2003-11-07 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Support routines for reading and decoding debugging information in
24 the "stabs" format. This format is used with many systems that use
25 the a.out object file format, as well as some systems that use
26 COFF or ELF where the stabs data is placed in a special section.
27 Avoid placing any object file format specific code in this file. */
28
29 #include "defs.h"
30 #include "gdb_string.h"
31 #include "bfd.h"
32 #include "gdb_obstack.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "expression.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "libaout.h"
40 #include "aout/aout64.h"
41 #include "gdb-stabs.h"
42 #include "buildsym.h"
43 #include "complaints.h"
44 #include "demangle.h"
45 #include "language.h"
46 #include "doublest.h"
47 #include "cp-abi.h"
48 #include "cp-support.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static char *get_substring (char **, int);
93
94 static struct type *dbx_alloc_type (int[2], struct objfile *);
95
96 static long read_huge_number (char **, int, int *);
97
98 static struct type *error_type (char **, struct objfile *);
99
100 static void
101 patch_block_stabs (struct pending *, struct pending_stabs *,
102 struct objfile *);
103
104 static void fix_common_block (struct symbol *, int);
105
106 static int read_type_number (char **, int *);
107
108 static struct type *read_type (char **, struct objfile *);
109
110 static struct type *read_range_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
113
114 static struct type *read_sun_floating_type (char **, int[2],
115 struct objfile *);
116
117 static struct type *read_enum_type (char **, struct type *, struct objfile *);
118
119 static struct type *rs6000_builtin_type (int);
120
121 static int
122 read_member_functions (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_struct_fields (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_baseclasses (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_tilde_fields (struct field_info *, char **, struct type *,
135 struct objfile *);
136
137 static int attach_fn_fields_to_type (struct field_info *, struct type *);
138
139 static int attach_fields_to_type (struct field_info *, struct type *,
140 struct objfile *);
141
142 static struct type *read_struct_type (char **, struct type *,
143 enum type_code,
144 struct objfile *);
145
146 static struct type *read_array_type (char **, struct type *,
147 struct objfile *);
148
149 static struct field *read_args (char **, int, struct objfile *, int *, int *);
150
151 static void add_undefined_type (struct type *);
152
153 static int
154 read_cpp_abbrev (struct field_info *, char **, struct type *,
155 struct objfile *);
156
157 static char *find_name_end (char *name);
158
159 static int process_reference (char **string);
160
161 static CORE_ADDR ref_search_value (int refnum);
162
163 void stabsread_clear_cache (void);
164
165 static const char vptr_name[] = "_vptr$";
166 static const char vb_name[] = "_vb$";
167
168 /* Define this as 1 if a pcc declaration of a char or short argument
169 gives the correct address. Otherwise assume pcc gives the
170 address of the corresponding int, which is not the same on a
171 big-endian machine. */
172
173 #if !defined (BELIEVE_PCC_PROMOTION)
174 #define BELIEVE_PCC_PROMOTION 0
175 #endif
176
177 static void
178 invalid_cpp_abbrev_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "invalid C++ abbreviation `%s'", arg1);
181 }
182
183 static void
184 reg_value_complaint (int arg1, int arg2, const char *arg3)
185 {
186 complaint (&symfile_complaints,
187 "register number %d too large (max %d) in symbol %s", arg1, arg2,
188 arg3);
189 }
190
191 static void
192 stabs_general_complaint (const char *arg1)
193 {
194 complaint (&symfile_complaints, "%s", arg1);
195 }
196
197 static void
198 lrs_general_complaint (const char *arg1)
199 {
200 complaint (&symfile_complaints, "%s", arg1);
201 }
202
203 /* Make a list of forward references which haven't been defined. */
204
205 static struct type **undef_types;
206 static int undef_types_allocated;
207 static int undef_types_length;
208 static struct symbol *current_symbol = NULL;
209
210 /* Check for and handle cretinous stabs symbol name continuation! */
211 #define STABS_CONTINUE(pp,objfile) \
212 do { \
213 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
214 *(pp) = next_symbol_text (objfile); \
215 } while (0)
216 \f
217
218 /* Look up a dbx type-number pair. Return the address of the slot
219 where the type for that number-pair is stored.
220 The number-pair is in TYPENUMS.
221
222 This can be used for finding the type associated with that pair
223 or for associating a new type with the pair. */
224
225 static struct type **
226 dbx_lookup_type (int typenums[2])
227 {
228 int filenum = typenums[0];
229 int index = typenums[1];
230 unsigned old_len;
231 int real_filenum;
232 struct header_file *f;
233 int f_orig_length;
234
235 if (filenum == -1) /* -1,-1 is for temporary types. */
236 return 0;
237
238 if (filenum < 0 || filenum >= n_this_object_header_files)
239 {
240 complaint (&symfile_complaints,
241 "Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
242 filenum, index, symnum);
243 goto error_return;
244 }
245
246 if (filenum == 0)
247 {
248 if (index < 0)
249 {
250 /* Caller wants address of address of type. We think
251 that negative (rs6k builtin) types will never appear as
252 "lvalues", (nor should they), so we stuff the real type
253 pointer into a temp, and return its address. If referenced,
254 this will do the right thing. */
255 static struct type *temp_type;
256
257 temp_type = rs6000_builtin_type (index);
258 return &temp_type;
259 }
260
261 /* Type is defined outside of header files.
262 Find it in this object file's type vector. */
263 if (index >= type_vector_length)
264 {
265 old_len = type_vector_length;
266 if (old_len == 0)
267 {
268 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
269 type_vector = (struct type **)
270 xmalloc (type_vector_length * sizeof (struct type *));
271 }
272 while (index >= type_vector_length)
273 {
274 type_vector_length *= 2;
275 }
276 type_vector = (struct type **)
277 xrealloc ((char *) type_vector,
278 (type_vector_length * sizeof (struct type *)));
279 memset (&type_vector[old_len], 0,
280 (type_vector_length - old_len) * sizeof (struct type *));
281 }
282 return (&type_vector[index]);
283 }
284 else
285 {
286 real_filenum = this_object_header_files[filenum];
287
288 if (real_filenum >= N_HEADER_FILES (current_objfile))
289 {
290 struct type *temp_type;
291 struct type **temp_type_p;
292
293 warning ("GDB internal error: bad real_filenum");
294
295 error_return:
296 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
297 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
298 *temp_type_p = temp_type;
299 return temp_type_p;
300 }
301
302 f = HEADER_FILES (current_objfile) + real_filenum;
303
304 f_orig_length = f->length;
305 if (index >= f_orig_length)
306 {
307 while (index >= f->length)
308 {
309 f->length *= 2;
310 }
311 f->vector = (struct type **)
312 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
313 memset (&f->vector[f_orig_length], 0,
314 (f->length - f_orig_length) * sizeof (struct type *));
315 }
316 return (&f->vector[index]);
317 }
318 }
319
320 /* Make sure there is a type allocated for type numbers TYPENUMS
321 and return the type object.
322 This can create an empty (zeroed) type object.
323 TYPENUMS may be (-1, -1) to return a new type object that is not
324 put into the type vector, and so may not be referred to by number. */
325
326 static struct type *
327 dbx_alloc_type (int typenums[2], struct objfile *objfile)
328 {
329 struct type **type_addr;
330
331 if (typenums[0] == -1)
332 {
333 return (alloc_type (objfile));
334 }
335
336 type_addr = dbx_lookup_type (typenums);
337
338 /* If we are referring to a type not known at all yet,
339 allocate an empty type for it.
340 We will fill it in later if we find out how. */
341 if (*type_addr == 0)
342 {
343 *type_addr = alloc_type (objfile);
344 }
345
346 return (*type_addr);
347 }
348
349 /* for all the stabs in a given stab vector, build appropriate types
350 and fix their symbols in given symbol vector. */
351
352 static void
353 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
354 struct objfile *objfile)
355 {
356 int ii;
357 char *name;
358 char *pp;
359 struct symbol *sym;
360
361 if (stabs)
362 {
363
364 /* for all the stab entries, find their corresponding symbols and
365 patch their types! */
366
367 for (ii = 0; ii < stabs->count; ++ii)
368 {
369 name = stabs->stab[ii];
370 pp = (char *) strchr (name, ':');
371 while (pp[1] == ':')
372 {
373 pp += 2;
374 pp = (char *) strchr (pp, ':');
375 }
376 sym = find_symbol_in_list (symbols, name, pp - name);
377 if (!sym)
378 {
379 /* FIXME-maybe: it would be nice if we noticed whether
380 the variable was defined *anywhere*, not just whether
381 it is defined in this compilation unit. But neither
382 xlc or GCC seem to need such a definition, and until
383 we do psymtabs (so that the minimal symbols from all
384 compilation units are available now), I'm not sure
385 how to get the information. */
386
387 /* On xcoff, if a global is defined and never referenced,
388 ld will remove it from the executable. There is then
389 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
390 sym = (struct symbol *)
391 obstack_alloc (&objfile->symbol_obstack,
392 sizeof (struct symbol));
393
394 memset (sym, 0, sizeof (struct symbol));
395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
396 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
397 DEPRECATED_SYMBOL_NAME (sym) =
398 obsavestring (name, pp - name, &objfile->symbol_obstack);
399 pp += 2;
400 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
401 {
402 /* I don't think the linker does this with functions,
403 so as far as I know this is never executed.
404 But it doesn't hurt to check. */
405 SYMBOL_TYPE (sym) =
406 lookup_function_type (read_type (&pp, objfile));
407 }
408 else
409 {
410 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
411 }
412 add_symbol_to_list (sym, &global_symbols);
413 }
414 else
415 {
416 pp += 2;
417 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
418 {
419 SYMBOL_TYPE (sym) =
420 lookup_function_type (read_type (&pp, objfile));
421 }
422 else
423 {
424 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
425 }
426 }
427 }
428 }
429 }
430 \f
431
432 /* Read a number by which a type is referred to in dbx data,
433 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
434 Just a single number N is equivalent to (0,N).
435 Return the two numbers by storing them in the vector TYPENUMS.
436 TYPENUMS will then be used as an argument to dbx_lookup_type.
437
438 Returns 0 for success, -1 for error. */
439
440 static int
441 read_type_number (char **pp, int *typenums)
442 {
443 int nbits;
444 if (**pp == '(')
445 {
446 (*pp)++;
447 typenums[0] = read_huge_number (pp, ',', &nbits);
448 if (nbits != 0)
449 return -1;
450 typenums[1] = read_huge_number (pp, ')', &nbits);
451 if (nbits != 0)
452 return -1;
453 }
454 else
455 {
456 typenums[0] = 0;
457 typenums[1] = read_huge_number (pp, 0, &nbits);
458 if (nbits != 0)
459 return -1;
460 }
461 return 0;
462 }
463 \f
464
465 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
466 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
467 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
468 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
469
470 /* Structure for storing pointers to reference definitions for fast lookup
471 during "process_later". */
472
473 struct ref_map
474 {
475 char *stabs;
476 CORE_ADDR value;
477 struct symbol *sym;
478 };
479
480 #define MAX_CHUNK_REFS 100
481 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
482 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
483
484 static struct ref_map *ref_map;
485
486 /* Ptr to free cell in chunk's linked list. */
487 static int ref_count = 0;
488
489 /* Number of chunks malloced. */
490 static int ref_chunk = 0;
491
492 /* This file maintains a cache of stabs aliases found in the symbol
493 table. If the symbol table changes, this cache must be cleared
494 or we are left holding onto data in invalid obstacks. */
495 void
496 stabsread_clear_cache (void)
497 {
498 ref_count = 0;
499 ref_chunk = 0;
500 }
501
502 /* Create array of pointers mapping refids to symbols and stab strings.
503 Add pointers to reference definition symbols and/or their values as we
504 find them, using their reference numbers as our index.
505 These will be used later when we resolve references. */
506 void
507 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
508 {
509 if (ref_count == 0)
510 ref_chunk = 0;
511 if (refnum >= ref_count)
512 ref_count = refnum + 1;
513 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
514 {
515 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
516 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
517 ref_map = (struct ref_map *)
518 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
519 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
520 ref_chunk += new_chunks;
521 }
522 ref_map[refnum].stabs = stabs;
523 ref_map[refnum].sym = sym;
524 ref_map[refnum].value = value;
525 }
526
527 /* Return defined sym for the reference REFNUM. */
528 struct symbol *
529 ref_search (int refnum)
530 {
531 if (refnum < 0 || refnum > ref_count)
532 return 0;
533 return ref_map[refnum].sym;
534 }
535
536 /* Return value for the reference REFNUM. */
537
538 static CORE_ADDR
539 ref_search_value (int refnum)
540 {
541 if (refnum < 0 || refnum > ref_count)
542 return 0;
543 return ref_map[refnum].value;
544 }
545
546 /* Parse a reference id in STRING and return the resulting
547 reference number. Move STRING beyond the reference id. */
548
549 static int
550 process_reference (char **string)
551 {
552 char *p;
553 int refnum = 0;
554
555 if (**string != '#')
556 return 0;
557
558 /* Advance beyond the initial '#'. */
559 p = *string + 1;
560
561 /* Read number as reference id. */
562 while (*p && isdigit (*p))
563 {
564 refnum = refnum * 10 + *p - '0';
565 p++;
566 }
567 *string = p;
568 return refnum;
569 }
570
571 /* If STRING defines a reference, store away a pointer to the reference
572 definition for later use. Return the reference number. */
573
574 int
575 symbol_reference_defined (char **string)
576 {
577 char *p = *string;
578 int refnum = 0;
579
580 refnum = process_reference (&p);
581
582 /* Defining symbols end in '=' */
583 if (*p == '=')
584 {
585 /* Symbol is being defined here. */
586 *string = p + 1;
587 return refnum;
588 }
589 else
590 {
591 /* Must be a reference. Either the symbol has already been defined,
592 or this is a forward reference to it. */
593 *string = p;
594 return -1;
595 }
596 }
597
598 struct symbol *
599 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
600 struct objfile *objfile)
601 {
602 struct symbol *sym;
603 char *p = (char *) find_name_end (string);
604 int deftype;
605 int synonym = 0;
606 int i;
607
608 /* We would like to eliminate nameless symbols, but keep their types.
609 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
610 to type 2, but, should not create a symbol to address that type. Since
611 the symbol will be nameless, there is no way any user can refer to it. */
612
613 int nameless;
614
615 /* Ignore syms with empty names. */
616 if (string[0] == 0)
617 return 0;
618
619 /* Ignore old-style symbols from cc -go */
620 if (p == 0)
621 return 0;
622
623 while (p[1] == ':')
624 {
625 p += 2;
626 p = strchr (p, ':');
627 }
628
629 /* If a nameless stab entry, all we need is the type, not the symbol.
630 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
631 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
632
633 current_symbol = sym = (struct symbol *)
634 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
635 memset (sym, 0, sizeof (struct symbol));
636
637 switch (type & N_TYPE)
638 {
639 case N_TEXT:
640 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
641 break;
642 case N_DATA:
643 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
644 break;
645 case N_BSS:
646 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
647 break;
648 }
649
650 if (processing_gcc_compilation)
651 {
652 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
653 number of bytes occupied by a type or object, which we ignore. */
654 SYMBOL_LINE (sym) = desc;
655 }
656 else
657 {
658 SYMBOL_LINE (sym) = 0; /* unknown */
659 }
660
661 if (is_cplus_marker (string[0]))
662 {
663 /* Special GNU C++ names. */
664 switch (string[1])
665 {
666 case 't':
667 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
668 &objfile->symbol_obstack);
669 break;
670
671 case 'v': /* $vtbl_ptr_type */
672 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
673 goto normal;
674
675 case 'e':
676 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
677 &objfile->symbol_obstack);
678 break;
679
680 case '_':
681 /* This was an anonymous type that was never fixed up. */
682 goto normal;
683
684 #ifdef STATIC_TRANSFORM_NAME
685 case 'X':
686 /* SunPRO (3.0 at least) static variable encoding. */
687 goto normal;
688 #endif
689
690 default:
691 complaint (&symfile_complaints, "Unknown C++ symbol name `%s'",
692 string);
693 goto normal; /* Do *something* with it */
694 }
695 }
696 else
697 {
698 normal:
699 SYMBOL_LANGUAGE (sym) = current_subfile->language;
700 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
701 }
702 p++;
703
704 /* Determine the type of name being defined. */
705 #if 0
706 /* Getting GDB to correctly skip the symbol on an undefined symbol
707 descriptor and not ever dump core is a very dodgy proposition if
708 we do things this way. I say the acorn RISC machine can just
709 fix their compiler. */
710 /* The Acorn RISC machine's compiler can put out locals that don't
711 start with "234=" or "(3,4)=", so assume anything other than the
712 deftypes we know how to handle is a local. */
713 if (!strchr ("cfFGpPrStTvVXCR", *p))
714 #else
715 if (isdigit (*p) || *p == '(' || *p == '-')
716 #endif
717 deftype = 'l';
718 else
719 deftype = *p++;
720
721 switch (deftype)
722 {
723 case 'c':
724 /* c is a special case, not followed by a type-number.
