* top.c (line_completion_function): Renamed from
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include <string.h>
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42
43 #include <ctype.h>
44
45 /* Ask stabsread.h to define the vars it normally declares `extern'. */
46 #define EXTERN /**/
47 #include "stabsread.h" /* Our own declarations */
48 #undef EXTERN
49
50 /* The routines that read and process a complete stabs for a C struct or
51 C++ class pass lists of data member fields and lists of member function
52 fields in an instance of a field_info structure, as defined below.
53 This is part of some reorganization of low level C++ support and is
54 expected to eventually go away... (FIXME) */
55
56 struct field_info
57 {
58 struct nextfield
59 {
60 struct nextfield *next;
61
62 /* This is the raw visibility from the stab. It is not checked
63 for being one of the visibilities we recognize, so code which
64 examines this field better be able to deal. */
65 int visibility;
66
67 struct field field;
68 } *list;
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 } *fnlist;
74 };
75
76 static struct type *
77 dbx_alloc_type PARAMS ((int [2], struct objfile *));
78
79 static long read_huge_number PARAMS ((char **, int, int *));
80
81 static struct type *error_type PARAMS ((char **));
82
83 static void
84 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
85 struct objfile *));
86
87 static void
88 fix_common_block PARAMS ((struct symbol *, int));
89
90 static int
91 read_type_number PARAMS ((char **, int *));
92
93 static struct type *
94 read_range_type PARAMS ((char **, int [2], struct objfile *));
95
96 static struct type *
97 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
98
99 static struct type *
100 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
101
102 static struct type *
103 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
104
105 static struct type *
106 rs6000_builtin_type PARAMS ((int));
107
108 static int
109 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
122 struct objfile *));
123
124 static int
125 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
126
127 static int
128 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
129 struct objfile *));
130
131 static struct type *
132 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
133
134 static struct type *
135 read_array_type PARAMS ((char **, struct type *, struct objfile *));
136
137 static struct type **
138 read_args PARAMS ((char **, int, struct objfile *));
139
140 static int
141 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
142 struct objfile *));
143
144 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
145 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
146
147 /* Define this as 1 if a pcc declaration of a char or short argument
148 gives the correct address. Otherwise assume pcc gives the
149 address of the corresponding int, which is not the same on a
150 big-endian machine. */
151
152 #ifndef BELIEVE_PCC_PROMOTION
153 #define BELIEVE_PCC_PROMOTION 0
154 #endif
155
156 struct complaint invalid_cpp_abbrev_complaint =
157 {"invalid C++ abbreviation `%s'", 0, 0};
158
159 struct complaint invalid_cpp_type_complaint =
160 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
161
162 struct complaint member_fn_complaint =
163 {"member function type missing, got '%c'", 0, 0};
164
165 struct complaint const_vol_complaint =
166 {"const/volatile indicator missing, got '%c'", 0, 0};
167
168 struct complaint error_type_complaint =
169 {"debug info mismatch between compiler and debugger", 0, 0};
170
171 struct complaint invalid_member_complaint =
172 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
173
174 struct complaint range_type_base_complaint =
175 {"base type %d of range type is not defined", 0, 0};
176
177 struct complaint reg_value_complaint =
178 {"register number too large in symbol %s", 0, 0};
179
180 struct complaint vtbl_notfound_complaint =
181 {"virtual function table pointer not found when defining class `%s'", 0, 0};
182
183 struct complaint unrecognized_cplus_name_complaint =
184 {"Unknown C++ symbol name `%s'", 0, 0};
185
186 struct complaint rs6000_builtin_complaint =
187 {"Unknown builtin type %d", 0, 0};
188
189 struct complaint stabs_general_complaint =
190 {"%s", 0, 0};
191
192 /* Make a list of forward references which haven't been defined. */
193
194 static struct type **undef_types;
195 static int undef_types_allocated;
196 static int undef_types_length;
197
198 /* Check for and handle cretinous stabs symbol name continuation! */
199 #define STABS_CONTINUE(pp) \
200 do { \
201 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
202 *(pp) = next_symbol_text (); \
203 } while (0)
204 \f
205 /* FIXME: These probably should be our own types (like rs6000_builtin_type
206 has its own types) rather than builtin_type_*. */
207 static struct type **os9k_type_vector[] = {
208 0,
209 &builtin_type_int,
210 &builtin_type_char,
211 &builtin_type_long,
212 &builtin_type_short,
213 &builtin_type_unsigned_char,
214 &builtin_type_unsigned_short,
215 &builtin_type_unsigned_long,
216 &builtin_type_unsigned_int,
217 &builtin_type_float,
218 &builtin_type_double,
219 &builtin_type_void,
220 &builtin_type_long_double
221 };
222
223 static void os9k_init_type_vector PARAMS ((struct type **));
224
225 static void
226 os9k_init_type_vector(tv)
227 struct type **tv;
228 {
229 int i;
230 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
231 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
232 }
233
234 /* Look up a dbx type-number pair. Return the address of the slot
235 where the type for that number-pair is stored.
236 The number-pair is in TYPENUMS.
237
238 This can be used for finding the type associated with that pair
239 or for associating a new type with the pair. */
240
241 struct type **
242 dbx_lookup_type (typenums)
243 int typenums[2];
244 {
245 register int filenum = typenums[0];
246 register int index = typenums[1];
247 unsigned old_len;
248 register int real_filenum;
249 register struct header_file *f;
250 int f_orig_length;
251
252 if (filenum == -1) /* -1,-1 is for temporary types. */
253 return 0;
254
255 if (filenum < 0 || filenum >= n_this_object_header_files)
256 {
257 static struct complaint msg = {"\
258 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
259 0, 0};
260 complain (&msg, filenum, index, symnum);
261 goto error_return;
262 }
263
264 if (filenum == 0)
265 {
266 if (index < 0)
267 {
268 /* Caller wants address of address of type. We think
269 that negative (rs6k builtin) types will never appear as
270 "lvalues", (nor should they), so we stuff the real type
271 pointer into a temp, and return its address. If referenced,
272 this will do the right thing. */
273 static struct type *temp_type;
274
275 temp_type = rs6000_builtin_type(index);
276 return &temp_type;
277 }
278
279 /* Type is defined outside of header files.
280 Find it in this object file's type vector. */
281 if (index >= type_vector_length)
282 {
283 old_len = type_vector_length;
284 if (old_len == 0)
285 {
286 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
287 type_vector = (struct type **)
288 malloc (type_vector_length * sizeof (struct type *));
289 }
290 while (index >= type_vector_length)
291 {
292 type_vector_length *= 2;
293 }
294 type_vector = (struct type **)
295 xrealloc ((char *) type_vector,
296 (type_vector_length * sizeof (struct type *)));
297 memset (&type_vector[old_len], 0,
298 (type_vector_length - old_len) * sizeof (struct type *));
299
300 if (os9k_stabs)
301 /* Deal with OS9000 fundamental types. */
302 os9k_init_type_vector (type_vector);
303 }
304 return (&type_vector[index]);
305 }
306 else
307 {
308 real_filenum = this_object_header_files[filenum];
309
310 if (real_filenum >= n_header_files)
311 {
312 struct type *temp_type;
313 struct type **temp_type_p;
314
315 warning ("GDB internal error: bad real_filenum");
316
317 error_return:
318 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
319 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
320 *temp_type_p = temp_type;
321 return temp_type_p;
322 }
323
324 f = &header_files[real_filenum];
325
326 f_orig_length = f->length;
327 if (index >= f_orig_length)
328 {
329 while (index >= f->length)
330 {
331 f->length *= 2;
332 }
333 f->vector = (struct type **)
334 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
335 memset (&f->vector[f_orig_length], 0,
336 (f->length - f_orig_length) * sizeof (struct type *));
337 }
338 return (&f->vector[index]);
339 }
340 }
341
342 /* Make sure there is a type allocated for type numbers TYPENUMS
343 and return the type object.
344 This can create an empty (zeroed) type object.
345 TYPENUMS may be (-1, -1) to return a new type object that is not
346 put into the type vector, and so may not be referred to by number. */
347
348 static struct type *
349 dbx_alloc_type (typenums, objfile)
350 int typenums[2];
351 struct objfile *objfile;
352 {
353 register struct type **type_addr;
354
355 if (typenums[0] == -1)
356 {
357 return (alloc_type (objfile));
358 }
359
360 type_addr = dbx_lookup_type (typenums);
361
362 /* If we are referring to a type not known at all yet,
363 allocate an empty type for it.
364 We will fill it in later if we find out how. */
365 if (*type_addr == 0)
366 {
367 *type_addr = alloc_type (objfile);
368 }
369
370 return (*type_addr);
371 }
372
373 /* for all the stabs in a given stab vector, build appropriate types
374 and fix their symbols in given symbol vector. */
375
376 static void
377 patch_block_stabs (symbols, stabs, objfile)
378 struct pending *symbols;
379 struct pending_stabs *stabs;
380 struct objfile *objfile;
381 {
382 int ii;
383 char *name;
384 char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char*) strchr (name, ':');
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *)strchr(pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp-name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = (struct symbol *)
417 obstack_alloc (&objfile->symbol_obstack,
418 sizeof (struct symbol));
419
420 memset (sym, 0, sizeof (struct symbol));
421 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
422 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
423 SYMBOL_NAME (sym) =
424 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
425 pp += 2;
426 if (*(pp-1) == 'F' || *(pp-1) == 'f')
427 {
428 /* I don't think the linker does this with functions,
429 so as far as I know this is never executed.
430 But it doesn't hurt to check. */
431 SYMBOL_TYPE (sym) =
432 lookup_function_type (read_type (&pp, objfile));
433 }
434 else
435 {
436 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
437 }
438 add_symbol_to_list (sym, &global_symbols);
439 }
440 else
441 {
442 pp += 2;
443 if (*(pp-1) == 'F' || *(pp-1) == 'f')
444 {
445 SYMBOL_TYPE (sym) =
446 lookup_function_type (read_type (&pp, objfile));
447 }
448 else
449 {
450 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
451 }
452 }
453 }
454 }
455 }
456
457 \f
458 /* Read a number by which a type is referred to in dbx data,
459 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
460 Just a single number N is equivalent to (0,N).
461 Return the two numbers by storing them in the vector TYPENUMS.
462 TYPENUMS will then be used as an argument to dbx_lookup_type.
463
464 Returns 0 for success, -1 for error. */
465
466 static int
467 read_type_number (pp, typenums)
468 register char **pp;
469 register int *typenums;
470 {
471 int nbits;
472 if (**pp == '(')
473 {
474 (*pp)++;
475 typenums[0] = read_huge_number (pp, ',', &nbits);
476 if (nbits != 0) return -1;
477 typenums[1] = read_huge_number (pp, ')', &nbits);
478 if (nbits != 0) return -1;
479 }
480 else
481 {
482 typenums[0] = 0;
483 typenums[1] = read_huge_number (pp, 0, &nbits);
484 if (nbits != 0) return -1;
485 }
486 return 0;
487 }
488
489 \f
490 /* To handle GNU C++ typename abbreviation, we need to be able to
491 fill in a type's name as soon as space for that type is allocated.
492 `type_synonym_name' is the name of the type being allocated.
493 It is cleared as soon as it is used (lest all allocated types
494 get this name). */
495
496 static char *type_synonym_name;
497
498 #if !defined (REG_STRUCT_HAS_ADDR)
499 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
500 #endif
501
502 /* ARGSUSED */
503 struct symbol *
504 define_symbol (valu, string, desc, type, objfile)
505 CORE_ADDR valu;
506 char *string;
507 int desc;
508 int type;
509 struct objfile *objfile;
510 {
511 register struct symbol *sym;
512 char *p = (char *) strchr (string, ':');
513 int deftype;
514 int synonym = 0;
515 register int i;
516
517 /* We would like to eliminate nameless symbols, but keep their types.
518 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
519 to type 2, but, should not create a symbol to address that type. Since
520 the symbol will be nameless, there is no way any user can refer to it. */
521
522 int nameless;
523
524 /* Ignore syms with empty names. */
525 if (string[0] == 0)
526 return 0;
527
528 /* Ignore old-style symbols from cc -go */
529 if (p == 0)
530 return 0;
531
532 while (p[1] == ':')
533 {
534 p += 2;
535 p = strchr(p, ':');
536 }
537
538 /* If a nameless stab entry, all we need is the type, not the symbol.
539 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
540 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
541
542 sym = (struct symbol *)
543 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
544 memset (sym, 0, sizeof (struct symbol));
545
546 switch (type & N_TYPE)
547 {
548 case N_TEXT:
549 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
550 break;
551 case N_DATA:
552 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
553 break;
554 case N_BSS:
555 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
556 break;
557 }
558
559 if (processing_gcc_compilation)
560 {
561 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
562 number of bytes occupied by a type or object, which we ignore. */
563 SYMBOL_LINE(sym) = desc;
564 }
565 else
566 {
567 SYMBOL_LINE(sym) = 0; /* unknown */
568 }
569
570 if (string[0] == CPLUS_MARKER)
571 {
572 /* Special GNU C++ names. */
573 switch (string[1])
574 {
575 case 't':
576 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
577 &objfile -> symbol_obstack);
578 break;
579
580 case 'v': /* $vtbl_ptr_type */
581 /* Was: SYMBOL_NAME (sym) = "vptr"; */
582 goto normal;
583
584 case 'e':
585 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
586 &objfile -> symbol_obstack);
587 break;
588
589 case '_':
590 /* This was an anonymous type that was never fixed up. */
591 goto normal;
592
593 default:
594 complain (&unrecognized_cplus_name_complaint, string);
595 goto normal; /* Do *something* with it */
596 }
597 }
598 else
599 {
600 normal:
601 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
602 SYMBOL_NAME (sym) = (char *)
603 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
604 /* Open-coded memcpy--saves function call time. */
605 /* FIXME: Does it really? Try replacing with simple strcpy and
606 try it on an executable with a large symbol table. */
607 /* FIXME: considering that gcc can open code memcpy anyway, I
608 doubt it. xoxorich. */
609 {
610 register char *p1 = string;
611 register char *p2 = SYMBOL_NAME (sym);
612 while (p1 != p)
613 {
614 *p2++ = *p1++;
615 }
616 *p2++ = '\0';
617 }
618
619 /* If this symbol is from a C++ compilation, then attempt to cache the
620 demangled form for future reference. This is a typical time versus
621 space tradeoff, that was decided in favor of time because it sped up
622 C++ symbol lookups by a factor of about 20. */
623
624 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
625 }
626 p++;
627
628 /* Determine the type of name being defined. */
629 #if 0
630 /* Getting GDB to correctly skip the symbol on an undefined symbol
631 descriptor and not ever dump core is a very dodgy proposition if
632 we do things this way. I say the acorn RISC machine can just
633 fix their compiler. */
634 /* The Acorn RISC machine's compiler can put out locals that don't
635 start with "234=" or "(3,4)=", so assume anything other than the
636 deftypes we know how to handle is a local. */
637 if (!strchr ("cfFGpPrStTvVXCR", *p))
638 #else
639 if (isdigit (*p) || *p == '(' || *p == '-')
640 #endif
641 deftype = 'l';
642 else
643 deftype = *p++;
644
645 switch (deftype)
646 {
647 case 'c':
648 /* c is a special case, not followed by a type-number.
