1')
3761 nbits = 1;
3762 else if (c == '2' || c == '3')
3763 nbits = 2;
3764 else
3765 nbits = 3;
3766 }
3767 else
3768 nbits += 3;
3769 }
3770 }
3771 if (end)
3772 {
3773 if (c && c != end)
3774 {
3775 if (bits != NULL)
3776 *bits = -1;
3777 return 0;
3778 }
3779 }
3780 else
3781 --p;
3782
3783 *pp = p;
3784 if (overflow)
3785 {
3786 if (nbits == 0)
3787 {
3788 /* Large decimal constants are an error (because it is hard to
3789 count how many bits are in them). */
3790 if (bits != NULL)
3791 *bits = -1;
3792 return 0;
3793 }
3794
3795 /* -0x7f is the same as 0x80. So deal with it by adding one to
3796 the number of bits. */
3797 if (sign == -1)
3798 ++nbits;
3799 if (bits)
3800 *bits = nbits;
3801 }
3802 else
3803 {
3804 if (bits)
3805 *bits = 0;
3806 if (twos_complement_representation)
3807 return sn;
3808 else
3809 return n * sign;
3810 }
3811 /* It's *BITS which has the interesting information. */
3812 return 0;
3813 }
3814
3815 static struct type *
3816 read_range_type (char **pp, int typenums[2], int type_size,
3817 struct objfile *objfile)
3818 {
3819 char *orig_pp = *pp;
3820 int rangenums[2];
3821 long n2, n3;
3822 int n2bits, n3bits;
3823 int self_subrange;
3824 struct type *result_type;
3825 struct type *index_type = NULL;
3826
3827 /* First comes a type we are a subrange of.
3828 In C it is usually 0, 1 or the type being defined. */
3829 if (read_type_number (pp, rangenums) != 0)
3830 return error_type (pp, objfile);
3831 self_subrange = (rangenums[0] == typenums[0] &&
3832 rangenums[1] == typenums[1]);
3833
3834 if (**pp == '=')
3835 {
3836 *pp = orig_pp;
3837 index_type = read_type (pp, objfile);
3838 }
3839
3840 /* A semicolon should now follow; skip it. */
3841 if (**pp == ';')
3842 (*pp)++;
3843
3844 /* The remaining two operands are usually lower and upper bounds
3845 of the range. But in some special cases they mean something else. */
3846 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3847 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3848
3849 if (n2bits == -1 || n3bits == -1)
3850 return error_type (pp, objfile);
3851
3852 if (index_type)
3853 goto handle_true_range;
3854
3855 /* If limits are huge, must be large integral type. */
3856 if (n2bits != 0 || n3bits != 0)
3857 {
3858 char got_signed = 0;
3859 char got_unsigned = 0;
3860 /* Number of bits in the type. */
3861 int nbits = 0;
3862
3863 /* If a type size attribute has been specified, the bounds of
3864 the range should fit in this size. If the lower bounds needs
3865 more bits than the upper bound, then the type is signed. */
3866 if (n2bits <= type_size && n3bits <= type_size)
3867 {
3868 if (n2bits == type_size && n2bits > n3bits)
3869 got_signed = 1;
3870 else
3871 got_unsigned = 1;
3872 nbits = type_size;
3873 }
3874 /* Range from 0 to <large number> is an unsigned large integral type. */
3875 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3876 {
3877 got_unsigned = 1;
3878 nbits = n3bits;
3879 }
3880 /* Range from <large number> to <large number>-1 is a large signed
3881 integral type. Take care of the case where <large number> doesn't
3882 fit in a long but <large number>-1 does. */
3883 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3884 || (n2bits != 0 && n3bits == 0
3885 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3886 && n3 == LONG_MAX))
3887 {
3888 got_signed = 1;
3889 nbits = n2bits;
3890 }
3891
3892 if (got_signed || got_unsigned)
3893 {
3894 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3895 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3896 objfile);
3897 }
3898 else
3899 return error_type (pp, objfile);
3900 }
3901
3902 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3903 if (self_subrange && n2 == 0 && n3 == 0)
3904 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3905
3906 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3907 is the width in bytes.
3908
3909 Fortran programs appear to use this for complex types also. To
3910 distinguish between floats and complex, g77 (and others?) seem
3911 to use self-subranges for the complexes, and subranges of int for
3912 the floats.
