Changes to support alpha OSF/1 in native mode.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 #include <ctype.h>
40
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
42 #define EXTERN /**/
43 #include "stabsread.h" /* Our own declarations */
44 #undef EXTERN
45
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
51
52 struct field_info
53 {
54 struct nextfield
55 {
56 struct nextfield *next;
57 int visibility;
58 struct field field;
59 } *list;
60 struct next_fnfieldlist
61 {
62 struct next_fnfieldlist *next;
63 struct fn_fieldlist fn_fieldlist;
64 } *fnlist;
65 };
66
67 static struct type *
68 dbx_alloc_type PARAMS ((int [2], struct objfile *));
69
70 static long read_huge_number PARAMS ((char **, int, int *));
71
72 static struct type *error_type PARAMS ((char **));
73
74 static void
75 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
76 struct objfile *));
77
78 static void
79 fix_common_block PARAMS ((struct symbol *, int));
80
81 static int
82 read_type_number PARAMS ((char **, int *));
83
84 static struct type *
85 read_range_type PARAMS ((char **, int [2], struct objfile *));
86
87 static struct type *
88 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
89
90 static struct type *
91 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
92
93 static struct type *
94 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
95
96 static struct type *
97 rs6000_builtin_type PARAMS ((int));
98
99 static int
100 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
101 struct objfile *));
102
103 static int
104 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
105 struct objfile *));
106
107 static int
108 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
109 struct objfile *));
110
111 static int
112 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
113 struct objfile *));
114
115 static int
116 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
117
118 static int
119 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
120 struct objfile *));
121
122 static struct type *
123 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
124
125 static struct type *
126 read_array_type PARAMS ((char **, struct type *, struct objfile *));
127
128 static struct type **
129 read_args PARAMS ((char **, int, struct objfile *));
130
131 static int
132 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
133 struct objfile *));
134
135 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
136 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
137
138 /* Define this as 1 if a pcc declaration of a char or short argument
139 gives the correct address. Otherwise assume pcc gives the
140 address of the corresponding int, which is not the same on a
141 big-endian machine. */
142
143 #ifndef BELIEVE_PCC_PROMOTION
144 #define BELIEVE_PCC_PROMOTION 0
145 #endif
146
147 #if 0
148 /* I think this can go away, all current uses have been removed.
149 GCC emits a few crazy types which can only be distinguished by the
150 name (complex, long long on some machines), but I'd say fix GCC. */
151
152 /* During some calls to read_type (and thus to read_range_type), this
153 contains the name of the type being defined. Range types are only
154 used in C as basic types. We use the name to distinguish the otherwise
155 identical basic types "int" and "long" and their unsigned versions.
156 FIXME, this should disappear with better type management. */
157
158 static char *long_kludge_name;
159 #endif
160
161 #if 0
162 struct complaint dbx_class_complaint =
163 {
164 "encountered DBX-style class variable debugging information.\n\
165 You seem to have compiled your program with \
166 \"g++ -g0\" instead of \"g++ -g\".\n\
167 Therefore GDB will not know about your class variables", 0, 0
168 };
169 #endif
170
171 struct complaint invalid_cpp_abbrev_complaint =
172 {"invalid C++ abbreviation `%s'", 0, 0};
173
174 struct complaint invalid_cpp_type_complaint =
175 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
176
177 struct complaint member_fn_complaint =
178 {"member function type missing, got '%c'", 0, 0};
179
180 struct complaint const_vol_complaint =
181 {"const/volatile indicator missing, got '%c'", 0, 0};
182
183 struct complaint error_type_complaint =
184 {"debug info mismatch between compiler and debugger", 0, 0};
185
186 struct complaint invalid_member_complaint =
187 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
188
189 struct complaint range_type_base_complaint =
190 {"base type %d of range type is not defined", 0, 0};
191
192 struct complaint reg_value_complaint =
193 {"register number too large in symbol %s", 0, 0};
194
195 struct complaint vtbl_notfound_complaint =
196 {"virtual function table pointer not found when defining class `%s'", 0, 0};
197
198 struct complaint unrecognized_cplus_name_complaint =
199 {"Unknown C++ symbol name `%s'", 0, 0};
200
201 struct complaint rs6000_builtin_complaint =
202 {"Unknown builtin type %d", 0, 0};
203
204 struct complaint stabs_general_complaint =
205 {"%s", 0, 0};
206
207 /* Make a list of forward references which haven't been defined. */
208
209 static struct type **undef_types;
210 static int undef_types_allocated;
211 static int undef_types_length;
212
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp) \
215 do { \
216 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
217 } while (0)
218
219 \f
220 /* Look up a dbx type-number pair. Return the address of the slot
221 where the type for that number-pair is stored.
222 The number-pair is in TYPENUMS.
223
224 This can be used for finding the type associated with that pair
225 or for associating a new type with the pair. */
226
227 struct type **
228 dbx_lookup_type (typenums)
229 int typenums[2];
230 {
231 register int filenum = typenums[0];
232 register int index = typenums[1];
233 unsigned old_len;
234 register int real_filenum;
235 register struct header_file *f;
236 int f_orig_length;
237
238 if (filenum == -1) /* -1,-1 is for temporary types. */
239 return 0;
240
241 if (filenum < 0 || filenum >= n_this_object_header_files)
242 {
243 static struct complaint msg = {"\
244 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
245 0, 0};
246 complain (&msg, filenum, index, symnum);
247 goto error_return;
248 }
249
250 if (filenum == 0)
251 {
252 if (index < 0)
253 {
254 /* Caller wants address of address of type. We think
255 that negative (rs6k builtin) types will never appear as
256 "lvalues", (nor should they), so we stuff the real type
257 pointer into a temp, and return its address. If referenced,
258 this will do the right thing. */
259 static struct type *temp_type;
260
261 temp_type = rs6000_builtin_type(index);
262 return &temp_type;
263 }
264
265 /* Type is defined outside of header files.
266 Find it in this object file's type vector. */
267 if (index >= type_vector_length)
268 {
269 old_len = type_vector_length;
270 if (old_len == 0)
271 {
272 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
273 type_vector = (struct type **)
274 malloc (type_vector_length * sizeof (struct type *));
275 }
276 while (index >= type_vector_length)
277 {
278 type_vector_length *= 2;
279 }
280 type_vector = (struct type **)
281 xrealloc ((char *) type_vector,
282 (type_vector_length * sizeof (struct type *)));
283 memset (&type_vector[old_len], 0,
284 (type_vector_length - old_len) * sizeof (struct type *));
285 }
286 return (&type_vector[index]);
287 }
288 else
289 {
290 real_filenum = this_object_header_files[filenum];
291
292 if (real_filenum >= n_header_files)
293 {
294 struct type *temp_type;
295 struct type **temp_type_p;
296
297 warning ("GDB internal error: bad real_filenum");
298
299 error_return:
300 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
301 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
302 *temp_type_p = temp_type;
303 return temp_type_p;
304 }
305
306 f = &header_files[real_filenum];
307
308 f_orig_length = f->length;
309 if (index >= f_orig_length)
310 {
311 while (index >= f->length)
312 {
313 f->length *= 2;
314 }
315 f->vector = (struct type **)
316 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
317 memset (&f->vector[f_orig_length], 0,
318 (f->length - f_orig_length) * sizeof (struct type *));
319 }
320 return (&f->vector[index]);
321 }
322 }
323
324 /* Make sure there is a type allocated for type numbers TYPENUMS
325 and return the type object.
326 This can create an empty (zeroed) type object.
327 TYPENUMS may be (-1, -1) to return a new type object that is not
328 put into the type vector, and so may not be referred to by number. */
329
330 static struct type *
331 dbx_alloc_type (typenums, objfile)
332 int typenums[2];
333 struct objfile *objfile;
334 {
335 register struct type **type_addr;
336
337 if (typenums[0] == -1)
338 {
339 return (alloc_type (objfile));
340 }
341
342 type_addr = dbx_lookup_type (typenums);
343
344 /* If we are referring to a type not known at all yet,
345 allocate an empty type for it.
346 We will fill it in later if we find out how. */
347 if (*type_addr == 0)
348 {
349 *type_addr = alloc_type (objfile);
350 }
351
352 return (*type_addr);
353 }
354
355 /* for all the stabs in a given stab vector, build appropriate types
356 and fix their symbols in given symbol vector. */
357
358 static void
359 patch_block_stabs (symbols, stabs, objfile)
360 struct pending *symbols;
361 struct pending_stabs *stabs;
362 struct objfile *objfile;
363 {
364 int ii;
365 char *name;
366 char *pp;
367 struct symbol *sym;
368
369 if (stabs)
370 {
371
372 /* for all the stab entries, find their corresponding symbols and
373 patch their types! */
374
375 for (ii = 0; ii < stabs->count; ++ii)
376 {
377 name = stabs->stab[ii];
378 pp = (char*) strchr (name, ':');
379 sym = find_symbol_in_list (symbols, name, pp-name);
380 if (!sym)
381 {
382 /* On xcoff, if a global is defined and never referenced,
383 ld will remove it from the executable. There is then
384 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
385 sym = (struct symbol *)
386 obstack_alloc (&objfile->symbol_obstack,
387 sizeof (struct symbol));
388
389 memset (sym, 0, sizeof (struct symbol));
390 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
391 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
392 SYMBOL_NAME (sym) =
393 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
394 pp += 2;
395 if (*(pp-1) == 'F' || *(pp-1) == 'f')
396 {
397 /* I don't think the linker does this with functions,
398 so as far as I know this is never executed.