649 SYMBOL:c=iVALUE for an integer constant symbol.
650 SYMBOL:c=rVALUE for a floating constant symbol.
651 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
652 e.g. "b:c=e6,0" for "const b = blob1"
653 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
654 if (*p != '=')
655 {
656 SYMBOL_CLASS (sym) = LOC_CONST;
657 SYMBOL_TYPE (sym) = error_type (&p);
658 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
659 add_symbol_to_list (sym, &file_symbols);
660 return sym;
661 }
662 ++p;
663 switch (*p++)
664 {
665 case 'r':
666 {
667 double d = atof (p);
668 char *dbl_valu;
669
670 /* FIXME-if-picky-about-floating-accuracy: Should be using
671 target arithmetic to get the value. real.c in GCC
672 probably has the necessary code. */
673
674 /* FIXME: lookup_fundamental_type is a hack. We should be
675 creating a type especially for the type of float constants.
676 Problem is, what type should it be?
677
678 Also, what should the name of this type be? Should we
679 be using 'S' constants (see stabs.texinfo) instead? */
680
681 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
682 FT_DBL_PREC_FLOAT);
683 dbl_valu = (char *)
684 obstack_alloc (&objfile -> symbol_obstack,
685 TYPE_LENGTH (SYMBOL_TYPE (sym)));
686 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
687 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
688 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
689 }
690 break;
691 case 'i':
692 {
693 /* Defining integer constants this way is kind of silly,
694 since 'e' constants allows the compiler to give not
695 only the value, but the type as well. C has at least
696 int, long, unsigned int, and long long as constant
697 types; other languages probably should have at least
698 unsigned as well as signed constants. */
699
700 /* We just need one int constant type for all objfiles.
701 It doesn't depend on languages or anything (arguably its
702 name should be a language-specific name for a type of
703 that size, but I'm inclined to say that if the compiler
704 wants a nice name for the type, it can use 'e'). */
705 static struct type *int_const_type;
706
707 /* Yes, this is as long as a *host* int. That is because we
708 use atoi. */
709 if (int_const_type == NULL)
710 int_const_type =
711 init_type (TYPE_CODE_INT,
712 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
713 "integer constant",
714 (struct objfile *)NULL);
715 SYMBOL_TYPE (sym) = int_const_type;
716 SYMBOL_VALUE (sym) = atoi (p);
717 SYMBOL_CLASS (sym) = LOC_CONST;
718 }
719 break;
720 case 'e':
721 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
722 can be represented as integral.
723 e.g. "b:c=e6,0" for "const b = blob1"
724 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
725 {
726 SYMBOL_CLASS (sym) = LOC_CONST;
727 SYMBOL_TYPE (sym) = read_type (&p, objfile);
728
729 if (*p != ',')
730 {
731 SYMBOL_TYPE (sym) = error_type (&p);
732 break;
733 }
734 ++p;
735
736 /* If the value is too big to fit in an int (perhaps because
737 it is unsigned), or something like that, we silently get
738 a bogus value. The type and everything else about it is
739 correct. Ideally, we should be using whatever we have
740 available for parsing unsigned and long long values,
741 however. */
742 SYMBOL_VALUE (sym) = atoi (p);
743 }
744 break;
745 default:
746 {
747 SYMBOL_CLASS (sym) = LOC_CONST;
748 SYMBOL_TYPE (sym) = error_type (&p);
749 }
750 }
751 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
752 add_symbol_to_list (sym, &file_symbols);
753 return sym;
754
755 case 'C':
756 /* The name of a caught exception. */
757 SYMBOL_TYPE (sym) = read_type (&p, objfile);
758 SYMBOL_CLASS (sym) = LOC_LABEL;
759 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
760 SYMBOL_VALUE_ADDRESS (sym) = valu;
761 add_symbol_to_list (sym, &local_symbols);
762 break;
763
764 case 'f':
765 /* A static function definition. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 SYMBOL_CLASS (sym) = LOC_BLOCK;
768 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
769 add_symbol_to_list (sym, &file_symbols);
770 /* fall into process_function_types. */
771
772 process_function_types:
773 /* Function result types are described as the result type in stabs.
774 We need to convert this to the function-returning-type-X type
775 in GDB. E.g. "int" is converted to "function returning int". */
776 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
777 {
778 #if 0
779 /* This code doesn't work -- it needs to realloc and can't. */
780 /* Attempt to set up to record a function prototype... */
781 struct type *new = alloc_type (objfile);
782
783 /* Generate a template for the type of this function. The
784 types of the arguments will be added as we read the symbol
785 table. */
786 *new = *lookup_function_type (SYMBOL_TYPE(sym));
787 SYMBOL_TYPE(sym) = new;
788 TYPE_OBJFILE (new) = objfile;
789 in_function_type = new;
790 #else
791 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
792 #endif
793 }
794 /* fall into process_prototype_types */
795
796 process_prototype_types:
797 /* Sun acc puts declared types of arguments here. We don't care
798 about their actual types (FIXME -- we should remember the whole
799 function prototype), but the list may define some new types
800 that we have to remember, so we must scan it now. */
801 while (*p == ';') {
802 p++;
803 read_type (&p, objfile);
804 }
805 break;
806
807 case 'F':
808 /* A global function definition. */
809 SYMBOL_TYPE (sym) = read_type (&p, objfile);
810 SYMBOL_CLASS (sym) = LOC_BLOCK;
811 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
812 add_symbol_to_list (sym, &global_symbols);
813 goto process_function_types;
814
815 case 'G':
816 /* For a class G (global) symbol, it appears that the
817 value is not correct. It is necessary to search for the
818 corresponding linker definition to find the value.
819 These definitions appear at the end of the namelist. */
820 SYMBOL_TYPE (sym) = read_type (&p, objfile);
821 i = hashname (SYMBOL_NAME (sym));
822 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
823 global_sym_chain[i] = sym;
824 SYMBOL_CLASS (sym) = LOC_STATIC;
825 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
826 add_symbol_to_list (sym, &global_symbols);
827 break;
828
829 /* This case is faked by a conditional above,
830 when there is no code letter in the dbx data.
831 Dbx data never actually contains 'l'. */
832 case 's':
833 case 'l':
834 SYMBOL_TYPE (sym) = read_type (&p, objfile);
835 SYMBOL_CLASS (sym) = LOC_LOCAL;
836 SYMBOL_VALUE (sym) = valu;
837 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
838 add_symbol_to_list (sym, &local_symbols);
839 break;
840
841 case 'p':
842 if (*p == 'F')
843 /* pF is a two-letter code that means a function parameter in Fortran.
844 The type-number specifies the type of the return value.
845 Translate it into a pointer-to-function type. */
846 {
847 p++;
848 SYMBOL_TYPE (sym)
849 = lookup_pointer_type
850 (lookup_function_type (read_type (&p, objfile)));
851 }
852 else
853 SYMBOL_TYPE (sym) = read_type (&p, objfile);
854
855 /* Normally this is a parameter, a LOC_ARG. On the i960, it
856 can also be a LOC_LOCAL_ARG depending on symbol type. */
857 #ifndef DBX_PARM_SYMBOL_CLASS
858 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
859 #endif
860
861 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
862 SYMBOL_VALUE (sym) = valu;
863 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
864 #if 0
865 /* This doesn't work yet. */
866 add_param_to_type (&in_function_type, sym);
867 #endif
868 add_symbol_to_list (sym, &local_symbols);
869
870 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
871 {
872 /* On little-endian machines, this crud is never necessary,
873 and, if the extra bytes contain garbage, is harmful. */
874 break;
875 }
876
877 /* If it's gcc-compiled, if it says `short', believe it. */
878 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
879 break;
880
881 #if !BELIEVE_PCC_PROMOTION
882 {
883 /* This is the signed type which arguments get promoted to. */
884 static struct type *pcc_promotion_type;
885 /* This is the unsigned type which arguments get promoted to. */
886 static struct type *pcc_unsigned_promotion_type;
887
888 /* Call it "int" because this is mainly C lossage. */
889 if (pcc_promotion_type == NULL)
890 pcc_promotion_type =
891 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
892 0, "int", NULL);
893
894 if (pcc_unsigned_promotion_type == NULL)
895 pcc_unsigned_promotion_type =
896 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
897 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
898
899 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
900 /* This macro is defined on machines (e.g. sparc) where
901 we should believe the type of a PCC 'short' argument,
902 but shouldn't believe the address (the address is
903 the address of the corresponding int).
904
905 My guess is that this correction, as opposed to changing
906 the parameter to an 'int' (as done below, for PCC
907 on most machines), is the right thing to do
908 on all machines, but I don't want to risk breaking
909 something that already works. On most PCC machines,
910 the sparc problem doesn't come up because the calling
911 function has to zero the top bytes (not knowing whether
912 the called function wants an int or a short), so there
913 is little practical difference between an int and a short
914 (except perhaps what happens when the GDB user types
915 "print short_arg = 0x10000;").
916
917 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
918 actually produces the correct address (we don't need to fix it
919 up). I made this code adapt so that it will offset the symbol
920 if it was pointing at an int-aligned location and not
921 otherwise. This way you can use the same gdb for 4.0.x and
922 4.1 systems.
923
924 If the parameter is shorter than an int, and is integral
925 (e.g. char, short, or unsigned equivalent), and is claimed to
926 be passed on an integer boundary, don't believe it! Offset the
927 parameter's address to the tail-end of that integer. */
928
929 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
930 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
931 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
932 {
933 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
934 - TYPE_LENGTH (SYMBOL_TYPE (sym));
935 }
936 break;
937
938 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
939
940 /* If PCC says a parameter is a short or a char,
941 it is really an int. */
942 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
943 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
944 {
945 SYMBOL_TYPE (sym) =
946 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
947 ? pcc_unsigned_promotion_type
948 : pcc_promotion_type;
949 }
950 break;
951
952 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
953 }
954 #endif /* !BELIEVE_PCC_PROMOTION. */
955
956 case 'P':
957 /* acc seems to use P to delare the prototypes of functions that
958 are referenced by this file. gdb is not prepared to deal
959 with this extra information. FIXME, it ought to. */
960 if (type == N_FUN)
961 {
962 read_type (&p, objfile);
963 goto process_prototype_types;
964 }
965 /*FALLTHROUGH*/
966
967 case 'R':
968 /* Parameter which is in a register. */
969 SYMBOL_TYPE (sym) = read_type (&p, objfile);
970 SYMBOL_CLASS (sym) = LOC_REGPARM;
971 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
972 if (SYMBOL_VALUE (sym) >= NUM_REGS)
973 {
974 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
975 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
976 }
977 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
978 add_symbol_to_list (sym, &local_symbols);
979 break;
980
981 case 'r':
982 /* Register variable (either global or local). */
983 SYMBOL_TYPE (sym) = read_type (&p, objfile);
984 SYMBOL_CLASS (sym) = LOC_REGISTER;
985 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
986 if (SYMBOL_VALUE (sym) >= NUM_REGS)
987 {
988 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
989 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
990 }
991 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
992 if (within_function)
993 {
994 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
995 name to represent an argument passed in a register.
996 GCC uses 'P' for the same case. So if we find such a symbol pair
997 we combine it into one 'P' symbol. For Sun cc we need to do this
998 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
999 the 'p' symbol even if it never saves the argument onto the stack.
1000
1001 On most machines, we want to preserve both symbols, so that
1002 we can still get information about what is going on with the
1003 stack (VAX for computing args_printed, using stack slots instead
1004 of saved registers in backtraces, etc.).
1005
1006 Note that this code illegally combines
1007 main(argc) struct foo argc; { register struct foo argc; }
1008 but this case is considered pathological and causes a warning
1009 from a decent compiler. */
1010
1011 if (local_symbols
1012 && local_symbols->nsyms > 0
1013 #ifndef USE_REGISTER_NOT_ARG
1014 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1015 SYMBOL_TYPE (sym))
1016 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1017 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1018 #endif
1019 )
1020 {
1021 struct symbol *prev_sym;
1022 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1023 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1024 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1025 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1026 {
1027 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1028 /* Use the type from the LOC_REGISTER; that is the type
1029 that is actually in that register. */
1030 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1031 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1032 sym = prev_sym;
1033 break;
1034 }
1035 }
1036 add_symbol_to_list (sym, &local_symbols);
1037 }
1038 else
1039 add_symbol_to_list (sym, &file_symbols);
1040 break;
1041
1042 case 'S':
1043 /* Static symbol at top level of file */
1044 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1045 SYMBOL_CLASS (sym) = LOC_STATIC;
1046 SYMBOL_VALUE_ADDRESS (sym) = valu;
1047 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1048 add_symbol_to_list (sym, &file_symbols);
1049 break;
1050
1051 case 't':
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053
1054 /* For a nameless type, we don't want a create a symbol, thus we
1055 did not use `sym'. Return without further processing. */
1056 if (nameless) return NULL;
1057
1058 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1059 SYMBOL_VALUE (sym) = valu;
1060 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1061 /* C++ vagaries: we may have a type which is derived from
1062 a base type which did not have its name defined when the
1063 derived class was output. We fill in the derived class's
1064 base part member's name here in that case. */
1065 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1066 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1067 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1068 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1069 {
1070 int j;
1071 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1072 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1073 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1074 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1075 }
1076
1077 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1078 {
1079 /* gcc-2.6 or later (when using -fvtable-thunks)
1080 emits a unique named type for a vtable entry.
