Consistently use address <fnf@cygnus.com> for entries.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "expression.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
37 #include "libaout.h"
38 #include "aout/aout64.h"
39 #include "gdb-stabs.h"
40 #include "buildsym.h"
41 #include "complaints.h"
42 #include "demangle.h"
43 #include "language.h"
44
45 #include <ctype.h>
46
47 /* Ask stabsread.h to define the vars it normally declares `extern'. */
48 #define EXTERN /**/
49 #include "stabsread.h" /* Our own declarations */
50 #undef EXTERN
51
52 /* The routines that read and process a complete stabs for a C struct or
53 C++ class pass lists of data member fields and lists of member function
54 fields in an instance of a field_info structure, as defined below.
55 This is part of some reorganization of low level C++ support and is
56 expected to eventually go away... (FIXME) */
57
58 struct field_info
59 {
60 struct nextfield
61 {
62 struct nextfield *next;
63
64 /* This is the raw visibility from the stab. It is not checked
65 for being one of the visibilities we recognize, so code which
66 examines this field better be able to deal. */
67 int visibility;
68
69 struct field field;
70 } *list;
71 struct next_fnfieldlist
72 {
73 struct next_fnfieldlist *next;
74 struct fn_fieldlist fn_fieldlist;
75 } *fnlist;
76 };
77
78 static struct type *
79 dbx_alloc_type PARAMS ((int [2], struct objfile *));
80
81 static long read_huge_number PARAMS ((char **, int, int *));
82
83 static struct type *error_type PARAMS ((char **, struct objfile *));
84
85 static void
86 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
87 struct objfile *));
88
89 static void
90 fix_common_block PARAMS ((struct symbol *, int));
91
92 static int
93 read_type_number PARAMS ((char **, int *));
94
95 static struct type *
96 read_range_type PARAMS ((char **, int [2], struct objfile *));
97
98 static struct type *
99 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
100
101 static struct type *
102 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
103
104 static struct type *
105 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
106
107 static struct type *
108 rs6000_builtin_type PARAMS ((int));
109
110 static int
111 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
112 struct objfile *));
113
114 static int
115 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
116 struct objfile *));
117
118 static int
119 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
120 struct objfile *));
121
122 static int
123 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
124 struct objfile *));
125
126 static int
127 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
128
129 static int
130 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
131 struct objfile *));
132
133 static struct type *
134 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
135
136 static struct type *
137 read_array_type PARAMS ((char **, struct type *, struct objfile *));
138
139 static struct type **
140 read_args PARAMS ((char **, int, struct objfile *));
141
142 static int
143 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
144 struct objfile *));
145
146 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
147 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
148
149 /* Define this as 1 if a pcc declaration of a char or short argument
150 gives the correct address. Otherwise assume pcc gives the
151 address of the corresponding int, which is not the same on a
152 big-endian machine. */
153
154 #ifndef BELIEVE_PCC_PROMOTION
155 #define BELIEVE_PCC_PROMOTION 0
156 #endif
157
158 struct complaint invalid_cpp_abbrev_complaint =
159 {"invalid C++ abbreviation `%s'", 0, 0};
160
161 struct complaint invalid_cpp_type_complaint =
162 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
163
164 struct complaint member_fn_complaint =
165 {"member function type missing, got '%c'", 0, 0};
166
167 struct complaint const_vol_complaint =
168 {"const/volatile indicator missing, got '%c'", 0, 0};
169
170 struct complaint error_type_complaint =
171 {"debug info mismatch between compiler and debugger", 0, 0};
172
173 struct complaint invalid_member_complaint =
174 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
175
176 struct complaint range_type_base_complaint =
177 {"base type %d of range type is not defined", 0, 0};
178
179 struct complaint reg_value_complaint =
180 {"register number %d too large (max %d) in symbol %s", 0, 0};
181
182 struct complaint vtbl_notfound_complaint =
183 {"virtual function table pointer not found when defining class `%s'", 0, 0};
184
185 struct complaint unrecognized_cplus_name_complaint =
186 {"Unknown C++ symbol name `%s'", 0, 0};
187
188 struct complaint rs6000_builtin_complaint =
189 {"Unknown builtin type %d", 0, 0};
190
191 struct complaint unresolved_sym_chain_complaint =
192 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
193
194 struct complaint stabs_general_complaint =
195 {"%s", 0, 0};
196
197 /* Make a list of forward references which haven't been defined. */
198
199 static struct type **undef_types;
200 static int undef_types_allocated;
201 static int undef_types_length;
202 static struct symbol *current_symbol = NULL;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211 /* FIXME: These probably should be our own types (like rs6000_builtin_type
212 has its own types) rather than builtin_type_*. */
213 static struct type **os9k_type_vector[] = {
214 0,
215 &builtin_type_int,
216 &builtin_type_char,
217 &builtin_type_long,
218 &builtin_type_short,
219 &builtin_type_unsigned_char,
220 &builtin_type_unsigned_short,
221 &builtin_type_unsigned_long,
222 &builtin_type_unsigned_int,
223 &builtin_type_float,
224 &builtin_type_double,
225 &builtin_type_void,
226 &builtin_type_long_double
227 };
228
229 static void os9k_init_type_vector PARAMS ((struct type **));
230
231 static void
232 os9k_init_type_vector(tv)
233 struct type **tv;
234 {
235 int i;
236 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
237 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
238 }
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 struct type **
248 dbx_lookup_type (typenums)
249 int typenums[2];
250 {
251 register int filenum = typenums[0];
252 register int index = typenums[1];
253 unsigned old_len;
254 register int real_filenum;
255 register struct header_file *f;
256 int f_orig_length;
257
258 if (filenum == -1) /* -1,-1 is for temporary types. */
259 return 0;
260
261 if (filenum < 0 || filenum >= n_this_object_header_files)
262 {
263 static struct complaint msg = {"\
264 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
265 0, 0};
266 complain (&msg, filenum, index, symnum);
267 goto error_return;
268 }
269
270 if (filenum == 0)
271 {
272 if (index < 0)
273 {
274 /* Caller wants address of address of type. We think
275 that negative (rs6k builtin) types will never appear as
276 "lvalues", (nor should they), so we stuff the real type
277 pointer into a temp, and return its address. If referenced,
278 this will do the right thing. */
279 static struct type *temp_type;
280
281 temp_type = rs6000_builtin_type(index);
282 return &temp_type;
283 }
284
285 /* Type is defined outside of header files.
286 Find it in this object file's type vector. */
287 if (index >= type_vector_length)
288 {
289 old_len = type_vector_length;
290 if (old_len == 0)
291 {
292 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
293 type_vector = (struct type **)
294 xmalloc (type_vector_length * sizeof (struct type *));
295 }
296 while (index >= type_vector_length)
297 {
298 type_vector_length *= 2;
299 }
300 type_vector = (struct type **)
301 xrealloc ((char *) type_vector,
302 (type_vector_length * sizeof (struct type *)));
303 memset (&type_vector[old_len], 0,
304 (type_vector_length - old_len) * sizeof (struct type *));
305
306 if (os9k_stabs)
307 /* Deal with OS9000 fundamental types. */
308 os9k_init_type_vector (type_vector);
309 }
310 return (&type_vector[index]);
311 }
312 else
313 {
314 real_filenum = this_object_header_files[filenum];
315
316 if (real_filenum >= n_header_files)
317 {
318 struct type *temp_type;
319 struct type **temp_type_p;
320
321 warning ("GDB internal error: bad real_filenum");
322
323 error_return:
324 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
325 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
326 *temp_type_p = temp_type;
327 return temp_type_p;
328 }
329
330 f = &header_files[real_filenum];
331
332 f_orig_length = f->length;
333 if (index >= f_orig_length)
334 {
335 while (index >= f->length)
336 {
337 f->length *= 2;
338 }
339 f->vector = (struct type **)
340 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
341 memset (&f->vector[f_orig_length], 0,
342 (f->length - f_orig_length) * sizeof (struct type *));
343 }
344 return (&f->vector[index]);
345 }
346 }
347
348 /* Make sure there is a type allocated for type numbers TYPENUMS
349 and return the type object.
350 This can create an empty (zeroed) type object.
351 TYPENUMS may be (-1, -1) to return a new type object that is not
352 put into the type vector, and so may not be referred to by number. */
353
354 static struct type *
355 dbx_alloc_type (typenums, objfile)
356 int typenums[2];
357 struct objfile *objfile;
358 {
359 register struct type **type_addr;
360
361 if (typenums[0] == -1)
362 {
363 return (alloc_type (objfile));
364 }
365
366 type_addr = dbx_lookup_type (typenums);
367
368 /* If we are referring to a type not known at all yet,
369 allocate an empty type for it.
370 We will fill it in later if we find out how. */
371 if (*type_addr == 0)
372 {
373 *type_addr = alloc_type (objfile);
374 }
375
376 return (*type_addr);
377 }
378
379 /* for all the stabs in a given stab vector, build appropriate types
380 and fix their symbols in given symbol vector. */
381
382 static void
383 patch_block_stabs (symbols, stabs, objfile)
384 struct pending *symbols;
385 struct pending_stabs *stabs;
386 struct objfile *objfile;
387 {
388 int ii;
389 char *name;
390 char *pp;
391 struct symbol *sym;
392
393 if (stabs)
394 {
395
396 /* for all the stab entries, find their corresponding symbols and
397 patch their types! */
398
399 for (ii = 0; ii < stabs->count; ++ii)
400 {
401 name = stabs->stab[ii];
402 pp = (char*) strchr (name, ':');
403 while (pp[1] == ':')
404 {
405 pp += 2;
406 pp = (char *)strchr(pp, ':');
407 }
408 sym = find_symbol_in_list (symbols, name, pp-name);
409 if (!sym)
410 {
411 /* FIXME-maybe: it would be nice if we noticed whether
412 the variable was defined *anywhere*, not just whether
413 it is defined in this compilation unit. But neither
414 xlc or GCC seem to need such a definition, and until
415 we do psymtabs (so that the minimal symbols from all
416 compilation units are available now), I'm not sure
417 how to get the information. */
418
419 /* On xcoff, if a global is defined and never referenced,
420 ld will remove it from the executable. There is then
421 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
422 sym = (struct symbol *)
423 obstack_alloc (&objfile->symbol_obstack,
424 sizeof (struct symbol));
425
426 memset (sym, 0, sizeof (struct symbol));
427 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
428 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
429 SYMBOL_NAME (sym) =
430 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
431 pp += 2;
432 if (*(pp-1) == 'F' || *(pp-1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, &global_symbols);
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp-1) == 'F' || *(pp-1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462
463 \f
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (pp, typenums)
474 register char **pp;
475 register int *typenums;
476 {
477 int nbits;
478 if (**pp == '(')
479 {
480 (*pp)++;
481 typenums[0] = read_huge_number (pp, ',', &nbits);
482 if (nbits != 0) return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits);
484 if (nbits != 0) return -1;
485 }
486 else
487 {
488 typenums[0] = 0;
489 typenums[1] = read_huge_number (pp, 0, &nbits);
490 if (nbits != 0) return -1;
491 }
492 return 0;
493 }
494
495 \f
496 #if !defined (REG_STRUCT_HAS_ADDR)
497 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
498 #endif
499
500 /* ARGSUSED */
501 struct symbol *
502 define_symbol (valu, string, desc, type, objfile)
503 CORE_ADDR valu;
504 char *string;
505 int desc;
506 int type;
507 struct objfile *objfile;
508 {
509 register struct symbol *sym;
510 char *p = (char *) strchr (string, ':');
511 int deftype;
512 int synonym = 0;
513 register int i;
514
515 /* We would like to eliminate nameless symbols, but keep their types.
516 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
517 to type 2, but, should not create a symbol to address that type. Since
518 the symbol will be nameless, there is no way any user can refer to it. */
519
520 int nameless;
521
522 /* Ignore syms with empty names. */
523 if (string[0] == 0)
524 return 0;
525
526 /* Ignore old-style symbols from cc -go */
527 if (p == 0)
528 return 0;
529
530 while (p[1] == ':')
531 {
532 p += 2;
533 p = strchr(p, ':');
534 }
535
536 /* If a nameless stab entry, all we need is the type, not the symbol.
537 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
538 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
539
540 current_symbol = sym = (struct symbol *)
541 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
542 memset (sym, 0, sizeof (struct symbol));
543
544 switch (type & N_TYPE)
545 {
546 case N_TEXT:
547 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
548 break;
549 case N_DATA:
550 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
551 break;
552 case N_BSS:
553 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
554 break;
555 }
556
557 if (processing_gcc_compilation)
558 {
559 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
560 number of bytes occupied by a type or object, which we ignore. */
561 SYMBOL_LINE(sym) = desc;
562 }
563 else
564 {
565 SYMBOL_LINE(sym) = 0; /* unknown */
566 }
567
568 if (is_cplus_marker (string[0]))
569 {
570 /* Special GNU C++ names. */
571 switch (string[1])
572 {
573 case 't':
574 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
575 &objfile -> symbol_obstack);
576 break;
577
578 case 'v': /* $vtbl_ptr_type */
579 /* Was: SYMBOL_NAME (sym) = "vptr"; */
580 goto normal;
581
582 case 'e':
583 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
584 &objfile -> symbol_obstack);
585 break;
586
587 case '_':
588 /* This was an anonymous type that was never fixed up. */
589 goto normal;
590
591 #ifdef STATIC_TRANSFORM_NAME
592 case 'X':
593 /* SunPRO (3.0 at least) static variable encoding. */
594 goto normal;
595 #endif
596
597 default:
598 complain (&unrecognized_cplus_name_complaint, string);
599 goto normal; /* Do *something* with it */
600 }
601 }
602 else
603 {
604 normal:
605 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
606 SYMBOL_NAME (sym) = (char *)
607 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
608 /* Open-coded memcpy--saves function call time. */
609 /* FIXME: Does it really? Try replacing with simple strcpy and
610 try it on an executable with a large symbol table. */
611 /* FIXME: considering that gcc can open code memcpy anyway, I
612 doubt it. xoxorich. */
613 {
614 register char *p1 = string;
615 register char *p2 = SYMBOL_NAME (sym);
616 while (p1 != p)
617 {
618 *p2++ = *p1++;
619 }
620 *p2++ = '\0';
621 }
622
623 /* If this symbol is from a C++ compilation, then attempt to cache the
624 demangled form for future reference. This is a typical time versus
625 space tradeoff, that was decided in favor of time because it sped up
626 C++ symbol lookups by a factor of about 20. */
627
628 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
629 }
630 p++;
631
632 /* Determine the type of name being defined. */
633 #if 0
634 /* Getting GDB to correctly skip the symbol on an undefined symbol
635 descriptor and not ever dump core is a very dodgy proposition if
636 we do things this way. I say the acorn RISC machine can just
637 fix their compiler. */
638 /* The Acorn RISC machine's compiler can put out locals that don't
639 start with "234=" or "(3,4)=", so assume anything other than the
640 deftypes we know how to handle is a local. */
641 if (!strchr ("cfFGpPrStTvVXCR", *p))
642 #else
643 if (isdigit (*p) || *p == '(' || *p == '-')
644 #endif
645 deftype = 'l';
646 else
647 deftype = *p++;
648
649 switch (deftype)
650 {
651 case 'c':
652 /* c is a special case, not followed by a type-number.
