* README: Remove note about gcc warnings on alpha, these should be
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include <string.h>
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "buildsym.h"
37 #include "complaints.h"
38 #include "demangle.h"
39
40 #include <ctype.h>
41
42 /* Ask stabsread.h to define the vars it normally declares `extern'. */
43 #define EXTERN /**/
44 #include "stabsread.h" /* Our own declarations */
45 #undef EXTERN
46
47 /* The routines that read and process a complete stabs for a C struct or
48 C++ class pass lists of data member fields and lists of member function
49 fields in an instance of a field_info structure, as defined below.
50 This is part of some reorganization of low level C++ support and is
51 expected to eventually go away... (FIXME) */
52
53 struct field_info
54 {
55 struct nextfield
56 {
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65 } *list;
66 struct next_fnfieldlist
67 {
68 struct next_fnfieldlist *next;
69 struct fn_fieldlist fn_fieldlist;
70 } *fnlist;
71 };
72
73 static struct type *
74 dbx_alloc_type PARAMS ((int [2], struct objfile *));
75
76 static long read_huge_number PARAMS ((char **, int, int *));
77
78 static struct type *error_type PARAMS ((char **));
79
80 static void
81 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
82 struct objfile *));
83
84 static void
85 fix_common_block PARAMS ((struct symbol *, int));
86
87 static int
88 read_type_number PARAMS ((char **, int *));
89
90 static struct type *
91 read_range_type PARAMS ((char **, int [2], struct objfile *));
92
93 static struct type *
94 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
95
96 static struct type *
97 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
98
99 static struct type *
100 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
101
102 static struct type *
103 rs6000_builtin_type PARAMS ((int));
104
105 static int
106 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
107 struct objfile *));
108
109 static int
110 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
111 struct objfile *));
112
113 static int
114 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
115 struct objfile *));
116
117 static int
118 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
119 struct objfile *));
120
121 static int
122 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
123
124 static int
125 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
126 struct objfile *));
127
128 static struct type *
129 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
130
131 static struct type *
132 read_array_type PARAMS ((char **, struct type *, struct objfile *));
133
134 static struct type **
135 read_args PARAMS ((char **, int, struct objfile *));
136
137 static int
138 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
139 struct objfile *));
140
141 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
142 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
143
144 /* Define this as 1 if a pcc declaration of a char or short argument
145 gives the correct address. Otherwise assume pcc gives the
146 address of the corresponding int, which is not the same on a
147 big-endian machine. */
148
149 #ifndef BELIEVE_PCC_PROMOTION
150 #define BELIEVE_PCC_PROMOTION 0
151 #endif
152
153 struct complaint invalid_cpp_abbrev_complaint =
154 {"invalid C++ abbreviation `%s'", 0, 0};
155
156 struct complaint invalid_cpp_type_complaint =
157 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
158
159 struct complaint member_fn_complaint =
160 {"member function type missing, got '%c'", 0, 0};
161
162 struct complaint const_vol_complaint =
163 {"const/volatile indicator missing, got '%c'", 0, 0};
164
165 struct complaint error_type_complaint =
166 {"debug info mismatch between compiler and debugger", 0, 0};
167
168 struct complaint invalid_member_complaint =
169 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
170
171 struct complaint range_type_base_complaint =
172 {"base type %d of range type is not defined", 0, 0};
173
174 struct complaint reg_value_complaint =
175 {"register number too large in symbol %s", 0, 0};
176
177 struct complaint vtbl_notfound_complaint =
178 {"virtual function table pointer not found when defining class `%s'", 0, 0};
179
180 struct complaint unrecognized_cplus_name_complaint =
181 {"Unknown C++ symbol name `%s'", 0, 0};
182
183 struct complaint rs6000_builtin_complaint =
184 {"Unknown builtin type %d", 0, 0};
185
186 struct complaint stabs_general_complaint =
187 {"%s", 0, 0};
188
189 /* Make a list of forward references which haven't been defined. */
190
191 static struct type **undef_types;
192 static int undef_types_allocated;
193 static int undef_types_length;
194
195 /* Check for and handle cretinous stabs symbol name continuation! */
196 #define STABS_CONTINUE(pp) \
197 do { \
198 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
199 *(pp) = next_symbol_text (); \
200 } while (0)
201
202 \f
203 /* Look up a dbx type-number pair. Return the address of the slot
204 where the type for that number-pair is stored.
205 The number-pair is in TYPENUMS.
206
207 This can be used for finding the type associated with that pair
208 or for associating a new type with the pair. */
209
210 struct type **
211 dbx_lookup_type (typenums)
212 int typenums[2];
213 {
214 register int filenum = typenums[0];
215 register int index = typenums[1];
216 unsigned old_len;
217 register int real_filenum;
218 register struct header_file *f;
219 int f_orig_length;
220
221 if (filenum == -1) /* -1,-1 is for temporary types. */
222 return 0;
223
224 if (filenum < 0 || filenum >= n_this_object_header_files)
225 {
226 static struct complaint msg = {"\
227 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
228 0, 0};
229 complain (&msg, filenum, index, symnum);
230 goto error_return;
231 }
232
233 if (filenum == 0)
234 {
235 if (index < 0)
236 {
237 /* Caller wants address of address of type. We think
238 that negative (rs6k builtin) types will never appear as
239 "lvalues", (nor should they), so we stuff the real type
240 pointer into a temp, and return its address. If referenced,
241 this will do the right thing. */
242 static struct type *temp_type;
243
244 temp_type = rs6000_builtin_type(index);
245 return &temp_type;
246 }
247
248 /* Type is defined outside of header files.
249 Find it in this object file's type vector. */
250 if (index >= type_vector_length)
251 {
252 old_len = type_vector_length;
253 if (old_len == 0)
254 {
255 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
256 type_vector = (struct type **)
257 malloc (type_vector_length * sizeof (struct type *));
258 }
259 while (index >= type_vector_length)
260 {
261 type_vector_length *= 2;
262 }
263 type_vector = (struct type **)
264 xrealloc ((char *) type_vector,
265 (type_vector_length * sizeof (struct type *)));
266 memset (&type_vector[old_len], 0,
267 (type_vector_length - old_len) * sizeof (struct type *));
268 }
269 return (&type_vector[index]);
270 }
271 else
272 {
273 real_filenum = this_object_header_files[filenum];
274
275 if (real_filenum >= n_header_files)
276 {
277 struct type *temp_type;
278 struct type **temp_type_p;
279
280 warning ("GDB internal error: bad real_filenum");
281
282 error_return:
283 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
284 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
285 *temp_type_p = temp_type;
286 return temp_type_p;
287 }
288
289 f = &header_files[real_filenum];
290
291 f_orig_length = f->length;
292 if (index >= f_orig_length)
293 {
294 while (index >= f->length)
295 {
296 f->length *= 2;
297 }
298 f->vector = (struct type **)
299 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
300 memset (&f->vector[f_orig_length], 0,
301 (f->length - f_orig_length) * sizeof (struct type *));
302 }
303 return (&f->vector[index]);
304 }
305 }
306
307 /* Make sure there is a type allocated for type numbers TYPENUMS
308 and return the type object.
309 This can create an empty (zeroed) type object.
310 TYPENUMS may be (-1, -1) to return a new type object that is not
311 put into the type vector, and so may not be referred to by number. */
312
313 static struct type *
314 dbx_alloc_type (typenums, objfile)
315 int typenums[2];
316 struct objfile *objfile;
317 {
318 register struct type **type_addr;
319
320 if (typenums[0] == -1)
321 {
322 return (alloc_type (objfile));
323 }
324
325 type_addr = dbx_lookup_type (typenums);
326
327 /* If we are referring to a type not known at all yet,
328 allocate an empty type for it.
329 We will fill it in later if we find out how. */
330 if (*type_addr == 0)
331 {
332 *type_addr = alloc_type (objfile);
333 }
334
335 return (*type_addr);
336 }
337
338 /* for all the stabs in a given stab vector, build appropriate types
339 and fix their symbols in given symbol vector. */
340
341 static void
342 patch_block_stabs (symbols, stabs, objfile)
343 struct pending *symbols;
344 struct pending_stabs *stabs;
345 struct objfile *objfile;
346 {
347 int ii;
348 char *name;
349 char *pp;
350 struct symbol *sym;
351
352 if (stabs)
353 {
354
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char*) strchr (name, ':');
362 while (pp[1] == ':')
363 {
364 pp += 2;
365 pp = (char *)strchr(pp, ':');
366 }
367 sym = find_symbol_in_list (symbols, name, pp-name);
368 if (!sym)
369 {
370 /* On xcoff, if a global is defined and never referenced,
371 ld will remove it from the executable. There is then
372 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
373 sym = (struct symbol *)
374 obstack_alloc (&objfile->symbol_obstack,
375 sizeof (struct symbol));
376
377 memset (sym, 0, sizeof (struct symbol));
378 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
379 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
380 SYMBOL_NAME (sym) =
381 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
382 pp += 2;
383 if (*(pp-1) == 'F' || *(pp-1) == 'f')
384 {
385 /* I don't think the linker does this with functions,
386 so as far as I know this is never executed.
387 But it doesn't hurt to check. */
388 SYMBOL_TYPE (sym) =
389 lookup_function_type (read_type (&pp, objfile));
390 }
391 else
392 {
393 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
394 }
395 add_symbol_to_list (sym, &global_symbols);
396 }
397 else
398 {
399 pp += 2;
400 if (*(pp-1) == 'F' || *(pp-1) == 'f')
401 {
402 SYMBOL_TYPE (sym) =
403 lookup_function_type (read_type (&pp, objfile));
404 }
405 else
406 {
407 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
408 }
409 }
410 }
411 }
412 }
413
414 \f
415 /* Read a number by which a type is referred to in dbx data,
416 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
417 Just a single number N is equivalent to (0,N).
418 Return the two numbers by storing them in the vector TYPENUMS.
419 TYPENUMS will then be used as an argument to dbx_lookup_type.
420
421 Returns 0 for success, -1 for error. */
422
423 static int
424 read_type_number (pp, typenums)
425 register char **pp;
426 register int *typenums;
427 {
428 int nbits;
429 if (**pp == '(')
430 {
431 (*pp)++;
432 typenums[0] = read_huge_number (pp, ',', &nbits);
433 if (nbits != 0) return -1;
434 typenums[1] = read_huge_number (pp, ')', &nbits);
435 if (nbits != 0) return -1;
436 }
437 else
438 {
439 typenums[0] = 0;
440 typenums[1] = read_huge_number (pp, 0, &nbits);
441 if (nbits != 0) return -1;
442 }
443 return 0;
444 }
445
446 \f
447 /* To handle GNU C++ typename abbreviation, we need to be able to
448 fill in a type's name as soon as space for that type is allocated.
449 `type_synonym_name' is the name of the type being allocated.
450 It is cleared as soon as it is used (lest all allocated types
451 get this name). */
452
453 static char *type_synonym_name;
454
455 #if !defined (REG_STRUCT_HAS_ADDR)
456 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
457 #endif
458
459 /* ARGSUSED */
460 struct symbol *
461 define_symbol (valu, string, desc, type, objfile)
462 CORE_ADDR valu;
463 char *string;
464 int desc;
465 int type;
466 struct objfile *objfile;
467 {
468 register struct symbol *sym;
469 char *p = (char *) strchr (string, ':');
470 int deftype;
471 int synonym = 0;
472 register int i;
473
474 /* We would like to eliminate nameless symbols, but keep their types.
475 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
476 to type 2, but, should not create a symbol to address that type. Since
477 the symbol will be nameless, there is no way any user can refer to it. */
478
479 int nameless;
480
481 /* Ignore syms with empty names. */
482 if (string[0] == 0)
483 return 0;
484
485 /* Ignore old-style symbols from cc -go */
486 if (p == 0)
487 return 0;
488
489 while (p[1] == ':')
490 {
491 p += 2;
492 p = strchr(p, ':');
493 }
494
495 /* If a nameless stab entry, all we need is the type, not the symbol.
496 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
497 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
498
499 sym = (struct symbol *)
500 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
501 memset (sym, 0, sizeof (struct symbol));
502
503 if (processing_gcc_compilation)
504 {
505 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
506 number of bytes occupied by a type or object, which we ignore. */
507 SYMBOL_LINE(sym) = desc;
508 }
509 else
510 {
511 SYMBOL_LINE(sym) = 0; /* unknown */
512 }
513
514 if (string[0] == CPLUS_MARKER)
515 {
516 /* Special GNU C++ names. */
517 switch (string[1])
518 {
519 case 't':
520 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
521 &objfile -> symbol_obstack);
522 break;
523
524 case 'v': /* $vtbl_ptr_type */
525 /* Was: SYMBOL_NAME (sym) = "vptr"; */
526 goto normal;
527
528 case 'e':
529 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
530 &objfile -> symbol_obstack);
531 break;
532
533 case '_':
534 /* This was an anonymous type that was never fixed up. */
535 goto normal;
536
537 default:
538 complain (&unrecognized_cplus_name_complaint, string);
539 goto normal; /* Do *something* with it */
540 }
541 }
542 else
543 {
544 normal:
545 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
546 SYMBOL_NAME (sym) = (char *)
547 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
548 /* Open-coded memcpy--saves function call time. */
549 /* FIXME: Does it really? Try replacing with simple strcpy and
550 try it on an executable with a large symbol table. */
551 /* FIXME: considering that gcc can open code memcpy anyway, I
552 doubt it. xoxorich. */
553 {
554 register char *p1 = string;
555 register char *p2 = SYMBOL_NAME (sym);
556 while (p1 != p)
557 {
558 *p2++ = *p1++;
559 }
560 *p2++ = '\0';
561 }
562
563 /* If this symbol is from a C++ compilation, then attempt to cache the
564 demangled form for future reference. This is a typical time versus
565 space tradeoff, that was decided in favor of time because it sped up
566 C++ symbol lookups by a factor of about 20. */
567
568 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
569 }
570 p++;
571
572 /* Determine the type of name being defined. */
573 #if 0
574 /* Getting GDB to correctly skip the symbol on an undefined symbol
575 descriptor and not ever dump core is a very dodgy proposition if
576 we do things this way. I say the acorn RISC machine can just
577 fix their compiler. */
578 /* The Acorn RISC machine's compiler can put out locals that don't
579 start with "234=" or "(3,4)=", so assume anything other than the
580 deftypes we know how to handle is a local. */
581 if (!strchr ("cfFGpPrStTvVXCR", *p))
582 #else
583 if (isdigit (*p) || *p == '(' || *p == '-')
584 #endif
585 deftype = 'l';
586 else
587 deftype = *p++;
588
589 switch (deftype)
590 {
591 case 'c':
592 /* c is a special case, not followed by a type-number.
