* symtab.c, symfile.c, c-exp.y, ch-exp.y, m2-exp.y, buildsym.c,
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 #include <ctype.h>
40
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
42 #define EXTERN /**/
43 #include "stabsread.h" /* Our own declarations */
44 #undef EXTERN
45
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
51
52 struct field_info
53 {
54 struct nextfield
55 {
56 struct nextfield *next;
57 int visibility;
58 struct field field;
59 } *list;
60 struct next_fnfieldlist
61 {
62 struct next_fnfieldlist *next;
63 struct fn_fieldlist fn_fieldlist;
64 } *fnlist;
65 };
66
67 static struct type *
68 dbx_alloc_type PARAMS ((int [2], struct objfile *));
69
70 static long read_huge_number PARAMS ((char **, int, int *));
71
72 static struct type *error_type PARAMS ((char **));
73
74 static void
75 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
76 struct objfile *));
77
78 static void
79 fix_common_block PARAMS ((struct symbol *, int));
80
81 static int
82 read_type_number PARAMS ((char **, int *));
83
84 static struct type *
85 read_range_type PARAMS ((char **, int [2], struct objfile *));
86
87 static struct type *
88 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
89
90 static struct type *
91 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
92
93 static struct type *
94 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
95
96 static struct type *
97 rs6000_builtin_type PARAMS ((int));
98
99 static int
100 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
101 struct objfile *));
102
103 static int
104 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
105 struct objfile *));
106
107 static int
108 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
109 struct objfile *));
110
111 static int
112 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
113 struct objfile *));
114
115 static int
116 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
117
118 static int
119 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
120 struct objfile *));
121
122 static struct type *
123 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
124
125 static struct type *
126 read_array_type PARAMS ((char **, struct type *, struct objfile *));
127
128 static struct type **
129 read_args PARAMS ((char **, int, struct objfile *));
130
131 static int
132 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
133 struct objfile *));
134
135 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
136 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
137
138 /* Define this as 1 if a pcc declaration of a char or short argument
139 gives the correct address. Otherwise assume pcc gives the
140 address of the corresponding int, which is not the same on a
141 big-endian machine. */
142
143 #ifndef BELIEVE_PCC_PROMOTION
144 #define BELIEVE_PCC_PROMOTION 0
145 #endif
146
147 #if 0
148 /* I think this can go away, all current uses have been removed.
149 GCC emits a few crazy types which can only be distinguished by the
150 name (complex, long long on some machines), but I'd say fix GCC. */
151
152 /* During some calls to read_type (and thus to read_range_type), this
153 contains the name of the type being defined. Range types are only
154 used in C as basic types. We use the name to distinguish the otherwise
155 identical basic types "int" and "long" and their unsigned versions.
156 FIXME, this should disappear with better type management. */
157
158 static char *long_kludge_name;
159 #endif
160
161 #if 0
162 struct complaint dbx_class_complaint =
163 {
164 "encountered DBX-style class variable debugging information.\n\
165 You seem to have compiled your program with \
166 \"g++ -g0\" instead of \"g++ -g\".\n\
167 Therefore GDB will not know about your class variables", 0, 0
168 };
169 #endif
170
171 struct complaint invalid_cpp_abbrev_complaint =
172 {"invalid C++ abbreviation `%s'", 0, 0};
173
174 struct complaint invalid_cpp_type_complaint =
175 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
176
177 struct complaint member_fn_complaint =
178 {"member function type missing, got '%c'", 0, 0};
179
180 struct complaint const_vol_complaint =
181 {"const/volatile indicator missing, got '%c'", 0, 0};
182
183 struct complaint error_type_complaint =
184 {"debug info mismatch between compiler and debugger", 0, 0};
185
186 struct complaint invalid_member_complaint =
187 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
188
189 struct complaint range_type_base_complaint =
190 {"base type %d of range type is not defined", 0, 0};
191
192 struct complaint reg_value_complaint =
193 {"register number too large in symbol %s", 0, 0};
194
195 struct complaint vtbl_notfound_complaint =
196 {"virtual function table pointer not found when defining class `%s'", 0, 0};
197
198 struct complaint unrecognized_cplus_name_complaint =
199 {"Unknown C++ symbol name `%s'", 0, 0};
200
201 struct complaint rs6000_builtin_complaint =
202 {"Unknown builtin type %d", 0, 0};
203
204 struct complaint stabs_general_complaint =
205 {"%s", 0, 0};
206
207 /* Make a list of forward references which haven't been defined. */
208
209 static struct type **undef_types;
210 static int undef_types_allocated;
211 static int undef_types_length;
212
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp) \
215 do { \
216 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
217 } while (0)
218
219 \f
220 /* Look up a dbx type-number pair. Return the address of the slot
221 where the type for that number-pair is stored.
222 The number-pair is in TYPENUMS.
223
224 This can be used for finding the type associated with that pair
225 or for associating a new type with the pair. */
226
227 struct type **
228 dbx_lookup_type (typenums)
229 int typenums[2];
230 {
231 register int filenum = typenums[0];
232 register int index = typenums[1];
233 unsigned old_len;
234 register int real_filenum;
235 register struct header_file *f;
236 int f_orig_length;
237
238 if (filenum == -1) /* -1,-1 is for temporary types. */
239 return 0;
240
241 if (filenum < 0 || filenum >= n_this_object_header_files)
242 {
243 static struct complaint msg = {"\
244 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
245 0, 0};
246 complain (&msg, filenum, index, symnum);
247 goto error_return;
248 }
249
250 if (filenum == 0)
251 {
252 if (index < 0)
253 {
254 /* Caller wants address of address of type. We think
255 that negative (rs6k builtin) types will never appear as
256 "lvalues", (nor should they), so we stuff the real type
257 pointer into a temp, and return its address. If referenced,
258 this will do the right thing. */
259 static struct type *temp_type;
260
261 temp_type = rs6000_builtin_type(index);
262 return &temp_type;
263 }
264
265 /* Type is defined outside of header files.
266 Find it in this object file's type vector. */
267 if (index >= type_vector_length)
268 {
269 old_len = type_vector_length;
270 if (old_len == 0)
271 {
272 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
273 type_vector = (struct type **)
274 malloc (type_vector_length * sizeof (struct type *));
275 }
276 while (index >= type_vector_length)
277 {
278 type_vector_length *= 2;
279 }
280 type_vector = (struct type **)
281 xrealloc ((char *) type_vector,
282 (type_vector_length * sizeof (struct type *)));
283 memset (&type_vector[old_len], 0,
284 (type_vector_length - old_len) * sizeof (struct type *));
285 }
286 return (&type_vector[index]);
287 }
288 else
289 {
290 real_filenum = this_object_header_files[filenum];
291
292 if (real_filenum >= n_header_files)
293 {
294 struct type *temp_type;
295 struct type **temp_type_p;
296
297 warning ("GDB internal error: bad real_filenum");
298
299 error_return:
300 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
301 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
302 *temp_type_p = temp_type;
303 return temp_type_p;
304 }
305
306 f = &header_files[real_filenum];
307
308 f_orig_length = f->length;
309 if (index >= f_orig_length)
310 {
311 while (index >= f->length)
312 {
313 f->length *= 2;
314 }
315 f->vector = (struct type **)
316 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
317 memset (&f->vector[f_orig_length], 0,
318 (f->length - f_orig_length) * sizeof (struct type *));
319 }
320 return (&f->vector[index]);
321 }
322 }
323
324 /* Make sure there is a type allocated for type numbers TYPENUMS
325 and return the type object.
326 This can create an empty (zeroed) type object.
327 TYPENUMS may be (-1, -1) to return a new type object that is not
328 put into the type vector, and so may not be referred to by number. */
329
330 static struct type *
331 dbx_alloc_type (typenums, objfile)
332 int typenums[2];
333 struct objfile *objfile;
334 {
335 register struct type **type_addr;
336
337 if (typenums[0] == -1)
338 {
339 return (alloc_type (objfile));
340 }
341
342 type_addr = dbx_lookup_type (typenums);
343
344 /* If we are referring to a type not known at all yet,
345 allocate an empty type for it.
346 We will fill it in later if we find out how. */
347 if (*type_addr == 0)
348 {
349 *type_addr = alloc_type (objfile);
350 }
351
352 return (*type_addr);
353 }
354
355 /* for all the stabs in a given stab vector, build appropriate types
356 and fix their symbols in given symbol vector. */
357
358 static void
359 patch_block_stabs (symbols, stabs, objfile)
360 struct pending *symbols;
361 struct pending_stabs *stabs;
362 struct objfile *objfile;
363 {
364 int ii;
365 char *name;
366 char *pp;
367 struct symbol *sym;
368
369 if (stabs)
370 {
371
372 /* for all the stab entries, find their corresponding symbols and
373 patch their types! */
374
375 for (ii = 0; ii < stabs->count; ++ii)
376 {
377 name = stabs->stab[ii];
378 pp = (char*) strchr (name, ':');
379 sym = find_symbol_in_list (symbols, name, pp-name);
380 if (!sym)
381 {
382 /* On xcoff, if a global is defined and never referenced,
383 ld will remove it from the executable. There is then
384 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
385 sym = (struct symbol *)
386 obstack_alloc (&objfile->symbol_obstack,
387 sizeof (struct symbol));
388
389 memset (sym, 0, sizeof (struct symbol));
390 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
391 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
392 SYMBOL_NAME (sym) =
393 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
394 pp += 2;
395 if (*(pp-1) == 'F' || *(pp-1) == 'f')
396 {
397 /* I don't think the linker does this with functions,
398 so as far as I know this is never executed.
399 But it doesn't hurt to check. */
400 SYMBOL_TYPE (sym) =
401 lookup_function_type (read_type (&pp, objfile));
402 }
403 else
404 {
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 }
407 add_symbol_to_list (sym, &global_symbols);
408 }
409 else
410 {
411 pp += 2;
412 if (*(pp-1) == 'F' || *(pp-1) == 'f')
413 {
414 SYMBOL_TYPE (sym) =
415 lookup_function_type (read_type (&pp, objfile));
416 }
417 else
418 {
419 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
420 }
421 }
422 }
423 }
424 }
425
426 \f
427 /* Read a number by which a type is referred to in dbx data,
428 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
429 Just a single number N is equivalent to (0,N).
430 Return the two numbers by storing them in the vector TYPENUMS.
431 TYPENUMS will then be used as an argument to dbx_lookup_type.
432
433 Returns 0 for success, -1 for error. */
434
435 static int
436 read_type_number (pp, typenums)
437 register char **pp;
438 register int *typenums;
439 {
440 int nbits;
441 if (**pp == '(')
442 {
443 (*pp)++;
444 typenums[0] = read_huge_number (pp, ',', &nbits);
445 if (nbits != 0) return -1;
446 typenums[1] = read_huge_number (pp, ')', &nbits);
447 if (nbits != 0) return -1;
448 }
449 else
450 {
451 typenums[0] = 0;
452 typenums[1] = read_huge_number (pp, 0, &nbits);
453 if (nbits != 0) return -1;
454 }
455 return 0;
456 }
457
458 \f
459 /* To handle GNU C++ typename abbreviation, we need to be able to
460 fill in a type's name as soon as space for that type is allocated.
461 `type_synonym_name' is the name of the type being allocated.
462 It is cleared as soon as it is used (lest all allocated types
463 get this name). */
464
465 static char *type_synonym_name;
466
467 /* ARGSUSED */
468 struct symbol *
469 define_symbol (valu, string, desc, type, objfile)
470 unsigned int valu;
471 char *string;
472 int desc;
473 int type;
474 struct objfile *objfile;
475 {
476 register struct symbol *sym;
477 char *p = (char *) strchr (string, ':');
478 int deftype;
479 int synonym = 0;
480 register int i;
481
482 /* We would like to eliminate nameless symbols, but keep their types.
483 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
484 to type 2, but, should not create a symbol to address that type. Since
485 the symbol will be nameless, there is no way any user can refer to it. */
486
487 int nameless;
488
489 /* Ignore syms with empty names. */
490 if (string[0] == 0)
491 return 0;
492
493 /* Ignore old-style symbols from cc -go */
494 if (p == 0)
495 return 0;
496
497 /* If a nameless stab entry, all we need is the type, not the symbol.
