Parameterize cp_scan_for_anonymous_namespaces
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "bcache.h"
48 #include <ctype.h>
49
50 /* Ask stabsread.h to define the vars it normally declares `extern'. */
51 #define EXTERN
52 /**/
53 #include "stabsread.h" /* Our own declarations */
54 #undef EXTERN
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, const char **, const char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (const char **, int, int *, int);
93
94 static struct type *error_type (const char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (const char **, int *);
103
104 static struct type *read_type (const char **, struct objfile *);
105
106 static struct type *read_range_type (const char **, int[2],
107 int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (const char **,
110 int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (const char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, const char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, const char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, const char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, const char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (const char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (const char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (const char **, int, struct objfile *,
148 int *, int *);
149
150 static void add_undefined_type (struct type *, int[2]);
151
152 static int
153 read_cpp_abbrev (struct field_info *, const char **, struct type *,
154 struct objfile *);
155
156 static const char *find_name_end (const char *name);
157
158 static int process_reference (const char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 static void
166 invalid_cpp_abbrev_complaint (const char *arg1)
167 {
168 complaint (_("invalid C++ abbreviation `%s'"), arg1);
169 }
170
171 static void
172 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 {
174 complaint (_("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint ("%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
217
218 static struct type **type_vector;
219
220 /* Number of elements allocated for type_vector currently. */
221
222 static int type_vector_length;
223
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
226
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
228 \f
229
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
233
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
236
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
239 {
240 int filenum = typenums[0];
241 int index = typenums[1];
242 unsigned old_len;
243 int real_filenum;
244 struct header_file *f;
245 int f_orig_length;
246
247 if (filenum == -1) /* -1,-1 is for temporary types. */
248 return 0;
249
250 if (filenum < 0 || filenum >= n_this_object_header_files)
251 {
252 complaint (_("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
254 filenum, index, symnum);
255 goto error_return;
256 }
257
258 if (filenum == 0)
259 {
260 if (index < 0)
261 {
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
268
269 temp_type = rs6000_builtin_type (index, objfile);
270 return &temp_type;
271 }
272
273 /* Type is defined outside of header files.
274 Find it in this object file's type vector. */
275 if (index >= type_vector_length)
276 {
277 old_len = type_vector_length;
278 if (old_len == 0)
279 {
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
281 type_vector = XNEWVEC (struct type *, type_vector_length);
282 }
283 while (index >= type_vector_length)
284 {
285 type_vector_length *= 2;
286 }
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
292 }
293 return (&type_vector[index]);
294 }
295 else
296 {
297 real_filenum = this_object_header_files[filenum];
298
299 if (real_filenum >= N_HEADER_FILES (objfile))
300 {
301 static struct type *temp_type;
302
303 warning (_("GDB internal error: bad real_filenum"));
304
305 error_return:
306 temp_type = objfile_type (objfile)->builtin_error;
307 return &temp_type;
308 }
309
310 f = HEADER_FILES (objfile) + real_filenum;
311
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
314 {
315 while (index >= f->length)
316 {
317 f->length *= 2;
318 }
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
323 }
324 return (&f->vector[index]);
325 }
326 }
327
328 /* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
332 put into the type vector, and so may not be referred to by number. */
333
334 static struct type *
335 dbx_alloc_type (int typenums[2], struct objfile *objfile)
336 {
337 struct type **type_addr;
338
339 if (typenums[0] == -1)
340 {
341 return (alloc_type (objfile));
342 }
343
344 type_addr = dbx_lookup_type (typenums, objfile);
345
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
349 if (*type_addr == 0)
350 {
351 *type_addr = alloc_type (objfile);
352 }
353
354 return (*type_addr);
355 }
356
357 /* Allocate a floating-point type of size BITS. */
358
359 static struct type *
360 dbx_init_float_type (struct objfile *objfile, int bits)
361 {
362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
363 const struct floatformat **format;
364 struct type *type;
365
366 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
367 if (format)
368 type = init_float_type (objfile, bits, NULL, format);
369 else
370 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
371
372 return type;
373 }
374
375 /* for all the stabs in a given stab vector, build appropriate types
376 and fix their symbols in given symbol vector. */
377
378 static void
379 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
380 struct objfile *objfile)
381 {
382 int ii;
383 char *name;
384 const char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389 /* for all the stab entries, find their corresponding symbols and
390 patch their types! */
391
392 for (ii = 0; ii < stabs->count; ++ii)
393 {
394 name = stabs->stab[ii];
395 pp = (char *) strchr (name, ':');
396 gdb_assert (pp); /* Must find a ':' or game's over. */
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *) strchr (pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp - name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = allocate_symbol (objfile);
417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
418 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
419 SYMBOL_SET_LINKAGE_NAME
420 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
421 name, pp - name));
422 pp += 2;
423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
424 {
425 /* I don't think the linker does this with functions,
426 so as far as I know this is never executed.
427 But it doesn't hurt to check. */
428 SYMBOL_TYPE (sym) =
429 lookup_function_type (read_type (&pp, objfile));
430 }
431 else
432 {
433 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
434 }
435 add_symbol_to_list (sym, get_global_symbols ());
436 }
437 else
438 {
439 pp += 2;
440 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
441 {
442 SYMBOL_TYPE (sym) =
443 lookup_function_type (read_type (&pp, objfile));
444 }
445 else
446 {
447 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
448 }
449 }
450 }
451 }
452 }
453 \f
454
455 /* Read a number by which a type is referred to in dbx data,
456 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
457 Just a single number N is equivalent to (0,N).
458 Return the two numbers by storing them in the vector TYPENUMS.
459 TYPENUMS will then be used as an argument to dbx_lookup_type.
460
461 Returns 0 for success, -1 for error. */
462
463 static int
464 read_type_number (const char **pp, int *typenums)
465 {
466 int nbits;
467
468 if (**pp == '(')
469 {
470 (*pp)++;
471 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
472 if (nbits != 0)
473 return -1;
474 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
475 if (nbits != 0)
476 return -1;
477 }
478 else
479 {
480 typenums[0] = 0;
481 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 }
485 return 0;
486 }
487 \f
488
489 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
490 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
491 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
492 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
493
494 /* Structure for storing pointers to reference definitions for fast lookup
495 during "process_later". */
496
497 struct ref_map
498 {
499 const char *stabs;
500 CORE_ADDR value;
501 struct symbol *sym;
502 };
503
504 #define MAX_CHUNK_REFS 100
505 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
506 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
507
508 static struct ref_map *ref_map;
509
510 /* Ptr to free cell in chunk's linked list. */
511 static int ref_count = 0;
512
513 /* Number of chunks malloced. */
514 static int ref_chunk = 0;
515
516 /* This file maintains a cache of stabs aliases found in the symbol
517 table. If the symbol table changes, this cache must be cleared
518 or we are left holding onto data in invalid obstacks. */
519 void
520 stabsread_clear_cache (void)
521 {
522 ref_count = 0;
523 ref_chunk = 0;
524 }
525
526 /* Create array of pointers mapping refids to symbols and stab strings.
527 Add pointers to reference definition symbols and/or their values as we
528 find them, using their reference numbers as our index.
529 These will be used later when we resolve references. */
530 void
531 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
532 {
533 if (ref_count == 0)
534 ref_chunk = 0;
535 if (refnum >= ref_count)
536 ref_count = refnum + 1;
537 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
538 {
539 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
540 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
541
542 ref_map = (struct ref_map *)
543 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
544 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
545 new_chunks * REF_CHUNK_SIZE);
546 ref_chunk += new_chunks;
547 }
548 ref_map[refnum].stabs = stabs;
549 ref_map[refnum].sym = sym;
550 ref_map[refnum].value = value;
551 }
552
553 /* Return defined sym for the reference REFNUM. */
554 struct symbol *
555 ref_search (int refnum)
556 {
557 if (refnum < 0 || refnum > ref_count)
558 return 0;
559 return ref_map[refnum].sym;
560 }
561
562 /* Parse a reference id in STRING and return the resulting
563 reference number. Move STRING beyond the reference id. */
564
565 static int
566 process_reference (const char **string)
567 {
568 const char *p;
569 int refnum = 0;
570
571 if (**string != '#')
572 return 0;
573
574 /* Advance beyond the initial '#'. */
575 p = *string + 1;
576
577 /* Read number as reference id. */
578 while (*p && isdigit (*p))
579 {
580 refnum = refnum * 10 + *p - '0';
581 p++;
582 }
583 *string = p;
584 return refnum;
585 }
586
587 /* If STRING defines a reference, store away a pointer to the reference
588 definition for later use. Return the reference number. */
589
590 int
591 symbol_reference_defined (const char **string)
592 {
593 const char *p = *string;
594 int refnum = 0;
595
596 refnum = process_reference (&p);
597
598 /* Defining symbols end in '='. */
599 if (*p == '=')
600 {
601 /* Symbol is being defined here. */
602 *string = p + 1;
603 return refnum;
604 }
605 else
606 {
607 /* Must be a reference. Either the symbol has already been defined,
608 or this is a forward reference to it. */
609 *string = p;
610 return -1;
611 }
612 }
613
614 static int
615 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
616 {
617 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
618
619 if (regno < 0
620 || regno >= (gdbarch_num_regs (gdbarch)
621 + gdbarch_num_pseudo_regs (gdbarch)))
622 {
623 reg_value_complaint (regno,
624 gdbarch_num_regs (gdbarch)
625 + gdbarch_num_pseudo_regs (gdbarch),
626 SYMBOL_PRINT_NAME (sym));
627
628 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
629 }
630
631 return regno;
632 }
633
634 static const struct symbol_register_ops stab_register_funcs = {
635 stab_reg_to_regnum
636 };
637
638 /* The "aclass" indices for computed symbols. */
639
640 static int stab_register_index;
641 static int stab_regparm_index;
642
643 struct symbol *
644 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
645 struct objfile *objfile)
646 {
647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
648 struct symbol *sym;
649 const char *p = find_name_end (string);
650 int deftype;
651 int synonym = 0;
652 int i;
653
654 /* We would like to eliminate nameless symbols, but keep their types.
655 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
656 to type 2, but, should not create a symbol to address that type. Since
657 the symbol will be nameless, there is no way any user can refer to it. */
658
659 int nameless;
660
661 /* Ignore syms with empty names. */
662 if (string[0] == 0)
663 return 0;
664
665 /* Ignore old-style symbols from cc -go. */
666 if (p == 0)
667 return 0;
668
669 while (p[1] == ':')
670 {
671 p += 2;
672 p = strchr (p, ':');
673 if (p == NULL)
674 {
675 complaint (
676 _("Bad stabs string '%s'"), string);
677 return NULL;
678 }
679 }
680
681 /* If a nameless stab entry, all we need is the type, not the symbol.
682 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
683 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
684
685 current_symbol = sym = allocate_symbol (objfile);
686
687 if (processing_gcc_compilation)
688 {
689 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
690 number of bytes occupied by a type or object, which we ignore. */
691 SYMBOL_LINE (sym) = desc;
692 }
693 else
694 {
695 SYMBOL_LINE (sym) = 0; /* unknown */
696 }
697
698 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
699 &objfile->objfile_obstack);
700
701 if (is_cplus_marker (string[0]))
702 {
703 /* Special GNU C++ names. */
704 switch (string[1])
705 {
706 case 't':
707 SYMBOL_SET_LINKAGE_NAME (sym, "this");
708 break;
709
710 case 'v': /* $vtbl_ptr_type */
711 goto normal;
712
713 case 'e':
714 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
715 break;
716
717 case '_':
718 /* This was an anonymous type that was never fixed up. */
719 goto normal;
720
721 case 'X':
722 /* SunPRO (3.0 at least) static variable encoding. */
723 if (gdbarch_static_transform_name_p (gdbarch))
724 goto normal;
725 /* fall through */
726
727 default:
728 complaint (_("Unknown C++ symbol name `%s'"),
729 string);
730 goto normal; /* Do *something* with it. */
731 }
732 }
733 else
734 {
735 normal:
736 std::string new_name;
737
738 if (SYMBOL_LANGUAGE (sym) == language_cplus)
739 {
740 char *name = (char *) alloca (p - string + 1);
741
742 memcpy (name, string, p - string);
743 name[p - string] = '\0';
744 new_name = cp_canonicalize_string (name);
745 }
746 if (!new_name.empty ())
747 {
748 SYMBOL_SET_NAMES (sym,
749 new_name.c_str (), new_name.length (),
750 1, objfile);
751 }
752 else
753 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
754
755 if (SYMBOL_LANGUAGE (sym) == language_cplus)
756 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
757 objfile);
758
759 }
760 p++;
761
762 /* Determine the type of name being defined. */
763 #if 0
764 /* Getting GDB to correctly skip the symbol on an undefined symbol
765 descriptor and not ever dump core is a very dodgy proposition if
766 we do things this way. I say the acorn RISC machine can just
767 fix their compiler. */
768 /* The Acorn RISC machine's compiler can put out locals that don't
769 start with "234=" or "(3,4)=", so assume anything other than the
770 deftypes we know how to handle is a local. */
771 if (!strchr ("cfFGpPrStTvVXCR", *p))
772 #else
773 if (isdigit (*p) || *p == '(' || *p == '-')
774 #endif
775 deftype = 'l';
776 else
777 deftype = *p++;
778
779 switch (deftype)
780 {
781 case 'c':
782 /* c is a special case, not followed by a type-number.
783 SYMBOL:c=iVALUE for an integer constant symbol.
784 SYMBOL:c=rVALUE for a floating constant symbol.
785 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
786 e.g. "b:c=e6,0" for "const b = blob1"
787 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
788 if (*p != '=')
789 {
790 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
791 SYMBOL_TYPE (sym) = error_type (&p, objfile);
792 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
793 add_symbol_to_list (sym, get_file_symbols ());
794 return sym;
795 }
796 ++p;
797 switch (*p++)
798 {
799 case 'r':
800 {
801 gdb_byte *dbl_valu;
802 struct type *dbl_type;
803
804 dbl_type = objfile_type (objfile)->builtin_double;
805 dbl_valu
806 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
807 TYPE_LENGTH (dbl_type));
808
809 target_float_from_string (dbl_valu, dbl_type, std::string (p));
810
811 SYMBOL_TYPE (sym) = dbl_type;
812 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
814 }
815 break;
816 case 'i':
817 {
818 /* Defining integer constants this way is kind of silly,
819 since 'e' constants allows the compiler to give not
820 only the value, but the type as well. C has at least
821 int, long, unsigned int, and long long as constant
822 types; other languages probably should have at least
823 unsigned as well as signed constants. */
824
825 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
826 SYMBOL_VALUE (sym) = atoi (p);
827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
828 }
829 break;
830
831 case 'c':
832 {
833 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
834 SYMBOL_VALUE (sym) = atoi (p);
835 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
836 }
837 break;
838
839 case 's':
840 {
841 struct type *range_type;
842 int ind = 0;
843 char quote = *p++;
844 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
845 gdb_byte *string_value;
846
847 if (quote != '\'' && quote != '"')
848 {
849 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
850 SYMBOL_TYPE (sym) = error_type (&p, objfile);
851 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
852 add_symbol_to_list (sym, get_file_symbols ());
853 return sym;
854 }
855
856 /* Find matching quote, rejecting escaped quotes. */
857 while (*p && *p != quote)
858 {
859 if (*p == '\\' && p[1] == quote)
860 {
861 string_local[ind] = (gdb_byte) quote;
862 ind++;
863 p += 2;
864 }
865 else if (*p)
866 {
867 string_local[ind] = (gdb_byte) (*p);
868 ind++;
869 p++;
870 }
871 }
872 if (*p != quote)
873 {
874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
877 add_symbol_to_list (sym, get_file_symbols ());
878 return sym;
879 }
880
881 /* NULL terminate the string. */
882 string_local[ind] = 0;
883 range_type
884 = create_static_range_type (NULL,
885 objfile_type (objfile)->builtin_int,
886 0, ind);
887 SYMBOL_TYPE (sym) = create_array_type (NULL,
888 objfile_type (objfile)->builtin_char,
889 range_type);
890 string_value
891 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
892 memcpy (string_value, string_local, ind + 1);
893 p++;
894
895 SYMBOL_VALUE_BYTES (sym) = string_value;
896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
897 }
898 break;
899
900 case 'e':
901 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
902 can be represented as integral.