593 SYMBOL:c=iVALUE for an integer constant symbol.
594 SYMBOL:c=rVALUE for a floating constant symbol.
595 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
596 e.g. "b:c=e6,0" for "const b = blob1"
597 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
598 if (*p != '=')
599 {
600 SYMBOL_CLASS (sym) = LOC_CONST;
601 SYMBOL_TYPE (sym) = error_type (&p);
602 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
603 add_symbol_to_list (sym, &file_symbols);
604 return sym;
605 }
606 ++p;
607 switch (*p++)
608 {
609 case 'r':
610 {
611 double d = atof (p);
612 char *dbl_valu;
613
614 /* FIXME-if-picky-about-floating-accuracy: Should be using
615 target arithmetic to get the value. real.c in GCC
616 probably has the necessary code. */
617
618 /* FIXME: lookup_fundamental_type is a hack. We should be
619 creating a type especially for the type of float constants.
620 Problem is, what type should it be?
621
622 Also, what should the name of this type be? Should we
623 be using 'S' constants (see stabs.texinfo) instead? */
624
625 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
626 FT_DBL_PREC_FLOAT);
627 dbl_valu = (char *)
628 obstack_alloc (&objfile -> symbol_obstack,
629 TYPE_LENGTH (SYMBOL_TYPE (sym)));
630 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
631 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
632 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
633 }
634 break;
635 case 'i':
636 {
637 /* Defining integer constants this way is kind of silly,
638 since 'e' constants allows the compiler to give not
639 only the value, but the type as well. C has at least
640 int, long, unsigned int, and long long as constant
641 types; other languages probably should have at least
642 unsigned as well as signed constants. */
643
644 /* We just need one int constant type for all objfiles.
645 It doesn't depend on languages or anything (arguably its
646 name should be a language-specific name for a type of
647 that size, but I'm inclined to say that if the compiler
648 wants a nice name for the type, it can use 'e'). */
649 static struct type *int_const_type;
650
651 /* Yes, this is as long as a *host* int. That is because we
652 use atoi. */
653 if (int_const_type == NULL)
654 int_const_type =
655 init_type (TYPE_CODE_INT,
656 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
657 "integer constant",
658 (struct objfile *)NULL);
659 SYMBOL_TYPE (sym) = int_const_type;
660 SYMBOL_VALUE (sym) = atoi (p);
661 SYMBOL_CLASS (sym) = LOC_CONST;
662 }
663 break;
664 case 'e':
665 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
666 can be represented as integral.
667 e.g. "b:c=e6,0" for "const b = blob1"
668 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
669 {
670 SYMBOL_CLASS (sym) = LOC_CONST;
671 SYMBOL_TYPE (sym) = read_type (&p, objfile);
672
673 if (*p != ',')
674 {
675 SYMBOL_TYPE (sym) = error_type (&p);
676 break;
677 }
678 ++p;
679
680 /* If the value is too big to fit in an int (perhaps because
681 it is unsigned), or something like that, we silently get
682 a bogus value. The type and everything else about it is
683 correct. Ideally, we should be using whatever we have
684 available for parsing unsigned and long long values,
685 however. */
686 SYMBOL_VALUE (sym) = atoi (p);
687 }
688 break;
689 default:
690 {
691 SYMBOL_CLASS (sym) = LOC_CONST;
692 SYMBOL_TYPE (sym) = error_type (&p);
693 }
694 }
695 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
696 add_symbol_to_list (sym, &file_symbols);
697 return sym;
698
699 case 'C':
700 /* The name of a caught exception. */
701 SYMBOL_TYPE (sym) = read_type (&p, objfile);
702 SYMBOL_CLASS (sym) = LOC_LABEL;
703 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
704 SYMBOL_VALUE_ADDRESS (sym) = valu;
705 add_symbol_to_list (sym, &local_symbols);
706 break;
707
708 case 'f':
709 /* A static function definition. */
710 SYMBOL_TYPE (sym) = read_type (&p, objfile);
711 SYMBOL_CLASS (sym) = LOC_BLOCK;
712 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
713 add_symbol_to_list (sym, &file_symbols);
714 /* fall into process_function_types. */
715
716 process_function_types:
717 /* Function result types are described as the result type in stabs.
718 We need to convert this to the function-returning-type-X type
719 in GDB. E.g. "int" is converted to "function returning int". */
720 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
721 {
722 #if 0
723 /* This code doesn't work -- it needs to realloc and can't. */
724 /* Attempt to set up to record a function prototype... */
725 struct type *new = alloc_type (objfile);
726
727 /* Generate a template for the type of this function. The
728 types of the arguments will be added as we read the symbol
729 table. */
730 *new = *lookup_function_type (SYMBOL_TYPE(sym));
731 SYMBOL_TYPE(sym) = new;
732 TYPE_OBJFILE (new) = objfile;
733 in_function_type = new;
734 #else
735 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
736 #endif
737 }
738 /* fall into process_prototype_types */
739
740 process_prototype_types:
741 /* Sun acc puts declared types of arguments here. We don't care
742 about their actual types (FIXME -- we should remember the whole
743 function prototype), but the list may define some new types
744 that we have to remember, so we must scan it now. */
745 while (*p == ';') {
746 p++;
747 read_type (&p, objfile);
748 }
749 break;
750
751 case 'F':
752 /* A global function definition. */
753 SYMBOL_TYPE (sym) = read_type (&p, objfile);
754 SYMBOL_CLASS (sym) = LOC_BLOCK;
755 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
756 add_symbol_to_list (sym, &global_symbols);
757 goto process_function_types;
758
759 case 'G':
760 /* For a class G (global) symbol, it appears that the
761 value is not correct. It is necessary to search for the
762 corresponding linker definition to find the value.
763 These definitions appear at the end of the namelist. */
764 SYMBOL_TYPE (sym) = read_type (&p, objfile);
765 i = hashname (SYMBOL_NAME (sym));
766 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
767 global_sym_chain[i] = sym;
768 SYMBOL_CLASS (sym) = LOC_STATIC;
769 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
770 add_symbol_to_list (sym, &global_symbols);
771 break;
772
773 /* This case is faked by a conditional above,
774 when there is no code letter in the dbx data.
775 Dbx data never actually contains 'l'. */
776 case 'l':
777 SYMBOL_TYPE (sym) = read_type (&p, objfile);
778 SYMBOL_CLASS (sym) = LOC_LOCAL;
779 SYMBOL_VALUE (sym) = valu;
780 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
781 add_symbol_to_list (sym, &local_symbols);
782 break;
783
784 case 'p':
785 if (*p == 'F')
786 /* pF is a two-letter code that means a function parameter in Fortran.
787 The type-number specifies the type of the return value.
788 Translate it into a pointer-to-function type. */
789 {
790 p++;
791 SYMBOL_TYPE (sym)
792 = lookup_pointer_type
793 (lookup_function_type (read_type (&p, objfile)));
794 }
795 else
796 SYMBOL_TYPE (sym) = read_type (&p, objfile);
797
798 /* Normally this is a parameter, a LOC_ARG. On the i960, it
799 can also be a LOC_LOCAL_ARG depending on symbol type. */
800 #ifndef DBX_PARM_SYMBOL_CLASS
801 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
802 #endif
803
804 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
805 SYMBOL_VALUE (sym) = valu;
806 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
807 #if 0
808 /* This doesn't work yet. */
809 add_param_to_type (&in_function_type, sym);
810 #endif
811 add_symbol_to_list (sym, &local_symbols);
812
813 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
814 /* On little-endian machines, this crud is never necessary, and,
815 if the extra bytes contain garbage, is harmful. */
816 break;
817 #else /* Big endian. */
818 /* If it's gcc-compiled, if it says `short', believe it. */
819 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
820 break;
821
822 #if !BELIEVE_PCC_PROMOTION
823 {
824 /* This is the signed type which arguments get promoted to. */
825 static struct type *pcc_promotion_type;
826 /* This is the unsigned type which arguments get promoted to. */
827 static struct type *pcc_unsigned_promotion_type;
828
829 /* Call it "int" because this is mainly C lossage. */
830 if (pcc_promotion_type == NULL)
831 pcc_promotion_type =
832 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
833 0, "int", NULL);
834
835 if (pcc_unsigned_promotion_type == NULL)
836 pcc_unsigned_promotion_type =
837 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
838 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
839
840 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
841 /* This macro is defined on machines (e.g. sparc) where
842 we should believe the type of a PCC 'short' argument,
843 but shouldn't believe the address (the address is
844 the address of the corresponding int).
845
846 My guess is that this correction, as opposed to changing
847 the parameter to an 'int' (as done below, for PCC
848 on most machines), is the right thing to do
849 on all machines, but I don't want to risk breaking
850 something that already works. On most PCC machines,
851 the sparc problem doesn't come up because the calling
852 function has to zero the top bytes (not knowing whether
853 the called function wants an int or a short), so there
854 is little practical difference between an int and a short
855 (except perhaps what happens when the GDB user types
856 "print short_arg = 0x10000;").
857
858 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
859 actually produces the correct address (we don't need to fix it
860 up). I made this code adapt so that it will offset the symbol
861 if it was pointing at an int-aligned location and not
862 otherwise. This way you can use the same gdb for 4.0.x and
863 4.1 systems.
864
865 If the parameter is shorter than an int, and is integral
866 (e.g. char, short, or unsigned equivalent), and is claimed to
867 be passed on an integer boundary, don't believe it! Offset the
868 parameter's address to the tail-end of that integer. */
869
870 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
871 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
872 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
873 {
874 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
875 - TYPE_LENGTH (SYMBOL_TYPE (sym));
876 }
877 break;
878
879 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
880
881 /* If PCC says a parameter is a short or a char,
882 it is really an int. */
883 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
884 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
885 {
886 SYMBOL_TYPE (sym) =
887 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
888 ? pcc_unsigned_promotion_type
889 : pcc_promotion_type;
890 }
891 break;
892
893 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
894 }
895 #endif /* !BELIEVE_PCC_PROMOTION. */
896 #endif /* Big endian. */
897
898 case 'P':
899 /* acc seems to use P to delare the prototypes of functions that
900 are referenced by this file. gdb is not prepared to deal
901 with this extra information. FIXME, it ought to. */
902 if (type == N_FUN)
903 {
904 read_type (&p, objfile);
905 goto process_prototype_types;
906 }
907 /*FALLTHROUGH*/
908
909 case 'R':
910 /* Parameter which is in a register. */
911 SYMBOL_TYPE (sym) = read_type (&p, objfile);
912 SYMBOL_CLASS (sym) = LOC_REGPARM;
913 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
914 if (SYMBOL_VALUE (sym) >= NUM_REGS)
915 {
916 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
917 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
918 }
919 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
920 add_symbol_to_list (sym, &local_symbols);
921 break;
922
923 case 'r':
924 /* Register variable (either global or local). */
925 SYMBOL_TYPE (sym) = read_type (&p, objfile);
926 SYMBOL_CLASS (sym) = LOC_REGISTER;
927 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
928 if (SYMBOL_VALUE (sym) >= NUM_REGS)
929 {
930 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
931 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
932 }
933 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
934 if (within_function)
935 {
936 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
937 name to represent an argument passed in a register.
938 GCC uses 'P' for the same case. So if we find such a symbol pair
939 we combine it into one 'P' symbol.
940
941 But we only do this in the REG_STRUCT_HAS_ADDR case, so that
942 we can still get information about what is going on with the
943 stack (VAX for computing args_printed, using stack slots instead
944 of saved registers in backtraces, etc.).