498 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
499 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
500
501 sym = (struct symbol *)
502 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
503 memset (sym, 0, sizeof (struct symbol));
504
505 if (processing_gcc_compilation)
506 {
507 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
508 number of bytes occupied by a type or object, which we ignore. */
509 SYMBOL_LINE(sym) = desc;
510 }
511 else
512 {
513 SYMBOL_LINE(sym) = 0; /* unknown */
514 }
515
516 if (string[0] == CPLUS_MARKER)
517 {
518 /* Special GNU C++ names. */
519 switch (string[1])
520 {
521 case 't':
522 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
523 &objfile -> symbol_obstack);
524 break;
525
526 case 'v': /* $vtbl_ptr_type */
527 /* Was: SYMBOL_NAME (sym) = "vptr"; */
528 goto normal;
529
530 case 'e':
531 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
532 &objfile -> symbol_obstack);
533 break;
534
535 case '_':
536 /* This was an anonymous type that was never fixed up. */
537 goto normal;
538
539 default:
540 complain (&unrecognized_cplus_name_complaint, string);
541 goto normal; /* Do *something* with it */
542 }
543 }
544 else
545 {
546 normal:
547 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
548 SYMBOL_NAME (sym) = (char *)
549 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
550 /* Open-coded memcpy--saves function call time. */
551 /* FIXME: Does it really? Try replacing with simple strcpy and
552 try it on an executable with a large symbol table. */
553 /* FIXME: considering that gcc can open code memcpy anyway, I
554 doubt it. xoxorich. */
555 {
556 register char *p1 = string;
557 register char *p2 = SYMBOL_NAME (sym);
558 while (p1 != p)
559 {
560 *p2++ = *p1++;
561 }
562 *p2++ = '\0';
563 }
564
565 /* If this symbol is from a C++ compilation, then attempt to cache the
566 demangled form for future reference. This is a typical time versus
567 space tradeoff, that was decided in favor of time because it sped up
568 C++ symbol lookups by a factor of about 20. */
569
570 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
571 }
572 p++;
573
574 /* Determine the type of name being defined. */
575 #if 0
576 /* Getting GDB to correctly skip the symbol on an undefined symbol
577 descriptor and not ever dump core is a very dodgy proposition if
578 we do things this way. I say the acorn RISC machine can just
579 fix their compiler. */
580 /* The Acorn RISC machine's compiler can put out locals that don't
581 start with "234=" or "(3,4)=", so assume anything other than the
582 deftypes we know how to handle is a local. */
583 if (!strchr ("cfFGpPrStTvVXCR", *p))
584 #else
585 if (isdigit (*p) || *p == '(' || *p == '-')
586 #endif
587 deftype = 'l';
588 else
589 deftype = *p++;
590
591 switch (deftype)
592 {
593 case 'c':
594 /* c is a special case, not followed by a type-number.
595 SYMBOL:c=iVALUE for an integer constant symbol.
596 SYMBOL:c=rVALUE for a floating constant symbol.
597 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
598 e.g. "b:c=e6,0" for "const b = blob1"
599 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
600 if (*p != '=')
601 {
602 SYMBOL_CLASS (sym) = LOC_CONST;
603 SYMBOL_TYPE (sym) = error_type (&p);
604 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
605 add_symbol_to_list (sym, &file_symbols);
606 return sym;
607 }
608 ++p;
609 switch (*p++)
610 {
611 case 'r':
612 {
613 double d = atof (p);
614 char *dbl_valu;
615
616 /* FIXME: lookup_fundamental_type is a hack. We should be
617 creating a type especially for the type of float constants.
618 Problem is, what type should it be? We currently have to
619 read this in host floating point format, but what type
620 represents a host format "double"?
621
622 Also, what should the name of this type be? Should we
623 be using 'S' constants (see stabs.texinfo) instead? */
624
625 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
626 FT_DBL_PREC_FLOAT);
627 dbl_valu = (char *)
628 obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
629 memcpy (dbl_valu, &d, sizeof (double));
630 /* Put it in target byte order, but it's still in host
631 floating point format. */
632 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
633 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
634 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
635 }
636 break;
637 case 'i':
638 {
639 /* Defining integer constants this way is kind of silly,
640 since 'e' constants allows the compiler to give not
641 only the value, but the type as well. C has at least
642 int, long, unsigned int, and long long as constant
643 types; other languages probably should have at least
644 unsigned as well as signed constants. */
645
646 /* We just need one int constant type for all objfiles.
647 It doesn't depend on languages or anything (arguably its
648 name should be a language-specific name for a type of
649 that size, but I'm inclined to say that if the compiler
650 wants a nice name for the type, it can use 'e'). */
651 static struct type *int_const_type;
652
653 /* Yes, this is as long as a *host* int. That is because we
654 use atoi. */
655 if (int_const_type == NULL)
656 int_const_type =
657 init_type (TYPE_CODE_INT,
658 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
659 "integer constant",
660 (struct objfile *)NULL);
661 SYMBOL_TYPE (sym) = int_const_type;
662 SYMBOL_VALUE (sym) = atoi (p);
663 SYMBOL_CLASS (sym) = LOC_CONST;
664 }
665 break;
666 case 'e':
667 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
668 can be represented as integral.
669 e.g. "b:c=e6,0" for "const b = blob1"
670 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
671 {
672 SYMBOL_CLASS (sym) = LOC_CONST;
673 SYMBOL_TYPE (sym) = read_type (&p, objfile);
674
675 if (*p != ',')
676 {
677 SYMBOL_TYPE (sym) = error_type (&p);
678 break;
679 }
680 ++p;
681
682 /* If the value is too big to fit in an int (perhaps because
683 it is unsigned), or something like that, we silently get
684 a bogus value. The type and everything else about it is
685 correct. Ideally, we should be using whatever we have
686 available for parsing unsigned and long long values,
687 however. */
688 SYMBOL_VALUE (sym) = atoi (p);
689 }
690 break;
691 default:
692 {
693 SYMBOL_CLASS (sym) = LOC_CONST;
694 SYMBOL_TYPE (sym) = error_type (&p);
695 }
696 }
697 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
698 add_symbol_to_list (sym, &file_symbols);
699 return sym;
700
701 case 'C':
702 /* The name of a caught exception. */
703 SYMBOL_TYPE (sym) = read_type (&p, objfile);
704 SYMBOL_CLASS (sym) = LOC_LABEL;
705 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
706 SYMBOL_VALUE_ADDRESS (sym) = valu;
707 add_symbol_to_list (sym, &local_symbols);
708 break;
709
710 case 'f':
711 /* A static function definition. */
712 SYMBOL_TYPE (sym) = read_type (&p, objfile);
713 SYMBOL_CLASS (sym) = LOC_BLOCK;
714 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
715 add_symbol_to_list (sym, &file_symbols);
716 /* fall into process_function_types. */
717
718 process_function_types:
719 /* Function result types are described as the result type in stabs.
720 We need to convert this to the function-returning-type-X type
721 in GDB. E.g. "int" is converted to "function returning int". */
722 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
723 {
724 #if 0
725 /* This code doesn't work -- it needs to realloc and can't. */
726 /* Attempt to set up to record a function prototype... */
727 struct type *new = alloc_type (objfile);
728
729 /* Generate a template for the type of this function. The
730 types of the arguments will be added as we read the symbol
731 table. */
732 *new = *lookup_function_type (SYMBOL_TYPE(sym));
733 SYMBOL_TYPE(sym) = new;
734 TYPE_OBJFILE (new) = objfile;
735 in_function_type = new;
736 #else
737 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
738 #endif
739 }
740 /* fall into process_prototype_types */
741
742 process_prototype_types:
743 /* Sun acc puts declared types of arguments here. We don't care
744 about their actual types (FIXME -- we should remember the whole
745 function prototype), but the list may define some new types
746 that we have to remember, so we must scan it now. */
747 while (*p == ';') {
748 p++;
749 read_type (&p, objfile);
750 }
751 break;
752
753 case 'F':
754 /* A global function definition. */
755 SYMBOL_TYPE (sym) = read_type (&p, objfile);
756 SYMBOL_CLASS (sym) = LOC_BLOCK;
757 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
758 add_symbol_to_list (sym, &global_symbols);
759 goto process_function_types;
760
761 case 'G':
762 /* For a class G (global) symbol, it appears that the
763 value is not correct. It is necessary to search for the
764 corresponding linker definition to find the value.
765 These definitions appear at the end of the namelist. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 i = hashname (SYMBOL_NAME (sym));
768 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
769 global_sym_chain[i] = sym;
770 SYMBOL_CLASS (sym) = LOC_STATIC;
771 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
772 add_symbol_to_list (sym, &global_symbols);
773 break;
774
775 /* This case is faked by a conditional above,
776 when there is no code letter in the dbx data.
777 Dbx data never actually contains 'l'. */
778 case 'l':
779 SYMBOL_TYPE (sym) = read_type (&p, objfile);
780 SYMBOL_CLASS (sym) = LOC_LOCAL;
781 SYMBOL_VALUE (sym) = valu;
782 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
783 add_symbol_to_list (sym, &local_symbols);
784 break;
785
786 case 'p':
787 if (*p == 'F')
788 /* pF is a two-letter code that means a function parameter in Fortran.
789 The type-number specifies the type of the return value.
790 Translate it into a pointer-to-function type. */
791 {
792 p++;
793 SYMBOL_TYPE (sym)
794 = lookup_pointer_type
795 (lookup_function_type (read_type (&p, objfile)));
796 }
797 else
798 SYMBOL_TYPE (sym) = read_type (&p, objfile);
799
800 /* Normally this is a parameter, a LOC_ARG. On the i960, it
801 can also be a LOC_LOCAL_ARG depending on symbol type. */
802 #ifndef DBX_PARM_SYMBOL_CLASS
803 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
804 #endif
805
806 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
807 SYMBOL_VALUE (sym) = valu;
808 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
809 #if 0
810 /* This doesn't work yet. */
811 add_param_to_type (&in_function_type, sym);
812 #endif
813 add_symbol_to_list (sym, &local_symbols);
814
815 /* If it's gcc-compiled, if it says `short', believe it. */
816 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
817 break;
818
819 #if !BELIEVE_PCC_PROMOTION
820 {
821 /* This is the signed type which arguments get promoted to. */
822 static struct type *pcc_promotion_type;
823 /* This is the unsigned type which arguments get promoted to. */
824 static struct type *pcc_unsigned_promotion_type;
825
826 /* Call it "int" because this is mainly C lossage. */
827 if (pcc_promotion_type == NULL)
828 pcc_promotion_type =
829 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
830 0, "int", NULL);
831
832 if (pcc_unsigned_promotion_type == NULL)
833 pcc_unsigned_promotion_type =
834 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
835 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
836
837 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
838 /* This macro is defined on machines (e.g. sparc) where
839 we should believe the type of a PCC 'short' argument,
840 but shouldn't believe the address (the address is
841 the address of the corresponding int). Note that
842 this is only different from the BELIEVE_PCC_PROMOTION
843 case on big-endian machines.
844
845 My guess is that this correction, as opposed to changing
846 the parameter to an 'int' (as done below, for PCC
847 on most machines), is the right thing to do
848 on all machines, but I don't want to risk breaking
849 something that already works. On most PCC machines,
850 the sparc problem doesn't come up because the calling
851 function has to zero the top bytes (not knowing whether
852 the called function wants an int or a short), so there
853 is no practical difference between an int and a short
854 (except perhaps what happens when the GDB user types
855 "print short_arg = 0x10000;").
856
857 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
858 actually produces the correct address (we don't need to fix it
859 up). I made this code adapt so that it will offset the symbol
860 if it was pointing at an int-aligned location and not
861 otherwise. This way you can use the same gdb for 4.0.x and
862 4.1 systems.
863
864 If the parameter is shorter than an int, and is integral
865 (e.g. char, short, or unsigned equivalent), and is claimed to
866 be passed on an integer boundary, don't believe it! Offset the
867 parameter's address to the tail-end of that integer. */
868
869 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
870 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
871 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
872 {
873 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
874 - TYPE_LENGTH (SYMBOL_TYPE (sym));
875 }
876 break;
877
878 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
879
880 /* If PCC says a parameter is a short or a char,
881 it is really an int. */
882 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
883 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
884 {
885 SYMBOL_TYPE (sym) =
886 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
887 ? pcc_unsigned_promotion_type
888 : pcc_promotion_type;
889 }
890 break;
891
892 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
893 }
894 #endif /* !BELIEVE_PCC_PROMOTION. */
895
896 case 'P':
897 /* acc seems to use P to delare the prototypes of functions that
898 are referenced by this file. gdb is not prepared to deal
899 with this extra information. FIXME, it ought to. */
900 if (type == N_FUN)
901 {
902 read_type (&p, objfile);
903 goto process_prototype_types;
904 }
905 /*FALLTHROUGH*/
906
907 case 'R':
908 /* Parameter which is in a register. */
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910 SYMBOL_CLASS (sym) = LOC_REGPARM;
911 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
912 if (SYMBOL_VALUE (sym) >= NUM_REGS)
913 {
914 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
915 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
916 }
917 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
918 add_symbol_to_list (sym, &local_symbols);
919 break;
920
921 case 'r':
922 /* Register variable (either global or local). */
923 SYMBOL_TYPE (sym) = read_type (&p, objfile);
924 SYMBOL_CLASS (sym) = LOC_REGISTER;
925 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
926 if (SYMBOL_VALUE (sym) >= NUM_REGS)
927 {
928 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
929 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
930 }
931 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
932 if (within_function)
933 {
934 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
935 name to represent an argument passed in a register.