725 SYMBOL:c=iVALUE for an integer constant symbol.
726 SYMBOL:c=rVALUE for a floating constant symbol.
727 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
728 e.g. "b:c=e6,0" for "const b = blob1"
729 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
730 if (*p != '=')
731 {
732 SYMBOL_CLASS (sym) = LOC_CONST;
733 SYMBOL_TYPE (sym) = error_type (&p, objfile);
734 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
735 add_symbol_to_list (sym, &file_symbols);
736 return sym;
737 }
738 ++p;
739 switch (*p++)
740 {
741 case 'r':
742 {
743 double d = atof (p);
744 char *dbl_valu;
745
746 /* FIXME-if-picky-about-floating-accuracy: Should be using
747 target arithmetic to get the value. real.c in GCC
748 probably has the necessary code. */
749
750 /* FIXME: lookup_fundamental_type is a hack. We should be
751 creating a type especially for the type of float constants.
752 Problem is, what type should it be?
753
754 Also, what should the name of this type be? Should we
755 be using 'S' constants (see stabs.texinfo) instead? */
756
757 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
758 FT_DBL_PREC_FLOAT);
759 dbl_valu = (char *)
760 obstack_alloc (&objfile->symbol_obstack,
761 TYPE_LENGTH (SYMBOL_TYPE (sym)));
762 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
763 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
764 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
765 }
766 break;
767 case 'i':
768 {
769 /* Defining integer constants this way is kind of silly,
770 since 'e' constants allows the compiler to give not
771 only the value, but the type as well. C has at least
772 int, long, unsigned int, and long long as constant
773 types; other languages probably should have at least
774 unsigned as well as signed constants. */
775
776 /* We just need one int constant type for all objfiles.
777 It doesn't depend on languages or anything (arguably its
778 name should be a language-specific name for a type of
779 that size, but I'm inclined to say that if the compiler
780 wants a nice name for the type, it can use 'e'). */
781 static struct type *int_const_type;
782
783 /* Yes, this is as long as a *host* int. That is because we
784 use atoi. */
785 if (int_const_type == NULL)
786 int_const_type =
787 init_type (TYPE_CODE_INT,
788 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
789 "integer constant",
790 (struct objfile *) NULL);
791 SYMBOL_TYPE (sym) = int_const_type;
792 SYMBOL_VALUE (sym) = atoi (p);
793 SYMBOL_CLASS (sym) = LOC_CONST;
794 }
795 break;
796 case 'e':
797 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
798 can be represented as integral.
799 e.g. "b:c=e6,0" for "const b = blob1"
800 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
801 {
802 SYMBOL_CLASS (sym) = LOC_CONST;
803 SYMBOL_TYPE (sym) = read_type (&p, objfile);
804
805 if (*p != ',')
806 {
807 SYMBOL_TYPE (sym) = error_type (&p, objfile);
808 break;
809 }
810 ++p;
811
812 /* If the value is too big to fit in an int (perhaps because
813 it is unsigned), or something like that, we silently get
814 a bogus value. The type and everything else about it is
815 correct. Ideally, we should be using whatever we have
816 available for parsing unsigned and long long values,
817 however. */
818 SYMBOL_VALUE (sym) = atoi (p);
819 }
820 break;
821 default:
822 {
823 SYMBOL_CLASS (sym) = LOC_CONST;
824 SYMBOL_TYPE (sym) = error_type (&p, objfile);
825 }
826 }
827 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
828 add_symbol_to_list (sym, &file_symbols);
829 return sym;
830
831 case 'C':
832 /* The name of a caught exception. */
833 SYMBOL_TYPE (sym) = read_type (&p, objfile);
834 SYMBOL_CLASS (sym) = LOC_LABEL;
835 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
836 SYMBOL_VALUE_ADDRESS (sym) = valu;
837 add_symbol_to_list (sym, &local_symbols);
838 break;
839
840 case 'f':
841 /* A static function definition. */
842 SYMBOL_TYPE (sym) = read_type (&p, objfile);
843 SYMBOL_CLASS (sym) = LOC_BLOCK;
844 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
845 add_symbol_to_list (sym, &file_symbols);
846 /* fall into process_function_types. */
847
848 process_function_types:
849 /* Function result types are described as the result type in stabs.
850 We need to convert this to the function-returning-type-X type
851 in GDB. E.g. "int" is converted to "function returning int". */
852 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
853 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
854
855 /* All functions in C++ have prototypes. Stabs does not offer an
856 explicit way to identify prototyped or unprototyped functions,
857 but both GCC and Sun CC emit stabs for the "call-as" type rather
858 than the "declared-as" type for unprototyped functions, so
859 we treat all functions as if they were prototyped. This is used
860 primarily for promotion when calling the function from GDB. */
861 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
862
863 /* fall into process_prototype_types */
864
865 process_prototype_types:
866 /* Sun acc puts declared types of arguments here. */
867 if (*p == ';')
868 {
869 struct type *ftype = SYMBOL_TYPE (sym);
870 int nsemi = 0;
871 int nparams = 0;
872 char *p1 = p;
873
874 /* Obtain a worst case guess for the number of arguments
875 by counting the semicolons. */
876 while (*p1)
877 {
878 if (*p1++ == ';')
879 nsemi++;
880 }
881
882 /* Allocate parameter information fields and fill them in. */
883 TYPE_FIELDS (ftype) = (struct field *)
884 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
885 while (*p++ == ';')
886 {
887 struct type *ptype;
888
889 /* A type number of zero indicates the start of varargs.
890 FIXME: GDB currently ignores vararg functions. */
891 if (p[0] == '0' && p[1] == '\0')
892 break;
893 ptype = read_type (&p, objfile);
894
895 /* The Sun compilers mark integer arguments, which should
896 be promoted to the width of the calling conventions, with
897 a type which references itself. This type is turned into
898 a TYPE_CODE_VOID type by read_type, and we have to turn
899 it back into builtin_type_int here.
900 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
901 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
902 ptype = builtin_type_int;
903 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
904 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
905 }
906 TYPE_NFIELDS (ftype) = nparams;
907 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
908 }
909 break;
910
911 case 'F':
912 /* A global function definition. */
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914 SYMBOL_CLASS (sym) = LOC_BLOCK;
915 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
916 add_symbol_to_list (sym, &global_symbols);
917 goto process_function_types;
918
919 case 'G':
920 /* For a class G (global) symbol, it appears that the
921 value is not correct. It is necessary to search for the
922 corresponding linker definition to find the value.
923 These definitions appear at the end of the namelist. */
924 SYMBOL_TYPE (sym) = read_type (&p, objfile);
925 SYMBOL_CLASS (sym) = LOC_STATIC;
926 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
927 /* Don't add symbol references to global_sym_chain.
928 Symbol references don't have valid names and wont't match up with
929 minimal symbols when the global_sym_chain is relocated.
930 We'll fixup symbol references when we fixup the defining symbol. */
931 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
932 {
933 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
934 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
935 global_sym_chain[i] = sym;
936 }
937 add_symbol_to_list (sym, &global_symbols);
938 break;
939
940 /* This case is faked by a conditional above,
941 when there is no code letter in the dbx data.
942 Dbx data never actually contains 'l'. */
943 case 's':
944 case 'l':
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946 SYMBOL_CLASS (sym) = LOC_LOCAL;
947 SYMBOL_VALUE (sym) = valu;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &local_symbols);
950 break;
951
952 case 'p':
953 if (*p == 'F')
954 /* pF is a two-letter code that means a function parameter in Fortran.
955 The type-number specifies the type of the return value.
956 Translate it into a pointer-to-function type. */
957 {
958 p++;
959 SYMBOL_TYPE (sym)
960 = lookup_pointer_type
961 (lookup_function_type (read_type (&p, objfile)));
962 }
963 else
964 SYMBOL_TYPE (sym) = read_type (&p, objfile);
965
966 SYMBOL_CLASS (sym) = LOC_ARG;
967 SYMBOL_VALUE (sym) = valu;
968 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
969 add_symbol_to_list (sym, &local_symbols);
970
971 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
972 {
973 /* On little-endian machines, this crud is never necessary,
974 and, if the extra bytes contain garbage, is harmful. */
975 break;
976 }
977
978 /* If it's gcc-compiled, if it says `short', believe it. */
979 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
980 break;
981
982 if (!BELIEVE_PCC_PROMOTION)
983 {
984 /* This is the signed type which arguments get promoted to. */
985 static struct type *pcc_promotion_type;
986 /* This is the unsigned type which arguments get promoted to. */
987 static struct type *pcc_unsigned_promotion_type;
988
989 /* Call it "int" because this is mainly C lossage. */
990 if (pcc_promotion_type == NULL)
991 pcc_promotion_type =
992 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
993 0, "int", NULL);
994
995 if (pcc_unsigned_promotion_type == NULL)
996 pcc_unsigned_promotion_type =
997 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
998 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
999
1000 if (BELIEVE_PCC_PROMOTION_TYPE)
1001 {
1002 /* This is defined on machines (e.g. sparc) where we
1003 should believe the type of a PCC 'short' argument,
1004 but shouldn't believe the address (the address is the
1005 address of the corresponding int).
1006
1007 My guess is that this correction, as opposed to
1008 changing the parameter to an 'int' (as done below,
1009 for PCC on most machines), is the right thing to do
1010 on all machines, but I don't want to risk breaking
1011 something that already works. On most PCC machines,
1012 the sparc problem doesn't come up because the calling
1013 function has to zero the top bytes (not knowing
1014 whether the called function wants an int or a short),
1015 so there is little practical difference between an
1016 int and a short (except perhaps what happens when the
1017 GDB user types "print short_arg = 0x10000;").
1018
1019 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1020 compiler actually produces the correct address (we
1021 don't need to fix it up). I made this code adapt so
1022 that it will offset the symbol if it was pointing at
1023 an int-aligned location and not otherwise. This way
1024 you can use the same gdb for 4.0.x and 4.1 systems.
1025
1026 If the parameter is shorter than an int, and is
1027 integral (e.g. char, short, or unsigned equivalent),
1028 and is claimed to be passed on an integer boundary,
1029 don't believe it! Offset the parameter's address to
1030 the tail-end of that integer. */
1031
1032 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1033 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1034 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1035 {
1036 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1037 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1038 }
1039 break;
1040 }
1041 else
1042 {
1043 /* If PCC says a parameter is a short or a char,
1044 it is really an int. */
1045 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1046 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1047 {
1048 SYMBOL_TYPE (sym) =
1049 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1050 ? pcc_unsigned_promotion_type
1051 : pcc_promotion_type;
1052 }
1053 break;
1054 }
1055 }
1056
1057 case 'P':
1058 /* acc seems to use P to declare the prototypes of functions that
1059 are referenced by this file. gdb is not prepared to deal
1060 with this extra information. FIXME, it ought to. */
1061 if (type == N_FUN)
1062 {
1063 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1064 goto process_prototype_types;
1065 }
1066 /*FALLTHROUGH */
1067
1068 case 'R':
1069 /* Parameter which is in a register. */
1070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1071 SYMBOL_CLASS (sym) = LOC_REGPARM;
1072 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1073 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1074 {
1075 reg_value_complaint (SYMBOL_VALUE (sym),
1076 NUM_REGS + NUM_PSEUDO_REGS,
1077 SYMBOL_PRINT_NAME (sym));
1078 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1079 }
1080 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1081 add_symbol_to_list (sym, &local_symbols);
1082 break;
1083
1084 case 'r':
1085 /* Register variable (either global or local). */
1086 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1087 SYMBOL_CLASS (sym) = LOC_REGISTER;
1088 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1089 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1090 {
1091 reg_value_complaint (SYMBOL_VALUE (sym),
1092 NUM_REGS + NUM_PSEUDO_REGS,
1093 SYMBOL_PRINT_NAME (sym));
1094 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1095 }
1096 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1097 if (within_function)
1098 {
1099 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1100 the same name to represent an argument passed in a
1101 register. GCC uses 'P' for the same case. So if we find
1102 such a symbol pair we combine it into one 'P' symbol.
1103 For Sun cc we need to do this regardless of
1104 stabs_argument_has_addr, because the compiler puts out
1105 the 'p' symbol even if it never saves the argument onto
1106 the stack.
1107
1108 On most machines, we want to preserve both symbols, so
1109 that we can still get information about what is going on
1110 with the stack (VAX for computing args_printed, using
1111 stack slots instead of saved registers in backtraces,
1112 etc.).
1113
1114 Note that this code illegally combines
1115 main(argc) struct foo argc; { register struct foo argc; }
1116 but this case is considered pathological and causes a warning
1117 from a decent compiler. */
1118
1119 if (local_symbols
1120 && local_symbols->nsyms > 0
1121 #ifndef USE_REGISTER_NOT_ARG
1122 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1123 SYMBOL_TYPE (sym))
1124 #endif
1125 )
1126 {
1127 struct symbol *prev_sym;
1128 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1129 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1130 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1131 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1132 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1133 {
1134 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1135 /* Use the type from the LOC_REGISTER; that is the type
1136 that is actually in that register. */
1137 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1138 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1139 sym = prev_sym;
1140 break;
1141 }
1142 }
1143 add_symbol_to_list (sym, &local_symbols);
1144 }
1145 else
1146 add_symbol_to_list (sym, &file_symbols);
1147 break;
1148
1149 case 'S':
1150 /* Static symbol at top level of file */
1151 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1152 SYMBOL_CLASS (sym) = LOC_STATIC;
1153 SYMBOL_VALUE_ADDRESS (sym) = valu;
1154 #ifdef STATIC_TRANSFORM_NAME
1155 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1156 {
1157 struct minimal_symbol *msym;
1158 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1159 if (msym != NULL)
1160 {
1161 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1162 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1163 }
1164 }
1165 #endif
1166 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1167 add_symbol_to_list (sym, &file_symbols);
1168 break;
1169
1170 case 't':
1171 /* Typedef */
1172 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1173
1174 /* For a nameless type, we don't want a create a symbol, thus we
1175 did not use `sym'. Return without further processing. */
1176 if (nameless)
1177 return NULL;
1178
1179 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1180 SYMBOL_VALUE (sym) = valu;
1181 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1182 /* C++ vagaries: we may have a type which is derived from
1183 a base type which did not have its name defined when the
1184 derived class was output. We fill in the derived class's
1185 base part member's name here in that case. */
1186 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1187 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1188 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1189 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1190 {
1191 int j;
1192 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1193 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1194 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1195 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1196 }
1197
1198 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1199 {
1200 /* gcc-2.6 or later (when using -fvtable-thunks)
1201 emits a unique named type for a vtable entry.