1081 Some gdb code depends on that specific name. */
1082 extern const char vtbl_ptr_name[];
1083
1084 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1085 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1086 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1087 {
1088 /* If we are giving a name to a type such as "pointer to
1089 foo" or "function returning foo", we better not set
1090 the TYPE_NAME. If the program contains "typedef char
1091 *caddr_t;", we don't want all variables of type char
1092 * to print as caddr_t. This is not just a
1093 consequence of GDB's type management; PCC and GCC (at
1094 least through version 2.4) both output variables of
1095 either type char * or caddr_t with the type number
1096 defined in the 't' symbol for caddr_t. If a future
1097 compiler cleans this up it GDB is not ready for it
1098 yet, but if it becomes ready we somehow need to
1099 disable this check (without breaking the PCC/GCC2.4
1100 case).
1101
1102 Sigh.
1103
1104 Fortunately, this check seems not to be necessary
1105 for anything except pointers or functions. */
1106 }
1107 else
1108 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1109 }
1110
1111 add_symbol_to_list (sym, &file_symbols);
1112 break;
1113
1114 case 'T':
1115 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1116 by 't' which means we are typedef'ing it as well. */
1117 synonym = *p == 't';
1118
1119 if (synonym)
1120 {
1121 p++;
1122 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1123 strlen (SYMBOL_NAME (sym)),
1124 &objfile -> symbol_obstack);
1125 }
1126 /* The semantics of C++ state that "struct foo { ... }" also defines
1127 a typedef for "foo". Unfortunately, cfront never makes the typedef
1128 when translating C++ into C. We make the typedef here so that
1129 "ptype foo" works as expected for cfront translated code. */
1130 else if (current_subfile->language == language_cplus)
1131 {
1132 synonym = 1;
1133 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1134 strlen (SYMBOL_NAME (sym)),
1135 &objfile -> symbol_obstack);
1136 }
1137
1138 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1139
1140 /* For a nameless type, we don't want a create a symbol, thus we
1141 did not use `sym'. Return without further processing. */
1142 if (nameless) return NULL;
1143
1144 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1145 SYMBOL_VALUE (sym) = valu;
1146 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1147 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1148 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1149 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1150 add_symbol_to_list (sym, &file_symbols);
1151
1152 if (synonym)
1153 {
1154 /* Clone the sym and then modify it. */
1155 register struct symbol *typedef_sym = (struct symbol *)
1156 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1157 *typedef_sym = *sym;
1158 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1159 SYMBOL_VALUE (typedef_sym) = valu;
1160 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1161 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1162 TYPE_NAME (SYMBOL_TYPE (sym))
1163 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1164 add_symbol_to_list (typedef_sym, &file_symbols);
1165 }
1166 break;
1167
1168 case 'V':
1169 /* Static symbol of local scope */
1170 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1171 SYMBOL_CLASS (sym) = LOC_STATIC;
1172 SYMBOL_VALUE_ADDRESS (sym) = valu;
1173 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1174 if (os9k_stabs)
1175 add_symbol_to_list (sym, &global_symbols);
1176 else
1177 add_symbol_to_list (sym, &local_symbols);
1178 break;
1179
1180 case 'v':
1181 /* Reference parameter */
1182 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1183 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1184 SYMBOL_VALUE (sym) = valu;
1185 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1186 add_symbol_to_list (sym, &local_symbols);
1187 break;
1188
1189 case 'X':
1190 /* This is used by Sun FORTRAN for "function result value".
1191 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1192 that Pascal uses it too, but when I tried it Pascal used
1193 "x:3" (local symbol) instead. */
1194 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1195 SYMBOL_CLASS (sym) = LOC_LOCAL;
1196 SYMBOL_VALUE (sym) = valu;
1197 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1198 add_symbol_to_list (sym, &local_symbols);
1199 break;
1200
1201 default:
1202 SYMBOL_TYPE (sym) = error_type (&p);
1203 SYMBOL_CLASS (sym) = LOC_CONST;
1204 SYMBOL_VALUE (sym) = 0;
1205 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1206 add_symbol_to_list (sym, &file_symbols);
1207 break;
1208 }
1209
1210 /* When passing structures to a function, some systems sometimes pass
1211 the address in a register, not the structure itself.
1212
1213 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1214 to LOC_REGPARM_ADDR for structures and unions. */
1215
1216 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1217 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1218 SYMBOL_TYPE (sym))
1219 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1220 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1221 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1222
1223 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1224 subsequent arguments on the sparc, for example). */
1225 if (SYMBOL_CLASS (sym) == LOC_ARG
1226 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1227 SYMBOL_TYPE (sym))
1228 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1229 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1230 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1231
1232 return sym;
1233 }
1234
1235 \f
1236 /* Skip rest of this symbol and return an error type.
1237
1238 General notes on error recovery: error_type always skips to the
1239 end of the symbol (modulo cretinous dbx symbol name continuation).
1240 Thus code like this:
1241
1242 if (*(*pp)++ != ';')
1243 return error_type (pp);
1244
1245 is wrong because if *pp starts out pointing at '\0' (typically as the
1246 result of an earlier error), it will be incremented to point to the
1247 start of the next symbol, which might produce strange results, at least
1248 if you run off the end of the string table. Instead use
1249
1250 if (**pp != ';')
1251 return error_type (pp);
1252 ++*pp;
1253
1254 or
1255
1256 if (**pp != ';')
1257 foo = error_type (pp);
1258 else
1259 ++*pp;
1260
1261 And in case it isn't obvious, the point of all this hair is so the compiler
1262 can define new types and new syntaxes, and old versions of the
1263 debugger will be able to read the new symbol tables. */
1264
1265 static struct type *
1266 error_type (pp)
1267 char **pp;
1268 {
1269 complain (&error_type_complaint);
1270 while (1)
1271 {
1272 /* Skip to end of symbol. */
1273 while (**pp != '\0')
1274 {
1275 (*pp)++;
1276 }
1277
1278 /* Check for and handle cretinous dbx symbol name continuation! */
1279 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1280 {
1281 *pp = next_symbol_text ();
1282 }
1283 else
1284 {
1285 break;
1286 }
1287 }
1288 return (builtin_type_error);
1289 }
1290
1291 \f
1292 /* Read type information or a type definition; return the type. Even
1293 though this routine accepts either type information or a type
1294 definition, the distinction is relevant--some parts of stabsread.c
1295 assume that type information starts with a digit, '-', or '(' in
1296 deciding whether to call read_type. */
1297
1298 struct type *
1299 read_type (pp, objfile)
1300 register char **pp;
1301 struct objfile *objfile;
1302 {
1303 register struct type *type = 0;
1304 struct type *type1;
1305 int typenums[2];
1306 int xtypenums[2];
1307 char type_descriptor;
1308
1309 /* Size in bits of type if specified by a type attribute, or -1 if
1310 there is no size attribute. */
1311 int type_size = -1;
1312
1313 /* Used to distinguish string and bitstring from char-array and set. */
1314 int is_string = 0;
1315
1316 /* Read type number if present. The type number may be omitted.
1317 for instance in a two-dimensional array declared with type
1318 "ar1;1;10;ar1;1;10;4". */
1319 if ((**pp >= '0' && **pp <= '9')
1320 || **pp == '('
1321 || **pp == '-')
1322 {
1323 if (read_type_number (pp, typenums) != 0)
1324 return error_type (pp);
1325
1326 /* Type is not being defined here. Either it already exists,
1327 or this is a forward reference to it. dbx_alloc_type handles
1328 both cases. */
1329 if (**pp != '=')
1330 return dbx_alloc_type (typenums, objfile);
1331
1332 /* Type is being defined here. */
1333 /* Skip the '='. */
1334 ++(*pp);
1335
1336 while (**pp == '@')
1337 {
1338 char *p = *pp + 1;
1339 /* It might be a type attribute or a member type. */
1340 if (isdigit (*p) || *p == '(' || *p == '-')
1341 /* Member type. */
1342 break;
1343 else
1344 {
1345 /* Type attributes. */
1346 char *attr = p;
1347
1348 /* Skip to the semicolon. */
1349 while (*p != ';' && *p != '\0')
1350 ++p;
1351 *pp = p;
1352 if (*p == '\0')
1353 return error_type (pp);
1354 else
1355 /* Skip the semicolon. */
1356 ++*pp;
1357
1358 switch (*attr)
1359 {
1360 case 's':
1361 type_size = atoi (attr + 1);
1362 if (type_size <= 0)
1363 type_size = -1;
1364 break;
1365
1366 case 'S':
1367 is_string = 1;
1368 break;
1369
1370 default:
1371 /* Ignore unrecognized type attributes, so future compilers
1372 can invent new ones. */
1373 break;
1374 }
1375 }
1376 }
1377 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1378 ++(*pp);
1379 }
1380 else
1381 {
1382 /* 'typenums=' not present, type is anonymous. Read and return
1383 the definition, but don't put it in the type vector. */
1384 typenums[0] = typenums[1] = -1;
1385 (*pp)++;
1386 }
1387
1388 type_descriptor = (*pp)[-1];
1389 switch (type_descriptor)
1390 {
1391 case 'x':
1392 {
1393 enum type_code code;
1394
1395 /* Used to index through file_symbols. */
1396 struct pending *ppt;
1397 int i;
1398
1399 /* Name including "struct", etc. */
1400 char *type_name;
1401
1402 {
1403 char *from, *to, *p, *q1, *q2;
1404
1405 /* Set the type code according to the following letter. */
1406 switch ((*pp)[0])
1407 {
1408 case 's':
1409 code = TYPE_CODE_STRUCT;
1410 break;
1411 case 'u':
1412 code = TYPE_CODE_UNION;
1413 break;
1414 case 'e':
1415 code = TYPE_CODE_ENUM;
1416 break;
1417 default:
1418 {
1419 /* Complain and keep going, so compilers can invent new
1420 cross-reference types. */
1421 static struct complaint msg =
1422 {"Unrecognized cross-reference type `%c'", 0, 0};
1423 complain (&msg, (*pp)[0]);
1424 code = TYPE_CODE_STRUCT;
1425 break;
1426 }
1427 }
1428
1429 q1 = strchr(*pp, '<');
1430 p = strchr(*pp, ':');
1431 if (p == NULL)
1432 return error_type (pp);
1433 while (q1 && p > q1 && p[1] == ':')
1434 {
1435 q2 = strchr(q1, '>');
1436 if (!q2 || q2 < p)
1437 break;
1438 p += 2;
1439 p = strchr(p, ':');
1440 if (p == NULL)
1441 return error_type (pp);
1442 }
1443 to = type_name =
1444 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1445
1446 /* Copy the name. */
1447 from = *pp + 1;
1448 while (from < p)
1449 *to++ = *from++;
1450 *to = '\0';
1451
1452 /* Set the pointer ahead of the name which we just read, and
1453 the colon. */
1454 *pp = from + 1;
1455 }
1456
1457 /* Now check to see whether the type has already been
1458 declared. This was written for arrays of cross-referenced
1459 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1460 sure it is not necessary anymore. But it might be a good
1461 idea, to save a little memory. */
1462
1463 for (ppt = file_symbols; ppt; ppt = ppt->next)
1464 for (i = 0; i < ppt->nsyms; i++)
1465 {
1466 struct symbol *sym = ppt->symbol[i];
1467
1468 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1469 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1470 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1471 && STREQ (SYMBOL_NAME (sym), type_name))
1472 {
1473 obstack_free (&objfile -> type_obstack, type_name);
1474 type = SYMBOL_TYPE (sym);
1475 return type;
1476 }
1477 }
1478
1479 /* Didn't find the type to which this refers, so we must
1480 be dealing with a forward reference. Allocate a type
1481 structure for it, and keep track of it so we can
1482 fill in the rest of the fields when we get the full
1483 type. */
1484 type = dbx_alloc_type (typenums, objfile);
1485 TYPE_CODE (type) = code;
1486 TYPE_TAG_NAME (type) = type_name;
1487 INIT_CPLUS_SPECIFIC(type);
1488 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1489
1490 add_undefined_type (type);
1491 return type;
1492 }
1493
1494 case '-': /* RS/6000 built-in type */
1495 case '0':
1496 case '1':
1497 case '2':
1498 case '3':
1499 case '4':
1500 case '5':
1501 case '6':
1502 case '7':
1503 case '8':
1504 case '9':
1505 case '(':
1506
1507 {
1508 char *pp_saved;
1509
1510 (*pp)--;
1511 pp_saved = *pp;
1512
1513 /* Peek ahead at the number to detect void. */
1514 if (read_type_number (pp, xtypenums) != 0)
1515 return error_type (pp);
1516
1517 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1518 /* It's being defined as itself. That means it is "void". */
1519 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1520 else
1521 {
1522 struct type *xtype;
1523
1524 /* Go back to the number and have read_type get it. This means
1525 that we can deal with something like t(1,2)=(3,4)=... which
1526 the Lucid compiler uses. */
1527 *pp = pp_saved;
1528 xtype = read_type (pp, objfile);
1529
1530 /* The type is being defined to another type. So we copy the type.