903 e.g. "b:c=e6,0" for "const b = blob1"
904 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
905 {
906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908
909 if (*p != ',')
910 {
911 SYMBOL_TYPE (sym) = error_type (&p, objfile);
912 break;
913 }
914 ++p;
915
916 /* If the value is too big to fit in an int (perhaps because
917 it is unsigned), or something like that, we silently get
918 a bogus value. The type and everything else about it is
919 correct. Ideally, we should be using whatever we have
920 available for parsing unsigned and long long values,
921 however. */
922 SYMBOL_VALUE (sym) = atoi (p);
923 }
924 break;
925 default:
926 {
927 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
928 SYMBOL_TYPE (sym) = error_type (&p, objfile);
929 }
930 }
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, get_file_symbols ());
933 return sym;
934
935 case 'C':
936 /* The name of a caught exception. */
937 SYMBOL_TYPE (sym) = read_type (&p, objfile);
938 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
939 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
940 SYMBOL_VALUE_ADDRESS (sym) = valu;
941 add_symbol_to_list (sym, get_local_symbols ());
942 break;
943
944 case 'f':
945 /* A static function definition. */
946 SYMBOL_TYPE (sym) = read_type (&p, objfile);
947 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, get_file_symbols ());
950 /* fall into process_function_types. */
951
952 process_function_types:
953 /* Function result types are described as the result type in stabs.
954 We need to convert this to the function-returning-type-X type
955 in GDB. E.g. "int" is converted to "function returning int". */
956 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
957 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
958
959 /* All functions in C++ have prototypes. Stabs does not offer an
960 explicit way to identify prototyped or unprototyped functions,
961 but both GCC and Sun CC emit stabs for the "call-as" type rather
962 than the "declared-as" type for unprototyped functions, so
963 we treat all functions as if they were prototyped. This is used
964 primarily for promotion when calling the function from GDB. */
965 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
966
967 /* fall into process_prototype_types. */
968
969 process_prototype_types:
970 /* Sun acc puts declared types of arguments here. */
971 if (*p == ';')
972 {
973 struct type *ftype = SYMBOL_TYPE (sym);
974 int nsemi = 0;
975 int nparams = 0;
976 const char *p1 = p;
977
978 /* Obtain a worst case guess for the number of arguments
979 by counting the semicolons. */
980 while (*p1)
981 {
982 if (*p1++ == ';')
983 nsemi++;
984 }
985
986 /* Allocate parameter information fields and fill them in. */
987 TYPE_FIELDS (ftype) = (struct field *)
988 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
989 while (*p++ == ';')
990 {
991 struct type *ptype;
992
993 /* A type number of zero indicates the start of varargs.
994 FIXME: GDB currently ignores vararg functions. */
995 if (p[0] == '0' && p[1] == '\0')
996 break;
997 ptype = read_type (&p, objfile);
998
999 /* The Sun compilers mark integer arguments, which should
1000 be promoted to the width of the calling conventions, with
1001 a type which references itself. This type is turned into
1002 a TYPE_CODE_VOID type by read_type, and we have to turn
1003 it back into builtin_int here.
1004 FIXME: Do we need a new builtin_promoted_int_arg ? */
1005 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1006 ptype = objfile_type (objfile)->builtin_int;
1007 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1008 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1009 }
1010 TYPE_NFIELDS (ftype) = nparams;
1011 TYPE_PROTOTYPED (ftype) = 1;
1012 }
1013 break;
1014
1015 case 'F':
1016 /* A global function definition. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1020 add_symbol_to_list (sym, get_global_symbols ());
1021 goto process_function_types;
1022
1023 case 'G':
1024 /* For a class G (global) symbol, it appears that the
1025 value is not correct. It is necessary to search for the
1026 corresponding linker definition to find the value.
1027 These definitions appear at the end of the namelist. */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1031 /* Don't add symbol references to global_sym_chain.
1032 Symbol references don't have valid names and wont't match up with
1033 minimal symbols when the global_sym_chain is relocated.
1034 We'll fixup symbol references when we fixup the defining symbol. */
1035 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1036 {
1037 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1038 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1039 global_sym_chain[i] = sym;
1040 }
1041 add_symbol_to_list (sym, get_global_symbols ());
1042 break;
1043
1044 /* This case is faked by a conditional above,
1045 when there is no code letter in the dbx data.
1046 Dbx data never actually contains 'l'. */
1047 case 's':
1048 case 'l':
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1051 SYMBOL_VALUE (sym) = valu;
1052 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1053 add_symbol_to_list (sym, get_local_symbols ());
1054 break;
1055
1056 case 'p':
1057 if (*p == 'F')
1058 /* pF is a two-letter code that means a function parameter in Fortran.
1059 The type-number specifies the type of the return value.
1060 Translate it into a pointer-to-function type. */
1061 {
1062 p++;
1063 SYMBOL_TYPE (sym)
1064 = lookup_pointer_type
1065 (lookup_function_type (read_type (&p, objfile)));
1066 }
1067 else
1068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1069
1070 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1071 SYMBOL_VALUE (sym) = valu;
1072 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1073 SYMBOL_IS_ARGUMENT (sym) = 1;
1074 add_symbol_to_list (sym, get_local_symbols ());
1075
1076 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1077 {
1078 /* On little-endian machines, this crud is never necessary,
1079 and, if the extra bytes contain garbage, is harmful. */
1080 break;
1081 }
1082
1083 /* If it's gcc-compiled, if it says `short', believe it. */
1084 if (processing_gcc_compilation
1085 || gdbarch_believe_pcc_promotion (gdbarch))
1086 break;
1087
1088 if (!gdbarch_believe_pcc_promotion (gdbarch))
1089 {
1090 /* If PCC says a parameter is a short or a char, it is
1091 really an int. */
1092 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1093 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1094 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1095 {
1096 SYMBOL_TYPE (sym) =
1097 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1098 ? objfile_type (objfile)->builtin_unsigned_int
1099 : objfile_type (objfile)->builtin_int;
1100 }
1101 break;
1102 }
1103 /* Fall through. */
1104
1105 case 'P':
1106 /* acc seems to use P to declare the prototypes of functions that
1107 are referenced by this file. gdb is not prepared to deal
1108 with this extra information. FIXME, it ought to. */
1109 if (type == N_FUN)
1110 {
1111 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1112 goto process_prototype_types;
1113 }
1114 /*FALLTHROUGH */
1115
1116 case 'R':
1117 /* Parameter which is in a register. */
1118 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1119 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1120 SYMBOL_IS_ARGUMENT (sym) = 1;
1121 SYMBOL_VALUE (sym) = valu;
1122 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1123 add_symbol_to_list (sym, get_local_symbols ());
1124 break;
1125
1126 case 'r':
1127 /* Register variable (either global or local). */
1128 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1129 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1130 SYMBOL_VALUE (sym) = valu;
1131 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1132 if (within_function)
1133 {
1134 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1135 the same name to represent an argument passed in a
1136 register. GCC uses 'P' for the same case. So if we find
1137 such a symbol pair we combine it into one 'P' symbol.
1138 For Sun cc we need to do this regardless of
1139 stabs_argument_has_addr, because the compiler puts out
1140 the 'p' symbol even if it never saves the argument onto
1141 the stack.
1142
1143 On most machines, we want to preserve both symbols, so
1144 that we can still get information about what is going on
1145 with the stack (VAX for computing args_printed, using
1146 stack slots instead of saved registers in backtraces,
1147 etc.).
1148
1149 Note that this code illegally combines
1150 main(argc) struct foo argc; { register struct foo argc; }
1151 but this case is considered pathological and causes a warning
1152 from a decent compiler. */
1153
1154 struct pending *local_symbols = *get_local_symbols ();
1155 if (local_symbols
1156 && local_symbols->nsyms > 0
1157 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1158 {
1159 struct symbol *prev_sym;
1160
1161 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1162 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1163 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1164 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1165 SYMBOL_LINKAGE_NAME (sym)) == 0)
1166 {
1167 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1168 /* Use the type from the LOC_REGISTER; that is the type
1169 that is actually in that register. */
1170 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1171 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1172 sym = prev_sym;
1173 break;
1174 }
1175 }
1176 add_symbol_to_list (sym, get_local_symbols ());
1177 }
1178 else
1179 add_symbol_to_list (sym, get_file_symbols ());
1180 break;
1181
1182 case 'S':
1183 /* Static symbol at top level of file. */
1184 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1185 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1186 SYMBOL_VALUE_ADDRESS (sym) = valu;
1187 if (gdbarch_static_transform_name_p (gdbarch)
1188 && gdbarch_static_transform_name (gdbarch,
1189 SYMBOL_LINKAGE_NAME (sym))
1190 != SYMBOL_LINKAGE_NAME (sym))
1191 {
1192 struct bound_minimal_symbol msym;
1193
1194 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1195 NULL, objfile);
1196 if (msym.minsym != NULL)
1197 {
1198 const char *new_name = gdbarch_static_transform_name
1199 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1200
1201 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1202 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1203 }
1204 }
1205 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1206 add_symbol_to_list (sym, get_file_symbols ());
1207 break;
1208
1209 case 't':
1210 /* In Ada, there is no distinction between typedef and non-typedef;
1211 any type declaration implicitly has the equivalent of a typedef,
1212 and thus 't' is in fact equivalent to 'Tt'.
1213
1214 Therefore, for Ada units, we check the character immediately
1215 before the 't', and if we do not find a 'T', then make sure to
1216 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1217 will be stored in the VAR_DOMAIN). If the symbol was indeed
1218 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1219 elsewhere, so we don't need to take care of that.
1220
1221 This is important to do, because of forward references:
1222 The cleanup of undefined types stored in undef_types only uses
1223 STRUCT_DOMAIN symbols to perform the replacement. */
1224 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1225
1226 /* Typedef */
1227 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1228
1229 /* For a nameless type, we don't want a create a symbol, thus we
1230 did not use `sym'. Return without further processing. */
1231 if (nameless)
1232 return NULL;
1233
1234 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1235 SYMBOL_VALUE (sym) = valu;
1236 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1237 /* C++ vagaries: we may have a type which is derived from
1238 a base type which did not have its name defined when the
1239 derived class was output. We fill in the derived class's
1240 base part member's name here in that case. */
1241 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1242 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1244 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1245 {
1246 int j;
1247
1248 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1249 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1250 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1251 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1252 }
1253
1254 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1255 {
1256 /* gcc-2.6 or later (when using -fvtable-thunks)
1257 emits a unique named type for a vtable entry.
1258 Some gdb code depends on that specific name. */
1259 extern const char vtbl_ptr_name[];
1260
1261 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1262 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1263 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1264 {
1265 /* If we are giving a name to a type such as "pointer to
1266 foo" or "function returning foo", we better not set
1267 the TYPE_NAME. If the program contains "typedef char
1268 *caddr_t;", we don't want all variables of type char
1269 * to print as caddr_t. This is not just a
1270 consequence of GDB's type management; PCC and GCC (at
1271 least through version 2.4) both output variables of
1272 either type char * or caddr_t with the type number
1273 defined in the 't' symbol for caddr_t. If a future
1274 compiler cleans this up it GDB is not ready for it
1275 yet, but if it becomes ready we somehow need to
1276 disable this check (without breaking the PCC/GCC2.4
1277 case).
1278
1279 Sigh.
1280
1281 Fortunately, this check seems not to be necessary
1282 for anything except pointers or functions. */
1283 /* ezannoni: 2000-10-26. This seems to apply for
1284 versions of gcc older than 2.8. This was the original
1285 problem: with the following code gdb would tell that
1286 the type for name1 is caddr_t, and func is char().
1287
1288 typedef char *caddr_t;
1289 char *name2;
1290 struct x
1291 {
1292 char *name1;
1293 } xx;
1294 char *func()
1295 {
1296 }
1297 main () {}
1298 */
1299
1300 /* Pascal accepts names for pointer types. */
1301 if (get_current_subfile ()->language == language_pascal)
1302 {
1303 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1304 }
1305 }
1306 else
1307 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1308 }
1309
1310 add_symbol_to_list (sym, get_file_symbols ());
1311
1312 if (synonym)
1313 {
1314 /* Create the STRUCT_DOMAIN clone. */
1315 struct symbol *struct_sym = allocate_symbol (objfile);
1316
1317 *struct_sym = *sym;
1318 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1319 SYMBOL_VALUE (struct_sym) = valu;
1320 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1321 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1322 TYPE_NAME (SYMBOL_TYPE (sym))
1323 = obconcat (&objfile->objfile_obstack,
1324 SYMBOL_LINKAGE_NAME (sym),
1325 (char *) NULL);
1326 add_symbol_to_list (struct_sym, get_file_symbols ());
1327 }
1328
1329 break;
1330
1331 case 'T':
1332 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1333 by 't' which means we are typedef'ing it as well. */
1334 synonym = *p == 't';
1335
1336 if (synonym)
1337 p++;
1338
1339 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1340
1341 /* For a nameless type, we don't want a create a symbol, thus we
1342 did not use `sym'. Return without further processing. */
1343 if (nameless)
1344 return NULL;
1345
1346 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1347 SYMBOL_VALUE (sym) = valu;
1348 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1349 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1350 TYPE_NAME (SYMBOL_TYPE (sym))
1351 = obconcat (&objfile->objfile_obstack,
1352 SYMBOL_LINKAGE_NAME (sym),
1353 (char *) NULL);
1354 add_symbol_to_list (sym, get_file_symbols ());
1355
1356 if (synonym)
1357 {
1358 /* Clone the sym and then modify it. */
1359 struct symbol *typedef_sym = allocate_symbol (objfile);
1360
1361 *typedef_sym = *sym;
1362 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1363 SYMBOL_VALUE (typedef_sym) = valu;
1364 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1365 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1366 TYPE_NAME (SYMBOL_TYPE (sym))
1367 = obconcat (&objfile->objfile_obstack,
1368 SYMBOL_LINKAGE_NAME (sym),
1369 (char *) NULL);
1370 add_symbol_to_list (typedef_sym, get_file_symbols ());
1371 }
1372 break;
1373
1374 case 'V':
1375 /* Static symbol of local scope. */
1376 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1377 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1378 SYMBOL_VALUE_ADDRESS (sym) = valu;
1379 if (gdbarch_static_transform_name_p (gdbarch)
1380 && gdbarch_static_transform_name (gdbarch,
1381 SYMBOL_LINKAGE_NAME (sym))
1382 != SYMBOL_LINKAGE_NAME (sym))
1383 {
1384 struct bound_minimal_symbol msym;
1385
1386 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1387 NULL, objfile);
1388 if (msym.minsym != NULL)
1389 {
1390 const char *new_name = gdbarch_static_transform_name
1391 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1392
1393 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1394 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1395 }
1396 }
1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1398 add_symbol_to_list (sym, get_local_symbols ());
1399 break;
1400
1401 case 'v':
1402 /* Reference parameter */
1403 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1404 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1405 SYMBOL_IS_ARGUMENT (sym) = 1;
1406 SYMBOL_VALUE (sym) = valu;
1407 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1408 add_symbol_to_list (sym, get_local_symbols ());
1409 break;
1410
1411 case 'a':
1412 /* Reference parameter which is in a register. */
1413 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1414 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1415 SYMBOL_IS_ARGUMENT (sym) = 1;
1416 SYMBOL_VALUE (sym) = valu;
1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1418 add_symbol_to_list (sym, get_local_symbols ());
1419 break;
1420
1421 case 'X':
1422 /* This is used by Sun FORTRAN for "function result value".
1423 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1424 that Pascal uses it too, but when I tried it Pascal used
1425 "x:3" (local symbol) instead. */
1426 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1427 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1428 SYMBOL_VALUE (sym) = valu;
1429 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1430 add_symbol_to_list (sym, get_local_symbols ());
1431 break;
1432
1433 default:
1434 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1435 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1436 SYMBOL_VALUE (sym) = 0;
1437 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1438 add_symbol_to_list (sym, get_file_symbols ());
1439 break;
1440 }
1441
1442 /* Some systems pass variables of certain types by reference instead
1443 of by value, i.e. they will pass the address of a structure (in a
1444 register or on the stack) instead of the structure itself. */
1445
1446 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1447 && SYMBOL_IS_ARGUMENT (sym))
1448 {
1449 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1450 variables passed in a register). */
1451 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1452 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1453 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1454 and subsequent arguments on SPARC, for example). */
1455 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1456 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1457 }
1458
1459 return sym;
1460 }
1461
1462 /* Skip rest of this symbol and return an error type.
1463
1464 General notes on error recovery: error_type always skips to the
1465 end of the symbol (modulo cretinous dbx symbol name continuation).