1202 Some gdb code depends on that specific name. */
1203 extern const char vtbl_ptr_name[];
1204
1205 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1206 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1207 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1208 {
1209 /* If we are giving a name to a type such as "pointer to
1210 foo" or "function returning foo", we better not set
1211 the TYPE_NAME. If the program contains "typedef char
1212 *caddr_t;", we don't want all variables of type char
1213 * to print as caddr_t. This is not just a
1214 consequence of GDB's type management; PCC and GCC (at
1215 least through version 2.4) both output variables of
1216 either type char * or caddr_t with the type number
1217 defined in the 't' symbol for caddr_t. If a future
1218 compiler cleans this up it GDB is not ready for it
1219 yet, but if it becomes ready we somehow need to
1220 disable this check (without breaking the PCC/GCC2.4
1221 case).
1222
1223 Sigh.
1224
1225 Fortunately, this check seems not to be necessary
1226 for anything except pointers or functions. */
1227 /* ezannoni: 2000-10-26. This seems to apply for
1228 versions of gcc older than 2.8. This was the original
1229 problem: with the following code gdb would tell that
1230 the type for name1 is caddr_t, and func is char()
1231 typedef char *caddr_t;
1232 char *name2;
1233 struct x
1234 {
1235 char *name1;
1236 } xx;
1237 char *func()
1238 {
1239 }
1240 main () {}
1241 */
1242
1243 /* Pascal accepts names for pointer types. */
1244 if (current_subfile->language == language_pascal)
1245 {
1246 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1247 }
1248 }
1249 else
1250 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1251 }
1252
1253 add_symbol_to_list (sym, &file_symbols);
1254 break;
1255
1256 case 'T':
1257 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1258 by 't' which means we are typedef'ing it as well. */
1259 synonym = *p == 't';
1260
1261 if (synonym)
1262 p++;
1263
1264 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1265
1266 /* For a nameless type, we don't want a create a symbol, thus we
1267 did not use `sym'. Return without further processing. */
1268 if (nameless)
1269 return NULL;
1270
1271 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1272 SYMBOL_VALUE (sym) = valu;
1273 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1274 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1275 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1276 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1277 add_symbol_to_list (sym, &file_symbols);
1278
1279 if (synonym)
1280 {
1281 /* Clone the sym and then modify it. */
1282 struct symbol *typedef_sym = (struct symbol *)
1283 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1284 *typedef_sym = *sym;
1285 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1286 SYMBOL_VALUE (typedef_sym) = valu;
1287 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1288 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1289 TYPE_NAME (SYMBOL_TYPE (sym))
1290 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1291 add_symbol_to_list (typedef_sym, &file_symbols);
1292 }
1293 break;
1294
1295 case 'V':
1296 /* Static symbol of local scope */
1297 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1298 SYMBOL_CLASS (sym) = LOC_STATIC;
1299 SYMBOL_VALUE_ADDRESS (sym) = valu;
1300 #ifdef STATIC_TRANSFORM_NAME
1301 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1302 {
1303 struct minimal_symbol *msym;
1304 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1305 if (msym != NULL)
1306 {
1307 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1308 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1309 }
1310 }
1311 #endif
1312 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1313 add_symbol_to_list (sym, &local_symbols);
1314 break;
1315
1316 case 'v':
1317 /* Reference parameter */
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1319 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1320 SYMBOL_VALUE (sym) = valu;
1321 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1322 add_symbol_to_list (sym, &local_symbols);
1323 break;
1324
1325 case 'a':
1326 /* Reference parameter which is in a register. */
1327 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1328 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1329 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1330 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1331 {
1332 reg_value_complaint (SYMBOL_VALUE (sym),
1333 NUM_REGS + NUM_PSEUDO_REGS,
1334 SYMBOL_PRINT_NAME (sym));
1335 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1336 }
1337 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1338 add_symbol_to_list (sym, &local_symbols);
1339 break;
1340
1341 case 'X':
1342 /* This is used by Sun FORTRAN for "function result value".
1343 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1344 that Pascal uses it too, but when I tried it Pascal used
1345 "x:3" (local symbol) instead. */
1346 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1347 SYMBOL_CLASS (sym) = LOC_LOCAL;
1348 SYMBOL_VALUE (sym) = valu;
1349 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1350 add_symbol_to_list (sym, &local_symbols);
1351 break;
1352
1353 default:
1354 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1355 SYMBOL_CLASS (sym) = LOC_CONST;
1356 SYMBOL_VALUE (sym) = 0;
1357 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1358 add_symbol_to_list (sym, &file_symbols);
1359 break;
1360 }
1361
1362 /* Some systems pass variables of certain types by reference instead
1363 of by value, i.e. they will pass the address of a structure (in a
1364 register or on the stack) instead of the structure itself. */
1365
1366 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1367 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1368 {
1369 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1370 variables passed in a register). */
1371 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1372 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1373 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1374 and subsequent arguments on SPARC, for example). */
1375 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1376 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1377 }
1378
1379 return sym;
1380 }
1381
1382 /* Skip rest of this symbol and return an error type.
1383
1384 General notes on error recovery: error_type always skips to the
1385 end of the symbol (modulo cretinous dbx symbol name continuation).
1386 Thus code like this:
1387
1388 if (*(*pp)++ != ';')
1389 return error_type (pp, objfile);
1390
1391 is wrong because if *pp starts out pointing at '\0' (typically as the
1392 result of an earlier error), it will be incremented to point to the
1393 start of the next symbol, which might produce strange results, at least
1394 if you run off the end of the string table. Instead use
1395
1396 if (**pp != ';')
1397 return error_type (pp, objfile);
1398 ++*pp;
1399
1400 or
1401
1402 if (**pp != ';')
1403 foo = error_type (pp, objfile);
1404 else
1405 ++*pp;
1406
1407 And in case it isn't obvious, the point of all this hair is so the compiler
1408 can define new types and new syntaxes, and old versions of the
1409 debugger will be able to read the new symbol tables. */
1410
1411 static struct type *
1412 error_type (char **pp, struct objfile *objfile)
1413 {
1414 complaint (&symfile_complaints, "couldn't parse type; debugger out of date?");
1415 while (1)
1416 {
1417 /* Skip to end of symbol. */
1418 while (**pp != '\0')
1419 {
1420 (*pp)++;
1421 }
1422
1423 /* Check for and handle cretinous dbx symbol name continuation! */
1424 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1425 {
1426 *pp = next_symbol_text (objfile);
1427 }
1428 else
1429 {
1430 break;
1431 }
1432 }
1433 return (builtin_type_error);
1434 }
1435 \f
1436
1437 /* Read type information or a type definition; return the type. Even
1438 though this routine accepts either type information or a type
1439 definition, the distinction is relevant--some parts of stabsread.c
1440 assume that type information starts with a digit, '-', or '(' in
1441 deciding whether to call read_type. */
1442
1443 static struct type *
1444 read_type (char **pp, struct objfile *objfile)
1445 {
1446 struct type *type = 0;
1447 struct type *type1;
1448 int typenums[2];
1449 char type_descriptor;
1450
1451 /* Size in bits of type if specified by a type attribute, or -1 if
1452 there is no size attribute. */
1453 int type_size = -1;
1454
1455 /* Used to distinguish string and bitstring from char-array and set. */
1456 int is_string = 0;
1457
1458 /* Used to distinguish vector from array. */
1459 int is_vector = 0;
1460
1461 /* Read type number if present. The type number may be omitted.
1462 for instance in a two-dimensional array declared with type
1463 "ar1;1;10;ar1;1;10;4". */
1464 if ((**pp >= '0' && **pp <= '9')
1465 || **pp == '('
1466 || **pp == '-')
1467 {
1468 if (read_type_number (pp, typenums) != 0)
1469 return error_type (pp, objfile);
1470
1471 /* Type is not being defined here. Either it already exists,
1472 or this is a forward reference to it. dbx_alloc_type handles
1473 both cases. */
1474 if (**pp != '=')
1475 return dbx_alloc_type (typenums, objfile);
1476
1477 /* Type is being defined here. */
1478 /* Skip the '='.
1479 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1480 (*pp) += 2;
1481 }
1482 else
1483 {
1484 /* 'typenums=' not present, type is anonymous. Read and return
1485 the definition, but don't put it in the type vector. */
1486 typenums[0] = typenums[1] = -1;
1487 (*pp)++;
1488 }
1489
1490 again:
1491 type_descriptor = (*pp)[-1];
1492 switch (type_descriptor)
1493 {
1494 case 'x':
1495 {
1496 enum type_code code;
1497
1498 /* Used to index through file_symbols. */
1499 struct pending *ppt;
1500 int i;
1501
1502 /* Name including "struct", etc. */
1503 char *type_name;
1504
1505 {
1506 char *from, *to, *p, *q1, *q2;
1507
1508 /* Set the type code according to the following letter. */
1509 switch ((*pp)[0])
1510 {
1511 case 's':
1512 code = TYPE_CODE_STRUCT;
1513 break;
1514 case 'u':
1515 code = TYPE_CODE_UNION;
1516 break;
1517 case 'e':
1518 code = TYPE_CODE_ENUM;
1519 break;
1520 default:
1521 {
1522 /* Complain and keep going, so compilers can invent new
1523 cross-reference types. */
1524 complaint (&symfile_complaints,
1525 "Unrecognized cross-reference type `%c'", (*pp)[0]);
1526 code = TYPE_CODE_STRUCT;
1527 break;
1528 }
1529 }
1530
1531 q1 = strchr (*pp, '<');
1532 p = strchr (*pp, ':');
1533 if (p == NULL)
1534 return error_type (pp, objfile);
1535 if (q1 && p > q1 && p[1] == ':')
1536 {
1537 int nesting_level = 0;
1538 for (q2 = q1; *q2; q2++)
1539 {
1540 if (*q2 == '<')
1541 nesting_level++;
1542 else if (*q2 == '>')
1543 nesting_level--;
1544 else if (*q2 == ':' && nesting_level == 0)
1545 break;
1546 }
1547 p = q2;
1548 if (*p != ':')
1549 return error_type (pp, objfile);
1550 }
1551 to = type_name =
1552 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1553
1554 /* Copy the name. */
1555 from = *pp + 1;
1556 while (from < p)
1557 *to++ = *from++;
1558 *to = '\0';
1559
1560 /* Set the pointer ahead of the name which we just read, and
1561 the colon. */
1562 *pp = from + 1;
1563 }
1564
1565 /* Now check to see whether the type has already been
1566 declared. This was written for arrays of cross-referenced
1567 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1568 sure it is not necessary anymore. But it might be a good
1569 idea, to save a little memory. */
1570
1571 for (ppt = file_symbols; ppt; ppt = ppt->next)
1572 for (i = 0; i < ppt->nsyms; i++)
1573 {
1574 struct symbol *sym = ppt->symbol[i];
1575
1576 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1577 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1578 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1579 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1580 {
1581 obstack_free (&objfile->type_obstack, type_name);
1582 type = SYMBOL_TYPE (sym);
1583 return type;
1584 }
1585 }
1586
1587 /* Didn't find the type to which this refers, so we must
1588 be dealing with a forward reference. Allocate a type
1589 structure for it, and keep track of it so we can
1590 fill in the rest of the fields when we get the full
1591 type. */
1592 type = dbx_alloc_type (typenums, objfile);
1593 TYPE_CODE (type) = code;
1594 TYPE_TAG_NAME (type) = type_name;
1595 INIT_CPLUS_SPECIFIC (type);
1596 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1597
1598 add_undefined_type (type);
1599 return type;
1600 }
1601
1602 case '-': /* RS/6000 built-in type */
1603 case '0':
1604 case '1':
1605 case '2':
1606 case '3':
1607 case '4':
1608 case '5':
1609 case '6':
1610 case '7':
1611 case '8':
1612 case '9':
1613 case '(':
1614 (*pp)--;
1615
1616 /* We deal with something like t(1,2)=(3,4)=... which
1617 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1618
1619 /* Allocate and enter the typedef type first.
1620 This handles recursive types. */
1621 type = dbx_alloc_type (typenums, objfile);
1622 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1623 {
1624 struct type *xtype = read_type (pp, objfile);
1625 if (type == xtype)
1626 {
1627 /* It's being defined as itself. That means it is "void". */
1628 TYPE_CODE (type) = TYPE_CODE_VOID;
1629 TYPE_LENGTH (type) = 1;
1630 }
1631 else if (type_size >= 0 || is_string)
1632 {
1633 /* This is the absolute wrong way to construct types. Every
1634 other debug format has found a way around this problem and
1635 the related problems with unnecessarily stubbed types;
1636 someone motivated should attempt to clean up the issue
1637 here as well. Once a type pointed to has been created it
1638 should not be modified.
1639
1640 Well, it's not *absolutely* wrong. Constructing recursive
1641 types (trees, linked lists) necessarily entails modifying
1642 types after creating them. Constructing any loop structure
1643 entails side effects. The Dwarf 2 reader does handle this
1644 more gracefully (it never constructs more than once
1645 instance of a type object, so it doesn't have to copy type
1646 objects wholesale), but it still mutates type objects after
1647 other folks have references to them.
1648
1649 Keep in mind that this circularity/mutation issue shows up
1650 at the source language level, too: C's "incomplete types",
1651 for example. So the proper cleanup, I think, would be to
1652 limit GDB's type smashing to match exactly those required
1653 by the source language. So GDB could have a
1654 "complete_this_type" function, but never create unnecessary
1655 copies of a type otherwise. */
1656 replace_type (type, xtype);
1657 TYPE_NAME (type) = NULL;
1658 TYPE_TAG_NAME (type) = NULL;
1659 }
1660 else
1661 {
1662 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1663 TYPE_TARGET_TYPE (type) = xtype;
1664 }
1665 }
1666 break;
1667
1668 /* In the following types, we must be sure to overwrite any existing
1669 type that the typenums refer to, rather than allocating a new one
1670 and making the typenums point to the new one. This is because there
1671 may already be pointers to the existing type (if it had been
1672 forward-referenced), and we must change it to a pointer, function,
1673 reference, or whatever, *in-place*. */
1674
1675 case '*': /* Pointer to another type */
1676 type1 = read_type (pp, objfile);
1677 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1678 break;
1679
1680 case '&': /* Reference to another type */
1681 type1 = read_type (pp, objfile);
1682 type = make_reference_type (type1, dbx_lookup_type (typenums));
1683 break;
1684
1685 case 'f': /* Function returning another type */
1686 type1 = read_type (pp, objfile);
1687 type = make_function_type (type1, dbx_lookup_type (typenums));
1688 break;
1689
1690 case 'g': /* Prototyped function. (Sun) */
1691 {
1692 /* Unresolved questions:
1693
1694 - According to Sun's ``STABS Interface Manual'', for 'f'
1695 and 'F' symbol descriptors, a `0' in the argument type list
1696 indicates a varargs function. But it doesn't say how 'g'
1697 type descriptors represent that info. Someone with access
1698 to Sun's toolchain should try it out.