945
946 Note that this code illegally combines
947 main(argc) struct foo argc; { register struct foo argc; }
948 but this case is considered pathological and causes a warning
949 from a decent compiler. */
950
951 if (local_symbols
952 && local_symbols->nsyms > 0
953 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
954 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
955 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION))
956 {
957 struct symbol *prev_sym;
958 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
959 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
960 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
961 {
962 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
963 /* Use the type from the LOC_REGISTER; that is the type
964 that is actually in that register. */
965 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
966 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
967 sym = prev_sym;
968 break;
969 }
970 }
971 add_symbol_to_list (sym, &local_symbols);
972 }
973 else
974 add_symbol_to_list (sym, &file_symbols);
975 break;
976
977 case 'S':
978 /* Static symbol at top level of file */
979 SYMBOL_TYPE (sym) = read_type (&p, objfile);
980 SYMBOL_CLASS (sym) = LOC_STATIC;
981 SYMBOL_VALUE_ADDRESS (sym) = valu;
982 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
983 add_symbol_to_list (sym, &file_symbols);
984 break;
985
986 case 't':
987 SYMBOL_TYPE (sym) = read_type (&p, objfile);
988
989 /* For a nameless type, we don't want a create a symbol, thus we
990 did not use `sym'. Return without further processing. */
991 if (nameless) return NULL;
992
993 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
994 SYMBOL_VALUE (sym) = valu;
995 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
996 /* C++ vagaries: we may have a type which is derived from
997 a base type which did not have its name defined when the
998 derived class was output. We fill in the derived class's
999 base part member's name here in that case. */
1000 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1001 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1002 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1003 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1004 {
1005 int j;
1006 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1007 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1008 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1009 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1010 }
1011
1012 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1013 {
1014 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1015 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1016 {
1017 /* If we are giving a name to a type such as "pointer to
1018 foo" or "function returning foo", we better not set
1019 the TYPE_NAME. If the program contains "typedef char
1020 *caddr_t;", we don't want all variables of type char
1021 * to print as caddr_t. This is not just a
1022 consequence of GDB's type management; PCC and GCC (at
1023 least through version 2.4) both output variables of
1024 either type char * or caddr_t with the type number
1025 defined in the 't' symbol for caddr_t. If a future
1026 compiler cleans this up it GDB is not ready for it
1027 yet, but if it becomes ready we somehow need to
1028 disable this check (without breaking the PCC/GCC2.4
1029 case).
1030
1031 Sigh.
1032
1033 Fortunately, this check seems not to be necessary
1034 for anything except pointers or functions. */
1035 }
1036 else
1037 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1038 }
1039
1040 add_symbol_to_list (sym, &file_symbols);
1041 break;
1042
1043 case 'T':
1044 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1045 by 't' which means we are typedef'ing it as well. */
1046 synonym = *p == 't';
1047
1048 if (synonym)
1049 {
1050 p++;
1051 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1052 strlen (SYMBOL_NAME (sym)),
1053 &objfile -> symbol_obstack);
1054 }
1055 /* The semantics of C++ state that "struct foo { ... }" also defines
1056 a typedef for "foo". Unfortunately, cfront never makes the typedef
1057 when translating C++ into C. We make the typedef here so that
1058 "ptype foo" works as expected for cfront translated code. */
1059 else if (current_subfile->language == language_cplus)
1060 {
1061 synonym = 1;
1062 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1063 strlen (SYMBOL_NAME (sym)),
1064 &objfile -> symbol_obstack);
1065 }
1066
1067 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1068
1069 /* For a nameless type, we don't want a create a symbol, thus we
1070 did not use `sym'. Return without further processing. */
1071 if (nameless) return NULL;
1072
1073 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1074 SYMBOL_VALUE (sym) = valu;
1075 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1076 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1077 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1078 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1079 add_symbol_to_list (sym, &file_symbols);
1080
1081 if (synonym)
1082 {
1083 /* Clone the sym and then modify it. */
1084 register struct symbol *typedef_sym = (struct symbol *)
1085 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1086 *typedef_sym = *sym;
1087 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1088 SYMBOL_VALUE (typedef_sym) = valu;
1089 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1090 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1091 TYPE_NAME (SYMBOL_TYPE (sym))
1092 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1093 add_symbol_to_list (typedef_sym, &file_symbols);
1094 }
1095 break;
1096
1097 case 'V':
1098 /* Static symbol of local scope */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100 SYMBOL_CLASS (sym) = LOC_STATIC;
1101 SYMBOL_VALUE_ADDRESS (sym) = valu;
1102 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1103 add_symbol_to_list (sym, &local_symbols);
1104 break;
1105
1106 case 'v':
1107 /* Reference parameter */
1108 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1109 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1110 SYMBOL_VALUE (sym) = valu;
1111 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1112 add_symbol_to_list (sym, &local_symbols);
1113 break;
1114
1115 case 'X':
1116 /* This is used by Sun FORTRAN for "function result value".
1117 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1118 that Pascal uses it too, but when I tried it Pascal used
1119 "x:3" (local symbol) instead. */
1120 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1121 SYMBOL_CLASS (sym) = LOC_LOCAL;
1122 SYMBOL_VALUE (sym) = valu;
1123 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1124 add_symbol_to_list (sym, &local_symbols);
1125 break;
1126
1127 default:
1128 SYMBOL_TYPE (sym) = error_type (&p);
1129 SYMBOL_CLASS (sym) = LOC_CONST;
1130 SYMBOL_VALUE (sym) = 0;
1131 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1132 add_symbol_to_list (sym, &file_symbols);
1133 break;
1134 }
1135
1136 /* When passing structures to a function, some systems sometimes pass
1137 the address in a register, not the structure itself.
1138
1139 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1140 to LOC_REGPARM_ADDR for structures and unions. */
1141
1142 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1143 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1144 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1145 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1146 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1147
1148 return sym;
1149 }
1150
1151 \f
1152 /* Skip rest of this symbol and return an error type.
1153
1154 General notes on error recovery: error_type always skips to the
1155 end of the symbol (modulo cretinous dbx symbol name continuation).
1156 Thus code like this:
1157
1158 if (*(*pp)++ != ';')
1159 return error_type (pp);
1160
1161 is wrong because if *pp starts out pointing at '\0' (typically as the
1162 result of an earlier error), it will be incremented to point to the
1163 start of the next symbol, which might produce strange results, at least
1164 if you run off the end of the string table. Instead use
1165
1166 if (**pp != ';')
1167 return error_type (pp);
1168 ++*pp;
1169
1170 or
1171
1172 if (**pp != ';')
1173 foo = error_type (pp);
1174 else
1175 ++*pp;
1176
1177 And in case it isn't obvious, the point of all this hair is so the compiler
1178 can define new types and new syntaxes, and old versions of the
1179 debugger will be able to read the new symbol tables. */
1180
1181 static struct type *
1182 error_type (pp)
1183 char **pp;
1184 {
1185 complain (&error_type_complaint);
1186 while (1)
1187 {
1188 /* Skip to end of symbol. */
1189 while (**pp != '\0')
1190 {
1191 (*pp)++;
1192 }
1193
1194 /* Check for and handle cretinous dbx symbol name continuation! */
1195 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1196 {
1197 *pp = next_symbol_text ();
1198 }
1199 else
1200 {
1201 break;
1202 }
1203 }
1204 return (builtin_type_error);
1205 }
1206
1207 \f
1208 /* Read type information or a type definition; return the type. Even
1209 though this routine accepts either type information or a type
1210 definition, the distinction is relevant--some parts of stabsread.c
1211 assume that type information starts with a digit, '-', or '(' in
1212 deciding whether to call read_type. */
1213
1214 struct type *
1215 read_type (pp, objfile)
1216 register char **pp;
1217 struct objfile *objfile;
1218 {
1219 register struct type *type = 0;
1220 struct type *type1;
1221 int typenums[2];
1222 int xtypenums[2];
1223 char type_descriptor;
1224
1225 /* Size in bits of type if specified by a type attribute, or -1 if
1226 there is no size attribute. */
1227 int type_size = -1;
1228
1229 /* Used to distinguish string and bitstring from char-array and set. */
1230 int is_string = 0;
1231
1232 /* Read type number if present. The type number may be omitted.
1233 for instance in a two-dimensional array declared with type
1234 "ar1;1;10;ar1;1;10;4". */
1235 if ((**pp >= '0' && **pp <= '9')
1236 || **pp == '('
1237 || **pp == '-')
1238 {
1239 if (read_type_number (pp, typenums) != 0)
1240 return error_type (pp);
1241
1242 /* Type is not being defined here. Either it already exists,
1243 or this is a forward reference to it. dbx_alloc_type handles
1244 both cases. */
1245 if (**pp != '=')
1246 return dbx_alloc_type (typenums, objfile);
1247
1248 /* Type is being defined here. */
1249 /* Skip the '='. */
1250 ++(*pp);
1251
1252 while (**pp == '@')
1253 {
1254 char *p = *pp + 1;
1255 /* It might be a type attribute or a member type. */
1256 if (isdigit (*p) || *p == '(' || *p == '-')
1257 /* Member type. */
1258 break;
1259 else
1260 {
1261 /* Type attributes. */
1262 char *attr = p;
1263
1264 /* Skip to the semicolon. */
1265 while (*p != ';' && *p != '\0')
1266 ++p;
1267 *pp = p;
1268 if (*p == '\0')
1269 return error_type (pp);
1270 else
1271 /* Skip the semicolon. */
1272 ++*pp;
1273
1274 switch (*attr)
1275 {
1276 case 's':
1277 type_size = atoi (attr + 1);
1278 if (type_size <= 0)
1279 type_size = -1;
1280 break;
1281
1282 case 'S':
1283 is_string = 1;
1284 break;
1285
1286 default:
1287 /* Ignore unrecognized type attributes, so future compilers
1288 can invent new ones. */
1289 break;
1290 }
1291 }
1292 }
1293 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1294 ++(*pp);
1295 }
1296 else
1297 {
1298 /* 'typenums=' not present, type is anonymous. Read and return
1299 the definition, but don't put it in the type vector. */
1300 typenums[0] = typenums[1] = -1;
1301 (*pp)++;
1302 }
1303
1304 type_descriptor = (*pp)[-1];
1305 switch (type_descriptor)
1306 {
1307 case 'x':
1308 {
1309 enum type_code code;
1310
1311 /* Used to index through file_symbols. */
1312 struct pending *ppt;
1313 int i;
1314
1315 /* Name including "struct", etc. */
1316 char *type_name;
1317
1318 {
1319 char *from, *to, *p, *q1, *q2;
1320
1321 /* Set the type code according to the following letter. */
1322 switch ((*pp)[0])
1323 {
1324 case 's':
1325 code = TYPE_CODE_STRUCT;
1326 break;
1327 case 'u':
1328 code = TYPE_CODE_UNION;
1329 break;
1330 case 'e':
1331 code = TYPE_CODE_ENUM;
1332 break;
1333 default:
1334 {
1335 /* Complain and keep going, so compilers can invent new
1336 cross-reference types. */
1337 static struct complaint msg =
1338 {"Unrecognized cross-reference type `%c'", 0, 0};
1339 complain (&msg, (*pp)[0]);
1340 code = TYPE_CODE_STRUCT;
1341 break;
1342 }
1343 }
1344
1345 q1 = strchr(*pp, '<');
1346 p = strchr(*pp, ':');
1347 if (p == NULL)
1348 return error_type (pp);
1349 while (q1 && p > q1 && p[1] == ':')
1350 {
1351 q2 = strchr(q1, '>');
1352 if (!q2 || q2 < p)
1353 break;
1354 p += 2;
1355 p = strchr(p, ':');
1356 if (p == NULL)
1357 return error_type (pp);
1358 }
1359 to = type_name =
1360 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1361
1362 /* Copy the name. */
1363 from = *pp + 1;
1364 while (from < p)
1365 *to++ = *from++;
1366 *to = '\0';
1367
1368 /* Set the pointer ahead of the name which we just read, and
1369 the colon. */
1370 *pp = from + 1;
1371 }
1372
1373 /* Now check to see whether the type has already been
1374 declared. This was written for arrays of cross-referenced
1375 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1376 sure it is not necessary anymore. But it might be a good
1377 idea, to save a little memory. */
1378
1379 for (ppt = file_symbols; ppt; ppt = ppt->next)
1380 for (i = 0; i < ppt->nsyms; i++)
1381 {
1382 struct symbol *sym = ppt->symbol[i];
1383
1384 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1385 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1386 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1387 && STREQ (SYMBOL_NAME (sym), type_name))
1388 {
1389 obstack_free (&objfile -> type_obstack, type_name);
1390 type = SYMBOL_TYPE (sym);
1391 return type;
1392 }
1393 }
1394
1395 /* Didn't find the type to which this refers, so we must
1396 be dealing with a forward reference. Allocate a type
1397 structure for it, and keep track of it so we can
1398 fill in the rest of the fields when we get the full
1399 type. */
1400 type = dbx_alloc_type (typenums, objfile);
1401 TYPE_CODE (type) = code;
1402 TYPE_TAG_NAME (type) = type_name;
1403 INIT_CPLUS_SPECIFIC(type);
1404 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1405
1406 add_undefined_type (type);
1407 return type;
1408 }
1409
1410 case '-': /* RS/6000 built-in type */
1411 case '0':
1412 case '1':
1413 case '2':
1414 case '3':
1415 case '4':
1416 case '5':
1417 case '6':
1418 case '7':
1419 case '8':
1420 case '9':
1421 case '(':
1422
1423 {
1424 char *pp_saved;
1425
1426 (*pp)--;
1427 pp_saved = *pp;
1428
1429 /* Peek ahead at the number to detect void. */
1430 if (read_type_number (pp, xtypenums) != 0)
1431 return error_type (pp);
1432
1433 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1434 /* It's being defined as itself. That means it is "void". */
1435 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1436 else
1437 {
1438 struct type *xtype;
1439
1440 /* Go back to the number and have read_type get it. This means
1441 that we can deal with something like t(1,2)=(3,4)=... which
1442 the Lucid compiler uses. */
1443 *pp = pp_saved;
1444 xtype = read_type (pp, objfile);
1445
1446 /* The type is being defined to another type. So we copy the type.