1531 This loses if we copy a C++ class and so we lose track of how
1532 the names are mangled (but g++ doesn't output stabs like this
1533 now anyway). */
1534
1535 type = alloc_type (objfile);
1536 memcpy (type, xtype, sizeof (struct type));
1537
1538 /* The idea behind clearing the names is that the only purpose
1539 for defining a type to another type is so that the name of
1540 one can be different. So we probably don't need to worry much
1541 about the case where the compiler doesn't give a name to the
1542 new type. */
1543 TYPE_NAME (type) = NULL;
1544 TYPE_TAG_NAME (type) = NULL;
1545 }
1546 if (typenums[0] != -1)
1547 *dbx_lookup_type (typenums) = type;
1548 break;
1549 }
1550
1551 /* In the following types, we must be sure to overwrite any existing
1552 type that the typenums refer to, rather than allocating a new one
1553 and making the typenums point to the new one. This is because there
1554 may already be pointers to the existing type (if it had been
1555 forward-referenced), and we must change it to a pointer, function,
1556 reference, or whatever, *in-place*. */
1557
1558 case '*':
1559 type1 = read_type (pp, objfile);
1560 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1561 break;
1562
1563 case '&': /* Reference to another type */
1564 type1 = read_type (pp, objfile);
1565 type = make_reference_type (type1, dbx_lookup_type (typenums));
1566 break;
1567
1568 case 'f': /* Function returning another type */
1569 if (os9k_stabs && **pp == '(')
1570 {
1571 /* Function prototype; parse it.
1572 We must conditionalize this on os9k_stabs because otherwise
1573 it could be confused with a Sun-style (1,3) typenumber
1574 (I think). */
1575 struct type *t;
1576 ++*pp;
1577 while (**pp != ')')
1578 {
1579 t = read_type(pp, objfile);
1580 if (**pp == ',') ++*pp;
1581 }
1582 }
1583 type1 = read_type (pp, objfile);
1584 type = make_function_type (type1, dbx_lookup_type (typenums));
1585 break;
1586
1587 case 'k': /* Const qualifier on some type (Sun) */
1588 case 'c': /* Const qualifier on some type (OS9000) */
1589 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1590 only accept 'c' in the os9k_stabs case. */
1591 if (type_descriptor == 'c' && !os9k_stabs)
1592 return error_type (pp);
1593 type = read_type (pp, objfile);
1594 /* FIXME! For now, we ignore const and volatile qualifiers. */
1595 break;
1596
1597 case 'B': /* Volatile qual on some type (Sun) */
1598 case 'i': /* Volatile qual on some type (OS9000) */
1599 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1600 only accept 'i' in the os9k_stabs case. */
1601 if (type_descriptor == 'i' && !os9k_stabs)
1602 return error_type (pp);
1603 type = read_type (pp, objfile);
1604 /* FIXME! For now, we ignore const and volatile qualifiers. */
1605 break;
1606
1607 /* FIXME -- we should be doing smash_to_XXX types here. */
1608 case '@': /* Member (class & variable) type */
1609 {
1610 struct type *domain = read_type (pp, objfile);
1611 struct type *memtype;
1612
1613 if (**pp != ',')
1614 /* Invalid member type data format. */
1615 return error_type (pp);
1616 ++*pp;
1617
1618 memtype = read_type (pp, objfile);
1619 type = dbx_alloc_type (typenums, objfile);
1620 smash_to_member_type (type, domain, memtype);
1621 }
1622 break;
1623
1624 case '#': /* Method (class & fn) type */
1625 if ((*pp)[0] == '#')
1626 {
1627 /* We'll get the parameter types from the name. */
1628 struct type *return_type;
1629
1630 (*pp)++;
1631 return_type = read_type (pp, objfile);
1632 if (*(*pp)++ != ';')
1633 complain (&invalid_member_complaint, symnum);
1634 type = allocate_stub_method (return_type);
1635 if (typenums[0] != -1)
1636 *dbx_lookup_type (typenums) = type;
1637 }
1638 else
1639 {
1640 struct type *domain = read_type (pp, objfile);
1641 struct type *return_type;
1642 struct type **args;
1643
1644 if (**pp != ',')
1645 /* Invalid member type data format. */
1646 return error_type (pp);
1647 else
1648 ++(*pp);
1649
1650 return_type = read_type (pp, objfile);
1651 args = read_args (pp, ';', objfile);
1652 type = dbx_alloc_type (typenums, objfile);
1653 smash_to_method_type (type, domain, return_type, args);
1654 }
1655 break;
1656
1657 case 'r': /* Range type */
1658 type = read_range_type (pp, typenums, objfile);
1659 if (typenums[0] != -1)
1660 *dbx_lookup_type (typenums) = type;
1661 break;
1662
1663 case 'b':
1664 if (os9k_stabs)
1665 /* Const and volatile qualified type. */
1666 type = read_type (pp, objfile);
1667 else
1668 {
1669 /* Sun ACC builtin int type */
1670 type = read_sun_builtin_type (pp, typenums, objfile);
1671 if (typenums[0] != -1)
1672 *dbx_lookup_type (typenums) = type;
1673 }
1674 break;
1675
1676 case 'R': /* Sun ACC builtin float type */
1677 type = read_sun_floating_type (pp, typenums, objfile);
1678 if (typenums[0] != -1)
1679 *dbx_lookup_type (typenums) = type;
1680 break;
1681
1682 case 'e': /* Enumeration type */
1683 type = dbx_alloc_type (typenums, objfile);
1684 type = read_enum_type (pp, type, objfile);
1685 if (typenums[0] != -1)
1686 *dbx_lookup_type (typenums) = type;
1687 break;
1688
1689 case 's': /* Struct type */
1690 case 'u': /* Union type */
1691 type = dbx_alloc_type (typenums, objfile);
1692 if (!TYPE_NAME (type))
1693 {
1694 TYPE_NAME (type) = type_synonym_name;
1695 }
1696 type_synonym_name = NULL;
1697 switch (type_descriptor)
1698 {
1699 case 's':
1700 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1701 break;
1702 case 'u':
1703 TYPE_CODE (type) = TYPE_CODE_UNION;
1704 break;
1705 }
1706 type = read_struct_type (pp, type, objfile);
1707 break;
1708
1709 case 'a': /* Array type */
1710 if (**pp != 'r')
1711 return error_type (pp);
1712 ++*pp;
1713
1714 type = dbx_alloc_type (typenums, objfile);
1715 type = read_array_type (pp, type, objfile);
1716 if (is_string)
1717 TYPE_CODE (type) = TYPE_CODE_STRING;
1718 break;
1719
1720 case 'S':
1721 type1 = read_type (pp, objfile);
1722 type = create_set_type ((struct type*) NULL, type1);
1723 if (is_string)
1724 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1725 if (typenums[0] != -1)
1726 *dbx_lookup_type (typenums) = type;
1727 break;
1728
1729 default:
1730 --*pp; /* Go back to the symbol in error */
1731 /* Particularly important if it was \0! */
1732 return error_type (pp);
1733 }
1734
1735 if (type == 0)
1736 {
1737 warning ("GDB internal error, type is NULL in stabsread.c\n");
1738 return error_type (pp);
1739 }
1740
1741 /* Size specified in a type attribute overrides any other size. */
1742 if (type_size != -1)
1743 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1744
1745 return type;
1746 }
1747 \f
1748 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1749 Return the proper type node for a given builtin type number. */
1750
1751 static struct type *
1752 rs6000_builtin_type (typenum)
1753 int typenum;
1754 {
1755 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1756 #define NUMBER_RECOGNIZED 30
1757 /* This includes an empty slot for type number -0. */
1758 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1759 struct type *rettype = NULL;
1760
1761 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1762 {
1763 complain (&rs6000_builtin_complaint, typenum);
1764 return builtin_type_error;
1765 }
1766 if (negative_types[-typenum] != NULL)
1767 return negative_types[-typenum];
1768
1769 #if TARGET_CHAR_BIT != 8
1770 #error This code wrong for TARGET_CHAR_BIT not 8
1771 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1772 that if that ever becomes not true, the correct fix will be to
1773 make the size in the struct type to be in bits, not in units of
1774 TARGET_CHAR_BIT. */
1775 #endif
1776
1777 switch (-typenum)
1778 {
1779 case 1:
1780 /* The size of this and all the other types are fixed, defined
1781 by the debugging format. If there is a type called "int" which
1782 is other than 32 bits, then it should use a new negative type
1783 number (or avoid negative type numbers for that case).
1784 See stabs.texinfo. */
1785 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1786 break;
1787 case 2:
1788 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1789 break;
1790 case 3:
1791 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1792 break;
1793 case 4:
1794 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1795 break;
1796 case 5:
1797 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1798 "unsigned char", NULL);
1799 break;
1800 case 6:
1801 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1802 break;
1803 case 7:
1804 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1805 "unsigned short", NULL);
1806 break;
1807 case 8:
1808 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1809 "unsigned int", NULL);
1810 break;
1811 case 9:
1812 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1813 "unsigned", NULL);
1814 case 10:
1815 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1816 "unsigned long", NULL);
1817 break;
1818 case 11:
1819 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1820 break;
1821 case 12:
1822 /* IEEE single precision (32 bit). */
1823 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1824 break;
1825 case 13:
1826 /* IEEE double precision (64 bit). */
1827 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1828 break;
1829 case 14:
1830 /* This is an IEEE double on the RS/6000, and different machines with
1831 different sizes for "long double" should use different negative
1832 type numbers. See stabs.texinfo. */
1833 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1834 break;
1835 case 15:
1836 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1837 break;
1838 case 16:
1839 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1840 break;
1841 case 17:
1842 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1843 break;
1844 case 18:
1845 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1846 break;
1847 case 19:
1848 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1849 break;
1850 case 20:
1851 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1852 "character", NULL);
1853 break;
1854 case 21:
1855 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1856 "logical*1", NULL);
1857 break;
1858 case 22:
1859 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1860 "logical*2", NULL);
1861 break;
1862 case 23:
1863 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1864 "logical*4", NULL);
1865 break;
1866 case 24:
1867 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1868 "logical", NULL);
1869 break;
1870 case 25:
1871 /* Complex type consisting of two IEEE single precision values. */
1872 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1873 break;
1874 case 26:
1875 /* Complex type consisting of two IEEE double precision values. */
1876 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1877 break;
1878 case 27:
1879 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1880 break;
1881 case 28:
1882 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1883 break;
1884 case 29:
1885 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1886 break;
1887 case 30:
1888 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1889 break;
1890 }
1891 negative_types[-typenum] = rettype;
1892 return rettype;
1893 }
1894 \f
1895 /* This page contains subroutines of read_type. */
1896
1897 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1898 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1899 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1900 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1901
1902 /* Read member function stabs info for C++ classes. The form of each member
1903 function data is:
1904
1905 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1906
1907 An example with two member functions is:
1908
1909 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1910
1911 For the case of overloaded operators, the format is op$::*.funcs, where
1912 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1913 name (such as `+=') and `.' marks the end of the operator name.
1914
1915 Returns 1 for success, 0 for failure. */
1916
1917 static int
1918 read_member_functions (fip, pp, type, objfile)
1919 struct field_info *fip;
1920 char **pp;
1921 struct type *type;
1922 struct objfile *objfile;
1923 {
1924 int nfn_fields = 0;
1925 int length = 0;
1926 /* Total number of member functions defined in this class. If the class
1927 defines two `f' functions, and one `g' function, then this will have
1928 the value 3. */
1929 int total_length = 0;
1930 int i;
1931 struct next_fnfield
1932 {
1933 struct next_fnfield *next;
1934 struct fn_field fn_field;
1935 } *sublist;
1936 struct type *look_ahead_type;
1937 struct next_fnfieldlist *new_fnlist;
1938 struct next_fnfield *new_sublist;
1939 char *main_fn_name;
1940 register char *p;
1941
1942 /* Process each list until we find something that is not a member function
1943 or find the end of the functions. */
1944
1945 while (**pp != ';')
1946 {
1947 /* We should be positioned at the start of the function name.
1948 Scan forward to find the first ':' and if it is not the
1949 first of a "::" delimiter, then this is not a member function. */
1950 p = *pp;
1951 while (*p != ':')
1952 {
1953 p++;
1954 }
1955 if (p[1] != ':')
1956 {
1957 break;
1958 }
1959
1960 sublist = NULL;
1961 look_ahead_type = NULL;
1962 length = 0;
1963
1964 new_fnlist = (struct next_fnfieldlist *)
1965 xmalloc (sizeof (struct next_fnfieldlist));
1966 make_cleanup (free, new_fnlist);
1967 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1968
1969 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1970 {
1971 /* This is a completely wierd case. In order to stuff in the
1972 names that might contain colons (the usual name delimiter),
1973 Mike Tiemann defined a different name format which is
1974 signalled if the identifier is "op$". In that case, the
1975 format is "op$::XXXX." where XXXX is the name. This is
1976 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1977 /* This lets the user type "break operator+".
1978 We could just put in "+" as the name, but that wouldn't
1979 work for "*". */
1980 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1981 char *o = opname + 3;
1982
1983 /* Skip past '::'. */
1984 *pp = p + 2;
1985
1986 STABS_CONTINUE (pp);
1987 p = *pp;
1988 while (*p != '.')