1699
1700 - According to the comment in define_symbol (search for
1701 `process_prototype_types:'), Sun emits integer arguments as
1702 types which ref themselves --- like `void' types. Do we
1703 have to deal with that here, too? Again, someone with
1704 access to Sun's toolchain should try it out and let us
1705 know. */
1706
1707 const char *type_start = (*pp) - 1;
1708 struct type *return_type = read_type (pp, objfile);
1709 struct type *func_type
1710 = make_function_type (return_type, dbx_lookup_type (typenums));
1711 struct type_list {
1712 struct type *type;
1713 struct type_list *next;
1714 } *arg_types = 0;
1715 int num_args = 0;
1716
1717 while (**pp && **pp != '#')
1718 {
1719 struct type *arg_type = read_type (pp, objfile);
1720 struct type_list *new = alloca (sizeof (*new));
1721 new->type = arg_type;
1722 new->next = arg_types;
1723 arg_types = new;
1724 num_args++;
1725 }
1726 if (**pp == '#')
1727 ++*pp;
1728 else
1729 {
1730 complaint (&symfile_complaints,
1731 "Prototyped function type didn't end arguments with `#':\n%s",
1732 type_start);
1733 }
1734
1735 /* If there is just one argument whose type is `void', then
1736 that's just an empty argument list. */
1737 if (arg_types
1738 && ! arg_types->next
1739 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1740 num_args = 0;
1741
1742 TYPE_FIELDS (func_type)
1743 = (struct field *) TYPE_ALLOC (func_type,
1744 num_args * sizeof (struct field));
1745 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1746 {
1747 int i;
1748 struct type_list *t;
1749
1750 /* We stuck each argument type onto the front of the list
1751 when we read it, so the list is reversed. Build the
1752 fields array right-to-left. */
1753 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1754 TYPE_FIELD_TYPE (func_type, i) = t->type;
1755 }
1756 TYPE_NFIELDS (func_type) = num_args;
1757 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1758
1759 type = func_type;
1760 break;
1761 }
1762
1763 case 'k': /* Const qualifier on some type (Sun) */
1764 type = read_type (pp, objfile);
1765 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1766 dbx_lookup_type (typenums));
1767 break;
1768
1769 case 'B': /* Volatile qual on some type (Sun) */
1770 type = read_type (pp, objfile);
1771 type = make_cv_type (TYPE_CONST (type), 1, type,
1772 dbx_lookup_type (typenums));
1773 break;
1774
1775 case '@':
1776 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1777 { /* Member (class & variable) type */
1778 /* FIXME -- we should be doing smash_to_XXX types here. */
1779
1780 struct type *domain = read_type (pp, objfile);
1781 struct type *memtype;
1782
1783 if (**pp != ',')
1784 /* Invalid member type data format. */
1785 return error_type (pp, objfile);
1786 ++*pp;
1787
1788 memtype = read_type (pp, objfile);
1789 type = dbx_alloc_type (typenums, objfile);
1790 smash_to_member_type (type, domain, memtype);
1791 }
1792 else
1793 /* type attribute */
1794 {
1795 char *attr = *pp;
1796 /* Skip to the semicolon. */
1797 while (**pp != ';' && **pp != '\0')
1798 ++(*pp);
1799 if (**pp == '\0')
1800 return error_type (pp, objfile);
1801 else
1802 ++ * pp; /* Skip the semicolon. */
1803
1804 switch (*attr)
1805 {
1806 case 's': /* Size attribute */
1807 type_size = atoi (attr + 1);
1808 if (type_size <= 0)
1809 type_size = -1;
1810 break;
1811
1812 case 'S': /* String attribute */
1813 /* FIXME: check to see if following type is array? */
1814 is_string = 1;
1815 break;
1816
1817 case 'V': /* Vector attribute */
1818 /* FIXME: check to see if following type is array? */
1819 is_vector = 1;
1820 break;
1821
1822 default:
1823 /* Ignore unrecognized type attributes, so future compilers
1824 can invent new ones. */
1825 break;
1826 }
1827 ++*pp;
1828 goto again;
1829 }
1830 break;
1831
1832 case '#': /* Method (class & fn) type */
1833 if ((*pp)[0] == '#')
1834 {
1835 /* We'll get the parameter types from the name. */
1836 struct type *return_type;
1837
1838 (*pp)++;
1839 return_type = read_type (pp, objfile);
1840 if (*(*pp)++ != ';')
1841 complaint (&symfile_complaints,
1842 "invalid (minimal) member type data format at symtab pos %d.",
1843 symnum);
1844 type = allocate_stub_method (return_type);
1845 if (typenums[0] != -1)
1846 *dbx_lookup_type (typenums) = type;
1847 }
1848 else
1849 {
1850 struct type *domain = read_type (pp, objfile);
1851 struct type *return_type;
1852 struct field *args;
1853 int nargs, varargs;
1854
1855 if (**pp != ',')
1856 /* Invalid member type data format. */
1857 return error_type (pp, objfile);
1858 else
1859 ++(*pp);
1860
1861 return_type = read_type (pp, objfile);
1862 args = read_args (pp, ';', objfile, &nargs, &varargs);
1863 type = dbx_alloc_type (typenums, objfile);
1864 smash_to_method_type (type, domain, return_type, args,
1865 nargs, varargs);
1866 }
1867 break;
1868
1869 case 'r': /* Range type */
1870 type = read_range_type (pp, typenums, objfile);
1871 if (typenums[0] != -1)
1872 *dbx_lookup_type (typenums) = type;
1873 break;
1874
1875 case 'b':
1876 {
1877 /* Sun ACC builtin int type */
1878 type = read_sun_builtin_type (pp, typenums, objfile);
1879 if (typenums[0] != -1)
1880 *dbx_lookup_type (typenums) = type;
1881 }
1882 break;
1883
1884 case 'R': /* Sun ACC builtin float type */
1885 type = read_sun_floating_type (pp, typenums, objfile);
1886 if (typenums[0] != -1)
1887 *dbx_lookup_type (typenums) = type;
1888 break;
1889
1890 case 'e': /* Enumeration type */
1891 type = dbx_alloc_type (typenums, objfile);
1892 type = read_enum_type (pp, type, objfile);
1893 if (typenums[0] != -1)
1894 *dbx_lookup_type (typenums) = type;
1895 break;
1896
1897 case 's': /* Struct type */
1898 case 'u': /* Union type */
1899 {
1900 enum type_code type_code = TYPE_CODE_UNDEF;
1901 type = dbx_alloc_type (typenums, objfile);
1902 switch (type_descriptor)
1903 {
1904 case 's':
1905 type_code = TYPE_CODE_STRUCT;
1906 break;
1907 case 'u':
1908 type_code = TYPE_CODE_UNION;
1909 break;
1910 }
1911 type = read_struct_type (pp, type, type_code, objfile);
1912 break;
1913 }
1914
1915 case 'a': /* Array type */
1916 if (**pp != 'r')
1917 return error_type (pp, objfile);
1918 ++*pp;
1919
1920 type = dbx_alloc_type (typenums, objfile);
1921 type = read_array_type (pp, type, objfile);
1922 if (is_string)
1923 TYPE_CODE (type) = TYPE_CODE_STRING;
1924 if (is_vector)
1925 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1926 break;
1927
1928 case 'S': /* Set or bitstring type */
1929 type1 = read_type (pp, objfile);
1930 type = create_set_type ((struct type *) NULL, type1);
1931 if (is_string)
1932 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1933 if (typenums[0] != -1)
1934 *dbx_lookup_type (typenums) = type;
1935 break;
1936
1937 default:
1938 --*pp; /* Go back to the symbol in error */
1939 /* Particularly important if it was \0! */
1940 return error_type (pp, objfile);
1941 }
1942
1943 if (type == 0)
1944 {
1945 warning ("GDB internal error, type is NULL in stabsread.c\n");
1946 return error_type (pp, objfile);
1947 }
1948
1949 /* Size specified in a type attribute overrides any other size. */
1950 if (type_size != -1)
1951 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1952
1953 return type;
1954 }
1955 \f
1956 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1957 Return the proper type node for a given builtin type number. */
1958
1959 static struct type *
1960 rs6000_builtin_type (int typenum)
1961 {
1962 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1963 #define NUMBER_RECOGNIZED 34
1964 /* This includes an empty slot for type number -0. */
1965 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1966 struct type *rettype = NULL;
1967
1968 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1969 {
1970 complaint (&symfile_complaints, "Unknown builtin type %d", typenum);
1971 return builtin_type_error;
1972 }
1973 if (negative_types[-typenum] != NULL)
1974 return negative_types[-typenum];
1975
1976 #if TARGET_CHAR_BIT != 8
1977 #error This code wrong for TARGET_CHAR_BIT not 8
1978 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1979 that if that ever becomes not true, the correct fix will be to
1980 make the size in the struct type to be in bits, not in units of
1981 TARGET_CHAR_BIT. */
1982 #endif
1983
1984 switch (-typenum)
1985 {
1986 case 1:
1987 /* The size of this and all the other types are fixed, defined
1988 by the debugging format. If there is a type called "int" which
1989 is other than 32 bits, then it should use a new negative type
1990 number (or avoid negative type numbers for that case).
1991 See stabs.texinfo. */
1992 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1993 break;
1994 case 2:
1995 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1996 break;
1997 case 3:
1998 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1999 break;
2000 case 4:
2001 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2002 break;
2003 case 5:
2004 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2005 "unsigned char", NULL);
2006 break;
2007 case 6:
2008 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2009 break;
2010 case 7:
2011 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2012 "unsigned short", NULL);
2013 break;
2014 case 8:
2015 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2016 "unsigned int", NULL);
2017 break;
2018 case 9:
2019 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2020 "unsigned", NULL);
2021 case 10:
2022 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2023 "unsigned long", NULL);
2024 break;
2025 case 11:
2026 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2027 break;
2028 case 12:
2029 /* IEEE single precision (32 bit). */
2030 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2031 break;
2032 case 13:
2033 /* IEEE double precision (64 bit). */
2034 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2035 break;
2036 case 14:
2037 /* This is an IEEE double on the RS/6000, and different machines with
2038 different sizes for "long double" should use different negative
2039 type numbers. See stabs.texinfo. */
2040 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2041 break;
2042 case 15:
2043 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2044 break;
2045 case 16:
2046 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2047 "boolean", NULL);
2048 break;
2049 case 17:
2050 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2051 break;
2052 case 18:
2053 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2054 break;
2055 case 19:
2056 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2057 break;
2058 case 20:
2059 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2060 "character", NULL);
2061 break;
2062 case 21:
2063 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2064 "logical*1", NULL);
2065 break;
2066 case 22:
2067 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2068 "logical*2", NULL);
2069 break;
2070 case 23:
2071 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2072 "logical*4", NULL);
2073 break;
2074 case 24:
2075 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2076 "logical", NULL);
2077 break;
2078 case 25:
2079 /* Complex type consisting of two IEEE single precision values. */
2080 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2081 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2082 NULL);
2083 break;
2084 case 26:
2085 /* Complex type consisting of two IEEE double precision values. */
2086 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2087 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2088 NULL);
2089 break;
2090 case 27:
2091 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2092 break;
2093 case 28:
2094 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2095 break;
2096 case 29:
2097 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2098 break;
2099 case 30:
2100 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2101 break;
2102 case 31:
2103 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2104 break;
2105 case 32:
2106 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2107 "unsigned long long", NULL);
2108 break;
2109 case 33:
2110 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2111 "logical*8", NULL);
2112 break;
2113 case 34:
2114 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2115 break;
2116 }
2117 negative_types[-typenum] = rettype;
2118 return rettype;
2119 }
2120 \f
2121 /* This page contains subroutines of read_type. */
2122
2123 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2124
2125 static void
2126 update_method_name_from_physname (char **old_name, char *physname)
2127 {
2128 char *method_name;
2129
2130 method_name = method_name_from_physname (physname);
2131
2132 if (method_name == NULL)
2133 {
2134 complaint (&symfile_complaints,
2135 "Method has bad physname %s\n", physname);
2136 return;
2137 }
2138
2139 if (strcmp (*old_name, method_name) != 0)
2140 {
2141 xfree (*old_name);
2142 *old_name = method_name;
2143 }
2144 else
2145 xfree (method_name);
2146 }
2147
2148 /* Read member function stabs info for C++ classes. The form of each member
2149 function data is:
2150
2151 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2152
2153 An example with two member functions is:
2154
2155 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2156
2157 For the case of overloaded operators, the format is op$::*.funcs, where
2158 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2159 name (such as `+=') and `.' marks the end of the operator name.
2160
2161 Returns 1 for success, 0 for failure. */
2162
2163 static int
2164 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2165 struct objfile *objfile)
2166 {
2167 int nfn_fields = 0;
2168 int length = 0;
2169 /* Total number of member functions defined in this class. If the class
2170 defines two `f' functions, and one `g' function, then this will have
2171 the value 3. */
2172 int total_length = 0;
2173 int i;
2174 struct next_fnfield
2175 {
2176 struct next_fnfield *next;
2177 struct fn_field fn_field;
2178 }
2179 *sublist;
2180 struct type *look_ahead_type;
2181 struct next_fnfieldlist *new_fnlist;
2182 struct next_fnfield *new_sublist;
2183 char *main_fn_name;
2184 char *p;
2185
2186 /* Process each list until we find something that is not a member function
2187 or find the end of the functions. */
2188
2189 while (**pp != ';')
2190 {
2191 /* We should be positioned at the start of the function name.
2192 Scan forward to find the first ':' and if it is not the
2193 first of a "::" delimiter, then this is not a member function. */
2194 p = *pp;
2195 while (*p != ':')
2196 {
2197 p++;
2198 }
2199 if (p[1] != ':')
2200 {
2201 break;
2202 }
2203
2204 sublist = NULL;
2205 look_ahead_type = NULL;
2206 length = 0;
2207
2208 new_fnlist = (struct next_fnfieldlist *)
2209 xmalloc (sizeof (struct next_fnfieldlist));
2210 make_cleanup (xfree, new_fnlist);
2211 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2212
2213 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2214 {
2215 /* This is a completely wierd case. In order to stuff in the
2216 names that might contain colons (the usual name delimiter),
2217 Mike Tiemann defined a different name format which is
2218 signalled if the identifier is "op$". In that case, the
2219 format is "op$::XXXX." where XXXX is the name. This is
2220 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2221 /* This lets the user type "break operator+".
2222 We could just put in "+" as the name, but that wouldn't
2223 work for "*". */
2224 static char opname[32] = "op$";
2225 char *o = opname + 3;
2226
2227 /* Skip past '::'. */
2228 *pp = p + 2;
2229
2230 STABS_CONTINUE (pp, objfile);
2231 p = *pp;
2232 while (*p != '.')
2233 {
2234 *o++ = *p++;
2235 }
2236 main_fn_name = savestring (opname, o - opname);
2237 /* Skip past '.' */
2238 *pp = p + 1;
2239 }
2240 else
2241 {
2242 main_fn_name = savestring (*pp, p - *pp);
2243 /* Skip past '::'. */
2244 *pp = p + 2;
2245 }
2246 new_fnlist->fn_fieldlist.name = main_fn_name;
2247
2248 do
2249 {
2250 new_sublist =
2251 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2252 make_cleanup (xfree, new_sublist);
2253 memset (new_sublist, 0, sizeof (struct next_fnfield));
2254
2255 /* Check for and handle cretinous dbx symbol name continuation! */
2256 if (look_ahead_type == NULL)
2257 {
2258 /* Normal case. */
2259 STABS_CONTINUE (pp, objfile);
2260
2261 new_sublist->fn_field.type = read_type (pp, objfile);
2262 if (**pp != ':')
2263 {
2264 /* Invalid symtab info for member function. */
2265 return 0;
2266 }
2267 }
2268 else
2269 {
2270 /* g++ version 1 kludge */
2271 new_sublist->fn_field.type = look_ahead_type;
2272 look_ahead_type = NULL;
2273 }
2274
2275 (*pp)++;
2276 p = *pp;
2277 while (*p != ';')
2278 {
2279 p++;
2280 }
2281
2282 /* If this is just a stub, then we don't have the real name here. */
2283
2284 if (TYPE_STUB (new_sublist->fn_field.type))
2285 {
2286 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2287 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2288 new_sublist->fn_field.is_stub = 1;
2289 }
2290 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2291 *pp = p + 1;
2292
2293 /* Set this member function's visibility fields. */
2294 switch (*(*pp)++)
2295 {
2296 case VISIBILITY_PRIVATE:
2297 new_sublist->fn_field.is_private = 1;
2298 break;
2299 case VISIBILITY_PROTECTED:
2300 new_sublist->fn_field.is_protected = 1;
2301 break;
2302 }
2303
2304 STABS_CONTINUE (pp, objfile);
2305 switch (**pp)
2306 {
2307 case 'A': /* Normal functions. */
2308 new_sublist->fn_field.is_const = 0;
2309 new_sublist->fn_field.is_volatile = 0;
2310 (*pp)++;
2311 break;
2312 case 'B': /* `const' member functions. */
2313 new_sublist->fn_field.is_const = 1;
2314 new_sublist->fn_field.is_volatile = 0;
2315 (*pp)++;
2316 break;
2317 case 'C': /* `volatile' member function. */
2318 new_sublist->fn_field.is_const = 0;
2319 new_sublist->fn_field.is_volatile = 1;
2320 (*pp)++;
2321 break;
2322 case 'D': /* `const volatile' member function. */
2323 new_sublist->fn_field.is_const = 1;
2324 new_sublist->fn_field.is_volatile = 1;
2325 (*pp)++;
2326 break;
2327 case '*': /* File compiled with g++ version 1 -- no info */
2328 case '?':
2329 case '.':
2330 break;
2331 default:
2332 complaint (&symfile_complaints,
2333 "const/volatile indicator missing, got '%c'", **pp);
2334 break;
2335 }
2336
2337 switch (*(*pp)++)
2338 {
2339 case '*':
2340 {
2341 int nbits;
2342 /* virtual member function, followed by index.