1447 This loses if we copy a C++ class and so we lose track of how
1448 the names are mangled (but g++ doesn't output stabs like this
1449 now anyway). */
1450
1451 type = alloc_type (objfile);
1452 memcpy (type, xtype, sizeof (struct type));
1453
1454 /* The idea behind clearing the names is that the only purpose
1455 for defining a type to another type is so that the name of
1456 one can be different. So we probably don't need to worry much
1457 about the case where the compiler doesn't give a name to the
1458 new type. */
1459 TYPE_NAME (type) = NULL;
1460 TYPE_TAG_NAME (type) = NULL;
1461 }
1462 if (typenums[0] != -1)
1463 *dbx_lookup_type (typenums) = type;
1464 break;
1465 }
1466
1467 /* In the following types, we must be sure to overwrite any existing
1468 type that the typenums refer to, rather than allocating a new one
1469 and making the typenums point to the new one. This is because there
1470 may already be pointers to the existing type (if it had been
1471 forward-referenced), and we must change it to a pointer, function,
1472 reference, or whatever, *in-place*. */
1473
1474 case '*':
1475 type1 = read_type (pp, objfile);
1476 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1477 break;
1478
1479 case '&': /* Reference to another type */
1480 type1 = read_type (pp, objfile);
1481 type = make_reference_type (type1, dbx_lookup_type (typenums));
1482 break;
1483
1484 case 'f': /* Function returning another type */
1485 type1 = read_type (pp, objfile);
1486 type = make_function_type (type1, dbx_lookup_type (typenums));
1487 break;
1488
1489 case 'k': /* Const qualifier on some type (Sun) */
1490 type = read_type (pp, objfile);
1491 /* FIXME! For now, we ignore const and volatile qualifiers. */
1492 break;
1493
1494 case 'B': /* Volatile qual on some type (Sun) */
1495 type = read_type (pp, objfile);
1496 /* FIXME! For now, we ignore const and volatile qualifiers. */
1497 break;
1498
1499 /* FIXME -- we should be doing smash_to_XXX types here. */
1500 case '@': /* Member (class & variable) type */
1501 {
1502 struct type *domain = read_type (pp, objfile);
1503 struct type *memtype;
1504
1505 if (**pp != ',')
1506 /* Invalid member type data format. */
1507 return error_type (pp);
1508 ++*pp;
1509
1510 memtype = read_type (pp, objfile);
1511 type = dbx_alloc_type (typenums, objfile);
1512 smash_to_member_type (type, domain, memtype);
1513 }
1514 break;
1515
1516 case '#': /* Method (class & fn) type */
1517 if ((*pp)[0] == '#')
1518 {
1519 /* We'll get the parameter types from the name. */
1520 struct type *return_type;
1521
1522 (*pp)++;
1523 return_type = read_type (pp, objfile);
1524 if (*(*pp)++ != ';')
1525 complain (&invalid_member_complaint, symnum);
1526 type = allocate_stub_method (return_type);
1527 if (typenums[0] != -1)
1528 *dbx_lookup_type (typenums) = type;
1529 }
1530 else
1531 {
1532 struct type *domain = read_type (pp, objfile);
1533 struct type *return_type;
1534 struct type **args;
1535
1536 if (**pp != ',')
1537 /* Invalid member type data format. */
1538 return error_type (pp);
1539 else
1540 ++(*pp);
1541
1542 return_type = read_type (pp, objfile);
1543 args = read_args (pp, ';', objfile);
1544 type = dbx_alloc_type (typenums, objfile);
1545 smash_to_method_type (type, domain, return_type, args);
1546 }
1547 break;
1548
1549 case 'r': /* Range type */
1550 type = read_range_type (pp, typenums, objfile);
1551 if (typenums[0] != -1)
1552 *dbx_lookup_type (typenums) = type;
1553 break;
1554
1555 case 'b': /* Sun ACC builtin int type */
1556 type = read_sun_builtin_type (pp, typenums, objfile);
1557 if (typenums[0] != -1)
1558 *dbx_lookup_type (typenums) = type;
1559 break;
1560
1561 case 'R': /* Sun ACC builtin float type */
1562 type = read_sun_floating_type (pp, typenums, objfile);
1563 if (typenums[0] != -1)
1564 *dbx_lookup_type (typenums) = type;
1565 break;
1566
1567 case 'e': /* Enumeration type */
1568 type = dbx_alloc_type (typenums, objfile);
1569 type = read_enum_type (pp, type, objfile);
1570 if (typenums[0] != -1)
1571 *dbx_lookup_type (typenums) = type;
1572 break;
1573
1574 case 's': /* Struct type */
1575 case 'u': /* Union type */
1576 type = dbx_alloc_type (typenums, objfile);
1577 if (!TYPE_NAME (type))
1578 {
1579 TYPE_NAME (type) = type_synonym_name;
1580 }
1581 type_synonym_name = NULL;
1582 switch (type_descriptor)
1583 {
1584 case 's':
1585 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1586 break;
1587 case 'u':
1588 TYPE_CODE (type) = TYPE_CODE_UNION;
1589 break;
1590 }
1591 type = read_struct_type (pp, type, objfile);
1592 break;
1593
1594 case 'a': /* Array type */
1595 if (**pp != 'r')
1596 return error_type (pp);
1597 ++*pp;
1598
1599 type = dbx_alloc_type (typenums, objfile);
1600 type = read_array_type (pp, type, objfile);
1601 if (is_string)
1602 TYPE_CODE (type) = TYPE_CODE_STRING;
1603 break;
1604
1605 case 'S':
1606 type1 = read_type (pp, objfile);
1607 type = create_set_type ((struct type*) NULL, type1);
1608 if (is_string)
1609 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1610 if (typenums[0] != -1)
1611 *dbx_lookup_type (typenums) = type;
1612 break;
1613
1614 default:
1615 --*pp; /* Go back to the symbol in error */
1616 /* Particularly important if it was \0! */
1617 return error_type (pp);
1618 }
1619
1620 if (type == 0)
1621 {
1622 warning ("GDB internal error, type is NULL in stabsread.c\n");
1623 return error_type (pp);
1624 }
1625
1626 /* Size specified in a type attribute overrides any other size. */
1627 if (type_size != -1)
1628 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1629
1630 return type;
1631 }
1632 \f
1633 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1634 Return the proper type node for a given builtin type number. */
1635
1636 static struct type *
1637 rs6000_builtin_type (typenum)
1638 int typenum;
1639 {
1640 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1641 #define NUMBER_RECOGNIZED 30
1642 /* This includes an empty slot for type number -0. */
1643 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1644 struct type *rettype = NULL;
1645
1646 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1647 {
1648 complain (&rs6000_builtin_complaint, typenum);
1649 return builtin_type_error;
1650 }
1651 if (negative_types[-typenum] != NULL)
1652 return negative_types[-typenum];
1653
1654 #if TARGET_CHAR_BIT != 8
1655 #error This code wrong for TARGET_CHAR_BIT not 8
1656 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1657 that if that ever becomes not true, the correct fix will be to
1658 make the size in the struct type to be in bits, not in units of
1659 TARGET_CHAR_BIT. */
1660 #endif
1661
1662 switch (-typenum)
1663 {
1664 case 1:
1665 /* The size of this and all the other types are fixed, defined
1666 by the debugging format. If there is a type called "int" which
1667 is other than 32 bits, then it should use a new negative type
1668 number (or avoid negative type numbers for that case).
1669 See stabs.texinfo. */
1670 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1671 break;
1672 case 2:
1673 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1674 break;
1675 case 3:
1676 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1677 break;
1678 case 4:
1679 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1680 break;
1681 case 5:
1682 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1683 "unsigned char", NULL);
1684 break;
1685 case 6:
1686 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1687 break;
1688 case 7:
1689 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1690 "unsigned short", NULL);
1691 break;
1692 case 8:
1693 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1694 "unsigned int", NULL);
1695 break;
1696 case 9:
1697 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1698 "unsigned", NULL);
1699 case 10:
1700 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1701 "unsigned long", NULL);
1702 break;
1703 case 11:
1704 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1705 break;
1706 case 12:
1707 /* IEEE single precision (32 bit). */
1708 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1709 break;
1710 case 13:
1711 /* IEEE double precision (64 bit). */
1712 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1713 break;
1714 case 14:
1715 /* This is an IEEE double on the RS/6000, and different machines with
1716 different sizes for "long double" should use different negative
1717 type numbers. See stabs.texinfo. */
1718 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1719 break;
1720 case 15:
1721 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1722 break;
1723 case 16:
1724 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1725 break;
1726 case 17:
1727 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1728 break;
1729 case 18:
1730 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1731 break;
1732 case 19:
1733 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1734 break;
1735 case 20:
1736 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1737 "character", NULL);
1738 break;
1739 case 21:
1740 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1741 "logical*1", NULL);
1742 break;
1743 case 22:
1744 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1745 "logical*2", NULL);
1746 break;
1747 case 23:
1748 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1749 "logical*4", NULL);
1750 break;
1751 case 24:
1752 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1753 "logical", NULL);
1754 break;
1755 case 25:
1756 /* Complex type consisting of two IEEE single precision values. */
1757 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1758 break;
1759 case 26:
1760 /* Complex type consisting of two IEEE double precision values. */
1761 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1762 break;
1763 case 27:
1764 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1765 break;
1766 case 28:
1767 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1768 break;
1769 case 29:
1770 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1771 break;
1772 case 30:
1773 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1774 break;
1775 }
1776 negative_types[-typenum] = rettype;
1777 return rettype;
1778 }
1779 \f
1780 /* This page contains subroutines of read_type. */
1781
1782 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1783 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1784 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1785 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1786
1787 /* Read member function stabs info for C++ classes. The form of each member
1788 function data is:
1789
1790 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1791
1792 An example with two member functions is:
1793
1794 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1795
1796 For the case of overloaded operators, the format is op$::*.funcs, where
1797 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1798 name (such as `+=') and `.' marks the end of the operator name.
1799
1800 Returns 1 for success, 0 for failure. */
1801
1802 static int
1803 read_member_functions (fip, pp, type, objfile)
1804 struct field_info *fip;
1805 char **pp;
1806 struct type *type;
1807 struct objfile *objfile;
1808 {
1809 int nfn_fields = 0;
1810 int length = 0;
1811 /* Total number of member functions defined in this class. If the class
1812 defines two `f' functions, and one `g' function, then this will have
1813 the value 3. */
1814 int total_length = 0;
1815 int i;
1816 struct next_fnfield
1817 {
1818 struct next_fnfield *next;
1819 struct fn_field fn_field;
1820 } *sublist;
1821 struct type *look_ahead_type;
1822 struct next_fnfieldlist *new_fnlist;
1823 struct next_fnfield *new_sublist;
1824 char *main_fn_name;
1825 register char *p;
1826
1827 /* Process each list until we find something that is not a member function
1828 or find the end of the functions. */
1829
1830 while (**pp != ';')
1831 {
1832 /* We should be positioned at the start of the function name.
1833 Scan forward to find the first ':' and if it is not the
1834 first of a "::" delimiter, then this is not a member function. */
1835 p = *pp;
1836 while (*p != ':')
1837 {
1838 p++;
1839 }
1840 if (p[1] != ':')
1841 {
1842 break;
1843 }
1844
1845 sublist = NULL;
1846 look_ahead_type = NULL;
1847 length = 0;
1848
1849 new_fnlist = (struct next_fnfieldlist *)
1850 xmalloc (sizeof (struct next_fnfieldlist));
1851 make_cleanup (free, new_fnlist);
1852 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1853
1854 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1855 {
1856 /* This is a completely wierd case. In order to stuff in the
1857 names that might contain colons (the usual name delimiter),
1858 Mike Tiemann defined a different name format which is
1859 signalled if the identifier is "op$". In that case, the
1860 format is "op$::XXXX." where XXXX is the name. This is
1861 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1862 /* This lets the user type "break operator+".
1863 We could just put in "+" as the name, but that wouldn't
1864 work for "*". */
1865 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1866 char *o = opname + 3;
1867
1868 /* Skip past '::'. */
1869 *pp = p + 2;
1870
1871 STABS_CONTINUE (pp);
1872 p = *pp;
1873 while (*p != '.')
1874 {
1875 *o++ = *p++;
1876 }
1877 main_fn_name = savestring (opname, o - opname);
1878 /* Skip past '.' */
1879 *pp = p + 1;
1880 }
1881 else
1882 {
1883 main_fn_name = savestring (*pp, p - *pp);
1884 /* Skip past '::'. */
1885 *pp = p + 2;
1886 }
1887 new_fnlist -> fn_fieldlist.name = main_fn_name;
1888
1889 do
1890 {
1891 new_sublist =
1892 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1893 make_cleanup (free, new_sublist);
1894 memset (new_sublist, 0, sizeof (struct next_fnfield));
1895
1896 /* Check for and handle cretinous dbx symbol name continuation! */
1897 if (look_ahead_type == NULL)
1898 {
1899 /* Normal case. */
1900 STABS_CONTINUE (pp);
1901
1902 new_sublist -> fn_field.type = read_type (pp, objfile);
1903 if (**pp != ':')
1904 {
1905 /* Invalid symtab info for member function. */
1906 return 0;
1907 }
1908 }
1909 else
1910 {
1911 /* g++ version 1 kludge */
1912 new_sublist -> fn_field.type = look_ahead_type;
1913 look_ahead_type = NULL;
1914 }
1915
1916 (*pp)++;
1917 p = *pp;
1918 while (*p != ';')
1919 {
1920 p++;
1921 }
1922
1923 /* If this is just a stub, then we don't have the real name here. */
1924
1925 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1926 {
1927 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1928 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1929 new_sublist -> fn_field.is_stub = 1;
1930 }
1931 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1932 *pp = p + 1;
1933
1934 /* Set this member function's visibility fields. */
1935 switch (*(*pp)++)
1936 {
1937 case VISIBILITY_PRIVATE:
1938 new_sublist -> fn_field.is_private = 1;
1939 break;
1940 case VISIBILITY_PROTECTED:
1941 new_sublist -> fn_field.is_protected = 1;
1942 break;
1943 }
1944
1945 STABS_CONTINUE (pp);
1946 switch (**pp)
1947 {
1948 case 'A': /* Normal functions. */
1949 new_sublist -> fn_field.is_const = 0;
1950 new_sublist -> fn_field.is_volatile = 0;
1951 (*pp)++;
1952 break;
1953 case 'B': /* `const' member functions. */
1954 new_sublist -> fn_field.is_const = 1;
1955 new_sublist -> fn_field.is_volatile = 0;
1956 (*pp)++;
1957 break;
1958 case 'C': /* `volatile' member function. */
1959 new_sublist -> fn_field.is_const = 0;
1960 new_sublist -> fn_field.is_volatile = 1;
1961 (*pp)++;
1962 break;
1963 case 'D': /* `const volatile' member function. */
1964 new_sublist -> fn_field.is_const = 1;
1965 new_sublist -> fn_field.is_volatile = 1;
1966 (*pp)++;
1967 break;
1968 case '*': /* File compiled with g++ version 1 -- no info */
1969 case '?':
1970 case '.':
1971 break;
1972 default:
1973 complain (&const_vol_complaint, **pp);
1974 break;
1975 }
1976
1977 switch (*(*pp)++)
1978 {
1979 case '*':
1980 {
1981 int nbits;
1982 /* virtual member function, followed by index.