1466 Thus code like this:
1467
1468 if (*(*pp)++ != ';')
1469 return error_type (pp, objfile);
1470
1471 is wrong because if *pp starts out pointing at '\0' (typically as the
1472 result of an earlier error), it will be incremented to point to the
1473 start of the next symbol, which might produce strange results, at least
1474 if you run off the end of the string table. Instead use
1475
1476 if (**pp != ';')
1477 return error_type (pp, objfile);
1478 ++*pp;
1479
1480 or
1481
1482 if (**pp != ';')
1483 foo = error_type (pp, objfile);
1484 else
1485 ++*pp;
1486
1487 And in case it isn't obvious, the point of all this hair is so the compiler
1488 can define new types and new syntaxes, and old versions of the
1489 debugger will be able to read the new symbol tables. */
1490
1491 static struct type *
1492 error_type (const char **pp, struct objfile *objfile)
1493 {
1494 complaint (_("couldn't parse type; debugger out of date?"));
1495 while (1)
1496 {
1497 /* Skip to end of symbol. */
1498 while (**pp != '\0')
1499 {
1500 (*pp)++;
1501 }
1502
1503 /* Check for and handle cretinous dbx symbol name continuation! */
1504 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1505 {
1506 *pp = next_symbol_text (objfile);
1507 }
1508 else
1509 {
1510 break;
1511 }
1512 }
1513 return objfile_type (objfile)->builtin_error;
1514 }
1515 \f
1516
1517 /* Read type information or a type definition; return the type. Even
1518 though this routine accepts either type information or a type
1519 definition, the distinction is relevant--some parts of stabsread.c
1520 assume that type information starts with a digit, '-', or '(' in
1521 deciding whether to call read_type. */
1522
1523 static struct type *
1524 read_type (const char **pp, struct objfile *objfile)
1525 {
1526 struct type *type = 0;
1527 struct type *type1;
1528 int typenums[2];
1529 char type_descriptor;
1530
1531 /* Size in bits of type if specified by a type attribute, or -1 if
1532 there is no size attribute. */
1533 int type_size = -1;
1534
1535 /* Used to distinguish string and bitstring from char-array and set. */
1536 int is_string = 0;
1537
1538 /* Used to distinguish vector from array. */
1539 int is_vector = 0;
1540
1541 /* Read type number if present. The type number may be omitted.
1542 for instance in a two-dimensional array declared with type
1543 "ar1;1;10;ar1;1;10;4". */
1544 if ((**pp >= '0' && **pp <= '9')
1545 || **pp == '('
1546 || **pp == '-')
1547 {
1548 if (read_type_number (pp, typenums) != 0)
1549 return error_type (pp, objfile);
1550
1551 if (**pp != '=')
1552 {
1553 /* Type is not being defined here. Either it already
1554 exists, or this is a forward reference to it.
1555 dbx_alloc_type handles both cases. */
1556 type = dbx_alloc_type (typenums, objfile);
1557
1558 /* If this is a forward reference, arrange to complain if it
1559 doesn't get patched up by the time we're done
1560 reading. */
1561 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1562 add_undefined_type (type, typenums);
1563
1564 return type;
1565 }
1566
1567 /* Type is being defined here. */
1568 /* Skip the '='.
1569 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1570 (*pp) += 2;
1571 }
1572 else
1573 {
1574 /* 'typenums=' not present, type is anonymous. Read and return
1575 the definition, but don't put it in the type vector. */
1576 typenums[0] = typenums[1] = -1;
1577 (*pp)++;
1578 }
1579
1580 again:
1581 type_descriptor = (*pp)[-1];
1582 switch (type_descriptor)
1583 {
1584 case 'x':
1585 {
1586 enum type_code code;
1587
1588 /* Used to index through file_symbols. */
1589 struct pending *ppt;
1590 int i;
1591
1592 /* Name including "struct", etc. */
1593 char *type_name;
1594
1595 {
1596 const char *from, *p, *q1, *q2;
1597
1598 /* Set the type code according to the following letter. */
1599 switch ((*pp)[0])
1600 {
1601 case 's':
1602 code = TYPE_CODE_STRUCT;
1603 break;
1604 case 'u':
1605 code = TYPE_CODE_UNION;
1606 break;
1607 case 'e':
1608 code = TYPE_CODE_ENUM;
1609 break;
1610 default:
1611 {
1612 /* Complain and keep going, so compilers can invent new
1613 cross-reference types. */
1614 complaint (_("Unrecognized cross-reference type `%c'"),
1615 (*pp)[0]);
1616 code = TYPE_CODE_STRUCT;
1617 break;
1618 }
1619 }
1620
1621 q1 = strchr (*pp, '<');
1622 p = strchr (*pp, ':');
1623 if (p == NULL)
1624 return error_type (pp, objfile);
1625 if (q1 && p > q1 && p[1] == ':')
1626 {
1627 int nesting_level = 0;
1628
1629 for (q2 = q1; *q2; q2++)
1630 {
1631 if (*q2 == '<')
1632 nesting_level++;
1633 else if (*q2 == '>')
1634 nesting_level--;
1635 else if (*q2 == ':' && nesting_level == 0)
1636 break;
1637 }
1638 p = q2;
1639 if (*p != ':')
1640 return error_type (pp, objfile);
1641 }
1642 type_name = NULL;
1643 if (get_current_subfile ()->language == language_cplus)
1644 {
1645 char *name = (char *) alloca (p - *pp + 1);
1646
1647 memcpy (name, *pp, p - *pp);
1648 name[p - *pp] = '\0';
1649
1650 std::string new_name = cp_canonicalize_string (name);
1651 if (!new_name.empty ())
1652 {
1653 type_name
1654 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1655 new_name.c_str (),
1656 new_name.length ());
1657 }
1658 }
1659 if (type_name == NULL)
1660 {
1661 char *to = type_name = (char *)
1662 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1663
1664 /* Copy the name. */
1665 from = *pp + 1;
1666 while (from < p)
1667 *to++ = *from++;
1668 *to = '\0';
1669 }
1670
1671 /* Set the pointer ahead of the name which we just read, and
1672 the colon. */
1673 *pp = p + 1;
1674 }
1675
1676 /* If this type has already been declared, then reuse the same
1677 type, rather than allocating a new one. This saves some
1678 memory. */
1679
1680 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1681 for (i = 0; i < ppt->nsyms; i++)
1682 {
1683 struct symbol *sym = ppt->symbol[i];
1684
1685 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1686 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1687 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1688 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1689 {
1690 obstack_free (&objfile->objfile_obstack, type_name);
1691 type = SYMBOL_TYPE (sym);
1692 if (typenums[0] != -1)
1693 *dbx_lookup_type (typenums, objfile) = type;
1694 return type;
1695 }
1696 }
1697
1698 /* Didn't find the type to which this refers, so we must
1699 be dealing with a forward reference. Allocate a type
1700 structure for it, and keep track of it so we can
1701 fill in the rest of the fields when we get the full
1702 type. */
1703 type = dbx_alloc_type (typenums, objfile);
1704 TYPE_CODE (type) = code;
1705 TYPE_NAME (type) = type_name;
1706 INIT_CPLUS_SPECIFIC (type);
1707 TYPE_STUB (type) = 1;
1708
1709 add_undefined_type (type, typenums);
1710 return type;
1711 }
1712
1713 case '-': /* RS/6000 built-in type */
1714 case '0':
1715 case '1':
1716 case '2':
1717 case '3':
1718 case '4':
1719 case '5':
1720 case '6':
1721 case '7':
1722 case '8':
1723 case '9':
1724 case '(':
1725 (*pp)--;
1726
1727 /* We deal with something like t(1,2)=(3,4)=... which
1728 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1729
1730 /* Allocate and enter the typedef type first.
1731 This handles recursive types. */
1732 type = dbx_alloc_type (typenums, objfile);
1733 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1734 {
1735 struct type *xtype = read_type (pp, objfile);
1736
1737 if (type == xtype)
1738 {
1739 /* It's being defined as itself. That means it is "void". */
1740 TYPE_CODE (type) = TYPE_CODE_VOID;
1741 TYPE_LENGTH (type) = 1;
1742 }
1743 else if (type_size >= 0 || is_string)
1744 {
1745 /* This is the absolute wrong way to construct types. Every
1746 other debug format has found a way around this problem and
1747 the related problems with unnecessarily stubbed types;
1748 someone motivated should attempt to clean up the issue
1749 here as well. Once a type pointed to has been created it
1750 should not be modified.
1751
1752 Well, it's not *absolutely* wrong. Constructing recursive
1753 types (trees, linked lists) necessarily entails modifying
1754 types after creating them. Constructing any loop structure
1755 entails side effects. The Dwarf 2 reader does handle this
1756 more gracefully (it never constructs more than once
1757 instance of a type object, so it doesn't have to copy type
1758 objects wholesale), but it still mutates type objects after
1759 other folks have references to them.
1760
1761 Keep in mind that this circularity/mutation issue shows up
1762 at the source language level, too: C's "incomplete types",
1763 for example. So the proper cleanup, I think, would be to
1764 limit GDB's type smashing to match exactly those required
1765 by the source language. So GDB could have a
1766 "complete_this_type" function, but never create unnecessary
1767 copies of a type otherwise. */
1768 replace_type (type, xtype);
1769 TYPE_NAME (type) = NULL;
1770 }
1771 else
1772 {
1773 TYPE_TARGET_STUB (type) = 1;
1774 TYPE_TARGET_TYPE (type) = xtype;
1775 }
1776 }
1777 break;
1778
1779 /* In the following types, we must be sure to overwrite any existing
1780 type that the typenums refer to, rather than allocating a new one
1781 and making the typenums point to the new one. This is because there
1782 may already be pointers to the existing type (if it had been
1783 forward-referenced), and we must change it to a pointer, function,
1784 reference, or whatever, *in-place*. */
1785
1786 case '*': /* Pointer to another type */
1787 type1 = read_type (pp, objfile);
1788 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1789 break;
1790
1791 case '&': /* Reference to another type */
1792 type1 = read_type (pp, objfile);
1793 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1794 TYPE_CODE_REF);
1795 break;
1796
1797 case 'f': /* Function returning another type */
1798 type1 = read_type (pp, objfile);
1799 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1800 break;
1801
1802 case 'g': /* Prototyped function. (Sun) */
1803 {
1804 /* Unresolved questions:
1805
1806 - According to Sun's ``STABS Interface Manual'', for 'f'
1807 and 'F' symbol descriptors, a `0' in the argument type list
1808 indicates a varargs function. But it doesn't say how 'g'
1809 type descriptors represent that info. Someone with access
1810 to Sun's toolchain should try it out.
1811
1812 - According to the comment in define_symbol (search for
1813 `process_prototype_types:'), Sun emits integer arguments as
1814 types which ref themselves --- like `void' types. Do we
1815 have to deal with that here, too? Again, someone with
1816 access to Sun's toolchain should try it out and let us
1817 know. */
1818
1819 const char *type_start = (*pp) - 1;
1820 struct type *return_type = read_type (pp, objfile);
1821 struct type *func_type
1822 = make_function_type (return_type,
1823 dbx_lookup_type (typenums, objfile));
1824 struct type_list {
1825 struct type *type;
1826 struct type_list *next;
1827 } *arg_types = 0;
1828 int num_args = 0;
1829
1830 while (**pp && **pp != '#')
1831 {
1832 struct type *arg_type = read_type (pp, objfile);
1833 struct type_list *newobj = XALLOCA (struct type_list);
1834 newobj->type = arg_type;
1835 newobj->next = arg_types;
1836 arg_types = newobj;
1837 num_args++;
1838 }
1839 if (**pp == '#')
1840 ++*pp;
1841 else
1842 {
1843 complaint (_("Prototyped function type didn't "
1844 "end arguments with `#':\n%s"),
1845 type_start);
1846 }
1847
1848 /* If there is just one argument whose type is `void', then
1849 that's just an empty argument list. */
1850 if (arg_types
1851 && ! arg_types->next
1852 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1853 num_args = 0;
1854
1855 TYPE_FIELDS (func_type)
1856 = (struct field *) TYPE_ALLOC (func_type,
1857 num_args * sizeof (struct field));
1858 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1859 {
1860 int i;
1861 struct type_list *t;
1862
1863 /* We stuck each argument type onto the front of the list
1864 when we read it, so the list is reversed. Build the
1865 fields array right-to-left. */
1866 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1867 TYPE_FIELD_TYPE (func_type, i) = t->type;
1868 }
1869 TYPE_NFIELDS (func_type) = num_args;
1870 TYPE_PROTOTYPED (func_type) = 1;
1871
1872 type = func_type;
1873 break;
1874 }
1875
1876 case 'k': /* Const qualifier on some type (Sun) */
1877 type = read_type (pp, objfile);
1878 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1879 dbx_lookup_type (typenums, objfile));
1880 break;
1881
1882 case 'B': /* Volatile qual on some type (Sun) */
1883 type = read_type (pp, objfile);
1884 type = make_cv_type (TYPE_CONST (type), 1, type,
1885 dbx_lookup_type (typenums, objfile));
1886 break;
1887
1888 case '@':
1889 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1890 { /* Member (class & variable) type */
1891 /* FIXME -- we should be doing smash_to_XXX types here. */
1892
1893 struct type *domain = read_type (pp, objfile);
1894 struct type *memtype;
1895
1896 if (**pp != ',')
1897 /* Invalid member type data format. */
1898 return error_type (pp, objfile);
1899 ++*pp;
1900
1901 memtype = read_type (pp, objfile);
1902 type = dbx_alloc_type (typenums, objfile);
1903 smash_to_memberptr_type (type, domain, memtype);
1904 }
1905 else
1906 /* type attribute */
1907 {
1908 const char *attr = *pp;
1909
1910 /* Skip to the semicolon. */
1911 while (**pp != ';' && **pp != '\0')
1912 ++(*pp);
1913 if (**pp == '\0')
1914 return error_type (pp, objfile);
1915 else
1916 ++ * pp; /* Skip the semicolon. */
1917
1918 switch (*attr)
1919 {
1920 case 's': /* Size attribute */
1921 type_size = atoi (attr + 1);
1922 if (type_size <= 0)
1923 type_size = -1;
1924 break;
1925
1926 case 'S': /* String attribute */
1927 /* FIXME: check to see if following type is array? */
1928 is_string = 1;
1929 break;
1930
1931 case 'V': /* Vector attribute */
1932 /* FIXME: check to see if following type is array? */
1933 is_vector = 1;
1934 break;
1935
1936 default:
1937 /* Ignore unrecognized type attributes, so future compilers
1938 can invent new ones. */
1939 break;
1940 }
1941 ++*pp;
1942 goto again;
1943 }
1944 break;
1945
1946 case '#': /* Method (class & fn) type */
1947 if ((*pp)[0] == '#')
1948 {
1949 /* We'll get the parameter types from the name. */
1950 struct type *return_type;
1951
1952 (*pp)++;
1953 return_type = read_type (pp, objfile);
1954 if (*(*pp)++ != ';')
1955 complaint (_("invalid (minimal) member type "
1956 "data format at symtab pos %d."),
1957 symnum);
1958 type = allocate_stub_method (return_type);
1959 if (typenums[0] != -1)
1960 *dbx_lookup_type (typenums, objfile) = type;
1961 }
1962 else
1963 {
1964 struct type *domain = read_type (pp, objfile);
1965 struct type *return_type;
1966 struct field *args;
1967 int nargs, varargs;
1968
1969 if (**pp != ',')
1970 /* Invalid member type data format. */
1971 return error_type (pp, objfile);
1972 else
1973 ++(*pp);
1974
1975 return_type = read_type (pp, objfile);
1976 args = read_args (pp, ';', objfile, &nargs, &varargs);
1977 if (args == NULL)
1978 return error_type (pp, objfile);
1979 type = dbx_alloc_type (typenums, objfile);
1980 smash_to_method_type (type, domain, return_type, args,
1981 nargs, varargs);
1982 }
1983 break;
1984
1985 case 'r': /* Range type */
1986 type = read_range_type (pp, typenums, type_size, objfile);
1987 if (typenums[0] != -1)
1988 *dbx_lookup_type (typenums, objfile) = type;
1989 break;
1990
1991 case 'b':
1992 {
1993 /* Sun ACC builtin int type */
1994 type = read_sun_builtin_type (pp, typenums, objfile);
1995 if (typenums[0] != -1)
1996 *dbx_lookup_type (typenums, objfile) = type;
1997 }
1998 break;
1999
2000 case 'R': /* Sun ACC builtin float type */
2001 type = read_sun_floating_type (pp, typenums, objfile);
2002 if (typenums[0] != -1)
2003 *dbx_lookup_type (typenums, objfile) = type;
2004 break;
2005
2006 case 'e': /* Enumeration type */
2007 type = dbx_alloc_type (typenums, objfile);
2008 type = read_enum_type (pp, type, objfile);
2009 if (typenums[0] != -1)
2010 *dbx_lookup_type (typenums, objfile) = type;
2011 break;
2012
2013 case 's': /* Struct type */
2014 case 'u': /* Union type */
2015 {
2016 enum type_code type_code = TYPE_CODE_UNDEF;
2017 type = dbx_alloc_type (typenums, objfile);
2018 switch (type_descriptor)
2019 {
2020 case 's':
2021 type_code = TYPE_CODE_STRUCT;
2022 break;
2023 case 'u':
2024 type_code = TYPE_CODE_UNION;
2025 break;
2026 }
2027 type = read_struct_type (pp, type, type_code, objfile);
2028 break;
2029 }
2030
2031 case 'a': /* Array type */
2032 if (**pp != 'r')
2033 return error_type (pp, objfile);
2034 ++*pp;
2035
2036 type = dbx_alloc_type (typenums, objfile);
2037 type = read_array_type (pp, type, objfile);
2038 if (is_string)
2039 TYPE_CODE (type) = TYPE_CODE_STRING;
2040 if (is_vector)
2041 make_vector_type (type);
2042 break;
2043
2044 case 'S': /* Set type */
2045 type1 = read_type (pp, objfile);
2046 type = create_set_type ((struct type *) NULL, type1);
2047 if (typenums[0] != -1)
2048 *dbx_lookup_type (typenums, objfile) = type;
2049 break;
2050
2051 default:
2052 --*pp; /* Go back to the symbol in error. */
2053 /* Particularly important if it was \0! */
2054 return error_type (pp, objfile);
2055 }
2056
2057 if (type == 0)
2058 {
2059 warning (_("GDB internal error, type is NULL in stabsread.c."));
2060 return error_type (pp, objfile);
2061 }
2062
2063 /* Size specified in a type attribute overrides any other size. */
2064 if (type_size != -1)
2065 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2066
2067 return type;
2068 }
2069 \f
2070 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2071 Return the proper type node for a given builtin type number. */
2072
2073 static const struct objfile_data *rs6000_builtin_type_data;
2074
2075 static struct type *
2076 rs6000_builtin_type (int typenum, struct objfile *objfile)
2077 {
2078 struct type **negative_types
2079 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2080
2081 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2082 #define NUMBER_RECOGNIZED 34
2083 struct type *rettype = NULL;
2084
2085 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2086 {
2087 complaint (_("Unknown builtin type %d"), typenum);
2088 return objfile_type (objfile)->builtin_error;
2089 }
2090
2091 if (!negative_types)
2092 {
2093 /* This includes an empty slot for type number -0. */
2094 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2095 NUMBER_RECOGNIZED + 1, struct type *);
2096 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2097 }
2098
2099 if (negative_types[-typenum] != NULL)
2100 return negative_types[-typenum];
2101
2102 #if TARGET_CHAR_BIT != 8
2103 #error This code wrong for TARGET_CHAR_BIT not 8
2104 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2105 that if that ever becomes not true, the correct fix will be to
2106 make the size in the struct type to be in bits, not in units of
2107 TARGET_CHAR_BIT. */
2108 #endif
2109
2110 switch (-typenum)
2111 {
2112 case 1:
2113 /* The size of this and all the other types are fixed, defined
2114 by the debugging format. If there is a type called "int" which
2115 is other than 32 bits, then it should use a new negative type
2116 number (or avoid negative type numbers for that case).