2343 The sign bit is set to distinguish pointers-to-methods
2344 from virtual function indicies. Since the array is
2345 in words, the quantity must be shifted left by 1
2346 on 16 bit machine, and by 2 on 32 bit machine, forcing
2347 the sign bit out, and usable as a valid index into
2348 the array. Remove the sign bit here. */
2349 new_sublist->fn_field.voffset =
2350 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2351 if (nbits != 0)
2352 return 0;
2353
2354 STABS_CONTINUE (pp, objfile);
2355 if (**pp == ';' || **pp == '\0')
2356 {
2357 /* Must be g++ version 1. */
2358 new_sublist->fn_field.fcontext = 0;
2359 }
2360 else
2361 {
2362 /* Figure out from whence this virtual function came.
2363 It may belong to virtual function table of
2364 one of its baseclasses. */
2365 look_ahead_type = read_type (pp, objfile);
2366 if (**pp == ':')
2367 {
2368 /* g++ version 1 overloaded methods. */
2369 }
2370 else
2371 {
2372 new_sublist->fn_field.fcontext = look_ahead_type;
2373 if (**pp != ';')
2374 {
2375 return 0;
2376 }
2377 else
2378 {
2379 ++*pp;
2380 }
2381 look_ahead_type = NULL;
2382 }
2383 }
2384 break;
2385 }
2386 case '?':
2387 /* static member function. */
2388 {
2389 int slen = strlen (main_fn_name);
2390
2391 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2392
2393 /* For static member functions, we can't tell if they
2394 are stubbed, as they are put out as functions, and not as
2395 methods.
2396 GCC v2 emits the fully mangled name if
2397 dbxout.c:flag_minimal_debug is not set, so we have to
2398 detect a fully mangled physname here and set is_stub
2399 accordingly. Fully mangled physnames in v2 start with
2400 the member function name, followed by two underscores.
2401 GCC v3 currently always emits stubbed member functions,
2402 but with fully mangled physnames, which start with _Z. */
2403 if (!(strncmp (new_sublist->fn_field.physname,
2404 main_fn_name, slen) == 0
2405 && new_sublist->fn_field.physname[slen] == '_'
2406 && new_sublist->fn_field.physname[slen + 1] == '_'))
2407 {
2408 new_sublist->fn_field.is_stub = 1;
2409 }
2410 break;
2411 }
2412
2413 default:
2414 /* error */
2415 complaint (&symfile_complaints,
2416 "member function type missing, got '%c'", (*pp)[-1]);
2417 /* Fall through into normal member function. */
2418
2419 case '.':
2420 /* normal member function. */
2421 new_sublist->fn_field.voffset = 0;
2422 new_sublist->fn_field.fcontext = 0;
2423 break;
2424 }
2425
2426 new_sublist->next = sublist;
2427 sublist = new_sublist;
2428 length++;
2429 STABS_CONTINUE (pp, objfile);
2430 }
2431 while (**pp != ';' && **pp != '\0');
2432
2433 (*pp)++;
2434 STABS_CONTINUE (pp, objfile);
2435
2436 /* Skip GCC 3.X member functions which are duplicates of the callable
2437 constructor/destructor. */
2438 if (strcmp (main_fn_name, "__base_ctor") == 0
2439 || strcmp (main_fn_name, "__base_dtor") == 0
2440 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2441 {
2442 xfree (main_fn_name);
2443 }
2444 else
2445 {
2446 int has_stub = 0;
2447 int has_destructor = 0, has_other = 0;
2448 int is_v3 = 0;
2449 struct next_fnfield *tmp_sublist;
2450
2451 /* Various versions of GCC emit various mostly-useless
2452 strings in the name field for special member functions.
2453
2454 For stub methods, we need to defer correcting the name
2455 until we are ready to unstub the method, because the current
2456 name string is used by gdb_mangle_name. The only stub methods
2457 of concern here are GNU v2 operators; other methods have their
2458 names correct (see caveat below).
2459
2460 For non-stub methods, in GNU v3, we have a complete physname.
2461 Therefore we can safely correct the name now. This primarily
2462 affects constructors and destructors, whose name will be
2463 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2464 operators will also have incorrect names; for instance,
2465 "operator int" will be named "operator i" (i.e. the type is
2466 mangled).
2467
2468 For non-stub methods in GNU v2, we have no easy way to
2469 know if we have a complete physname or not. For most
2470 methods the result depends on the platform (if CPLUS_MARKER
2471 can be `$' or `.', it will use minimal debug information, or
2472 otherwise the full physname will be included).
2473
2474 Rather than dealing with this, we take a different approach.
2475 For v3 mangled names, we can use the full physname; for v2,
2476 we use cplus_demangle_opname (which is actually v2 specific),
2477 because the only interesting names are all operators - once again
2478 barring the caveat below. Skip this process if any method in the
2479 group is a stub, to prevent our fouling up the workings of
2480 gdb_mangle_name.
2481
2482 The caveat: GCC 2.95.x (and earlier?) put constructors and
2483 destructors in the same method group. We need to split this
2484 into two groups, because they should have different names.
2485 So for each method group we check whether it contains both
2486 routines whose physname appears to be a destructor (the physnames
2487 for and destructors are always provided, due to quirks in v2
2488 mangling) and routines whose physname does not appear to be a
2489 destructor. If so then we break up the list into two halves.
2490 Even if the constructors and destructors aren't in the same group
2491 the destructor will still lack the leading tilde, so that also
2492 needs to be fixed.
2493
2494 So, to summarize what we expect and handle here:
2495
2496 Given Given Real Real Action
2497 method name physname physname method name
2498
2499 __opi [none] __opi__3Foo operator int opname
2500 [now or later]
2501 Foo _._3Foo _._3Foo ~Foo separate and
2502 rename
2503 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2504 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2505 */
2506
2507 tmp_sublist = sublist;
2508 while (tmp_sublist != NULL)
2509 {
2510 if (tmp_sublist->fn_field.is_stub)
2511 has_stub = 1;
2512 if (tmp_sublist->fn_field.physname[0] == '_'
2513 && tmp_sublist->fn_field.physname[1] == 'Z')
2514 is_v3 = 1;
2515
2516 if (is_destructor_name (tmp_sublist->fn_field.physname))
2517 has_destructor++;
2518 else
2519 has_other++;
2520
2521 tmp_sublist = tmp_sublist->next;
2522 }
2523
2524 if (has_destructor && has_other)
2525 {
2526 struct next_fnfieldlist *destr_fnlist;
2527 struct next_fnfield *last_sublist;
2528
2529 /* Create a new fn_fieldlist for the destructors. */
2530
2531 destr_fnlist = (struct next_fnfieldlist *)
2532 xmalloc (sizeof (struct next_fnfieldlist));
2533 make_cleanup (xfree, destr_fnlist);
2534 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2535 destr_fnlist->fn_fieldlist.name
2536 = obconcat (&objfile->type_obstack, "", "~",
2537 new_fnlist->fn_fieldlist.name);
2538
2539 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2540 obstack_alloc (&objfile->type_obstack,
2541 sizeof (struct fn_field) * has_destructor);
2542 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2543 sizeof (struct fn_field) * has_destructor);
2544 tmp_sublist = sublist;
2545 last_sublist = NULL;
2546 i = 0;
2547 while (tmp_sublist != NULL)
2548 {
2549 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2550 {
2551 tmp_sublist = tmp_sublist->next;
2552 continue;
2553 }
2554
2555 destr_fnlist->fn_fieldlist.fn_fields[i++]
2556 = tmp_sublist->fn_field;
2557 if (last_sublist)
2558 last_sublist->next = tmp_sublist->next;
2559 else
2560 sublist = tmp_sublist->next;
2561 last_sublist = tmp_sublist;
2562 tmp_sublist = tmp_sublist->next;
2563 }
2564
2565 destr_fnlist->fn_fieldlist.length = has_destructor;
2566 destr_fnlist->next = fip->fnlist;
2567 fip->fnlist = destr_fnlist;
2568 nfn_fields++;
2569 total_length += has_destructor;
2570 length -= has_destructor;
2571 }
2572 else if (is_v3)
2573 {
2574 /* v3 mangling prevents the use of abbreviated physnames,
2575 so we can do this here. There are stubbed methods in v3
2576 only:
2577 - in -gstabs instead of -gstabs+
2578 - or for static methods, which are output as a function type
2579 instead of a method type. */
2580
2581 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2582 sublist->fn_field.physname);
2583 }
2584 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2585 {
2586 new_fnlist->fn_fieldlist.name = concat ("~", main_fn_name, NULL);
2587 xfree (main_fn_name);
2588 }
2589 else if (!has_stub)
2590 {
2591 char dem_opname[256];
2592 int ret;
2593 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2594 dem_opname, DMGL_ANSI);
2595 if (!ret)
2596 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2597 dem_opname, 0);
2598 if (ret)
2599 new_fnlist->fn_fieldlist.name
2600 = obsavestring (dem_opname, strlen (dem_opname),
2601 &objfile->type_obstack);
2602 }
2603
2604 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2605 obstack_alloc (&objfile->type_obstack,
2606 sizeof (struct fn_field) * length);
2607 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2608 sizeof (struct fn_field) * length);
2609 for (i = length; (i--, sublist); sublist = sublist->next)
2610 {
2611 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2612 }
2613
2614 new_fnlist->fn_fieldlist.length = length;
2615 new_fnlist->next = fip->fnlist;
2616 fip->fnlist = new_fnlist;
2617 nfn_fields++;
2618 total_length += length;
2619 }
2620 }
2621
2622 if (nfn_fields)
2623 {
2624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2625 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2626 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2627 memset (TYPE_FN_FIELDLISTS (type), 0,
2628 sizeof (struct fn_fieldlist) * nfn_fields);
2629 TYPE_NFN_FIELDS (type) = nfn_fields;
2630 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2631 }
2632
2633 return 1;
2634 }
2635
2636 /* Special GNU C++ name.
2637
2638 Returns 1 for success, 0 for failure. "failure" means that we can't
2639 keep parsing and it's time for error_type(). */
2640
2641 static int
2642 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2643 struct objfile *objfile)
2644 {
2645 char *p;
2646 char *name;
2647 char cpp_abbrev;
2648 struct type *context;
2649
2650 p = *pp;
2651 if (*++p == 'v')
2652 {
2653 name = NULL;
2654 cpp_abbrev = *++p;
2655
2656 *pp = p + 1;
2657
2658 /* At this point, *pp points to something like "22:23=*22...",
2659 where the type number before the ':' is the "context" and
2660 everything after is a regular type definition. Lookup the
2661 type, find it's name, and construct the field name. */
2662
2663 context = read_type (pp, objfile);
2664
2665 switch (cpp_abbrev)
2666 {
2667 case 'f': /* $vf -- a virtual function table pointer */
2668 name = type_name_no_tag (context);
2669 if (name == NULL)
2670 {
2671 name = "";
2672 }
2673 fip->list->field.name =
2674 obconcat (&objfile->type_obstack, vptr_name, name, "");
2675 break;
2676
2677 case 'b': /* $vb -- a virtual bsomethingorother */
2678 name = type_name_no_tag (context);
2679 if (name == NULL)
2680 {
2681 complaint (&symfile_complaints,
2682 "C++ abbreviated type name unknown at symtab pos %d",
2683 symnum);
2684 name = "FOO";
2685 }
2686 fip->list->field.name =
2687 obconcat (&objfile->type_obstack, vb_name, name, "");
2688 break;
2689
2690 default:
2691 invalid_cpp_abbrev_complaint (*pp);
2692 fip->list->field.name =
2693 obconcat (&objfile->type_obstack,
2694 "INVALID_CPLUSPLUS_ABBREV", "", "");
2695 break;
2696 }
2697
2698 /* At this point, *pp points to the ':'. Skip it and read the
2699 field type. */
2700
2701 p = ++(*pp);
2702 if (p[-1] != ':')
2703 {
2704 invalid_cpp_abbrev_complaint (*pp);
2705 return 0;
2706 }
2707 fip->list->field.type = read_type (pp, objfile);
2708 if (**pp == ',')
2709 (*pp)++; /* Skip the comma. */
2710 else
2711 return 0;
2712
2713 {
2714 int nbits;
2715 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
2716 if (nbits != 0)
2717 return 0;
2718 }
2719 /* This field is unpacked. */
2720 FIELD_BITSIZE (fip->list->field) = 0;
2721 fip->list->visibility = VISIBILITY_PRIVATE;
2722 }
2723 else
2724 {
2725 invalid_cpp_abbrev_complaint (*pp);
2726 /* We have no idea what syntax an unrecognized abbrev would have, so
2727 better return 0. If we returned 1, we would need to at least advance
2728 *pp to avoid an infinite loop. */
2729 return 0;
2730 }
2731 return 1;
2732 }
2733
2734 static void
2735 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2736 struct type *type, struct objfile *objfile)
2737 {
2738 fip->list->field.name =
2739 obsavestring (*pp, p - *pp, &objfile->type_obstack);
2740 *pp = p + 1;
2741
2742 /* This means we have a visibility for a field coming. */
2743 if (**pp == '/')
2744 {
2745 (*pp)++;
2746 fip->list->visibility = *(*pp)++;
2747 }
2748 else
2749 {
2750 /* normal dbx-style format, no explicit visibility */
2751 fip->list->visibility = VISIBILITY_PUBLIC;
2752 }
2753
2754 fip->list->field.type = read_type (pp, objfile);
2755 if (**pp == ':')
2756 {
2757 p = ++(*pp);
2758 #if 0
2759 /* Possible future hook for nested types. */
2760 if (**pp == '!')
2761 {
2762 fip->list->field.bitpos = (long) -2; /* nested type */
2763 p = ++(*pp);
2764 }
2765 else
2766 ...;
2767 #endif
2768 while (*p != ';')
2769 {
2770 p++;
2771 }
2772 /* Static class member. */
2773 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2774 *pp = p + 1;
2775 return;
2776 }
2777 else if (**pp != ',')
2778 {
2779 /* Bad structure-type format. */
2780 stabs_general_complaint ("bad structure-type format");
2781 return;
2782 }
2783
2784 (*pp)++; /* Skip the comma. */
2785
2786 {
2787 int nbits;
2788 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
2789 if (nbits != 0)
2790 {
2791 stabs_general_complaint ("bad structure-type format");
2792 return;
2793 }
2794 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
2795 if (nbits != 0)
2796 {
2797 stabs_general_complaint ("bad structure-type format");
2798 return;
2799 }
2800 }
2801
2802 if (FIELD_BITPOS (fip->list->field) == 0
2803 && FIELD_BITSIZE (fip->list->field) == 0)
2804 {
2805 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2806 it is a field which has been optimized out. The correct stab for
2807 this case is to use VISIBILITY_IGNORE, but that is a recent
2808 invention. (2) It is a 0-size array. For example
2809 union { int num; char str[0]; } foo. Printing "<no value>" for
2810 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2811 will continue to work, and a 0-size array as a whole doesn't
2812 have any contents to print.