936 GCC uses 'P' for the same case. So if we find such a symbol pair
937 we combine it into one 'P' symbol.
938 Note that this code illegally combines
939 main(argc) int argc; { register int argc = 1; }
940 but this case is considered pathological and causes a warning
941 from a decent compiler. */
942 if (local_symbols
943 && local_symbols->nsyms > 0)
944 {
945 struct symbol *prev_sym;
946 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
947 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
948 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
949 {
950 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
951 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
952 sym = prev_sym;
953 break;
954 }
955 }
956 add_symbol_to_list (sym, &local_symbols);
957 }
958 else
959 add_symbol_to_list (sym, &file_symbols);
960 break;
961
962 case 'S':
963 /* Static symbol at top level of file */
964 SYMBOL_TYPE (sym) = read_type (&p, objfile);
965 SYMBOL_CLASS (sym) = LOC_STATIC;
966 SYMBOL_VALUE_ADDRESS (sym) = valu;
967 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
968 add_symbol_to_list (sym, &file_symbols);
969 break;
970
971 case 't':
972 #if 0
973 /* See comment where long_kludge_name is declared. */
974 /* Here we save the name of the symbol for read_range_type, which
975 ends up reading in the basic types. In stabs, unfortunately there
976 is no distinction between "int" and "long" types except their
977 names. Until we work out a saner type policy (eliminating most
978 builtin types and using the names specified in the files), we
979 save away the name so that far away from here in read_range_type,
980 we can examine it to decide between "int" and "long". FIXME. */
981 long_kludge_name = SYMBOL_NAME (sym);
982 #endif
983 SYMBOL_TYPE (sym) = read_type (&p, objfile);
984
985 /* For a nameless type, we don't want a create a symbol, thus we
986 did not use `sym'. Return without further processing. */
987 if (nameless) return NULL;
988
989 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
990 SYMBOL_VALUE (sym) = valu;
991 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
992 /* C++ vagaries: we may have a type which is derived from
993 a base type which did not have its name defined when the
994 derived class was output. We fill in the derived class's
995 base part member's name here in that case. */
996 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
997 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
998 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
999 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1000 {
1001 int j;
1002 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1003 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1004 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1005 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1006 }
1007
1008 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1009 {
1010 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1011 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1012 {
1013 /* If we are giving a name to a type such as "pointer to
1014 foo" or "function returning foo", we better not set
1015 the TYPE_NAME. If the program contains "typedef char
1016 *caddr_t;", we don't want all variables of type char
1017 * to print as caddr_t. This is not just a
1018 consequence of GDB's type management; PCC and GCC (at
1019 least through version 2.4) both output variables of
1020 either type char * or caddr_t with the type number
1021 defined in the 't' symbol for caddr_t. If a future
1022 compiler cleans this up it GDB is not ready for it
1023 yet, but if it becomes ready we somehow need to
1024 disable this check (without breaking the PCC/GCC2.4
1025 case).
1026
1027 Sigh.
1028
1029 Fortunately, this check seems not to be necessary
1030 for anything except pointers or functions. */
1031 }
1032 else
1033 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1034 }
1035
1036 add_symbol_to_list (sym, &file_symbols);
1037 break;
1038
1039 case 'T':
1040 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1041 by 't' which means we are typedef'ing it as well. */
1042 synonym = *p == 't';
1043
1044 if (synonym)
1045 {
1046 p++;
1047 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1048 strlen (SYMBOL_NAME (sym)),
1049 &objfile -> symbol_obstack);
1050 }
1051
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053
1054 /* For a nameless type, we don't want a create a symbol, thus we
1055 did not use `sym'. Return without further processing. */
1056 if (nameless) return NULL;
1057
1058 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1059 SYMBOL_VALUE (sym) = valu;
1060 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1061 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1062 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1063 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1064 add_symbol_to_list (sym, &file_symbols);
1065
1066 if (synonym)
1067 {
1068 /* Clone the sym and then modify it. */
1069 register struct symbol *typedef_sym = (struct symbol *)
1070 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1071 *typedef_sym = *sym;
1072 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1073 SYMBOL_VALUE (typedef_sym) = valu;
1074 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1075 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1076 TYPE_NAME (SYMBOL_TYPE (sym))
1077 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1078 add_symbol_to_list (typedef_sym, &file_symbols);
1079 }
1080 break;
1081
1082 case 'V':
1083 /* Static symbol of local scope */
1084 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1085 SYMBOL_CLASS (sym) = LOC_STATIC;
1086 SYMBOL_VALUE_ADDRESS (sym) = valu;
1087 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1088 add_symbol_to_list (sym, &local_symbols);
1089 break;
1090
1091 case 'v':
1092 /* Reference parameter */
1093 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1094 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1095 SYMBOL_VALUE (sym) = valu;
1096 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1097 add_symbol_to_list (sym, &local_symbols);
1098 break;
1099
1100 case 'X':
1101 /* This is used by Sun FORTRAN for "function result value".
1102 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1103 that Pascal uses it too, but when I tried it Pascal used
1104 "x:3" (local symbol) instead. */
1105 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106 SYMBOL_CLASS (sym) = LOC_LOCAL;
1107 SYMBOL_VALUE (sym) = valu;
1108 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1109 add_symbol_to_list (sym, &local_symbols);
1110 break;
1111
1112 default:
1113 SYMBOL_TYPE (sym) = error_type (&p);
1114 SYMBOL_CLASS (sym) = LOC_CONST;
1115 SYMBOL_VALUE (sym) = 0;
1116 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1117 add_symbol_to_list (sym, &file_symbols);
1118 break;
1119 }
1120
1121 /* When passing structures to a function, some systems sometimes pass
1122 the address in a register, not the structure itself.
1123
1124 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1125 to LOC_REGPARM_ADDR for structures and unions. */
1126
1127 #if !defined (REG_STRUCT_HAS_ADDR)
1128 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1129 #endif
1130
1131 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1132 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1133 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1134 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1135 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1136
1137 return sym;
1138 }
1139
1140 \f
1141 /* Skip rest of this symbol and return an error type.
1142
1143 General notes on error recovery: error_type always skips to the
1144 end of the symbol (modulo cretinous dbx symbol name continuation).
1145 Thus code like this:
1146
1147 if (*(*pp)++ != ';')
1148 return error_type (pp);
1149
1150 is wrong because if *pp starts out pointing at '\0' (typically as the
1151 result of an earlier error), it will be incremented to point to the
1152 start of the next symbol, which might produce strange results, at least
1153 if you run off the end of the string table. Instead use
1154
1155 if (**pp != ';')
1156 return error_type (pp);
1157 ++*pp;
1158
1159 or
1160
1161 if (**pp != ';')
1162 foo = error_type (pp);
1163 else
1164 ++*pp;
1165
1166 And in case it isn't obvious, the point of all this hair is so the compiler
1167 can define new types and new syntaxes, and old versions of the
1168 debugger will be able to read the new symbol tables. */
1169
1170 static struct type *
1171 error_type (pp)
1172 char **pp;
1173 {
1174 complain (&error_type_complaint);
1175 while (1)
1176 {
1177 /* Skip to end of symbol. */
1178 while (**pp != '\0')
1179 {
1180 (*pp)++;
1181 }
1182
1183 /* Check for and handle cretinous dbx symbol name continuation! */
1184 if ((*pp)[-1] == '\\')
1185 {
1186 *pp = next_symbol_text ();
1187 }
1188 else
1189 {
1190 break;
1191 }
1192 }
1193 return (builtin_type_error);
1194 }
1195
1196 \f
1197 /* Read type information or a type definition; return the type. Even
1198 though this routine accepts either type information or a type
1199 definition, the distinction is relevant--some parts of stabsread.c
1200 assume that type information starts with a digit, '-', or '(' in
1201 deciding whether to call read_type. */
1202
1203 struct type *
1204 read_type (pp, objfile)
1205 register char **pp;
1206 struct objfile *objfile;
1207 {
1208 register struct type *type = 0;
1209 struct type *type1;
1210 int typenums[2];
1211 int xtypenums[2];
1212 char type_descriptor;
1213
1214 /* Read type number if present. The type number may be omitted.
1215 for instance in a two-dimensional array declared with type
1216 "ar1;1;10;ar1;1;10;4". */
1217 if ((**pp >= '0' && **pp <= '9')
1218 || **pp == '(')
1219 {
1220 if (read_type_number (pp, typenums) != 0)
1221 return error_type (pp);
1222
1223 /* Type is not being defined here. Either it already exists,
1224 or this is a forward reference to it. dbx_alloc_type handles
1225 both cases. */
1226 if (**pp != '=')
1227 return dbx_alloc_type (typenums, objfile);
1228
1229 /* Type is being defined here. */
1230 /* Skip the '='. */
1231 ++(*pp);
1232
1233 while (**pp == '@')
1234 {
1235 char *p = *pp + 1;
1236 /* It might be a type attribute or a member type. */
1237 if (isdigit (*p) || *p == '(' || *p == '-')
1238 /* Member type. */
1239 break;
1240 else
1241 {
1242 /* Type attributes; skip to the semicolon. */
1243 while (*p != ';' && *p != '\0')
1244 ++p;
1245 *pp = p;
1246 if (*p == '\0')
1247 return error_type (pp);
1248 else
1249 /* Skip the semicolon. */
1250 ++*pp;
1251 }
1252 }
1253 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1254 ++(*pp);
1255 }
1256 else
1257 {
1258 /* 'typenums=' not present, type is anonymous. Read and return
1259 the definition, but don't put it in the type vector. */
1260 typenums[0] = typenums[1] = -1;
1261 (*pp)++;
1262 }
1263
1264 type_descriptor = (*pp)[-1];
1265 switch (type_descriptor)
1266 {
1267 case 'x':
1268 {
1269 enum type_code code;
1270
1271 /* Used to index through file_symbols. */
1272 struct pending *ppt;
1273 int i;
1274
1275 /* Name including "struct", etc. */
1276 char *type_name;
1277
1278 {
1279 char *from, *to;
1280
1281 /* Set the type code according to the following letter. */
1282 switch ((*pp)[0])
1283 {
1284 case 's':
1285 code = TYPE_CODE_STRUCT;
1286 break;
1287 case 'u':
1288 code = TYPE_CODE_UNION;
1289 break;
1290 case 'e':
1291 code = TYPE_CODE_ENUM;
1292 break;
1293 default:
1294 return error_type (pp);
1295 }
1296
1297 to = type_name = (char *)
1298 obstack_alloc (&objfile -> type_obstack,
1299 (((char *) strchr (*pp, ':') - (*pp)) + 1));
1300
1301 /* Copy the name. */
1302 from = *pp + 1;
1303 while ((*to++ = *from++) != ':')
1304 ;
1305 *--to = '\0';
1306
1307 /* Set the pointer ahead of the name which we just read. */
1308 *pp = from;
1309 }
1310
1311 /* Now check to see whether the type has already been declared. */
1312 /* This is necessary at least in the case where the
1313 program says something like
1314 struct foo bar[5];
1315 The compiler puts out a cross-reference; we better find
1316 set the length of the structure correctly so we can
1317 set the length of the array. */
1318 for (ppt = file_symbols; ppt; ppt = ppt->next)
1319 for (i = 0; i < ppt->nsyms; i++)
1320 {
1321 struct symbol *sym = ppt->symbol[i];
1322
1323 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1324 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1325 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1326 && STREQ (SYMBOL_NAME (sym), type_name))
1327 {
1328 obstack_free (&objfile -> type_obstack, type_name);
1329 type = SYMBOL_TYPE (sym);
1330 return type;
1331 }
1332 }
1333
1334 /* Didn't find the type to which this refers, so we must
1335 be dealing with a forward reference. Allocate a type
1336 structure for it, and keep track of it so we can
1337 fill in the rest of the fields when we get the full
1338 type. */
1339 type = dbx_alloc_type (typenums, objfile);
1340 TYPE_CODE (type) = code;
1341 TYPE_TAG_NAME (type) = type_name;
1342 INIT_CPLUS_SPECIFIC(type);
1343 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1344