399 But it doesn't hurt to check. */
400 SYMBOL_TYPE (sym) =
401 lookup_function_type (read_type (&pp, objfile));
402 }
403 else
404 {
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 }
407 add_symbol_to_list (sym, &global_symbols);
408 }
409 else
410 {
411 pp += 2;
412 if (*(pp-1) == 'F' || *(pp-1) == 'f')
413 {
414 SYMBOL_TYPE (sym) =
415 lookup_function_type (read_type (&pp, objfile));
416 }
417 else
418 {
419 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
420 }
421 }
422 }
423 }
424 }
425
426 \f
427 /* Read a number by which a type is referred to in dbx data,
428 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
429 Just a single number N is equivalent to (0,N).
430 Return the two numbers by storing them in the vector TYPENUMS.
431 TYPENUMS will then be used as an argument to dbx_lookup_type.
432
433 Returns 0 for success, -1 for error. */
434
435 static int
436 read_type_number (pp, typenums)
437 register char **pp;
438 register int *typenums;
439 {
440 int nbits;
441 if (**pp == '(')
442 {
443 (*pp)++;
444 typenums[0] = read_huge_number (pp, ',', &nbits);
445 if (nbits != 0) return -1;
446 typenums[1] = read_huge_number (pp, ')', &nbits);
447 if (nbits != 0) return -1;
448 }
449 else
450 {
451 typenums[0] = 0;
452 typenums[1] = read_huge_number (pp, 0, &nbits);
453 if (nbits != 0) return -1;
454 }
455 return 0;
456 }
457
458 \f
459 /* To handle GNU C++ typename abbreviation, we need to be able to
460 fill in a type's name as soon as space for that type is allocated.
461 `type_synonym_name' is the name of the type being allocated.
462 It is cleared as soon as it is used (lest all allocated types
463 get this name). */
464
465 static char *type_synonym_name;
466
467 /* ARGSUSED */
468 struct symbol *
469 define_symbol (valu, string, desc, type, objfile)
470 CORE_ADDR valu;
471 char *string;
472 int desc;
473 int type;
474 struct objfile *objfile;
475 {
476 register struct symbol *sym;
477 char *p = (char *) strchr (string, ':');
478 int deftype;
479 int synonym = 0;
480 register int i;
481
482 /* We would like to eliminate nameless symbols, but keep their types.
483 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
484 to type 2, but, should not create a symbol to address that type. Since
485 the symbol will be nameless, there is no way any user can refer to it. */
486
487 int nameless;
488
489 /* Ignore syms with empty names. */
490 if (string[0] == 0)
491 return 0;
492
493 /* Ignore old-style symbols from cc -go */
494 if (p == 0)
495 return 0;
496
497 /* If a nameless stab entry, all we need is the type, not the symbol.
498 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
499 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
500
501 sym = (struct symbol *)
502 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
503 memset (sym, 0, sizeof (struct symbol));
504
505 if (processing_gcc_compilation)
506 {
507 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
508 number of bytes occupied by a type or object, which we ignore. */
509 SYMBOL_LINE(sym) = desc;
510 }
511 else
512 {
513 SYMBOL_LINE(sym) = 0; /* unknown */
514 }
515
516 if (string[0] == CPLUS_MARKER)
517 {
518 /* Special GNU C++ names. */
519 switch (string[1])
520 {
521 case 't':
522 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
523 &objfile -> symbol_obstack);
524 break;
525
526 case 'v': /* $vtbl_ptr_type */
527 /* Was: SYMBOL_NAME (sym) = "vptr"; */
528 goto normal;
529
530 case 'e':
531 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
532 &objfile -> symbol_obstack);
533 break;
534
535 case '_':
536 /* This was an anonymous type that was never fixed up. */
537 goto normal;
538
539 default:
540 complain (&unrecognized_cplus_name_complaint, string);
541 goto normal; /* Do *something* with it */
542 }
543 }
544 else
545 {
546 normal:
547 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
548 SYMBOL_NAME (sym) = (char *)
549 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
550 /* Open-coded memcpy--saves function call time. */
551 /* FIXME: Does it really? Try replacing with simple strcpy and
552 try it on an executable with a large symbol table. */
553 /* FIXME: considering that gcc can open code memcpy anyway, I
554 doubt it. xoxorich. */
555 {
556 register char *p1 = string;
557 register char *p2 = SYMBOL_NAME (sym);
558 while (p1 != p)
559 {
560 *p2++ = *p1++;
561 }
562 *p2++ = '\0';
563 }
564
565 /* If this symbol is from a C++ compilation, then attempt to cache the
566 demangled form for future reference. This is a typical time versus
567 space tradeoff, that was decided in favor of time because it sped up
568 C++ symbol lookups by a factor of about 20. */
569
570 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
571 }
572 p++;
573
574 /* Determine the type of name being defined. */
575 #if 0
576 /* Getting GDB to correctly skip the symbol on an undefined symbol
577 descriptor and not ever dump core is a very dodgy proposition if
578 we do things this way. I say the acorn RISC machine can just
579 fix their compiler. */
580 /* The Acorn RISC machine's compiler can put out locals that don't
581 start with "234=" or "(3,4)=", so assume anything other than the
582 deftypes we know how to handle is a local. */
583 if (!strchr ("cfFGpPrStTvVXCR", *p))
584 #else
585 if (isdigit (*p) || *p == '(' || *p == '-')
586 #endif
587 deftype = 'l';
588 else
589 deftype = *p++;
590
591 switch (deftype)
592 {
593 case 'c':
594 /* c is a special case, not followed by a type-number.
595 SYMBOL:c=iVALUE for an integer constant symbol.
596 SYMBOL:c=rVALUE for a floating constant symbol.
597 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
598 e.g. "b:c=e6,0" for "const b = blob1"
599 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
600 if (*p != '=')
601 {
602 SYMBOL_CLASS (sym) = LOC_CONST;
603 SYMBOL_TYPE (sym) = error_type (&p);
604 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
605 add_symbol_to_list (sym, &file_symbols);
606 return sym;
607 }
608 ++p;
609 switch (*p++)
610 {
611 case 'r':
612 {
613 double d = atof (p);
614 char *dbl_valu;
615
616 /* FIXME: lookup_fundamental_type is a hack. We should be
617 creating a type especially for the type of float constants.
618 Problem is, what type should it be? We currently have to
619 read this in host floating point format, but what type
620 represents a host format "double"?
621
622 Also, what should the name of this type be? Should we
623 be using 'S' constants (see stabs.texinfo) instead? */
624
625 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
626 FT_DBL_PREC_FLOAT);
627 dbl_valu = (char *)
628 obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
629 memcpy (dbl_valu, &d, sizeof (double));
630 /* Put it in target byte order, but it's still in host
631 floating point format. */
632 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
633 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
634 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
635 }
636 break;
637 case 'i':
638 {
639 /* Defining integer constants this way is kind of silly,
640 since 'e' constants allows the compiler to give not
641 only the value, but the type as well. C has at least
642 int, long, unsigned int, and long long as constant
643 types; other languages probably should have at least
644 unsigned as well as signed constants. */
645
646 /* We just need one int constant type for all objfiles.
647 It doesn't depend on languages or anything (arguably its
648 name should be a language-specific name for a type of
649 that size, but I'm inclined to say that if the compiler
650 wants a nice name for the type, it can use 'e'). */
651 static struct type *int_const_type;
652
653 /* Yes, this is as long as a *host* int. That is because we
654 use atoi. */
655 if (int_const_type == NULL)
656 int_const_type =
657 init_type (TYPE_CODE_INT,
658 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
659 "integer constant",
660 (struct objfile *)NULL);
661 SYMBOL_TYPE (sym) = int_const_type;
662 SYMBOL_VALUE (sym) = atoi (p);
663 SYMBOL_CLASS (sym) = LOC_CONST;
664 }
665 break;
666 case 'e':
667 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
668 can be represented as integral.