1989 {
1990 *o++ = *p++;
1991 }
1992 main_fn_name = savestring (opname, o - opname);
1993 /* Skip past '.' */
1994 *pp = p + 1;
1995 }
1996 else
1997 {
1998 main_fn_name = savestring (*pp, p - *pp);
1999 /* Skip past '::'. */
2000 *pp = p + 2;
2001 }
2002 new_fnlist -> fn_fieldlist.name = main_fn_name;
2003
2004 do
2005 {
2006 new_sublist =
2007 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2008 make_cleanup (free, new_sublist);
2009 memset (new_sublist, 0, sizeof (struct next_fnfield));
2010
2011 /* Check for and handle cretinous dbx symbol name continuation! */
2012 if (look_ahead_type == NULL)
2013 {
2014 /* Normal case. */
2015 STABS_CONTINUE (pp);
2016
2017 new_sublist -> fn_field.type = read_type (pp, objfile);
2018 if (**pp != ':')
2019 {
2020 /* Invalid symtab info for member function. */
2021 return 0;
2022 }
2023 }
2024 else
2025 {
2026 /* g++ version 1 kludge */
2027 new_sublist -> fn_field.type = look_ahead_type;
2028 look_ahead_type = NULL;
2029 }
2030
2031 (*pp)++;
2032 p = *pp;
2033 while (*p != ';')
2034 {
2035 p++;
2036 }
2037
2038 /* If this is just a stub, then we don't have the real name here. */
2039
2040 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2041 {
2042 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2043 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2044 new_sublist -> fn_field.is_stub = 1;
2045 }
2046 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2047 *pp = p + 1;
2048
2049 /* Set this member function's visibility fields. */
2050 switch (*(*pp)++)
2051 {
2052 case VISIBILITY_PRIVATE:
2053 new_sublist -> fn_field.is_private = 1;
2054 break;
2055 case VISIBILITY_PROTECTED:
2056 new_sublist -> fn_field.is_protected = 1;
2057 break;
2058 }
2059
2060 STABS_CONTINUE (pp);
2061 switch (**pp)
2062 {
2063 case 'A': /* Normal functions. */
2064 new_sublist -> fn_field.is_const = 0;
2065 new_sublist -> fn_field.is_volatile = 0;
2066 (*pp)++;
2067 break;
2068 case 'B': /* `const' member functions. */
2069 new_sublist -> fn_field.is_const = 1;
2070 new_sublist -> fn_field.is_volatile = 0;
2071 (*pp)++;
2072 break;
2073 case 'C': /* `volatile' member function. */
2074 new_sublist -> fn_field.is_const = 0;
2075 new_sublist -> fn_field.is_volatile = 1;
2076 (*pp)++;
2077 break;
2078 case 'D': /* `const volatile' member function. */
2079 new_sublist -> fn_field.is_const = 1;
2080 new_sublist -> fn_field.is_volatile = 1;
2081 (*pp)++;
2082 break;
2083 case '*': /* File compiled with g++ version 1 -- no info */
2084 case '?':
2085 case '.':
2086 break;
2087 default:
2088 complain (&const_vol_complaint, **pp);
2089 break;
2090 }
2091
2092 switch (*(*pp)++)
2093 {
2094 case '*':
2095 {
2096 int nbits;
2097 /* virtual member function, followed by index.
2098 The sign bit is set to distinguish pointers-to-methods
2099 from virtual function indicies. Since the array is
2100 in words, the quantity must be shifted left by 1
2101 on 16 bit machine, and by 2 on 32 bit machine, forcing
2102 the sign bit out, and usable as a valid index into
2103 the array. Remove the sign bit here. */
2104 new_sublist -> fn_field.voffset =
2105 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2106 if (nbits != 0)
2107 return 0;
2108
2109 STABS_CONTINUE (pp);
2110 if (**pp == ';' || **pp == '\0')
2111 {
2112 /* Must be g++ version 1. */
2113 new_sublist -> fn_field.fcontext = 0;
2114 }
2115 else
2116 {
2117 /* Figure out from whence this virtual function came.
2118 It may belong to virtual function table of
2119 one of its baseclasses. */
2120 look_ahead_type = read_type (pp, objfile);
2121 if (**pp == ':')
2122 {
2123 /* g++ version 1 overloaded methods. */
2124 }
2125 else
2126 {
2127 new_sublist -> fn_field.fcontext = look_ahead_type;
2128 if (**pp != ';')
2129 {
2130 return 0;
2131 }
2132 else
2133 {
2134 ++*pp;
2135 }
2136 look_ahead_type = NULL;
2137 }
2138 }
2139 break;
2140 }
2141 case '?':
2142 /* static member function. */
2143 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2144 if (strncmp (new_sublist -> fn_field.physname,
2145 main_fn_name, strlen (main_fn_name)))
2146 {
2147 new_sublist -> fn_field.is_stub = 1;
2148 }
2149 break;
2150
2151 default:
2152 /* error */
2153 complain (&member_fn_complaint, (*pp)[-1]);
2154 /* Fall through into normal member function. */
2155
2156 case '.':
2157 /* normal member function. */
2158 new_sublist -> fn_field.voffset = 0;
2159 new_sublist -> fn_field.fcontext = 0;
2160 break;
2161 }
2162
2163 new_sublist -> next = sublist;
2164 sublist = new_sublist;
2165 length++;
2166 STABS_CONTINUE (pp);
2167 }
2168 while (**pp != ';' && **pp != '\0');
2169
2170 (*pp)++;
2171
2172 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2173 obstack_alloc (&objfile -> type_obstack,
2174 sizeof (struct fn_field) * length);
2175 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2176 sizeof (struct fn_field) * length);
2177 for (i = length; (i--, sublist); sublist = sublist -> next)
2178 {
2179 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2180 }
2181
2182 new_fnlist -> fn_fieldlist.length = length;
2183 new_fnlist -> next = fip -> fnlist;
2184 fip -> fnlist = new_fnlist;
2185 nfn_fields++;
2186 total_length += length;
2187 STABS_CONTINUE (pp);
2188 }
2189
2190 if (nfn_fields)
2191 {
2192 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2193 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2194 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2195 memset (TYPE_FN_FIELDLISTS (type), 0,
2196 sizeof (struct fn_fieldlist) * nfn_fields);
2197 TYPE_NFN_FIELDS (type) = nfn_fields;
2198 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2199 }
2200
2201 return 1;
2202 }
2203
2204 /* Special GNU C++ name.
2205
2206 Returns 1 for success, 0 for failure. "failure" means that we can't
2207 keep parsing and it's time for error_type(). */
2208
2209 static int
2210 read_cpp_abbrev (fip, pp, type, objfile)
2211 struct field_info *fip;
2212 char **pp;
2213 struct type *type;
2214 struct objfile *objfile;
2215 {
2216 register char *p;
2217 char *name;
2218 char cpp_abbrev;
2219 struct type *context;
2220
2221 p = *pp;
2222 if (*++p == 'v')
2223 {
2224 name = NULL;
2225 cpp_abbrev = *++p;
2226
2227 *pp = p + 1;
2228
2229 /* At this point, *pp points to something like "22:23=*22...",
2230 where the type number before the ':' is the "context" and
2231 everything after is a regular type definition. Lookup the
2232 type, find it's name, and construct the field name. */
2233
2234 context = read_type (pp, objfile);
2235
2236 switch (cpp_abbrev)
2237 {
2238 case 'f': /* $vf -- a virtual function table pointer */
2239 fip->list->field.name =
2240 obconcat (&objfile->type_obstack, vptr_name, "", "");
2241 break;
2242
2243 case 'b': /* $vb -- a virtual bsomethingorother */
2244 name = type_name_no_tag (context);
2245 if (name == NULL)
2246 {
2247 complain (&invalid_cpp_type_complaint, symnum);
2248 name = "FOO";
2249 }
2250 fip->list->field.name =
2251 obconcat (&objfile->type_obstack, vb_name, name, "");
2252 break;
2253
2254 default:
2255 complain (&invalid_cpp_abbrev_complaint, *pp);
2256 fip->list->field.name =
2257 obconcat (&objfile->type_obstack,
2258 "INVALID_CPLUSPLUS_ABBREV", "", "");
2259 break;
2260 }
2261
2262 /* At this point, *pp points to the ':'. Skip it and read the
2263 field type. */
2264
2265 p = ++(*pp);
2266 if (p[-1] != ':')
2267 {
2268 complain (&invalid_cpp_abbrev_complaint, *pp);
2269 return 0;
2270 }
2271 fip->list->field.type = read_type (pp, objfile);
2272 if (**pp == ',')
2273 (*pp)++; /* Skip the comma. */
2274 else
2275 return 0;
2276
2277 {
2278 int nbits;
2279 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2280 if (nbits != 0)
2281 return 0;
2282 }
2283 /* This field is unpacked. */
2284 fip->list->field.bitsize = 0;
2285 fip->list->visibility = VISIBILITY_PRIVATE;
2286 }
2287 else
2288 {
2289 complain (&invalid_cpp_abbrev_complaint, *pp);
2290 /* We have no idea what syntax an unrecognized abbrev would have, so
2291 better return 0. If we returned 1, we would need to at least advance
2292 *pp to avoid an infinite loop. */
2293 return 0;
2294 }
2295 return 1;
2296 }
2297
2298 static void
2299 read_one_struct_field (fip, pp, p, type, objfile)
2300 struct field_info *fip;
2301 char **pp;
2302 char *p;
2303 struct type *type;
2304 struct objfile *objfile;
2305 {
2306 fip -> list -> field.name =
2307 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2308 *pp = p + 1;
2309
2310 /* This means we have a visibility for a field coming. */
2311 if (**pp == '/')
2312 {
2313 (*pp)++;
2314 fip -> list -> visibility = *(*pp)++;
2315 }
2316 else
2317 {
2318 /* normal dbx-style format, no explicit visibility */
2319 fip -> list -> visibility = VISIBILITY_PUBLIC;
2320 }
2321
2322 fip -> list -> field.type = read_type (pp, objfile);
2323 if (**pp == ':')
2324 {
2325 p = ++(*pp);
2326 #if 0
2327 /* Possible future hook for nested types. */
2328 if (**pp == '!')
2329 {
2330 fip -> list -> field.bitpos = (long)-2; /* nested type */
2331 p = ++(*pp);
2332 }
2333 else
2334 #endif
2335 {
2336 /* Static class member. */
2337 fip -> list -> field.bitpos = (long) -1;
2338 }
2339 while (*p != ';')
2340 {
2341 p++;
2342 }
2343 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2344 *pp = p + 1;
2345 return;
2346 }
2347 else if (**pp != ',')
2348 {
2349 /* Bad structure-type format. */
2350 complain (&stabs_general_complaint, "bad structure-type format");
2351 return;
2352 }
2353
2354 (*pp)++; /* Skip the comma. */
2355
2356 {
2357 int nbits;
2358 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2359 if (nbits != 0)
2360 {
2361 complain (&stabs_general_complaint, "bad structure-type format");
2362 return;
2363 }
2364 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2365 if (nbits != 0)
2366 {
2367 complain (&stabs_general_complaint, "bad structure-type format");
2368 return;
2369 }
2370 }
2371
2372 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2373 {
2374 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2375 it is a field which has been optimized out. The correct stab for
2376 this case is to use VISIBILITY_IGNORE, but that is a recent
2377 invention. (2) It is a 0-size array. For example
2378 union { int num; char str[0]; } foo. Printing "<no value>" for
2379 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2380 will continue to work, and a 0-size array as a whole doesn't
2381 have any contents to print.
2382
2383 I suspect this probably could also happen with gcc -gstabs (not
2384 -gstabs+) for static fields, and perhaps other C++ extensions.
2385 Hopefully few people use -gstabs with gdb, since it is intended
2386 for dbx compatibility. */
2387
2388 /* Ignore this field. */
2389 fip -> list-> visibility = VISIBILITY_IGNORE;
2390 }
2391 else
2392 {
2393 /* Detect an unpacked field and mark it as such.
2394 dbx gives a bit size for all fields.
2395 Note that forward refs cannot be packed,
2396 and treat enums as if they had the width of ints. */
2397
2398 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2399 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2400 {
2401 fip -> list -> field.bitsize = 0;
2402 }
2403 if ((fip -> list -> field.bitsize
2404 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2405 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2406 && (fip -> list -> field.bitsize
2407 == TARGET_INT_BIT)
2408 )
2409 )
2410 &&
2411 fip -> list -> field.bitpos % 8 == 0)
2412 {
2413 fip -> list -> field.bitsize = 0;
2414 }
2415 }
2416 }
2417
2418
2419 /* Read struct or class data fields. They have the form:
2420
2421 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2422
2423 At the end, we see a semicolon instead of a field.
2424
2425 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2426 a static field.
2427
2428 The optional VISIBILITY is one of:
2429
2430 '/0' (VISIBILITY_PRIVATE)
2431 '/1' (VISIBILITY_PROTECTED)
2432 '/2' (VISIBILITY_PUBLIC)
2433 '/9' (VISIBILITY_IGNORE)
2434
2435 or nothing, for C style fields with public visibility.
2436
2437 Returns 1 for success, 0 for failure. */
2438
2439 static int
2440 read_struct_fields (fip, pp, type, objfile)
2441 struct field_info *fip;
2442 char **pp;
2443 struct type *type;
2444 struct objfile *objfile;
2445 {
2446 register char *p;
2447 struct nextfield *new;
2448
2449 /* We better set p right now, in case there are no fields at all... */
2450
2451 p = *pp;
2452
2453 /* Read each data member type until we find the terminating ';' at the end of
2454 the data member list, or break for some other reason such as finding the
2455 start of the member function list. */
2456
2457 while (**pp != ';')
2458 {
2459 if (os9k_stabs && **pp == ',') break;
2460 STABS_CONTINUE (pp);
2461 /* Get space to record the next field's data. */
2462 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2463 make_cleanup (free, new);
2464 memset (new, 0, sizeof (struct nextfield));
2465 new -> next = fip -> list;
2466 fip -> list = new;
2467
2468 /* Get the field name. */
2469 p = *pp;
2470
2471 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2472 unless the CPLUS_MARKER is followed by an underscore, in
2473 which case it is just the name of an anonymous type, which we
2474 should handle like any other type name. We accept either '$'
2475 or '.', because a field name can never contain one of these
2476 characters except as a CPLUS_MARKER (we probably should be
2477 doing that in most parts of GDB). */
2478
2479 if ((*p == '$' || *p == '.') && p[1] != '_')
2480 {
2481 if (!read_cpp_abbrev (fip, pp, type, objfile))
2482 return 0;
2483 continue;
2484 }
2485
2486 /* Look for the ':' that separates the field name from the field
2487 values. Data members are delimited by a single ':', while member
2488 functions are delimited by a pair of ':'s. When we hit the member
2489 functions (if any), terminate scan loop and return. */
2490
2491 while (*p != ':' && *p != '\0')
2492 {
2493 p++;
2494 }
2495 if (*p == '\0')
2496 return 0;
2497
2498 /* Check to see if we have hit the member functions yet. */
2499 if (p[1] == ':')
2500 {
2501 break;
2502 }
2503 read_one_struct_field (fip, pp, p, type, objfile);
2504 }
2505 if (p[0] == ':' && p[1] == ':')
2506 {
2507 /* chill the list of fields: the last entry (at the head) is a
2508 partially constructed entry which we now scrub. */
2509 fip -> list = fip -> list -> next;
2510 }
2511 return 1;
2512 }
2513
2514 /* The stabs for C++ derived classes contain baseclass information which
2515 is marked by a '!' character after the total size. This function is
2516 called when we encounter the baseclass marker, and slurps up all the
2517 baseclass information.