3913
3914 Also note that for complexes, g77 sets n2 to the size of one of
3915 the member floats, not the whole complex beast. My guess is that
3916 this was to work well with pre-COMPLEX versions of gdb. */
3917
3918 if (n3 == 0 && n2 > 0)
3919 {
3920 struct type *float_type
3921 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3922
3923 if (self_subrange)
3924 {
3925 struct type *complex_type =
3926 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3927 TYPE_TARGET_TYPE (complex_type) = float_type;
3928 return complex_type;
3929 }
3930 else
3931 return float_type;
3932 }
3933
3934 /* If the upper bound is -1, it must really be an unsigned int. */
3935
3936 else if (n2 == 0 && n3 == -1)
3937 {
3938 /* It is unsigned int or unsigned long. */
3939 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3940 compatibility hack. */
3941 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3942 TYPE_FLAG_UNSIGNED, NULL, objfile);
3943 }
3944
3945 /* Special case: char is defined (Who knows why) as a subrange of
3946 itself with range 0-127. */
3947 else if (self_subrange && n2 == 0 && n3 == 127)
3948 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3949
3950 /* We used to do this only for subrange of self or subrange of int. */
3951 else if (n2 == 0)
3952 {
3953 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3954 "unsigned long", and we already checked for that,
3955 so don't need to test for it here. */
3956
3957 if (n3 < 0)
3958 /* n3 actually gives the size. */
3959 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3960 NULL, objfile);
3961
3962 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3963 unsigned n-byte integer. But do require n to be a power of
3964 two; we don't want 3- and 5-byte integers flying around. */
3965 {
3966 int bytes;
3967 unsigned long bits;
3968
3969 bits = n3;
3970 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3971 bits >>= 8;
3972 if (bits == 0
3973 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3974 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3975 objfile);
3976 }
3977 }
3978 /* I think this is for Convex "long long". Since I don't know whether
3979 Convex sets self_subrange, I also accept that particular size regardless
3980 of self_subrange. */
3981 else if (n3 == 0 && n2 < 0
3982 && (self_subrange
3983 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3984 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3985 else if (n2 == -n3 - 1)
3986 {
3987 if (n3 == 0x7f)
3988 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3989 if (n3 == 0x7fff)
3990 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3991 if (n3 == 0x7fffffff)
3992 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3993 }
3994
3995 /* We have a real range type on our hands. Allocate space and
3996 return a real pointer. */
3997 handle_true_range:
3998
3999 if (self_subrange)
4000 index_type = builtin_type_int;
4001 else
4002 index_type = *dbx_lookup_type (rangenums);
4003 if (index_type == NULL)
4004 {
4005 /* Does this actually ever happen? Is that why we are worrying
4006 about dealing with it rather than just calling error_type? */
4007
4008 static struct type *range_type_index;
4009
4010 complaint (&symfile_complaints,
4011 _("base type %d of range type is not defined"), rangenums[1]);
4012 if (range_type_index == NULL)
4013 range_type_index =
4014 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4015 0, "range type index type", NULL);
4016 index_type = range_type_index;
4017 }
4018
4019 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4020 return (result_type);
4021 }
4022
4023 /* Read in an argument list. This is a list of types, separated by commas
4024 and terminated with END. Return the list of types read in, or NULL
4025 if there is an error. */
4026
4027 static struct field *
4028 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4029 int *varargsp)
4030 {
4031 /* FIXME! Remove this arbitrary limit! */
4032 struct type *types[1024]; /* allow for fns of 1023 parameters */
4033 int n = 0, i;
4034 struct field *rval;
4035
4036 while (**pp != end)
4037 {
4038 if (**pp != ',')
4039 /* Invalid argument list: no ','. */
4040 return NULL;
4041 (*pp)++;
4042 STABS_CONTINUE (pp, objfile);
4043 types[n++] = read_type (pp, objfile);
4044 }
4045 (*pp)++; /* get past `end' (the ':' character) */
4046
4047 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4048 *varargsp = 1;
4049 else
4050 {
4051 n--;
4052 *varargsp = 0;
4053 }
4054
4055 rval = (struct field *) xmalloc (n * sizeof (struct field));
4056 memset (rval, 0, n * sizeof (struct field));