669 e.g. "b:c=e6,0" for "const b = blob1"
670 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
671 {
672 SYMBOL_CLASS (sym) = LOC_CONST;
673 SYMBOL_TYPE (sym) = read_type (&p, objfile);
674
675 if (*p != ',')
676 {
677 SYMBOL_TYPE (sym) = error_type (&p);
678 break;
679 }
680 ++p;
681
682 /* If the value is too big to fit in an int (perhaps because
683 it is unsigned), or something like that, we silently get
684 a bogus value. The type and everything else about it is
685 correct. Ideally, we should be using whatever we have
686 available for parsing unsigned and long long values,
687 however. */
688 SYMBOL_VALUE (sym) = atoi (p);
689 }
690 break;
691 default:
692 {
693 SYMBOL_CLASS (sym) = LOC_CONST;
694 SYMBOL_TYPE (sym) = error_type (&p);
695 }
696 }
697 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
698 add_symbol_to_list (sym, &file_symbols);
699 return sym;
700
701 case 'C':
702 /* The name of a caught exception. */
703 SYMBOL_TYPE (sym) = read_type (&p, objfile);
704 SYMBOL_CLASS (sym) = LOC_LABEL;
705 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
706 SYMBOL_VALUE_ADDRESS (sym) = valu;
707 add_symbol_to_list (sym, &local_symbols);
708 break;
709
710 case 'f':
711 /* A static function definition. */
712 SYMBOL_TYPE (sym) = read_type (&p, objfile);
713 SYMBOL_CLASS (sym) = LOC_BLOCK;
714 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
715 add_symbol_to_list (sym, &file_symbols);
716 /* fall into process_function_types. */
717
718 process_function_types:
719 /* Function result types are described as the result type in stabs.
720 We need to convert this to the function-returning-type-X type
721 in GDB. E.g. "int" is converted to "function returning int". */
722 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
723 {
724 #if 0
725 /* This code doesn't work -- it needs to realloc and can't. */
726 /* Attempt to set up to record a function prototype... */
727 struct type *new = alloc_type (objfile);
728
729 /* Generate a template for the type of this function. The
730 types of the arguments will be added as we read the symbol
731 table. */
732 *new = *lookup_function_type (SYMBOL_TYPE(sym));
733 SYMBOL_TYPE(sym) = new;
734 TYPE_OBJFILE (new) = objfile;
735 in_function_type = new;
736 #else
737 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
738 #endif
739 }
740 /* fall into process_prototype_types */
741
742 process_prototype_types:
743 /* Sun acc puts declared types of arguments here. We don't care
744 about their actual types (FIXME -- we should remember the whole
745 function prototype), but the list may define some new types
746 that we have to remember, so we must scan it now. */
747 while (*p == ';') {
748 p++;
749 read_type (&p, objfile);
750 }
751 break;
752
753 case 'F':
754 /* A global function definition. */
755 SYMBOL_TYPE (sym) = read_type (&p, objfile);
756 SYMBOL_CLASS (sym) = LOC_BLOCK;
757 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
758 add_symbol_to_list (sym, &global_symbols);
759 goto process_function_types;
760
761 case 'G':
762 /* For a class G (global) symbol, it appears that the
763 value is not correct. It is necessary to search for the
764 corresponding linker definition to find the value.
765 These definitions appear at the end of the namelist. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 i = hashname (SYMBOL_NAME (sym));
768 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
769 global_sym_chain[i] = sym;
770 SYMBOL_CLASS (sym) = LOC_STATIC;
771 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
772 add_symbol_to_list (sym, &global_symbols);
773 break;
774
775 /* This case is faked by a conditional above,
776 when there is no code letter in the dbx data.
777 Dbx data never actually contains 'l'. */
778 case 'l':
779 SYMBOL_TYPE (sym) = read_type (&p, objfile);
780 SYMBOL_CLASS (sym) = LOC_LOCAL;
781 SYMBOL_VALUE (sym) = valu;
782 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
783 add_symbol_to_list (sym, &local_symbols);
784 break;
785
786 case 'p':
787 if (*p == 'F')
788 /* pF is a two-letter code that means a function parameter in Fortran.
789 The type-number specifies the type of the return value.
790 Translate it into a pointer-to-function type. */
791 {
792 p++;
793 SYMBOL_TYPE (sym)
794 = lookup_pointer_type
795 (lookup_function_type (read_type (&p, objfile)));
796 }
797 else
798 SYMBOL_TYPE (sym) = read_type (&p, objfile);
799
800 /* Normally this is a parameter, a LOC_ARG. On the i960, it
801 can also be a LOC_LOCAL_ARG depending on symbol type. */
802 #ifndef DBX_PARM_SYMBOL_CLASS
803 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
804 #endif
805
806 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
807 SYMBOL_VALUE (sym) = valu;
808 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
809 #if 0
810 /* This doesn't work yet. */
811 add_param_to_type (&in_function_type, sym);
812 #endif
813 add_symbol_to_list (sym, &local_symbols);
814
815 /* If it's gcc-compiled, if it says `short', believe it. */
816 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
817 break;
818
819 #if !BELIEVE_PCC_PROMOTION
820 {
821 /* This is the signed type which arguments get promoted to. */
822 static struct type *pcc_promotion_type;
823 /* This is the unsigned type which arguments get promoted to. */
824 static struct type *pcc_unsigned_promotion_type;
825
826 /* Call it "int" because this is mainly C lossage. */
827 if (pcc_promotion_type == NULL)
828 pcc_promotion_type =
829 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
830 0, "int", NULL);
831
832 if (pcc_unsigned_promotion_type == NULL)
833 pcc_unsigned_promotion_type =
834 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
835 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
836
837 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
838 /* This macro is defined on machines (e.g. sparc) where
839 we should believe the type of a PCC 'short' argument,
840 but shouldn't believe the address (the address is
841 the address of the corresponding int). Note that
842 this is only different from the BELIEVE_PCC_PROMOTION
843 case on big-endian machines.
844
845 My guess is that this correction, as opposed to changing
846 the parameter to an 'int' (as done below, for PCC
847 on most machines), is the right thing to do
848 on all machines, but I don't want to risk breaking
849 something that already works. On most PCC machines,
850 the sparc problem doesn't come up because the calling
851 function has to zero the top bytes (not knowing whether
852 the called function wants an int or a short), so there
853 is no practical difference between an int and a short
854 (except perhaps what happens when the GDB user types
855 "print short_arg = 0x10000;").
856
857 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
858 actually produces the correct address (we don't need to fix it
859 up). I made this code adapt so that it will offset the symbol
860 if it was pointing at an int-aligned location and not
861 otherwise. This way you can use the same gdb for 4.0.x and
862 4.1 systems.
863
864 If the parameter is shorter than an int, and is integral
865 (e.g. char, short, or unsigned equivalent), and is claimed to
866 be passed on an integer boundary, don't believe it! Offset the
867 parameter's address to the tail-end of that integer. */
868
869 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
870 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
871 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
872 {
873 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
874 - TYPE_LENGTH (SYMBOL_TYPE (sym));
875 }
876 break;
877
878 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
879
880 /* If PCC says a parameter is a short or a char,
881 it is really an int. */
882 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
883 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
884 {
885 SYMBOL_TYPE (sym) =
886 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
887 ? pcc_unsigned_promotion_type
888 : pcc_promotion_type;
889 }
890 break;
891
892 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
893 }
894 #endif /* !BELIEVE_PCC_PROMOTION. */
895
896 case 'P':
897 /* acc seems to use P to delare the prototypes of functions that
898 are referenced by this file. gdb is not prepared to deal
899 with this extra information. FIXME, it ought to. */
900 if (type == N_FUN)
901 {
902 read_type (&p, objfile);
903 goto process_prototype_types;
904 }
905 /*FALLTHROUGH*/
906
907 case 'R':
908 /* Parameter which is in a register. */
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910 SYMBOL_CLASS (sym) = LOC_REGPARM;
911 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
912 if (SYMBOL_VALUE (sym) >= NUM_REGS)
913 {
914 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
915 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
916 }
917 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
918 add_symbol_to_list (sym, &local_symbols);
919 break;
920
921 case 'r':
922 /* Register variable (either global or local). */
923 SYMBOL_TYPE (sym) = read_type (&p, objfile);
924 SYMBOL_CLASS (sym) = LOC_REGISTER;
925 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
926 if (SYMBOL_VALUE (sym) >= NUM_REGS)
927 {
928 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
929 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
930 }
931 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
932 if (within_function)
933 {
934 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
935 name to represent an argument passed in a register.
936 GCC uses 'P' for the same case. So if we find such a symbol pair
937 we combine it into one 'P' symbol.