2117 See stabs.texinfo. */
2118 rettype = init_integer_type (objfile, 32, 0, "int");
2119 break;
2120 case 2:
2121 rettype = init_integer_type (objfile, 8, 0, "char");
2122 TYPE_NOSIGN (rettype) = 1;
2123 break;
2124 case 3:
2125 rettype = init_integer_type (objfile, 16, 0, "short");
2126 break;
2127 case 4:
2128 rettype = init_integer_type (objfile, 32, 0, "long");
2129 break;
2130 case 5:
2131 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2132 break;
2133 case 6:
2134 rettype = init_integer_type (objfile, 8, 0, "signed char");
2135 break;
2136 case 7:
2137 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2138 break;
2139 case 8:
2140 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2141 break;
2142 case 9:
2143 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2144 break;
2145 case 10:
2146 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2147 break;
2148 case 11:
2149 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2150 break;
2151 case 12:
2152 /* IEEE single precision (32 bit). */
2153 rettype = init_float_type (objfile, 32, "float",
2154 floatformats_ieee_single);
2155 break;
2156 case 13:
2157 /* IEEE double precision (64 bit). */
2158 rettype = init_float_type (objfile, 64, "double",
2159 floatformats_ieee_double);
2160 break;
2161 case 14:
2162 /* This is an IEEE double on the RS/6000, and different machines with
2163 different sizes for "long double" should use different negative
2164 type numbers. See stabs.texinfo. */
2165 rettype = init_float_type (objfile, 64, "long double",
2166 floatformats_ieee_double);
2167 break;
2168 case 15:
2169 rettype = init_integer_type (objfile, 32, 0, "integer");
2170 break;
2171 case 16:
2172 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2173 break;
2174 case 17:
2175 rettype = init_float_type (objfile, 32, "short real",
2176 floatformats_ieee_single);
2177 break;
2178 case 18:
2179 rettype = init_float_type (objfile, 64, "real",
2180 floatformats_ieee_double);
2181 break;
2182 case 19:
2183 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2184 break;
2185 case 20:
2186 rettype = init_character_type (objfile, 8, 1, "character");
2187 break;
2188 case 21:
2189 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2190 break;
2191 case 22:
2192 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2193 break;
2194 case 23:
2195 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2196 break;
2197 case 24:
2198 rettype = init_boolean_type (objfile, 32, 1, "logical");
2199 break;
2200 case 25:
2201 /* Complex type consisting of two IEEE single precision values. */
2202 rettype = init_complex_type (objfile, "complex",
2203 rs6000_builtin_type (12, objfile));
2204 break;
2205 case 26:
2206 /* Complex type consisting of two IEEE double precision values. */
2207 rettype = init_complex_type (objfile, "double complex",
2208 rs6000_builtin_type (13, objfile));
2209 break;
2210 case 27:
2211 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2212 break;
2213 case 28:
2214 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2215 break;
2216 case 29:
2217 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2218 break;
2219 case 30:
2220 rettype = init_character_type (objfile, 16, 0, "wchar");
2221 break;
2222 case 31:
2223 rettype = init_integer_type (objfile, 64, 0, "long long");
2224 break;
2225 case 32:
2226 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2227 break;
2228 case 33:
2229 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2230 break;
2231 case 34:
2232 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2233 break;
2234 }
2235 negative_types[-typenum] = rettype;
2236 return rettype;
2237 }
2238 \f
2239 /* This page contains subroutines of read_type. */
2240
2241 /* Wrapper around method_name_from_physname to flag a complaint
2242 if there is an error. */
2243
2244 static char *
2245 stabs_method_name_from_physname (const char *physname)
2246 {
2247 char *method_name;
2248
2249 method_name = method_name_from_physname (physname);
2250
2251 if (method_name == NULL)
2252 {
2253 complaint (_("Method has bad physname %s\n"), physname);
2254 return NULL;
2255 }
2256
2257 return method_name;
2258 }
2259
2260 /* Read member function stabs info for C++ classes. The form of each member
2261 function data is:
2262
2263 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2264
2265 An example with two member functions is:
2266
2267 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2268
2269 For the case of overloaded operators, the format is op$::*.funcs, where
2270 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2271 name (such as `+=') and `.' marks the end of the operator name.
2272
2273 Returns 1 for success, 0 for failure. */
2274
2275 static int
2276 read_member_functions (struct field_info *fip, const char **pp,
2277 struct type *type, struct objfile *objfile)
2278 {
2279 int nfn_fields = 0;
2280 int length = 0;
2281 int i;
2282 struct next_fnfield
2283 {
2284 struct next_fnfield *next;
2285 struct fn_field fn_field;
2286 }
2287 *sublist;
2288 struct type *look_ahead_type;
2289 struct next_fnfieldlist *new_fnlist;
2290 struct next_fnfield *new_sublist;
2291 char *main_fn_name;
2292 const char *p;
2293
2294 /* Process each list until we find something that is not a member function
2295 or find the end of the functions. */
2296
2297 while (**pp != ';')
2298 {
2299 /* We should be positioned at the start of the function name.
2300 Scan forward to find the first ':' and if it is not the
2301 first of a "::" delimiter, then this is not a member function. */
2302 p = *pp;
2303 while (*p != ':')
2304 {
2305 p++;
2306 }
2307 if (p[1] != ':')
2308 {
2309 break;
2310 }
2311
2312 sublist = NULL;
2313 look_ahead_type = NULL;
2314 length = 0;
2315
2316 new_fnlist = XCNEW (struct next_fnfieldlist);
2317 make_cleanup (xfree, new_fnlist);
2318
2319 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2320 {
2321 /* This is a completely wierd case. In order to stuff in the
2322 names that might contain colons (the usual name delimiter),
2323 Mike Tiemann defined a different name format which is
2324 signalled if the identifier is "op$". In that case, the
2325 format is "op$::XXXX." where XXXX is the name. This is
2326 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2327 /* This lets the user type "break operator+".
2328 We could just put in "+" as the name, but that wouldn't
2329 work for "*". */
2330 static char opname[32] = "op$";
2331 char *o = opname + 3;
2332
2333 /* Skip past '::'. */
2334 *pp = p + 2;
2335
2336 STABS_CONTINUE (pp, objfile);
2337 p = *pp;
2338 while (*p != '.')
2339 {
2340 *o++ = *p++;
2341 }
2342 main_fn_name = savestring (opname, o - opname);
2343 /* Skip past '.' */
2344 *pp = p + 1;
2345 }
2346 else
2347 {
2348 main_fn_name = savestring (*pp, p - *pp);
2349 /* Skip past '::'. */
2350 *pp = p + 2;
2351 }
2352 new_fnlist->fn_fieldlist.name = main_fn_name;
2353
2354 do
2355 {
2356 new_sublist = XCNEW (struct next_fnfield);
2357 make_cleanup (xfree, new_sublist);
2358
2359 /* Check for and handle cretinous dbx symbol name continuation! */
2360 if (look_ahead_type == NULL)
2361 {
2362 /* Normal case. */
2363 STABS_CONTINUE (pp, objfile);
2364
2365 new_sublist->fn_field.type = read_type (pp, objfile);
2366 if (**pp != ':')
2367 {
2368 /* Invalid symtab info for member function. */
2369 return 0;
2370 }
2371 }
2372 else
2373 {
2374 /* g++ version 1 kludge */
2375 new_sublist->fn_field.type = look_ahead_type;
2376 look_ahead_type = NULL;
2377 }
2378
2379 (*pp)++;
2380 p = *pp;
2381 while (*p != ';')
2382 {
2383 p++;
2384 }
2385
2386 /* These are methods, not functions. */
2387 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2388 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2389 else
2390 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2391 == TYPE_CODE_METHOD);
2392
2393 /* If this is just a stub, then we don't have the real name here. */
2394 if (TYPE_STUB (new_sublist->fn_field.type))
2395 {
2396 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2397 set_type_self_type (new_sublist->fn_field.type, type);
2398 new_sublist->fn_field.is_stub = 1;
2399 }
2400
2401 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2402 *pp = p + 1;
2403
2404 /* Set this member function's visibility fields. */
2405 switch (*(*pp)++)
2406 {
2407 case VISIBILITY_PRIVATE:
2408 new_sublist->fn_field.is_private = 1;
2409 break;
2410 case VISIBILITY_PROTECTED:
2411 new_sublist->fn_field.is_protected = 1;
2412 break;
2413 }
2414
2415 STABS_CONTINUE (pp, objfile);
2416 switch (**pp)
2417 {
2418 case 'A': /* Normal functions. */
2419 new_sublist->fn_field.is_const = 0;
2420 new_sublist->fn_field.is_volatile = 0;
2421 (*pp)++;
2422 break;
2423 case 'B': /* `const' member functions. */
2424 new_sublist->fn_field.is_const = 1;
2425 new_sublist->fn_field.is_volatile = 0;
2426 (*pp)++;
2427 break;
2428 case 'C': /* `volatile' member function. */
2429 new_sublist->fn_field.is_const = 0;
2430 new_sublist->fn_field.is_volatile = 1;
2431 (*pp)++;
2432 break;
2433 case 'D': /* `const volatile' member function. */
2434 new_sublist->fn_field.is_const = 1;
2435 new_sublist->fn_field.is_volatile = 1;
2436 (*pp)++;
2437 break;
2438 case '*': /* File compiled with g++ version 1 --
2439 no info. */
2440 case '?':
2441 case '.':
2442 break;
2443 default:
2444 complaint (_("const/volatile indicator missing, got '%c'"),
2445 **pp);
2446 break;
2447 }
2448
2449 switch (*(*pp)++)
2450 {
2451 case '*':
2452 {
2453 int nbits;
2454 /* virtual member function, followed by index.
2455 The sign bit is set to distinguish pointers-to-methods
2456 from virtual function indicies. Since the array is
2457 in words, the quantity must be shifted left by 1
2458 on 16 bit machine, and by 2 on 32 bit machine, forcing
2459 the sign bit out, and usable as a valid index into
2460 the array. Remove the sign bit here. */
2461 new_sublist->fn_field.voffset =
2462 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2463 if (nbits != 0)
2464 return 0;
2465
2466 STABS_CONTINUE (pp, objfile);
2467 if (**pp == ';' || **pp == '\0')
2468 {
2469 /* Must be g++ version 1. */
2470 new_sublist->fn_field.fcontext = 0;
2471 }
2472 else
2473 {
2474 /* Figure out from whence this virtual function came.
2475 It may belong to virtual function table of
2476 one of its baseclasses. */
2477 look_ahead_type = read_type (pp, objfile);
2478 if (**pp == ':')
2479 {
2480 /* g++ version 1 overloaded methods. */
2481 }
2482 else
2483 {
2484 new_sublist->fn_field.fcontext = look_ahead_type;
2485 if (**pp != ';')
2486 {
2487 return 0;
2488 }
2489 else
2490 {
2491 ++*pp;
2492 }
2493 look_ahead_type = NULL;
2494 }
2495 }
2496 break;
2497 }
2498 case '?':
2499 /* static member function. */
2500 {
2501 int slen = strlen (main_fn_name);
2502
2503 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2504
2505 /* For static member functions, we can't tell if they
2506 are stubbed, as they are put out as functions, and not as
2507 methods.
2508 GCC v2 emits the fully mangled name if
2509 dbxout.c:flag_minimal_debug is not set, so we have to
2510 detect a fully mangled physname here and set is_stub
2511 accordingly. Fully mangled physnames in v2 start with
2512 the member function name, followed by two underscores.
2513 GCC v3 currently always emits stubbed member functions,
2514 but with fully mangled physnames, which start with _Z. */
2515 if (!(strncmp (new_sublist->fn_field.physname,
2516 main_fn_name, slen) == 0
2517 && new_sublist->fn_field.physname[slen] == '_'
2518 && new_sublist->fn_field.physname[slen + 1] == '_'))
2519 {
2520 new_sublist->fn_field.is_stub = 1;
2521 }
2522 break;
2523 }
2524
2525 default:
2526 /* error */
2527 complaint (_("member function type missing, got '%c'"),
2528 (*pp)[-1]);
2529 /* Normal member function. */
2530 /* Fall through. */
2531
2532 case '.':
2533 /* normal member function. */
2534 new_sublist->fn_field.voffset = 0;
2535 new_sublist->fn_field.fcontext = 0;
2536 break;
2537 }
2538
2539 new_sublist->next = sublist;
2540 sublist = new_sublist;
2541 length++;
2542 STABS_CONTINUE (pp, objfile);
2543 }
2544 while (**pp != ';' && **pp != '\0');
2545
2546 (*pp)++;
2547 STABS_CONTINUE (pp, objfile);
2548
2549 /* Skip GCC 3.X member functions which are duplicates of the callable
2550 constructor/destructor. */
2551 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2552 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2553 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2554 {
2555 xfree (main_fn_name);
2556 }
2557 else
2558 {
2559 int has_stub = 0;
2560 int has_destructor = 0, has_other = 0;
2561 int is_v3 = 0;
2562 struct next_fnfield *tmp_sublist;
2563
2564 /* Various versions of GCC emit various mostly-useless
2565 strings in the name field for special member functions.
2566
2567 For stub methods, we need to defer correcting the name
2568 until we are ready to unstub the method, because the current
2569 name string is used by gdb_mangle_name. The only stub methods
2570 of concern here are GNU v2 operators; other methods have their
2571 names correct (see caveat below).