1345 add_undefined_type (type);
1346 return type;
1347 }
1348
1349 case '-': /* RS/6000 built-in type */
1350 case '0':
1351 case '1':
1352 case '2':
1353 case '3':
1354 case '4':
1355 case '5':
1356 case '6':
1357 case '7':
1358 case '8':
1359 case '9':
1360 case '(':
1361
1362 /* The type is being defined to another type. When we support
1363 Ada (and arguably for C, so "whatis foo" can give "size_t",
1364 "wchar_t", or whatever it was declared as) we'll need to
1365 allocate a distinct type here rather than returning the
1366 existing one. GCC is currently (deliberately) incapable of
1367 putting out the debugging information to do that, however. */
1368
1369 (*pp)--;
1370 if (read_type_number (pp, xtypenums) != 0)
1371 return error_type (pp);
1372 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1373 /* It's being defined as itself. That means it is "void". */
1374 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1375 else
1376 type = *dbx_lookup_type (xtypenums);
1377 if (typenums[0] != -1)
1378 *dbx_lookup_type (typenums) = type;
1379 /* This can happen if we had '-' followed by a garbage character,
1380 for example. */
1381 if (type == NULL)
1382 return error_type (pp);
1383 break;
1384
1385 /* In the following types, we must be sure to overwrite any existing
1386 type that the typenums refer to, rather than allocating a new one
1387 and making the typenums point to the new one. This is because there
1388 may already be pointers to the existing type (if it had been
1389 forward-referenced), and we must change it to a pointer, function,
1390 reference, or whatever, *in-place*. */
1391
1392 case '*':
1393 type1 = read_type (pp, objfile);
1394 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1395 break;
1396
1397 case '&': /* Reference to another type */
1398 type1 = read_type (pp, objfile);
1399 type = make_reference_type (type1, dbx_lookup_type (typenums));
1400 break;
1401
1402 case 'f': /* Function returning another type */
1403 type1 = read_type (pp, objfile);
1404 type = make_function_type (type1, dbx_lookup_type (typenums));
1405 break;
1406
1407 case 'k': /* Const qualifier on some type (Sun) */
1408 type = read_type (pp, objfile);
1409 /* FIXME! For now, we ignore const and volatile qualifiers. */
1410 break;
1411
1412 case 'B': /* Volatile qual on some type (Sun) */
1413 type = read_type (pp, objfile);
1414 /* FIXME! For now, we ignore const and volatile qualifiers. */
1415 break;
1416
1417 /* FIXME -- we should be doing smash_to_XXX types here. */
1418 case '@': /* Member (class & variable) type */
1419 {
1420 struct type *domain = read_type (pp, objfile);
1421 struct type *memtype;
1422
1423 if (**pp != ',')
1424 /* Invalid member type data format. */
1425 return error_type (pp);
1426 ++*pp;
1427
1428 memtype = read_type (pp, objfile);
1429 type = dbx_alloc_type (typenums, objfile);
1430 smash_to_member_type (type, domain, memtype);
1431 }
1432 break;
1433
1434 case '#': /* Method (class & fn) type */
1435 if ((*pp)[0] == '#')
1436 {
1437 /* We'll get the parameter types from the name. */
1438 struct type *return_type;
1439
1440 (*pp)++;
1441 return_type = read_type (pp, objfile);
1442 if (*(*pp)++ != ';')
1443 complain (&invalid_member_complaint, symnum);
1444 type = allocate_stub_method (return_type);
1445 if (typenums[0] != -1)
1446 *dbx_lookup_type (typenums) = type;
1447 }
1448 else
1449 {
1450 struct type *domain = read_type (pp, objfile);
1451 struct type *return_type;
1452 struct type **args;
1453
1454 if (**pp != ',')
1455 /* Invalid member type data format. */
1456 return error_type (pp);
1457 else
1458 ++(*pp);
1459
1460 return_type = read_type (pp, objfile);
1461 args = read_args (pp, ';', objfile);
1462 type = dbx_alloc_type (typenums, objfile);
1463 smash_to_method_type (type, domain, return_type, args);
1464 }
1465 break;
1466
1467 case 'r': /* Range type */
1468 type = read_range_type (pp, typenums, objfile);
1469 if (typenums[0] != -1)
1470 *dbx_lookup_type (typenums) = type;
1471 break;
1472
1473 case 'b': /* Sun ACC builtin int type */
1474 type = read_sun_builtin_type (pp, typenums, objfile);
1475 if (typenums[0] != -1)
1476 *dbx_lookup_type (typenums) = type;
1477 break;
1478
1479 case 'R': /* Sun ACC builtin float type */
1480 type = read_sun_floating_type (pp, typenums, objfile);
1481 if (typenums[0] != -1)
1482 *dbx_lookup_type (typenums) = type;
1483 break;
1484
1485 case 'e': /* Enumeration type */
1486 type = dbx_alloc_type (typenums, objfile);
1487 type = read_enum_type (pp, type, objfile);
1488 if (typenums[0] != -1)
1489 *dbx_lookup_type (typenums) = type;
1490 break;
1491
1492 case 's': /* Struct type */
1493 case 'u': /* Union type */
1494 type = dbx_alloc_type (typenums, objfile);
1495 if (!TYPE_NAME (type))
1496 {
1497 TYPE_NAME (type) = type_synonym_name;
1498 }
1499 type_synonym_name = NULL;
1500 switch (type_descriptor)
1501 {
1502 case 's':
1503 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1504 break;
1505 case 'u':
1506 TYPE_CODE (type) = TYPE_CODE_UNION;
1507 break;
1508 }
1509 type = read_struct_type (pp, type, objfile);
1510 break;
1511
1512 case 'a': /* Array type */
1513 if (**pp != 'r')
1514 return error_type (pp);
1515 ++*pp;
1516
1517 type = dbx_alloc_type (typenums, objfile);
1518 type = read_array_type (pp, type, objfile);
1519 break;
1520
1521 default:
1522 --*pp; /* Go back to the symbol in error */
1523 /* Particularly important if it was \0! */
1524 return error_type (pp);
1525 }
1526
1527 if (type == 0)
1528 {
1529 warning ("GDB internal error, type is NULL in stabsread.c\n");
1530 return error_type (pp);
1531 }
1532
1533 return type;
1534 }
1535 \f
1536 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1537 Return the proper type node for a given builtin type number. */
1538
1539 static struct type *
1540 rs6000_builtin_type (typenum)
1541 int typenum;
1542 {
1543 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1544 #define NUMBER_RECOGNIZED 30
1545 /* This includes an empty slot for type number -0. */
1546 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1547 struct type *rettype;
1548
1549 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1550 {
1551 complain (&rs6000_builtin_complaint, typenum);
1552 return builtin_type_error;
1553 }
1554 if (negative_types[-typenum] != NULL)
1555 return negative_types[-typenum];
1556
1557 #if TARGET_CHAR_BIT != 8
1558 #error This code wrong for TARGET_CHAR_BIT not 8
1559 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1560 that if that ever becomes not true, the correct fix will be to
1561 make the size in the struct type to be in bits, not in units of
1562 TARGET_CHAR_BIT. */
1563 #endif
1564
1565 switch (-typenum)
1566 {
1567 case 1:
1568 /* The size of this and all the other types are fixed, defined
1569 by the debugging format. If there is a type called "int" which
1570 is other than 32 bits, then it should use a new negative type
1571 number (or avoid negative type numbers for that case).
1572 See stabs.texinfo. */
1573 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1574 break;
1575 case 2:
1576 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1577 break;
1578 case 3:
1579 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1580 break;
1581 case 4:
1582 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1583 break;
1584 case 5:
1585 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1586 "unsigned char", NULL);
1587 break;
1588 case 6:
1589 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1590 break;
1591 case 7:
1592 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1593 "unsigned short", NULL);
1594 break;
1595 case 8:
1596 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1597 "unsigned int", NULL);
1598 break;
1599 case 9:
1600 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1601 "unsigned", NULL);
1602 case 10:
1603 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1604 "unsigned long", NULL);
1605 break;
1606 case 11:
1607 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1608 break;
1609 case 12:
1610 /* IEEE single precision (32 bit). */
1611 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1612 break;
1613 case 13:
1614 /* IEEE double precision (64 bit). */
1615 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1616 break;
1617 case 14:
1618 /* This is an IEEE double on the RS/6000, and different machines with
1619 different sizes for "long double" should use different negative
1620 type numbers. See stabs.texinfo. */
1621 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1622 break;
1623 case 15:
1624 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1625 break;
1626 case 16:
1627 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1628 break;
1629 case 17:
1630 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1631 break;
1632 case 18:
1633 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1634 break;
1635 case 19:
1636 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1637 break;
1638 case 20:
1639 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1640 "character", NULL);
1641 break;
1642 case 21:
1643 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1644 "logical*1", NULL);
1645 break;
1646 case 22:
1647 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1648 "logical*2", NULL);
1649 break;
1650 case 23:
1651 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1652 "logical*4", NULL);
1653 break;
1654 case 24:
1655 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1656 "logical", NULL);
1657 break;
1658 case 25:
1659 /* Complex type consisting of two IEEE single precision values. */
1660 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1661 break;
1662 case 26:
1663 /* Complex type consisting of two IEEE double precision values. */
1664 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1665 break;
1666 case 27:
1667 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1668 break;
1669 case 28:
1670 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1671 break;
1672 case 29:
1673 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1674 break;
1675 case 30:
1676 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1677 break;
1678 }
1679 negative_types[-typenum] = rettype;
1680 return rettype;
1681 }
1682 \f
1683 /* This page contains subroutines of read_type. */
1684
1685 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1686 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1687 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1688
1689 /* Read member function stabs info for C++ classes. The form of each member
1690 function data is:
1691
1692 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1693
1694 An example with two member functions is:
1695
1696 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1697
1698 For the case of overloaded operators, the format is op$::*.funcs, where
1699 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1700 name (such as `+=') and `.' marks the end of the operator name.
1701
1702 Returns 1 for success, 0 for failure. */
1703
1704 static int
1705 read_member_functions (fip, pp, type, objfile)
1706 struct field_info *fip;
1707 char **pp;
1708 struct type *type;
1709 struct objfile *objfile;
1710 {
1711 int nfn_fields = 0;
1712 int length = 0;
1713 /* Total number of member functions defined in this class. If the class
1714 defines two `f' functions, and one `g' function, then this will have
1715 the value 3. */
1716 int total_length = 0;
1717 int i;
1718 struct next_fnfield
1719 {
1720 struct next_fnfield *next;
1721 struct fn_field fn_field;
1722 } *sublist;
1723 struct type *look_ahead_type;
1724 struct next_fnfieldlist *new_fnlist;
1725 struct next_fnfield *new_sublist;
1726 char *main_fn_name;
1727 register char *p;
1728
1729 /* Process each list until we find something that is not a member function
1730 or find the end of the functions. */
1731
1732 while (**pp != ';')
1733 {
1734 /* We should be positioned at the start of the function name.
1735 Scan forward to find the first ':' and if it is not the
1736 first of a "::" delimiter, then this is not a member function. */
1737 p = *pp;
1738 while (*p != ':')
1739 {
1740 p++;
1741 }
1742 if (p[1] != ':')
1743 {
1744 break;
1745 }
1746
1747 sublist = NULL;
1748 look_ahead_type = NULL;
1749 length = 0;
1750
1751 new_fnlist = (struct next_fnfieldlist *)
1752 xmalloc (sizeof (struct next_fnfieldlist));
1753 make_cleanup (free, new_fnlist);
1754 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1755
1756 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1757 {
1758 /* This is a completely wierd case. In order to stuff in the
1759 names that might contain colons (the usual name delimiter),
1760 Mike Tiemann defined a different name format which is
1761 signalled if the identifier is "op$". In that case, the
1762 format is "op$::XXXX." where XXXX is the name. This is
1763 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1764 /* This lets the user type "break operator+".
1765 We could just put in "+" as the name, but that wouldn't
1766 work for "*". */
1767 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1768 char *o = opname + 3;
1769
1770 /* Skip past '::'. */
1771 *pp = p + 2;
1772
1773 STABS_CONTINUE (pp);
1774 p = *pp;
1775 while (*p != '.')