653 SYMBOL:c=iVALUE for an integer constant symbol.
654 SYMBOL:c=rVALUE for a floating constant symbol.
655 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
656 e.g. "b:c=e6,0" for "const b = blob1"
657 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
658 if (*p != '=')
659 {
660 SYMBOL_CLASS (sym) = LOC_CONST;
661 SYMBOL_TYPE (sym) = error_type (&p, objfile);
662 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
663 add_symbol_to_list (sym, &file_symbols);
664 return sym;
665 }
666 ++p;
667 switch (*p++)
668 {
669 case 'r':
670 {
671 double d = atof (p);
672 char *dbl_valu;
673
674 /* FIXME-if-picky-about-floating-accuracy: Should be using
675 target arithmetic to get the value. real.c in GCC
676 probably has the necessary code. */
677
678 /* FIXME: lookup_fundamental_type is a hack. We should be
679 creating a type especially for the type of float constants.
680 Problem is, what type should it be?
681
682 Also, what should the name of this type be? Should we
683 be using 'S' constants (see stabs.texinfo) instead? */
684
685 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
686 FT_DBL_PREC_FLOAT);
687 dbl_valu = (char *)
688 obstack_alloc (&objfile -> symbol_obstack,
689 TYPE_LENGTH (SYMBOL_TYPE (sym)));
690 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
691 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
692 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
693 }
694 break;
695 case 'i':
696 {
697 /* Defining integer constants this way is kind of silly,
698 since 'e' constants allows the compiler to give not
699 only the value, but the type as well. C has at least
700 int, long, unsigned int, and long long as constant
701 types; other languages probably should have at least
702 unsigned as well as signed constants. */
703
704 /* We just need one int constant type for all objfiles.
705 It doesn't depend on languages or anything (arguably its
706 name should be a language-specific name for a type of
707 that size, but I'm inclined to say that if the compiler
708 wants a nice name for the type, it can use 'e'). */
709 static struct type *int_const_type;
710
711 /* Yes, this is as long as a *host* int. That is because we
712 use atoi. */
713 if (int_const_type == NULL)
714 int_const_type =
715 init_type (TYPE_CODE_INT,
716 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
717 "integer constant",
718 (struct objfile *)NULL);
719 SYMBOL_TYPE (sym) = int_const_type;
720 SYMBOL_VALUE (sym) = atoi (p);
721 SYMBOL_CLASS (sym) = LOC_CONST;
722 }
723 break;
724 case 'e':
725 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
726 can be represented as integral.
727 e.g. "b:c=e6,0" for "const b = blob1"
728 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
729 {
730 SYMBOL_CLASS (sym) = LOC_CONST;
731 SYMBOL_TYPE (sym) = read_type (&p, objfile);
732
733 if (*p != ',')
734 {
735 SYMBOL_TYPE (sym) = error_type (&p, objfile);
736 break;
737 }
738 ++p;
739
740 /* If the value is too big to fit in an int (perhaps because
741 it is unsigned), or something like that, we silently get
742 a bogus value. The type and everything else about it is
743 correct. Ideally, we should be using whatever we have
744 available for parsing unsigned and long long values,
745 however. */
746 SYMBOL_VALUE (sym) = atoi (p);
747 }
748 break;
749 default:
750 {
751 SYMBOL_CLASS (sym) = LOC_CONST;
752 SYMBOL_TYPE (sym) = error_type (&p, objfile);
753 }
754 }
755 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
756 add_symbol_to_list (sym, &file_symbols);
757 return sym;
758
759 case 'C':
760 /* The name of a caught exception. */
761 SYMBOL_TYPE (sym) = read_type (&p, objfile);
762 SYMBOL_CLASS (sym) = LOC_LABEL;
763 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
764 SYMBOL_VALUE_ADDRESS (sym) = valu;
765 add_symbol_to_list (sym, &local_symbols);
766 break;
767
768 case 'f':
769 /* A static function definition. */
770 SYMBOL_TYPE (sym) = read_type (&p, objfile);
771 SYMBOL_CLASS (sym) = LOC_BLOCK;
772 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
773 add_symbol_to_list (sym, &file_symbols);
774 /* fall into process_function_types. */
775
776 process_function_types:
777 /* Function result types are described as the result type in stabs.
778 We need to convert this to the function-returning-type-X type
779 in GDB. E.g. "int" is converted to "function returning int". */
780 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
781 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
782 /* fall into process_prototype_types */
783
784 process_prototype_types:
785 /* Sun acc puts declared types of arguments here. We don't care
786 about their actual types (FIXME -- we should remember the whole
787 function prototype), but the list may define some new types
788 that we have to remember, so we must scan it now. */
789 while (*p == ';') {
790 p++;
791 read_type (&p, objfile);
792 }
793 break;
794
795 case 'F':
796 /* A global function definition. */
797 SYMBOL_TYPE (sym) = read_type (&p, objfile);
798 SYMBOL_CLASS (sym) = LOC_BLOCK;
799 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
800 add_symbol_to_list (sym, &global_symbols);
801 goto process_function_types;
802
803 case 'G':
804 /* For a class G (global) symbol, it appears that the
805 value is not correct. It is necessary to search for the
806 corresponding linker definition to find the value.
807 These definitions appear at the end of the namelist. */
808 SYMBOL_TYPE (sym) = read_type (&p, objfile);
809 i = hashname (SYMBOL_NAME (sym));
810 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
811 global_sym_chain[i] = sym;
812 SYMBOL_CLASS (sym) = LOC_STATIC;
813 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
814 add_symbol_to_list (sym, &global_symbols);
815 break;
816
817 /* This case is faked by a conditional above,
818 when there is no code letter in the dbx data.
819 Dbx data never actually contains 'l'. */
820 case 's':
821 case 'l':
822 SYMBOL_TYPE (sym) = read_type (&p, objfile);
823 SYMBOL_CLASS (sym) = LOC_LOCAL;
824 SYMBOL_VALUE (sym) = valu;
825 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
826 add_symbol_to_list (sym, &local_symbols);
827 break;
828
829 case 'p':
830 if (*p == 'F')
831 /* pF is a two-letter code that means a function parameter in Fortran.
832 The type-number specifies the type of the return value.
833 Translate it into a pointer-to-function type. */
834 {
835 p++;
836 SYMBOL_TYPE (sym)
837 = lookup_pointer_type
838 (lookup_function_type (read_type (&p, objfile)));
839 }
840 else
841 SYMBOL_TYPE (sym) = read_type (&p, objfile);
842
843 /* Normally this is a parameter, a LOC_ARG. On the i960, it
844 can also be a LOC_LOCAL_ARG depending on symbol type. */
845 #ifndef DBX_PARM_SYMBOL_CLASS
846 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
847 #endif
848
849 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
850 SYMBOL_VALUE (sym) = valu;
851 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
852 add_symbol_to_list (sym, &local_symbols);
853
854 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
855 {
856 /* On little-endian machines, this crud is never necessary,
857 and, if the extra bytes contain garbage, is harmful. */
858 break;
859 }
860
861 /* If it's gcc-compiled, if it says `short', believe it. */
862 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
863 break;
864
865 #if !BELIEVE_PCC_PROMOTION
866 {
867 /* This is the signed type which arguments get promoted to. */
868 static struct type *pcc_promotion_type;
869 /* This is the unsigned type which arguments get promoted to. */
870 static struct type *pcc_unsigned_promotion_type;
871
872 /* Call it "int" because this is mainly C lossage. */
873 if (pcc_promotion_type == NULL)
874 pcc_promotion_type =
875 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
876 0, "int", NULL);
877
878 if (pcc_unsigned_promotion_type == NULL)
879 pcc_unsigned_promotion_type =
880 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
881 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
882
883 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
884 /* This macro is defined on machines (e.g. sparc) where
885 we should believe the type of a PCC 'short' argument,
886 but shouldn't believe the address (the address is
887 the address of the corresponding int).
888
889 My guess is that this correction, as opposed to changing
890 the parameter to an 'int' (as done below, for PCC
891 on most machines), is the right thing to do
892 on all machines, but I don't want to risk breaking
893 something that already works. On most PCC machines,
894 the sparc problem doesn't come up because the calling
895 function has to zero the top bytes (not knowing whether
896 the called function wants an int or a short), so there
897 is little practical difference between an int and a short
898 (except perhaps what happens when the GDB user types
899 "print short_arg = 0x10000;").
900
901 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
902 actually produces the correct address (we don't need to fix it
903 up). I made this code adapt so that it will offset the symbol
904 if it was pointing at an int-aligned location and not
905 otherwise. This way you can use the same gdb for 4.0.x and
906 4.1 systems.
907
908 If the parameter is shorter than an int, and is integral
909 (e.g. char, short, or unsigned equivalent), and is claimed to
910 be passed on an integer boundary, don't believe it! Offset the
911 parameter's address to the tail-end of that integer. */
912
913 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
914 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
915 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
916 {
917 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
918 - TYPE_LENGTH (SYMBOL_TYPE (sym));
919 }
920 break;
921
922 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
923
924 /* If PCC says a parameter is a short or a char,
925 it is really an int. */
926 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
927 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
928 {
929 SYMBOL_TYPE (sym) =
930 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
931 ? pcc_unsigned_promotion_type
932 : pcc_promotion_type;
933 }
934 break;
935
936 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
937 }
938 #endif /* !BELIEVE_PCC_PROMOTION. */
939
940 case 'P':
941 /* acc seems to use P to declare the prototypes of functions that
942 are referenced by this file. gdb is not prepared to deal
943 with this extra information. FIXME, it ought to. */
944 if (type == N_FUN)
945 {
946 SYMBOL_TYPE (sym) = read_type (&p, objfile);
947 goto process_prototype_types;
948 }
949 /*FALLTHROUGH*/
950
951 case 'R':
952 /* Parameter which is in a register. */
953 SYMBOL_TYPE (sym) = read_type (&p, objfile);
954 SYMBOL_CLASS (sym) = LOC_REGPARM;
955 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
956 if (SYMBOL_VALUE (sym) >= NUM_REGS)
957 {
958 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
959 SYMBOL_SOURCE_NAME (sym));
960 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
961 }
962 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
963 add_symbol_to_list (sym, &local_symbols);
964 break;
965
966 case 'r':
967 /* Register variable (either global or local). */
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969 SYMBOL_CLASS (sym) = LOC_REGISTER;
970 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
971 if (SYMBOL_VALUE (sym) >= NUM_REGS)
972 {
973 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
974 SYMBOL_SOURCE_NAME (sym));
975 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
976 }
977 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
978 if (within_function)
979 {
980 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
981 name to represent an argument passed in a register.
982 GCC uses 'P' for the same case. So if we find such a symbol pair
983 we combine it into one 'P' symbol. For Sun cc we need to do this
984 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
985 the 'p' symbol even if it never saves the argument onto the stack.
986
987 On most machines, we want to preserve both symbols, so that
988 we can still get information about what is going on with the
989 stack (VAX for computing args_printed, using stack slots instead
990 of saved registers in backtraces, etc.).
991
992 Note that this code illegally combines
993 main(argc) struct foo argc; { register struct foo argc; }
994 but this case is considered pathological and causes a warning
995 from a decent compiler. */
996
997 if (local_symbols
998 && local_symbols->nsyms > 0
999 #ifndef USE_REGISTER_NOT_ARG
1000 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1001 SYMBOL_TYPE (sym))
1002 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1003 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1004 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1005 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1006 #endif
1007 )
1008 {
1009 struct symbol *prev_sym;
1010 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1011 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1012 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1013 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1014 {
1015 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1016 /* Use the type from the LOC_REGISTER; that is the type
1017 that is actually in that register. */
1018 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1019 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1020 sym = prev_sym;
1021 break;
1022 }
1023 }
1024 add_symbol_to_list (sym, &local_symbols);
1025 }
1026 else
1027 add_symbol_to_list (sym, &file_symbols);
1028 break;
1029
1030 case 'S':
1031 /* Static symbol at top level of file */
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033 SYMBOL_CLASS (sym) = LOC_STATIC;
1034 SYMBOL_VALUE_ADDRESS (sym) = valu;
1035 #ifdef STATIC_TRANSFORM_NAME
1036 if (SYMBOL_NAME (sym)[0] == '$')
1037 {
1038 struct minimal_symbol *msym;
1039 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1040 if (msym != NULL)
1041 {
1042 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1043 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1044 }
1045 }
1046 #endif
1047 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1048 add_symbol_to_list (sym, &file_symbols);
1049 break;
1050
1051 case 't':
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053
1054 /* For a nameless type, we don't want a create a symbol, thus we
1055 did not use `sym'. Return without further processing. */
1056 if (nameless) return NULL;
1057
1058 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1059 SYMBOL_VALUE (sym) = valu;
1060 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1061 /* C++ vagaries: we may have a type which is derived from
1062 a base type which did not have its name defined when the
1063 derived class was output. We fill in the derived class's
1064 base part member's name here in that case. */
1065 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1066 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1067 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1068 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1069 {
1070 int j;
1071 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1072 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1073 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1074 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1075 }
1076
1077 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1078 {
1079 /* gcc-2.6 or later (when using -fvtable-thunks)
1080 emits a unique named type for a vtable entry.