4057 for (i = 0; i < n; i++)
4058 rval[i].type = types[i];
4059 *nargsp = n;
4060 return rval;
4061 }
4062 \f
4063 /* Common block handling. */
4064
4065 /* List of symbols declared since the last BCOMM. This list is a tail
4066 of local_symbols. When ECOMM is seen, the symbols on the list
4067 are noted so their proper addresses can be filled in later,
4068 using the common block base address gotten from the assembler
4069 stabs. */
4070
4071 static struct pending *common_block;
4072 static int common_block_i;
4073
4074 /* Name of the current common block. We get it from the BCOMM instead of the
4075 ECOMM to match IBM documentation (even though IBM puts the name both places
4076 like everyone else). */
4077 static char *common_block_name;
4078
4079 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4080 to remain after this function returns. */
4081
4082 void
4083 common_block_start (char *name, struct objfile *objfile)
4084 {
4085 if (common_block_name != NULL)
4086 {
4087 complaint (&symfile_complaints,
4088 _("Invalid symbol data: common block within common block"));
4089 }
4090 common_block = local_symbols;
4091 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4092 common_block_name = obsavestring (name, strlen (name),
4093 &objfile->objfile_obstack);
4094 }
4095
4096 /* Process a N_ECOMM symbol. */
4097
4098 void
4099 common_block_end (struct objfile *objfile)
4100 {
4101 /* Symbols declared since the BCOMM are to have the common block
4102 start address added in when we know it. common_block and
4103 common_block_i point to the first symbol after the BCOMM in
4104 the local_symbols list; copy the list and hang it off the
4105 symbol for the common block name for later fixup. */
4106 int i;
4107 struct symbol *sym;
4108 struct pending *new = 0;
4109 struct pending *next;
4110 int j;
4111
4112 if (common_block_name == NULL)
4113 {
4114 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4115 return;
4116 }
4117
4118 sym = (struct symbol *)
4119 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4120 memset (sym, 0, sizeof (struct symbol));
4121 /* Note: common_block_name already saved on objfile_obstack */
4122 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4123 SYMBOL_CLASS (sym) = LOC_BLOCK;
4124
4125 /* Now we copy all the symbols which have been defined since the BCOMM. */
4126
4127 /* Copy all the struct pendings before common_block. */
4128 for (next = local_symbols;
4129 next != NULL && next != common_block;
4130 next = next->next)
4131 {
4132 for (j = 0; j < next->nsyms; j++)
4133 add_symbol_to_list (next->symbol[j], &new);
4134 }
4135
4136 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4137 NULL, it means copy all the local symbols (which we already did
4138 above). */
4139
4140 if (common_block != NULL)
4141 for (j = common_block_i; j < common_block->nsyms; j++)
4142 add_symbol_to_list (common_block->symbol[j], &new);
4143
4144 SYMBOL_TYPE (sym) = (struct type *) new;
4145
4146 /* Should we be putting local_symbols back to what it was?
4147 Does it matter? */
4148
4149 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4150 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4151 global_sym_chain[i] = sym;
4152 common_block_name = NULL;
4153 }
4154
4155 /* Add a common block's start address to the offset of each symbol
4156 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4157 the common block name). */
4158
4159 static void
4160 fix_common_block (struct symbol *sym, int valu)
4161 {
4162 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4163 for (; next; next = next->next)
4164 {
4165 int j;
4166 for (j = next->nsyms - 1; j >= 0; j--)
4167 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4168 }
4169 }
4170 \f
4171
4172
4173 /* What about types defined as forward references inside of a small lexical
4174 scope? */
4175 /* Add a type to the list of undefined types to be checked through
4176 once this file has been read in. */
4177
4178 static void
4179 add_undefined_type (struct type *type)
4180 {
4181 if (undef_types_length == undef_types_allocated)
4182 {
4183 undef_types_allocated *= 2;
4184 undef_types = (struct type **)
4185 xrealloc ((char *) undef_types,
4186 undef_types_allocated * sizeof (struct type *));
4187 }
4188 undef_types[undef_types_length++] = type;
4189 }
4190
4191 /* Go through each undefined type, see if it's still undefined, and fix it
4192 up if possible. We have two kinds of undefined types:
4193
4194 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4195 Fix: update array length using the element bounds
4196 and the target type's length.