1983 The sign bit is set to distinguish pointers-to-methods
1984 from virtual function indicies. Since the array is
1985 in words, the quantity must be shifted left by 1
1986 on 16 bit machine, and by 2 on 32 bit machine, forcing
1987 the sign bit out, and usable as a valid index into
1988 the array. Remove the sign bit here. */
1989 new_sublist -> fn_field.voffset =
1990 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1991 if (nbits != 0)
1992 return 0;
1993
1994 STABS_CONTINUE (pp);
1995 if (**pp == ';' || **pp == '\0')
1996 {
1997 /* Must be g++ version 1. */
1998 new_sublist -> fn_field.fcontext = 0;
1999 }
2000 else
2001 {
2002 /* Figure out from whence this virtual function came.
2003 It may belong to virtual function table of
2004 one of its baseclasses. */
2005 look_ahead_type = read_type (pp, objfile);
2006 if (**pp == ':')
2007 {
2008 /* g++ version 1 overloaded methods. */
2009 }
2010 else
2011 {
2012 new_sublist -> fn_field.fcontext = look_ahead_type;
2013 if (**pp != ';')
2014 {
2015 return 0;
2016 }
2017 else
2018 {
2019 ++*pp;
2020 }
2021 look_ahead_type = NULL;
2022 }
2023 }
2024 break;
2025 }
2026 case '?':
2027 /* static member function. */
2028 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2029 if (strncmp (new_sublist -> fn_field.physname,
2030 main_fn_name, strlen (main_fn_name)))
2031 {
2032 new_sublist -> fn_field.is_stub = 1;
2033 }
2034 break;
2035
2036 default:
2037 /* error */
2038 complain (&member_fn_complaint, (*pp)[-1]);
2039 /* Fall through into normal member function. */
2040
2041 case '.':
2042 /* normal member function. */
2043 new_sublist -> fn_field.voffset = 0;
2044 new_sublist -> fn_field.fcontext = 0;
2045 break;
2046 }
2047
2048 new_sublist -> next = sublist;
2049 sublist = new_sublist;
2050 length++;
2051 STABS_CONTINUE (pp);
2052 }
2053 while (**pp != ';' && **pp != '\0');
2054
2055 (*pp)++;
2056
2057 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2058 obstack_alloc (&objfile -> type_obstack,
2059 sizeof (struct fn_field) * length);
2060 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2061 sizeof (struct fn_field) * length);
2062 for (i = length; (i--, sublist); sublist = sublist -> next)
2063 {
2064 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2065 }
2066
2067 new_fnlist -> fn_fieldlist.length = length;
2068 new_fnlist -> next = fip -> fnlist;
2069 fip -> fnlist = new_fnlist;
2070 nfn_fields++;
2071 total_length += length;
2072 STABS_CONTINUE (pp);
2073 }
2074
2075 if (nfn_fields)
2076 {
2077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2078 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2079 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2080 memset (TYPE_FN_FIELDLISTS (type), 0,
2081 sizeof (struct fn_fieldlist) * nfn_fields);
2082 TYPE_NFN_FIELDS (type) = nfn_fields;
2083 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2084 }
2085
2086 return 1;
2087 }
2088
2089 /* Special GNU C++ name.
2090
2091 Returns 1 for success, 0 for failure. "failure" means that we can't
2092 keep parsing and it's time for error_type(). */
2093
2094 static int
2095 read_cpp_abbrev (fip, pp, type, objfile)
2096 struct field_info *fip;
2097 char **pp;
2098 struct type *type;
2099 struct objfile *objfile;
2100 {
2101 register char *p;
2102 char *name;
2103 char cpp_abbrev;
2104 struct type *context;
2105
2106 p = *pp;
2107 if (*++p == 'v')
2108 {
2109 name = NULL;
2110 cpp_abbrev = *++p;
2111
2112 *pp = p + 1;
2113
2114 /* At this point, *pp points to something like "22:23=*22...",
2115 where the type number before the ':' is the "context" and
2116 everything after is a regular type definition. Lookup the
2117 type, find it's name, and construct the field name. */
2118
2119 context = read_type (pp, objfile);
2120
2121 switch (cpp_abbrev)
2122 {
2123 case 'f': /* $vf -- a virtual function table pointer */
2124 fip->list->field.name =
2125 obconcat (&objfile->type_obstack, vptr_name, "", "");
2126 break;
2127
2128 case 'b': /* $vb -- a virtual bsomethingorother */
2129 name = type_name_no_tag (context);
2130 if (name == NULL)
2131 {
2132 complain (&invalid_cpp_type_complaint, symnum);
2133 name = "FOO";
2134 }
2135 fip->list->field.name =
2136 obconcat (&objfile->type_obstack, vb_name, name, "");
2137 break;
2138
2139 default:
2140 complain (&invalid_cpp_abbrev_complaint, *pp);
2141 fip->list->field.name =
2142 obconcat (&objfile->type_obstack,
2143 "INVALID_CPLUSPLUS_ABBREV", "", "");
2144 break;
2145 }
2146
2147 /* At this point, *pp points to the ':'. Skip it and read the
2148 field type. */
2149
2150 p = ++(*pp);
2151 if (p[-1] != ':')
2152 {
2153 complain (&invalid_cpp_abbrev_complaint, *pp);
2154 return 0;
2155 }
2156 fip->list->field.type = read_type (pp, objfile);
2157 if (**pp == ',')
2158 (*pp)++; /* Skip the comma. */
2159 else
2160 return 0;
2161
2162 {
2163 int nbits;
2164 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2165 if (nbits != 0)
2166 return 0;
2167 }
2168 /* This field is unpacked. */
2169 fip->list->field.bitsize = 0;
2170 fip->list->visibility = VISIBILITY_PRIVATE;
2171 }
2172 else
2173 {
2174 complain (&invalid_cpp_abbrev_complaint, *pp);
2175 /* We have no idea what syntax an unrecognized abbrev would have, so
2176 better return 0. If we returned 1, we would need to at least advance
2177 *pp to avoid an infinite loop. */
2178 return 0;
2179 }
2180 return 1;
2181 }
2182
2183 static void
2184 read_one_struct_field (fip, pp, p, type, objfile)
2185 struct field_info *fip;
2186 char **pp;
2187 char *p;
2188 struct type *type;
2189 struct objfile *objfile;
2190 {
2191 fip -> list -> field.name =
2192 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2193 *pp = p + 1;
2194
2195 /* This means we have a visibility for a field coming. */
2196 if (**pp == '/')
2197 {
2198 (*pp)++;
2199 fip -> list -> visibility = *(*pp)++;
2200 }
2201 else
2202 {
2203 /* normal dbx-style format, no explicit visibility */
2204 fip -> list -> visibility = VISIBILITY_PUBLIC;
2205 }
2206
2207 fip -> list -> field.type = read_type (pp, objfile);
2208 if (**pp == ':')
2209 {
2210 p = ++(*pp);
2211 #if 0
2212 /* Possible future hook for nested types. */
2213 if (**pp == '!')
2214 {
2215 fip -> list -> field.bitpos = (long)-2; /* nested type */
2216 p = ++(*pp);
2217 }
2218 else
2219 #endif
2220 {
2221 /* Static class member. */
2222 fip -> list -> field.bitpos = (long) -1;
2223 }
2224 while (*p != ';')
2225 {
2226 p++;
2227 }
2228 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2229 *pp = p + 1;
2230 return;
2231 }
2232 else if (**pp != ',')
2233 {
2234 /* Bad structure-type format. */
2235 complain (&stabs_general_complaint, "bad structure-type format");
2236 return;
2237 }
2238
2239 (*pp)++; /* Skip the comma. */
2240
2241 {
2242 int nbits;
2243 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2244 if (nbits != 0)
2245 {
2246 complain (&stabs_general_complaint, "bad structure-type format");
2247 return;
2248 }
2249 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2250 if (nbits != 0)
2251 {
2252 complain (&stabs_general_complaint, "bad structure-type format");
2253 return;
2254 }
2255 }
2256
2257 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2258 {
2259 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2260 it is a field which has been optimized out. The correct stab for
2261 this case is to use VISIBILITY_IGNORE, but that is a recent
2262 invention. (2) It is a 0-size array. For example
2263 union { int num; char str[0]; } foo. Printing "<no value>" for
2264 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2265 will continue to work, and a 0-size array as a whole doesn't
2266 have any contents to print.
2267
2268 I suspect this probably could also happen with gcc -gstabs (not
2269 -gstabs+) for static fields, and perhaps other C++ extensions.
2270 Hopefully few people use -gstabs with gdb, since it is intended
2271 for dbx compatibility. */
2272
2273 /* Ignore this field. */
2274 fip -> list-> visibility = VISIBILITY_IGNORE;
2275 }
2276 else
2277 {
2278 /* Detect an unpacked field and mark it as such.
2279 dbx gives a bit size for all fields.
2280 Note that forward refs cannot be packed,
2281 and treat enums as if they had the width of ints. */
2282
2283 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2284 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2285 {
2286 fip -> list -> field.bitsize = 0;
2287 }
2288 if ((fip -> list -> field.bitsize
2289 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2290 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2291 && (fip -> list -> field.bitsize
2292 == TARGET_INT_BIT)
2293 )
2294 )
2295 &&
2296 fip -> list -> field.bitpos % 8 == 0)
2297 {
2298 fip -> list -> field.bitsize = 0;
2299 }
2300 }
2301 }
2302
2303
2304 /* Read struct or class data fields. They have the form:
2305
2306 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2307
2308 At the end, we see a semicolon instead of a field.
2309
2310 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2311 a static field.
2312
2313 The optional VISIBILITY is one of:
2314
2315 '/0' (VISIBILITY_PRIVATE)
2316 '/1' (VISIBILITY_PROTECTED)
2317 '/2' (VISIBILITY_PUBLIC)
2318 '/9' (VISIBILITY_IGNORE)
2319
2320 or nothing, for C style fields with public visibility.
2321
2322 Returns 1 for success, 0 for failure. */
2323
2324 static int
2325 read_struct_fields (fip, pp, type, objfile)
2326 struct field_info *fip;
2327 char **pp;
2328 struct type *type;
2329 struct objfile *objfile;
2330 {
2331 register char *p;
2332 struct nextfield *new;
2333
2334 /* We better set p right now, in case there are no fields at all... */
2335
2336 p = *pp;
2337
2338 /* Read each data member type until we find the terminating ';' at the end of
2339 the data member list, or break for some other reason such as finding the
2340 start of the member function list. */
2341
2342 while (**pp != ';')
2343 {
2344 STABS_CONTINUE (pp);
2345 /* Get space to record the next field's data. */
2346 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2347 make_cleanup (free, new);
2348 memset (new, 0, sizeof (struct nextfield));
2349 new -> next = fip -> list;
2350 fip -> list = new;
2351
2352 /* Get the field name. */
2353 p = *pp;
2354
2355 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2356 unless the CPLUS_MARKER is followed by an underscore, in
2357 which case it is just the name of an anonymous type, which we
2358 should handle like any other type name. We accept either '$'
2359 or '.', because a field name can never contain one of these
2360 characters except as a CPLUS_MARKER (we probably should be
2361 doing that in most parts of GDB). */
2362
2363 if ((*p == '$' || *p == '.') && p[1] != '_')
2364 {
2365 if (!read_cpp_abbrev (fip, pp, type, objfile))
2366 return 0;
2367 continue;
2368 }
2369
2370 /* Look for the ':' that separates the field name from the field
2371 values. Data members are delimited by a single ':', while member
2372 functions are delimited by a pair of ':'s. When we hit the member
2373 functions (if any), terminate scan loop and return. */
2374
2375 while (*p != ':' && *p != '\0')
2376 {
2377 p++;
2378 }
2379 if (*p == '\0')
2380 return 0;
2381
2382 /* Check to see if we have hit the member functions yet. */
2383 if (p[1] == ':')
2384 {
2385 break;
2386 }
2387 read_one_struct_field (fip, pp, p, type, objfile);
2388 }
2389 if (p[0] == ':' && p[1] == ':')
2390 {
2391 /* chill the list of fields: the last entry (at the head) is a
2392 partially constructed entry which we now scrub. */
2393 fip -> list = fip -> list -> next;
2394 }
2395 return 1;
2396 }
2397
2398 /* The stabs for C++ derived classes contain baseclass information which
2399 is marked by a '!' character after the total size. This function is
2400 called when we encounter the baseclass marker, and slurps up all the
2401 baseclass information.