938 Note that this code illegally combines
939 main(argc) int argc; { register int argc = 1; }
940 but this case is considered pathological and causes a warning
941 from a decent compiler. */
942 if (local_symbols
943 && local_symbols->nsyms > 0)
944 {
945 struct symbol *prev_sym;
946 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
947 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
948 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
949 {
950 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
951 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
952 sym = prev_sym;
953 break;
954 }
955 }
956 add_symbol_to_list (sym, &local_symbols);
957 }
958 else
959 add_symbol_to_list (sym, &file_symbols);
960 break;
961
962 case 'S':
963 /* Static symbol at top level of file */
964 SYMBOL_TYPE (sym) = read_type (&p, objfile);
965 SYMBOL_CLASS (sym) = LOC_STATIC;
966 SYMBOL_VALUE_ADDRESS (sym) = valu;
967 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
968 add_symbol_to_list (sym, &file_symbols);
969 break;
970
971 case 't':
972 #if 0
973 /* See comment where long_kludge_name is declared. */
974 /* Here we save the name of the symbol for read_range_type, which
975 ends up reading in the basic types. In stabs, unfortunately there
976 is no distinction between "int" and "long" types except their
977 names. Until we work out a saner type policy (eliminating most
978 builtin types and using the names specified in the files), we
979 save away the name so that far away from here in read_range_type,
980 we can examine it to decide between "int" and "long". FIXME. */
981 long_kludge_name = SYMBOL_NAME (sym);
982 #endif
983 SYMBOL_TYPE (sym) = read_type (&p, objfile);
984
985 /* For a nameless type, we don't want a create a symbol, thus we
986 did not use `sym'. Return without further processing. */
987 if (nameless) return NULL;
988
989 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
990 SYMBOL_VALUE (sym) = valu;
991 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
992 /* C++ vagaries: we may have a type which is derived from
993 a base type which did not have its name defined when the
994 derived class was output. We fill in the derived class's
995 base part member's name here in that case. */
996 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
997 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
998 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
999 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1000 {
1001 int j;
1002 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1003 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1004 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1005 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1006 }
1007
1008 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1009 {
1010 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1011 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1012 {
1013 /* If we are giving a name to a type such as "pointer to
1014 foo" or "function returning foo", we better not set
1015 the TYPE_NAME. If the program contains "typedef char
1016 *caddr_t;", we don't want all variables of type char
1017 * to print as caddr_t. This is not just a
1018 consequence of GDB's type management; PCC and GCC (at
1019 least through version 2.4) both output variables of
1020 either type char * or caddr_t with the type number
1021 defined in the 't' symbol for caddr_t. If a future
1022 compiler cleans this up it GDB is not ready for it
1023 yet, but if it becomes ready we somehow need to
1024 disable this check (without breaking the PCC/GCC2.4
1025 case).
1026
1027 Sigh.
1028
1029 Fortunately, this check seems not to be necessary
1030 for anything except pointers or functions. */
1031 }
1032 else
1033 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1034 }
1035
1036 add_symbol_to_list (sym, &file_symbols);
1037 break;
1038
1039 case 'T':
1040 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1041 by 't' which means we are typedef'ing it as well. */
1042 synonym = *p == 't';
1043
1044 if (synonym)
1045 {
1046 p++;
1047 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1048 strlen (SYMBOL_NAME (sym)),
1049 &objfile -> symbol_obstack);
1050 }
1051
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053
1054 /* For a nameless type, we don't want a create a symbol, thus we
1055 did not use `sym'. Return without further processing. */
1056 if (nameless) return NULL;
1057
1058 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1059 SYMBOL_VALUE (sym) = valu;
1060 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1061 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1062 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1063 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1064 add_symbol_to_list (sym, &file_symbols);
1065
1066 if (synonym)
1067 {
1068 /* Clone the sym and then modify it. */
1069 register struct symbol *typedef_sym = (struct symbol *)
1070 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1071 *typedef_sym = *sym;
1072 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1073 SYMBOL_VALUE (typedef_sym) = valu;
1074 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1075 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1076 TYPE_NAME (SYMBOL_TYPE (sym))
1077 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1078 add_symbol_to_list (typedef_sym, &file_symbols);
1079 }
1080 break;
1081
1082 case 'V':
1083 /* Static symbol of local scope */
1084 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1085 SYMBOL_CLASS (sym) = LOC_STATIC;
1086 SYMBOL_VALUE_ADDRESS (sym) = valu;
1087 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1088 add_symbol_to_list (sym, &local_symbols);
1089 break;
1090
1091 case 'v':
1092 /* Reference parameter */
1093 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1094 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1095 SYMBOL_VALUE (sym) = valu;
1096 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1097 add_symbol_to_list (sym, &local_symbols);
1098 break;
1099
1100 case 'X':
1101 /* This is used by Sun FORTRAN for "function result value".
1102 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1103 that Pascal uses it too, but when I tried it Pascal used
1104 "x:3" (local symbol) instead. */
1105 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106 SYMBOL_CLASS (sym) = LOC_LOCAL;
1107 SYMBOL_VALUE (sym) = valu;
1108 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1109 add_symbol_to_list (sym, &local_symbols);
1110 break;
1111
1112 default:
1113 SYMBOL_TYPE (sym) = error_type (&p);
1114 SYMBOL_CLASS (sym) = LOC_CONST;
1115 SYMBOL_VALUE (sym) = 0;
1116 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1117 add_symbol_to_list (sym, &file_symbols);
1118 break;
1119 }
1120
1121 /* When passing structures to a function, some systems sometimes pass
1122 the address in a register, not the structure itself.
1123
1124 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1125 to LOC_REGPARM_ADDR for structures and unions. */
1126
1127 #if !defined (REG_STRUCT_HAS_ADDR)
1128 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1129 #endif
1130
1131 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1132 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1133 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1134 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1135 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1136
1137 return sym;
1138 }
1139
1140 \f
1141 /* Skip rest of this symbol and return an error type.
1142
1143 General notes on error recovery: error_type always skips to the
1144 end of the symbol (modulo cretinous dbx symbol name continuation).
1145 Thus code like this:
1146
1147 if (*(*pp)++ != ';')
1148 return error_type (pp);
1149
1150 is wrong because if *pp starts out pointing at '\0' (typically as the
1151 result of an earlier error), it will be incremented to point to the
1152 start of the next symbol, which might produce strange results, at least
1153 if you run off the end of the string table. Instead use
1154
1155 if (**pp != ';')
1156 return error_type (pp);
1157 ++*pp;
1158
1159 or
1160
1161 if (**pp != ';')
1162 foo = error_type (pp);
1163 else
1164 ++*pp;
1165
1166 And in case it isn't obvious, the point of all this hair is so the compiler
1167 can define new types and new syntaxes, and old versions of the
1168 debugger will be able to read the new symbol tables. */
1169
1170 static struct type *
1171 error_type (pp)
1172 char **pp;
1173 {
1174 complain (&error_type_complaint);
1175 while (1)
1176 {
1177 /* Skip to end of symbol. */
1178 while (**pp != '\0')
1179 {
1180 (*pp)++;
1181 }
1182
1183 /* Check for and handle cretinous dbx symbol name continuation! */
1184 if ((*pp)[-1] == '\\')
1185 {
1186 *pp = next_symbol_text ();
1187 }
1188 else
1189 {
1190 break;
1191 }
1192 }
1193 return (builtin_type_error);
1194 }
1195
1196 \f
1197 /* Read type information or a type definition; return the type. Even
1198 though this routine accepts either type information or a type
1199 definition, the distinction is relevant--some parts of stabsread.c
1200 assume that type information starts with a digit, '-', or '(' in
1201 deciding whether to call read_type. */
1202
1203 struct type *
1204 read_type (pp, objfile)
1205 register char **pp;
1206 struct objfile *objfile;
1207 {
1208 register struct type *type = 0;
1209 struct type *type1;
1210 int typenums[2];
1211 int xtypenums[2];
1212 char type_descriptor;
1213
1214 /* Size in bits of type if specified by a type attribute, or -1 if
1215 there is no size attribute. */
1216 int type_size = -1;
1217
1218 /* Read type number if present. The type number may be omitted.