1081 Some gdb code depends on that specific name. */
1082 extern const char vtbl_ptr_name[];
1083
1084 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1085 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1086 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1087 {
1088 /* If we are giving a name to a type such as "pointer to
1089 foo" or "function returning foo", we better not set
1090 the TYPE_NAME. If the program contains "typedef char
1091 *caddr_t;", we don't want all variables of type char
1092 * to print as caddr_t. This is not just a
1093 consequence of GDB's type management; PCC and GCC (at
1094 least through version 2.4) both output variables of
1095 either type char * or caddr_t with the type number
1096 defined in the 't' symbol for caddr_t. If a future
1097 compiler cleans this up it GDB is not ready for it
1098 yet, but if it becomes ready we somehow need to
1099 disable this check (without breaking the PCC/GCC2.4
1100 case).
1101
1102 Sigh.
1103
1104 Fortunately, this check seems not to be necessary
1105 for anything except pointers or functions. */
1106 }
1107 else
1108 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1109 }
1110
1111 add_symbol_to_list (sym, &file_symbols);
1112 break;
1113
1114 case 'T':
1115 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1116 by 't' which means we are typedef'ing it as well. */
1117 synonym = *p == 't';
1118
1119 if (synonym)
1120 p++;
1121 /* The semantics of C++ state that "struct foo { ... }" also defines
1122 a typedef for "foo". Unfortunately, cfront never makes the typedef
1123 when translating C++ into C. We make the typedef here so that
1124 "ptype foo" works as expected for cfront translated code. */
1125 else if (current_subfile->language == language_cplus)
1126 synonym = 1;
1127
1128 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1129
1130 /* For a nameless type, we don't want a create a symbol, thus we
1131 did not use `sym'. Return without further processing. */
1132 if (nameless) return NULL;
1133
1134 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1135 SYMBOL_VALUE (sym) = valu;
1136 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1137 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1138 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1139 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1140 add_symbol_to_list (sym, &file_symbols);
1141
1142 if (synonym)
1143 {
1144 /* Clone the sym and then modify it. */
1145 register struct symbol *typedef_sym = (struct symbol *)
1146 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1147 *typedef_sym = *sym;
1148 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1149 SYMBOL_VALUE (typedef_sym) = valu;
1150 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1151 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1152 TYPE_NAME (SYMBOL_TYPE (sym))
1153 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1154 add_symbol_to_list (typedef_sym, &file_symbols);
1155 }
1156 break;
1157
1158 case 'V':
1159 /* Static symbol of local scope */
1160 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1161 SYMBOL_CLASS (sym) = LOC_STATIC;
1162 SYMBOL_VALUE_ADDRESS (sym) = valu;
1163 #ifdef STATIC_TRANSFORM_NAME
1164 if (SYMBOL_NAME (sym)[0] == '$')
1165 {
1166 struct minimal_symbol *msym;
1167 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1168 if (msym != NULL)
1169 {
1170 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1171 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1172 }
1173 }
1174 #endif
1175 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1176 if (os9k_stabs)
1177 add_symbol_to_list (sym, &global_symbols);
1178 else
1179 add_symbol_to_list (sym, &local_symbols);
1180 break;
1181
1182 case 'v':
1183 /* Reference parameter */
1184 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1185 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1186 SYMBOL_VALUE (sym) = valu;
1187 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1188 add_symbol_to_list (sym, &local_symbols);
1189 break;
1190
1191 case 'a':
1192 /* Reference parameter which is in a register. */
1193 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1194 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1195 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1196 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1197 {
1198 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1199 SYMBOL_SOURCE_NAME (sym));
1200 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1201 }
1202 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1203 add_symbol_to_list (sym, &local_symbols);
1204 break;
1205
1206 case 'X':
1207 /* This is used by Sun FORTRAN for "function result value".
1208 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1209 that Pascal uses it too, but when I tried it Pascal used
1210 "x:3" (local symbol) instead. */
1211 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1212 SYMBOL_CLASS (sym) = LOC_LOCAL;
1213 SYMBOL_VALUE (sym) = valu;
1214 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1215 add_symbol_to_list (sym, &local_symbols);
1216 break;
1217
1218 default:
1219 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1220 SYMBOL_CLASS (sym) = LOC_CONST;
1221 SYMBOL_VALUE (sym) = 0;
1222 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1223 add_symbol_to_list (sym, &file_symbols);
1224 break;
1225 }
1226
1227 /* When passing structures to a function, some systems sometimes pass
1228 the address in a register, not the structure itself. */
1229
1230 if (REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1231 SYMBOL_TYPE (sym))
1232 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1233 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1234 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1235 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET)))
1236 {
1237 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to
1238 convert LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
1239 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1240 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1241 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1242 subsequent arguments on the sparc, for example). */
1243 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1244 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1245 }
1246
1247 return sym;
1248 }
1249
1250 \f
1251 /* Skip rest of this symbol and return an error type.
1252
1253 General notes on error recovery: error_type always skips to the
1254 end of the symbol (modulo cretinous dbx symbol name continuation).
1255 Thus code like this:
1256
1257 if (*(*pp)++ != ';')
1258 return error_type (pp, objfile);
1259
1260 is wrong because if *pp starts out pointing at '\0' (typically as the
1261 result of an earlier error), it will be incremented to point to the
1262 start of the next symbol, which might produce strange results, at least
1263 if you run off the end of the string table. Instead use
1264
1265 if (**pp != ';')
1266 return error_type (pp, objfile);
1267 ++*pp;
1268
1269 or
1270
1271 if (**pp != ';')
1272 foo = error_type (pp, objfile);
1273 else
1274 ++*pp;
1275
1276 And in case it isn't obvious, the point of all this hair is so the compiler
1277 can define new types and new syntaxes, and old versions of the
1278 debugger will be able to read the new symbol tables. */
1279
1280 static struct type *
1281 error_type (pp, objfile)
1282 char **pp;
1283 struct objfile *objfile;
1284 {
1285 complain (&error_type_complaint);
1286 while (1)
1287 {
1288 /* Skip to end of symbol. */
1289 while (**pp != '\0')
1290 {
1291 (*pp)++;
1292 }
1293
1294 /* Check for and handle cretinous dbx symbol name continuation! */
1295 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1296 {
1297 *pp = next_symbol_text (objfile);
1298 }
1299 else
1300 {
1301 break;
1302 }
1303 }
1304 return (builtin_type_error);
1305 }
1306
1307 \f
1308 /* Read type information or a type definition; return the type. Even
1309 though this routine accepts either type information or a type
1310 definition, the distinction is relevant--some parts of stabsread.c
1311 assume that type information starts with a digit, '-', or '(' in
1312 deciding whether to call read_type. */
1313
1314 struct type *
1315 read_type (pp, objfile)
1316 register char **pp;
1317 struct objfile *objfile;
1318 {
1319 register struct type *type = 0;
1320 struct type *type1;
1321 int typenums[2];
1322 int xtypenums[2];
1323 char type_descriptor;
1324
1325 /* Size in bits of type if specified by a type attribute, or -1 if
1326 there is no size attribute. */
1327 int type_size = -1;
1328
1329 /* Used to distinguish string and bitstring from char-array and set. */
1330 int is_string = 0;
1331
1332 /* Read type number if present. The type number may be omitted.
1333 for instance in a two-dimensional array declared with type
1334 "ar1;1;10;ar1;1;10;4". */
1335 if ((**pp >= '0' && **pp <= '9')
1336 || **pp == '('
1337 || **pp == '-')
1338 {
1339 if (read_type_number (pp, typenums) != 0)
1340 return error_type (pp, objfile);
1341
1342 /* Type is not being defined here. Either it already exists,
1343 or this is a forward reference to it. dbx_alloc_type handles
1344 both cases. */
1345 if (**pp != '=')
1346 return dbx_alloc_type (typenums, objfile);
1347
1348 /* Type is being defined here. */
1349 /* Skip the '='.
1350 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1351 (*pp)+=2;
1352
1353 }
1354 else
1355 {
1356 /* 'typenums=' not present, type is anonymous. Read and return
1357 the definition, but don't put it in the type vector. */
1358 typenums[0] = typenums[1] = -1;
1359 (*pp)++;
1360 }
1361
1362 again:
1363 type_descriptor = (*pp)[-1];
1364 switch (type_descriptor)
1365 {
1366 case 'x':
1367 {
1368 enum type_code code;
1369
1370 /* Used to index through file_symbols. */
1371 struct pending *ppt;
1372 int i;
1373
1374 /* Name including "struct", etc. */
1375 char *type_name;
1376
1377 {
1378 char *from, *to, *p, *q1, *q2;
1379
1380 /* Set the type code according to the following letter. */
1381 switch ((*pp)[0])
1382 {
1383 case 's':
1384 code = TYPE_CODE_STRUCT;
1385 break;
1386 case 'u':
1387 code = TYPE_CODE_UNION;
1388 break;
1389 case 'e':
1390 code = TYPE_CODE_ENUM;
1391 break;
1392 default:
1393 {
1394 /* Complain and keep going, so compilers can invent new
1395 cross-reference types. */
1396 static struct complaint msg =
1397 {"Unrecognized cross-reference type `%c'", 0, 0};
1398 complain (&msg, (*pp)[0]);
1399 code = TYPE_CODE_STRUCT;
1400 break;
1401 }
1402 }
1403
1404 q1 = strchr(*pp, '<');
1405 p = strchr(*pp, ':');
1406 if (p == NULL)
1407 return error_type (pp, objfile);
1408 while (q1 && p > q1 && p[1] == ':')
1409 {
1410 q2 = strchr(q1, '>');
1411 if (!q2 || q2 < p)
1412 break;
1413 p += 2;
1414 p = strchr(p, ':');
1415 if (p == NULL)
1416 return error_type (pp, objfile);
1417 }
1418 to = type_name =
1419 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1420
1421 /* Copy the name. */
1422 from = *pp + 1;
1423 while (from < p)
1424 *to++ = *from++;
1425 *to = '\0';
1426
1427 /* Set the pointer ahead of the name which we just read, and
1428 the colon. */
1429 *pp = from + 1;
1430 }
1431
1432 /* Now check to see whether the type has already been
1433 declared. This was written for arrays of cross-referenced
1434 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1435 sure it is not necessary anymore. But it might be a good
1436 idea, to save a little memory. */
1437
1438 for (ppt = file_symbols; ppt; ppt = ppt->next)
1439 for (i = 0; i < ppt->nsyms; i++)
1440 {
1441 struct symbol *sym = ppt->symbol[i];
1442
1443 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1444 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1445 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1446 && STREQ (SYMBOL_NAME (sym), type_name))
1447 {
1448 obstack_free (&objfile -> type_obstack, type_name);
1449 type = SYMBOL_TYPE (sym);
1450 return type;
1451 }
1452 }
1453
1454 /* Didn't find the type to which this refers, so we must
1455 be dealing with a forward reference. Allocate a type
1456 structure for it, and keep track of it so we can
1457 fill in the rest of the fields when we get the full
1458 type. */
1459 type = dbx_alloc_type (typenums, objfile);
1460 TYPE_CODE (type) = code;
1461 TYPE_TAG_NAME (type) = type_name;
1462 INIT_CPLUS_SPECIFIC(type);
1463 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1464
1465 add_undefined_type (type);
1466 return type;
1467 }
1468
1469 case '-': /* RS/6000 built-in type */
1470 case '0':
1471 case '1':
1472 case '2':
1473 case '3':
1474 case '4':
1475 case '5':
1476 case '6':
1477 case '7':
1478 case '8':
1479 case '9':
1480 case '(':
1481 (*pp)--;
1482
1483 /* We deal with something like t(1,2)=(3,4)=... which
1484 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1485
1486 /* Allocate and enter the typedef type first.
1487 This handles recursive types. */
1488 type = dbx_alloc_type (typenums, objfile);
1489 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1490 { struct type *xtype = read_type (pp, objfile);
1491 if (type == xtype)
1492 {
1493 /* It's being defined as itself. That means it is "void". */
1494 TYPE_CODE (type) = TYPE_CODE_VOID;
1495 TYPE_LENGTH (type) = 1;
1496 }
1497 else if (type_size >= 0 || is_string)
1498 {
1499 *type = *xtype;
1500 TYPE_NAME (type) = NULL;
1501 TYPE_TAG_NAME (type) = NULL;
1502 }
1503 else
1504 {
1505 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1506 TYPE_TARGET_TYPE (type) = xtype;
1507 }
1508 }
1509 break;
1510
1511 /* In the following types, we must be sure to overwrite any existing
1512 type that the typenums refer to, rather than allocating a new one
1513 and making the typenums point to the new one. This is because there
1514 may already be pointers to the existing type (if it had been
1515 forward-referenced), and we must change it to a pointer, function,
1516 reference, or whatever, *in-place*. */
1517
1518 case '*':
1519 type1 = read_type (pp, objfile);
1520 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1521 break;
1522
1523 case '&': /* Reference to another type */
1524 type1 = read_type (pp, objfile);
1525 type = make_reference_type (type1, dbx_lookup_type (typenums));
1526 break;
1527
1528 case 'f': /* Function returning another type */
1529 if (os9k_stabs && **pp == '(')
1530 {
1531 /* Function prototype; parse it.