2572
2573 For non-stub methods, in GNU v3, we have a complete physname.
2574 Therefore we can safely correct the name now. This primarily
2575 affects constructors and destructors, whose name will be
2576 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2577 operators will also have incorrect names; for instance,
2578 "operator int" will be named "operator i" (i.e. the type is
2579 mangled).
2580
2581 For non-stub methods in GNU v2, we have no easy way to
2582 know if we have a complete physname or not. For most
2583 methods the result depends on the platform (if CPLUS_MARKER
2584 can be `$' or `.', it will use minimal debug information, or
2585 otherwise the full physname will be included).
2586
2587 Rather than dealing with this, we take a different approach.
2588 For v3 mangled names, we can use the full physname; for v2,
2589 we use cplus_demangle_opname (which is actually v2 specific),
2590 because the only interesting names are all operators - once again
2591 barring the caveat below. Skip this process if any method in the
2592 group is a stub, to prevent our fouling up the workings of
2593 gdb_mangle_name.
2594
2595 The caveat: GCC 2.95.x (and earlier?) put constructors and
2596 destructors in the same method group. We need to split this
2597 into two groups, because they should have different names.
2598 So for each method group we check whether it contains both
2599 routines whose physname appears to be a destructor (the physnames
2600 for and destructors are always provided, due to quirks in v2
2601 mangling) and routines whose physname does not appear to be a
2602 destructor. If so then we break up the list into two halves.
2603 Even if the constructors and destructors aren't in the same group
2604 the destructor will still lack the leading tilde, so that also
2605 needs to be fixed.
2606
2607 So, to summarize what we expect and handle here:
2608
2609 Given Given Real Real Action
2610 method name physname physname method name
2611
2612 __opi [none] __opi__3Foo operator int opname
2613 [now or later]
2614 Foo _._3Foo _._3Foo ~Foo separate and
2615 rename
2616 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2617 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2618 */
2619
2620 tmp_sublist = sublist;
2621 while (tmp_sublist != NULL)
2622 {
2623 if (tmp_sublist->fn_field.is_stub)
2624 has_stub = 1;
2625 if (tmp_sublist->fn_field.physname[0] == '_'
2626 && tmp_sublist->fn_field.physname[1] == 'Z')
2627 is_v3 = 1;
2628
2629 if (is_destructor_name (tmp_sublist->fn_field.physname))
2630 has_destructor++;
2631 else
2632 has_other++;
2633
2634 tmp_sublist = tmp_sublist->next;
2635 }
2636
2637 if (has_destructor && has_other)
2638 {
2639 struct next_fnfieldlist *destr_fnlist;
2640 struct next_fnfield *last_sublist;
2641
2642 /* Create a new fn_fieldlist for the destructors. */
2643
2644 destr_fnlist = XCNEW (struct next_fnfieldlist);
2645 make_cleanup (xfree, destr_fnlist);
2646
2647 destr_fnlist->fn_fieldlist.name
2648 = obconcat (&objfile->objfile_obstack, "~",
2649 new_fnlist->fn_fieldlist.name, (char *) NULL);
2650
2651 destr_fnlist->fn_fieldlist.fn_fields =
2652 XOBNEWVEC (&objfile->objfile_obstack,
2653 struct fn_field, has_destructor);
2654 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2655 sizeof (struct fn_field) * has_destructor);
2656 tmp_sublist = sublist;
2657 last_sublist = NULL;
2658 i = 0;
2659 while (tmp_sublist != NULL)
2660 {
2661 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2662 {
2663 tmp_sublist = tmp_sublist->next;
2664 continue;
2665 }
2666
2667 destr_fnlist->fn_fieldlist.fn_fields[i++]
2668 = tmp_sublist->fn_field;
2669 if (last_sublist)
2670 last_sublist->next = tmp_sublist->next;
2671 else
2672 sublist = tmp_sublist->next;
2673 last_sublist = tmp_sublist;
2674 tmp_sublist = tmp_sublist->next;
2675 }
2676
2677 destr_fnlist->fn_fieldlist.length = has_destructor;
2678 destr_fnlist->next = fip->fnlist;
2679 fip->fnlist = destr_fnlist;
2680 nfn_fields++;
2681 length -= has_destructor;
2682 }
2683 else if (is_v3)
2684 {
2685 /* v3 mangling prevents the use of abbreviated physnames,
2686 so we can do this here. There are stubbed methods in v3
2687 only:
2688 - in -gstabs instead of -gstabs+
2689 - or for static methods, which are output as a function type
2690 instead of a method type. */
2691 char *new_method_name =
2692 stabs_method_name_from_physname (sublist->fn_field.physname);
2693
2694 if (new_method_name != NULL
2695 && strcmp (new_method_name,
2696 new_fnlist->fn_fieldlist.name) != 0)
2697 {
2698 new_fnlist->fn_fieldlist.name = new_method_name;
2699 xfree (main_fn_name);
2700 }
2701 else
2702 xfree (new_method_name);
2703 }
2704 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2705 {
2706 new_fnlist->fn_fieldlist.name =
2707 obconcat (&objfile->objfile_obstack,
2708 "~", main_fn_name, (char *)NULL);
2709 xfree (main_fn_name);
2710 }
2711 else if (!has_stub)
2712 {
2713 char dem_opname[256];
2714 int ret;
2715
2716 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2717 dem_opname, DMGL_ANSI);
2718 if (!ret)
2719 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2720 dem_opname, 0);
2721 if (ret)
2722 new_fnlist->fn_fieldlist.name
2723 = ((const char *)
2724 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2725 strlen (dem_opname)));
2726 xfree (main_fn_name);
2727 }
2728
2729 new_fnlist->fn_fieldlist.fn_fields
2730 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2731 for (i = length; (i--, sublist); sublist = sublist->next)
2732 {
2733 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2734 }
2735
2736 new_fnlist->fn_fieldlist.length = length;
2737 new_fnlist->next = fip->fnlist;
2738 fip->fnlist = new_fnlist;
2739 nfn_fields++;
2740 }
2741 }
2742
2743 if (nfn_fields)
2744 {
2745 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2746 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2747 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2748 memset (TYPE_FN_FIELDLISTS (type), 0,
2749 sizeof (struct fn_fieldlist) * nfn_fields);
2750 TYPE_NFN_FIELDS (type) = nfn_fields;
2751 }
2752
2753 return 1;
2754 }
2755
2756 /* Special GNU C++ name.
2757
2758 Returns 1 for success, 0 for failure. "failure" means that we can't
2759 keep parsing and it's time for error_type(). */
2760
2761 static int
2762 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2763 struct objfile *objfile)
2764 {
2765 const char *p;
2766 const char *name;
2767 char cpp_abbrev;
2768 struct type *context;
2769
2770 p = *pp;
2771 if (*++p == 'v')
2772 {
2773 name = NULL;
2774 cpp_abbrev = *++p;
2775
2776 *pp = p + 1;
2777
2778 /* At this point, *pp points to something like "22:23=*22...",
2779 where the type number before the ':' is the "context" and
2780 everything after is a regular type definition. Lookup the
2781 type, find it's name, and construct the field name. */
2782
2783 context = read_type (pp, objfile);
2784
2785 switch (cpp_abbrev)
2786 {
2787 case 'f': /* $vf -- a virtual function table pointer */
2788 name = TYPE_NAME (context);
2789 if (name == NULL)
2790 {
2791 name = "";
2792 }
2793 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2794 vptr_name, name, (char *) NULL);
2795 break;
2796
2797 case 'b': /* $vb -- a virtual bsomethingorother */
2798 name = TYPE_NAME (context);
2799 if (name == NULL)
2800 {
2801 complaint (_("C++ abbreviated type name "
2802 "unknown at symtab pos %d"),
2803 symnum);
2804 name = "FOO";
2805 }
2806 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2807 name, (char *) NULL);
2808 break;
2809
2810 default:
2811 invalid_cpp_abbrev_complaint (*pp);
2812 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2813 "INVALID_CPLUSPLUS_ABBREV",
2814 (char *) NULL);
2815 break;
2816 }
2817
2818 /* At this point, *pp points to the ':'. Skip it and read the
2819 field type. */
2820
2821 p = ++(*pp);
2822 if (p[-1] != ':')
2823 {
2824 invalid_cpp_abbrev_complaint (*pp);
2825 return 0;
2826 }
2827 fip->list->field.type = read_type (pp, objfile);
2828 if (**pp == ',')
2829 (*pp)++; /* Skip the comma. */
2830 else
2831 return 0;
2832
2833 {
2834 int nbits;
2835
2836 SET_FIELD_BITPOS (fip->list->field,
2837 read_huge_number (pp, ';', &nbits, 0));
2838 if (nbits != 0)
2839 return 0;
2840 }
2841 /* This field is unpacked. */
2842 FIELD_BITSIZE (fip->list->field) = 0;
2843 fip->list->visibility = VISIBILITY_PRIVATE;
2844 }
2845 else
2846 {
2847 invalid_cpp_abbrev_complaint (*pp);
2848 /* We have no idea what syntax an unrecognized abbrev would have, so
2849 better return 0. If we returned 1, we would need to at least advance
2850 *pp to avoid an infinite loop. */
2851 return 0;
2852 }
2853 return 1;
2854 }
2855
2856 static void
2857 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2858 struct type *type, struct objfile *objfile)
2859 {
2860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2861
2862 fip->list->field.name
2863 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2864 *pp = p + 1;
2865
2866 /* This means we have a visibility for a field coming. */
2867 if (**pp == '/')
2868 {
2869 (*pp)++;
2870 fip->list->visibility = *(*pp)++;
2871 }
2872 else
2873 {
2874 /* normal dbx-style format, no explicit visibility */
2875 fip->list->visibility = VISIBILITY_PUBLIC;
2876 }
2877
2878 fip->list->field.type = read_type (pp, objfile);
2879 if (**pp == ':')
2880 {
2881 p = ++(*pp);
2882 #if 0
2883 /* Possible future hook for nested types. */
2884 if (**pp == '!')
2885 {
2886 fip->list->field.bitpos = (long) -2; /* nested type */
2887 p = ++(*pp);
2888 }
2889 else
2890 ...;
2891 #endif
2892 while (*p != ';')
2893 {
2894 p++;
2895 }
2896 /* Static class member. */
2897 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2898 *pp = p + 1;
2899 return;
2900 }
2901 else if (**pp != ',')
2902 {
2903 /* Bad structure-type format. */
2904 stabs_general_complaint ("bad structure-type format");
2905 return;
2906 }
2907
2908 (*pp)++; /* Skip the comma. */
2909
2910 {
2911 int nbits;
2912
2913 SET_FIELD_BITPOS (fip->list->field,
2914 read_huge_number (pp, ',', &nbits, 0));
2915 if (nbits != 0)
2916 {
2917 stabs_general_complaint ("bad structure-type format");
2918 return;
2919 }
2920 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2921 if (nbits != 0)
2922 {
2923 stabs_general_complaint ("bad structure-type format");
2924 return;
2925 }
2926 }
2927
2928 if (FIELD_BITPOS (fip->list->field) == 0
2929 && FIELD_BITSIZE (fip->list->field) == 0)
2930 {
2931 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2932 it is a field which has been optimized out. The correct stab for
2933 this case is to use VISIBILITY_IGNORE, but that is a recent
2934 invention. (2) It is a 0-size array. For example
2935 union { int num; char str[0]; } foo. Printing _("<no value>" for
2936 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2937 will continue to work, and a 0-size array as a whole doesn't
2938 have any contents to print.
2939
2940 I suspect this probably could also happen with gcc -gstabs (not
2941 -gstabs+) for static fields, and perhaps other C++ extensions.
2942 Hopefully few people use -gstabs with gdb, since it is intended
2943 for dbx compatibility. */
2944
2945 /* Ignore this field. */
2946 fip->list->visibility = VISIBILITY_IGNORE;
2947 }
2948 else
2949 {
2950 /* Detect an unpacked field and mark it as such.
2951 dbx gives a bit size for all fields.
2952 Note that forward refs cannot be packed,
2953 and treat enums as if they had the width of ints. */
2954
2955 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2956
2957 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2958 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2959 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2960 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2961 {
2962 FIELD_BITSIZE (fip->list->field) = 0;
2963 }
2964 if ((FIELD_BITSIZE (fip->list->field)
2965 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2966 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2967 && FIELD_BITSIZE (fip->list->field)
2968 == gdbarch_int_bit (gdbarch))
2969 )
2970 &&
2971 FIELD_BITPOS (fip->list->field) % 8 == 0)
2972 {
2973 FIELD_BITSIZE (fip->list->field) = 0;
2974 }
2975 }
2976 }
2977
2978
2979 /* Read struct or class data fields. They have the form:
2980
2981 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2982
2983 At the end, we see a semicolon instead of a field.
2984
2985 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2986 a static field.
2987
2988 The optional VISIBILITY is one of:
2989
2990 '/0' (VISIBILITY_PRIVATE)
2991 '/1' (VISIBILITY_PROTECTED)
2992 '/2' (VISIBILITY_PUBLIC)
2993 '/9' (VISIBILITY_IGNORE)
2994
2995 or nothing, for C style fields with public visibility.
2996
2997 Returns 1 for success, 0 for failure. */
2998
2999 static int
3000 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
3001 struct objfile *objfile)
3002 {
3003 const char *p;
3004 struct nextfield *newobj;
3005
3006 /* We better set p right now, in case there are no fields at all... */
3007
3008 p = *pp;
3009
3010 /* Read each data member type until we find the terminating ';' at the end of
3011 the data member list, or break for some other reason such as finding the
3012 start of the member function list. */
3013 /* Stab string for structure/union does not end with two ';' in
3014 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3015
3016 while (**pp != ';' && **pp != '\0')
3017 {
3018 STABS_CONTINUE (pp, objfile);
3019 /* Get space to record the next field's data. */
3020 newobj = XCNEW (struct nextfield);
3021 make_cleanup (xfree, newobj);
3022
3023 newobj->next = fip->list;
3024 fip->list = newobj;
3025
3026 /* Get the field name. */
3027 p = *pp;
3028
3029 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3030 unless the CPLUS_MARKER is followed by an underscore, in
3031 which case it is just the name of an anonymous type, which we
3032 should handle like any other type name. */
3033
3034 if (is_cplus_marker (p[0]) && p[1] != '_')
3035 {
3036 if (!read_cpp_abbrev (fip, pp, type, objfile))
3037 return 0;
3038 continue;
3039 }
3040
3041 /* Look for the ':' that separates the field name from the field
3042 values. Data members are delimited by a single ':', while member
3043 functions are delimited by a pair of ':'s. When we hit the member
3044 functions (if any), terminate scan loop and return. */
3045
3046 while (*p != ':' && *p != '\0')
3047 {
3048 p++;
3049 }
3050 if (*p == '\0')
3051 return 0;
3052
3053 /* Check to see if we have hit the member functions yet. */
3054 if (p[1] == ':')
3055 {
3056 break;
3057 }
3058 read_one_struct_field (fip, pp, p, type, objfile);
3059 }
3060 if (p[0] == ':' && p[1] == ':')
3061 {
3062 /* (the deleted) chill the list of fields: the last entry (at
3063 the head) is a partially constructed entry which we now
3064 scrub. */
3065 fip->list = fip->list->next;
3066 }
3067 return 1;
3068 }
3069 /* *INDENT-OFF* */
3070 /* The stabs for C++ derived classes contain baseclass information which
3071 is marked by a '!' character after the total size. This function is
3072 called when we encounter the baseclass marker, and slurps up all the
3073 baseclass information.
3074
3075 Immediately following the '!' marker is the number of base classes that
3076 the class is derived from, followed by information for each base class.
3077 For each base class, there are two visibility specifiers, a bit offset
3078 to the base class information within the derived class, a reference to
3079 the type for the base class, and a terminating semicolon.
3080
3081 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3082 ^^ ^ ^ ^ ^ ^ ^
3083 Baseclass information marker __________________|| | | | | | |
3084 Number of baseclasses __________________________| | | | | | |
3085 Visibility specifiers (2) ________________________| | | | | |
3086 Offset in bits from start of class _________________| | | | |
3087 Type number for base class ___________________________| | | |
3088 Visibility specifiers (2) _______________________________| | |
3089 Offset in bits from start of class ________________________| |
3090 Type number of base class ____________________________________|
3091
3092 Return 1 for success, 0 for (error-type-inducing) failure. */
3093 /* *INDENT-ON* */
3094
3095
3096
3097 static int
3098 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3099 struct objfile *objfile)
3100 {
3101 int i;
3102 struct nextfield *newobj;
3103
3104 if (**pp != '!')