1776 {
1777 *o++ = *p++;
1778 }
1779 main_fn_name = savestring (opname, o - opname);
1780 /* Skip past '.' */
1781 *pp = p + 1;
1782 }
1783 else
1784 {
1785 main_fn_name = savestring (*pp, p - *pp);
1786 /* Skip past '::'. */
1787 *pp = p + 2;
1788 }
1789 new_fnlist -> fn_fieldlist.name = main_fn_name;
1790
1791 do
1792 {
1793 new_sublist =
1794 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1795 make_cleanup (free, new_sublist);
1796 memset (new_sublist, 0, sizeof (struct next_fnfield));
1797
1798 /* Check for and handle cretinous dbx symbol name continuation! */
1799 if (look_ahead_type == NULL)
1800 {
1801 /* Normal case. */
1802 STABS_CONTINUE (pp);
1803
1804 new_sublist -> fn_field.type = read_type (pp, objfile);
1805 if (**pp != ':')
1806 {
1807 /* Invalid symtab info for member function. */
1808 return 0;
1809 }
1810 }
1811 else
1812 {
1813 /* g++ version 1 kludge */
1814 new_sublist -> fn_field.type = look_ahead_type;
1815 look_ahead_type = NULL;
1816 }
1817
1818 (*pp)++;
1819 p = *pp;
1820 while (*p != ';')
1821 {
1822 p++;
1823 }
1824
1825 /* If this is just a stub, then we don't have the real name here. */
1826
1827 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1828 {
1829 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1830 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1831 new_sublist -> fn_field.is_stub = 1;
1832 }
1833 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1834 *pp = p + 1;
1835
1836 /* Set this member function's visibility fields. */
1837 switch (*(*pp)++)
1838 {
1839 case VISIBILITY_PRIVATE:
1840 new_sublist -> fn_field.is_private = 1;
1841 break;
1842 case VISIBILITY_PROTECTED:
1843 new_sublist -> fn_field.is_protected = 1;
1844 break;
1845 }
1846
1847 STABS_CONTINUE (pp);
1848 switch (**pp)
1849 {
1850 case 'A': /* Normal functions. */
1851 new_sublist -> fn_field.is_const = 0;
1852 new_sublist -> fn_field.is_volatile = 0;
1853 (*pp)++;
1854 break;
1855 case 'B': /* `const' member functions. */
1856 new_sublist -> fn_field.is_const = 1;
1857 new_sublist -> fn_field.is_volatile = 0;
1858 (*pp)++;
1859 break;
1860 case 'C': /* `volatile' member function. */
1861 new_sublist -> fn_field.is_const = 0;
1862 new_sublist -> fn_field.is_volatile = 1;
1863 (*pp)++;
1864 break;
1865 case 'D': /* `const volatile' member function. */
1866 new_sublist -> fn_field.is_const = 1;
1867 new_sublist -> fn_field.is_volatile = 1;
1868 (*pp)++;
1869 break;
1870 case '*': /* File compiled with g++ version 1 -- no info */
1871 case '?':
1872 case '.':
1873 break;
1874 default:
1875 complain (&const_vol_complaint, **pp);
1876 break;
1877 }
1878
1879 switch (*(*pp)++)
1880 {
1881 case '*':
1882 {
1883 int nbits;
1884 /* virtual member function, followed by index.
1885 The sign bit is set to distinguish pointers-to-methods
1886 from virtual function indicies. Since the array is
1887 in words, the quantity must be shifted left by 1
1888 on 16 bit machine, and by 2 on 32 bit machine, forcing
1889 the sign bit out, and usable as a valid index into
1890 the array. Remove the sign bit here. */
1891 new_sublist -> fn_field.voffset =
1892 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1893 if (nbits != 0)
1894 return 0;
1895
1896 STABS_CONTINUE (pp);
1897 if (**pp == ';' || **pp == '\0')
1898 {
1899 /* Must be g++ version 1. */
1900 new_sublist -> fn_field.fcontext = 0;
1901 }
1902 else
1903 {
1904 /* Figure out from whence this virtual function came.
1905 It may belong to virtual function table of
1906 one of its baseclasses. */
1907 look_ahead_type = read_type (pp, objfile);
1908 if (**pp == ':')
1909 {
1910 /* g++ version 1 overloaded methods. */
1911 }
1912 else
1913 {
1914 new_sublist -> fn_field.fcontext = look_ahead_type;
1915 if (**pp != ';')
1916 {
1917 return 0;
1918 }
1919 else
1920 {
1921 ++*pp;
1922 }
1923 look_ahead_type = NULL;
1924 }
1925 }
1926 break;
1927 }
1928 case '?':
1929 /* static member function. */
1930 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1931 if (strncmp (new_sublist -> fn_field.physname,
1932 main_fn_name, strlen (main_fn_name)))
1933 {
1934 new_sublist -> fn_field.is_stub = 1;
1935 }
1936 break;
1937
1938 default:
1939 /* error */
1940 complain (&member_fn_complaint, (*pp)[-1]);
1941 /* Fall through into normal member function. */
1942
1943 case '.':
1944 /* normal member function. */
1945 new_sublist -> fn_field.voffset = 0;
1946 new_sublist -> fn_field.fcontext = 0;
1947 break;
1948 }
1949
1950 new_sublist -> next = sublist;
1951 sublist = new_sublist;
1952 length++;
1953 STABS_CONTINUE (pp);
1954 }
1955 while (**pp != ';' && **pp != '\0');
1956
1957 (*pp)++;
1958
1959 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
1960 obstack_alloc (&objfile -> type_obstack,
1961 sizeof (struct fn_field) * length);
1962 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
1963 sizeof (struct fn_field) * length);
1964 for (i = length; (i--, sublist); sublist = sublist -> next)
1965 {
1966 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
1967 }
1968
1969 new_fnlist -> fn_fieldlist.length = length;
1970 new_fnlist -> next = fip -> fnlist;
1971 fip -> fnlist = new_fnlist;
1972 nfn_fields++;
1973 total_length += length;
1974 STABS_CONTINUE (pp);
1975 }
1976
1977 if (nfn_fields)
1978 {
1979 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1980 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
1981 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
1982 memset (TYPE_FN_FIELDLISTS (type), 0,
1983 sizeof (struct fn_fieldlist) * nfn_fields);
1984 TYPE_NFN_FIELDS (type) = nfn_fields;
1985 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
1986 }
1987
1988 return 1;
1989 }
1990
1991 /* Special GNU C++ name.
1992
1993 Returns 1 for success, 0 for failure. "failure" means that we can't
1994 keep parsing and it's time for error_type(). */
1995
1996 static int
1997 read_cpp_abbrev (fip, pp, type, objfile)
1998 struct field_info *fip;
1999 char **pp;
2000 struct type *type;
2001 struct objfile *objfile;
2002 {
2003 register char *p;
2004 char *name;
2005 char cpp_abbrev;
2006 struct type *context;
2007
2008 p = *pp;
2009 if (*++p == 'v')
2010 {
2011 name = NULL;
2012 cpp_abbrev = *++p;
2013
2014 *pp = p + 1;
2015
2016 /* At this point, *pp points to something like "22:23=*22...",
2017 where the type number before the ':' is the "context" and
2018 everything after is a regular type definition. Lookup the
2019 type, find it's name, and construct the field name. */
2020
2021 context = read_type (pp, objfile);
2022
2023 switch (cpp_abbrev)
2024 {
2025 case 'f': /* $vf -- a virtual function table pointer */
2026 fip->list->field.name =
2027 obconcat (&objfile->type_obstack, vptr_name, "", "");
2028 break;
2029
2030 case 'b': /* $vb -- a virtual bsomethingorother */
2031 name = type_name_no_tag (context);
2032 if (name == NULL)
2033 {
2034 complain (&invalid_cpp_type_complaint, symnum);
2035 name = "FOO";
2036 }
2037 fip->list->field.name =
2038 obconcat (&objfile->type_obstack, vb_name, name, "");
2039 break;
2040
2041 default:
2042 complain (&invalid_cpp_abbrev_complaint, *pp);
2043 fip->list->field.name =
2044 obconcat (&objfile->type_obstack,
2045 "INVALID_CPLUSPLUS_ABBREV", "", "");
2046 break;
2047 }
2048
2049 /* At this point, *pp points to the ':'. Skip it and read the
2050 field type. */
2051
2052 p = ++(*pp);
2053 if (p[-1] != ':')
2054 {
2055 complain (&invalid_cpp_abbrev_complaint, *pp);
2056 return 0;
2057 }
2058 fip->list->field.type = read_type (pp, objfile);
2059 if (**pp == ',')
2060 (*pp)++; /* Skip the comma. */
2061 else
2062 return 0;
2063
2064 {
2065 int nbits;
2066 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2067 if (nbits != 0)
2068 return 0;
2069 }
2070 /* This field is unpacked. */
2071 fip->list->field.bitsize = 0;
2072 fip->list->visibility = VISIBILITY_PRIVATE;
2073 }
2074 else
2075 {
2076 complain (&invalid_cpp_abbrev_complaint, *pp);
2077 /* We have no idea what syntax an unrecognized abbrev would have, so
2078 better return 0. If we returned 1, we would need to at least advance
2079 *pp to avoid an infinite loop. */
2080 return 0;
2081 }
2082 return 1;
2083 }
2084
2085 static void
2086 read_one_struct_field (fip, pp, p, type, objfile)
2087 struct field_info *fip;
2088 char **pp;
2089 char *p;
2090 struct type *type;
2091 struct objfile *objfile;
2092 {
2093 fip -> list -> field.name =
2094 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2095 *pp = p + 1;
2096
2097 /* This means we have a visibility for a field coming. */
2098 if (**pp == '/')
2099 {
2100 (*pp)++;
2101 fip -> list -> visibility = *(*pp)++;
2102 switch (fip -> list -> visibility)
2103 {
2104 case VISIBILITY_PRIVATE:
2105 case VISIBILITY_PROTECTED:
2106 break;
2107
2108 case VISIBILITY_PUBLIC:
2109 /* Nothing to do */
2110 break;
2111
2112 default:
2113 /* Unknown visibility specifier. */
2114 complain (&stabs_general_complaint,
2115 "unknown visibility specifier");
2116 return;
2117 break;
2118 }
2119 }
2120 else
2121 {
2122 /* normal dbx-style format, no explicit visibility */
2123 fip -> list -> visibility = VISIBILITY_PUBLIC;
2124 }
2125
2126 fip -> list -> field.type = read_type (pp, objfile);
2127 if (**pp == ':')
2128 {
2129 p = ++(*pp);
2130 #if 0
2131 /* Possible future hook for nested types. */
2132 if (**pp == '!')
2133 {
2134 fip -> list -> field.bitpos = (long)-2; /* nested type */
2135 p = ++(*pp);
2136 }
2137 else
2138 #endif
2139 {
2140 /* Static class member. */
2141 fip -> list -> field.bitpos = (long) -1;
2142 }
2143 while (*p != ';')
2144 {
2145 p++;
2146 }
2147 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2148 *pp = p + 1;
2149 return;
2150 }
2151 else if (**pp != ',')
2152 {
2153 /* Bad structure-type format. */
2154 complain (&stabs_general_complaint, "bad structure-type format");
2155 return;
2156 }
2157
2158 (*pp)++; /* Skip the comma. */
2159
2160 {
2161 int nbits;
2162 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2163 if (nbits != 0)
2164 {
2165 complain (&stabs_general_complaint, "bad structure-type format");
2166 return;
2167 }
2168 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2169 if (nbits != 0)
2170 {
2171 complain (&stabs_general_complaint, "bad structure-type format");
2172 return;
2173 }
2174 }
2175 #if 0
2176 /* FIXME-tiemann: Can't the compiler put out something which
2177 lets us distinguish these? (or maybe just not put out anything
2178 for the field). What is the story here? What does the compiler
2179 really do? Also, patch gdb.texinfo for this case; I document
2180 it as a possible problem there. Search for "DBX-style". */
2181
2182 /* This is wrong because this is identical to the symbols
2183 produced for GCC 0-size arrays. For example:
2184 typedef union {
2185 int num;
2186 char str[0];
2187 } foo;
2188 The code which dumped core in such circumstances should be
2189 fixed not to dump core. */
2190
2191 /* g++ -g0 can put out bitpos & bitsize zero for a static
2192 field. This does not give us any way of getting its
2193 class, so we can't know its name. But we can just
2194 ignore the field so we don't dump core and other nasty
2195 stuff. */
2196 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2197 {
2198 complain (&dbx_class_complaint);
2199 /* Ignore this field. */
2200 fip -> list = fip -> list -> next;
2201 }
2202 else
2203 #endif /* 0 */
2204 {
2205 /* Detect an unpacked field and mark it as such.
2206 dbx gives a bit size for all fields.
2207 Note that forward refs cannot be packed,
2208 and treat enums as if they had the width of ints. */
2209
2210 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2211 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2212 {
2213 fip -> list -> field.bitsize = 0;
2214 }
2215 if ((fip -> list -> field.bitsize
2216 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2217 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2218 && (fip -> list -> field.bitsize
2219 == TARGET_INT_BIT)
2220 )
2221 )
2222 &&
2223 fip -> list -> field.bitpos % 8 == 0)
2224 {
2225 fip -> list -> field.bitsize = 0;
2226 }
2227 }
2228 }
2229
2230
2231 /* Read struct or class data fields. They have the form:
2232
2233 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2234
2235 At the end, we see a semicolon instead of a field.
2236
2237 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2238 a static field.
2239
2240 The optional VISIBILITY is one of:
2241
2242 '/0' (VISIBILITY_PRIVATE)
2243 '/1' (VISIBILITY_PROTECTED)
2244 '/2' (VISIBILITY_PUBLIC)
2245
2246 or nothing, for C style fields with public visibility.