1532 We must conditionalize this on os9k_stabs because otherwise
1533 it could be confused with a Sun-style (1,3) typenumber
1534 (I think). */
1535 struct type *t;
1536 ++*pp;
1537 while (**pp != ')')
1538 {
1539 t = read_type(pp, objfile);
1540 if (**pp == ',') ++*pp;
1541 }
1542 }
1543 type1 = read_type (pp, objfile);
1544 type = make_function_type (type1, dbx_lookup_type (typenums));
1545 break;
1546
1547 case 'k': /* Const qualifier on some type (Sun) */
1548 case 'c': /* Const qualifier on some type (OS9000) */
1549 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1550 only accept 'c' in the os9k_stabs case. */
1551 if (type_descriptor == 'c' && !os9k_stabs)
1552 return error_type (pp, objfile);
1553 type = read_type (pp, objfile);
1554 /* FIXME! For now, we ignore const and volatile qualifiers. */
1555 break;
1556
1557 case 'B': /* Volatile qual on some type (Sun) */
1558 case 'i': /* Volatile qual on some type (OS9000) */
1559 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1560 only accept 'i' in the os9k_stabs case. */
1561 if (type_descriptor == 'i' && !os9k_stabs)
1562 return error_type (pp, objfile);
1563 type = read_type (pp, objfile);
1564 /* FIXME! For now, we ignore const and volatile qualifiers. */
1565 break;
1566
1567 case '@':
1568 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1569 { /* Member (class & variable) type */
1570 /* FIXME -- we should be doing smash_to_XXX types here. */
1571
1572 struct type *domain = read_type (pp, objfile);
1573 struct type *memtype;
1574
1575 if (**pp != ',')
1576 /* Invalid member type data format. */
1577 return error_type (pp, objfile);
1578 ++*pp;
1579
1580 memtype = read_type (pp, objfile);
1581 type = dbx_alloc_type (typenums, objfile);
1582 smash_to_member_type (type, domain, memtype);
1583 }
1584 else /* type attribute */
1585 {
1586 char *attr = *pp;
1587 /* Skip to the semicolon. */
1588 while (**pp != ';' && **pp != '\0')
1589 ++(*pp);
1590 if (**pp == '\0')
1591 return error_type (pp, objfile);
1592 else
1593 ++*pp; /* Skip the semicolon. */
1594
1595 switch (*attr)
1596 {
1597 case 's':
1598 type_size = atoi (attr + 1);
1599 if (type_size <= 0)
1600 type_size = -1;
1601 break;
1602
1603 case 'S':
1604 is_string = 1;
1605 break;
1606
1607 default:
1608 /* Ignore unrecognized type attributes, so future compilers
1609 can invent new ones. */
1610 break;
1611 }
1612 ++*pp;
1613 goto again;
1614 }
1615 break;
1616
1617 case '#': /* Method (class & fn) type */
1618 if ((*pp)[0] == '#')
1619 {
1620 /* We'll get the parameter types from the name. */
1621 struct type *return_type;
1622
1623 (*pp)++;
1624 return_type = read_type (pp, objfile);
1625 if (*(*pp)++ != ';')
1626 complain (&invalid_member_complaint, symnum);
1627 type = allocate_stub_method (return_type);
1628 if (typenums[0] != -1)
1629 *dbx_lookup_type (typenums) = type;
1630 }
1631 else
1632 {
1633 struct type *domain = read_type (pp, objfile);
1634 struct type *return_type;
1635 struct type **args;
1636
1637 if (**pp != ',')
1638 /* Invalid member type data format. */
1639 return error_type (pp, objfile);
1640 else
1641 ++(*pp);
1642
1643 return_type = read_type (pp, objfile);
1644 args = read_args (pp, ';', objfile);
1645 type = dbx_alloc_type (typenums, objfile);
1646 smash_to_method_type (type, domain, return_type, args);
1647 }
1648 break;
1649
1650 case 'r': /* Range type */
1651 type = read_range_type (pp, typenums, objfile);
1652 if (typenums[0] != -1)
1653 *dbx_lookup_type (typenums) = type;
1654 break;
1655
1656 case 'b':
1657 if (os9k_stabs)
1658 /* Const and volatile qualified type. */
1659 type = read_type (pp, objfile);
1660 else
1661 {
1662 /* Sun ACC builtin int type */
1663 type = read_sun_builtin_type (pp, typenums, objfile);
1664 if (typenums[0] != -1)
1665 *dbx_lookup_type (typenums) = type;
1666 }
1667 break;
1668
1669 case 'R': /* Sun ACC builtin float type */
1670 type = read_sun_floating_type (pp, typenums, objfile);
1671 if (typenums[0] != -1)
1672 *dbx_lookup_type (typenums) = type;
1673 break;
1674
1675 case 'e': /* Enumeration type */
1676 type = dbx_alloc_type (typenums, objfile);
1677 type = read_enum_type (pp, type, objfile);
1678 if (typenums[0] != -1)
1679 *dbx_lookup_type (typenums) = type;
1680 break;
1681
1682 case 's': /* Struct type */
1683 case 'u': /* Union type */
1684 type = dbx_alloc_type (typenums, objfile);
1685 switch (type_descriptor)
1686 {
1687 case 's':
1688 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1689 break;
1690 case 'u':
1691 TYPE_CODE (type) = TYPE_CODE_UNION;
1692 break;
1693 }
1694 type = read_struct_type (pp, type, objfile);
1695 break;
1696
1697 case 'a': /* Array type */
1698 if (**pp != 'r')
1699 return error_type (pp, objfile);
1700 ++*pp;
1701
1702 type = dbx_alloc_type (typenums, objfile);
1703 type = read_array_type (pp, type, objfile);
1704 if (is_string)
1705 TYPE_CODE (type) = TYPE_CODE_STRING;
1706 break;
1707
1708 case 'S':
1709 type1 = read_type (pp, objfile);
1710 type = create_set_type ((struct type*) NULL, type1);
1711 if (is_string)
1712 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1713 if (typenums[0] != -1)
1714 *dbx_lookup_type (typenums) = type;
1715 break;
1716
1717 default:
1718 --*pp; /* Go back to the symbol in error */
1719 /* Particularly important if it was \0! */
1720 return error_type (pp, objfile);
1721 }
1722
1723 if (type == 0)
1724 {
1725 warning ("GDB internal error, type is NULL in stabsread.c\n");
1726 return error_type (pp, objfile);
1727 }
1728
1729 /* Size specified in a type attribute overrides any other size. */
1730 if (type_size != -1)
1731 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1732
1733 return type;
1734 }
1735 \f
1736 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1737 Return the proper type node for a given builtin type number. */
1738
1739 static struct type *
1740 rs6000_builtin_type (typenum)
1741 int typenum;
1742 {
1743 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1744 #define NUMBER_RECOGNIZED 34
1745 /* This includes an empty slot for type number -0. */
1746 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1747 struct type *rettype = NULL;
1748
1749 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1750 {
1751 complain (&rs6000_builtin_complaint, typenum);
1752 return builtin_type_error;
1753 }
1754 if (negative_types[-typenum] != NULL)
1755 return negative_types[-typenum];
1756
1757 #if TARGET_CHAR_BIT != 8
1758 #error This code wrong for TARGET_CHAR_BIT not 8
1759 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1760 that if that ever becomes not true, the correct fix will be to
1761 make the size in the struct type to be in bits, not in units of
1762 TARGET_CHAR_BIT. */
1763 #endif
1764
1765 switch (-typenum)
1766 {
1767 case 1:
1768 /* The size of this and all the other types are fixed, defined
1769 by the debugging format. If there is a type called "int" which
1770 is other than 32 bits, then it should use a new negative type
1771 number (or avoid negative type numbers for that case).
1772 See stabs.texinfo. */
1773 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1774 break;
1775 case 2:
1776 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1777 break;
1778 case 3:
1779 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1780 break;
1781 case 4:
1782 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1783 break;
1784 case 5:
1785 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1786 "unsigned char", NULL);
1787 break;
1788 case 6:
1789 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1790 break;
1791 case 7:
1792 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1793 "unsigned short", NULL);
1794 break;
1795 case 8:
1796 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1797 "unsigned int", NULL);
1798 break;
1799 case 9:
1800 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1801 "unsigned", NULL);
1802 case 10:
1803 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1804 "unsigned long", NULL);
1805 break;
1806 case 11:
1807 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1808 break;
1809 case 12:
1810 /* IEEE single precision (32 bit). */
1811 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1812 break;
1813 case 13:
1814 /* IEEE double precision (64 bit). */
1815 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1816 break;
1817 case 14:
1818 /* This is an IEEE double on the RS/6000, and different machines with
1819 different sizes for "long double" should use different negative
1820 type numbers. See stabs.texinfo. */
1821 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1822 break;
1823 case 15:
1824 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1825 break;
1826 case 16:
1827 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1828 "boolean", NULL);
1829 break;
1830 case 17:
1831 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1832 break;
1833 case 18:
1834 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1835 break;
1836 case 19:
1837 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1838 break;
1839 case 20:
1840 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1841 "character", NULL);
1842 break;
1843 case 21:
1844 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1845 "logical*1", NULL);
1846 break;
1847 case 22:
1848 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1849 "logical*2", NULL);
1850 break;
1851 case 23:
1852 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1853 "logical*4", NULL);
1854 break;
1855 case 24:
1856 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1857 "logical", NULL);
1858 break;
1859 case 25:
1860 /* Complex type consisting of two IEEE single precision values. */
1861 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1862 break;
1863 case 26:
1864 /* Complex type consisting of two IEEE double precision values. */
1865 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1866 break;
1867 case 27:
1868 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1869 break;
1870 case 28:
1871 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1872 break;
1873 case 29:
1874 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1875 break;
1876 case 30:
1877 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1878 break;
1879 case 31:
1880 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
1881 break;
1882 case 32:
1883 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1884 "unsigned long long", NULL);
1885 break;
1886 case 33:
1887 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1888 "logical*8", NULL);
1889 break;
1890 case 34:
1891 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
1892 break;
1893 }
1894 negative_types[-typenum] = rettype;
1895 return rettype;
1896 }
1897 \f
1898 /* This page contains subroutines of read_type. */
1899
1900 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1901 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1902 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1903 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1904
1905 /* Read member function stabs info for C++ classes. The form of each member
1906 function data is:
1907
1908 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1909
1910 An example with two member functions is:
1911
1912 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1913
1914 For the case of overloaded operators, the format is op$::*.funcs, where
1915 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1916 name (such as `+=') and `.' marks the end of the operator name.
1917
1918 Returns 1 for success, 0 for failure. */
1919
1920 static int
1921 read_member_functions (fip, pp, type, objfile)
1922 struct field_info *fip;
1923 char **pp;
1924 struct type *type;
1925 struct objfile *objfile;
1926 {
1927 int nfn_fields = 0;
1928 int length = 0;
1929 /* Total number of member functions defined in this class. If the class
1930 defines two `f' functions, and one `g' function, then this will have
1931 the value 3. */
1932 int total_length = 0;
1933 int i;
1934 struct next_fnfield
1935 {
1936 struct next_fnfield *next;
1937 struct fn_field fn_field;
1938 } *sublist;
1939 struct type *look_ahead_type;
1940 struct next_fnfieldlist *new_fnlist;
1941 struct next_fnfield *new_sublist;
1942 char *main_fn_name;
1943 register char *p;
1944
1945 /* Process each list until we find something that is not a member function
1946 or find the end of the functions. */
1947
1948 while (**pp != ';')
1949 {
1950 /* We should be positioned at the start of the function name.
1951 Scan forward to find the first ':' and if it is not the
1952 first of a "::" delimiter, then this is not a member function. */
1953 p = *pp;
1954 while (*p != ':')
1955 {
1956 p++;
1957 }
1958 if (p[1] != ':')
1959 {
1960 break;
1961 }
1962
1963 sublist = NULL;
1964 look_ahead_type = NULL;
1965 length = 0;
1966
1967 new_fnlist = (struct next_fnfieldlist *)
1968 xmalloc (sizeof (struct next_fnfieldlist));
1969 make_cleanup (free, new_fnlist);
1970 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1971
1972 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
1973 {
1974 /* This is a completely wierd case. In order to stuff in the
1975 names that might contain colons (the usual name delimiter),
1976 Mike Tiemann defined a different name format which is
1977 signalled if the identifier is "op$". In that case, the
1978 format is "op$::XXXX." where XXXX is the name. This is
1979 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1980 /* This lets the user type "break operator+".
1981 We could just put in "+" as the name, but that wouldn't
1982 work for "*". */
1983 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1984 char *o = opname + 3;
1985
1986 /* Skip past '::'. */
1987 *pp = p + 2;
1988
1989 STABS_CONTINUE (pp, objfile);
1990 p = *pp;
1991 while (*p != '.')