2402
2403 Immediately following the '!' marker is the number of base classes that
2404 the class is derived from, followed by information for each base class.
2405 For each base class, there are two visibility specifiers, a bit offset
2406 to the base class information within the derived class, a reference to
2407 the type for the base class, and a terminating semicolon.
2408
2409 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2410 ^^ ^ ^ ^ ^ ^ ^
2411 Baseclass information marker __________________|| | | | | | |
2412 Number of baseclasses __________________________| | | | | | |
2413 Visibility specifiers (2) ________________________| | | | | |
2414 Offset in bits from start of class _________________| | | | |
2415 Type number for base class ___________________________| | | |
2416 Visibility specifiers (2) _______________________________| | |
2417 Offset in bits from start of class ________________________| |
2418 Type number of base class ____________________________________|
2419
2420 Return 1 for success, 0 for (error-type-inducing) failure. */
2421
2422 static int
2423 read_baseclasses (fip, pp, type, objfile)
2424 struct field_info *fip;
2425 char **pp;
2426 struct type *type;
2427 struct objfile *objfile;
2428 {
2429 int i;
2430 struct nextfield *new;
2431
2432 if (**pp != '!')
2433 {
2434 return 1;
2435 }
2436 else
2437 {
2438 /* Skip the '!' baseclass information marker. */
2439 (*pp)++;
2440 }
2441
2442 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2443 {
2444 int nbits;
2445 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2446 if (nbits != 0)
2447 return 0;
2448 }
2449
2450 #if 0
2451 /* Some stupid compilers have trouble with the following, so break
2452 it up into simpler expressions. */
2453 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2454 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2455 #else
2456 {
2457 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2458 char *pointer;
2459
2460 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2461 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2462 }
2463 #endif /* 0 */
2464
2465 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2466
2467 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2468 {
2469 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2470 make_cleanup (free, new);
2471 memset (new, 0, sizeof (struct nextfield));
2472 new -> next = fip -> list;
2473 fip -> list = new;
2474 new -> field.bitsize = 0; /* this should be an unpacked field! */
2475
2476 STABS_CONTINUE (pp);
2477 switch (**pp)
2478 {
2479 case '0':
2480 /* Nothing to do. */
2481 break;
2482 case '1':
2483 SET_TYPE_FIELD_VIRTUAL (type, i);
2484 break;
2485 default:
2486 /* Unknown character. Complain and treat it as non-virtual. */
2487 {
2488 static struct complaint msg = {
2489 "Unknown virtual character `%c' for baseclass", 0, 0};
2490 complain (&msg, **pp);
2491 }
2492 }
2493 ++(*pp);
2494
2495 new -> visibility = *(*pp)++;
2496 switch (new -> visibility)
2497 {
2498 case VISIBILITY_PRIVATE:
2499 case VISIBILITY_PROTECTED:
2500 case VISIBILITY_PUBLIC:
2501 break;
2502 default:
2503 /* Bad visibility format. Complain and treat it as
2504 public. */
2505 {
2506 static struct complaint msg = {
2507 "Unknown visibility `%c' for baseclass", 0, 0};
2508 complain (&msg, new -> visibility);
2509 new -> visibility = VISIBILITY_PUBLIC;
2510 }
2511 }
2512
2513 {
2514 int nbits;
2515
2516 /* The remaining value is the bit offset of the portion of the object
2517 corresponding to this baseclass. Always zero in the absence of
2518 multiple inheritance. */
2519
2520 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2521 if (nbits != 0)
2522 return 0;
2523 }
2524
2525 /* The last piece of baseclass information is the type of the
2526 base class. Read it, and remember it's type name as this
2527 field's name. */
2528
2529 new -> field.type = read_type (pp, objfile);
2530 new -> field.name = type_name_no_tag (new -> field.type);
2531
2532 /* skip trailing ';' and bump count of number of fields seen */
2533 if (**pp == ';')
2534 (*pp)++;
2535 else
2536 return 0;
2537 }
2538 return 1;
2539 }
2540
2541 /* The tail end of stabs for C++ classes that contain a virtual function
2542 pointer contains a tilde, a %, and a type number.
2543 The type number refers to the base class (possibly this class itself) which
2544 contains the vtable pointer for the current class.
2545
2546 This function is called when we have parsed all the method declarations,
2547 so we can look for the vptr base class info. */
2548
2549 static int
2550 read_tilde_fields (fip, pp, type, objfile)
2551 struct field_info *fip;
2552 char **pp;
2553 struct type *type;
2554 struct objfile *objfile;
2555 {
2556 register char *p;
2557
2558 STABS_CONTINUE (pp);
2559
2560 /* If we are positioned at a ';', then skip it. */
2561 if (**pp == ';')
2562 {
2563 (*pp)++;
2564 }
2565
2566 if (**pp == '~')
2567 {
2568 (*pp)++;
2569
2570 if (**pp == '=' || **pp == '+' || **pp == '-')
2571 {
2572 /* Obsolete flags that used to indicate the presence
2573 of constructors and/or destructors. */
2574 (*pp)++;
2575 }
2576
2577 /* Read either a '%' or the final ';'. */
2578 if (*(*pp)++ == '%')
2579 {
2580 /* The next number is the type number of the base class
2581 (possibly our own class) which supplies the vtable for
2582 this class. Parse it out, and search that class to find
2583 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2584 and TYPE_VPTR_FIELDNO. */
2585
2586 struct type *t;
2587 int i;
2588
2589 t = read_type (pp, objfile);
2590 p = (*pp)++;
2591 while (*p != '\0' && *p != ';')
2592 {
2593 p++;
2594 }
2595 if (*p == '\0')
2596 {
2597 /* Premature end of symbol. */
2598 return 0;
2599 }
2600
2601 TYPE_VPTR_BASETYPE (type) = t;
2602 if (type == t) /* Our own class provides vtbl ptr */
2603 {
2604 for (i = TYPE_NFIELDS (t) - 1;
2605 i >= TYPE_N_BASECLASSES (t);
2606 --i)
2607 {
2608 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2609 sizeof (vptr_name) - 1))
2610 {
2611 TYPE_VPTR_FIELDNO (type) = i;
2612 goto gotit;
2613 }
2614 }
2615 /* Virtual function table field not found. */
2616 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2617 return 0;
2618 }
2619 else
2620 {
2621 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2622 }
2623
2624 gotit:
2625 *pp = p + 1;
2626 }
2627 }
2628 return 1;
2629 }
2630
2631 static int
2632 attach_fn_fields_to_type (fip, type)
2633 struct field_info *fip;
2634 register struct type *type;
2635 {
2636 register int n;
2637
2638 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2639 {
2640 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2641 {
2642 /* @@ Memory leak on objfile -> type_obstack? */
2643 return 0;
2644 }
2645 TYPE_NFN_FIELDS_TOTAL (type) +=
2646 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2647 }
2648
2649 for (n = TYPE_NFN_FIELDS (type);
2650 fip -> fnlist != NULL;
2651 fip -> fnlist = fip -> fnlist -> next)
2652 {
2653 --n; /* Circumvent Sun3 compiler bug */
2654 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2655 }
2656 return 1;
2657 }
2658
2659 /* Create the vector of fields, and record how big it is.
2660 We need this info to record proper virtual function table information
2661 for this class's virtual functions. */
2662
2663 static int
2664 attach_fields_to_type (fip, type, objfile)
2665 struct field_info *fip;
2666 register struct type *type;
2667 struct objfile *objfile;
2668 {
2669 register int nfields = 0;
2670 register int non_public_fields = 0;
2671 register struct nextfield *scan;
2672
2673 /* Count up the number of fields that we have, as well as taking note of
2674 whether or not there are any non-public fields, which requires us to
2675 allocate and build the private_field_bits and protected_field_bits
2676 bitfields. */
2677
2678 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2679 {
2680 nfields++;
2681 if (scan -> visibility != VISIBILITY_PUBLIC)
2682 {
2683 non_public_fields++;
2684 }
2685 }
2686
2687 /* Now we know how many fields there are, and whether or not there are any
2688 non-public fields. Record the field count, allocate space for the
2689 array of fields, and create blank visibility bitfields if necessary. */
2690
2691 TYPE_NFIELDS (type) = nfields;
2692 TYPE_FIELDS (type) = (struct field *)
2693 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2694 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2695
2696 if (non_public_fields)
2697 {
2698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2699
2700 TYPE_FIELD_PRIVATE_BITS (type) =
2701 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2702 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2703
2704 TYPE_FIELD_PROTECTED_BITS (type) =
2705 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2706 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2707
2708 TYPE_FIELD_IGNORE_BITS (type) =
2709 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2710 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2711 }
2712
2713 /* Copy the saved-up fields into the field vector. Start from the head
2714 of the list, adding to the tail of the field array, so that they end
2715 up in the same order in the array in which they were added to the list. */
2716
2717 while (nfields-- > 0)
2718 {
2719 TYPE_FIELD (type, nfields) = fip -> list -> field;
2720 switch (fip -> list -> visibility)
2721 {
2722 case VISIBILITY_PRIVATE:
2723 SET_TYPE_FIELD_PRIVATE (type, nfields);
2724 break;
2725
2726 case VISIBILITY_PROTECTED:
2727 SET_TYPE_FIELD_PROTECTED (type, nfields);
2728 break;
2729
2730 case VISIBILITY_IGNORE:
2731 SET_TYPE_FIELD_IGNORE (type, nfields);
2732 break;
2733
2734 case VISIBILITY_PUBLIC:
2735 break;
2736
2737 default:
2738 /* Unknown visibility. Complain and treat it as public. */
2739 {
2740 static struct complaint msg = {
2741 "Unknown visibility `%c' for field", 0, 0};
2742 complain (&msg, fip -> list -> visibility);
2743 }
2744 break;
2745 }
2746 fip -> list = fip -> list -> next;
2747 }
2748 return 1;
2749 }
2750
2751 /* Read the description of a structure (or union type) and return an object
2752 describing the type.
2753
2754 PP points to a character pointer that points to the next unconsumed token
2755 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2756 *PP will point to "4a:1,0,32;;".
2757
2758 TYPE points to an incomplete type that needs to be filled in.
2759
2760 OBJFILE points to the current objfile from which the stabs information is
2761 being read. (Note that it is redundant in that TYPE also contains a pointer
2762 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2763 */
2764
2765 static struct type *
2766 read_struct_type (pp, type, objfile)
2767 char **pp;
2768 struct type *type;
2769 struct objfile *objfile;
2770 {
2771 struct cleanup *back_to;
2772 struct field_info fi;
2773
2774 fi.list = NULL;
2775 fi.fnlist = NULL;
2776
2777 back_to = make_cleanup (null_cleanup, 0);
2778
2779 INIT_CPLUS_SPECIFIC (type);
2780 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2781
2782 /* First comes the total size in bytes. */
2783
2784 {
2785 int nbits;
2786 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2787 if (nbits != 0)
2788 return error_type (pp);
2789 }
2790
2791 /* Now read the baseclasses, if any, read the regular C struct or C++
2792 class member fields, attach the fields to the type, read the C++
2793 member functions, attach them to the type, and then read any tilde
2794 field (baseclass specifier for the class holding the main vtable). */
2795
2796 if (!read_baseclasses (&fi, pp, type, objfile)
2797 || !read_struct_fields (&fi, pp, type, objfile)
2798 || !attach_fields_to_type (&fi, type, objfile)
2799 || !read_member_functions (&fi, pp, type, objfile)
2800 || !attach_fn_fields_to_type (&fi, type)
2801 || !read_tilde_fields (&fi, pp, type, objfile))
2802 {
2803 do_cleanups (back_to);
2804 return (error_type (pp));
2805 }
2806
2807 do_cleanups (back_to);
2808 return (type);
2809 }
2810
2811 /* Read a definition of an array type,
2812 and create and return a suitable type object.
2813 Also creates a range type which represents the bounds of that
2814 array. */
2815
2816 static struct type *
2817 read_array_type (pp, type, objfile)
2818 register char **pp;
2819 register struct type *type;
2820 struct objfile *objfile;
2821 {
2822 struct type *index_type, *element_type, *range_type;
2823 int lower, upper;
2824 int adjustable = 0;
2825 int nbits;
2826
2827 /* Format of an array type:
2828 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2829 to handle this.
2830
2831 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2832 for these, produce a type like float[][]. */
2833
2834 index_type = read_type (pp, objfile);
2835 if (**pp != ';')
2836 /* Improper format of array type decl. */
2837 return error_type (pp);
2838 ++*pp;
2839
2840 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2841 {
2842 (*pp)++;
2843 adjustable = 1;
2844 }
2845 lower = read_huge_number (pp, ';', &nbits);
2846 if (nbits != 0)
2847 return error_type (pp);
2848
2849 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2850 {
2851 (*pp)++;
2852 adjustable = 1;
2853 }
2854 upper = read_huge_number (pp, ';', &nbits);
2855 if (nbits != 0)
2856 return error_type (pp);
2857
2858 element_type = read_type (pp, objfile);
2859
2860 if (adjustable)
2861 {
2862 lower = 0;
2863 upper = -1;
2864 }
2865
2866 range_type =
2867 create_range_type ((struct type *) NULL, index_type, lower, upper);
2868 type = create_array_type (type, element_type, range_type);
2869
2870 /* If we have an array whose element type is not yet known, but whose
2871 bounds *are* known, record it to be adjusted at the end of the file. */
2872 /* FIXME: Why check for zero length rather than TYPE_FLAG_STUB? I think
2873 the two have the same effect except that the latter is cleaner and the
2874 former would be wrong for types which really are zero-length (if we
2875 have any). */
2876
2877 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2878 {
2879 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2880 add_undefined_type (type);
2881 }
2882
2883 return type;
2884 }
2885
2886
2887 /* Read a definition of an enumeration type,
2888 and create and return a suitable type object.