1219 for instance in a two-dimensional array declared with type
1220 "ar1;1;10;ar1;1;10;4". */
1221 if ((**pp >= '0' && **pp <= '9')
1222 || **pp == '(')
1223 {
1224 if (read_type_number (pp, typenums) != 0)
1225 return error_type (pp);
1226
1227 /* Type is not being defined here. Either it already exists,
1228 or this is a forward reference to it. dbx_alloc_type handles
1229 both cases. */
1230 if (**pp != '=')
1231 return dbx_alloc_type (typenums, objfile);
1232
1233 /* Type is being defined here. */
1234 /* Skip the '='. */
1235 ++(*pp);
1236
1237 while (**pp == '@')
1238 {
1239 char *p = *pp + 1;
1240 /* It might be a type attribute or a member type. */
1241 if (isdigit (*p) || *p == '(' || *p == '-')
1242 /* Member type. */
1243 break;
1244 else
1245 {
1246 /* Type attributes. */
1247 char *attr = p;
1248
1249 /* Skip to the semicolon. */
1250 while (*p != ';' && *p != '\0')
1251 ++p;
1252 *pp = p;
1253 if (*p == '\0')
1254 return error_type (pp);
1255 else
1256 /* Skip the semicolon. */
1257 ++*pp;
1258
1259 switch (*attr)
1260 {
1261 case 's':
1262 type_size = atoi (attr + 1);
1263 if (type_size <= 0)
1264 type_size = -1;
1265 break;
1266 default:
1267 /* Ignore unrecognized type attributes, so future compilers
1268 can invent new ones. */
1269 break;
1270 }
1271 }
1272 }
1273 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1274 ++(*pp);
1275 }
1276 else
1277 {
1278 /* 'typenums=' not present, type is anonymous. Read and return
1279 the definition, but don't put it in the type vector. */
1280 typenums[0] = typenums[1] = -1;
1281 (*pp)++;
1282 }
1283
1284 type_descriptor = (*pp)[-1];
1285 switch (type_descriptor)
1286 {
1287 case 'x':
1288 {
1289 enum type_code code;
1290
1291 /* Used to index through file_symbols. */
1292 struct pending *ppt;
1293 int i;
1294
1295 /* Name including "struct", etc. */
1296 char *type_name;
1297
1298 {
1299 char *from, *to;
1300
1301 /* Set the type code according to the following letter. */
1302 switch ((*pp)[0])
1303 {
1304 case 's':
1305 code = TYPE_CODE_STRUCT;
1306 break;
1307 case 'u':
1308 code = TYPE_CODE_UNION;
1309 break;
1310 case 'e':
1311 code = TYPE_CODE_ENUM;
1312 break;
1313 default:
1314 return error_type (pp);
1315 }
1316
1317 to = type_name = (char *)
1318 obstack_alloc (&objfile -> type_obstack,
1319 (((char *) strchr (*pp, ':') - (*pp)) + 1));
1320
1321 /* Copy the name. */
1322 from = *pp + 1;
1323 while ((*to++ = *from++) != ':')
1324 ;
1325 *--to = '\0';
1326
1327 /* Set the pointer ahead of the name which we just read. */
1328 *pp = from;
1329 }
1330
1331 /* Now check to see whether the type has already been declared. */
1332 /* This is necessary at least in the case where the
1333 program says something like
1334 struct foo bar[5];
1335 The compiler puts out a cross-reference; we better find
1336 set the length of the structure correctly so we can
1337 set the length of the array. */
1338 for (ppt = file_symbols; ppt; ppt = ppt->next)
1339 for (i = 0; i < ppt->nsyms; i++)
1340 {
1341 struct symbol *sym = ppt->symbol[i];
1342
1343 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1344 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1345 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1346 && STREQ (SYMBOL_NAME (sym), type_name))
1347 {
1348 obstack_free (&objfile -> type_obstack, type_name);
1349 type = SYMBOL_TYPE (sym);
1350 return type;
1351 }
1352 }
1353
1354 /* Didn't find the type to which this refers, so we must
1355 be dealing with a forward reference. Allocate a type
1356 structure for it, and keep track of it so we can
1357 fill in the rest of the fields when we get the full
1358 type. */
1359 type = dbx_alloc_type (typenums, objfile);
1360 TYPE_CODE (type) = code;
1361 TYPE_TAG_NAME (type) = type_name;
1362 INIT_CPLUS_SPECIFIC(type);
1363 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1364
1365 add_undefined_type (type);
1366 return type;
1367 }
1368
1369 case '-': /* RS/6000 built-in type */
1370 case '0':
1371 case '1':
1372 case '2':
1373 case '3':
1374 case '4':
1375 case '5':
1376 case '6':
1377 case '7':
1378 case '8':
1379 case '9':
1380 case '(':
1381
1382 (*pp)--;
1383 if (read_type_number (pp, xtypenums) != 0)
1384 return error_type (pp);
1385
1386 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1387 /* It's being defined as itself. That means it is "void". */
1388 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1389 else
1390 {
1391 struct type *xtype = *dbx_lookup_type (xtypenums);
1392
1393 /* This can happen if we had '-' followed by a garbage character,
1394 for example. */
1395 if (xtype == NULL)
1396 return error_type (pp);
1397
1398 /* The type is being defined to another type. So we copy the type.
1399 This loses if we copy a C++ class and so we lose track of how
1400 the names are mangled (but g++ doesn't output stabs like this
1401 now anyway). */
1402
1403 type = alloc_type (objfile);
1404 memcpy (type, xtype, sizeof (struct type));
1405
1406 /* The idea behind clearing the names is that the only purpose
1407 for defining a type to another type is so that the name of
1408 one can be different. So we probably don't need to worry much
1409 about the case where the compiler doesn't give a name to the
1410 new type. */
1411 TYPE_NAME (type) = NULL;
1412 TYPE_TAG_NAME (type) = NULL;
1413 }
1414 if (typenums[0] != -1)
1415 *dbx_lookup_type (typenums) = type;
1416 break;
1417
1418 /* In the following types, we must be sure to overwrite any existing
1419 type that the typenums refer to, rather than allocating a new one
1420 and making the typenums point to the new one. This is because there
1421 may already be pointers to the existing type (if it had been
1422 forward-referenced), and we must change it to a pointer, function,
1423 reference, or whatever, *in-place*. */
1424
1425 case '*':
1426 type1 = read_type (pp, objfile);
1427 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1428 break;
1429
1430 case '&': /* Reference to another type */
1431 type1 = read_type (pp, objfile);
1432 type = make_reference_type (type1, dbx_lookup_type (typenums));
1433 break;
1434
1435 case 'f': /* Function returning another type */
1436 type1 = read_type (pp, objfile);
1437 type = make_function_type (type1, dbx_lookup_type (typenums));
1438 break;
1439
1440 case 'k': /* Const qualifier on some type (Sun) */
1441 type = read_type (pp, objfile);
1442 /* FIXME! For now, we ignore const and volatile qualifiers. */
1443 break;
1444
1445 case 'B': /* Volatile qual on some type (Sun) */
1446 type = read_type (pp, objfile);
1447 /* FIXME! For now, we ignore const and volatile qualifiers. */
1448 break;
1449
1450 /* FIXME -- we should be doing smash_to_XXX types here. */
1451 case '@': /* Member (class & variable) type */
1452 {
1453 struct type *domain = read_type (pp, objfile);
1454 struct type *memtype;
1455
1456 if (**pp != ',')
1457 /* Invalid member type data format. */
1458 return error_type (pp);
1459 ++*pp;
1460
1461 memtype = read_type (pp, objfile);
1462 type = dbx_alloc_type (typenums, objfile);
1463 smash_to_member_type (type, domain, memtype);
1464 }
1465 break;
1466
1467 case '#': /* Method (class & fn) type */
1468 if ((*pp)[0] == '#')
1469 {
1470 /* We'll get the parameter types from the name. */
1471 struct type *return_type;
1472
1473 (*pp)++;
1474 return_type = read_type (pp, objfile);
1475 if (*(*pp)++ != ';')
1476 complain (&invalid_member_complaint, symnum);
1477 type = allocate_stub_method (return_type);
1478 if (typenums[0] != -1)
1479 *dbx_lookup_type (typenums) = type;
1480 }
1481 else
1482 {
1483 struct type *domain = read_type (pp, objfile);
1484 struct type *return_type;
1485 struct type **args;
1486
1487 if (**pp != ',')
1488 /* Invalid member type data format. */
1489 return error_type (pp);
1490 else
1491 ++(*pp);
1492
1493 return_type = read_type (pp, objfile);
1494 args = read_args (pp, ';', objfile);
1495 type = dbx_alloc_type (typenums, objfile);
1496 smash_to_method_type (type, domain, return_type, args);
1497 }
1498 break;
1499
1500 case 'r': /* Range type */
1501 type = read_range_type (pp, typenums, objfile);
1502 if (typenums[0] != -1)
1503 *dbx_lookup_type (typenums) = type;
1504 break;
1505
1506 case 'b': /* Sun ACC builtin int type */
1507 type = read_sun_builtin_type (pp, typenums, objfile);
1508 if (typenums[0] != -1)
1509 *dbx_lookup_type (typenums) = type;
1510 break;
1511
1512 case 'R': /* Sun ACC builtin float type */
1513 type = read_sun_floating_type (pp, typenums, objfile);
1514 if (typenums[0] != -1)
1515 *dbx_lookup_type (typenums) = type;
1516 break;
1517
1518 case 'e': /* Enumeration type */
1519 type = dbx_alloc_type (typenums, objfile);
1520 type = read_enum_type (pp, type, objfile);
1521 if (typenums[0] != -1)
1522 *dbx_lookup_type (typenums) = type;
1523 break;
1524
1525 case 's': /* Struct type */
1526 case 'u': /* Union type */
1527 type = dbx_alloc_type (typenums, objfile);
1528 if (!TYPE_NAME (type))
1529 {
1530 TYPE_NAME (type) = type_synonym_name;
1531 }
1532 type_synonym_name = NULL;
1533 switch (type_descriptor)
1534 {
1535 case 's':
1536 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1537 break;
1538 case 'u':
1539 TYPE_CODE (type) = TYPE_CODE_UNION;
1540 break;
1541 }
1542 type = read_struct_type (pp, type, objfile);
1543 break;
1544
1545 case 'a': /* Array type */
1546 if (**pp != 'r')
1547 return error_type (pp);
1548 ++*pp;
1549
1550 type = dbx_alloc_type (typenums, objfile);
1551 type = read_array_type (pp, type, objfile);
1552 break;
1553
1554 default:
1555 --*pp; /* Go back to the symbol in error */
1556 /* Particularly important if it was \0! */
1557 return error_type (pp);
1558 }
1559
1560 if (type == 0)
1561 {
1562 warning ("GDB internal error, type is NULL in stabsread.c\n");
1563 return error_type (pp);
1564 }
1565
1566 /* Size specified in a type attribute overrides any other size. */
1567 if (type_size != -1)
1568 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1569
1570 return type;
1571 }
1572 \f
1573 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1574 Return the proper type node for a given builtin type number. */
1575
1576 static struct type *
1577 rs6000_builtin_type (typenum)
1578 int typenum;
1579 {
1580 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1581 #define NUMBER_RECOGNIZED 30
1582 /* This includes an empty slot for type number -0. */
1583 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1584 struct type *rettype = NULL;
1585
1586 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1587 {
1588 complain (&rs6000_builtin_complaint, typenum);
1589 return builtin_type_error;
1590 }
1591 if (negative_types[-typenum] != NULL)
1592 return negative_types[-typenum];
1593
1594 #if TARGET_CHAR_BIT != 8
1595 #error This code wrong for TARGET_CHAR_BIT not 8
1596 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1597 that if that ever becomes not true, the correct fix will be to
1598 make the size in the struct type to be in bits, not in units of
1599 TARGET_CHAR_BIT. */
1600 #endif
1601
1602 switch (-typenum)
1603 {
1604 case 1:
1605 /* The size of this and all the other types are fixed, defined
1606 by the debugging format. If there is a type called "int" which
1607 is other than 32 bits, then it should use a new negative type
1608 number (or avoid negative type numbers for that case).