2518
2519 Immediately following the '!' marker is the number of base classes that
2520 the class is derived from, followed by information for each base class.
2521 For each base class, there are two visibility specifiers, a bit offset
2522 to the base class information within the derived class, a reference to
2523 the type for the base class, and a terminating semicolon.
2524
2525 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2526 ^^ ^ ^ ^ ^ ^ ^
2527 Baseclass information marker __________________|| | | | | | |
2528 Number of baseclasses __________________________| | | | | | |
2529 Visibility specifiers (2) ________________________| | | | | |
2530 Offset in bits from start of class _________________| | | | |
2531 Type number for base class ___________________________| | | |
2532 Visibility specifiers (2) _______________________________| | |
2533 Offset in bits from start of class ________________________| |
2534 Type number of base class ____________________________________|
2535
2536 Return 1 for success, 0 for (error-type-inducing) failure. */
2537
2538 static int
2539 read_baseclasses (fip, pp, type, objfile)
2540 struct field_info *fip;
2541 char **pp;
2542 struct type *type;
2543 struct objfile *objfile;
2544 {
2545 int i;
2546 struct nextfield *new;
2547
2548 if (**pp != '!')
2549 {
2550 return 1;
2551 }
2552 else
2553 {
2554 /* Skip the '!' baseclass information marker. */
2555 (*pp)++;
2556 }
2557
2558 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2559 {
2560 int nbits;
2561 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2562 if (nbits != 0)
2563 return 0;
2564 }
2565
2566 #if 0
2567 /* Some stupid compilers have trouble with the following, so break
2568 it up into simpler expressions. */
2569 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2570 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2571 #else
2572 {
2573 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2574 char *pointer;
2575
2576 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2577 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2578 }
2579 #endif /* 0 */
2580
2581 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2582
2583 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2584 {
2585 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2586 make_cleanup (free, new);
2587 memset (new, 0, sizeof (struct nextfield));
2588 new -> next = fip -> list;
2589 fip -> list = new;
2590 new -> field.bitsize = 0; /* this should be an unpacked field! */
2591
2592 STABS_CONTINUE (pp);
2593 switch (**pp)
2594 {
2595 case '0':
2596 /* Nothing to do. */
2597 break;
2598 case '1':
2599 SET_TYPE_FIELD_VIRTUAL (type, i);
2600 break;
2601 default:
2602 /* Unknown character. Complain and treat it as non-virtual. */
2603 {
2604 static struct complaint msg = {
2605 "Unknown virtual character `%c' for baseclass", 0, 0};
2606 complain (&msg, **pp);
2607 }
2608 }
2609 ++(*pp);
2610
2611 new -> visibility = *(*pp)++;
2612 switch (new -> visibility)
2613 {
2614 case VISIBILITY_PRIVATE:
2615 case VISIBILITY_PROTECTED:
2616 case VISIBILITY_PUBLIC:
2617 break;
2618 default:
2619 /* Bad visibility format. Complain and treat it as
2620 public. */
2621 {
2622 static struct complaint msg = {
2623 "Unknown visibility `%c' for baseclass", 0, 0};
2624 complain (&msg, new -> visibility);
2625 new -> visibility = VISIBILITY_PUBLIC;
2626 }
2627 }
2628
2629 {
2630 int nbits;
2631
2632 /* The remaining value is the bit offset of the portion of the object
2633 corresponding to this baseclass. Always zero in the absence of
2634 multiple inheritance. */
2635
2636 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2637 if (nbits != 0)
2638 return 0;
2639 }
2640
2641 /* The last piece of baseclass information is the type of the
2642 base class. Read it, and remember it's type name as this
2643 field's name. */
2644
2645 new -> field.type = read_type (pp, objfile);
2646 new -> field.name = type_name_no_tag (new -> field.type);
2647
2648 /* skip trailing ';' and bump count of number of fields seen */
2649 if (**pp == ';')
2650 (*pp)++;
2651 else
2652 return 0;
2653 }
2654 return 1;
2655 }
2656
2657 /* The tail end of stabs for C++ classes that contain a virtual function
2658 pointer contains a tilde, a %, and a type number.
2659 The type number refers to the base class (possibly this class itself) which
2660 contains the vtable pointer for the current class.
2661
2662 This function is called when we have parsed all the method declarations,
2663 so we can look for the vptr base class info. */
2664
2665 static int
2666 read_tilde_fields (fip, pp, type, objfile)
2667 struct field_info *fip;
2668 char **pp;
2669 struct type *type;
2670 struct objfile *objfile;
2671 {
2672 register char *p;
2673
2674 STABS_CONTINUE (pp);
2675
2676 /* If we are positioned at a ';', then skip it. */
2677 if (**pp == ';')
2678 {
2679 (*pp)++;
2680 }
2681
2682 if (**pp == '~')
2683 {
2684 (*pp)++;
2685
2686 if (**pp == '=' || **pp == '+' || **pp == '-')
2687 {
2688 /* Obsolete flags that used to indicate the presence
2689 of constructors and/or destructors. */
2690 (*pp)++;
2691 }
2692
2693 /* Read either a '%' or the final ';'. */
2694 if (*(*pp)++ == '%')
2695 {
2696 /* The next number is the type number of the base class
2697 (possibly our own class) which supplies the vtable for
2698 this class. Parse it out, and search that class to find
2699 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2700 and TYPE_VPTR_FIELDNO. */
2701
2702 struct type *t;
2703 int i;
2704
2705 t = read_type (pp, objfile);
2706 p = (*pp)++;
2707 while (*p != '\0' && *p != ';')
2708 {
2709 p++;
2710 }
2711 if (*p == '\0')
2712 {
2713 /* Premature end of symbol. */
2714 return 0;
2715 }
2716
2717 TYPE_VPTR_BASETYPE (type) = t;
2718 if (type == t) /* Our own class provides vtbl ptr */
2719 {
2720 for (i = TYPE_NFIELDS (t) - 1;
2721 i >= TYPE_N_BASECLASSES (t);
2722 --i)
2723 {
2724 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2725 sizeof (vptr_name) - 1))
2726 {
2727 TYPE_VPTR_FIELDNO (type) = i;
2728 goto gotit;
2729 }
2730 }
2731 /* Virtual function table field not found. */
2732 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2733 return 0;
2734 }
2735 else
2736 {
2737 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2738 }
2739
2740 gotit:
2741 *pp = p + 1;
2742 }
2743 }
2744 return 1;
2745 }
2746
2747 static int
2748 attach_fn_fields_to_type (fip, type)
2749 struct field_info *fip;
2750 register struct type *type;
2751 {
2752 register int n;
2753
2754 for (n = TYPE_NFN_FIELDS (type);
2755 fip -> fnlist != NULL;
2756 fip -> fnlist = fip -> fnlist -> next)
2757 {
2758 --n; /* Circumvent Sun3 compiler bug */
2759 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2760 }
2761 return 1;
2762 }
2763
2764 /* Create the vector of fields, and record how big it is.
2765 We need this info to record proper virtual function table information
2766 for this class's virtual functions. */
2767
2768 static int
2769 attach_fields_to_type (fip, type, objfile)
2770 struct field_info *fip;
2771 register struct type *type;
2772 struct objfile *objfile;
2773 {
2774 register int nfields = 0;
2775 register int non_public_fields = 0;
2776 register struct nextfield *scan;
2777
2778 /* Count up the number of fields that we have, as well as taking note of
2779 whether or not there are any non-public fields, which requires us to
2780 allocate and build the private_field_bits and protected_field_bits
2781 bitfields. */
2782
2783 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2784 {
2785 nfields++;
2786 if (scan -> visibility != VISIBILITY_PUBLIC)
2787 {
2788 non_public_fields++;
2789 }
2790 }
2791
2792 /* Now we know how many fields there are, and whether or not there are any
2793 non-public fields. Record the field count, allocate space for the
2794 array of fields, and create blank visibility bitfields if necessary. */
2795
2796 TYPE_NFIELDS (type) = nfields;
2797 TYPE_FIELDS (type) = (struct field *)
2798 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2799 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2800
2801 if (non_public_fields)
2802 {
2803 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2804
2805 TYPE_FIELD_PRIVATE_BITS (type) =
2806 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2807 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2808
2809 TYPE_FIELD_PROTECTED_BITS (type) =
2810 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2811 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2812
2813 TYPE_FIELD_IGNORE_BITS (type) =
2814 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2815 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2816 }
2817
2818 /* Copy the saved-up fields into the field vector. Start from the head
2819 of the list, adding to the tail of the field array, so that they end
2820 up in the same order in the array in which they were added to the list. */
2821
2822 while (nfields-- > 0)
2823 {
2824 TYPE_FIELD (type, nfields) = fip -> list -> field;
2825 switch (fip -> list -> visibility)
2826 {
2827 case VISIBILITY_PRIVATE:
2828 SET_TYPE_FIELD_PRIVATE (type, nfields);
2829 break;
2830
2831 case VISIBILITY_PROTECTED:
2832 SET_TYPE_FIELD_PROTECTED (type, nfields);
2833 break;
2834
2835 case VISIBILITY_IGNORE:
2836 SET_TYPE_FIELD_IGNORE (type, nfields);
2837 break;
2838
2839 case VISIBILITY_PUBLIC:
2840 break;
2841
2842 default:
2843 /* Unknown visibility. Complain and treat it as public. */
2844 {
2845 static struct complaint msg = {
2846 "Unknown visibility `%c' for field", 0, 0};
2847 complain (&msg, fip -> list -> visibility);
2848 }
2849 break;
2850 }
2851 fip -> list = fip -> list -> next;
2852 }
2853 return 1;
2854 }
2855
2856 /* Read the description of a structure (or union type) and return an object
2857 describing the type.
2858
2859 PP points to a character pointer that points to the next unconsumed token
2860 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2861 *PP will point to "4a:1,0,32;;".
2862
2863 TYPE points to an incomplete type that needs to be filled in.
2864
2865 OBJFILE points to the current objfile from which the stabs information is
2866 being read. (Note that it is redundant in that TYPE also contains a pointer
2867 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2868 */
2869
2870 static struct type *
2871 read_struct_type (pp, type, objfile)
2872 char **pp;
2873 struct type *type;
2874 struct objfile *objfile;
2875 {
2876 struct cleanup *back_to;
2877 struct field_info fi;
2878
2879 fi.list = NULL;
2880 fi.fnlist = NULL;
2881
2882 back_to = make_cleanup (null_cleanup, 0);
2883
2884 INIT_CPLUS_SPECIFIC (type);
2885 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2886
2887 /* First comes the total size in bytes. */
2888
2889 {
2890 int nbits;
2891 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2892 if (nbits != 0)
2893 return error_type (pp);
2894 }
2895
2896 /* Now read the baseclasses, if any, read the regular C struct or C++
2897 class member fields, attach the fields to the type, read the C++
2898 member functions, attach them to the type, and then read any tilde
2899 field (baseclass specifier for the class holding the main vtable). */
2900
2901 if (!read_baseclasses (&fi, pp, type, objfile)
2902 || !read_struct_fields (&fi, pp, type, objfile)
2903 || !attach_fields_to_type (&fi, type, objfile)
2904 || !read_member_functions (&fi, pp, type, objfile)
2905 || !attach_fn_fields_to_type (&fi, type)
2906 || !read_tilde_fields (&fi, pp, type, objfile))
2907 {
2908 do_cleanups (back_to);
2909 return (error_type (pp));
2910 }
2911
2912 do_cleanups (back_to);
2913 return (type);
2914 }
2915
2916 /* Read a definition of an array type,
2917 and create and return a suitable type object.
2918 Also creates a range type which represents the bounds of that
2919 array. */
2920
2921 static struct type *
2922 read_array_type (pp, type, objfile)
2923 register char **pp;
2924 register struct type *type;
2925 struct objfile *objfile;
2926 {
2927 struct type *index_type, *element_type, *range_type;
2928 int lower, upper;
2929 int adjustable = 0;
2930 int nbits;
2931
2932 /* Format of an array type:
2933 "ar<index type>;lower;upper;<array_contents_type>".
2934 OS9000: "arlower,upper;<array_contents_type>".
2935
2936 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2937 for these, produce a type like float[][]. */
2938
2939 if (os9k_stabs)
2940 index_type = builtin_type_int;
2941 else
2942 {
2943 index_type = read_type (pp, objfile);
2944 if (**pp != ';')
2945 /* Improper format of array type decl. */
2946 return error_type (pp);
2947 ++*pp;
2948 }
2949
2950 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2951 {
2952 (*pp)++;
2953 adjustable = 1;
2954 }
2955 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
2956 if (nbits != 0)
2957 return error_type (pp);
2958
2959 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2960 {
2961 (*pp)++;
2962 adjustable = 1;
2963 }
2964 upper = read_huge_number (pp, ';', &nbits);
2965 if (nbits != 0)
2966 return error_type (pp);
2967
2968 element_type = read_type (pp, objfile);
2969
2970 if (adjustable)
2971 {
2972 lower = 0;
2973 upper = -1;
2974 }
2975
2976 range_type =
2977 create_range_type ((struct type *) NULL, index_type, lower, upper);
2978 type = create_array_type (type, element_type, range_type);
2979
2980 /* If we have an array whose element type is not yet known, but whose
2981 bounds *are* known, record it to be adjusted at the end of the file. */
2982
2983 if ((TYPE_FLAGS (element_type) & TYPE_FLAG_STUB) && !adjustable)
2984 {
2985 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2986 add_undefined_type (type);
2987 }
2988
2989 return type;
2990 }
2991
2992
2993 /* Read a definition of an enumeration type,
2994 and create and return a suitable type object.