1992 {
1993 *o++ = *p++;
1994 }
1995 main_fn_name = savestring (opname, o - opname);
1996 /* Skip past '.' */
1997 *pp = p + 1;
1998 }
1999 else
2000 {
2001 main_fn_name = savestring (*pp, p - *pp);
2002 /* Skip past '::'. */
2003 *pp = p + 2;
2004 }
2005 new_fnlist -> fn_fieldlist.name = main_fn_name;
2006
2007 do
2008 {
2009 new_sublist =
2010 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2011 make_cleanup (free, new_sublist);
2012 memset (new_sublist, 0, sizeof (struct next_fnfield));
2013
2014 /* Check for and handle cretinous dbx symbol name continuation! */
2015 if (look_ahead_type == NULL)
2016 {
2017 /* Normal case. */
2018 STABS_CONTINUE (pp, objfile);
2019
2020 new_sublist -> fn_field.type = read_type (pp, objfile);
2021 if (**pp != ':')
2022 {
2023 /* Invalid symtab info for member function. */
2024 return 0;
2025 }
2026 }
2027 else
2028 {
2029 /* g++ version 1 kludge */
2030 new_sublist -> fn_field.type = look_ahead_type;
2031 look_ahead_type = NULL;
2032 }
2033
2034 (*pp)++;
2035 p = *pp;
2036 while (*p != ';')
2037 {
2038 p++;
2039 }
2040
2041 /* If this is just a stub, then we don't have the real name here. */
2042
2043 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2044 {
2045 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2046 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2047 new_sublist -> fn_field.is_stub = 1;
2048 }
2049 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2050 *pp = p + 1;
2051
2052 /* Set this member function's visibility fields. */
2053 switch (*(*pp)++)
2054 {
2055 case VISIBILITY_PRIVATE:
2056 new_sublist -> fn_field.is_private = 1;
2057 break;
2058 case VISIBILITY_PROTECTED:
2059 new_sublist -> fn_field.is_protected = 1;
2060 break;
2061 }
2062
2063 STABS_CONTINUE (pp, objfile);
2064 switch (**pp)
2065 {
2066 case 'A': /* Normal functions. */
2067 new_sublist -> fn_field.is_const = 0;
2068 new_sublist -> fn_field.is_volatile = 0;
2069 (*pp)++;
2070 break;
2071 case 'B': /* `const' member functions. */
2072 new_sublist -> fn_field.is_const = 1;
2073 new_sublist -> fn_field.is_volatile = 0;
2074 (*pp)++;
2075 break;
2076 case 'C': /* `volatile' member function. */
2077 new_sublist -> fn_field.is_const = 0;
2078 new_sublist -> fn_field.is_volatile = 1;
2079 (*pp)++;
2080 break;
2081 case 'D': /* `const volatile' member function. */
2082 new_sublist -> fn_field.is_const = 1;
2083 new_sublist -> fn_field.is_volatile = 1;
2084 (*pp)++;
2085 break;
2086 case '*': /* File compiled with g++ version 1 -- no info */
2087 case '?':
2088 case '.':
2089 break;
2090 default:
2091 complain (&const_vol_complaint, **pp);
2092 break;
2093 }
2094
2095 switch (*(*pp)++)
2096 {
2097 case '*':
2098 {
2099 int nbits;
2100 /* virtual member function, followed by index.
2101 The sign bit is set to distinguish pointers-to-methods
2102 from virtual function indicies. Since the array is
2103 in words, the quantity must be shifted left by 1
2104 on 16 bit machine, and by 2 on 32 bit machine, forcing
2105 the sign bit out, and usable as a valid index into
2106 the array. Remove the sign bit here. */
2107 new_sublist -> fn_field.voffset =
2108 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2109 if (nbits != 0)
2110 return 0;
2111
2112 STABS_CONTINUE (pp, objfile);
2113 if (**pp == ';' || **pp == '\0')
2114 {
2115 /* Must be g++ version 1. */
2116 new_sublist -> fn_field.fcontext = 0;
2117 }
2118 else
2119 {
2120 /* Figure out from whence this virtual function came.
2121 It may belong to virtual function table of
2122 one of its baseclasses. */
2123 look_ahead_type = read_type (pp, objfile);
2124 if (**pp == ':')
2125 {
2126 /* g++ version 1 overloaded methods. */
2127 }
2128 else
2129 {
2130 new_sublist -> fn_field.fcontext = look_ahead_type;
2131 if (**pp != ';')
2132 {
2133 return 0;
2134 }
2135 else
2136 {
2137 ++*pp;
2138 }
2139 look_ahead_type = NULL;
2140 }
2141 }
2142 break;
2143 }
2144 case '?':
2145 /* static member function. */
2146 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2147 if (strncmp (new_sublist -> fn_field.physname,
2148 main_fn_name, strlen (main_fn_name)))
2149 {
2150 new_sublist -> fn_field.is_stub = 1;
2151 }
2152 break;
2153
2154 default:
2155 /* error */
2156 complain (&member_fn_complaint, (*pp)[-1]);
2157 /* Fall through into normal member function. */
2158
2159 case '.':
2160 /* normal member function. */
2161 new_sublist -> fn_field.voffset = 0;
2162 new_sublist -> fn_field.fcontext = 0;
2163 break;
2164 }
2165
2166 new_sublist -> next = sublist;
2167 sublist = new_sublist;
2168 length++;
2169 STABS_CONTINUE (pp, objfile);
2170 }
2171 while (**pp != ';' && **pp != '\0');
2172
2173 (*pp)++;
2174
2175 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2176 obstack_alloc (&objfile -> type_obstack,
2177 sizeof (struct fn_field) * length);
2178 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2179 sizeof (struct fn_field) * length);
2180 for (i = length; (i--, sublist); sublist = sublist -> next)
2181 {
2182 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2183 }
2184
2185 new_fnlist -> fn_fieldlist.length = length;
2186 new_fnlist -> next = fip -> fnlist;
2187 fip -> fnlist = new_fnlist;
2188 nfn_fields++;
2189 total_length += length;
2190 STABS_CONTINUE (pp, objfile);
2191 }
2192
2193 if (nfn_fields)
2194 {
2195 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2196 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2197 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2198 memset (TYPE_FN_FIELDLISTS (type), 0,
2199 sizeof (struct fn_fieldlist) * nfn_fields);
2200 TYPE_NFN_FIELDS (type) = nfn_fields;
2201 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2202 }
2203
2204 return 1;
2205 }
2206
2207 /* Special GNU C++ name.
2208
2209 Returns 1 for success, 0 for failure. "failure" means that we can't
2210 keep parsing and it's time for error_type(). */
2211
2212 static int
2213 read_cpp_abbrev (fip, pp, type, objfile)
2214 struct field_info *fip;
2215 char **pp;
2216 struct type *type;
2217 struct objfile *objfile;
2218 {
2219 register char *p;
2220 char *name;
2221 char cpp_abbrev;
2222 struct type *context;
2223
2224 p = *pp;
2225 if (*++p == 'v')
2226 {
2227 name = NULL;
2228 cpp_abbrev = *++p;
2229
2230 *pp = p + 1;
2231
2232 /* At this point, *pp points to something like "22:23=*22...",
2233 where the type number before the ':' is the "context" and
2234 everything after is a regular type definition. Lookup the
2235 type, find it's name, and construct the field name. */
2236
2237 context = read_type (pp, objfile);
2238
2239 switch (cpp_abbrev)
2240 {
2241 case 'f': /* $vf -- a virtual function table pointer */
2242 fip->list->field.name =
2243 obconcat (&objfile->type_obstack, vptr_name, "", "");
2244 break;
2245
2246 case 'b': /* $vb -- a virtual bsomethingorother */
2247 name = type_name_no_tag (context);
2248 if (name == NULL)
2249 {
2250 complain (&invalid_cpp_type_complaint, symnum);
2251 name = "FOO";
2252 }
2253 fip->list->field.name =
2254 obconcat (&objfile->type_obstack, vb_name, name, "");
2255 break;
2256
2257 default:
2258 complain (&invalid_cpp_abbrev_complaint, *pp);
2259 fip->list->field.name =
2260 obconcat (&objfile->type_obstack,
2261 "INVALID_CPLUSPLUS_ABBREV", "", "");
2262 break;
2263 }
2264
2265 /* At this point, *pp points to the ':'. Skip it and read the
2266 field type. */
2267
2268 p = ++(*pp);
2269 if (p[-1] != ':')
2270 {
2271 complain (&invalid_cpp_abbrev_complaint, *pp);
2272 return 0;
2273 }
2274 fip->list->field.type = read_type (pp, objfile);
2275 if (**pp == ',')
2276 (*pp)++; /* Skip the comma. */
2277 else
2278 return 0;
2279
2280 {
2281 int nbits;
2282 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2283 if (nbits != 0)
2284 return 0;
2285 }
2286 /* This field is unpacked. */
2287 fip->list->field.bitsize = 0;
2288 fip->list->visibility = VISIBILITY_PRIVATE;
2289 }
2290 else
2291 {
2292 complain (&invalid_cpp_abbrev_complaint, *pp);
2293 /* We have no idea what syntax an unrecognized abbrev would have, so
2294 better return 0. If we returned 1, we would need to at least advance
2295 *pp to avoid an infinite loop. */
2296 return 0;
2297 }
2298 return 1;
2299 }
2300
2301 static void
2302 read_one_struct_field (fip, pp, p, type, objfile)
2303 struct field_info *fip;
2304 char **pp;
2305 char *p;
2306 struct type *type;
2307 struct objfile *objfile;
2308 {
2309 /* The following is code to work around cfront generated stabs.
2310 The stabs contains full mangled name for each field.
2311 We try to demangle the name and extract the field name out of it.
2312 */
2313 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
2314 {
2315 char save_p;
2316 char *dem, *dem_p;
2317 save_p = *p;
2318 *p = '\0';
2319 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
2320 if (dem != NULL)
2321 {
2322 dem_p = strrchr (dem, ':');
2323 if (dem_p != 0 && *(dem_p-1)==':')
2324 dem_p++;
2325 fip->list->field.name =
2326 obsavestring (dem_p, strlen(dem_p), &objfile -> type_obstack);
2327 }
2328 else
2329 {
2330 fip->list->field.name =
2331 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2332 }
2333 *p = save_p;
2334 }
2335 /* end of code for cfront work around */
2336
2337 else
2338 fip -> list -> field.name =
2339 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2340 *pp = p + 1;
2341
2342 /* This means we have a visibility for a field coming. */
2343 if (**pp == '/')
2344 {
2345 (*pp)++;
2346 fip -> list -> visibility = *(*pp)++;
2347 }
2348 else
2349 {
2350 /* normal dbx-style format, no explicit visibility */
2351 fip -> list -> visibility = VISIBILITY_PUBLIC;
2352 }
2353
2354 fip -> list -> field.type = read_type (pp, objfile);
2355 if (**pp == ':')
2356 {
2357 p = ++(*pp);
2358 #if 0
2359 /* Possible future hook for nested types. */
2360 if (**pp == '!')
2361 {
2362 fip -> list -> field.bitpos = (long)-2; /* nested type */
2363 p = ++(*pp);
2364 }
2365 else
2366 #endif
2367 {
2368 /* Static class member. */
2369 fip -> list -> field.bitpos = (long) -1;
2370 }
2371 while (*p != ';')
2372 {
2373 p++;
2374 }
2375 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2376 *pp = p + 1;
2377 return;
2378 }
2379 else if (**pp != ',')
2380 {
2381 /* Bad structure-type format. */
2382 complain (&stabs_general_complaint, "bad structure-type format");
2383 return;
2384 }
2385
2386 (*pp)++; /* Skip the comma. */
2387
2388 {
2389 int nbits;
2390 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2391 if (nbits != 0)
2392 {
2393 complain (&stabs_general_complaint, "bad structure-type format");
2394 return;
2395 }
2396 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2397 if (nbits != 0)
2398 {
2399 complain (&stabs_general_complaint, "bad structure-type format");
2400 return;
2401 }
2402 }
2403
2404 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2405 {
2406 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2407 it is a field which has been optimized out. The correct stab for
2408 this case is to use VISIBILITY_IGNORE, but that is a recent
2409 invention. (2) It is a 0-size array. For example
2410 union { int num; char str[0]; } foo. Printing "<no value>" for
2411 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2412 will continue to work, and a 0-size array as a whole doesn't
2413 have any contents to print.
2414
2415 I suspect this probably could also happen with gcc -gstabs (not
2416 -gstabs+) for static fields, and perhaps other C++ extensions.
2417 Hopefully few people use -gstabs with gdb, since it is intended
2418 for dbx compatibility. */
2419
2420 /* Ignore this field. */
2421 fip -> list-> visibility = VISIBILITY_IGNORE;
2422 }
2423 else
2424 {
2425 /* Detect an unpacked field and mark it as such.
2426 dbx gives a bit size for all fields.
2427 Note that forward refs cannot be packed,
2428 and treat enums as if they had the width of ints. */
2429
2430 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2431 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_BOOL
2432 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2433 {
2434 fip -> list -> field.bitsize = 0;
2435 }
2436 if ((fip -> list -> field.bitsize
2437 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2438 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2439 && (fip -> list -> field.bitsize
2440 == TARGET_INT_BIT)
2441 )
2442 )
2443 &&
2444 fip -> list -> field.bitpos % 8 == 0)
2445 {
2446 fip -> list -> field.bitsize = 0;
2447 }
2448 }
2449 }
2450
2451
2452 /* Read struct or class data fields. They have the form:
2453
2454 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2455
2456 At the end, we see a semicolon instead of a field.
2457
2458 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2459 a static field.
2460
2461 The optional VISIBILITY is one of:
2462
2463 '/0' (VISIBILITY_PRIVATE)
2464 '/1' (VISIBILITY_PROTECTED)
2465 '/2' (VISIBILITY_PUBLIC)
2466 '/9' (VISIBILITY_IGNORE)
2467
2468 or nothing, for C style fields with public visibility.
2469
2470 Returns 1 for success, 0 for failure. */
2471
2472 static int
2473 read_struct_fields (fip, pp, type, objfile)
2474 struct field_info *fip;
2475 char **pp;
2476 struct type *type;
2477 struct objfile *objfile;
2478 {
2479 register char *p;
2480 struct nextfield *new;
2481
2482 /* We better set p right now, in case there are no fields at all... */
2483
2484 p = *pp;
2485
2486 /* Read each data member type until we find the terminating ';' at the end of
2487 the data member list, or break for some other reason such as finding the
2488 start of the member function list. */
2489
2490 while (**pp != ';')
2491 {
2492 if (os9k_stabs && **pp == ',') break;
2493 STABS_CONTINUE (pp, objfile);
2494 /* Get space to record the next field's data. */
2495 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2496 make_cleanup (free, new);
2497 memset (new, 0, sizeof (struct nextfield));
2498 new -> next = fip -> list;
2499 fip -> list = new;
2500
2501 /* Get the field name. */
2502 p = *pp;
2503
2504 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2505 unless the CPLUS_MARKER is followed by an underscore, in
2506 which case it is just the name of an anonymous type, which we
2507 should handle like any other type name. */
2508
2509 if (is_cplus_marker (p[0]) && p[1] != '_')
2510 {
2511 if (!read_cpp_abbrev (fip, pp, type, objfile))
2512 return 0;
2513 continue;
2514 }
2515
2516 /* Look for the ':' that separates the field name from the field
2517 values. Data members are delimited by a single ':', while member
2518 functions are delimited by a pair of ':'s. When we hit the member
2519 functions (if any), terminate scan loop and return. */
2520
2521 while (*p != ':' && *p != '\0')
2522 {
2523 p++;
2524 }
2525 if (*p == '\0')
2526 return 0;
2527
2528 /* Check to see if we have hit the member functions yet. */
2529 if (p[1] == ':')
2530 {
2531 break;
2532 }
2533 read_one_struct_field (fip, pp, p, type, objfile);
2534 }
2535 if (p[0] == ':' && p[1] == ':')
2536 {
2537 /* chill the list of fields: the last entry (at the head) is a
2538 partially constructed entry which we now scrub. */
2539 fip -> list = fip -> list -> next;
2540 }
2541 return 1;
2542 }
2543
2544 /* The stabs for C++ derived classes contain baseclass information which
2545 is marked by a '!' character after the total size. This function is
2546 called when we encounter the baseclass marker, and slurps up all the
2547 baseclass information.