1609 See stabs.texinfo. */
1610 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1611 break;
1612 case 2:
1613 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1614 break;
1615 case 3:
1616 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1617 break;
1618 case 4:
1619 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1620 break;
1621 case 5:
1622 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1623 "unsigned char", NULL);
1624 break;
1625 case 6:
1626 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1627 break;
1628 case 7:
1629 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1630 "unsigned short", NULL);
1631 break;
1632 case 8:
1633 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1634 "unsigned int", NULL);
1635 break;
1636 case 9:
1637 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1638 "unsigned", NULL);
1639 case 10:
1640 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1641 "unsigned long", NULL);
1642 break;
1643 case 11:
1644 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1645 break;
1646 case 12:
1647 /* IEEE single precision (32 bit). */
1648 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1649 break;
1650 case 13:
1651 /* IEEE double precision (64 bit). */
1652 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1653 break;
1654 case 14:
1655 /* This is an IEEE double on the RS/6000, and different machines with
1656 different sizes for "long double" should use different negative
1657 type numbers. See stabs.texinfo. */
1658 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1659 break;
1660 case 15:
1661 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1662 break;
1663 case 16:
1664 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1665 break;
1666 case 17:
1667 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1668 break;
1669 case 18:
1670 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1671 break;
1672 case 19:
1673 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1674 break;
1675 case 20:
1676 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1677 "character", NULL);
1678 break;
1679 case 21:
1680 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1681 "logical*1", NULL);
1682 break;
1683 case 22:
1684 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1685 "logical*2", NULL);
1686 break;
1687 case 23:
1688 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1689 "logical*4", NULL);
1690 break;
1691 case 24:
1692 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1693 "logical", NULL);
1694 break;
1695 case 25:
1696 /* Complex type consisting of two IEEE single precision values. */
1697 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1698 break;
1699 case 26:
1700 /* Complex type consisting of two IEEE double precision values. */
1701 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1702 break;
1703 case 27:
1704 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1705 break;
1706 case 28:
1707 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1708 break;
1709 case 29:
1710 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1711 break;
1712 case 30:
1713 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1714 break;
1715 }
1716 negative_types[-typenum] = rettype;
1717 return rettype;
1718 }
1719 \f
1720 /* This page contains subroutines of read_type. */
1721
1722 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1723 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1724 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1725
1726 /* Read member function stabs info for C++ classes. The form of each member
1727 function data is:
1728
1729 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1730
1731 An example with two member functions is:
1732
1733 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1734
1735 For the case of overloaded operators, the format is op$::*.funcs, where
1736 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1737 name (such as `+=') and `.' marks the end of the operator name.
1738
1739 Returns 1 for success, 0 for failure. */
1740
1741 static int
1742 read_member_functions (fip, pp, type, objfile)
1743 struct field_info *fip;
1744 char **pp;
1745 struct type *type;
1746 struct objfile *objfile;
1747 {
1748 int nfn_fields = 0;
1749 int length = 0;
1750 /* Total number of member functions defined in this class. If the class
1751 defines two `f' functions, and one `g' function, then this will have
1752 the value 3. */
1753 int total_length = 0;
1754 int i;
1755 struct next_fnfield
1756 {
1757 struct next_fnfield *next;
1758 struct fn_field fn_field;
1759 } *sublist;
1760 struct type *look_ahead_type;
1761 struct next_fnfieldlist *new_fnlist;
1762 struct next_fnfield *new_sublist;
1763 char *main_fn_name;
1764 register char *p;
1765
1766 /* Process each list until we find something that is not a member function
1767 or find the end of the functions. */
1768
1769 while (**pp != ';')
1770 {
1771 /* We should be positioned at the start of the function name.
1772 Scan forward to find the first ':' and if it is not the
1773 first of a "::" delimiter, then this is not a member function. */
1774 p = *pp;
1775 while (*p != ':')
1776 {
1777 p++;
1778 }
1779 if (p[1] != ':')
1780 {
1781 break;
1782 }
1783
1784 sublist = NULL;
1785 look_ahead_type = NULL;
1786 length = 0;
1787
1788 new_fnlist = (struct next_fnfieldlist *)
1789 xmalloc (sizeof (struct next_fnfieldlist));
1790 make_cleanup (free, new_fnlist);
1791 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1792
1793 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1794 {
1795 /* This is a completely wierd case. In order to stuff in the
1796 names that might contain colons (the usual name delimiter),
1797 Mike Tiemann defined a different name format which is
1798 signalled if the identifier is "op$". In that case, the
1799 format is "op$::XXXX." where XXXX is the name. This is
1800 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1801 /* This lets the user type "break operator+".
1802 We could just put in "+" as the name, but that wouldn't
1803 work for "*". */
1804 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1805 char *o = opname + 3;
1806
1807 /* Skip past '::'. */
1808 *pp = p + 2;
1809
1810 STABS_CONTINUE (pp);
1811 p = *pp;
1812 while (*p != '.')
1813 {
1814 *o++ = *p++;
1815 }
1816 main_fn_name = savestring (opname, o - opname);
1817 /* Skip past '.' */
1818 *pp = p + 1;
1819 }
1820 else
1821 {
1822 main_fn_name = savestring (*pp, p - *pp);
1823 /* Skip past '::'. */
1824 *pp = p + 2;
1825 }
1826 new_fnlist -> fn_fieldlist.name = main_fn_name;
1827
1828 do
1829 {
1830 new_sublist =
1831 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1832 make_cleanup (free, new_sublist);
1833 memset (new_sublist, 0, sizeof (struct next_fnfield));
1834
1835 /* Check for and handle cretinous dbx symbol name continuation! */
1836 if (look_ahead_type == NULL)
1837 {
1838 /* Normal case. */
1839 STABS_CONTINUE (pp);
1840
1841 new_sublist -> fn_field.type = read_type (pp, objfile);
1842 if (**pp != ':')
1843 {
1844 /* Invalid symtab info for member function. */
1845 return 0;
1846 }
1847 }
1848 else
1849 {
1850 /* g++ version 1 kludge */
1851 new_sublist -> fn_field.type = look_ahead_type;
1852 look_ahead_type = NULL;
1853 }
1854
1855 (*pp)++;
1856 p = *pp;
1857 while (*p != ';')
1858 {
1859 p++;
1860 }
1861
1862 /* If this is just a stub, then we don't have the real name here. */
1863
1864 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1865 {
1866 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1867 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1868 new_sublist -> fn_field.is_stub = 1;
1869 }
1870 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1871 *pp = p + 1;
1872
1873 /* Set this member function's visibility fields. */
1874 switch (*(*pp)++)
1875 {
1876 case VISIBILITY_PRIVATE:
1877 new_sublist -> fn_field.is_private = 1;
1878 break;
1879 case VISIBILITY_PROTECTED:
1880 new_sublist -> fn_field.is_protected = 1;
1881 break;
1882 }
1883
1884 STABS_CONTINUE (pp);
1885 switch (**pp)
1886 {
1887 case 'A': /* Normal functions. */
1888 new_sublist -> fn_field.is_const = 0;
1889 new_sublist -> fn_field.is_volatile = 0;
1890 (*pp)++;
1891 break;
1892 case 'B': /* `const' member functions. */
1893 new_sublist -> fn_field.is_const = 1;
1894 new_sublist -> fn_field.is_volatile = 0;
1895 (*pp)++;
1896 break;
1897 case 'C': /* `volatile' member function. */
1898 new_sublist -> fn_field.is_const = 0;
1899 new_sublist -> fn_field.is_volatile = 1;
1900 (*pp)++;
1901 break;
1902 case 'D': /* `const volatile' member function. */
1903 new_sublist -> fn_field.is_const = 1;
1904 new_sublist -> fn_field.is_volatile = 1;
1905 (*pp)++;
1906 break;
1907 case '*': /* File compiled with g++ version 1 -- no info */
1908 case '?':
1909 case '.':
1910 break;
1911 default:
1912 complain (&const_vol_complaint, **pp);
1913 break;
1914 }
1915
1916 switch (*(*pp)++)
1917 {
1918 case '*':
1919 {
1920 int nbits;
1921 /* virtual member function, followed by index.