2247
2248 Returns 1 for success, 0 for failure. */
2249
2250 static int
2251 read_struct_fields (fip, pp, type, objfile)
2252 struct field_info *fip;
2253 char **pp;
2254 struct type *type;
2255 struct objfile *objfile;
2256 {
2257 register char *p;
2258 struct nextfield *new;
2259
2260 /* We better set p right now, in case there are no fields at all... */
2261
2262 p = *pp;
2263
2264 /* Read each data member type until we find the terminating ';' at the end of
2265 the data member list, or break for some other reason such as finding the
2266 start of the member function list. */
2267
2268 while (**pp != ';')
2269 {
2270 STABS_CONTINUE (pp);
2271 /* Get space to record the next field's data. */
2272 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2273 make_cleanup (free, new);
2274 memset (new, 0, sizeof (struct nextfield));
2275 new -> next = fip -> list;
2276 fip -> list = new;
2277
2278 /* Get the field name. */
2279 p = *pp;
2280 /* If is starts with CPLUS_MARKER it is a special abbreviation, unless
2281 the CPLUS_MARKER is followed by an underscore, in which case it is
2282 just the name of an anonymous type, which we should handle like any
2283 other type name. */
2284 if (*p == CPLUS_MARKER && p[1] != '_')
2285 {
2286 if (!read_cpp_abbrev (fip, pp, type, objfile))
2287 return 0;
2288 continue;
2289 }
2290
2291 /* Look for the ':' that separates the field name from the field
2292 values. Data members are delimited by a single ':', while member
2293 functions are delimited by a pair of ':'s. When we hit the member
2294 functions (if any), terminate scan loop and return. */
2295
2296 while (*p != ':' && *p != '\0')
2297 {
2298 p++;
2299 }
2300 if (*p == '\0')
2301 return 0;
2302
2303 /* Check to see if we have hit the member functions yet. */
2304 if (p[1] == ':')
2305 {
2306 break;
2307 }
2308 read_one_struct_field (fip, pp, p, type, objfile);
2309 }
2310 if (p[1] == ':')
2311 {
2312 /* chill the list of fields: the last entry (at the head) is a
2313 partially constructed entry which we now scrub. */
2314 fip -> list = fip -> list -> next;
2315 }
2316 return 1;
2317 }
2318
2319 /* The stabs for C++ derived classes contain baseclass information which
2320 is marked by a '!' character after the total size. This function is
2321 called when we encounter the baseclass marker, and slurps up all the
2322 baseclass information.
2323
2324 Immediately following the '!' marker is the number of base classes that
2325 the class is derived from, followed by information for each base class.
2326 For each base class, there are two visibility specifiers, a bit offset
2327 to the base class information within the derived class, a reference to
2328 the type for the base class, and a terminating semicolon.
2329
2330 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2331 ^^ ^ ^ ^ ^ ^ ^
2332 Baseclass information marker __________________|| | | | | | |
2333 Number of baseclasses __________________________| | | | | | |
2334 Visibility specifiers (2) ________________________| | | | | |
2335 Offset in bits from start of class _________________| | | | |
2336 Type number for base class ___________________________| | | |
2337 Visibility specifiers (2) _______________________________| | |
2338 Offset in bits from start of class ________________________| |
2339 Type number of base class ____________________________________|
2340
2341 Return 1 for success, 0 for (error-type-inducing) failure. */
2342
2343 static int
2344 read_baseclasses (fip, pp, type, objfile)
2345 struct field_info *fip;
2346 char **pp;
2347 struct type *type;
2348 struct objfile *objfile;
2349 {
2350 int i;
2351 struct nextfield *new;
2352
2353 if (**pp != '!')
2354 {
2355 return 1;
2356 }
2357 else
2358 {
2359 /* Skip the '!' baseclass information marker. */
2360 (*pp)++;
2361 }
2362
2363 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2364 {
2365 int nbits;
2366 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2367 if (nbits != 0)
2368 return 0;
2369 }
2370
2371 #if 0
2372 /* Some stupid compilers have trouble with the following, so break
2373 it up into simpler expressions. */
2374 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2375 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2376 #else
2377 {
2378 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2379 char *pointer;
2380
2381 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2382 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2383 }
2384 #endif /* 0 */
2385
2386 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2387
2388 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2389 {
2390 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2391 make_cleanup (free, new);
2392 memset (new, 0, sizeof (struct nextfield));
2393 new -> next = fip -> list;
2394 fip -> list = new;
2395 new -> field.bitsize = 0; /* this should be an unpacked field! */
2396
2397 STABS_CONTINUE (pp);
2398 switch (*(*pp)++)
2399 {
2400 case '0':
2401 /* Nothing to do. */
2402 break;
2403 case '1':
2404 SET_TYPE_FIELD_VIRTUAL (type, i);
2405 break;
2406 default:
2407 /* Bad visibility format. */
2408 return 0;
2409 }
2410
2411 new -> visibility = *(*pp)++;
2412 switch (new -> visibility)
2413 {
2414 case VISIBILITY_PRIVATE:
2415 case VISIBILITY_PROTECTED:
2416 case VISIBILITY_PUBLIC:
2417 break;
2418 default:
2419 /* Bad visibility format. */
2420 return 0;
2421 }
2422
2423 {
2424 int nbits;
2425
2426 /* The remaining value is the bit offset of the portion of the object
2427 corresponding to this baseclass. Always zero in the absence of
2428 multiple inheritance. */
2429
2430 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2431 if (nbits != 0)
2432 return 0;
2433 }
2434
2435 /* The last piece of baseclass information is the type of the
2436 base class. Read it, and remember it's type name as this
2437 field's name. */
2438
2439 new -> field.type = read_type (pp, objfile);
2440 new -> field.name = type_name_no_tag (new -> field.type);
2441
2442 /* skip trailing ';' and bump count of number of fields seen */
2443 if (**pp == ';')
2444 (*pp)++;
2445 else
2446 return 0;
2447 }
2448 return 1;
2449 }
2450
2451 /* The tail end of stabs for C++ classes that contain a virtual function
2452 pointer contains a tilde, a %, and a type number.
2453 The type number refers to the base class (possibly this class itself) which
2454 contains the vtable pointer for the current class.
2455
2456 This function is called when we have parsed all the method declarations,
2457 so we can look for the vptr base class info. */
2458
2459 static int
2460 read_tilde_fields (fip, pp, type, objfile)
2461 struct field_info *fip;
2462 char **pp;
2463 struct type *type;
2464 struct objfile *objfile;
2465 {
2466 register char *p;
2467
2468 STABS_CONTINUE (pp);
2469
2470 /* If we are positioned at a ';', then skip it. */
2471 if (**pp == ';')
2472 {
2473 (*pp)++;
2474 }
2475
2476 if (**pp == '~')
2477 {
2478 (*pp)++;
2479
2480 if (**pp == '=' || **pp == '+' || **pp == '-')
2481 {
2482 /* Obsolete flags that used to indicate the presence
2483 of constructors and/or destructors. */
2484 (*pp)++;
2485 }
2486
2487 /* Read either a '%' or the final ';'. */
2488 if (*(*pp)++ == '%')
2489 {
2490 /* The next number is the type number of the base class
2491 (possibly our own class) which supplies the vtable for
2492 this class. Parse it out, and search that class to find
2493 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2494 and TYPE_VPTR_FIELDNO. */
2495
2496 struct type *t;
2497 int i;
2498
2499 t = read_type (pp, objfile);
2500 p = (*pp)++;
2501 while (*p != '\0' && *p != ';')
2502 {
2503 p++;
2504 }
2505 if (*p == '\0')
2506 {
2507 /* Premature end of symbol. */
2508 return 0;
2509 }
2510
2511 TYPE_VPTR_BASETYPE (type) = t;
2512 if (type == t) /* Our own class provides vtbl ptr */
2513 {
2514 for (i = TYPE_NFIELDS (t) - 1;
2515 i >= TYPE_N_BASECLASSES (t);
2516 --i)
2517 {
2518 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2519 sizeof (vptr_name) - 1))
2520 {
2521 TYPE_VPTR_FIELDNO (type) = i;
2522 goto gotit;
2523 }
2524 }
2525 /* Virtual function table field not found. */
2526 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2527 return 0;
2528 }
2529 else
2530 {
2531 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2532 }
2533
2534 gotit:
2535 *pp = p + 1;
2536 }
2537 }
2538 return 1;
2539 }
2540
2541 static int
2542 attach_fn_fields_to_type (fip, type)
2543 struct field_info *fip;
2544 register struct type *type;
2545 {
2546 register int n;
2547
2548 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2549 {
2550 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2551 {
2552 /* @@ Memory leak on objfile -> type_obstack? */
2553 return 0;
2554 }
2555 TYPE_NFN_FIELDS_TOTAL (type) +=
2556 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2557 }
2558
2559 for (n = TYPE_NFN_FIELDS (type);
2560 fip -> fnlist != NULL;
2561 fip -> fnlist = fip -> fnlist -> next)
2562 {
2563 --n; /* Circumvent Sun3 compiler bug */
2564 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2565 }
2566 return 1;
2567 }
2568
2569 /* Create the vector of fields, and record how big it is.
2570 We need this info to record proper virtual function table information
2571 for this class's virtual functions. */
2572
2573 static int
2574 attach_fields_to_type (fip, type, objfile)
2575 struct field_info *fip;
2576 register struct type *type;
2577 struct objfile *objfile;
2578 {
2579 register int nfields = 0;
2580 register int non_public_fields = 0;
2581 register struct nextfield *scan;
2582
2583 /* Count up the number of fields that we have, as well as taking note of
2584 whether or not there are any non-public fields, which requires us to
2585 allocate and build the private_field_bits and protected_field_bits
2586 bitfields. */
2587
2588 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2589 {
2590 nfields++;
2591 if (scan -> visibility != VISIBILITY_PUBLIC)
2592 {
2593 non_public_fields++;
2594 }
2595 }
2596
2597 /* Now we know how many fields there are, and whether or not there are any
2598 non-public fields. Record the field count, allocate space for the
2599 array of fields, and create blank visibility bitfields if necessary. */
2600
2601 TYPE_NFIELDS (type) = nfields;
2602 TYPE_FIELDS (type) = (struct field *)
2603 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2604 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2605
2606 if (non_public_fields)
2607 {
2608 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2609
2610 TYPE_FIELD_PRIVATE_BITS (type) =
2611 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2612 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2613
2614 TYPE_FIELD_PROTECTED_BITS (type) =
2615 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2616 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2617 }
2618
2619 /* Copy the saved-up fields into the field vector. Start from the head
2620 of the list, adding to the tail of the field array, so that they end
2621 up in the same order in the array in which they were added to the list. */
2622
2623 while (nfields-- > 0)
2624 {
2625 TYPE_FIELD (type, nfields) = fip -> list -> field;
2626 switch (fip -> list -> visibility)
2627 {
2628 case VISIBILITY_PRIVATE:
2629 SET_TYPE_FIELD_PRIVATE (type, nfields);
2630 break;
2631
2632 case VISIBILITY_PROTECTED:
2633 SET_TYPE_FIELD_PROTECTED (type, nfields);
2634 break;
2635
2636 case VISIBILITY_PUBLIC:
2637 break;
2638
2639 default:
2640 /* Should warn about this unknown visibility? */
2641 break;
2642 }
2643 fip -> list = fip -> list -> next;
2644 }
2645 return 1;
2646 }
2647
2648 /* Read the description of a structure (or union type) and return an object
2649 describing the type.
2650
2651 PP points to a character pointer that points to the next unconsumed token
2652 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2653 *PP will point to "4a:1,0,32;;".
2654
2655 TYPE points to an incomplete type that needs to be filled in.
2656
2657 OBJFILE points to the current objfile from which the stabs information is
2658 being read. (Note that it is redundant in that TYPE also contains a pointer
2659 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2660 */
2661
2662 static struct type *
2663 read_struct_type (pp, type, objfile)
2664 char **pp;
2665 struct type *type;
2666 struct objfile *objfile;
2667 {
2668 struct cleanup *back_to;
2669 struct field_info fi;
2670
2671 fi.list = NULL;
2672 fi.fnlist = NULL;
2673
2674 back_to = make_cleanup (null_cleanup, 0);
2675
2676 INIT_CPLUS_SPECIFIC (type);
2677 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2678
2679 /* First comes the total size in bytes. */
2680
2681 {
2682 int nbits;
2683 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2684 if (nbits != 0)
2685 return error_type (pp);
2686 }
2687
2688 /* Now read the baseclasses, if any, read the regular C struct or C++
2689 class member fields, attach the fields to the type, read the C++
2690 member functions, attach them to the type, and then read any tilde
2691 field (baseclass specifier for the class holding the main vtable). */
2692
2693 if (!read_baseclasses (&fi, pp, type, objfile)
2694 || !read_struct_fields (&fi, pp, type, objfile)
2695 || !attach_fields_to_type (&fi, type, objfile)
2696 || !read_member_functions (&fi, pp, type, objfile)
2697 || !attach_fn_fields_to_type (&fi, type)
2698 || !read_tilde_fields (&fi, pp, type, objfile))
2699 {
2700 do_cleanups (back_to);
2701 return (error_type (pp));
2702 }
2703
2704 do_cleanups (back_to);
2705 return (type);
2706 }
2707
2708 /* Read a definition of an array type,
2709 and create and return a suitable type object.