4197 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4198 yet defined at the time a pointer to it was made.
4199 Fix: Do a full lookup on the struct/union tag. */
4200 void
4201 cleanup_undefined_types (void)
4202 {
4203 struct type **type;
4204
4205 for (type = undef_types; type < undef_types + undef_types_length; type++)
4206 {
4207 switch (TYPE_CODE (*type))
4208 {
4209
4210 case TYPE_CODE_STRUCT:
4211 case TYPE_CODE_UNION:
4212 case TYPE_CODE_ENUM:
4213 {
4214 /* Check if it has been defined since. Need to do this here
4215 as well as in check_typedef to deal with the (legitimate in
4216 C though not C++) case of several types with the same name
4217 in different source files. */
4218 if (TYPE_STUB (*type))
4219 {
4220 struct pending *ppt;
4221 int i;
4222 /* Name of the type, without "struct" or "union" */
4223 char *typename = TYPE_TAG_NAME (*type);
4224
4225 if (typename == NULL)
4226 {
4227 complaint (&symfile_complaints, _("need a type name"));
4228 break;
4229 }
4230 for (ppt = file_symbols; ppt; ppt = ppt->next)
4231 {
4232 for (i = 0; i < ppt->nsyms; i++)
4233 {
4234 struct symbol *sym = ppt->symbol[i];
4235
4236 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4237 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4238 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4239 TYPE_CODE (*type))
4240 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4241 replace_type (*type, SYMBOL_TYPE (sym));
4242 }
4243 }
4244 }
4245 }
4246 break;
4247
4248 default:
4249 {
4250 complaint (&symfile_complaints,
4251 _("forward-referenced types left unresolved, "
4252 "type code %d."),
4253 TYPE_CODE (*type));
4254 }
4255 break;
4256 }
4257 }
4258
4259 undef_types_length = 0;
4260 }
4261
4262 /* Scan through all of the global symbols defined in the object file,
4263 assigning values to the debugging symbols that need to be assigned
4264 to. Get these symbols from the minimal symbol table. */
4265
4266 void
4267 scan_file_globals (struct objfile *objfile)
4268 {
4269 int hash;
4270 struct minimal_symbol *msymbol;
4271 struct symbol *sym, *prev;
4272 struct objfile *resolve_objfile;
4273
4274 /* SVR4 based linkers copy referenced global symbols from shared
4275 libraries to the main executable.
4276 If we are scanning the symbols for a shared library, try to resolve
4277 them from the minimal symbols of the main executable first. */
4278
4279 if (symfile_objfile && objfile != symfile_objfile)
4280 resolve_objfile = symfile_objfile;
4281 else
4282 resolve_objfile = objfile;
4283
4284 while (1)
4285 {
4286 /* Avoid expensive loop through all minimal symbols if there are
4287 no unresolved symbols. */
4288 for (hash = 0; hash < HASHSIZE; hash++)
4289 {
4290 if (global_sym_chain[hash])
4291 break;
4292 }
4293 if (hash >= HASHSIZE)
4294 return;
4295
4296 for (msymbol = resolve_objfile->msymbols;
4297 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4298 msymbol++)
4299 {
4300 QUIT;
4301
4302 /* Skip static symbols. */
4303 switch (MSYMBOL_TYPE (msymbol))
4304 {
4305 case mst_file_text:
4306 case mst_file_data:
4307 case mst_file_bss:
4308 continue;
4309 default:
4310 break;
4311 }
4312
4313 prev = NULL;
4314
4315 /* Get the hash index and check all the symbols
4316 under that hash index. */
4317
4318 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4319
4320 for (sym = global_sym_chain[hash]; sym;)
4321 {
4322 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4323 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4324 {
4325 /* Splice this symbol out of the hash chain and
4326 assign the value we have to it. */
4327 if (prev)
4328 {
4329 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4330 }
4331 else
4332 {
4333 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4334 }
4335
4336 /* Check to see whether we need to fix up a common block. */
4337 /* Note: this code might be executed several times for
4338 the same symbol if there are multiple references. */