2813
2814 I suspect this probably could also happen with gcc -gstabs (not
2815 -gstabs+) for static fields, and perhaps other C++ extensions.
2816 Hopefully few people use -gstabs with gdb, since it is intended
2817 for dbx compatibility. */
2818
2819 /* Ignore this field. */
2820 fip->list->visibility = VISIBILITY_IGNORE;
2821 }
2822 else
2823 {
2824 /* Detect an unpacked field and mark it as such.
2825 dbx gives a bit size for all fields.
2826 Note that forward refs cannot be packed,
2827 and treat enums as if they had the width of ints. */
2828
2829 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2830
2831 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2832 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2833 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2834 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2835 {
2836 FIELD_BITSIZE (fip->list->field) = 0;
2837 }
2838 if ((FIELD_BITSIZE (fip->list->field)
2839 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2840 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2841 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2842 )
2843 &&
2844 FIELD_BITPOS (fip->list->field) % 8 == 0)
2845 {
2846 FIELD_BITSIZE (fip->list->field) = 0;
2847 }
2848 }
2849 }
2850
2851
2852 /* Read struct or class data fields. They have the form:
2853
2854 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2855
2856 At the end, we see a semicolon instead of a field.
2857
2858 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2859 a static field.
2860
2861 The optional VISIBILITY is one of:
2862
2863 '/0' (VISIBILITY_PRIVATE)
2864 '/1' (VISIBILITY_PROTECTED)
2865 '/2' (VISIBILITY_PUBLIC)
2866 '/9' (VISIBILITY_IGNORE)
2867
2868 or nothing, for C style fields with public visibility.
2869
2870 Returns 1 for success, 0 for failure. */
2871
2872 static int
2873 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2874 struct objfile *objfile)
2875 {
2876 char *p;
2877 struct nextfield *new;
2878
2879 /* We better set p right now, in case there are no fields at all... */
2880
2881 p = *pp;
2882
2883 /* Read each data member type until we find the terminating ';' at the end of
2884 the data member list, or break for some other reason such as finding the
2885 start of the member function list. */
2886 /* Stab string for structure/union does not end with two ';' in
2887 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2888
2889 while (**pp != ';' && **pp != '\0')
2890 {
2891 STABS_CONTINUE (pp, objfile);
2892 /* Get space to record the next field's data. */
2893 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2894 make_cleanup (xfree, new);
2895 memset (new, 0, sizeof (struct nextfield));
2896 new->next = fip->list;
2897 fip->list = new;
2898
2899 /* Get the field name. */
2900 p = *pp;
2901
2902 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2903 unless the CPLUS_MARKER is followed by an underscore, in
2904 which case it is just the name of an anonymous type, which we
2905 should handle like any other type name. */
2906
2907 if (is_cplus_marker (p[0]) && p[1] != '_')
2908 {
2909 if (!read_cpp_abbrev (fip, pp, type, objfile))
2910 return 0;
2911 continue;
2912 }
2913
2914 /* Look for the ':' that separates the field name from the field
2915 values. Data members are delimited by a single ':', while member
2916 functions are delimited by a pair of ':'s. When we hit the member
2917 functions (if any), terminate scan loop and return. */
2918
2919 while (*p != ':' && *p != '\0')
2920 {
2921 p++;
2922 }
2923 if (*p == '\0')
2924 return 0;
2925
2926 /* Check to see if we have hit the member functions yet. */
2927 if (p[1] == ':')
2928 {
2929 break;
2930 }
2931 read_one_struct_field (fip, pp, p, type, objfile);
2932 }
2933 if (p[0] == ':' && p[1] == ':')
2934 {
2935 /* (the deleted) chill the list of fields: the last entry (at
2936 the head) is a partially constructed entry which we now
2937 scrub. */
2938 fip->list = fip->list->next;
2939 }
2940 return 1;
2941 }
2942 /* *INDENT-OFF* */
2943 /* The stabs for C++ derived classes contain baseclass information which
2944 is marked by a '!' character after the total size. This function is
2945 called when we encounter the baseclass marker, and slurps up all the
2946 baseclass information.
2947
2948 Immediately following the '!' marker is the number of base classes that
2949 the class is derived from, followed by information for each base class.
2950 For each base class, there are two visibility specifiers, a bit offset
2951 to the base class information within the derived class, a reference to
2952 the type for the base class, and a terminating semicolon.
2953
2954 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2955 ^^ ^ ^ ^ ^ ^ ^
2956 Baseclass information marker __________________|| | | | | | |
2957 Number of baseclasses __________________________| | | | | | |
2958 Visibility specifiers (2) ________________________| | | | | |
2959 Offset in bits from start of class _________________| | | | |
2960 Type number for base class ___________________________| | | |
2961 Visibility specifiers (2) _______________________________| | |
2962 Offset in bits from start of class ________________________| |
2963 Type number of base class ____________________________________|
2964
2965 Return 1 for success, 0 for (error-type-inducing) failure. */
2966 /* *INDENT-ON* */
2967
2968
2969
2970 static int
2971 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2972 struct objfile *objfile)
2973 {
2974 int i;
2975 struct nextfield *new;
2976
2977 if (**pp != '!')
2978 {
2979 return 1;
2980 }
2981 else
2982 {
2983 /* Skip the '!' baseclass information marker. */
2984 (*pp)++;
2985 }
2986
2987 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2988 {
2989 int nbits;
2990 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2991 if (nbits != 0)
2992 return 0;
2993 }
2994
2995 #if 0
2996 /* Some stupid compilers have trouble with the following, so break
2997 it up into simpler expressions. */
2998 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2999 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3000 #else
3001 {
3002 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3003 char *pointer;
3004
3005 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3006 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3007 }
3008 #endif /* 0 */
3009
3010 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3011
3012 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3013 {
3014 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3015 make_cleanup (xfree, new);
3016 memset (new, 0, sizeof (struct nextfield));
3017 new->next = fip->list;
3018 fip->list = new;
3019 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3020
3021 STABS_CONTINUE (pp, objfile);
3022 switch (**pp)
3023 {
3024 case '0':
3025 /* Nothing to do. */
3026 break;
3027 case '1':
3028 SET_TYPE_FIELD_VIRTUAL (type, i);
3029 break;
3030 default:
3031 /* Unknown character. Complain and treat it as non-virtual. */
3032 {
3033 complaint (&symfile_complaints,
3034 "Unknown virtual character `%c' for baseclass", **pp);
3035 }
3036 }
3037 ++(*pp);
3038
3039 new->visibility = *(*pp)++;
3040 switch (new->visibility)
3041 {
3042 case VISIBILITY_PRIVATE:
3043 case VISIBILITY_PROTECTED:
3044 case VISIBILITY_PUBLIC:
3045 break;
3046 default:
3047 /* Bad visibility format. Complain and treat it as
3048 public. */
3049 {
3050 complaint (&symfile_complaints,
3051 "Unknown visibility `%c' for baseclass",
3052 new->visibility);
3053 new->visibility = VISIBILITY_PUBLIC;
3054 }
3055 }
3056
3057 {
3058 int nbits;
3059
3060 /* The remaining value is the bit offset of the portion of the object
3061 corresponding to this baseclass. Always zero in the absence of
3062 multiple inheritance. */
3063
3064 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3065 if (nbits != 0)
3066 return 0;
3067 }
3068
3069 /* The last piece of baseclass information is the type of the
3070 base class. Read it, and remember it's type name as this
3071 field's name. */
3072
3073 new->field.type = read_type (pp, objfile);
3074 new->field.name = type_name_no_tag (new->field.type);
3075
3076 /* skip trailing ';' and bump count of number of fields seen */
3077 if (**pp == ';')
3078 (*pp)++;
3079 else
3080 return 0;
3081 }
3082 return 1;
3083 }
3084
3085 /* The tail end of stabs for C++ classes that contain a virtual function
3086 pointer contains a tilde, a %, and a type number.
3087 The type number refers to the base class (possibly this class itself) which
3088 contains the vtable pointer for the current class.
3089
3090 This function is called when we have parsed all the method declarations,
3091 so we can look for the vptr base class info. */
3092
3093 static int
3094 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3095 struct objfile *objfile)
3096 {
3097 char *p;
3098
3099 STABS_CONTINUE (pp, objfile);
3100
3101 /* If we are positioned at a ';', then skip it. */
3102 if (**pp == ';')
3103 {
3104 (*pp)++;
3105 }
3106
3107 if (**pp == '~')
3108 {
3109 (*pp)++;
3110
3111 if (**pp == '=' || **pp == '+' || **pp == '-')
3112 {
3113 /* Obsolete flags that used to indicate the presence
3114 of constructors and/or destructors. */
3115 (*pp)++;
3116 }
3117
3118 /* Read either a '%' or the final ';'. */
3119 if (*(*pp)++ == '%')
3120 {
3121 /* The next number is the type number of the base class
3122 (possibly our own class) which supplies the vtable for
3123 this class. Parse it out, and search that class to find
3124 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3125 and TYPE_VPTR_FIELDNO. */
3126
3127 struct type *t;
3128 int i;
3129
3130 t = read_type (pp, objfile);
3131 p = (*pp)++;
3132 while (*p != '\0' && *p != ';')
3133 {
3134 p++;
3135 }
3136 if (*p == '\0')
3137 {
3138 /* Premature end of symbol. */
3139 return 0;
3140 }
3141
3142 TYPE_VPTR_BASETYPE (type) = t;
3143 if (type == t) /* Our own class provides vtbl ptr */
3144 {
3145 for (i = TYPE_NFIELDS (t) - 1;
3146 i >= TYPE_N_BASECLASSES (t);
3147 --i)
3148 {
3149 char *name = TYPE_FIELD_NAME (t, i);
3150 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3151 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3152 {
3153 TYPE_VPTR_FIELDNO (type) = i;
3154 goto gotit;
3155 }
3156 }
3157 /* Virtual function table field not found. */
3158 complaint (&symfile_complaints,
3159 "virtual function table pointer not found when defining class `%s'",
3160 TYPE_NAME (type));
3161 return 0;
3162 }
3163 else
3164 {
3165 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3166 }
3167
3168 gotit:
3169 *pp = p + 1;
3170 }
3171 }
3172 return 1;
3173 }
3174
3175 static int
3176 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3177 {
3178 int n;
3179
3180 for (n = TYPE_NFN_FIELDS (type);
3181 fip->fnlist != NULL;
3182 fip->fnlist = fip->fnlist->next)
3183 {
3184 --n; /* Circumvent Sun3 compiler bug */
3185 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3186 }
3187 return 1;
3188 }
3189
3190 /* Create the vector of fields, and record how big it is.
3191 We need this info to record proper virtual function table information
3192 for this class's virtual functions. */
3193
3194 static int
3195 attach_fields_to_type (struct field_info *fip, struct type *type,
3196 struct objfile *objfile)
3197 {
3198 int nfields = 0;
3199 int non_public_fields = 0;
3200 struct nextfield *scan;
3201
3202 /* Count up the number of fields that we have, as well as taking note of
3203 whether or not there are any non-public fields, which requires us to
3204 allocate and build the private_field_bits and protected_field_bits
3205 bitfields. */
3206
3207 for (scan = fip->list; scan != NULL; scan = scan->next)
3208 {
3209 nfields++;
3210 if (scan->visibility != VISIBILITY_PUBLIC)
3211 {
3212 non_public_fields++;
3213 }
3214 }
3215
3216 /* Now we know how many fields there are, and whether or not there are any
3217 non-public fields. Record the field count, allocate space for the
3218 array of fields, and create blank visibility bitfields if necessary. */
3219
3220 TYPE_NFIELDS (type) = nfields;
3221 TYPE_FIELDS (type) = (struct field *)
3222 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3223 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3224
3225 if (non_public_fields)
3226 {
3227 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3228
3229 TYPE_FIELD_PRIVATE_BITS (type) =
3230 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3231 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3232
3233 TYPE_FIELD_PROTECTED_BITS (type) =
3234 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3235 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3236
3237 TYPE_FIELD_IGNORE_BITS (type) =
3238 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3239 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3240 }
3241
3242 /* Copy the saved-up fields into the field vector. Start from the head
3243 of the list, adding to the tail of the field array, so that they end
3244 up in the same order in the array in which they were added to the list. */
3245
3246 while (nfields-- > 0)
3247 {
3248 TYPE_FIELD (type, nfields) = fip->list->field;
3249 switch (fip->list->visibility)
3250 {
3251 case VISIBILITY_PRIVATE:
3252 SET_TYPE_FIELD_PRIVATE (type, nfields);
3253 break;
3254
3255 case VISIBILITY_PROTECTED:
3256 SET_TYPE_FIELD_PROTECTED (type, nfields);
3257 break;
3258
3259 case VISIBILITY_IGNORE:
3260 SET_TYPE_FIELD_IGNORE (type, nfields);
3261 break;
3262
3263 case VISIBILITY_PUBLIC:
3264 break;
3265
3266 default:
3267 /* Unknown visibility. Complain and treat it as public. */
3268 {
3269 complaint (&symfile_complaints, "Unknown visibility `%c' for field",
3270 fip->list->visibility);
3271 }
3272 break;
3273 }
3274 fip->list = fip->list->next;
3275 }
3276 return 1;
3277 }
3278
3279
3280 /* Complain that the compiler has emitted more than one definition for the
3281 structure type TYPE. */
3282 static void
3283 complain_about_struct_wipeout (struct type *type)
3284 {
3285 char *name = "";
3286 char *kind = "";
3287
3288 if (TYPE_TAG_NAME (type))
3289 {
3290 name = TYPE_TAG_NAME (type);
3291 switch (TYPE_CODE (type))
3292 {
3293 case TYPE_CODE_STRUCT: kind = "struct "; break;
3294 case TYPE_CODE_UNION: kind = "union "; break;
3295 case TYPE_CODE_ENUM: kind = "enum "; break;
3296 default: kind = "";
3297 }
3298 }
3299 else if (TYPE_NAME (type))
3300 {
3301 name = TYPE_NAME (type);
3302 kind = "";
3303 }
3304 else
3305 {
3306 name = "<unknown>";
3307 kind = "";
3308 }
3309
3310 complaint (&symfile_complaints,
3311 "struct/union type gets multiply defined: %s%s", kind, name);
3312 }
3313
3314
3315 /* Read the description of a structure (or union type) and return an object
3316 describing the type.
3317
3318 PP points to a character pointer that points to the next unconsumed token
3319 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3320 *PP will point to "4a:1,0,32;;".
3321
3322 TYPE points to an incomplete type that needs to be filled in.
3323
3324 OBJFILE points to the current objfile from which the stabs information is
3325 being read. (Note that it is redundant in that TYPE also contains a pointer
3326 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3327 */
3328
3329 static struct type *
3330 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3331 struct objfile *objfile)
3332 {
3333 struct cleanup *back_to;
3334 struct field_info fi;
3335
3336 fi.list = NULL;
3337 fi.fnlist = NULL;
3338
3339 /* When describing struct/union/class types in stabs, G++ always drops
3340 all qualifications from the name. So if you've got:
3341 struct A { ... struct B { ... }; ... };
3342 then G++ will emit stabs for `struct A::B' that call it simply
3343 `struct B'. Obviously, if you've got a real top-level definition for
3344 `struct B', or other nested definitions, this is going to cause
3345 problems.