2995 Also defines the symbols that represent the values of the type. */
2996
2997 static struct type *
2998 read_enum_type (pp, type, objfile)
2999 register char **pp;
3000 register struct type *type;
3001 struct objfile *objfile;
3002 {
3003 register char *p;
3004 char *name;
3005 register long n;
3006 register struct symbol *sym;
3007 int nsyms = 0;
3008 struct pending **symlist;
3009 struct pending *osyms, *syms;
3010 int o_nsyms;
3011 int nbits;
3012
3013 #if 0
3014 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3015 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3016 to do? For now, force all enum values to file scope. */
3017 if (within_function)
3018 symlist = &local_symbols;
3019 else
3020 #endif
3021 symlist = &file_symbols;
3022 osyms = *symlist;
3023 o_nsyms = osyms ? osyms->nsyms : 0;
3024
3025 if (os9k_stabs)
3026 {
3027 /* Size. Perhaps this does not have to be conditionalized on
3028 os9k_stabs (assuming the name of an enum constant can't start
3029 with a digit). */
3030 read_huge_number (pp, 0, &nbits);
3031 if (nbits != 0)
3032 return error_type (pp);
3033 }
3034
3035 /* Read the value-names and their values.
3036 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3037 A semicolon or comma instead of a NAME means the end. */
3038 while (**pp && **pp != ';' && **pp != ',')
3039 {
3040 STABS_CONTINUE (pp);
3041 p = *pp;
3042 while (*p != ':') p++;
3043 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3044 *pp = p + 1;
3045 n = read_huge_number (pp, ',', &nbits);
3046 if (nbits != 0)
3047 return error_type (pp);
3048
3049 sym = (struct symbol *)
3050 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3051 memset (sym, 0, sizeof (struct symbol));
3052 SYMBOL_NAME (sym) = name;
3053 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3054 SYMBOL_CLASS (sym) = LOC_CONST;
3055 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3056 SYMBOL_VALUE (sym) = n;
3057 add_symbol_to_list (sym, symlist);
3058 nsyms++;
3059 }
3060
3061 if (**pp == ';')
3062 (*pp)++; /* Skip the semicolon. */
3063
3064 /* Now fill in the fields of the type-structure. */
3065
3066 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3067 TYPE_CODE (type) = TYPE_CODE_ENUM;
3068 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3069 TYPE_NFIELDS (type) = nsyms;
3070 TYPE_FIELDS (type) = (struct field *)
3071 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3072 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3073
3074 /* Find the symbols for the values and put them into the type.
3075 The symbols can be found in the symlist that we put them on
3076 to cause them to be defined. osyms contains the old value
3077 of that symlist; everything up to there was defined by us. */
3078 /* Note that we preserve the order of the enum constants, so
3079 that in something like "enum {FOO, LAST_THING=FOO}" we print
3080 FOO, not LAST_THING. */
3081
3082 for (syms = *symlist, n = 0; syms; syms = syms->next)
3083 {
3084 int j = 0;
3085 if (syms == osyms)
3086 j = o_nsyms;
3087 for (; j < syms->nsyms; j++,n++)
3088 {
3089 struct symbol *xsym = syms->symbol[j];
3090 SYMBOL_TYPE (xsym) = type;
3091 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3092 TYPE_FIELD_VALUE (type, n) = 0;
3093 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3094 TYPE_FIELD_BITSIZE (type, n) = 0;
3095 }
3096 if (syms == osyms)
3097 break;
3098 }
3099
3100 return type;
3101 }
3102
3103 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3104 typedefs in every file (for int, long, etc):
3105
3106 type = b <signed> <width>; <offset>; <nbits>
3107 signed = u or s. Possible c in addition to u or s (for char?).
3108 offset = offset from high order bit to start bit of type.
3109 width is # bytes in object of this type, nbits is # bits in type.
3110
3111 The width/offset stuff appears to be for small objects stored in
3112 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3113 FIXME. */
3114
3115 static struct type *
3116 read_sun_builtin_type (pp, typenums, objfile)
3117 char **pp;
3118 int typenums[2];
3119 struct objfile *objfile;
3120 {
3121 int type_bits;
3122 int nbits;
3123 int signed_type;
3124
3125 switch (**pp)
3126 {
3127 case 's':
3128 signed_type = 1;
3129 break;
3130 case 'u':
3131 signed_type = 0;
3132 break;
3133 default:
3134 return error_type (pp);
3135 }
3136 (*pp)++;
3137
3138 /* For some odd reason, all forms of char put a c here. This is strange
3139 because no other type has this honor. We can safely ignore this because
3140 we actually determine 'char'acterness by the number of bits specified in
3141 the descriptor. */
3142
3143 if (**pp == 'c')
3144 (*pp)++;
3145
3146 /* The first number appears to be the number of bytes occupied
3147 by this type, except that unsigned short is 4 instead of 2.
3148 Since this information is redundant with the third number,
3149 we will ignore it. */
3150 read_huge_number (pp, ';', &nbits);
3151 if (nbits != 0)
3152 return error_type (pp);
3153
3154 /* The second number is always 0, so ignore it too. */
3155 read_huge_number (pp, ';', &nbits);
3156 if (nbits != 0)
3157 return error_type (pp);
3158
3159 /* The third number is the number of bits for this type. */
3160 type_bits = read_huge_number (pp, 0, &nbits);
3161 if (nbits != 0)
3162 return error_type (pp);
3163 /* The type *should* end with a semicolon. If it are embedded
3164 in a larger type the semicolon may be the only way to know where
3165 the type ends. If this type is at the end of the stabstring we
3166 can deal with the omitted semicolon (but we don't have to like
3167 it). Don't bother to complain(), Sun's compiler omits the semicolon
3168 for "void". */
3169 if (**pp == ';')
3170 ++(*pp);
3171
3172 if (type_bits == 0)
3173 return init_type (TYPE_CODE_VOID, 1,
3174 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3175 objfile);
3176 else
3177 return init_type (TYPE_CODE_INT,
3178 type_bits / TARGET_CHAR_BIT,
3179 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3180 objfile);
3181 }
3182
3183 static struct type *
3184 read_sun_floating_type (pp, typenums, objfile)
3185 char **pp;
3186 int typenums[2];
3187 struct objfile *objfile;
3188 {
3189 int nbits;
3190 int details;
3191 int nbytes;
3192
3193 /* The first number has more details about the type, for example
3194 FN_COMPLEX. */
3195 details = read_huge_number (pp, ';', &nbits);
3196 if (nbits != 0)
3197 return error_type (pp);
3198
3199 /* The second number is the number of bytes occupied by this type */
3200 nbytes = read_huge_number (pp, ';', &nbits);
3201 if (nbits != 0)
3202 return error_type (pp);
3203
3204 if (details == NF_COMPLEX || details == NF_COMPLEX16
3205 || details == NF_COMPLEX32)
3206 /* This is a type we can't handle, but we do know the size.
3207 We also will be able to give it a name. */
3208 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3209
3210 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3211 }
3212
3213 /* Read a number from the string pointed to by *PP.
3214 The value of *PP is advanced over the number.
3215 If END is nonzero, the character that ends the
3216 number must match END, or an error happens;
3217 and that character is skipped if it does match.
3218 If END is zero, *PP is left pointing to that character.
3219
3220 If the number fits in a long, set *BITS to 0 and return the value.
3221 If not, set *BITS to be the number of bits in the number and return 0.
3222
3223 If encounter garbage, set *BITS to -1 and return 0. */
3224
3225 static long
3226 read_huge_number (pp, end, bits)
3227 char **pp;
3228 int end;
3229 int *bits;
3230 {
3231 char *p = *pp;
3232 int sign = 1;
3233 long n = 0;
3234 int radix = 10;
3235 char overflow = 0;
3236 int nbits = 0;
3237 int c;
3238 long upper_limit;
3239
3240 if (*p == '-')
3241 {
3242 sign = -1;
3243 p++;
3244 }
3245
3246 /* Leading zero means octal. GCC uses this to output values larger
3247 than an int (because that would be hard in decimal). */
3248 if (*p == '0')
3249 {
3250 radix = 8;
3251 p++;
3252 }
3253
3254 if (os9k_stabs)
3255 upper_limit = ULONG_MAX / radix;
3256 else
3257 upper_limit = LONG_MAX / radix;
3258
3259 while ((c = *p++) >= '0' && c < ('0' + radix))
3260 {
3261 if (n <= upper_limit)
3262 {
3263 n *= radix;
3264 n += c - '0'; /* FIXME this overflows anyway */
3265 }
3266 else
3267 overflow = 1;
3268
3269 /* This depends on large values being output in octal, which is
3270 what GCC does. */
3271 if (radix == 8)
3272 {
3273 if (nbits == 0)
3274 {
3275 if (c == '0')
3276 /* Ignore leading zeroes. */
3277 ;
3278 else if (c == '1')
3279 nbits = 1;
3280 else if (c == '2' || c == '3')
3281 nbits = 2;
3282 else
3283 nbits = 3;
3284 }
3285 else
3286 nbits += 3;
3287 }
3288 }
3289 if (end)
3290 {
3291 if (c && c != end)
3292 {
3293 if (bits != NULL)
3294 *bits = -1;
3295 return 0;
3296 }
3297 }
3298 else
3299 --p;
3300
3301 *pp = p;
3302 if (overflow)
3303 {
3304 if (nbits == 0)
3305 {
3306 /* Large decimal constants are an error (because it is hard to
3307 count how many bits are in them). */
3308 if (bits != NULL)
3309 *bits = -1;
3310 return 0;
3311 }
3312
3313 /* -0x7f is the same as 0x80. So deal with it by adding one to
3314 the number of bits. */
3315 if (sign == -1)
3316 ++nbits;
3317 if (bits)
3318 *bits = nbits;
3319 }
3320 else
3321 {
3322 if (bits)
3323 *bits = 0;
3324 return n * sign;
3325 }
3326 /* It's *BITS which has the interesting information. */
3327 return 0;
3328 }
3329
3330 static struct type *
3331 read_range_type (pp, typenums, objfile)
3332 char **pp;
3333 int typenums[2];
3334 struct objfile *objfile;
3335 {
3336 int rangenums[2];
3337 long n2, n3;
3338 int n2bits, n3bits;
3339 int self_subrange;
3340 struct type *result_type;
3341 struct type *index_type;
3342
3343 /* First comes a type we are a subrange of.
3344 In C it is usually 0, 1 or the type being defined. */
3345 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3346 not just a type number. */
3347 if (read_type_number (pp, rangenums) != 0)
3348 return error_type (pp);
3349 self_subrange = (rangenums[0] == typenums[0] &&
3350 rangenums[1] == typenums[1]);
3351
3352 /* A semicolon should now follow; skip it. */
3353 if (**pp == ';')
3354 (*pp)++;
3355
3356 /* The remaining two operands are usually lower and upper bounds
3357 of the range. But in some special cases they mean something else. */
3358 n2 = read_huge_number (pp, ';', &n2bits);
3359 n3 = read_huge_number (pp, ';', &n3bits);
3360
3361 if (n2bits == -1 || n3bits == -1)
3362 return error_type (pp);
3363
3364 /* If limits are huge, must be large integral type. */
3365 if (n2bits != 0 || n3bits != 0)
3366 {
3367 char got_signed = 0;
3368 char got_unsigned = 0;
3369 /* Number of bits in the type. */
3370 int nbits = 0;
3371
3372 /* Range from 0 to <large number> is an unsigned large integral type. */
3373 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3374 {
3375 got_unsigned = 1;
3376 nbits = n3bits;
3377 }
3378 /* Range from <large number> to <large number>-1 is a large signed
3379 integral type. Take care of the case where <large number> doesn't
3380 fit in a long but <large number>-1 does. */
3381 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3382 || (n2bits != 0 && n3bits == 0
3383 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3384 && n3 == LONG_MAX))
3385 {
3386 got_signed = 1;
3387 nbits = n2bits;
3388 }
3389
3390 if (got_signed || got_unsigned)
3391 {
3392 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3393 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3394 objfile);
3395 }
3396 else
3397 return error_type (pp);
3398 }
3399
3400 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3401 if (self_subrange && n2 == 0 && n3 == 0)
3402 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3403
3404 /* If n3 is zero and n2 is not, we want a floating type,
3405 and n2 is the width in bytes.
3406
3407 Fortran programs appear to use this for complex types also,
3408 and they give no way to distinguish between double and single-complex!