4339 if (sym)
4340 {
4341 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4342 {
4343 fix_common_block (sym,
4344 SYMBOL_VALUE_ADDRESS (msymbol));
4345 }
4346 else
4347 {
4348 SYMBOL_VALUE_ADDRESS (sym)
4349 = SYMBOL_VALUE_ADDRESS (msymbol);
4350 }
4351 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4352 }
4353
4354 if (prev)
4355 {
4356 sym = SYMBOL_VALUE_CHAIN (prev);
4357 }
4358 else
4359 {
4360 sym = global_sym_chain[hash];
4361 }
4362 }
4363 else
4364 {
4365 prev = sym;
4366 sym = SYMBOL_VALUE_CHAIN (sym);
4367 }
4368 }
4369 }
4370 if (resolve_objfile == objfile)
4371 break;
4372 resolve_objfile = objfile;
4373 }
4374
4375 /* Change the storage class of any remaining unresolved globals to
4376 LOC_UNRESOLVED and remove them from the chain. */
4377 for (hash = 0; hash < HASHSIZE; hash++)
4378 {
4379 sym = global_sym_chain[hash];
4380 while (sym)
4381 {
4382 prev = sym;
4383 sym = SYMBOL_VALUE_CHAIN (sym);
4384
4385 /* Change the symbol address from the misleading chain value
4386 to address zero. */
4387 SYMBOL_VALUE_ADDRESS (prev) = 0;
4388
4389 /* Complain about unresolved common block symbols. */
4390 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4391 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4392 else
4393 complaint (&symfile_complaints,
4394 _("%s: common block `%s' from global_sym_chain unresolved"),
4395 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4396 }
4397 }
4398 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4399 }
4400
4401 /* Initialize anything that needs initializing when starting to read
4402 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4403 to a psymtab. */
4404
4405 void
4406 stabsread_init (void)
4407 {
4408 }
4409
4410 /* Initialize anything that needs initializing when a completely new
4411 symbol file is specified (not just adding some symbols from another
4412 file, e.g. a shared library). */
4413
4414 void
4415 stabsread_new_init (void)
4416 {
4417 /* Empty the hash table of global syms looking for values. */
4418 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4419 }
4420
4421 /* Initialize anything that needs initializing at the same time as
4422 start_symtab() is called. */
4423
4424 void
4425 start_stabs (void)
4426 {
4427 global_stabs = NULL; /* AIX COFF */
4428 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4429 n_this_object_header_files = 1;
4430 type_vector_length = 0;
4431 type_vector = (struct type **) 0;
4432
4433 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4434 common_block_name = NULL;
4435 }
4436
4437 /* Call after end_symtab() */
4438
4439 void
4440 end_stabs (void)
4441 {
4442 if (type_vector)
4443 {
4444 xfree (type_vector);
4445 }
4446 type_vector = 0;
4447 type_vector_length = 0;
4448 previous_stab_code = 0;
4449 }
4450
4451 void
4452 finish_global_stabs (struct objfile *objfile)
4453 {
4454 if (global_stabs)
4455 {
4456 patch_block_stabs (global_symbols, global_stabs, objfile);
4457 xfree (global_stabs);
4458 global_stabs = NULL;
4459 }
4460 }
4461
4462 /* Find the end of the name, delimited by a ':', but don't match
4463 ObjC symbols which look like -[Foo bar::]:bla. */
4464 static char *
4465 find_name_end (char *name)
4466 {
4467 char *s = name;
4468 if (s[0] == '-' || *s == '+')
4469 {
4470 /* Must be an ObjC method symbol. */
4471 if (s[1] != '[')
4472 {
4473 error (_("invalid symbol name \"%s\""), name);
4474 }
4475 s = strchr (s, ']');
4476 if (s == NULL)
4477 {
4478 error (_("invalid symbol name \"%s\""), name);
4479 }
4480 return strchr (s, ':');
4481 }
4482 else
4483 {
4484 return strchr (s, ':');
4485 }
4486 }
4487
4488 /* Initializer for this module */
4489
4490 void
4491 _initialize_stabsread (void)
4492 {
4493 undef_types_allocated = 20;
4494 undef_types_length = 0;
4495 undef_types = (struct type **)
4496 xmalloc (undef_types_allocated * sizeof (struct type *));
4497 }
This page took 0.530893 seconds and 4 git commands to generate.