1922 The sign bit is set to distinguish pointers-to-methods
1923 from virtual function indicies. Since the array is
1924 in words, the quantity must be shifted left by 1
1925 on 16 bit machine, and by 2 on 32 bit machine, forcing
1926 the sign bit out, and usable as a valid index into
1927 the array. Remove the sign bit here. */
1928 new_sublist -> fn_field.voffset =
1929 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1930 if (nbits != 0)
1931 return 0;
1932
1933 STABS_CONTINUE (pp);
1934 if (**pp == ';' || **pp == '\0')
1935 {
1936 /* Must be g++ version 1. */
1937 new_sublist -> fn_field.fcontext = 0;
1938 }
1939 else
1940 {
1941 /* Figure out from whence this virtual function came.
1942 It may belong to virtual function table of
1943 one of its baseclasses. */
1944 look_ahead_type = read_type (pp, objfile);
1945 if (**pp == ':')
1946 {
1947 /* g++ version 1 overloaded methods. */
1948 }
1949 else
1950 {
1951 new_sublist -> fn_field.fcontext = look_ahead_type;
1952 if (**pp != ';')
1953 {
1954 return 0;
1955 }
1956 else
1957 {
1958 ++*pp;
1959 }
1960 look_ahead_type = NULL;
1961 }
1962 }
1963 break;
1964 }
1965 case '?':
1966 /* static member function. */
1967 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1968 if (strncmp (new_sublist -> fn_field.physname,
1969 main_fn_name, strlen (main_fn_name)))
1970 {
1971 new_sublist -> fn_field.is_stub = 1;
1972 }
1973 break;
1974
1975 default:
1976 /* error */
1977 complain (&member_fn_complaint, (*pp)[-1]);
1978 /* Fall through into normal member function. */
1979
1980 case '.':
1981 /* normal member function. */
1982 new_sublist -> fn_field.voffset = 0;
1983 new_sublist -> fn_field.fcontext = 0;
1984 break;
1985 }
1986
1987 new_sublist -> next = sublist;
1988 sublist = new_sublist;
1989 length++;
1990 STABS_CONTINUE (pp);
1991 }
1992 while (**pp != ';' && **pp != '\0');
1993
1994 (*pp)++;
1995
1996 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
1997 obstack_alloc (&objfile -> type_obstack,
1998 sizeof (struct fn_field) * length);
1999 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2000 sizeof (struct fn_field) * length);
2001 for (i = length; (i--, sublist); sublist = sublist -> next)
2002 {
2003 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2004 }
2005
2006 new_fnlist -> fn_fieldlist.length = length;
2007 new_fnlist -> next = fip -> fnlist;
2008 fip -> fnlist = new_fnlist;
2009 nfn_fields++;
2010 total_length += length;
2011 STABS_CONTINUE (pp);
2012 }
2013
2014 if (nfn_fields)
2015 {
2016 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2017 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2018 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2019 memset (TYPE_FN_FIELDLISTS (type), 0,
2020 sizeof (struct fn_fieldlist) * nfn_fields);
2021 TYPE_NFN_FIELDS (type) = nfn_fields;
2022 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2023 }
2024
2025 return 1;
2026 }
2027
2028 /* Special GNU C++ name.
2029
2030 Returns 1 for success, 0 for failure. "failure" means that we can't
2031 keep parsing and it's time for error_type(). */
2032
2033 static int
2034 read_cpp_abbrev (fip, pp, type, objfile)
2035 struct field_info *fip;
2036 char **pp;
2037 struct type *type;
2038 struct objfile *objfile;
2039 {
2040 register char *p;
2041 char *name;
2042 char cpp_abbrev;
2043 struct type *context;
2044
2045 p = *pp;
2046 if (*++p == 'v')
2047 {
2048 name = NULL;
2049 cpp_abbrev = *++p;
2050
2051 *pp = p + 1;
2052
2053 /* At this point, *pp points to something like "22:23=*22...",
2054 where the type number before the ':' is the "context" and
2055 everything after is a regular type definition. Lookup the
2056 type, find it's name, and construct the field name. */
2057
2058 context = read_type (pp, objfile);
2059
2060 switch (cpp_abbrev)
2061 {
2062 case 'f': /* $vf -- a virtual function table pointer */
2063 fip->list->field.name =
2064 obconcat (&objfile->type_obstack, vptr_name, "", "");
2065 break;
2066
2067 case 'b': /* $vb -- a virtual bsomethingorother */
2068 name = type_name_no_tag (context);
2069 if (name == NULL)
2070 {
2071 complain (&invalid_cpp_type_complaint, symnum);
2072 name = "FOO";
2073 }
2074 fip->list->field.name =
2075 obconcat (&objfile->type_obstack, vb_name, name, "");
2076 break;
2077
2078 default:
2079 complain (&invalid_cpp_abbrev_complaint, *pp);
2080 fip->list->field.name =
2081 obconcat (&objfile->type_obstack,
2082 "INVALID_CPLUSPLUS_ABBREV", "", "");
2083 break;
2084 }
2085
2086 /* At this point, *pp points to the ':'. Skip it and read the
2087 field type. */
2088
2089 p = ++(*pp);
2090 if (p[-1] != ':')
2091 {
2092 complain (&invalid_cpp_abbrev_complaint, *pp);
2093 return 0;
2094 }
2095 fip->list->field.type = read_type (pp, objfile);
2096 if (**pp == ',')
2097 (*pp)++; /* Skip the comma. */
2098 else
2099 return 0;
2100
2101 {
2102 int nbits;
2103 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2104 if (nbits != 0)
2105 return 0;
2106 }
2107 /* This field is unpacked. */
2108 fip->list->field.bitsize = 0;
2109 fip->list->visibility = VISIBILITY_PRIVATE;
2110 }
2111 else
2112 {
2113 complain (&invalid_cpp_abbrev_complaint, *pp);
2114 /* We have no idea what syntax an unrecognized abbrev would have, so
2115 better return 0. If we returned 1, we would need to at least advance
2116 *pp to avoid an infinite loop. */
2117 return 0;
2118 }
2119 return 1;
2120 }
2121
2122 static void
2123 read_one_struct_field (fip, pp, p, type, objfile)
2124 struct field_info *fip;
2125 char **pp;
2126 char *p;
2127 struct type *type;
2128 struct objfile *objfile;
2129 {
2130 fip -> list -> field.name =
2131 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2132 *pp = p + 1;
2133
2134 /* This means we have a visibility for a field coming. */
2135 if (**pp == '/')
2136 {
2137 (*pp)++;
2138 fip -> list -> visibility = *(*pp)++;
2139 switch (fip -> list -> visibility)
2140 {
2141 case VISIBILITY_PRIVATE:
2142 case VISIBILITY_PROTECTED:
2143 break;
2144
2145 case VISIBILITY_PUBLIC:
2146 /* Nothing to do */
2147 break;
2148
2149 default:
2150 /* Unknown visibility specifier. */
2151 complain (&stabs_general_complaint,
2152 "unknown visibility specifier");
2153 return;
2154 break;
2155 }
2156 }
2157 else
2158 {
2159 /* normal dbx-style format, no explicit visibility */
2160 fip -> list -> visibility = VISIBILITY_PUBLIC;
2161 }
2162
2163 fip -> list -> field.type = read_type (pp, objfile);
2164 if (**pp == ':')
2165 {
2166 p = ++(*pp);
2167 #if 0
2168 /* Possible future hook for nested types. */
2169 if (**pp == '!')