2548
2549 Immediately following the '!' marker is the number of base classes that
2550 the class is derived from, followed by information for each base class.
2551 For each base class, there are two visibility specifiers, a bit offset
2552 to the base class information within the derived class, a reference to
2553 the type for the base class, and a terminating semicolon.
2554
2555 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2556 ^^ ^ ^ ^ ^ ^ ^
2557 Baseclass information marker __________________|| | | | | | |
2558 Number of baseclasses __________________________| | | | | | |
2559 Visibility specifiers (2) ________________________| | | | | |
2560 Offset in bits from start of class _________________| | | | |
2561 Type number for base class ___________________________| | | |
2562 Visibility specifiers (2) _______________________________| | |
2563 Offset in bits from start of class ________________________| |
2564 Type number of base class ____________________________________|
2565
2566 Return 1 for success, 0 for (error-type-inducing) failure. */
2567
2568 static int
2569 read_baseclasses (fip, pp, type, objfile)
2570 struct field_info *fip;
2571 char **pp;
2572 struct type *type;
2573 struct objfile *objfile;
2574 {
2575 int i;
2576 struct nextfield *new;
2577
2578 if (**pp != '!')
2579 {
2580 return 1;
2581 }
2582 else
2583 {
2584 /* Skip the '!' baseclass information marker. */
2585 (*pp)++;
2586 }
2587
2588 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2589 {
2590 int nbits;
2591 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2592 if (nbits != 0)
2593 return 0;
2594 }
2595
2596 #if 0
2597 /* Some stupid compilers have trouble with the following, so break
2598 it up into simpler expressions. */
2599 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2600 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2601 #else
2602 {
2603 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2604 char *pointer;
2605
2606 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2607 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2608 }
2609 #endif /* 0 */
2610
2611 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2612
2613 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2614 {
2615 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2616 make_cleanup (free, new);
2617 memset (new, 0, sizeof (struct nextfield));
2618 new -> next = fip -> list;
2619 fip -> list = new;
2620 new -> field.bitsize = 0; /* this should be an unpacked field! */
2621
2622 STABS_CONTINUE (pp, objfile);
2623 switch (**pp)
2624 {
2625 case '0':
2626 /* Nothing to do. */
2627 break;
2628 case '1':
2629 SET_TYPE_FIELD_VIRTUAL (type, i);
2630 break;
2631 default:
2632 /* Unknown character. Complain and treat it as non-virtual. */
2633 {
2634 static struct complaint msg = {
2635 "Unknown virtual character `%c' for baseclass", 0, 0};
2636 complain (&msg, **pp);
2637 }
2638 }
2639 ++(*pp);
2640
2641 new -> visibility = *(*pp)++;
2642 switch (new -> visibility)
2643 {
2644 case VISIBILITY_PRIVATE:
2645 case VISIBILITY_PROTECTED:
2646 case VISIBILITY_PUBLIC:
2647 break;
2648 default:
2649 /* Bad visibility format. Complain and treat it as
2650 public. */
2651 {
2652 static struct complaint msg = {
2653 "Unknown visibility `%c' for baseclass", 0, 0};
2654 complain (&msg, new -> visibility);
2655 new -> visibility = VISIBILITY_PUBLIC;
2656 }
2657 }
2658
2659 {
2660 int nbits;
2661
2662 /* The remaining value is the bit offset of the portion of the object
2663 corresponding to this baseclass. Always zero in the absence of
2664 multiple inheritance. */
2665
2666 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2667 if (nbits != 0)
2668 return 0;
2669 }
2670
2671 /* The last piece of baseclass information is the type of the
2672 base class. Read it, and remember it's type name as this
2673 field's name. */
2674
2675 new -> field.type = read_type (pp, objfile);
2676 new -> field.name = type_name_no_tag (new -> field.type);
2677
2678 /* skip trailing ';' and bump count of number of fields seen */
2679 if (**pp == ';')
2680 (*pp)++;
2681 else
2682 return 0;
2683 }
2684 return 1;
2685 }
2686
2687 /* The tail end of stabs for C++ classes that contain a virtual function
2688 pointer contains a tilde, a %, and a type number.
2689 The type number refers to the base class (possibly this class itself) which
2690 contains the vtable pointer for the current class.
2691
2692 This function is called when we have parsed all the method declarations,
2693 so we can look for the vptr base class info. */
2694
2695 static int
2696 read_tilde_fields (fip, pp, type, objfile)
2697 struct field_info *fip;
2698 char **pp;
2699 struct type *type;
2700 struct objfile *objfile;
2701 {
2702 register char *p;
2703
2704 STABS_CONTINUE (pp, objfile);
2705
2706 /* If we are positioned at a ';', then skip it. */
2707 if (**pp == ';')
2708 {
2709 (*pp)++;
2710 }
2711
2712 if (**pp == '~')
2713 {
2714 (*pp)++;
2715
2716 if (**pp == '=' || **pp == '+' || **pp == '-')
2717 {
2718 /* Obsolete flags that used to indicate the presence
2719 of constructors and/or destructors. */
2720 (*pp)++;
2721 }
2722
2723 /* Read either a '%' or the final ';'. */
2724 if (*(*pp)++ == '%')
2725 {
2726 /* The next number is the type number of the base class
2727 (possibly our own class) which supplies the vtable for
2728 this class. Parse it out, and search that class to find
2729 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2730 and TYPE_VPTR_FIELDNO. */
2731
2732 struct type *t;
2733 int i;
2734
2735 t = read_type (pp, objfile);
2736 p = (*pp)++;
2737 while (*p != '\0' && *p != ';')
2738 {
2739 p++;
2740 }
2741 if (*p == '\0')
2742 {
2743 /* Premature end of symbol. */
2744 return 0;
2745 }
2746
2747 TYPE_VPTR_BASETYPE (type) = t;
2748 if (type == t) /* Our own class provides vtbl ptr */
2749 {
2750 for (i = TYPE_NFIELDS (t) - 1;
2751 i >= TYPE_N_BASECLASSES (t);
2752 --i)
2753 {
2754 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2755 sizeof (vptr_name) - 1))
2756 {
2757 TYPE_VPTR_FIELDNO (type) = i;
2758 goto gotit;
2759 }
2760 }
2761 /* Virtual function table field not found. */
2762 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2763 return 0;
2764 }
2765 else
2766 {
2767 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2768 }
2769
2770 gotit:
2771 *pp = p + 1;
2772 }
2773 }
2774 return 1;
2775 }
2776
2777 static int
2778 attach_fn_fields_to_type (fip, type)
2779 struct field_info *fip;
2780 register struct type *type;
2781 {
2782 register int n;
2783
2784 for (n = TYPE_NFN_FIELDS (type);
2785 fip -> fnlist != NULL;
2786 fip -> fnlist = fip -> fnlist -> next)
2787 {
2788 --n; /* Circumvent Sun3 compiler bug */
2789 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2790 }
2791 return 1;
2792 }
2793
2794 /* Create the vector of fields, and record how big it is.
2795 We need this info to record proper virtual function table information
2796 for this class's virtual functions. */
2797
2798 static int
2799 attach_fields_to_type (fip, type, objfile)
2800 struct field_info *fip;
2801 register struct type *type;
2802 struct objfile *objfile;
2803 {
2804 register int nfields = 0;
2805 register int non_public_fields = 0;
2806 register struct nextfield *scan;
2807
2808 /* Count up the number of fields that we have, as well as taking note of
2809 whether or not there are any non-public fields, which requires us to
2810 allocate and build the private_field_bits and protected_field_bits
2811 bitfields. */
2812
2813 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2814 {
2815 nfields++;
2816 if (scan -> visibility != VISIBILITY_PUBLIC)
2817 {
2818 non_public_fields++;
2819 }
2820 }
2821
2822 /* Now we know how many fields there are, and whether or not there are any
2823 non-public fields. Record the field count, allocate space for the
2824 array of fields, and create blank visibility bitfields if necessary. */
2825
2826 TYPE_NFIELDS (type) = nfields;
2827 TYPE_FIELDS (type) = (struct field *)
2828 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2829 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2830
2831 if (non_public_fields)
2832 {
2833 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2834
2835 TYPE_FIELD_PRIVATE_BITS (type) =
2836 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2837 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2838
2839 TYPE_FIELD_PROTECTED_BITS (type) =
2840 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2841 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2842
2843 TYPE_FIELD_IGNORE_BITS (type) =
2844 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2845 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2846 }
2847
2848 /* Copy the saved-up fields into the field vector. Start from the head
2849 of the list, adding to the tail of the field array, so that they end
2850 up in the same order in the array in which they were added to the list. */
2851
2852 while (nfields-- > 0)
2853 {
2854 TYPE_FIELD (type, nfields) = fip -> list -> field;
2855 switch (fip -> list -> visibility)
2856 {
2857 case VISIBILITY_PRIVATE:
2858 SET_TYPE_FIELD_PRIVATE (type, nfields);
2859 break;
2860
2861 case VISIBILITY_PROTECTED:
2862 SET_TYPE_FIELD_PROTECTED (type, nfields);
2863 break;
2864
2865 case VISIBILITY_IGNORE:
2866 SET_TYPE_FIELD_IGNORE (type, nfields);
2867 break;
2868
2869 case VISIBILITY_PUBLIC:
2870 break;
2871
2872 default:
2873 /* Unknown visibility. Complain and treat it as public. */
2874 {
2875 static struct complaint msg = {
2876 "Unknown visibility `%c' for field", 0, 0};
2877 complain (&msg, fip -> list -> visibility);
2878 }
2879 break;
2880 }
2881 fip -> list = fip -> list -> next;
2882 }
2883 return 1;
2884 }
2885
2886 /* Read the description of a structure (or union type) and return an object
2887 describing the type.
2888
2889 PP points to a character pointer that points to the next unconsumed token
2890 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2891 *PP will point to "4a:1,0,32;;".
2892
2893 TYPE points to an incomplete type that needs to be filled in.
2894
2895 OBJFILE points to the current objfile from which the stabs information is
2896 being read. (Note that it is redundant in that TYPE also contains a pointer
2897 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2898 */
2899
2900 static struct type *
2901 read_struct_type (pp, type, objfile)
2902 char **pp;
2903 struct type *type;
2904 struct objfile *objfile;
2905 {
2906 struct cleanup *back_to;
2907 struct field_info fi;
2908
2909 fi.list = NULL;
2910 fi.fnlist = NULL;
2911
2912 back_to = make_cleanup (null_cleanup, 0);
2913
2914 INIT_CPLUS_SPECIFIC (type);
2915 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2916
2917 /* First comes the total size in bytes. */
2918
2919 {
2920 int nbits;
2921 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2922 if (nbits != 0)
2923 return error_type (pp, objfile);
2924 }
2925
2926 /* Now read the baseclasses, if any, read the regular C struct or C++
2927 class member fields, attach the fields to the type, read the C++
2928 member functions, attach them to the type, and then read any tilde
2929 field (baseclass specifier for the class holding the main vtable). */
2930
2931 if (!read_baseclasses (&fi, pp, type, objfile)
2932 || !read_struct_fields (&fi, pp, type, objfile)
2933 || !attach_fields_to_type (&fi, type, objfile)
2934 || !read_member_functions (&fi, pp, type, objfile)
2935 || !attach_fn_fields_to_type (&fi, type)
2936 || !read_tilde_fields (&fi, pp, type, objfile))
2937 {
2938 type = error_type (pp, objfile);
2939 }
2940
2941 do_cleanups (back_to);
2942 return (type);
2943 }
2944
2945 /* Read a definition of an array type,
2946 and create and return a suitable type object.
2947 Also creates a range type which represents the bounds of that
2948 array. */
2949
2950 static struct type *
2951 read_array_type (pp, type, objfile)
2952 register char **pp;
2953 register struct type *type;
2954 struct objfile *objfile;
2955 {
2956 struct type *index_type, *element_type, *range_type;
2957 int lower, upper;
2958 int adjustable = 0;
2959 int nbits;
2960
2961 /* Format of an array type:
2962 "ar<index type>;lower;upper;<array_contents_type>".
2963 OS9000: "arlower,upper;<array_contents_type>".
2964
2965 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2966 for these, produce a type like float[][]. */
2967
2968 if (os9k_stabs)
2969 index_type = builtin_type_int;
2970 else
2971 {
2972 index_type = read_type (pp, objfile);
2973 if (**pp != ';')
2974 /* Improper format of array type decl. */
2975 return error_type (pp, objfile);
2976 ++*pp;
2977 }
2978
2979 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2980 {
2981 (*pp)++;
2982 adjustable = 1;
2983 }
2984 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
2985 if (nbits != 0)
2986 return error_type (pp, objfile);
2987
2988 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2989 {
2990 (*pp)++;
2991 adjustable = 1;
2992 }
2993 upper = read_huge_number (pp, ';', &nbits);
2994 if (nbits != 0)
2995 return error_type (pp, objfile);
2996
2997 element_type = read_type (pp, objfile);
2998
2999 if (adjustable)
3000 {
3001 lower = 0;
3002 upper = -1;
3003 }
3004
3005 range_type =
3006 create_range_type ((struct type *) NULL, index_type, lower, upper);
3007 type = create_array_type (type, element_type, range_type);
3008
3009 return type;
3010 }
3011
3012
3013 /* Read a definition of an enumeration type,
3014 and create and return a suitable type object.