2889 Also defines the symbols that represent the values of the type. */
2890
2891 static struct type *
2892 read_enum_type (pp, type, objfile)
2893 register char **pp;
2894 register struct type *type;
2895 struct objfile *objfile;
2896 {
2897 register char *p;
2898 char *name;
2899 register long n;
2900 register struct symbol *sym;
2901 int nsyms = 0;
2902 struct pending **symlist;
2903 struct pending *osyms, *syms;
2904 int o_nsyms;
2905
2906 #if 0
2907 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2908 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2909 to do? For now, force all enum values to file scope. */
2910 if (within_function)
2911 symlist = &local_symbols;
2912 else
2913 #endif
2914 symlist = &file_symbols;
2915 osyms = *symlist;
2916 o_nsyms = osyms ? osyms->nsyms : 0;
2917
2918 /* Read the value-names and their values.
2919 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2920 A semicolon or comma instead of a NAME means the end. */
2921 while (**pp && **pp != ';' && **pp != ',')
2922 {
2923 int nbits;
2924 STABS_CONTINUE (pp);
2925 p = *pp;
2926 while (*p != ':') p++;
2927 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2928 *pp = p + 1;
2929 n = read_huge_number (pp, ',', &nbits);
2930 if (nbits != 0)
2931 return error_type (pp);
2932
2933 sym = (struct symbol *)
2934 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2935 memset (sym, 0, sizeof (struct symbol));
2936 SYMBOL_NAME (sym) = name;
2937 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2938 SYMBOL_CLASS (sym) = LOC_CONST;
2939 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2940 SYMBOL_VALUE (sym) = n;
2941 add_symbol_to_list (sym, symlist);
2942 nsyms++;
2943 }
2944
2945 if (**pp == ';')
2946 (*pp)++; /* Skip the semicolon. */
2947
2948 /* Now fill in the fields of the type-structure. */
2949
2950 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
2951 TYPE_CODE (type) = TYPE_CODE_ENUM;
2952 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2953 TYPE_NFIELDS (type) = nsyms;
2954 TYPE_FIELDS (type) = (struct field *)
2955 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2956 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2957
2958 /* Find the symbols for the values and put them into the type.
2959 The symbols can be found in the symlist that we put them on
2960 to cause them to be defined. osyms contains the old value
2961 of that symlist; everything up to there was defined by us. */
2962 /* Note that we preserve the order of the enum constants, so
2963 that in something like "enum {FOO, LAST_THING=FOO}" we print
2964 FOO, not LAST_THING. */
2965
2966 for (syms = *symlist, n = 0; syms; syms = syms->next)
2967 {
2968 int j = 0;
2969 if (syms == osyms)
2970 j = o_nsyms;
2971 for (; j < syms->nsyms; j++,n++)
2972 {
2973 struct symbol *xsym = syms->symbol[j];
2974 SYMBOL_TYPE (xsym) = type;
2975 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2976 TYPE_FIELD_VALUE (type, n) = 0;
2977 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2978 TYPE_FIELD_BITSIZE (type, n) = 0;
2979 }
2980 if (syms == osyms)
2981 break;
2982 }
2983
2984 return type;
2985 }
2986
2987 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2988 typedefs in every file (for int, long, etc):
2989
2990 type = b <signed> <width>; <offset>; <nbits>
2991 signed = u or s. Possible c in addition to u or s (for char?).
2992 offset = offset from high order bit to start bit of type.
2993 width is # bytes in object of this type, nbits is # bits in type.
2994
2995 The width/offset stuff appears to be for small objects stored in
2996 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2997 FIXME. */
2998
2999 static struct type *
3000 read_sun_builtin_type (pp, typenums, objfile)
3001 char **pp;
3002 int typenums[2];
3003 struct objfile *objfile;
3004 {
3005 int type_bits;
3006 int nbits;
3007 int signed_type;
3008
3009 switch (**pp)
3010 {
3011 case 's':
3012 signed_type = 1;
3013 break;
3014 case 'u':
3015 signed_type = 0;
3016 break;
3017 default:
3018 return error_type (pp);
3019 }
3020 (*pp)++;
3021
3022 /* For some odd reason, all forms of char put a c here. This is strange
3023 because no other type has this honor. We can safely ignore this because
3024 we actually determine 'char'acterness by the number of bits specified in
3025 the descriptor. */
3026
3027 if (**pp == 'c')
3028 (*pp)++;
3029
3030 /* The first number appears to be the number of bytes occupied
3031 by this type, except that unsigned short is 4 instead of 2.
3032 Since this information is redundant with the third number,
3033 we will ignore it. */
3034 read_huge_number (pp, ';', &nbits);
3035 if (nbits != 0)
3036 return error_type (pp);
3037
3038 /* The second number is always 0, so ignore it too. */
3039 read_huge_number (pp, ';', &nbits);
3040 if (nbits != 0)
3041 return error_type (pp);
3042
3043 /* The third number is the number of bits for this type. */
3044 type_bits = read_huge_number (pp, 0, &nbits);
3045 if (nbits != 0)
3046 return error_type (pp);
3047 /* The type *should* end with a semicolon. If it are embedded
3048 in a larger type the semicolon may be the only way to know where
3049 the type ends. If this type is at the end of the stabstring we
3050 can deal with the omitted semicolon (but we don't have to like
3051 it). Don't bother to complain(), Sun's compiler omits the semicolon
3052 for "void". */
3053 if (**pp == ';')
3054 ++(*pp);
3055
3056 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3057 type_bits / TARGET_CHAR_BIT,
3058 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3059 objfile);
3060 }
3061
3062 static struct type *
3063 read_sun_floating_type (pp, typenums, objfile)
3064 char **pp;
3065 int typenums[2];
3066 struct objfile *objfile;
3067 {
3068 int nbits;
3069 int details;
3070 int nbytes;
3071
3072 /* The first number has more details about the type, for example
3073 FN_COMPLEX. */
3074 details = read_huge_number (pp, ';', &nbits);
3075 if (nbits != 0)
3076 return error_type (pp);
3077
3078 /* The second number is the number of bytes occupied by this type */
3079 nbytes = read_huge_number (pp, ';', &nbits);
3080 if (nbits != 0)
3081 return error_type (pp);
3082
3083 if (details == NF_COMPLEX || details == NF_COMPLEX16
3084 || details == NF_COMPLEX32)
3085 /* This is a type we can't handle, but we do know the size.
3086 We also will be able to give it a name. */
3087 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3088
3089 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3090 }
3091
3092 /* Read a number from the string pointed to by *PP.
3093 The value of *PP is advanced over the number.
3094 If END is nonzero, the character that ends the
3095 number must match END, or an error happens;
3096 and that character is skipped if it does match.
3097 If END is zero, *PP is left pointing to that character.
3098
3099 If the number fits in a long, set *BITS to 0 and return the value.
3100 If not, set *BITS to be the number of bits in the number and return 0.
3101
3102 If encounter garbage, set *BITS to -1 and return 0. */
3103
3104 static long
3105 read_huge_number (pp, end, bits)
3106 char **pp;
3107 int end;
3108 int *bits;
3109 {
3110 char *p = *pp;
3111 int sign = 1;
3112 long n = 0;
3113 int radix = 10;
3114 char overflow = 0;
3115 int nbits = 0;
3116 int c;
3117 long upper_limit;
3118
3119 if (*p == '-')
3120 {
3121 sign = -1;
3122 p++;
3123 }
3124
3125 /* Leading zero means octal. GCC uses this to output values larger
3126 than an int (because that would be hard in decimal). */
3127 if (*p == '0')
3128 {
3129 radix = 8;
3130 p++;
3131 }
3132
3133 upper_limit = LONG_MAX / radix;
3134 while ((c = *p++) >= '0' && c < ('0' + radix))
3135 {
3136 if (n <= upper_limit)
3137 {
3138 n *= radix;
3139 n += c - '0'; /* FIXME this overflows anyway */
3140 }
3141 else
3142 overflow = 1;
3143
3144 /* This depends on large values being output in octal, which is
3145 what GCC does. */
3146 if (radix == 8)
3147 {
3148 if (nbits == 0)
3149 {
3150 if (c == '0')
3151 /* Ignore leading zeroes. */
3152 ;
3153 else if (c == '1')
3154 nbits = 1;
3155 else if (c == '2' || c == '3')
3156 nbits = 2;
3157 else
3158 nbits = 3;
3159 }
3160 else
3161 nbits += 3;
3162 }
3163 }
3164 if (end)
3165 {
3166 if (c && c != end)
3167 {
3168 if (bits != NULL)
3169 *bits = -1;
3170 return 0;
3171 }
3172 }
3173 else
3174 --p;
3175
3176 *pp = p;
3177 if (overflow)
3178 {
3179 if (nbits == 0)
3180 {
3181 /* Large decimal constants are an error (because it is hard to
3182 count how many bits are in them). */
3183 if (bits != NULL)
3184 *bits = -1;
3185 return 0;
3186 }
3187
3188 /* -0x7f is the same as 0x80. So deal with it by adding one to
3189 the number of bits. */
3190 if (sign == -1)
3191 ++nbits;
3192 if (bits)
3193 *bits = nbits;
3194 }
3195 else
3196 {
3197 if (bits)
3198 *bits = 0;
3199 return n * sign;
3200 }
3201 /* It's *BITS which has the interesting information. */
3202 return 0;
3203 }
3204
3205 static struct type *
3206 read_range_type (pp, typenums, objfile)
3207 char **pp;
3208 int typenums[2];
3209 struct objfile *objfile;
3210 {
3211 int rangenums[2];
3212 long n2, n3;
3213 int n2bits, n3bits;
3214 int self_subrange;
3215 struct type *result_type;
3216 struct type *index_type;
3217
3218 /* First comes a type we are a subrange of.
3219 In C it is usually 0, 1 or the type being defined. */
3220 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3221 not just a type number. */
3222 if (read_type_number (pp, rangenums) != 0)
3223 return error_type (pp);
3224 self_subrange = (rangenums[0] == typenums[0] &&
3225 rangenums[1] == typenums[1]);
3226
3227 /* A semicolon should now follow; skip it. */
3228 if (**pp == ';')
3229 (*pp)++;
3230
3231 /* The remaining two operands are usually lower and upper bounds
3232 of the range. But in some special cases they mean something else. */
3233 n2 = read_huge_number (pp, ';', &n2bits);
3234 n3 = read_huge_number (pp, ';', &n3bits);
3235
3236 if (n2bits == -1 || n3bits == -1)
3237 return error_type (pp);
3238
3239 /* If limits are huge, must be large integral type. */
3240 if (n2bits != 0 || n3bits != 0)
3241 {
3242 char got_signed = 0;
3243 char got_unsigned = 0;
3244 /* Number of bits in the type. */
3245 int nbits = 0;
3246
3247 /* Range from 0 to <large number> is an unsigned large integral type. */
3248 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3249 {
3250 got_unsigned = 1;
3251 nbits = n3bits;
3252 }
3253 /* Range from <large number> to <large number>-1 is a large signed
3254 integral type. Take care of the case where <large number> doesn't
3255 fit in a long but <large number>-1 does. */
3256 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3257 || (n2bits != 0 && n3bits == 0
3258 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3259 && n3 == LONG_MAX))
3260 {
3261 got_signed = 1;
3262 nbits = n2bits;
3263 }
3264
3265 if (got_signed || got_unsigned)
3266 {
3267 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3268 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3269 objfile);
3270 }
3271 else
3272 return error_type (pp);
3273 }
3274
3275 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3276 if (self_subrange && n2 == 0 && n3 == 0)
3277 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3278
3279 /* If n3 is zero and n2 is not, we want a floating type,
3280 and n2 is the width in bytes.
3281
3282 Fortran programs appear to use this for complex types also,
3283 and they give no way to distinguish between double and single-complex!