3346
3347 Obviously, GDB can't fix this by itself, but it can at least avoid
3348 scribbling on existing structure type objects when new definitions
3349 appear. */
3350 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3351 || TYPE_STUB (type)))
3352 {
3353 complain_about_struct_wipeout (type);
3354
3355 /* It's probably best to return the type unchanged. */
3356 return type;
3357 }
3358
3359 back_to = make_cleanup (null_cleanup, 0);
3360
3361 INIT_CPLUS_SPECIFIC (type);
3362 TYPE_CODE (type) = type_code;
3363 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3364
3365 /* First comes the total size in bytes. */
3366
3367 {
3368 int nbits;
3369 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
3370 if (nbits != 0)
3371 return error_type (pp, objfile);
3372 }
3373
3374 /* Now read the baseclasses, if any, read the regular C struct or C++
3375 class member fields, attach the fields to the type, read the C++
3376 member functions, attach them to the type, and then read any tilde
3377 field (baseclass specifier for the class holding the main vtable). */
3378
3379 if (!read_baseclasses (&fi, pp, type, objfile)
3380 || !read_struct_fields (&fi, pp, type, objfile)
3381 || !attach_fields_to_type (&fi, type, objfile)
3382 || !read_member_functions (&fi, pp, type, objfile)
3383 || !attach_fn_fields_to_type (&fi, type)
3384 || !read_tilde_fields (&fi, pp, type, objfile))
3385 {
3386 type = error_type (pp, objfile);
3387 }
3388
3389 do_cleanups (back_to);
3390 return (type);
3391 }
3392
3393 /* Read a definition of an array type,
3394 and create and return a suitable type object.
3395 Also creates a range type which represents the bounds of that
3396 array. */
3397
3398 static struct type *
3399 read_array_type (char **pp, struct type *type,
3400 struct objfile *objfile)
3401 {
3402 struct type *index_type, *element_type, *range_type;
3403 int lower, upper;
3404 int adjustable = 0;
3405 int nbits;
3406
3407 /* Format of an array type:
3408 "ar<index type>;lower;upper;<array_contents_type>".
3409 OS9000: "arlower,upper;<array_contents_type>".
3410
3411 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3412 for these, produce a type like float[][]. */
3413
3414 {
3415 index_type = read_type (pp, objfile);
3416 if (**pp != ';')
3417 /* Improper format of array type decl. */
3418 return error_type (pp, objfile);
3419 ++*pp;
3420 }
3421
3422 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3423 {
3424 (*pp)++;
3425 adjustable = 1;
3426 }
3427 lower = read_huge_number (pp, ';', &nbits);
3428
3429 if (nbits != 0)
3430 return error_type (pp, objfile);
3431
3432 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3433 {
3434 (*pp)++;
3435 adjustable = 1;
3436 }
3437 upper = read_huge_number (pp, ';', &nbits);
3438 if (nbits != 0)
3439 return error_type (pp, objfile);
3440
3441 element_type = read_type (pp, objfile);
3442
3443 if (adjustable)
3444 {
3445 lower = 0;
3446 upper = -1;
3447 }
3448
3449 range_type =
3450 create_range_type ((struct type *) NULL, index_type, lower, upper);
3451 type = create_array_type (type, element_type, range_type);
3452
3453 return type;
3454 }
3455
3456
3457 /* Read a definition of an enumeration type,
3458 and create and return a suitable type object.
3459 Also defines the symbols that represent the values of the type. */
3460
3461 static struct type *
3462 read_enum_type (char **pp, struct type *type,
3463 struct objfile *objfile)
3464 {
3465 char *p;
3466 char *name;
3467 long n;
3468 struct symbol *sym;
3469 int nsyms = 0;
3470 struct pending **symlist;
3471 struct pending *osyms, *syms;
3472 int o_nsyms;
3473 int nbits;
3474 int unsigned_enum = 1;
3475
3476 #if 0
3477 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3478 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3479 to do? For now, force all enum values to file scope. */
3480 if (within_function)
3481 symlist = &local_symbols;
3482 else
3483 #endif
3484 symlist = &file_symbols;
3485 osyms = *symlist;
3486 o_nsyms = osyms ? osyms->nsyms : 0;
3487
3488 /* The aix4 compiler emits an extra field before the enum members;
3489 my guess is it's a type of some sort. Just ignore it. */
3490 if (**pp == '-')
3491 {
3492 /* Skip over the type. */
3493 while (**pp != ':')
3494 (*pp)++;
3495
3496 /* Skip over the colon. */
3497 (*pp)++;
3498 }
3499
3500 /* Read the value-names and their values.
3501 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3502 A semicolon or comma instead of a NAME means the end. */
3503 while (**pp && **pp != ';' && **pp != ',')
3504 {
3505 STABS_CONTINUE (pp, objfile);
3506 p = *pp;
3507 while (*p != ':')
3508 p++;
3509 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
3510 *pp = p + 1;
3511 n = read_huge_number (pp, ',', &nbits);
3512 if (nbits != 0)
3513 return error_type (pp, objfile);
3514
3515 sym = (struct symbol *)
3516 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3517 memset (sym, 0, sizeof (struct symbol));
3518 DEPRECATED_SYMBOL_NAME (sym) = name;
3519 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3520 SYMBOL_CLASS (sym) = LOC_CONST;
3521 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3522 SYMBOL_VALUE (sym) = n;
3523 if (n < 0)
3524 unsigned_enum = 0;
3525 add_symbol_to_list (sym, symlist);
3526 nsyms++;
3527 }
3528
3529 if (**pp == ';')
3530 (*pp)++; /* Skip the semicolon. */
3531
3532 /* Now fill in the fields of the type-structure. */
3533
3534 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3535 TYPE_CODE (type) = TYPE_CODE_ENUM;
3536 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3537 if (unsigned_enum)
3538 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3539 TYPE_NFIELDS (type) = nsyms;
3540 TYPE_FIELDS (type) = (struct field *)
3541 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3542 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3543
3544 /* Find the symbols for the values and put them into the type.
3545 The symbols can be found in the symlist that we put them on
3546 to cause them to be defined. osyms contains the old value
3547 of that symlist; everything up to there was defined by us. */
3548 /* Note that we preserve the order of the enum constants, so
3549 that in something like "enum {FOO, LAST_THING=FOO}" we print
3550 FOO, not LAST_THING. */
3551
3552 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3553 {
3554 int last = syms == osyms ? o_nsyms : 0;
3555 int j = syms->nsyms;
3556 for (; --j >= last; --n)
3557 {
3558 struct symbol *xsym = syms->symbol[j];
3559 SYMBOL_TYPE (xsym) = type;
3560 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3561 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3562 TYPE_FIELD_BITSIZE (type, n) = 0;
3563 }
3564 if (syms == osyms)
3565 break;
3566 }
3567
3568 return type;
3569 }
3570
3571 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3572 typedefs in every file (for int, long, etc):
3573
3574 type = b <signed> <width> <format type>; <offset>; <nbits>
3575 signed = u or s.
3576 optional format type = c or b for char or boolean.
3577 offset = offset from high order bit to start bit of type.
3578 width is # bytes in object of this type, nbits is # bits in type.
3579
3580 The width/offset stuff appears to be for small objects stored in
3581 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3582 FIXME. */
3583
3584 static struct type *
3585 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3586 {
3587 int type_bits;
3588 int nbits;
3589 int signed_type;
3590 enum type_code code = TYPE_CODE_INT;
3591
3592 switch (**pp)
3593 {
3594 case 's':
3595 signed_type = 1;
3596 break;
3597 case 'u':
3598 signed_type = 0;
3599 break;
3600 default:
3601 return error_type (pp, objfile);
3602 }
3603 (*pp)++;
3604
3605 /* For some odd reason, all forms of char put a c here. This is strange
3606 because no other type has this honor. We can safely ignore this because
3607 we actually determine 'char'acterness by the number of bits specified in
3608 the descriptor.
3609 Boolean forms, e.g Fortran logical*X, put a b here. */
3610
3611 if (**pp == 'c')
3612 (*pp)++;
3613 else if (**pp == 'b')
3614 {
3615 code = TYPE_CODE_BOOL;
3616 (*pp)++;
3617 }
3618
3619 /* The first number appears to be the number of bytes occupied
3620 by this type, except that unsigned short is 4 instead of 2.
3621 Since this information is redundant with the third number,
3622 we will ignore it. */
3623 read_huge_number (pp, ';', &nbits);
3624 if (nbits != 0)
3625 return error_type (pp, objfile);
3626
3627 /* The second number is always 0, so ignore it too. */
3628 read_huge_number (pp, ';', &nbits);
3629 if (nbits != 0)
3630 return error_type (pp, objfile);
3631
3632 /* The third number is the number of bits for this type. */
3633 type_bits = read_huge_number (pp, 0, &nbits);
3634 if (nbits != 0)
3635 return error_type (pp, objfile);
3636 /* The type *should* end with a semicolon. If it are embedded
3637 in a larger type the semicolon may be the only way to know where
3638 the type ends. If this type is at the end of the stabstring we
3639 can deal with the omitted semicolon (but we don't have to like
3640 it). Don't bother to complain(), Sun's compiler omits the semicolon
3641 for "void". */
3642 if (**pp == ';')
3643 ++(*pp);
3644
3645 if (type_bits == 0)
3646 return init_type (TYPE_CODE_VOID, 1,
3647 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3648 objfile);
3649 else
3650 return init_type (code,
3651 type_bits / TARGET_CHAR_BIT,
3652 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3653 objfile);
3654 }
3655
3656 static struct type *
3657 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3658 {
3659 int nbits;
3660 int details;
3661 int nbytes;
3662 struct type *rettype;
3663
3664 /* The first number has more details about the type, for example
3665 FN_COMPLEX. */
3666 details = read_huge_number (pp, ';', &nbits);
3667 if (nbits != 0)
3668 return error_type (pp, objfile);
3669
3670 /* The second number is the number of bytes occupied by this type */
3671 nbytes = read_huge_number (pp, ';', &nbits);
3672 if (nbits != 0)
3673 return error_type (pp, objfile);
3674
3675 if (details == NF_COMPLEX || details == NF_COMPLEX16
3676 || details == NF_COMPLEX32)
3677 {
3678 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3679 TYPE_TARGET_TYPE (rettype)
3680 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3681 return rettype;
3682 }
3683
3684 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3685 }
3686
3687 /* Read a number from the string pointed to by *PP.
3688 The value of *PP is advanced over the number.
3689 If END is nonzero, the character that ends the
3690 number must match END, or an error happens;
3691 and that character is skipped if it does match.
3692 If END is zero, *PP is left pointing to that character.
3693
3694 If the number fits in a long, set *BITS to 0 and return the value.
3695 If not, set *BITS to be the number of bits in the number and return 0.
3696
3697 If encounter garbage, set *BITS to -1 and return 0. */
3698
3699 static long
3700 read_huge_number (char **pp, int end, int *bits)
3701 {
3702 char *p = *pp;
3703 int sign = 1;
3704 long n = 0;
3705 int radix = 10;
3706 char overflow = 0;
3707 int nbits = 0;
3708 int c;
3709 long upper_limit;
3710
3711 if (*p == '-')
3712 {
3713 sign = -1;
3714 p++;
3715 }
3716
3717 /* Leading zero means octal. GCC uses this to output values larger
3718 than an int (because that would be hard in decimal). */
3719 if (*p == '0')
3720 {
3721 radix = 8;
3722 p++;
3723 }
3724
3725 upper_limit = LONG_MAX / radix;
3726
3727 while ((c = *p++) >= '0' && c < ('0' + radix))
3728 {
3729 if (n <= upper_limit)
3730 {
3731 n *= radix;
3732 n += c - '0'; /* FIXME this overflows anyway */
3733 }
3734 else
3735 overflow = 1;
3736
3737 /* This depends on large values being output in octal, which is
3738 what GCC does. */
3739 if (radix == 8)
3740 {
3741 if (nbits == 0)
3742 {
3743 if (c == '0')
3744 /* Ignore leading zeroes. */
3745 ;
3746 else if (c == '1')
3747 nbits = 1;
3748 else if (c == '2' || c == '3')
3749 nbits = 2;
3750 else
3751 nbits = 3;
3752 }
3753 else
3754 nbits += 3;
3755 }
3756 }
3757 if (end)
3758 {
3759 if (c && c != end)
3760 {
3761 if (bits != NULL)
3762 *bits = -1;
3763 return 0;
3764 }
3765 }
3766 else
3767 --p;
3768
3769 *pp = p;
3770 if (overflow)
3771 {
3772 if (nbits == 0)
3773 {
3774 /* Large decimal constants are an error (because it is hard to
3775 count how many bits are in them). */
3776 if (bits != NULL)
3777 *bits = -1;
3778 return 0;
3779 }
3780
3781 /* -0x7f is the same as 0x80. So deal with it by adding one to
3782 the number of bits. */
3783 if (sign == -1)
3784 ++nbits;
3785 if (bits)
3786 *bits = nbits;
3787 }
3788 else
3789 {
3790 if (bits)
3791 *bits = 0;
3792 return n * sign;
3793 }
3794 /* It's *BITS which has the interesting information. */
3795 return 0;
3796 }
3797
3798 static struct type *
3799 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
3800 {
3801 char *orig_pp = *pp;
3802 int rangenums[2];
3803 long n2, n3;
3804 int n2bits, n3bits;
3805 int self_subrange;
3806 struct type *result_type;
3807 struct type *index_type = NULL;
3808
3809 /* First comes a type we are a subrange of.
3810 In C it is usually 0, 1 or the type being defined. */
3811 if (read_type_number (pp, rangenums) != 0)
3812 return error_type (pp, objfile);
3813 self_subrange = (rangenums[0] == typenums[0] &&
3814 rangenums[1] == typenums[1]);
3815
3816 if (**pp == '=')
3817 {
3818 *pp = orig_pp;
3819 index_type = read_type (pp, objfile);
3820 }
3821
3822 /* A semicolon should now follow; skip it. */
3823 if (**pp == ';')
3824 (*pp)++;
3825
3826 /* The remaining two operands are usually lower and upper bounds
3827 of the range. But in some special cases they mean something else. */
3828 n2 = read_huge_number (pp, ';', &n2bits);
3829 n3 = read_huge_number (pp, ';', &n3bits);
3830
3831 if (n2bits == -1 || n3bits == -1)
3832 return error_type (pp, objfile);
3833
3834 if (index_type)
3835 goto handle_true_range;
3836
3837 /* If limits are huge, must be large integral type. */
3838 if (n2bits != 0 || n3bits != 0)
3839 {
3840 char got_signed = 0;
3841 char got_unsigned = 0;
3842 /* Number of bits in the type. */
3843 int nbits = 0;
3844
3845 /* Range from 0 to <large number> is an unsigned large integral type. */
3846 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3847 {
3848 got_unsigned = 1;
3849 nbits = n3bits;
3850 }
3851 /* Range from <large number> to <large number>-1 is a large signed
3852 integral type. Take care of the case where <large number> doesn't
3853 fit in a long but <large number>-1 does. */
3854 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3855 || (n2bits != 0 && n3bits == 0
3856 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3857 && n3 == LONG_MAX))
3858 {
3859 got_signed = 1;
3860 nbits = n2bits;
3861 }
3862
3863 if (got_signed || got_unsigned)
3864 {
3865 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3866 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3867 objfile);
3868 }
3869 else
3870 return error_type (pp, objfile);
3871 }
3872
3873 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3874 if (self_subrange && n2 == 0 && n3 == 0)
3875 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3876
3877 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3878 is the width in bytes.
3879
3880 Fortran programs appear to use this for complex types also. To
3881 distinguish between floats and complex, g77 (and others?) seem
3882 to use self-subranges for the complexes, and subranges of int for
3883 the floats.