3015 Also defines the symbols that represent the values of the type. */
3016
3017 static struct type *
3018 read_enum_type (pp, type, objfile)
3019 register char **pp;
3020 register struct type *type;
3021 struct objfile *objfile;
3022 {
3023 register char *p;
3024 char *name;
3025 register long n;
3026 register struct symbol *sym;
3027 int nsyms = 0;
3028 struct pending **symlist;
3029 struct pending *osyms, *syms;
3030 int o_nsyms;
3031 int nbits;
3032 int unsigned_enum = 1;
3033
3034 #if 0
3035 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3036 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3037 to do? For now, force all enum values to file scope. */
3038 if (within_function)
3039 symlist = &local_symbols;
3040 else
3041 #endif
3042 symlist = &file_symbols;
3043 osyms = *symlist;
3044 o_nsyms = osyms ? osyms->nsyms : 0;
3045
3046 if (os9k_stabs)
3047 {
3048 /* Size. Perhaps this does not have to be conditionalized on
3049 os9k_stabs (assuming the name of an enum constant can't start
3050 with a digit). */
3051 read_huge_number (pp, 0, &nbits);
3052 if (nbits != 0)
3053 return error_type (pp, objfile);
3054 }
3055
3056 /* The aix4 compiler emits an extra field before the enum members;
3057 my guess is it's a type of some sort. Just ignore it. */
3058 if (**pp == '-')
3059 {
3060 /* Skip over the type. */
3061 while (**pp != ':')
3062 (*pp)++;
3063
3064 /* Skip over the colon. */
3065 (*pp)++;
3066 }
3067
3068 /* Read the value-names and their values.
3069 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3070 A semicolon or comma instead of a NAME means the end. */
3071 while (**pp && **pp != ';' && **pp != ',')
3072 {
3073 STABS_CONTINUE (pp, objfile);
3074 p = *pp;
3075 while (*p != ':') p++;
3076 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3077 *pp = p + 1;
3078 n = read_huge_number (pp, ',', &nbits);
3079 if (nbits != 0)
3080 return error_type (pp, objfile);
3081
3082 sym = (struct symbol *)
3083 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3084 memset (sym, 0, sizeof (struct symbol));
3085 SYMBOL_NAME (sym) = name;
3086 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3087 SYMBOL_CLASS (sym) = LOC_CONST;
3088 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3089 SYMBOL_VALUE (sym) = n;
3090 if (n < 0)
3091 unsigned_enum = 0;
3092 add_symbol_to_list (sym, symlist);
3093 nsyms++;
3094 }
3095
3096 if (**pp == ';')
3097 (*pp)++; /* Skip the semicolon. */
3098
3099 /* Now fill in the fields of the type-structure. */
3100
3101 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3102 TYPE_CODE (type) = TYPE_CODE_ENUM;
3103 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3104 if (unsigned_enum)
3105 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3106 TYPE_NFIELDS (type) = nsyms;
3107 TYPE_FIELDS (type) = (struct field *)
3108 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3109 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3110
3111 /* Find the symbols for the values and put them into the type.
3112 The symbols can be found in the symlist that we put them on
3113 to cause them to be defined. osyms contains the old value
3114 of that symlist; everything up to there was defined by us. */
3115 /* Note that we preserve the order of the enum constants, so
3116 that in something like "enum {FOO, LAST_THING=FOO}" we print
3117 FOO, not LAST_THING. */
3118
3119 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3120 {
3121 int last = syms == osyms ? o_nsyms : 0;
3122 int j = syms->nsyms;
3123 for (; --j >= last; --n)
3124 {
3125 struct symbol *xsym = syms->symbol[j];
3126 SYMBOL_TYPE (xsym) = type;
3127 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3128 TYPE_FIELD_VALUE (type, n) = 0;
3129 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3130 TYPE_FIELD_BITSIZE (type, n) = 0;
3131 }
3132 if (syms == osyms)
3133 break;
3134 }
3135
3136 return type;
3137 }
3138
3139 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3140 typedefs in every file (for int, long, etc):
3141
3142 type = b <signed> <width>; <offset>; <nbits>
3143 signed = u or s. Possible c in addition to u or s (for char?).
3144 offset = offset from high order bit to start bit of type.
3145 width is # bytes in object of this type, nbits is # bits in type.
3146
3147 The width/offset stuff appears to be for small objects stored in
3148 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3149 FIXME. */
3150
3151 static struct type *
3152 read_sun_builtin_type (pp, typenums, objfile)
3153 char **pp;
3154 int typenums[2];
3155 struct objfile *objfile;
3156 {
3157 int type_bits;
3158 int nbits;
3159 int signed_type;
3160
3161 switch (**pp)
3162 {
3163 case 's':
3164 signed_type = 1;
3165 break;
3166 case 'u':
3167 signed_type = 0;
3168 break;
3169 default:
3170 return error_type (pp, objfile);
3171 }
3172 (*pp)++;
3173
3174 /* For some odd reason, all forms of char put a c here. This is strange
3175 because no other type has this honor. We can safely ignore this because
3176 we actually determine 'char'acterness by the number of bits specified in
3177 the descriptor. */
3178
3179 if (**pp == 'c')
3180 (*pp)++;
3181
3182 /* The first number appears to be the number of bytes occupied
3183 by this type, except that unsigned short is 4 instead of 2.
3184 Since this information is redundant with the third number,
3185 we will ignore it. */
3186 read_huge_number (pp, ';', &nbits);
3187 if (nbits != 0)
3188 return error_type (pp, objfile);
3189
3190 /* The second number is always 0, so ignore it too. */
3191 read_huge_number (pp, ';', &nbits);
3192 if (nbits != 0)
3193 return error_type (pp, objfile);
3194
3195 /* The third number is the number of bits for this type. */
3196 type_bits = read_huge_number (pp, 0, &nbits);
3197 if (nbits != 0)
3198 return error_type (pp, objfile);
3199 /* The type *should* end with a semicolon. If it are embedded
3200 in a larger type the semicolon may be the only way to know where
3201 the type ends. If this type is at the end of the stabstring we
3202 can deal with the omitted semicolon (but we don't have to like
3203 it). Don't bother to complain(), Sun's compiler omits the semicolon
3204 for "void". */
3205 if (**pp == ';')
3206 ++(*pp);
3207
3208 if (type_bits == 0)
3209 return init_type (TYPE_CODE_VOID, 1,
3210 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3211 objfile);
3212 else
3213 return init_type (TYPE_CODE_INT,
3214 type_bits / TARGET_CHAR_BIT,
3215 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3216 objfile);
3217 }
3218
3219 static struct type *
3220 read_sun_floating_type (pp, typenums, objfile)
3221 char **pp;
3222 int typenums[2];
3223 struct objfile *objfile;
3224 {
3225 int nbits;
3226 int details;
3227 int nbytes;
3228
3229 /* The first number has more details about the type, for example
3230 FN_COMPLEX. */
3231 details = read_huge_number (pp, ';', &nbits);
3232 if (nbits != 0)
3233 return error_type (pp, objfile);
3234
3235 /* The second number is the number of bytes occupied by this type */
3236 nbytes = read_huge_number (pp, ';', &nbits);
3237 if (nbits != 0)
3238 return error_type (pp, objfile);
3239
3240 if (details == NF_COMPLEX || details == NF_COMPLEX16
3241 || details == NF_COMPLEX32)
3242 /* This is a type we can't handle, but we do know the size.
3243 We also will be able to give it a name. */
3244 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3245
3246 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3247 }
3248
3249 /* Read a number from the string pointed to by *PP.
3250 The value of *PP is advanced over the number.
3251 If END is nonzero, the character that ends the
3252 number must match END, or an error happens;
3253 and that character is skipped if it does match.
3254 If END is zero, *PP is left pointing to that character.
3255
3256 If the number fits in a long, set *BITS to 0 and return the value.
3257 If not, set *BITS to be the number of bits in the number and return 0.
3258
3259 If encounter garbage, set *BITS to -1 and return 0. */
3260
3261 static long
3262 read_huge_number (pp, end, bits)
3263 char **pp;
3264 int end;
3265 int *bits;
3266 {
3267 char *p = *pp;
3268 int sign = 1;
3269 long n = 0;
3270 int radix = 10;
3271 char overflow = 0;
3272 int nbits = 0;
3273 int c;
3274 long upper_limit;
3275
3276 if (*p == '-')
3277 {
3278 sign = -1;
3279 p++;
3280 }
3281
3282 /* Leading zero means octal. GCC uses this to output values larger
3283 than an int (because that would be hard in decimal). */
3284 if (*p == '0')
3285 {
3286 radix = 8;
3287 p++;
3288 }
3289
3290 if (os9k_stabs)
3291 upper_limit = ULONG_MAX / radix;
3292 else
3293 upper_limit = LONG_MAX / radix;
3294
3295 while ((c = *p++) >= '0' && c < ('0' + radix))
3296 {
3297 if (n <= upper_limit)
3298 {
3299 n *= radix;
3300 n += c - '0'; /* FIXME this overflows anyway */
3301 }
3302 else
3303 overflow = 1;
3304
3305 /* This depends on large values being output in octal, which is
3306 what GCC does. */
3307 if (radix == 8)
3308 {
3309 if (nbits == 0)
3310 {
3311 if (c == '0')
3312 /* Ignore leading zeroes. */
3313 ;
3314 else if (c == '1')
3315 nbits = 1;
3316 else if (c == '2' || c == '3')
3317 nbits = 2;
3318 else
3319 nbits = 3;
3320 }
3321 else
3322 nbits += 3;
3323 }
3324 }
3325 if (end)
3326 {
3327 if (c && c != end)
3328 {
3329 if (bits != NULL)
3330 *bits = -1;
3331 return 0;
3332 }
3333 }
3334 else
3335 --p;
3336
3337 *pp = p;
3338 if (overflow)
3339 {
3340 if (nbits == 0)
3341 {
3342 /* Large decimal constants are an error (because it is hard to
3343 count how many bits are in them). */
3344 if (bits != NULL)
3345 *bits = -1;
3346 return 0;
3347 }
3348
3349 /* -0x7f is the same as 0x80. So deal with it by adding one to
3350 the number of bits. */
3351 if (sign == -1)
3352 ++nbits;
3353 if (bits)
3354 *bits = nbits;
3355 }
3356 else
3357 {
3358 if (bits)
3359 *bits = 0;
3360 return n * sign;
3361 }
3362 /* It's *BITS which has the interesting information. */
3363 return 0;
3364 }
3365
3366 static struct type *
3367 read_range_type (pp, typenums, objfile)
3368 char **pp;
3369 int typenums[2];
3370 struct objfile *objfile;
3371 {
3372 char *orig_pp = *pp;
3373 int rangenums[2];
3374 long n2, n3;
3375 int n2bits, n3bits;
3376 int self_subrange;
3377 struct type *result_type;
3378 struct type *index_type = NULL;
3379
3380 /* First comes a type we are a subrange of.
3381 In C it is usually 0, 1 or the type being defined. */
3382 if (read_type_number (pp, rangenums) != 0)
3383 return error_type (pp, objfile);
3384 self_subrange = (rangenums[0] == typenums[0] &&
3385 rangenums[1] == typenums[1]);
3386
3387 if (**pp == '=')
3388 {
3389 *pp = orig_pp;
3390 index_type = read_type (pp, objfile);
3391 }
3392
3393 /* A semicolon should now follow; skip it. */
3394 if (**pp == ';')
3395 (*pp)++;
3396
3397 /* The remaining two operands are usually lower and upper bounds
3398 of the range. But in some special cases they mean something else. */
3399 n2 = read_huge_number (pp, ';', &n2bits);
3400 n3 = read_huge_number (pp, ';', &n3bits);
3401
3402 if (n2bits == -1 || n3bits == -1)
3403 return error_type (pp, objfile);
3404
3405 if (index_type)
3406 goto handle_true_range;
3407
3408 /* If limits are huge, must be large integral type. */
3409 if (n2bits != 0 || n3bits != 0)
3410 {
3411 char got_signed = 0;
3412 char got_unsigned = 0;
3413 /* Number of bits in the type. */
3414 int nbits = 0;
3415
3416 /* Range from 0 to <large number> is an unsigned large integral type. */
3417 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3418 {
3419 got_unsigned = 1;
3420 nbits = n3bits;
3421 }
3422 /* Range from <large number> to <large number>-1 is a large signed
3423 integral type. Take care of the case where <large number> doesn't
3424 fit in a long but <large number>-1 does. */
3425 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3426 || (n2bits != 0 && n3bits == 0
3427 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3428 && n3 == LONG_MAX))
3429 {
3430 got_signed = 1;
3431 nbits = n2bits;
3432 }
3433
3434 if (got_signed || got_unsigned)
3435 {
3436 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3437 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3438 objfile);
3439 }
3440 else
3441 return error_type (pp, objfile);
3442 }
3443
3444 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3445 if (self_subrange && n2 == 0 && n3 == 0)
3446 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3447
3448 /* If n3 is zero and n2 is positive, we want a floating type,
3449 and n2 is the width in bytes.
3450
3451 Fortran programs appear to use this for complex types also,
3452 and they give no way to distinguish between double and single-complex!