2710 Also creates a range type which represents the bounds of that
2711 array. */
2712
2713 static struct type *
2714 read_array_type (pp, type, objfile)
2715 register char **pp;
2716 register struct type *type;
2717 struct objfile *objfile;
2718 {
2719 struct type *index_type, *element_type, *range_type;
2720 int lower, upper;
2721 int adjustable = 0;
2722 int nbits;
2723
2724 /* Format of an array type:
2725 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2726 to handle this.
2727
2728 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2729 for these, produce a type like float[][]. */
2730
2731 index_type = read_type (pp, objfile);
2732 if (**pp != ';')
2733 /* Improper format of array type decl. */
2734 return error_type (pp);
2735 ++*pp;
2736
2737 if (!(**pp >= '0' && **pp <= '9'))
2738 {
2739 (*pp)++;
2740 adjustable = 1;
2741 }
2742 lower = read_huge_number (pp, ';', &nbits);
2743 if (nbits != 0)
2744 return error_type (pp);
2745
2746 if (!(**pp >= '0' && **pp <= '9'))
2747 {
2748 (*pp)++;
2749 adjustable = 1;
2750 }
2751 upper = read_huge_number (pp, ';', &nbits);
2752 if (nbits != 0)
2753 return error_type (pp);
2754
2755 element_type = read_type (pp, objfile);
2756
2757 if (adjustable)
2758 {
2759 lower = 0;
2760 upper = -1;
2761 }
2762
2763 range_type =
2764 create_range_type ((struct type *) NULL, index_type, lower, upper);
2765 type = create_array_type (type, element_type, range_type);
2766
2767 /* If we have an array whose element type is not yet known, but whose
2768 bounds *are* known, record it to be adjusted at the end of the file. */
2769
2770 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2771 {
2772 add_undefined_type (type);
2773 }
2774
2775 return type;
2776 }
2777
2778
2779 /* Read a definition of an enumeration type,
2780 and create and return a suitable type object.
2781 Also defines the symbols that represent the values of the type. */
2782
2783 static struct type *
2784 read_enum_type (pp, type, objfile)
2785 register char **pp;
2786 register struct type *type;
2787 struct objfile *objfile;
2788 {
2789 register char *p;
2790 char *name;
2791 register long n;
2792 register struct symbol *sym;
2793 int nsyms = 0;
2794 struct pending **symlist;
2795 struct pending *osyms, *syms;
2796 int o_nsyms;
2797
2798 #if 0
2799 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2800 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2801 to do? For now, force all enum values to file scope. */
2802 if (within_function)
2803 symlist = &local_symbols;
2804 else
2805 #endif
2806 symlist = &file_symbols;
2807 osyms = *symlist;
2808 o_nsyms = osyms ? osyms->nsyms : 0;
2809
2810 /* Read the value-names and their values.
2811 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2812 A semicolon or comma instead of a NAME means the end. */
2813 while (**pp && **pp != ';' && **pp != ',')
2814 {
2815 int nbits;
2816 STABS_CONTINUE (pp);
2817 p = *pp;
2818 while (*p != ':') p++;
2819 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2820 *pp = p + 1;
2821 n = read_huge_number (pp, ',', &nbits);
2822 if (nbits != 0)
2823 return error_type (pp);
2824
2825 sym = (struct symbol *)
2826 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2827 memset (sym, 0, sizeof (struct symbol));
2828 SYMBOL_NAME (sym) = name;
2829 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2830 SYMBOL_CLASS (sym) = LOC_CONST;
2831 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2832 SYMBOL_VALUE (sym) = n;
2833 add_symbol_to_list (sym, symlist);
2834 nsyms++;
2835 }
2836
2837 if (**pp == ';')
2838 (*pp)++; /* Skip the semicolon. */
2839
2840 /* Now fill in the fields of the type-structure. */
2841
2842 TYPE_LENGTH (type) = sizeof (int);
2843 TYPE_CODE (type) = TYPE_CODE_ENUM;
2844 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2845 TYPE_NFIELDS (type) = nsyms;
2846 TYPE_FIELDS (type) = (struct field *)
2847 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2848 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2849
2850 /* Find the symbols for the values and put them into the type.
2851 The symbols can be found in the symlist that we put them on
2852 to cause them to be defined. osyms contains the old value
2853 of that symlist; everything up to there was defined by us. */
2854 /* Note that we preserve the order of the enum constants, so
2855 that in something like "enum {FOO, LAST_THING=FOO}" we print
2856 FOO, not LAST_THING. */
2857
2858 for (syms = *symlist, n = 0; syms; syms = syms->next)
2859 {
2860 int j = 0;
2861 if (syms == osyms)
2862 j = o_nsyms;
2863 for (; j < syms->nsyms; j++,n++)
2864 {
2865 struct symbol *xsym = syms->symbol[j];
2866 SYMBOL_TYPE (xsym) = type;
2867 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2868 TYPE_FIELD_VALUE (type, n) = 0;
2869 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2870 TYPE_FIELD_BITSIZE (type, n) = 0;
2871 }
2872 if (syms == osyms)
2873 break;
2874 }
2875
2876 #if 0
2877 /* This screws up perfectly good C programs with enums. FIXME. */
2878 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2879 if(TYPE_NFIELDS(type) == 2 &&
2880 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2881 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2882 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2883 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2884 TYPE_CODE(type) = TYPE_CODE_BOOL;
2885 #endif
2886
2887 return type;
2888 }
2889
2890 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2891 typedefs in every file (for int, long, etc):
2892
2893 type = b <signed> <width>; <offset>; <nbits>
2894 signed = u or s. Possible c in addition to u or s (for char?).
2895 offset = offset from high order bit to start bit of type.
2896 width is # bytes in object of this type, nbits is # bits in type.
2897
2898 The width/offset stuff appears to be for small objects stored in
2899 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2900 FIXME. */
2901
2902 static struct type *
2903 read_sun_builtin_type (pp, typenums, objfile)
2904 char **pp;
2905 int typenums[2];
2906 struct objfile *objfile;
2907 {
2908 int type_bits;
2909 int nbits;
2910 int signed_type;
2911
2912 switch (**pp)
2913 {
2914 case 's':
2915 signed_type = 1;
2916 break;
2917 case 'u':
2918 signed_type = 0;
2919 break;
2920 default:
2921 return error_type (pp);
2922 }
2923 (*pp)++;
2924
2925 /* For some odd reason, all forms of char put a c here. This is strange
2926 because no other type has this honor. We can safely ignore this because
2927 we actually determine 'char'acterness by the number of bits specified in
2928 the descriptor. */
2929
2930 if (**pp == 'c')
2931 (*pp)++;
2932
2933 /* The first number appears to be the number of bytes occupied
2934 by this type, except that unsigned short is 4 instead of 2.
2935 Since this information is redundant with the third number,
2936 we will ignore it. */
2937 read_huge_number (pp, ';', &nbits);
2938 if (nbits != 0)
2939 return error_type (pp);
2940
2941 /* The second number is always 0, so ignore it too. */
2942 read_huge_number (pp, ';', &nbits);
2943 if (nbits != 0)
2944 return error_type (pp);
2945
2946 /* The third number is the number of bits for this type. */
2947 type_bits = read_huge_number (pp, 0, &nbits);
2948 if (nbits != 0)
2949 return error_type (pp);
2950
2951 #if 0
2952 /* FIXME. Here we should just be able to make a type of the right
2953 number of bits and signedness. FIXME. */
2954
2955 if (type_bits == TARGET_LONG_LONG_BIT)
2956 return (lookup_fundamental_type (objfile,
2957 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
2958
2959 if (type_bits == TARGET_INT_BIT)
2960 {
2961 /* FIXME -- the only way to distinguish `int' from `long'
2962 is to look at its name! */
2963 if (signed_type)
2964 {
2965 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
2966 return lookup_fundamental_type (objfile, FT_LONG);
2967 else
2968 return lookup_fundamental_type (objfile, FT_INTEGER);
2969 }
2970 else
2971 {
2972 if (long_kludge_name
2973 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2974 long_kludge_name[9] == 'l' /* long */)
2975 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2976 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
2977 else
2978 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
2979 }
2980 }
2981
2982 if (type_bits == TARGET_SHORT_BIT)
2983 return (lookup_fundamental_type (objfile,
2984 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
2985
2986 if (type_bits == TARGET_CHAR_BIT)
2987 return (lookup_fundamental_type (objfile,
2988 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
2989
2990 if (type_bits == 0)
2991 return lookup_fundamental_type (objfile, FT_VOID);
2992
2993 return error_type (pp);
2994 #else
2995 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
2996 type_bits / TARGET_CHAR_BIT,
2997 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
2998 objfile);
2999 #endif
3000 }
3001
3002 static struct type *
3003 read_sun_floating_type (pp, typenums, objfile)
3004 char **pp;
3005 int typenums[2];
3006 struct objfile *objfile;
3007 {
3008 int nbits;
3009 int details;
3010 int nbytes;
3011
3012 /* The first number has more details about the type, for example
3013 FN_COMPLEX. */
3014 details = read_huge_number (pp, ';', &nbits);
3015 if (nbits != 0)
3016 return error_type (pp);
3017
3018 /* The second number is the number of bytes occupied by this type */
3019 nbytes = read_huge_number (pp, ';', &nbits);
3020 if (nbits != 0)
3021 return error_type (pp);
3022
3023 if (details == NF_COMPLEX || details == NF_COMPLEX16
3024 || details == NF_COMPLEX32)
3025 /* This is a type we can't handle, but we do know the size.
3026 We also will be able to give it a name. */
3027 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3028
3029 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3030 }
3031
3032 /* Read a number from the string pointed to by *PP.
3033 The value of *PP is advanced over the number.
3034 If END is nonzero, the character that ends the
3035 number must match END, or an error happens;
3036 and that character is skipped if it does match.
3037 If END is zero, *PP is left pointing to that character.
3038
3039 If the number fits in a long, set *BITS to 0 and return the value.
3040 If not, set *BITS to be the number of bits in the number and return 0.
3041
3042 If encounter garbage, set *BITS to -1 and return 0. */
3043
3044 static long
3045 read_huge_number (pp, end, bits)
3046 char **pp;
3047 int end;
3048 int *bits;
3049 {
3050 char *p = *pp;
3051 int sign = 1;
3052 long n = 0;
3053 int radix = 10;
3054 char overflow = 0;
3055 int nbits = 0;
3056 int c;
3057 long upper_limit;
3058
3059 if (*p == '-')
3060 {
3061 sign = -1;
3062 p++;
3063 }
3064
3065 /* Leading zero means octal. GCC uses this to output values larger
3066 than an int (because that would be hard in decimal). */
3067 if (*p == '0')
3068 {
3069 radix = 8;
3070 p++;
3071 }
3072
3073 upper_limit = LONG_MAX / radix;
3074 while ((c = *p++) >= '0' && c < ('0' + radix))
3075 {
3076 if (n <= upper_limit)
3077 {
3078 n *= radix;
3079 n += c - '0'; /* FIXME this overflows anyway */
3080 }
3081 else
3082 overflow = 1;
3083
3084 /* This depends on large values being output in octal, which is
3085 what GCC does. */
3086 if (radix == 8)
3087 {
3088 if (nbits == 0)
3089 {
3090 if (c == '0')
3091 /* Ignore leading zeroes. */
3092 ;
3093 else if (c == '1')
3094 nbits = 1;
3095 else if (c == '2' || c == '3')
3096 nbits = 2;
3097 else
3098 nbits = 3;
3099 }
3100 else
3101 nbits += 3;
3102 }
3103 }
3104 if (end)
3105 {
3106 if (c && c != end)
3107 {
3108 if (bits != NULL)
3109 *bits = -1;
3110 return 0;
3111 }
3112 }
3113 else
3114 --p;
3115
3116 *pp = p;
3117 if (overflow)
3118 {
3119 if (nbits == 0)
3120 {
3121 /* Large decimal constants are an error (because it is hard to
3122 count how many bits are in them). */
3123 if (bits != NULL)
3124 *bits = -1;
3125 return 0;
3126 }
3127
3128 /* -0x7f is the same as 0x80. So deal with it by adding one to
3129 the number of bits. */
3130 if (sign == -1)
3131 ++nbits;
3132 if (bits)
3133 *bits = nbits;
3134 }
3135 else
3136 {
3137 if (bits)
3138 *bits = 0;
3139 return n * sign;
3140 }
3141 /* It's *BITS which has the interesting information. */
3142 return 0;
3143 }
3144
3145 static struct type *
3146 read_range_type (pp, typenums, objfile)
3147 char **pp;
3148 int typenums[2];
3149 struct objfile *objfile;
3150 {
3151 int rangenums[2];
3152 long n2, n3;
3153 int n2bits, n3bits;
3154 int self_subrange;
3155 struct type *result_type;
3156 struct type *index_type;
3157
3158 /* First comes a type we are a subrange of.