3105 {
3106 return 1;
3107 }
3108 else
3109 {
3110 /* Skip the '!' baseclass information marker. */
3111 (*pp)++;
3112 }
3113
3114 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3115 {
3116 int nbits;
3117
3118 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3119 if (nbits != 0)
3120 return 0;
3121 }
3122
3123 #if 0
3124 /* Some stupid compilers have trouble with the following, so break
3125 it up into simpler expressions. */
3126 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3127 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3128 #else
3129 {
3130 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3131 char *pointer;
3132
3133 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3134 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3135 }
3136 #endif /* 0 */
3137
3138 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3139
3140 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3141 {
3142 newobj = XCNEW (struct nextfield);
3143 make_cleanup (xfree, newobj);
3144
3145 newobj->next = fip->list;
3146 fip->list = newobj;
3147 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3148 field! */
3149
3150 STABS_CONTINUE (pp, objfile);
3151 switch (**pp)
3152 {
3153 case '0':
3154 /* Nothing to do. */
3155 break;
3156 case '1':
3157 SET_TYPE_FIELD_VIRTUAL (type, i);
3158 break;
3159 default:
3160 /* Unknown character. Complain and treat it as non-virtual. */
3161 {
3162 complaint (_("Unknown virtual character `%c' for baseclass"),
3163 **pp);
3164 }
3165 }
3166 ++(*pp);
3167
3168 newobj->visibility = *(*pp)++;
3169 switch (newobj->visibility)
3170 {
3171 case VISIBILITY_PRIVATE:
3172 case VISIBILITY_PROTECTED:
3173 case VISIBILITY_PUBLIC:
3174 break;
3175 default:
3176 /* Bad visibility format. Complain and treat it as
3177 public. */
3178 {
3179 complaint (_("Unknown visibility `%c' for baseclass"),
3180 newobj->visibility);
3181 newobj->visibility = VISIBILITY_PUBLIC;
3182 }
3183 }
3184
3185 {
3186 int nbits;
3187
3188 /* The remaining value is the bit offset of the portion of the object
3189 corresponding to this baseclass. Always zero in the absence of
3190 multiple inheritance. */
3191
3192 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3193 if (nbits != 0)
3194 return 0;
3195 }
3196
3197 /* The last piece of baseclass information is the type of the
3198 base class. Read it, and remember it's type name as this
3199 field's name. */
3200
3201 newobj->field.type = read_type (pp, objfile);
3202 newobj->field.name = TYPE_NAME (newobj->field.type);
3203
3204 /* Skip trailing ';' and bump count of number of fields seen. */
3205 if (**pp == ';')
3206 (*pp)++;
3207 else
3208 return 0;
3209 }
3210 return 1;
3211 }
3212
3213 /* The tail end of stabs for C++ classes that contain a virtual function
3214 pointer contains a tilde, a %, and a type number.
3215 The type number refers to the base class (possibly this class itself) which
3216 contains the vtable pointer for the current class.
3217
3218 This function is called when we have parsed all the method declarations,
3219 so we can look for the vptr base class info. */
3220
3221 static int
3222 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3223 struct objfile *objfile)
3224 {
3225 const char *p;
3226
3227 STABS_CONTINUE (pp, objfile);
3228
3229 /* If we are positioned at a ';', then skip it. */
3230 if (**pp == ';')
3231 {
3232 (*pp)++;
3233 }
3234
3235 if (**pp == '~')
3236 {
3237 (*pp)++;
3238
3239 if (**pp == '=' || **pp == '+' || **pp == '-')
3240 {
3241 /* Obsolete flags that used to indicate the presence
3242 of constructors and/or destructors. */
3243 (*pp)++;
3244 }
3245
3246 /* Read either a '%' or the final ';'. */
3247 if (*(*pp)++ == '%')
3248 {
3249 /* The next number is the type number of the base class
3250 (possibly our own class) which supplies the vtable for
3251 this class. Parse it out, and search that class to find
3252 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3253 and TYPE_VPTR_FIELDNO. */
3254
3255 struct type *t;
3256 int i;
3257
3258 t = read_type (pp, objfile);
3259 p = (*pp)++;
3260 while (*p != '\0' && *p != ';')
3261 {
3262 p++;
3263 }
3264 if (*p == '\0')
3265 {
3266 /* Premature end of symbol. */
3267 return 0;
3268 }
3269
3270 set_type_vptr_basetype (type, t);
3271 if (type == t) /* Our own class provides vtbl ptr. */
3272 {
3273 for (i = TYPE_NFIELDS (t) - 1;
3274 i >= TYPE_N_BASECLASSES (t);
3275 --i)
3276 {
3277 const char *name = TYPE_FIELD_NAME (t, i);
3278
3279 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3280 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3281 {
3282 set_type_vptr_fieldno (type, i);
3283 goto gotit;
3284 }
3285 }
3286 /* Virtual function table field not found. */
3287 complaint (_("virtual function table pointer "
3288 "not found when defining class `%s'"),
3289 TYPE_NAME (type));
3290 return 0;
3291 }
3292 else
3293 {
3294 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3295 }
3296
3297 gotit:
3298 *pp = p + 1;
3299 }
3300 }
3301 return 1;
3302 }
3303
3304 static int
3305 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3306 {
3307 int n;
3308
3309 for (n = TYPE_NFN_FIELDS (type);
3310 fip->fnlist != NULL;
3311 fip->fnlist = fip->fnlist->next)
3312 {
3313 --n; /* Circumvent Sun3 compiler bug. */
3314 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3315 }
3316 return 1;
3317 }
3318
3319 /* Create the vector of fields, and record how big it is.
3320 We need this info to record proper virtual function table information
3321 for this class's virtual functions. */
3322
3323 static int
3324 attach_fields_to_type (struct field_info *fip, struct type *type,
3325 struct objfile *objfile)
3326 {
3327 int nfields = 0;
3328 int non_public_fields = 0;
3329 struct nextfield *scan;
3330
3331 /* Count up the number of fields that we have, as well as taking note of
3332 whether or not there are any non-public fields, which requires us to
3333 allocate and build the private_field_bits and protected_field_bits
3334 bitfields. */
3335
3336 for (scan = fip->list; scan != NULL; scan = scan->next)
3337 {
3338 nfields++;
3339 if (scan->visibility != VISIBILITY_PUBLIC)
3340 {
3341 non_public_fields++;
3342 }
3343 }
3344
3345 /* Now we know how many fields there are, and whether or not there are any
3346 non-public fields. Record the field count, allocate space for the
3347 array of fields, and create blank visibility bitfields if necessary. */
3348
3349 TYPE_NFIELDS (type) = nfields;
3350 TYPE_FIELDS (type) = (struct field *)
3351 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3352 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3353
3354 if (non_public_fields)
3355 {
3356 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3357
3358 TYPE_FIELD_PRIVATE_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3361
3362 TYPE_FIELD_PROTECTED_BITS (type) =
3363 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3364 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3365
3366 TYPE_FIELD_IGNORE_BITS (type) =
3367 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3368 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3369 }
3370
3371 /* Copy the saved-up fields into the field vector. Start from the
3372 head of the list, adding to the tail of the field array, so that
3373 they end up in the same order in the array in which they were
3374 added to the list. */
3375
3376 while (nfields-- > 0)
3377 {
3378 TYPE_FIELD (type, nfields) = fip->list->field;
3379 switch (fip->list->visibility)
3380 {
3381 case VISIBILITY_PRIVATE:
3382 SET_TYPE_FIELD_PRIVATE (type, nfields);
3383 break;
3384
3385 case VISIBILITY_PROTECTED:
3386 SET_TYPE_FIELD_PROTECTED (type, nfields);
3387 break;
3388
3389 case VISIBILITY_IGNORE:
3390 SET_TYPE_FIELD_IGNORE (type, nfields);
3391 break;
3392
3393 case VISIBILITY_PUBLIC:
3394 break;
3395
3396 default:
3397 /* Unknown visibility. Complain and treat it as public. */
3398 {
3399 complaint (_("Unknown visibility `%c' for field"),
3400 fip->list->visibility);
3401 }
3402 break;
3403 }
3404 fip->list = fip->list->next;
3405 }
3406 return 1;
3407 }
3408
3409
3410 /* Complain that the compiler has emitted more than one definition for the
3411 structure type TYPE. */
3412 static void
3413 complain_about_struct_wipeout (struct type *type)
3414 {
3415 const char *name = "";
3416 const char *kind = "";
3417
3418 if (TYPE_NAME (type))
3419 {
3420 name = TYPE_NAME (type);
3421 switch (TYPE_CODE (type))
3422 {
3423 case TYPE_CODE_STRUCT: kind = "struct "; break;
3424 case TYPE_CODE_UNION: kind = "union "; break;
3425 case TYPE_CODE_ENUM: kind = "enum "; break;
3426 default: kind = "";
3427 }
3428 }
3429 else
3430 {
3431 name = "<unknown>";
3432 kind = "";
3433 }
3434
3435 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3436 }
3437
3438 /* Set the length for all variants of a same main_type, which are
3439 connected in the closed chain.
3440
3441 This is something that needs to be done when a type is defined *after*
3442 some cross references to this type have already been read. Consider
3443 for instance the following scenario where we have the following two
3444 stabs entries:
3445
3446 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3447 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3448
3449 A stubbed version of type dummy is created while processing the first
3450 stabs entry. The length of that type is initially set to zero, since
3451 it is unknown at this point. Also, a "constant" variation of type
3452 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3453 the stabs line).
3454
3455 The second stabs entry allows us to replace the stubbed definition
3456 with the real definition. However, we still need to adjust the length
3457 of the "constant" variation of that type, as its length was left
3458 untouched during the main type replacement... */
3459
3460 static void
3461 set_length_in_type_chain (struct type *type)
3462 {
3463 struct type *ntype = TYPE_CHAIN (type);
3464
3465 while (ntype != type)
3466 {
3467 if (TYPE_LENGTH(ntype) == 0)
3468 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3469 else
3470 complain_about_struct_wipeout (ntype);
3471 ntype = TYPE_CHAIN (ntype);
3472 }
3473 }
3474
3475 /* Read the description of a structure (or union type) and return an object
3476 describing the type.
3477
3478 PP points to a character pointer that points to the next unconsumed token
3479 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3480 *PP will point to "4a:1,0,32;;".
3481
3482 TYPE points to an incomplete type that needs to be filled in.
3483
3484 OBJFILE points to the current objfile from which the stabs information is
3485 being read. (Note that it is redundant in that TYPE also contains a pointer
3486 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3487 */
3488
3489 static struct type *
3490 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3491 struct objfile *objfile)
3492 {
3493 struct cleanup *back_to;
3494 struct field_info fi;
3495
3496 fi.list = NULL;
3497 fi.fnlist = NULL;
3498
3499 /* When describing struct/union/class types in stabs, G++ always drops
3500 all qualifications from the name. So if you've got:
3501 struct A { ... struct B { ... }; ... };
3502 then G++ will emit stabs for `struct A::B' that call it simply
3503 `struct B'. Obviously, if you've got a real top-level definition for
3504 `struct B', or other nested definitions, this is going to cause
3505 problems.
3506
3507 Obviously, GDB can't fix this by itself, but it can at least avoid
3508 scribbling on existing structure type objects when new definitions
3509 appear. */
3510 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3511 || TYPE_STUB (type)))
3512 {
3513 complain_about_struct_wipeout (type);
3514
3515 /* It's probably best to return the type unchanged. */
3516 return type;
3517 }
3518
3519 back_to = make_cleanup (null_cleanup, 0);
3520
3521 INIT_CPLUS_SPECIFIC (type);
3522 TYPE_CODE (type) = type_code;
3523 TYPE_STUB (type) = 0;
3524
3525 /* First comes the total size in bytes. */
3526
3527 {
3528 int nbits;
3529
3530 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3531 if (nbits != 0)
3532 {
3533 do_cleanups (back_to);
3534 return error_type (pp, objfile);
3535 }
3536 set_length_in_type_chain (type);
3537 }
3538
3539 /* Now read the baseclasses, if any, read the regular C struct or C++
3540 class member fields, attach the fields to the type, read the C++
3541 member functions, attach them to the type, and then read any tilde
3542 field (baseclass specifier for the class holding the main vtable). */
3543
3544 if (!read_baseclasses (&fi, pp, type, objfile)
3545 || !read_struct_fields (&fi, pp, type, objfile)
3546 || !attach_fields_to_type (&fi, type, objfile)
3547 || !read_member_functions (&fi, pp, type, objfile)
3548 || !attach_fn_fields_to_type (&fi, type)
3549 || !read_tilde_fields (&fi, pp, type, objfile))
3550 {
3551 type = error_type (pp, objfile);
3552 }
3553
3554 do_cleanups (back_to);
3555 return (type);
3556 }
3557
3558 /* Read a definition of an array type,
3559 and create and return a suitable type object.
3560 Also creates a range type which represents the bounds of that
3561 array. */
3562
3563 static struct type *
3564 read_array_type (const char **pp, struct type *type,
3565 struct objfile *objfile)
3566 {
3567 struct type *index_type, *element_type, *range_type;
3568 int lower, upper;
3569 int adjustable = 0;
3570 int nbits;
3571
3572 /* Format of an array type:
3573 "ar<index type>;lower;upper;<array_contents_type>".
3574 OS9000: "arlower,upper;<array_contents_type>".
3575
3576 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3577 for these, produce a type like float[][]. */
3578
3579 {
3580 index_type = read_type (pp, objfile);
3581 if (**pp != ';')
3582 /* Improper format of array type decl. */
3583 return error_type (pp, objfile);
3584 ++*pp;
3585 }
3586
3587 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3588 {
3589 (*pp)++;
3590 adjustable = 1;
3591 }
3592 lower = read_huge_number (pp, ';', &nbits, 0);
3593
3594 if (nbits != 0)
3595 return error_type (pp, objfile);
3596
3597 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3598 {
3599 (*pp)++;
3600 adjustable = 1;
3601 }
3602 upper = read_huge_number (pp, ';', &nbits, 0);
3603 if (nbits != 0)
3604 return error_type (pp, objfile);
3605
3606 element_type = read_type (pp, objfile);
3607
3608 if (adjustable)
3609 {
3610 lower = 0;
3611 upper = -1;
3612 }
3613
3614 range_type =
3615 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3616 type = create_array_type (type, element_type, range_type);
3617
3618 return type;
3619 }
3620
3621
3622 /* Read a definition of an enumeration type,
3623 and create and return a suitable type object.
3624 Also defines the symbols that represent the values of the type. */
3625
3626 static struct type *
3627 read_enum_type (const char **pp, struct type *type,
3628 struct objfile *objfile)
3629 {
3630 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3631 const char *p;
3632 char *name;
3633 long n;
3634 struct symbol *sym;
3635 int nsyms = 0;
3636 struct pending **symlist;
3637 struct pending *osyms, *syms;
3638 int o_nsyms;
3639 int nbits;
3640 int unsigned_enum = 1;
3641
3642 #if 0
3643 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3644 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3645 to do? For now, force all enum values to file scope. */
3646 if (within_function)
3647 symlist = get_local_symbols ();
3648 else
3649 #endif
3650 symlist = get_file_symbols ();
3651 osyms = *symlist;
3652 o_nsyms = osyms ? osyms->nsyms : 0;
3653
3654 /* The aix4 compiler emits an extra field before the enum members;
3655 my guess is it's a type of some sort. Just ignore it. */
3656 if (**pp == '-')
3657 {
3658 /* Skip over the type. */
3659 while (**pp != ':')
3660 (*pp)++;
3661
3662 /* Skip over the colon. */
3663 (*pp)++;
3664 }
3665
3666 /* Read the value-names and their values.
3667 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3668 A semicolon or comma instead of a NAME means the end. */
3669 while (**pp && **pp != ';' && **pp != ',')
3670 {
3671 STABS_CONTINUE (pp, objfile);
3672 p = *pp;
3673 while (*p != ':')
3674 p++;
3675 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3676 *pp = p + 1;
3677 n = read_huge_number (pp, ',', &nbits, 0);
3678 if (nbits != 0)
3679 return error_type (pp, objfile);
3680
3681 sym = allocate_symbol (objfile);
3682 SYMBOL_SET_LINKAGE_NAME (sym, name);
3683 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3684 &objfile->objfile_obstack);
3685 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3686 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3687 SYMBOL_VALUE (sym) = n;
3688 if (n < 0)
3689 unsigned_enum = 0;
3690 add_symbol_to_list (sym, symlist);
3691 nsyms++;
3692 }
3693
3694 if (**pp == ';')
3695 (*pp)++; /* Skip the semicolon. */
3696
3697 /* Now fill in the fields of the type-structure. */
3698
3699 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3700 set_length_in_type_chain (type);
3701 TYPE_CODE (type) = TYPE_CODE_ENUM;
3702 TYPE_STUB (type) = 0;
3703 if (unsigned_enum)
3704 TYPE_UNSIGNED (type) = 1;
3705 TYPE_NFIELDS (type) = nsyms;
3706 TYPE_FIELDS (type) = (struct field *)
3707 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3708 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3709
3710 /* Find the symbols for the values and put them into the type.