3409
3410 GDB does not have complex types.
3411
3412 Just return the complex as a float of that size. It won't work right
3413 for the complex values, but at least it makes the file loadable. */
3414
3415 if (n3 == 0 && n2 > 0)
3416 {
3417 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3418 }
3419
3420 /* If the upper bound is -1, it must really be an unsigned int. */
3421
3422 else if (n2 == 0 && n3 == -1)
3423 {
3424 /* It is unsigned int or unsigned long. */
3425 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3426 compatibility hack. */
3427 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3428 TYPE_FLAG_UNSIGNED, NULL, objfile);
3429 }
3430
3431 /* Special case: char is defined (Who knows why) as a subrange of
3432 itself with range 0-127. */
3433 else if (self_subrange && n2 == 0 && n3 == 127)
3434 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3435
3436 /* We used to do this only for subrange of self or subrange of int. */
3437 else if (n2 == 0)
3438 {
3439 if (n3 < 0)
3440 /* n3 actually gives the size. */
3441 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3442 NULL, objfile);
3443 if (n3 == 0xff)
3444 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3445 if (n3 == 0xffff)
3446 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3447
3448 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3449 "unsigned long", and we already checked for that,
3450 so don't need to test for it here. */
3451 }
3452 /* I think this is for Convex "long long". Since I don't know whether
3453 Convex sets self_subrange, I also accept that particular size regardless
3454 of self_subrange. */
3455 else if (n3 == 0 && n2 < 0
3456 && (self_subrange
3457 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3458 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3459 else if (n2 == -n3 -1)
3460 {
3461 if (n3 == 0x7f)
3462 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3463 if (n3 == 0x7fff)
3464 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3465 if (n3 == 0x7fffffff)
3466 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3467 }
3468
3469 /* We have a real range type on our hands. Allocate space and
3470 return a real pointer. */
3471
3472 /* At this point I don't have the faintest idea how to deal with
3473 a self_subrange type; I'm going to assume that this is used
3474 as an idiom, and that all of them are special cases. So . . . */
3475 if (self_subrange)
3476 return error_type (pp);
3477
3478 index_type = *dbx_lookup_type (rangenums);
3479 if (index_type == NULL)
3480 {
3481 /* Does this actually ever happen? Is that why we are worrying
3482 about dealing with it rather than just calling error_type? */
3483
3484 static struct type *range_type_index;
3485
3486 complain (&range_type_base_complaint, rangenums[1]);
3487 if (range_type_index == NULL)
3488 range_type_index =
3489 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3490 0, "range type index type", NULL);
3491 index_type = range_type_index;
3492 }
3493
3494 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3495 return (result_type);
3496 }
3497
3498 /* Read in an argument list. This is a list of types, separated by commas
3499 and terminated with END. Return the list of types read in, or (struct type
3500 **)-1 if there is an error. */
3501
3502 static struct type **
3503 read_args (pp, end, objfile)
3504 char **pp;
3505 int end;
3506 struct objfile *objfile;
3507 {
3508 /* FIXME! Remove this arbitrary limit! */
3509 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3510 int n = 0;
3511
3512 while (**pp != end)
3513 {
3514 if (**pp != ',')
3515 /* Invalid argument list: no ','. */
3516 return (struct type **)-1;
3517 (*pp)++;
3518 STABS_CONTINUE (pp);
3519 types[n++] = read_type (pp, objfile);
3520 }
3521 (*pp)++; /* get past `end' (the ':' character) */
3522
3523 if (n == 1)
3524 {
3525 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3526 }
3527 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3528 {
3529 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3530 memset (rval + n, 0, sizeof (struct type *));
3531 }
3532 else
3533 {
3534 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3535 }
3536 memcpy (rval, types, n * sizeof (struct type *));
3537 return rval;
3538 }
3539 \f
3540 /* Common block handling. */
3541
3542 /* List of symbols declared since the last BCOMM. This list is a tail
3543 of local_symbols. When ECOMM is seen, the symbols on the list
3544 are noted so their proper addresses can be filled in later,
3545 using the common block base address gotten from the assembler
3546 stabs. */
3547
3548 static struct pending *common_block;
3549 static int common_block_i;
3550
3551 /* Name of the current common block. We get it from the BCOMM instead of the
3552 ECOMM to match IBM documentation (even though IBM puts the name both places
3553 like everyone else). */
3554 static char *common_block_name;
3555
3556 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3557 to remain after this function returns. */
3558
3559 void
3560 common_block_start (name, objfile)
3561 char *name;
3562 struct objfile *objfile;
3563 {
3564 if (common_block_name != NULL)
3565 {
3566 static struct complaint msg = {
3567 "Invalid symbol data: common block within common block",
3568 0, 0};
3569 complain (&msg);
3570 }
3571 common_block = local_symbols;
3572 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3573 common_block_name = obsavestring (name, strlen (name),
3574 &objfile -> symbol_obstack);
3575 }
3576
3577 /* Process a N_ECOMM symbol. */
3578
3579 void
3580 common_block_end (objfile)
3581 struct objfile *objfile;
3582 {
3583 /* Symbols declared since the BCOMM are to have the common block
3584 start address added in when we know it. common_block and
3585 common_block_i point to the first symbol after the BCOMM in
3586 the local_symbols list; copy the list and hang it off the
3587 symbol for the common block name for later fixup. */
3588 int i;
3589 struct symbol *sym;
3590 struct pending *new = 0;
3591 struct pending *next;
3592 int j;
3593
3594 if (common_block_name == NULL)
3595 {
3596 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3597 complain (&msg);
3598 return;
3599 }
3600
3601 sym = (struct symbol *)
3602 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3603 memset (sym, 0, sizeof (struct symbol));
3604 SYMBOL_NAME (sym) = common_block_name;
3605 SYMBOL_CLASS (sym) = LOC_BLOCK;
3606
3607 /* Now we copy all the symbols which have been defined since the BCOMM. */
3608
3609 /* Copy all the struct pendings before common_block. */
3610 for (next = local_symbols;
3611 next != NULL && next != common_block;
3612 next = next->next)
3613 {
3614 for (j = 0; j < next->nsyms; j++)
3615 add_symbol_to_list (next->symbol[j], &new);
3616 }
3617
3618 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3619 NULL, it means copy all the local symbols (which we already did
3620 above). */
3621
3622 if (common_block != NULL)
3623 for (j = common_block_i; j < common_block->nsyms; j++)
3624 add_symbol_to_list (common_block->symbol[j], &new);
3625
3626 SYMBOL_TYPE (sym) = (struct type *) new;
3627
3628 /* Should we be putting local_symbols back to what it was?
3629 Does it matter? */
3630
3631 i = hashname (SYMBOL_NAME (sym));
3632 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3633 global_sym_chain[i] = sym;
3634 common_block_name = NULL;
3635 }
3636
3637 /* Add a common block's start address to the offset of each symbol
3638 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3639 the common block name). */
3640
3641 static void
3642 fix_common_block (sym, valu)
3643 struct symbol *sym;
3644 int valu;
3645 {
3646 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3647 for ( ; next; next = next->next)
3648 {
3649 register int j;
3650 for (j = next->nsyms - 1; j >= 0; j--)
3651 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3652 }
3653 }
3654
3655
3656 \f
3657 /* What about types defined as forward references inside of a small lexical
3658 scope? */
3659 /* Add a type to the list of undefined types to be checked through
3660 once this file has been read in. */
3661
3662 void
3663 add_undefined_type (type)
3664 struct type *type;
3665 {
3666 if (undef_types_length == undef_types_allocated)
3667 {
3668 undef_types_allocated *= 2;
3669 undef_types = (struct type **)
3670 xrealloc ((char *) undef_types,
3671 undef_types_allocated * sizeof (struct type *));
3672 }
3673 undef_types[undef_types_length++] = type;
3674 }
3675
3676 /* Go through each undefined type, see if it's still undefined, and fix it
3677 up if possible. We have two kinds of undefined types:
3678
3679 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3680 Fix: update array length using the element bounds
3681 and the target type's length.
3682 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3683 yet defined at the time a pointer to it was made.
3684 Fix: Do a full lookup on the struct/union tag. */
3685 void
3686 cleanup_undefined_types ()
3687 {
3688 struct type **type;
3689
3690 for (type = undef_types; type < undef_types + undef_types_length; type++)
3691 {
3692 switch (TYPE_CODE (*type))
3693 {
3694
3695 case TYPE_CODE_STRUCT:
3696 case TYPE_CODE_UNION:
3697 case TYPE_CODE_ENUM:
3698 {
3699 /* Check if it has been defined since. Need to do this here
3700 as well as in check_stub_type to deal with the (legitimate in
3701 C though not C++) case of several types with the same name
3702 in different source files. */
3703 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3704 {
3705 struct pending *ppt;
3706 int i;
3707 /* Name of the type, without "struct" or "union" */
3708 char *typename = TYPE_TAG_NAME (*type);
3709
3710 if (typename == NULL)
3711 {
3712 static struct complaint msg = {"need a type name", 0, 0};
3713 complain (&msg);
3714 break;
3715 }
3716 for (ppt = file_symbols; ppt; ppt = ppt->next)
3717 {
3718 for (i = 0; i < ppt->nsyms; i++)
3719 {
3720 struct symbol *sym = ppt->symbol[i];
3721
3722 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3723 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3724 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3725 TYPE_CODE (*type))
3726 && STREQ (SYMBOL_NAME (sym), typename))
3727 {
3728 memcpy (*type, SYMBOL_TYPE (sym),
3729 sizeof (struct type));
3730 }
3731 }
3732 }
3733 }
3734 }
3735 break;
3736
3737 case TYPE_CODE_ARRAY:
3738 {
3739 /* This is a kludge which is here for historical reasons
3740 because I suspect that check_stub_type does not get
3741 called everywhere it needs to be called for arrays. Even
3742 with this kludge, those places are broken for the case
3743 where the stub type is defined in another compilation
3744 unit, but this kludge at least deals with it for the case
3745 in which it is the same compilation unit.
3746
3747 Don't try to do this by calling check_stub_type; it might
3748 cause symbols to be read in lookup_symbol, and the symbol
3749 reader is not reentrant. */
3750
3751 struct type *range_type;
3752 int lower, upper;
3753
3754 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3755 goto badtype;
3756 if (TYPE_NFIELDS (*type) != 1)
3757 goto badtype;
3758 range_type = TYPE_FIELD_TYPE (*type, 0);
3759 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3760 goto badtype;
3761
3762 /* Now recompute the length of the array type, based on its
3763 number of elements and the target type's length. */
3764 lower = TYPE_FIELD_BITPOS (range_type, 0);
3765 upper = TYPE_FIELD_BITPOS (range_type, 1);
3766 TYPE_LENGTH (*type) = (upper - lower + 1)
3767 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3768
3769 /* If the target type is not a stub, we could be clearing
3770 TYPE_FLAG_TARGET_STUB for *type. */
3771 }
3772 break;
3773
3774 default:
3775 badtype:
3776 {
3777 static struct complaint msg = {"\
3778 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3779 complain (&msg, TYPE_CODE (*type));
3780 }
3781 break;
3782 }
3783 }
3784
3785 undef_types_length = 0;
3786 }
3787
3788 /* Scan through all of the global symbols defined in the object file,
3789 assigning values to the debugging symbols that need to be assigned
3790 to. Get these symbols from the minimal symbol table. */
3791
3792 void
3793 scan_file_globals (objfile)
3794 struct objfile *objfile;
3795 {
3796 int hash;
3797 struct minimal_symbol *msymbol;
3798 struct symbol *sym, *prev;
3799
3800 if (objfile->msymbols == 0) /* Beware the null file. */
3801 return;
3802
3803 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3804 {
3805 QUIT;
3806
3807 /* Skip static symbols. */
3808 switch (MSYMBOL_TYPE (msymbol))
3809 {
3810 case mst_file_text:
3811 case mst_file_data:
3812 case mst_file_bss:
3813 continue;
3814 default:
3815 break;
3816 }
3817
3818 prev = NULL;
3819
3820 /* Get the hash index and check all the symbols
3821 under that hash index. */
3822
3823 hash = hashname (SYMBOL_NAME (msymbol));
3824
3825 for (sym = global_sym_chain[hash]; sym;)
3826 {
3827 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3828 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3829 {
3830 /* Splice this symbol out of the hash chain and
3831 assign the value we have to it. */
3832 if (prev)
3833 {
3834 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3835 }
3836 else
3837 {
3838 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3839 }
3840
3841 /* Check to see whether we need to fix up a common block. */
3842 /* Note: this code might be executed several times for
3843 the same symbol if there are multiple references. */
3844
3845 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3846 {
3847 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3848 }
3849 else
3850 {
3851 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3852 }
3853
3854 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3855
3856 if (prev)
3857 {
3858 sym = SYMBOL_VALUE_CHAIN (prev);
3859 }
3860 else
3861 {
3862 sym = global_sym_chain[hash];
3863 }
3864 }
3865 else
3866 {
3867 prev = sym;
3868 sym = SYMBOL_VALUE_CHAIN (sym);
3869 }
3870 }
3871 }
3872 }
3873
3874 /* Initialize anything that needs initializing when starting to read
3875 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3876 to a psymtab. */
3877
3878 void
3879 stabsread_init ()
3880 {
3881 }
3882
3883 /* Initialize anything that needs initializing when a completely new
3884 symbol file is specified (not just adding some symbols from another
3885 file, e.g. a shared library). */
3886
3887 void
3888 stabsread_new_init ()
3889 {
3890 /* Empty the hash table of global syms looking for values. */
3891 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3892 }
3893
3894 /* Initialize anything that needs initializing at the same time as
3895 start_symtab() is called. */
3896
3897 void start_stabs ()
3898 {
3899 global_stabs = NULL; /* AIX COFF */
3900 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3901 n_this_object_header_files = 1;
3902 type_vector_length = 0;
3903 type_vector = (struct type **) 0;
3904
3905 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3906 common_block_name = NULL;
3907
3908 os9k_stabs = 0;
3909 }
3910
3911 /* Call after end_symtab() */
3912
3913 void end_stabs ()
3914 {
3915 if (type_vector)
3916 {
3917 free ((char *) type_vector);
3918 }
3919 type_vector = 0;
3920 type_vector_length = 0;
3921 previous_stab_code = 0;
3922 }
3923
3924 void
3925 finish_global_stabs (objfile)
3926 struct objfile *objfile;
3927 {
3928 if (global_stabs)
3929 {
3930 patch_block_stabs (global_symbols, global_stabs, objfile);
3931 free ((PTR) global_stabs);
3932 global_stabs = NULL;
3933 }
3934 }
3935
3936 /* Initializer for this module */
3937
3938 void
3939 _initialize_stabsread ()
3940 {
3941 undef_types_allocated = 20;
3942 undef_types_length = 0;
3943 undef_types = (struct type **)
3944 xmalloc (undef_types_allocated * sizeof (struct type *));
3945 }
This page took 0.123188 seconds and 5 git commands to generate.