3453
3454 GDB does not have complex types.
3455
3456 Just return the complex as a float of that size. It won't work right
3457 for the complex values, but at least it makes the file loadable. */
3458
3459 if (n3 == 0 && n2 > 0)
3460 {
3461 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3462 }
3463
3464 /* If the upper bound is -1, it must really be an unsigned int. */
3465
3466 else if (n2 == 0 && n3 == -1)
3467 {
3468 /* It is unsigned int or unsigned long. */
3469 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3470 compatibility hack. */
3471 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3472 TYPE_FLAG_UNSIGNED, NULL, objfile);
3473 }
3474
3475 /* Special case: char is defined (Who knows why) as a subrange of
3476 itself with range 0-127. */
3477 else if (self_subrange && n2 == 0 && n3 == 127)
3478 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3479
3480 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
3481 && !self_subrange)
3482 goto handle_true_range;
3483
3484 /* We used to do this only for subrange of self or subrange of int. */
3485 else if (n2 == 0)
3486 {
3487 if (n3 < 0)
3488 /* n3 actually gives the size. */
3489 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3490 NULL, objfile);
3491 if (n3 == 0xff)
3492 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3493 if (n3 == 0xffff)
3494 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3495
3496 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3497 "unsigned long", and we already checked for that,
3498 so don't need to test for it here. */
3499 }
3500 /* I think this is for Convex "long long". Since I don't know whether
3501 Convex sets self_subrange, I also accept that particular size regardless
3502 of self_subrange. */
3503 else if (n3 == 0 && n2 < 0
3504 && (self_subrange
3505 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3506 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3507 else if (n2 == -n3 -1)
3508 {
3509 if (n3 == 0x7f)
3510 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3511 if (n3 == 0x7fff)
3512 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3513 if (n3 == 0x7fffffff)
3514 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3515 }
3516
3517 /* We have a real range type on our hands. Allocate space and
3518 return a real pointer. */
3519 handle_true_range:
3520
3521 if (self_subrange)
3522 index_type = builtin_type_int;
3523 else
3524 index_type = *dbx_lookup_type (rangenums);
3525 if (index_type == NULL)
3526 {
3527 /* Does this actually ever happen? Is that why we are worrying
3528 about dealing with it rather than just calling error_type? */
3529
3530 static struct type *range_type_index;
3531
3532 complain (&range_type_base_complaint, rangenums[1]);
3533 if (range_type_index == NULL)
3534 range_type_index =
3535 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3536 0, "range type index type", NULL);
3537 index_type = range_type_index;
3538 }
3539
3540 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3541 return (result_type);
3542 }
3543
3544 /* Read in an argument list. This is a list of types, separated by commas
3545 and terminated with END. Return the list of types read in, or (struct type
3546 **)-1 if there is an error. */
3547
3548 static struct type **
3549 read_args (pp, end, objfile)
3550 char **pp;
3551 int end;
3552 struct objfile *objfile;
3553 {
3554 /* FIXME! Remove this arbitrary limit! */
3555 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3556 int n = 0;
3557
3558 while (**pp != end)
3559 {
3560 if (**pp != ',')
3561 /* Invalid argument list: no ','. */
3562 return (struct type **)-1;
3563 (*pp)++;
3564 STABS_CONTINUE (pp, objfile);
3565 types[n++] = read_type (pp, objfile);
3566 }
3567 (*pp)++; /* get past `end' (the ':' character) */
3568
3569 if (n == 1)
3570 {
3571 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3572 }
3573 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3574 {
3575 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3576 memset (rval + n, 0, sizeof (struct type *));
3577 }
3578 else
3579 {
3580 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3581 }
3582 memcpy (rval, types, n * sizeof (struct type *));
3583 return rval;
3584 }
3585 \f
3586 /* Common block handling. */
3587
3588 /* List of symbols declared since the last BCOMM. This list is a tail
3589 of local_symbols. When ECOMM is seen, the symbols on the list
3590 are noted so their proper addresses can be filled in later,
3591 using the common block base address gotten from the assembler
3592 stabs. */
3593
3594 static struct pending *common_block;
3595 static int common_block_i;
3596
3597 /* Name of the current common block. We get it from the BCOMM instead of the
3598 ECOMM to match IBM documentation (even though IBM puts the name both places
3599 like everyone else). */
3600 static char *common_block_name;
3601
3602 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3603 to remain after this function returns. */
3604
3605 void
3606 common_block_start (name, objfile)
3607 char *name;
3608 struct objfile *objfile;
3609 {
3610 if (common_block_name != NULL)
3611 {
3612 static struct complaint msg = {
3613 "Invalid symbol data: common block within common block",
3614 0, 0};
3615 complain (&msg);
3616 }
3617 common_block = local_symbols;
3618 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3619 common_block_name = obsavestring (name, strlen (name),
3620 &objfile -> symbol_obstack);
3621 }
3622
3623 /* Process a N_ECOMM symbol. */
3624
3625 void
3626 common_block_end (objfile)
3627 struct objfile *objfile;
3628 {
3629 /* Symbols declared since the BCOMM are to have the common block
3630 start address added in when we know it. common_block and
3631 common_block_i point to the first symbol after the BCOMM in
3632 the local_symbols list; copy the list and hang it off the
3633 symbol for the common block name for later fixup. */
3634 int i;
3635 struct symbol *sym;
3636 struct pending *new = 0;
3637 struct pending *next;
3638 int j;
3639
3640 if (common_block_name == NULL)
3641 {
3642 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3643 complain (&msg);
3644 return;
3645 }
3646
3647 sym = (struct symbol *)
3648 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3649 memset (sym, 0, sizeof (struct symbol));
3650 SYMBOL_NAME (sym) = common_block_name;
3651 SYMBOL_CLASS (sym) = LOC_BLOCK;
3652
3653 /* Now we copy all the symbols which have been defined since the BCOMM. */
3654
3655 /* Copy all the struct pendings before common_block. */
3656 for (next = local_symbols;
3657 next != NULL && next != common_block;
3658 next = next->next)
3659 {
3660 for (j = 0; j < next->nsyms; j++)
3661 add_symbol_to_list (next->symbol[j], &new);
3662 }
3663
3664 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3665 NULL, it means copy all the local symbols (which we already did
3666 above). */
3667
3668 if (common_block != NULL)
3669 for (j = common_block_i; j < common_block->nsyms; j++)
3670 add_symbol_to_list (common_block->symbol[j], &new);
3671
3672 SYMBOL_TYPE (sym) = (struct type *) new;
3673
3674 /* Should we be putting local_symbols back to what it was?
3675 Does it matter? */
3676
3677 i = hashname (SYMBOL_NAME (sym));
3678 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3679 global_sym_chain[i] = sym;
3680 common_block_name = NULL;
3681 }
3682
3683 /* Add a common block's start address to the offset of each symbol
3684 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3685 the common block name). */
3686
3687 static void
3688 fix_common_block (sym, valu)
3689 struct symbol *sym;
3690 int valu;
3691 {
3692 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3693 for ( ; next; next = next->next)
3694 {
3695 register int j;
3696 for (j = next->nsyms - 1; j >= 0; j--)
3697 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3698 }
3699 }
3700
3701
3702 \f
3703 /* What about types defined as forward references inside of a small lexical
3704 scope? */
3705 /* Add a type to the list of undefined types to be checked through
3706 once this file has been read in. */
3707
3708 void
3709 add_undefined_type (type)
3710 struct type *type;
3711 {
3712 if (undef_types_length == undef_types_allocated)
3713 {
3714 undef_types_allocated *= 2;
3715 undef_types = (struct type **)
3716 xrealloc ((char *) undef_types,
3717 undef_types_allocated * sizeof (struct type *));
3718 }
3719 undef_types[undef_types_length++] = type;
3720 }
3721
3722 /* Go through each undefined type, see if it's still undefined, and fix it
3723 up if possible. We have two kinds of undefined types:
3724
3725 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3726 Fix: update array length using the element bounds
3727 and the target type's length.
3728 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3729 yet defined at the time a pointer to it was made.
3730 Fix: Do a full lookup on the struct/union tag. */
3731 void
3732 cleanup_undefined_types ()
3733 {
3734 struct type **type;
3735
3736 for (type = undef_types; type < undef_types + undef_types_length; type++)
3737 {
3738 switch (TYPE_CODE (*type))
3739 {
3740
3741 case TYPE_CODE_STRUCT:
3742 case TYPE_CODE_UNION:
3743 case TYPE_CODE_ENUM:
3744 {
3745 /* Check if it has been defined since. Need to do this here
3746 as well as in check_typedef to deal with the (legitimate in
3747 C though not C++) case of several types with the same name
3748 in different source files. */
3749 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3750 {
3751 struct pending *ppt;
3752 int i;
3753 /* Name of the type, without "struct" or "union" */
3754 char *typename = TYPE_TAG_NAME (*type);
3755
3756 if (typename == NULL)
3757 {
3758 static struct complaint msg = {"need a type name", 0, 0};
3759 complain (&msg);
3760 break;
3761 }
3762 for (ppt = file_symbols; ppt; ppt = ppt->next)
3763 {
3764 for (i = 0; i < ppt->nsyms; i++)
3765 {
3766 struct symbol *sym = ppt->symbol[i];
3767
3768 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3769 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3770 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3771 TYPE_CODE (*type))
3772 && STREQ (SYMBOL_NAME (sym), typename))
3773 {
3774 memcpy (*type, SYMBOL_TYPE (sym),
3775 sizeof (struct type));
3776 }
3777 }
3778 }
3779 }
3780 }
3781 break;
3782
3783 default:
3784 {
3785 static struct complaint msg = {"\
3786 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3787 complain (&msg, TYPE_CODE (*type));
3788 }
3789 break;
3790 }
3791 }
3792
3793 undef_types_length = 0;
3794 }
3795
3796 /* Scan through all of the global symbols defined in the object file,
3797 assigning values to the debugging symbols that need to be assigned
3798 to. Get these symbols from the minimal symbol table. */
3799
3800 void
3801 scan_file_globals (objfile)
3802 struct objfile *objfile;
3803 {
3804 int hash;
3805 struct minimal_symbol *msymbol;
3806 struct symbol *sym, *prev;
3807
3808 /* Avoid expensive loop through all minimal symbols if there are
3809 no unresolved symbols. */
3810 for (hash = 0; hash < HASHSIZE; hash++)
3811 {
3812 if (global_sym_chain[hash])
3813 break;
3814 }
3815 if (hash >= HASHSIZE)
3816 return;
3817
3818 for (msymbol = objfile -> msymbols;
3819 msymbol && SYMBOL_NAME (msymbol) != NULL;
3820 msymbol++)
3821 {
3822 QUIT;
3823
3824 /* Skip static symbols. */
3825 switch (MSYMBOL_TYPE (msymbol))
3826 {
3827 case mst_file_text:
3828 case mst_file_data:
3829 case mst_file_bss:
3830 continue;
3831 default:
3832 break;
3833 }
3834
3835 prev = NULL;
3836
3837 /* Get the hash index and check all the symbols
3838 under that hash index. */
3839
3840 hash = hashname (SYMBOL_NAME (msymbol));
3841
3842 for (sym = global_sym_chain[hash]; sym;)
3843 {
3844 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3845 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3846 {
3847 /* Splice this symbol out of the hash chain and
3848 assign the value we have to it. */
3849 if (prev)
3850 {
3851 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3852 }
3853 else
3854 {
3855 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3856 }
3857
3858 /* Check to see whether we need to fix up a common block. */
3859 /* Note: this code might be executed several times for
3860 the same symbol if there are multiple references. */
3861
3862 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3863 {
3864 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3865 }
3866 else
3867 {
3868 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3869 }
3870
3871 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3872
3873 if (prev)
3874 {
3875 sym = SYMBOL_VALUE_CHAIN (prev);
3876 }
3877 else
3878 {
3879 sym = global_sym_chain[hash];
3880 }
3881 }
3882 else
3883 {
3884 prev = sym;
3885 sym = SYMBOL_VALUE_CHAIN (sym);
3886 }
3887 }
3888 }
3889
3890 /* Change the storage class of any remaining unresolved globals to
3891 LOC_UNRESOLVED and remove them from the chain. */
3892 for (hash = 0; hash < HASHSIZE; hash++)
3893 {
3894 sym = global_sym_chain[hash];
3895 while (sym)
3896 {
3897 prev = sym;
3898 sym = SYMBOL_VALUE_CHAIN (sym);
3899
3900 /* Change the symbol address from the misleading chain value
3901 to address zero. */
3902 SYMBOL_VALUE_ADDRESS (prev) = 0;
3903
3904 /* Complain about unresolved common block symbols. */
3905 if (SYMBOL_CLASS (prev) == LOC_STATIC)
3906 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
3907 else
3908 complain (&unresolved_sym_chain_complaint,
3909 objfile->name, SYMBOL_NAME (prev));
3910 }
3911 }
3912 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3913 }
3914
3915 /* Initialize anything that needs initializing when starting to read
3916 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3917 to a psymtab. */
3918
3919 void
3920 stabsread_init ()
3921 {
3922 }
3923
3924 /* Initialize anything that needs initializing when a completely new
3925 symbol file is specified (not just adding some symbols from another
3926 file, e.g. a shared library). */
3927
3928 void
3929 stabsread_new_init ()
3930 {
3931 /* Empty the hash table of global syms looking for values. */
3932 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3933 }
3934
3935 /* Initialize anything that needs initializing at the same time as
3936 start_symtab() is called. */
3937
3938 void start_stabs ()
3939 {
3940 global_stabs = NULL; /* AIX COFF */
3941 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3942 n_this_object_header_files = 1;
3943 type_vector_length = 0;
3944 type_vector = (struct type **) 0;
3945
3946 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3947 common_block_name = NULL;
3948
3949 os9k_stabs = 0;
3950 }
3951
3952 /* Call after end_symtab() */
3953
3954 void end_stabs ()
3955 {
3956 if (type_vector)
3957 {
3958 free ((char *) type_vector);
3959 }
3960 type_vector = 0;
3961 type_vector_length = 0;
3962 previous_stab_code = 0;
3963 }
3964
3965 void
3966 finish_global_stabs (objfile)
3967 struct objfile *objfile;
3968 {
3969 if (global_stabs)
3970 {
3971 patch_block_stabs (global_symbols, global_stabs, objfile);
3972 free ((PTR) global_stabs);
3973 global_stabs = NULL;
3974 }
3975 }
3976
3977 /* Initializer for this module */
3978
3979 void
3980 _initialize_stabsread ()
3981 {
3982 undef_types_allocated = 20;
3983 undef_types_length = 0;
3984 undef_types = (struct type **)
3985 xmalloc (undef_types_allocated * sizeof (struct type *));
3986 }
This page took 0.112472 seconds and 4 git commands to generate.