3711 The symbols can be found in the symlist that we put them on
3712 to cause them to be defined. osyms contains the old value
3713 of that symlist; everything up to there was defined by us. */
3714 /* Note that we preserve the order of the enum constants, so
3715 that in something like "enum {FOO, LAST_THING=FOO}" we print
3716 FOO, not LAST_THING. */
3717
3718 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3719 {
3720 int last = syms == osyms ? o_nsyms : 0;
3721 int j = syms->nsyms;
3722
3723 for (; --j >= last; --n)
3724 {
3725 struct symbol *xsym = syms->symbol[j];
3726
3727 SYMBOL_TYPE (xsym) = type;
3728 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3729 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3730 TYPE_FIELD_BITSIZE (type, n) = 0;
3731 }
3732 if (syms == osyms)
3733 break;
3734 }
3735
3736 return type;
3737 }
3738
3739 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3740 typedefs in every file (for int, long, etc):
3741
3742 type = b <signed> <width> <format type>; <offset>; <nbits>
3743 signed = u or s.
3744 optional format type = c or b for char or boolean.
3745 offset = offset from high order bit to start bit of type.
3746 width is # bytes in object of this type, nbits is # bits in type.
3747
3748 The width/offset stuff appears to be for small objects stored in
3749 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3750 FIXME. */
3751
3752 static struct type *
3753 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3754 {
3755 int type_bits;
3756 int nbits;
3757 int unsigned_type;
3758 int boolean_type = 0;
3759
3760 switch (**pp)
3761 {
3762 case 's':
3763 unsigned_type = 0;
3764 break;
3765 case 'u':
3766 unsigned_type = 1;
3767 break;
3768 default:
3769 return error_type (pp, objfile);
3770 }
3771 (*pp)++;
3772
3773 /* For some odd reason, all forms of char put a c here. This is strange
3774 because no other type has this honor. We can safely ignore this because
3775 we actually determine 'char'acterness by the number of bits specified in
3776 the descriptor.
3777 Boolean forms, e.g Fortran logical*X, put a b here. */
3778
3779 if (**pp == 'c')
3780 (*pp)++;
3781 else if (**pp == 'b')
3782 {
3783 boolean_type = 1;
3784 (*pp)++;
3785 }
3786
3787 /* The first number appears to be the number of bytes occupied
3788 by this type, except that unsigned short is 4 instead of 2.
3789 Since this information is redundant with the third number,
3790 we will ignore it. */
3791 read_huge_number (pp, ';', &nbits, 0);
3792 if (nbits != 0)
3793 return error_type (pp, objfile);
3794
3795 /* The second number is always 0, so ignore it too. */
3796 read_huge_number (pp, ';', &nbits, 0);
3797 if (nbits != 0)
3798 return error_type (pp, objfile);
3799
3800 /* The third number is the number of bits for this type. */
3801 type_bits = read_huge_number (pp, 0, &nbits, 0);
3802 if (nbits != 0)
3803 return error_type (pp, objfile);
3804 /* The type *should* end with a semicolon. If it are embedded
3805 in a larger type the semicolon may be the only way to know where
3806 the type ends. If this type is at the end of the stabstring we
3807 can deal with the omitted semicolon (but we don't have to like
3808 it). Don't bother to complain(), Sun's compiler omits the semicolon
3809 for "void". */
3810 if (**pp == ';')
3811 ++(*pp);
3812
3813 if (type_bits == 0)
3814 {
3815 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3816 TARGET_CHAR_BIT, NULL);
3817 if (unsigned_type)
3818 TYPE_UNSIGNED (type) = 1;
3819 return type;
3820 }
3821
3822 if (boolean_type)
3823 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3824 else
3825 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3826 }
3827
3828 static struct type *
3829 read_sun_floating_type (const char **pp, int typenums[2],
3830 struct objfile *objfile)
3831 {
3832 int nbits;
3833 int details;
3834 int nbytes;
3835 struct type *rettype;
3836
3837 /* The first number has more details about the type, for example
3838 FN_COMPLEX. */
3839 details = read_huge_number (pp, ';', &nbits, 0);
3840 if (nbits != 0)
3841 return error_type (pp, objfile);
3842
3843 /* The second number is the number of bytes occupied by this type. */
3844 nbytes = read_huge_number (pp, ';', &nbits, 0);
3845 if (nbits != 0)
3846 return error_type (pp, objfile);
3847
3848 nbits = nbytes * TARGET_CHAR_BIT;
3849
3850 if (details == NF_COMPLEX || details == NF_COMPLEX16
3851 || details == NF_COMPLEX32)
3852 {
3853 rettype = dbx_init_float_type (objfile, nbits / 2);
3854 return init_complex_type (objfile, NULL, rettype);
3855 }
3856
3857 return dbx_init_float_type (objfile, nbits);
3858 }
3859
3860 /* Read a number from the string pointed to by *PP.
3861 The value of *PP is advanced over the number.
3862 If END is nonzero, the character that ends the
3863 number must match END, or an error happens;
3864 and that character is skipped if it does match.
3865 If END is zero, *PP is left pointing to that character.
3866
3867 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3868 the number is represented in an octal representation, assume that
3869 it is represented in a 2's complement representation with a size of
3870 TWOS_COMPLEMENT_BITS.
3871
3872 If the number fits in a long, set *BITS to 0 and return the value.
3873 If not, set *BITS to be the number of bits in the number and return 0.
3874
3875 If encounter garbage, set *BITS to -1 and return 0. */
3876
3877 static long
3878 read_huge_number (const char **pp, int end, int *bits,
3879 int twos_complement_bits)
3880 {
3881 const char *p = *pp;
3882 int sign = 1;
3883 int sign_bit = 0;
3884 long n = 0;
3885 int radix = 10;
3886 char overflow = 0;
3887 int nbits = 0;
3888 int c;
3889 long upper_limit;
3890 int twos_complement_representation = 0;
3891
3892 if (*p == '-')
3893 {
3894 sign = -1;
3895 p++;
3896 }
3897
3898 /* Leading zero means octal. GCC uses this to output values larger
3899 than an int (because that would be hard in decimal). */
3900 if (*p == '0')
3901 {
3902 radix = 8;
3903 p++;
3904 }
3905
3906 /* Skip extra zeros. */
3907 while (*p == '0')
3908 p++;
3909
3910 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3911 {
3912 /* Octal, possibly signed. Check if we have enough chars for a
3913 negative number. */
3914
3915 size_t len;
3916 const char *p1 = p;
3917
3918 while ((c = *p1) >= '0' && c < '8')
3919 p1++;
3920
3921 len = p1 - p;
3922 if (len > twos_complement_bits / 3
3923 || (twos_complement_bits % 3 == 0
3924 && len == twos_complement_bits / 3))
3925 {
3926 /* Ok, we have enough characters for a signed value, check
3927 for signness by testing if the sign bit is set. */
3928 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3929 c = *p - '0';
3930 if (c & (1 << sign_bit))
3931 {
3932 /* Definitely signed. */
3933 twos_complement_representation = 1;
3934 sign = -1;
3935 }
3936 }
3937 }
3938
3939 upper_limit = LONG_MAX / radix;
3940
3941 while ((c = *p++) >= '0' && c < ('0' + radix))
3942 {
3943 if (n <= upper_limit)
3944 {
3945 if (twos_complement_representation)
3946 {
3947 /* Octal, signed, twos complement representation. In
3948 this case, n is the corresponding absolute value. */
3949 if (n == 0)
3950 {
3951 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3952
3953 n = -sn;
3954 }
3955 else
3956 {
3957 n *= radix;
3958 n -= c - '0';
3959 }
3960 }
3961 else
3962 {
3963 /* unsigned representation */
3964 n *= radix;
3965 n += c - '0'; /* FIXME this overflows anyway. */
3966 }
3967 }
3968 else
3969 overflow = 1;
3970
3971 /* This depends on large values being output in octal, which is
3972 what GCC does. */
3973 if (radix == 8)
3974 {
3975 if (nbits == 0)
3976 {
3977 if (c == '0')
3978 /* Ignore leading zeroes. */
3979 ;
3980 else if (c == '1')
3981 nbits = 1;
3982 else if (c == '2' || c == '3')
3983 nbits = 2;
3984 else
3985 nbits = 3;
3986 }
3987 else
3988 nbits += 3;
3989 }
3990 }
3991 if (end)
3992 {
3993 if (c && c != end)
3994 {
3995 if (bits != NULL)
3996 *bits = -1;
3997 return 0;
3998 }
3999 }
4000 else
4001 --p;
4002
4003 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4004 {
4005 /* We were supposed to parse a number with maximum
4006 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4007 if (bits != NULL)
4008 *bits = -1;
4009 return 0;
4010 }
4011
4012 *pp = p;
4013 if (overflow)
4014 {
4015 if (nbits == 0)
4016 {
4017 /* Large decimal constants are an error (because it is hard to
4018 count how many bits are in them). */
4019 if (bits != NULL)
4020 *bits = -1;
4021 return 0;
4022 }
4023
4024 /* -0x7f is the same as 0x80. So deal with it by adding one to
4025 the number of bits. Two's complement represention octals
4026 can't have a '-' in front. */
4027 if (sign == -1 && !twos_complement_representation)
4028 ++nbits;
4029 if (bits)
4030 *bits = nbits;
4031 }
4032 else
4033 {
4034 if (bits)
4035 *bits = 0;
4036 return n * sign;
4037 }
4038 /* It's *BITS which has the interesting information. */
4039 return 0;
4040 }
4041
4042 static struct type *
4043 read_range_type (const char **pp, int typenums[2], int type_size,
4044 struct objfile *objfile)
4045 {
4046 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4047 const char *orig_pp = *pp;
4048 int rangenums[2];
4049 long n2, n3;
4050 int n2bits, n3bits;
4051 int self_subrange;
4052 struct type *result_type;
4053 struct type *index_type = NULL;
4054
4055 /* First comes a type we are a subrange of.
4056 In C it is usually 0, 1 or the type being defined. */
4057 if (read_type_number (pp, rangenums) != 0)
4058 return error_type (pp, objfile);
4059 self_subrange = (rangenums[0] == typenums[0] &&
4060 rangenums[1] == typenums[1]);
4061
4062 if (**pp == '=')
4063 {
4064 *pp = orig_pp;
4065 index_type = read_type (pp, objfile);
4066 }
4067
4068 /* A semicolon should now follow; skip it. */
4069 if (**pp == ';')
4070 (*pp)++;
4071
4072 /* The remaining two operands are usually lower and upper bounds
4073 of the range. But in some special cases they mean something else. */
4074 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4075 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4076
4077 if (n2bits == -1 || n3bits == -1)
4078 return error_type (pp, objfile);
4079
4080 if (index_type)
4081 goto handle_true_range;
4082
4083 /* If limits are huge, must be large integral type. */
4084 if (n2bits != 0 || n3bits != 0)
4085 {
4086 char got_signed = 0;
4087 char got_unsigned = 0;
4088 /* Number of bits in the type. */
4089 int nbits = 0;
4090
4091 /* If a type size attribute has been specified, the bounds of
4092 the range should fit in this size. If the lower bounds needs
4093 more bits than the upper bound, then the type is signed. */
4094 if (n2bits <= type_size && n3bits <= type_size)
4095 {
4096 if (n2bits == type_size && n2bits > n3bits)
4097 got_signed = 1;
4098 else
4099 got_unsigned = 1;
4100 nbits = type_size;
4101 }
4102 /* Range from 0 to <large number> is an unsigned large integral type. */
4103 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4104 {
4105 got_unsigned = 1;
4106 nbits = n3bits;
4107 }
4108 /* Range from <large number> to <large number>-1 is a large signed
4109 integral type. Take care of the case where <large number> doesn't
4110 fit in a long but <large number>-1 does. */
4111 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4112 || (n2bits != 0 && n3bits == 0
4113 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4114 && n3 == LONG_MAX))
4115 {
4116 got_signed = 1;
4117 nbits = n2bits;
4118 }
4119
4120 if (got_signed || got_unsigned)
4121 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4122 else
4123 return error_type (pp, objfile);
4124 }
4125
4126 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4127 if (self_subrange && n2 == 0 && n3 == 0)
4128 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4129
4130 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4131 is the width in bytes.
4132
4133 Fortran programs appear to use this for complex types also. To
4134 distinguish between floats and complex, g77 (and others?) seem
4135 to use self-subranges for the complexes, and subranges of int for
4136 the floats.