3159 In C it is usually 0, 1 or the type being defined. */
3160 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3161 not just a type number. */
3162 if (read_type_number (pp, rangenums) != 0)
3163 return error_type (pp);
3164 self_subrange = (rangenums[0] == typenums[0] &&
3165 rangenums[1] == typenums[1]);
3166
3167 /* A semicolon should now follow; skip it. */
3168 if (**pp == ';')
3169 (*pp)++;
3170
3171 /* The remaining two operands are usually lower and upper bounds
3172 of the range. But in some special cases they mean something else. */
3173 n2 = read_huge_number (pp, ';', &n2bits);
3174 n3 = read_huge_number (pp, ';', &n3bits);
3175
3176 if (n2bits == -1 || n3bits == -1)
3177 return error_type (pp);
3178
3179 /* If limits are huge, must be large integral type. */
3180 if (n2bits != 0 || n3bits != 0)
3181 {
3182 char got_signed = 0;
3183 char got_unsigned = 0;
3184 /* Number of bits in the type. */
3185 int nbits;
3186
3187 /* Range from 0 to <large number> is an unsigned large integral type. */
3188 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3189 {
3190 got_unsigned = 1;
3191 nbits = n3bits;
3192 }
3193 /* Range from <large number> to <large number>-1 is a large signed
3194 integral type. */
3195 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3196 {
3197 got_signed = 1;
3198 nbits = n2bits;
3199 }
3200
3201 if (got_signed || got_unsigned)
3202 {
3203 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3204 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3205 objfile);
3206 }
3207 else
3208 return error_type (pp);
3209 }
3210
3211 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3212 if (self_subrange && n2 == 0 && n3 == 0)
3213 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3214
3215 /* If n3 is zero and n2 is not, we want a floating type,
3216 and n2 is the width in bytes.
3217
3218 Fortran programs appear to use this for complex types also,
3219 and they give no way to distinguish between double and single-complex!
3220
3221 GDB does not have complex types.
3222
3223 Just return the complex as a float of that size. It won't work right
3224 for the complex values, but at least it makes the file loadable.
3225
3226 FIXME, we may be able to distinguish these by their names. FIXME. */
3227
3228 if (n3 == 0 && n2 > 0)
3229 {
3230 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3231 }
3232
3233 /* If the upper bound is -1, it must really be an unsigned int. */
3234
3235 else if (n2 == 0 && n3 == -1)
3236 {
3237 /* It is unsigned int or unsigned long. */
3238 /* GCC sometimes uses this for long long too. We could
3239 distinguish it by the name, but we don't. */
3240 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3241 TYPE_FLAG_UNSIGNED, NULL, objfile);
3242 }
3243
3244 /* Special case: char is defined (Who knows why) as a subrange of
3245 itself with range 0-127. */
3246 else if (self_subrange && n2 == 0 && n3 == 127)
3247 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3248
3249 /* We used to do this only for subrange of self or subrange of int. */
3250 else if (n2 == 0)
3251 {
3252 if (n3 < 0)
3253 /* n3 actually gives the size. */
3254 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3255 NULL, objfile);
3256 if (n3 == 0xff)
3257 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3258 if (n3 == 0xffff)
3259 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3260
3261 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3262 "unsigned long", and we already checked for that,
3263 so don't need to test for it here. */
3264 }
3265 /* I think this is for Convex "long long". Since I don't know whether
3266 Convex sets self_subrange, I also accept that particular size regardless
3267 of self_subrange. */
3268 else if (n3 == 0 && n2 < 0
3269 && (self_subrange
3270 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3271 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3272 else if (n2 == -n3 -1)
3273 {
3274 if (n3 == 0x7f)
3275 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3276 if (n3 == 0x7fff)
3277 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3278 if (n3 == 0x7fffffff)
3279 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3280 }
3281
3282 /* We have a real range type on our hands. Allocate space and
3283 return a real pointer. */
3284
3285 /* At this point I don't have the faintest idea how to deal with
3286 a self_subrange type; I'm going to assume that this is used
3287 as an idiom, and that all of them are special cases. So . . . */
3288 if (self_subrange)
3289 return error_type (pp);
3290
3291 index_type = *dbx_lookup_type (rangenums);
3292 if (index_type == NULL)
3293 {
3294 /* Does this actually ever happen? Is that why we are worrying
3295 about dealing with it rather than just calling error_type? */
3296
3297 static struct type *range_type_index;
3298
3299 complain (&range_type_base_complaint, rangenums[1]);
3300 if (range_type_index == NULL)
3301 range_type_index =
3302 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3303 0, "range type index type", NULL);
3304 index_type = range_type_index;
3305 }
3306
3307 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3308 return (result_type);
3309 }
3310
3311 /* Read in an argument list. This is a list of types, separated by commas
3312 and terminated with END. Return the list of types read in, or (struct type
3313 **)-1 if there is an error. */
3314
3315 static struct type **
3316 read_args (pp, end, objfile)
3317 char **pp;
3318 int end;
3319 struct objfile *objfile;
3320 {
3321 /* FIXME! Remove this arbitrary limit! */
3322 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3323 int n = 0;
3324
3325 while (**pp != end)
3326 {
3327 if (**pp != ',')
3328 /* Invalid argument list: no ','. */
3329 return (struct type **)-1;
3330 (*pp)++;
3331 STABS_CONTINUE (pp);
3332 types[n++] = read_type (pp, objfile);
3333 }
3334 (*pp)++; /* get past `end' (the ':' character) */
3335
3336 if (n == 1)
3337 {
3338 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3339 }
3340 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3341 {
3342 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3343 memset (rval + n, 0, sizeof (struct type *));
3344 }
3345 else
3346 {
3347 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3348 }
3349 memcpy (rval, types, n * sizeof (struct type *));
3350 return rval;
3351 }
3352
3353 /* Add a common block's start address to the offset of each symbol
3354 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3355 the common block name). */
3356
3357 static void
3358 fix_common_block (sym, valu)
3359 struct symbol *sym;
3360 int valu;
3361 {
3362 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3363 for ( ; next; next = next->next)
3364 {
3365 register int j;
3366 for (j = next->nsyms - 1; j >= 0; j--)
3367 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3368 }
3369 }
3370
3371
3372 \f
3373 /* What about types defined as forward references inside of a small lexical
3374 scope? */
3375 /* Add a type to the list of undefined types to be checked through
3376 once this file has been read in. */
3377
3378 void
3379 add_undefined_type (type)
3380 struct type *type;
3381 {
3382 if (undef_types_length == undef_types_allocated)
3383 {
3384 undef_types_allocated *= 2;
3385 undef_types = (struct type **)
3386 xrealloc ((char *) undef_types,
3387 undef_types_allocated * sizeof (struct type *));
3388 }
3389 undef_types[undef_types_length++] = type;
3390 }
3391
3392 /* Go through each undefined type, see if it's still undefined, and fix it
3393 up if possible. We have two kinds of undefined types:
3394
3395 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3396 Fix: update array length using the element bounds
3397 and the target type's length.
3398 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3399 yet defined at the time a pointer to it was made.
3400 Fix: Do a full lookup on the struct/union tag. */
3401 void
3402 cleanup_undefined_types ()
3403 {
3404 struct type **type;
3405
3406 for (type = undef_types; type < undef_types + undef_types_length; type++)
3407 {
3408 switch (TYPE_CODE (*type))
3409 {
3410
3411 case TYPE_CODE_STRUCT:
3412 case TYPE_CODE_UNION:
3413 case TYPE_CODE_ENUM:
3414 {
3415 /* Check if it has been defined since. */
3416 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3417 {
3418 struct pending *ppt;
3419 int i;
3420 /* Name of the type, without "struct" or "union" */
3421 char *typename = TYPE_TAG_NAME (*type);
3422
3423 if (typename == NULL)
3424 {
3425 static struct complaint msg = {"need a type name", 0, 0};
3426 complain (&msg);
3427 break;
3428 }
3429 for (ppt = file_symbols; ppt; ppt = ppt->next)
3430 {
3431 for (i = 0; i < ppt->nsyms; i++)
3432 {
3433 struct symbol *sym = ppt->symbol[i];
3434
3435 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3436 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3437 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3438 TYPE_CODE (*type))
3439 && STREQ (SYMBOL_NAME (sym), typename))
3440 {
3441 memcpy (*type, SYMBOL_TYPE (sym),
3442 sizeof (struct type));
3443 }
3444 }
3445 }
3446 }
3447 }
3448 break;
3449
3450 case TYPE_CODE_ARRAY:
3451 {
3452 struct type *range_type;
3453 int lower, upper;
3454
3455 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3456 goto badtype;
3457 if (TYPE_NFIELDS (*type) != 1)
3458 goto badtype;
3459 range_type = TYPE_FIELD_TYPE (*type, 0);
3460 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3461 goto badtype;
3462
3463 /* Now recompute the length of the array type, based on its
3464 number of elements and the target type's length. */
3465 lower = TYPE_FIELD_BITPOS (range_type, 0);
3466 upper = TYPE_FIELD_BITPOS (range_type, 1);
3467 TYPE_LENGTH (*type) = (upper - lower + 1)
3468 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3469 }
3470 break;
3471
3472 default:
3473 badtype:
3474 {
3475 static struct complaint msg = {"\
3476 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3477 complain (&msg, TYPE_CODE (*type));
3478 }
3479 break;
3480 }
3481 }
3482 undef_types_length = 0;
3483 }
3484
3485 /* Scan through all of the global symbols defined in the object file,
3486 assigning values to the debugging symbols that need to be assigned
3487 to. Get these symbols from the minimal symbol table. */
3488
3489 void
3490 scan_file_globals (objfile)
3491 struct objfile *objfile;
3492 {
3493 int hash;
3494 struct minimal_symbol *msymbol;
3495 struct symbol *sym, *prev;
3496
3497 if (objfile->msymbols == 0) /* Beware the null file. */
3498 return;
3499
3500 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3501 {
3502 QUIT;
3503
3504 prev = NULL;
3505
3506 /* Get the hash index and check all the symbols
3507 under that hash index. */
3508
3509 hash = hashname (SYMBOL_NAME (msymbol));
3510
3511 for (sym = global_sym_chain[hash]; sym;)
3512 {
3513 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3514 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3515 {
3516 /* Splice this symbol out of the hash chain and
3517 assign the value we have to it. */
3518 if (prev)
3519 {
3520 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3521 }
3522 else
3523 {
3524 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3525 }
3526
3527 /* Check to see whether we need to fix up a common block. */
3528 /* Note: this code might be executed several times for
3529 the same symbol if there are multiple references. */
3530
3531 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3532 {
3533 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3534 }
3535 else
3536 {
3537 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3538 }
3539
3540 if (prev)
3541 {
3542 sym = SYMBOL_VALUE_CHAIN (prev);
3543 }
3544 else
3545 {
3546 sym = global_sym_chain[hash];
3547 }
3548 }
3549 else
3550 {
3551 prev = sym;
3552 sym = SYMBOL_VALUE_CHAIN (sym);
3553 }
3554 }
3555 }
3556 }
3557
3558 /* Initialize anything that needs initializing when starting to read
3559 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3560 to a psymtab. */
3561
3562 void
3563 stabsread_init ()
3564 {
3565 }
3566
3567 /* Initialize anything that needs initializing when a completely new
3568 symbol file is specified (not just adding some symbols from another
3569 file, e.g. a shared library). */
3570
3571 void
3572 stabsread_new_init ()
3573 {
3574 /* Empty the hash table of global syms looking for values. */
3575 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3576 }
3577
3578 /* Initialize anything that needs initializing at the same time as
3579 start_symtab() is called. */
3580
3581 void start_stabs ()
3582 {
3583 global_stabs = NULL; /* AIX COFF */
3584 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3585 n_this_object_header_files = 1;
3586 type_vector_length = 0;
3587 type_vector = (struct type **) 0;
3588 }
3589
3590 /* Call after end_symtab() */
3591
3592 void end_stabs ()
3593 {
3594 if (type_vector)
3595 {
3596 free ((char *) type_vector);
3597 }
3598 type_vector = 0;
3599 type_vector_length = 0;
3600 previous_stab_code = 0;
3601 }
3602
3603 void
3604 finish_global_stabs (objfile)
3605 struct objfile *objfile;
3606 {
3607 if (global_stabs)
3608 {
3609 patch_block_stabs (global_symbols, global_stabs, objfile);
3610 free ((PTR) global_stabs);
3611 global_stabs = NULL;
3612 }
3613 }
3614
3615 /* Initializer for this module */
3616
3617 void
3618 _initialize_stabsread ()
3619 {
3620 undef_types_allocated = 20;
3621 undef_types_length = 0;
3622 undef_types = (struct type **)
3623 xmalloc (undef_types_allocated * sizeof (struct type *));
3624 }
This page took 0.117267 seconds and 5 git commands to generate.