3284
3285 GDB does not have complex types.
3286
3287 Just return the complex as a float of that size. It won't work right
3288 for the complex values, but at least it makes the file loadable. */
3289
3290 if (n3 == 0 && n2 > 0)
3291 {
3292 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3293 }
3294
3295 /* If the upper bound is -1, it must really be an unsigned int. */
3296
3297 else if (n2 == 0 && n3 == -1)
3298 {
3299 /* It is unsigned int or unsigned long. */
3300 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3301 compatibility hack. */
3302 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3303 TYPE_FLAG_UNSIGNED, NULL, objfile);
3304 }
3305
3306 /* Special case: char is defined (Who knows why) as a subrange of
3307 itself with range 0-127. */
3308 else if (self_subrange && n2 == 0 && n3 == 127)
3309 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3310
3311 /* We used to do this only for subrange of self or subrange of int. */
3312 else if (n2 == 0)
3313 {
3314 if (n3 < 0)
3315 /* n3 actually gives the size. */
3316 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3317 NULL, objfile);
3318 if (n3 == 0xff)
3319 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3320 if (n3 == 0xffff)
3321 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3322
3323 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3324 "unsigned long", and we already checked for that,
3325 so don't need to test for it here. */
3326 }
3327 /* I think this is for Convex "long long". Since I don't know whether
3328 Convex sets self_subrange, I also accept that particular size regardless
3329 of self_subrange. */
3330 else if (n3 == 0 && n2 < 0
3331 && (self_subrange
3332 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3333 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3334 else if (n2 == -n3 -1)
3335 {
3336 if (n3 == 0x7f)
3337 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3338 if (n3 == 0x7fff)
3339 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3340 if (n3 == 0x7fffffff)
3341 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3342 }
3343
3344 /* We have a real range type on our hands. Allocate space and
3345 return a real pointer. */
3346
3347 /* At this point I don't have the faintest idea how to deal with
3348 a self_subrange type; I'm going to assume that this is used
3349 as an idiom, and that all of them are special cases. So . . . */
3350 if (self_subrange)
3351 return error_type (pp);
3352
3353 index_type = *dbx_lookup_type (rangenums);
3354 if (index_type == NULL)
3355 {
3356 /* Does this actually ever happen? Is that why we are worrying
3357 about dealing with it rather than just calling error_type? */
3358
3359 static struct type *range_type_index;
3360
3361 complain (&range_type_base_complaint, rangenums[1]);
3362 if (range_type_index == NULL)
3363 range_type_index =
3364 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3365 0, "range type index type", NULL);
3366 index_type = range_type_index;
3367 }
3368
3369 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3370 return (result_type);
3371 }
3372
3373 /* Read in an argument list. This is a list of types, separated by commas
3374 and terminated with END. Return the list of types read in, or (struct type
3375 **)-1 if there is an error. */
3376
3377 static struct type **
3378 read_args (pp, end, objfile)
3379 char **pp;
3380 int end;
3381 struct objfile *objfile;
3382 {
3383 /* FIXME! Remove this arbitrary limit! */
3384 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3385 int n = 0;
3386
3387 while (**pp != end)
3388 {
3389 if (**pp != ',')
3390 /* Invalid argument list: no ','. */
3391 return (struct type **)-1;
3392 (*pp)++;
3393 STABS_CONTINUE (pp);
3394 types[n++] = read_type (pp, objfile);
3395 }
3396 (*pp)++; /* get past `end' (the ':' character) */
3397
3398 if (n == 1)
3399 {
3400 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3401 }
3402 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3403 {
3404 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3405 memset (rval + n, 0, sizeof (struct type *));
3406 }
3407 else
3408 {
3409 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3410 }
3411 memcpy (rval, types, n * sizeof (struct type *));
3412 return rval;
3413 }
3414 \f
3415 /* Common block handling. */
3416
3417 /* List of symbols declared since the last BCOMM. This list is a tail
3418 of local_symbols. When ECOMM is seen, the symbols on the list
3419 are noted so their proper addresses can be filled in later,
3420 using the common block base address gotten from the assembler
3421 stabs. */
3422
3423 static struct pending *common_block;
3424 static int common_block_i;
3425
3426 /* Name of the current common block. We get it from the BCOMM instead of the
3427 ECOMM to match IBM documentation (even though IBM puts the name both places
3428 like everyone else). */
3429 static char *common_block_name;
3430
3431 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3432 to remain after this function returns. */
3433
3434 void
3435 common_block_start (name, objfile)
3436 char *name;
3437 struct objfile *objfile;
3438 {
3439 if (common_block_name != NULL)
3440 {
3441 static struct complaint msg = {
3442 "Invalid symbol data: common block within common block",
3443 0, 0};
3444 complain (&msg);
3445 }
3446 common_block = local_symbols;
3447 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3448 common_block_name = obsavestring (name, strlen (name),
3449 &objfile -> symbol_obstack);
3450 }
3451
3452 /* Process a N_ECOMM symbol. */
3453
3454 void
3455 common_block_end (objfile)
3456 struct objfile *objfile;
3457 {
3458 /* Symbols declared since the BCOMM are to have the common block
3459 start address added in when we know it. common_block and
3460 common_block_i point to the first symbol after the BCOMM in
3461 the local_symbols list; copy the list and hang it off the
3462 symbol for the common block name for later fixup. */
3463 int i;
3464 struct symbol *sym;
3465 struct pending *new = 0;
3466 struct pending *next;
3467 int j;
3468
3469 if (common_block_name == NULL)
3470 {
3471 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3472 complain (&msg);
3473 return;
3474 }
3475
3476 sym = (struct symbol *)
3477 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3478 memset (sym, 0, sizeof (struct symbol));
3479 SYMBOL_NAME (sym) = common_block_name;
3480 SYMBOL_CLASS (sym) = LOC_BLOCK;
3481
3482 /* Now we copy all the symbols which have been defined since the BCOMM. */
3483
3484 /* Copy all the struct pendings before common_block. */
3485 for (next = local_symbols;
3486 next != NULL && next != common_block;
3487 next = next->next)
3488 {
3489 for (j = 0; j < next->nsyms; j++)
3490 add_symbol_to_list (next->symbol[j], &new);
3491 }
3492
3493 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3494 NULL, it means copy all the local symbols (which we already did
3495 above). */
3496
3497 if (common_block != NULL)
3498 for (j = common_block_i; j < common_block->nsyms; j++)
3499 add_symbol_to_list (common_block->symbol[j], &new);
3500
3501 SYMBOL_NAMESPACE (sym) = (enum namespace)((long) new);
3502
3503 /* Should we be putting local_symbols back to what it was?
3504 Does it matter? */
3505
3506 i = hashname (SYMBOL_NAME (sym));
3507 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3508 global_sym_chain[i] = sym;
3509 common_block_name = NULL;
3510 }
3511
3512 /* Add a common block's start address to the offset of each symbol
3513 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3514 the common block name). */
3515
3516 static void
3517 fix_common_block (sym, valu)
3518 struct symbol *sym;
3519 int valu;
3520 {
3521 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3522 for ( ; next; next = next->next)
3523 {
3524 register int j;
3525 for (j = next->nsyms - 1; j >= 0; j--)
3526 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3527 }
3528 }
3529
3530
3531 \f
3532 /* What about types defined as forward references inside of a small lexical
3533 scope? */
3534 /* Add a type to the list of undefined types to be checked through
3535 once this file has been read in. */
3536
3537 void
3538 add_undefined_type (type)
3539 struct type *type;
3540 {
3541 if (undef_types_length == undef_types_allocated)
3542 {
3543 undef_types_allocated *= 2;
3544 undef_types = (struct type **)
3545 xrealloc ((char *) undef_types,
3546 undef_types_allocated * sizeof (struct type *));
3547 }
3548 undef_types[undef_types_length++] = type;
3549 }
3550
3551 /* Go through each undefined type, see if it's still undefined, and fix it
3552 up if possible. We have two kinds of undefined types:
3553
3554 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3555 Fix: update array length using the element bounds
3556 and the target type's length.
3557 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3558 yet defined at the time a pointer to it was made.
3559 Fix: Do a full lookup on the struct/union tag. */
3560 void
3561 cleanup_undefined_types ()
3562 {
3563 struct type **type;
3564
3565 for (type = undef_types; type < undef_types + undef_types_length; type++)
3566 {
3567 switch (TYPE_CODE (*type))
3568 {
3569
3570 case TYPE_CODE_STRUCT:
3571 case TYPE_CODE_UNION:
3572 case TYPE_CODE_ENUM:
3573 {
3574 /* Check if it has been defined since. Need to do this here
3575 as well as in check_stub_type to deal with the (legitimate in
3576 C though not C++) case of several types with the same name
3577 in different source files. */
3578 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3579 {
3580 struct pending *ppt;
3581 int i;
3582 /* Name of the type, without "struct" or "union" */
3583 char *typename = TYPE_TAG_NAME (*type);
3584
3585 if (typename == NULL)
3586 {
3587 static struct complaint msg = {"need a type name", 0, 0};
3588 complain (&msg);
3589 break;
3590 }
3591 for (ppt = file_symbols; ppt; ppt = ppt->next)
3592 {
3593 for (i = 0; i < ppt->nsyms; i++)
3594 {
3595 struct symbol *sym = ppt->symbol[i];
3596
3597 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3598 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3599 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3600 TYPE_CODE (*type))
3601 && STREQ (SYMBOL_NAME (sym), typename))
3602 {
3603 memcpy (*type, SYMBOL_TYPE (sym),
3604 sizeof (struct type));
3605 }
3606 }
3607 }
3608 }
3609 }
3610 break;
3611
3612 case TYPE_CODE_ARRAY:
3613 {
3614 /* This is a kludge which is here for historical reasons
3615 because I suspect that check_stub_type does not get
3616 called everywhere it needs to be called for arrays. Even
3617 with this kludge, those places are broken for the case
3618 where the stub type is defined in another compilation
3619 unit, but this kludge at least deals with it for the case
3620 in which it is the same compilation unit.
3621
3622 Don't try to do this by calling check_stub_type; it might
3623 cause symbols to be read in lookup_symbol, and the symbol
3624 reader is not reentrant. */
3625
3626 struct type *range_type;
3627 int lower, upper;
3628
3629 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3630 goto badtype;
3631 if (TYPE_NFIELDS (*type) != 1)
3632 goto badtype;
3633 range_type = TYPE_FIELD_TYPE (*type, 0);
3634 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3635 goto badtype;
3636
3637 /* Now recompute the length of the array type, based on its
3638 number of elements and the target type's length. */
3639 lower = TYPE_FIELD_BITPOS (range_type, 0);
3640 upper = TYPE_FIELD_BITPOS (range_type, 1);
3641 TYPE_LENGTH (*type) = (upper - lower + 1)
3642 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3643
3644 /* If the target type is not a stub, we could be clearing
3645 TYPE_FLAG_TARGET_STUB for *type. */
3646 }
3647 break;
3648
3649 default:
3650 badtype:
3651 {
3652 static struct complaint msg = {"\
3653 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3654 complain (&msg, TYPE_CODE (*type));
3655 }
3656 break;
3657 }
3658 }
3659
3660 undef_types_length = 0;
3661 }
3662
3663 /* Scan through all of the global symbols defined in the object file,
3664 assigning values to the debugging symbols that need to be assigned
3665 to. Get these symbols from the minimal symbol table. */
3666
3667 void
3668 scan_file_globals (objfile)
3669 struct objfile *objfile;
3670 {
3671 int hash;
3672 struct minimal_symbol *msymbol;
3673 struct symbol *sym, *prev;
3674
3675 if (objfile->msymbols == 0) /* Beware the null file. */
3676 return;
3677
3678 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3679 {
3680 QUIT;
3681
3682 prev = NULL;
3683
3684 /* Get the hash index and check all the symbols
3685 under that hash index. */
3686
3687 hash = hashname (SYMBOL_NAME (msymbol));
3688
3689 for (sym = global_sym_chain[hash]; sym;)
3690 {
3691 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3692 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3693 {
3694 /* Splice this symbol out of the hash chain and
3695 assign the value we have to it. */
3696 if (prev)
3697 {
3698 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3699 }
3700 else
3701 {
3702 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3703 }
3704
3705 /* Check to see whether we need to fix up a common block. */
3706 /* Note: this code might be executed several times for
3707 the same symbol if there are multiple references. */
3708
3709 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3710 {
3711 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3712 }
3713 else
3714 {
3715 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3716 }
3717
3718 if (prev)
3719 {
3720 sym = SYMBOL_VALUE_CHAIN (prev);
3721 }
3722 else
3723 {
3724 sym = global_sym_chain[hash];
3725 }
3726 }
3727 else
3728 {
3729 prev = sym;
3730 sym = SYMBOL_VALUE_CHAIN (sym);
3731 }
3732 }
3733 }
3734 }
3735
3736 /* Initialize anything that needs initializing when starting to read
3737 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3738 to a psymtab. */
3739
3740 void
3741 stabsread_init ()
3742 {
3743 }
3744
3745 /* Initialize anything that needs initializing when a completely new
3746 symbol file is specified (not just adding some symbols from another
3747 file, e.g. a shared library). */
3748
3749 void
3750 stabsread_new_init ()
3751 {
3752 /* Empty the hash table of global syms looking for values. */
3753 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3754 }
3755
3756 /* Initialize anything that needs initializing at the same time as
3757 start_symtab() is called. */
3758
3759 void start_stabs ()
3760 {
3761 global_stabs = NULL; /* AIX COFF */
3762 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3763 n_this_object_header_files = 1;
3764 type_vector_length = 0;
3765 type_vector = (struct type **) 0;
3766
3767 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3768 common_block_name = NULL;
3769 }
3770
3771 /* Call after end_symtab() */
3772
3773 void end_stabs ()
3774 {
3775 if (type_vector)
3776 {
3777 free ((char *) type_vector);
3778 }
3779 type_vector = 0;
3780 type_vector_length = 0;
3781 previous_stab_code = 0;
3782 }
3783
3784 void
3785 finish_global_stabs (objfile)
3786 struct objfile *objfile;
3787 {
3788 if (global_stabs)
3789 {
3790 patch_block_stabs (global_symbols, global_stabs, objfile);
3791 free ((PTR) global_stabs);
3792 global_stabs = NULL;
3793 }
3794 }
3795
3796 /* Initializer for this module */
3797
3798 void
3799 _initialize_stabsread ()
3800 {
3801 undef_types_allocated = 20;
3802 undef_types_length = 0;
3803 undef_types = (struct type **)
3804 xmalloc (undef_types_allocated * sizeof (struct type *));
3805 }
This page took 0.103035 seconds and 5 git commands to generate.