4137
4138 Also note that for complexes, g77 sets n2 to the size of one of
4139 the member floats, not the whole complex beast. My guess is that
4140 this was to work well with pre-COMPLEX versions of gdb. */
4141
4142 if (n3 == 0 && n2 > 0)
4143 {
4144 struct type *float_type
4145 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4146
4147 if (self_subrange)
4148 return init_complex_type (objfile, NULL, float_type);
4149 else
4150 return float_type;
4151 }
4152
4153 /* If the upper bound is -1, it must really be an unsigned integral. */
4154
4155 else if (n2 == 0 && n3 == -1)
4156 {
4157 int bits = type_size;
4158
4159 if (bits <= 0)
4160 {
4161 /* We don't know its size. It is unsigned int or unsigned
4162 long. GCC 2.3.3 uses this for long long too, but that is
4163 just a GDB 3.5 compatibility hack. */
4164 bits = gdbarch_int_bit (gdbarch);
4165 }
4166
4167 return init_integer_type (objfile, bits, 1, NULL);
4168 }
4169
4170 /* Special case: char is defined (Who knows why) as a subrange of
4171 itself with range 0-127. */
4172 else if (self_subrange && n2 == 0 && n3 == 127)
4173 {
4174 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4175 0, NULL);
4176 TYPE_NOSIGN (type) = 1;
4177 return type;
4178 }
4179 /* We used to do this only for subrange of self or subrange of int. */
4180 else if (n2 == 0)
4181 {
4182 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4183 "unsigned long", and we already checked for that,
4184 so don't need to test for it here. */
4185
4186 if (n3 < 0)
4187 /* n3 actually gives the size. */
4188 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4189
4190 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4191 unsigned n-byte integer. But do require n to be a power of
4192 two; we don't want 3- and 5-byte integers flying around. */
4193 {
4194 int bytes;
4195 unsigned long bits;
4196
4197 bits = n3;
4198 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4199 bits >>= 8;
4200 if (bits == 0
4201 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4202 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4203 }
4204 }
4205 /* I think this is for Convex "long long". Since I don't know whether
4206 Convex sets self_subrange, I also accept that particular size regardless
4207 of self_subrange. */
4208 else if (n3 == 0 && n2 < 0
4209 && (self_subrange
4210 || n2 == -gdbarch_long_long_bit
4211 (gdbarch) / TARGET_CHAR_BIT))
4212 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4213 else if (n2 == -n3 - 1)
4214 {
4215 if (n3 == 0x7f)
4216 return init_integer_type (objfile, 8, 0, NULL);
4217 if (n3 == 0x7fff)
4218 return init_integer_type (objfile, 16, 0, NULL);
4219 if (n3 == 0x7fffffff)
4220 return init_integer_type (objfile, 32, 0, NULL);
4221 }
4222
4223 /* We have a real range type on our hands. Allocate space and
4224 return a real pointer. */
4225 handle_true_range:
4226
4227 if (self_subrange)
4228 index_type = objfile_type (objfile)->builtin_int;
4229 else
4230 index_type = *dbx_lookup_type (rangenums, objfile);
4231 if (index_type == NULL)
4232 {
4233 /* Does this actually ever happen? Is that why we are worrying
4234 about dealing with it rather than just calling error_type? */
4235
4236 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4237
4238 index_type = objfile_type (objfile)->builtin_int;
4239 }
4240
4241 result_type
4242 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4243 return (result_type);
4244 }
4245
4246 /* Read in an argument list. This is a list of types, separated by commas
4247 and terminated with END. Return the list of types read in, or NULL
4248 if there is an error. */
4249
4250 static struct field *
4251 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4252 int *varargsp)
4253 {
4254 /* FIXME! Remove this arbitrary limit! */
4255 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4256 int n = 0, i;
4257 struct field *rval;
4258
4259 while (**pp != end)
4260 {
4261 if (**pp != ',')
4262 /* Invalid argument list: no ','. */
4263 return NULL;
4264 (*pp)++;
4265 STABS_CONTINUE (pp, objfile);
4266 types[n++] = read_type (pp, objfile);
4267 }
4268 (*pp)++; /* get past `end' (the ':' character). */
4269
4270 if (n == 0)
4271 {
4272 /* We should read at least the THIS parameter here. Some broken stabs
4273 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4274 have been present ";-16,(0,43)" reference instead. This way the
4275 excessive ";" marker prematurely stops the parameters parsing. */
4276
4277 complaint (_("Invalid (empty) method arguments"));
4278 *varargsp = 0;
4279 }
4280 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4281 *varargsp = 1;
4282 else
4283 {
4284 n--;
4285 *varargsp = 0;
4286 }
4287
4288 rval = XCNEWVEC (struct field, n);
4289 for (i = 0; i < n; i++)
4290 rval[i].type = types[i];
4291 *nargsp = n;
4292 return rval;
4293 }
4294 \f
4295 /* Common block handling. */
4296
4297 /* List of symbols declared since the last BCOMM. This list is a tail
4298 of local_symbols. When ECOMM is seen, the symbols on the list
4299 are noted so their proper addresses can be filled in later,
4300 using the common block base address gotten from the assembler
4301 stabs. */
4302
4303 static struct pending *common_block;
4304 static int common_block_i;
4305
4306 /* Name of the current common block. We get it from the BCOMM instead of the
4307 ECOMM to match IBM documentation (even though IBM puts the name both places
4308 like everyone else). */
4309 static char *common_block_name;
4310
4311 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4312 to remain after this function returns. */
4313
4314 void
4315 common_block_start (const char *name, struct objfile *objfile)
4316 {
4317 if (common_block_name != NULL)
4318 {
4319 complaint (_("Invalid symbol data: common block within common block"));
4320 }
4321 common_block = *get_local_symbols ();
4322 common_block_i = common_block ? common_block->nsyms : 0;
4323 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4324 strlen (name));
4325 }
4326
4327 /* Process a N_ECOMM symbol. */
4328
4329 void
4330 common_block_end (struct objfile *objfile)
4331 {
4332 /* Symbols declared since the BCOMM are to have the common block
4333 start address added in when we know it. common_block and
4334 common_block_i point to the first symbol after the BCOMM in
4335 the local_symbols list; copy the list and hang it off the
4336 symbol for the common block name for later fixup. */
4337 int i;
4338 struct symbol *sym;
4339 struct pending *newobj = 0;
4340 struct pending *next;
4341 int j;
4342
4343 if (common_block_name == NULL)
4344 {
4345 complaint (_("ECOMM symbol unmatched by BCOMM"));
4346 return;
4347 }
4348
4349 sym = allocate_symbol (objfile);
4350 /* Note: common_block_name already saved on objfile_obstack. */
4351 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4352 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4353
4354 /* Now we copy all the symbols which have been defined since the BCOMM. */
4355
4356 /* Copy all the struct pendings before common_block. */
4357 for (next = *get_local_symbols ();
4358 next != NULL && next != common_block;
4359 next = next->next)
4360 {
4361 for (j = 0; j < next->nsyms; j++)
4362 add_symbol_to_list (next->symbol[j], &newobj);
4363 }
4364
4365 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4366 NULL, it means copy all the local symbols (which we already did
4367 above). */
4368
4369 if (common_block != NULL)
4370 for (j = common_block_i; j < common_block->nsyms; j++)
4371 add_symbol_to_list (common_block->symbol[j], &newobj);
4372
4373 SYMBOL_TYPE (sym) = (struct type *) newobj;
4374
4375 /* Should we be putting local_symbols back to what it was?
4376 Does it matter? */
4377
4378 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4379 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4380 global_sym_chain[i] = sym;
4381 common_block_name = NULL;
4382 }
4383
4384 /* Add a common block's start address to the offset of each symbol
4385 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4386 the common block name). */
4387
4388 static void
4389 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4390 {
4391 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4392
4393 for (; next; next = next->next)
4394 {
4395 int j;
4396
4397 for (j = next->nsyms - 1; j >= 0; j--)
4398 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4399 }
4400 }
4401 \f
4402
4403
4404 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4405 See add_undefined_type for more details. */
4406
4407 static void
4408 add_undefined_type_noname (struct type *type, int typenums[2])
4409 {
4410 struct nat nat;
4411
4412 nat.typenums[0] = typenums [0];
4413 nat.typenums[1] = typenums [1];
4414 nat.type = type;
4415
4416 if (noname_undefs_length == noname_undefs_allocated)
4417 {
4418 noname_undefs_allocated *= 2;
4419 noname_undefs = (struct nat *)
4420 xrealloc ((char *) noname_undefs,
4421 noname_undefs_allocated * sizeof (struct nat));
4422 }
4423 noname_undefs[noname_undefs_length++] = nat;
4424 }
4425
4426 /* Add TYPE to the UNDEF_TYPES vector.
4427 See add_undefined_type for more details. */
4428
4429 static void
4430 add_undefined_type_1 (struct type *type)
4431 {
4432 if (undef_types_length == undef_types_allocated)
4433 {
4434 undef_types_allocated *= 2;
4435 undef_types = (struct type **)
4436 xrealloc ((char *) undef_types,
4437 undef_types_allocated * sizeof (struct type *));
4438 }
4439 undef_types[undef_types_length++] = type;
4440 }
4441
4442 /* What about types defined as forward references inside of a small lexical
4443 scope? */
4444 /* Add a type to the list of undefined types to be checked through
4445 once this file has been read in.
4446
4447 In practice, we actually maintain two such lists: The first list
4448 (UNDEF_TYPES) is used for types whose name has been provided, and
4449 concerns forward references (eg 'xs' or 'xu' forward references);
4450 the second list (NONAME_UNDEFS) is used for types whose name is
4451 unknown at creation time, because they were referenced through
4452 their type number before the actual type was declared.
4453 This function actually adds the given type to the proper list. */
4454
4455 static void
4456 add_undefined_type (struct type *type, int typenums[2])
4457 {
4458 if (TYPE_NAME (type) == NULL)
4459 add_undefined_type_noname (type, typenums);
4460 else
4461 add_undefined_type_1 (type);
4462 }
4463
4464 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4465
4466 static void
4467 cleanup_undefined_types_noname (struct objfile *objfile)
4468 {
4469 int i;
4470
4471 for (i = 0; i < noname_undefs_length; i++)
4472 {
4473 struct nat nat = noname_undefs[i];
4474 struct type **type;
4475
4476 type = dbx_lookup_type (nat.typenums, objfile);
4477 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4478 {
4479 /* The instance flags of the undefined type are still unset,
4480 and needs to be copied over from the reference type.
4481 Since replace_type expects them to be identical, we need
4482 to set these flags manually before hand. */
4483 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4484 replace_type (nat.type, *type);
4485 }
4486 }
4487
4488 noname_undefs_length = 0;
4489 }
4490
4491 /* Go through each undefined type, see if it's still undefined, and fix it
4492 up if possible. We have two kinds of undefined types:
4493
4494 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4495 Fix: update array length using the element bounds
4496 and the target type's length.
4497 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4498 yet defined at the time a pointer to it was made.
4499 Fix: Do a full lookup on the struct/union tag. */
4500
4501 static void
4502 cleanup_undefined_types_1 (void)
4503 {
4504 struct type **type;
4505
4506 /* Iterate over every undefined type, and look for a symbol whose type
4507 matches our undefined type. The symbol matches if:
4508 1. It is a typedef in the STRUCT domain;
4509 2. It has the same name, and same type code;
4510 3. The instance flags are identical.
4511
4512 It is important to check the instance flags, because we have seen
4513 examples where the debug info contained definitions such as:
4514
4515 "foo_t:t30=B31=xefoo_t:"
4516
4517 In this case, we have created an undefined type named "foo_t" whose
4518 instance flags is null (when processing "xefoo_t"), and then created
4519 another type with the same name, but with different instance flags
4520 ('B' means volatile). I think that the definition above is wrong,
4521 since the same type cannot be volatile and non-volatile at the same
4522 time, but we need to be able to cope with it when it happens. The
4523 approach taken here is to treat these two types as different. */
4524
4525 for (type = undef_types; type < undef_types + undef_types_length; type++)
4526 {
4527 switch (TYPE_CODE (*type))
4528 {
4529
4530 case TYPE_CODE_STRUCT:
4531 case TYPE_CODE_UNION:
4532 case TYPE_CODE_ENUM:
4533 {
4534 /* Check if it has been defined since. Need to do this here
4535 as well as in check_typedef to deal with the (legitimate in
4536 C though not C++) case of several types with the same name
4537 in different source files. */
4538 if (TYPE_STUB (*type))
4539 {
4540 struct pending *ppt;
4541 int i;
4542 /* Name of the type, without "struct" or "union". */
4543 const char *type_name = TYPE_NAME (*type);
4544
4545 if (type_name == NULL)
4546 {
4547 complaint (_("need a type name"));
4548 break;
4549 }
4550 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4551 {
4552 for (i = 0; i < ppt->nsyms; i++)
4553 {
4554 struct symbol *sym = ppt->symbol[i];
4555
4556 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4557 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4558 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4559 TYPE_CODE (*type))
4560 && (TYPE_INSTANCE_FLAGS (*type) ==
4561 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4562 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4563 type_name) == 0)
4564 replace_type (*type, SYMBOL_TYPE (sym));
4565 }
4566 }
4567 }
4568 }
4569 break;
4570
4571 default:
4572 {
4573 complaint (_("forward-referenced types left unresolved, "
4574 "type code %d."),
4575 TYPE_CODE (*type));
4576 }
4577 break;
4578 }
4579 }
4580
4581 undef_types_length = 0;
4582 }
4583
4584 /* Try to fix all the undefined types we ecountered while processing
4585 this unit. */
4586
4587 void
4588 cleanup_undefined_stabs_types (struct objfile *objfile)
4589 {
4590 cleanup_undefined_types_1 ();
4591 cleanup_undefined_types_noname (objfile);
4592 }
4593
4594 /* See stabsread.h. */
4595
4596 void
4597 scan_file_globals (struct objfile *objfile)
4598 {
4599 int hash;
4600 struct minimal_symbol *msymbol;
4601 struct symbol *sym, *prev;
4602 struct objfile *resolve_objfile;
4603
4604 /* SVR4 based linkers copy referenced global symbols from shared
4605 libraries to the main executable.
4606 If we are scanning the symbols for a shared library, try to resolve
4607 them from the minimal symbols of the main executable first. */
4608
4609 if (symfile_objfile && objfile != symfile_objfile)
4610 resolve_objfile = symfile_objfile;
4611 else
4612 resolve_objfile = objfile;
4613
4614 while (1)
4615 {
4616 /* Avoid expensive loop through all minimal symbols if there are
4617 no unresolved symbols. */
4618 for (hash = 0; hash < HASHSIZE; hash++)
4619 {
4620 if (global_sym_chain[hash])
4621 break;
4622 }
4623 if (hash >= HASHSIZE)
4624 return;
4625
4626 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4627 {
4628 QUIT;
4629
4630 /* Skip static symbols. */
4631 switch (MSYMBOL_TYPE (msymbol))
4632 {
4633 case mst_file_text:
4634 case mst_file_data:
4635 case mst_file_bss:
4636 continue;
4637 default:
4638 break;
4639 }
4640
4641 prev = NULL;
4642
4643 /* Get the hash index and check all the symbols
4644 under that hash index. */
4645
4646 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4647
4648 for (sym = global_sym_chain[hash]; sym;)
4649 {
4650 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4651 SYMBOL_LINKAGE_NAME (sym)) == 0)
4652 {
4653 /* Splice this symbol out of the hash chain and
4654 assign the value we have to it. */
4655 if (prev)
4656 {
4657 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4658 }
4659 else
4660 {
4661 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4662 }
4663
4664 /* Check to see whether we need to fix up a common block. */
4665 /* Note: this code might be executed several times for
4666 the same symbol if there are multiple references. */
4667 if (sym)
4668 {
4669 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4670 {
4671 fix_common_block (sym,
4672 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4673 msymbol));
4674 }
4675 else
4676 {
4677 SYMBOL_VALUE_ADDRESS (sym)
4678 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4679 }
4680 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4681 }
4682
4683 if (prev)
4684 {
4685 sym = SYMBOL_VALUE_CHAIN (prev);
4686 }
4687 else
4688 {
4689 sym = global_sym_chain[hash];
4690 }
4691 }
4692 else
4693 {
4694 prev = sym;
4695 sym = SYMBOL_VALUE_CHAIN (sym);
4696 }
4697 }
4698 }
4699 if (resolve_objfile == objfile)
4700 break;
4701 resolve_objfile = objfile;
4702 }
4703
4704 /* Change the storage class of any remaining unresolved globals to
4705 LOC_UNRESOLVED and remove them from the chain. */
4706 for (hash = 0; hash < HASHSIZE; hash++)
4707 {
4708 sym = global_sym_chain[hash];
4709 while (sym)
4710 {
4711 prev = sym;
4712 sym = SYMBOL_VALUE_CHAIN (sym);
4713
4714 /* Change the symbol address from the misleading chain value
4715 to address zero. */
4716 SYMBOL_VALUE_ADDRESS (prev) = 0;
4717
4718 /* Complain about unresolved common block symbols. */
4719 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4720 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4721 else
4722 complaint (_("%s: common block `%s' from "
4723 "global_sym_chain unresolved"),
4724 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4725 }
4726 }
4727 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4728 }
4729
4730 /* Initialize anything that needs initializing when starting to read
4731 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4732 to a psymtab. */
4733
4734 void
4735 stabsread_init (void)
4736 {
4737 }
4738
4739 /* Initialize anything that needs initializing when a completely new
4740 symbol file is specified (not just adding some symbols from another
4741 file, e.g. a shared library). */
4742
4743 void
4744 stabsread_new_init (void)
4745 {
4746 /* Empty the hash table of global syms looking for values. */
4747 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4748 }
4749
4750 /* Initialize anything that needs initializing at the same time as
4751 start_symtab() is called. */
4752
4753 void
4754 start_stabs (void)
4755 {
4756 global_stabs = NULL; /* AIX COFF */
4757 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4758 n_this_object_header_files = 1;
4759 type_vector_length = 0;
4760 type_vector = (struct type **) 0;
4761 within_function = 0;
4762
4763 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4764 common_block_name = NULL;
4765 }
4766
4767 /* Call after end_symtab(). */
4768
4769 void
4770 end_stabs (void)
4771 {
4772 if (type_vector)
4773 {
4774 xfree (type_vector);
4775 }
4776 type_vector = 0;
4777 type_vector_length = 0;
4778 previous_stab_code = 0;
4779 }
4780
4781 void
4782 finish_global_stabs (struct objfile *objfile)
4783 {
4784 if (global_stabs)
4785 {
4786 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4787 xfree (global_stabs);
4788 global_stabs = NULL;
4789 }
4790 }
4791
4792 /* Find the end of the name, delimited by a ':', but don't match
4793 ObjC symbols which look like -[Foo bar::]:bla. */
4794 static const char *
4795 find_name_end (const char *name)
4796 {
4797 const char *s = name;
4798
4799 if (s[0] == '-' || *s == '+')
4800 {
4801 /* Must be an ObjC method symbol. */
4802 if (s[1] != '[')
4803 {
4804 error (_("invalid symbol name \"%s\""), name);
4805 }
4806 s = strchr (s, ']');
4807 if (s == NULL)
4808 {
4809 error (_("invalid symbol name \"%s\""), name);
4810 }
4811 return strchr (s, ':');
4812 }
4813 else
4814 {
4815 return strchr (s, ':');
4816 }
4817 }
4818
4819 /* See stabsread.h. */
4820
4821 int
4822 hashname (const char *name)
4823 {
4824 return hash (name, strlen (name)) % HASHSIZE;
4825 }
4826
4827 /* Initializer for this module. */
4828
4829 void
4830 _initialize_stabsread (void)
4831 {
4832 rs6000_builtin_type_data = register_objfile_data ();
4833
4834 undef_types_allocated = 20;
4835 undef_types_length = 0;
4836 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4837
4838 noname_undefs_allocated = 20;
4839 noname_undefs_length = 0;
4840 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4841
4842 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4843 &stab_register_funcs);
4844 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4845 &stab_register_funcs);
4846 }
This page took 0.164045 seconds and 5 git commands to generate.