3884
3885 Also note that for complexes, g77 sets n2 to the size of one of
3886 the member floats, not the whole complex beast. My guess is that
3887 this was to work well with pre-COMPLEX versions of gdb. */
3888
3889 if (n3 == 0 && n2 > 0)
3890 {
3891 struct type *float_type
3892 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3893
3894 if (self_subrange)
3895 {
3896 struct type *complex_type =
3897 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3898 TYPE_TARGET_TYPE (complex_type) = float_type;
3899 return complex_type;
3900 }
3901 else
3902 return float_type;
3903 }
3904
3905 /* If the upper bound is -1, it must really be an unsigned int. */
3906
3907 else if (n2 == 0 && n3 == -1)
3908 {
3909 /* It is unsigned int or unsigned long. */
3910 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3911 compatibility hack. */
3912 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3913 TYPE_FLAG_UNSIGNED, NULL, objfile);
3914 }
3915
3916 /* Special case: char is defined (Who knows why) as a subrange of
3917 itself with range 0-127. */
3918 else if (self_subrange && n2 == 0 && n3 == 127)
3919 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3920
3921 /* We used to do this only for subrange of self or subrange of int. */
3922 else if (n2 == 0)
3923 {
3924 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3925 "unsigned long", and we already checked for that,
3926 so don't need to test for it here. */
3927
3928 if (n3 < 0)
3929 /* n3 actually gives the size. */
3930 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3931 NULL, objfile);
3932
3933 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3934 unsigned n-byte integer. But do require n to be a power of
3935 two; we don't want 3- and 5-byte integers flying around. */
3936 {
3937 int bytes;
3938 unsigned long bits;
3939
3940 bits = n3;
3941 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3942 bits >>= 8;
3943 if (bits == 0
3944 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3945 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3946 objfile);
3947 }
3948 }
3949 /* I think this is for Convex "long long". Since I don't know whether
3950 Convex sets self_subrange, I also accept that particular size regardless
3951 of self_subrange. */
3952 else if (n3 == 0 && n2 < 0
3953 && (self_subrange
3954 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3955 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3956 else if (n2 == -n3 - 1)
3957 {
3958 if (n3 == 0x7f)
3959 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3960 if (n3 == 0x7fff)
3961 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3962 if (n3 == 0x7fffffff)
3963 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3964 }
3965
3966 /* We have a real range type on our hands. Allocate space and
3967 return a real pointer. */
3968 handle_true_range:
3969
3970 if (self_subrange)
3971 index_type = builtin_type_int;
3972 else
3973 index_type = *dbx_lookup_type (rangenums);
3974 if (index_type == NULL)
3975 {
3976 /* Does this actually ever happen? Is that why we are worrying
3977 about dealing with it rather than just calling error_type? */
3978
3979 static struct type *range_type_index;
3980
3981 complaint (&symfile_complaints,
3982 "base type %d of range type is not defined", rangenums[1]);
3983 if (range_type_index == NULL)
3984 range_type_index =
3985 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3986 0, "range type index type", NULL);
3987 index_type = range_type_index;
3988 }
3989
3990 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3991 return (result_type);
3992 }
3993
3994 /* Read in an argument list. This is a list of types, separated by commas
3995 and terminated with END. Return the list of types read in, or (struct type
3996 **)-1 if there is an error. */
3997
3998 static struct field *
3999 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4000 int *varargsp)
4001 {
4002 /* FIXME! Remove this arbitrary limit! */
4003 struct type *types[1024]; /* allow for fns of 1023 parameters */
4004 int n = 0, i;
4005 struct field *rval;
4006
4007 while (**pp != end)
4008 {
4009 if (**pp != ',')
4010 /* Invalid argument list: no ','. */
4011 return (struct field *) -1;
4012 (*pp)++;
4013 STABS_CONTINUE (pp, objfile);
4014 types[n++] = read_type (pp, objfile);
4015 }
4016 (*pp)++; /* get past `end' (the ':' character) */
4017
4018 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4019 *varargsp = 1;
4020 else
4021 {
4022 n--;
4023 *varargsp = 0;
4024 }
4025
4026 rval = (struct field *) xmalloc (n * sizeof (struct field));
4027 memset (rval, 0, n * sizeof (struct field));
4028 for (i = 0; i < n; i++)
4029 rval[i].type = types[i];
4030 *nargsp = n;
4031 return rval;
4032 }
4033 \f
4034 /* Common block handling. */
4035
4036 /* List of symbols declared since the last BCOMM. This list is a tail
4037 of local_symbols. When ECOMM is seen, the symbols on the list
4038 are noted so their proper addresses can be filled in later,
4039 using the common block base address gotten from the assembler
4040 stabs. */
4041
4042 static struct pending *common_block;
4043 static int common_block_i;
4044
4045 /* Name of the current common block. We get it from the BCOMM instead of the
4046 ECOMM to match IBM documentation (even though IBM puts the name both places
4047 like everyone else). */
4048 static char *common_block_name;
4049
4050 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4051 to remain after this function returns. */
4052
4053 void
4054 common_block_start (char *name, struct objfile *objfile)
4055 {
4056 if (common_block_name != NULL)
4057 {
4058 complaint (&symfile_complaints,
4059 "Invalid symbol data: common block within common block");
4060 }
4061 common_block = local_symbols;
4062 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4063 common_block_name = obsavestring (name, strlen (name),
4064 &objfile->symbol_obstack);
4065 }
4066
4067 /* Process a N_ECOMM symbol. */
4068
4069 void
4070 common_block_end (struct objfile *objfile)
4071 {
4072 /* Symbols declared since the BCOMM are to have the common block
4073 start address added in when we know it. common_block and
4074 common_block_i point to the first symbol after the BCOMM in
4075 the local_symbols list; copy the list and hang it off the
4076 symbol for the common block name for later fixup. */
4077 int i;
4078 struct symbol *sym;
4079 struct pending *new = 0;
4080 struct pending *next;
4081 int j;
4082
4083 if (common_block_name == NULL)
4084 {
4085 complaint (&symfile_complaints, "ECOMM symbol unmatched by BCOMM");
4086 return;
4087 }
4088
4089 sym = (struct symbol *)
4090 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4091 memset (sym, 0, sizeof (struct symbol));
4092 /* Note: common_block_name already saved on symbol_obstack */
4093 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4094 SYMBOL_CLASS (sym) = LOC_BLOCK;
4095
4096 /* Now we copy all the symbols which have been defined since the BCOMM. */
4097
4098 /* Copy all the struct pendings before common_block. */
4099 for (next = local_symbols;
4100 next != NULL && next != common_block;
4101 next = next->next)
4102 {
4103 for (j = 0; j < next->nsyms; j++)
4104 add_symbol_to_list (next->symbol[j], &new);
4105 }
4106
4107 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4108 NULL, it means copy all the local symbols (which we already did
4109 above). */
4110
4111 if (common_block != NULL)
4112 for (j = common_block_i; j < common_block->nsyms; j++)
4113 add_symbol_to_list (common_block->symbol[j], &new);
4114
4115 SYMBOL_TYPE (sym) = (struct type *) new;
4116
4117 /* Should we be putting local_symbols back to what it was?
4118 Does it matter? */
4119
4120 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4121 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4122 global_sym_chain[i] = sym;
4123 common_block_name = NULL;
4124 }
4125
4126 /* Add a common block's start address to the offset of each symbol
4127 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4128 the common block name). */
4129
4130 static void
4131 fix_common_block (struct symbol *sym, int valu)
4132 {
4133 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4134 for (; next; next = next->next)
4135 {
4136 int j;
4137 for (j = next->nsyms - 1; j >= 0; j--)
4138 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4139 }
4140 }
4141 \f
4142
4143
4144 /* What about types defined as forward references inside of a small lexical
4145 scope? */
4146 /* Add a type to the list of undefined types to be checked through
4147 once this file has been read in. */
4148
4149 static void
4150 add_undefined_type (struct type *type)
4151 {
4152 if (undef_types_length == undef_types_allocated)
4153 {
4154 undef_types_allocated *= 2;
4155 undef_types = (struct type **)
4156 xrealloc ((char *) undef_types,
4157 undef_types_allocated * sizeof (struct type *));
4158 }
4159 undef_types[undef_types_length++] = type;
4160 }
4161
4162 /* Go through each undefined type, see if it's still undefined, and fix it
4163 up if possible. We have two kinds of undefined types:
4164
4165 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4166 Fix: update array length using the element bounds
4167 and the target type's length.
4168 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4169 yet defined at the time a pointer to it was made.
4170 Fix: Do a full lookup on the struct/union tag. */
4171 void
4172 cleanup_undefined_types (void)
4173 {
4174 struct type **type;
4175
4176 for (type = undef_types; type < undef_types + undef_types_length; type++)
4177 {
4178 switch (TYPE_CODE (*type))
4179 {
4180
4181 case TYPE_CODE_STRUCT:
4182 case TYPE_CODE_UNION:
4183 case TYPE_CODE_ENUM:
4184 {
4185 /* Check if it has been defined since. Need to do this here
4186 as well as in check_typedef to deal with the (legitimate in
4187 C though not C++) case of several types with the same name
4188 in different source files. */
4189 if (TYPE_STUB (*type))
4190 {
4191 struct pending *ppt;
4192 int i;
4193 /* Name of the type, without "struct" or "union" */
4194 char *typename = TYPE_TAG_NAME (*type);
4195
4196 if (typename == NULL)
4197 {
4198 complaint (&symfile_complaints, "need a type name");
4199 break;
4200 }
4201 for (ppt = file_symbols; ppt; ppt = ppt->next)
4202 {
4203 for (i = 0; i < ppt->nsyms; i++)
4204 {
4205 struct symbol *sym = ppt->symbol[i];
4206
4207 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4208 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4209 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4210 TYPE_CODE (*type))
4211 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4212 replace_type (*type, SYMBOL_TYPE (sym));
4213 }
4214 }
4215 }
4216 }
4217 break;
4218
4219 default:
4220 {
4221 complaint (&symfile_complaints,
4222 "GDB internal error. cleanup_undefined_types with bad type %d.",
4223 TYPE_CODE (*type));
4224 }
4225 break;
4226 }
4227 }
4228
4229 undef_types_length = 0;
4230 }
4231
4232 /* Scan through all of the global symbols defined in the object file,
4233 assigning values to the debugging symbols that need to be assigned
4234 to. Get these symbols from the minimal symbol table. */
4235
4236 void
4237 scan_file_globals (struct objfile *objfile)
4238 {
4239 int hash;
4240 struct minimal_symbol *msymbol;
4241 struct symbol *sym, *prev;
4242 struct objfile *resolve_objfile;
4243
4244 /* SVR4 based linkers copy referenced global symbols from shared
4245 libraries to the main executable.
4246 If we are scanning the symbols for a shared library, try to resolve
4247 them from the minimal symbols of the main executable first. */
4248
4249 if (symfile_objfile && objfile != symfile_objfile)
4250 resolve_objfile = symfile_objfile;
4251 else
4252 resolve_objfile = objfile;
4253
4254 while (1)
4255 {
4256 /* Avoid expensive loop through all minimal symbols if there are
4257 no unresolved symbols. */
4258 for (hash = 0; hash < HASHSIZE; hash++)
4259 {
4260 if (global_sym_chain[hash])
4261 break;
4262 }
4263 if (hash >= HASHSIZE)
4264 return;
4265
4266 for (msymbol = resolve_objfile->msymbols;
4267 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4268 msymbol++)
4269 {
4270 QUIT;
4271
4272 /* Skip static symbols. */
4273 switch (MSYMBOL_TYPE (msymbol))
4274 {
4275 case mst_file_text:
4276 case mst_file_data:
4277 case mst_file_bss:
4278 continue;
4279 default:
4280 break;
4281 }
4282
4283 prev = NULL;
4284
4285 /* Get the hash index and check all the symbols
4286 under that hash index. */
4287
4288 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4289
4290 for (sym = global_sym_chain[hash]; sym;)
4291 {
4292 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4293 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4294 {
4295 /* Splice this symbol out of the hash chain and
4296 assign the value we have to it. */
4297 if (prev)
4298 {
4299 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4300 }
4301 else
4302 {
4303 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4304 }
4305
4306 /* Check to see whether we need to fix up a common block. */
4307 /* Note: this code might be executed several times for
4308 the same symbol if there are multiple references. */
4309 if (sym)
4310 {
4311 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4312 {
4313 fix_common_block (sym,
4314 SYMBOL_VALUE_ADDRESS (msymbol));
4315 }
4316 else
4317 {
4318 SYMBOL_VALUE_ADDRESS (sym)
4319 = SYMBOL_VALUE_ADDRESS (msymbol);
4320 }
4321 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4322 }
4323
4324 if (prev)
4325 {
4326 sym = SYMBOL_VALUE_CHAIN (prev);
4327 }
4328 else
4329 {
4330 sym = global_sym_chain[hash];
4331 }
4332 }
4333 else
4334 {
4335 prev = sym;
4336 sym = SYMBOL_VALUE_CHAIN (sym);
4337 }
4338 }
4339 }
4340 if (resolve_objfile == objfile)
4341 break;
4342 resolve_objfile = objfile;
4343 }
4344
4345 /* Change the storage class of any remaining unresolved globals to
4346 LOC_UNRESOLVED and remove them from the chain. */
4347 for (hash = 0; hash < HASHSIZE; hash++)
4348 {
4349 sym = global_sym_chain[hash];
4350 while (sym)
4351 {
4352 prev = sym;
4353 sym = SYMBOL_VALUE_CHAIN (sym);
4354
4355 /* Change the symbol address from the misleading chain value
4356 to address zero. */
4357 SYMBOL_VALUE_ADDRESS (prev) = 0;
4358
4359 /* Complain about unresolved common block symbols. */
4360 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4361 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4362 else
4363 complaint (&symfile_complaints,
4364 "%s: common block `%s' from global_sym_chain unresolved",
4365 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4366 }
4367 }
4368 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4369 }
4370
4371 /* Initialize anything that needs initializing when starting to read
4372 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4373 to a psymtab. */
4374
4375 void
4376 stabsread_init (void)
4377 {
4378 }
4379
4380 /* Initialize anything that needs initializing when a completely new
4381 symbol file is specified (not just adding some symbols from another
4382 file, e.g. a shared library). */
4383
4384 void
4385 stabsread_new_init (void)
4386 {
4387 /* Empty the hash table of global syms looking for values. */
4388 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4389 }
4390
4391 /* Initialize anything that needs initializing at the same time as
4392 start_symtab() is called. */
4393
4394 void
4395 start_stabs (void)
4396 {
4397 global_stabs = NULL; /* AIX COFF */
4398 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4399 n_this_object_header_files = 1;
4400 type_vector_length = 0;
4401 type_vector = (struct type **) 0;
4402
4403 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4404 common_block_name = NULL;
4405 }
4406
4407 /* Call after end_symtab() */
4408
4409 void
4410 end_stabs (void)
4411 {
4412 if (type_vector)
4413 {
4414 xfree (type_vector);
4415 }
4416 type_vector = 0;
4417 type_vector_length = 0;
4418 previous_stab_code = 0;
4419 }
4420
4421 void
4422 finish_global_stabs (struct objfile *objfile)
4423 {
4424 if (global_stabs)
4425 {
4426 patch_block_stabs (global_symbols, global_stabs, objfile);
4427 xfree (global_stabs);
4428 global_stabs = NULL;
4429 }
4430 }
4431
4432 /* Find the end of the name, delimited by a ':', but don't match
4433 ObjC symbols which look like -[Foo bar::]:bla. */
4434 static char *
4435 find_name_end (char *name)
4436 {
4437 char *s = name;
4438 if (s[0] == '-' || *s == '+')
4439 {
4440 /* Must be an ObjC method symbol. */
4441 if (s[1] != '[')
4442 {
4443 error ("invalid symbol name \"%s\"", name);
4444 }
4445 s = strchr (s, ']');
4446 if (s == NULL)
4447 {
4448 error ("invalid symbol name \"%s\"", name);
4449 }
4450 return strchr (s, ':');
4451 }
4452 else
4453 {
4454 return strchr (s, ':');
4455 }
4456 }
4457
4458 /* Initializer for this module */
4459
4460 void
4461 _initialize_stabsread (void)
4462 {
4463 undef_types_allocated = 20;
4464 undef_types_length = 0;
4465 undef_types = (struct type **)
4466 xmalloc (undef_types_allocated * sizeof (struct type *));
4467 }
This page took 0.134099 seconds and 5 git commands to generate.