2170 {
2171 fip -> list -> field.bitpos = (long)-2; /* nested type */
2172 p = ++(*pp);
2173 }
2174 else
2175 #endif
2176 {
2177 /* Static class member. */
2178 fip -> list -> field.bitpos = (long) -1;
2179 }
2180 while (*p != ';')
2181 {
2182 p++;
2183 }
2184 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2185 *pp = p + 1;
2186 return;
2187 }
2188 else if (**pp != ',')
2189 {
2190 /* Bad structure-type format. */
2191 complain (&stabs_general_complaint, "bad structure-type format");
2192 return;
2193 }
2194
2195 (*pp)++; /* Skip the comma. */
2196
2197 {
2198 int nbits;
2199 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2200 if (nbits != 0)
2201 {
2202 complain (&stabs_general_complaint, "bad structure-type format");
2203 return;
2204 }
2205 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2206 if (nbits != 0)
2207 {
2208 complain (&stabs_general_complaint, "bad structure-type format");
2209 return;
2210 }
2211 }
2212 #if 0
2213 /* FIXME-tiemann: Can't the compiler put out something which
2214 lets us distinguish these? (or maybe just not put out anything
2215 for the field). What is the story here? What does the compiler
2216 really do? Also, patch gdb.texinfo for this case; I document
2217 it as a possible problem there. Search for "DBX-style". */
2218
2219 /* This is wrong because this is identical to the symbols
2220 produced for GCC 0-size arrays. For example:
2221 typedef union {
2222 int num;
2223 char str[0];
2224 } foo;
2225 The code which dumped core in such circumstances should be
2226 fixed not to dump core. */
2227
2228 /* g++ -g0 can put out bitpos & bitsize zero for a static
2229 field. This does not give us any way of getting its
2230 class, so we can't know its name. But we can just
2231 ignore the field so we don't dump core and other nasty
2232 stuff. */
2233 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2234 {
2235 complain (&dbx_class_complaint);
2236 /* Ignore this field. */
2237 fip -> list = fip -> list -> next;
2238 }
2239 else
2240 #endif /* 0 */
2241 {
2242 /* Detect an unpacked field and mark it as such.
2243 dbx gives a bit size for all fields.
2244 Note that forward refs cannot be packed,
2245 and treat enums as if they had the width of ints. */
2246
2247 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2248 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2249 {
2250 fip -> list -> field.bitsize = 0;
2251 }
2252 if ((fip -> list -> field.bitsize
2253 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2254 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2255 && (fip -> list -> field.bitsize
2256 == TARGET_INT_BIT)
2257 )
2258 )
2259 &&
2260 fip -> list -> field.bitpos % 8 == 0)
2261 {
2262 fip -> list -> field.bitsize = 0;
2263 }
2264 }
2265 }
2266
2267
2268 /* Read struct or class data fields. They have the form:
2269
2270 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2271
2272 At the end, we see a semicolon instead of a field.
2273
2274 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2275 a static field.
2276
2277 The optional VISIBILITY is one of:
2278
2279 '/0' (VISIBILITY_PRIVATE)
2280 '/1' (VISIBILITY_PROTECTED)
2281 '/2' (VISIBILITY_PUBLIC)
2282
2283 or nothing, for C style fields with public visibility.
2284
2285 Returns 1 for success, 0 for failure. */
2286
2287 static int
2288 read_struct_fields (fip, pp, type, objfile)
2289 struct field_info *fip;
2290 char **pp;
2291 struct type *type;
2292 struct objfile *objfile;
2293 {
2294 register char *p;
2295 struct nextfield *new;
2296
2297 /* We better set p right now, in case there are no fields at all... */
2298
2299 p = *pp;
2300
2301 /* Read each data member type until we find the terminating ';' at the end of
2302 the data member list, or break for some other reason such as finding the
2303 start of the member function list. */
2304
2305 while (**pp != ';')
2306 {
2307 STABS_CONTINUE (pp);
2308 /* Get space to record the next field's data. */
2309 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2310 make_cleanup (free, new);
2311 memset (new, 0, sizeof (struct nextfield));
2312 new -> next = fip -> list;
2313 fip -> list = new;
2314
2315 /* Get the field name. */
2316 p = *pp;
2317 /* If is starts with CPLUS_MARKER it is a special abbreviation, unless
2318 the CPLUS_MARKER is followed by an underscore, in which case it is
2319 just the name of an anonymous type, which we should handle like any
2320 other type name. */
2321 if (*p == CPLUS_MARKER && p[1] != '_')
2322 {
2323 if (!read_cpp_abbrev (fip, pp, type, objfile))
2324 return 0;
2325 continue;
2326 }
2327
2328 /* Look for the ':' that separates the field name from the field
2329 values. Data members are delimited by a single ':', while member
2330 functions are delimited by a pair of ':'s. When we hit the member
2331 functions (if any), terminate scan loop and return. */
2332
2333 while (*p != ':' && *p != '\0')
2334 {
2335 p++;
2336 }
2337 if (*p == '\0')
2338 return 0;
2339
2340 /* Check to see if we have hit the member functions yet. */
2341 if (p[1] == ':')
2342 {
2343 break;
2344 }
2345 read_one_struct_field (fip, pp, p, type, objfile);
2346 }
2347 if (p[1] == ':')
2348 {
2349 /* chill the list of fields: the last entry (at the head) is a
2350 partially constructed entry which we now scrub. */
2351 fip -> list = fip -> list -> next;
2352 }
2353 return 1;
2354 }
2355
2356 /* The stabs for C++ derived classes contain baseclass information which
2357 is marked by a '!' character after the total size. This function is
2358 called when we encounter the baseclass marker, and slurps up all the
2359 baseclass information.
2360
2361 Immediately following the '!' marker is the number of base classes that
2362 the class is derived from, followed by information for each base class.
2363 For each base class, there are two visibility specifiers, a bit offset
2364 to the base class information within the derived class, a reference to
2365 the type for the base class, and a terminating semicolon.
2366
2367 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2368 ^^ ^ ^ ^ ^ ^ ^
2369 Baseclass information marker __________________|| | | | | | |
2370 Number of baseclasses __________________________| | | | | | |
2371 Visibility specifiers (2) ________________________| | | | | |
2372 Offset in bits from start of class _________________| | | | |
2373 Type number for base class ___________________________| | | |
2374 Visibility specifiers (2) _______________________________| | |
2375 Offset in bits from start of class ________________________| |
2376 Type number of base class ____________________________________|
2377
2378 Return 1 for success, 0 for (error-type-inducing) failure. */
2379
2380 static int
2381 read_baseclasses (fip, pp, type, objfile)
2382 struct field_info *fip;
2383 char **pp;
2384 struct type *type;
2385 struct objfile *objfile;
2386 {
2387 int i;
2388 struct nextfield *new;
2389
2390 if (**pp != '!')
2391 {
2392 return 1;
2393 }
2394 else
2395 {
2396 /* Skip the '!' baseclass information marker. */
2397 (*pp)++;
2398 }
2399
2400 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2401 {
2402 int nbits;
2403 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2404 if (nbits != 0)
2405 return 0;
2406 }
2407
2408 #if 0
2409 /* Some stupid compilers have trouble with the following, so break
2410 it up into simpler expressions. */
2411 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2412 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2413 #else
2414 {
2415 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2416 char *pointer;
2417
2418 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2419 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2420 }
2421 #endif /* 0 */
2422
2423 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2424
2425 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2426 {
2427 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2428 make_cleanup (free, new);
2429 memset (new, 0, sizeof (struct nextfield));
2430 new -> next = fip -> list;
2431 fip -> list = new;
2432 new -> field.bitsize = 0; /* this should be an unpacked field! */
2433
2434 STABS_CONTINUE (pp);
2435 switch (*(*pp)++)
2436 {
2437 case '0':
2438 /* Nothing to do. */
2439 break;
2440 case '1':
2441 SET_TYPE_FIELD_VIRTUAL (type, i);
2442 break;
2443 default:
2444 /* Bad visibility format. */
2445 return 0;
2446 }
2447
2448 new -> visibility = *(*pp)++;
2449 switch (new -> visibility)
2450 {
2451 case VISIBILITY_PRIVATE:
2452 case VISIBILITY_PROTECTED:
2453 case VISIBILITY_PUBLIC:
2454 break;
2455 default:
2456 /* Bad visibility format. */
2457 return 0;
2458 }
2459
2460 {
2461 int nbits;
2462
2463 /* The remaining value is the bit offset of the portion of the object
2464 corresponding to this baseclass. Always zero in the absence of
2465 multiple inheritance. */
2466
2467 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2468 if (nbits != 0)
2469 return 0;
2470 }
2471
2472 /* The last piece of baseclass information is the type of the
2473 base class. Read it, and remember it's type name as this
2474 field's name. */
2475
2476 new -> field.type = read_type (pp, objfile);
2477 new -> field.name = type_name_no_tag (new -> field.type);
2478
2479 /* skip trailing ';' and bump count of number of fields seen */
2480 if (**pp == ';')
2481 (*pp)++;
2482 else
2483 return 0;
2484 }
2485 return 1;
2486 }
2487
2488 /* The tail end of stabs for C++ classes that contain a virtual function
2489 pointer contains a tilde, a %, and a type number.
2490 The type number refers to the base class (possibly this class itself) which
2491 contains the vtable pointer for the current class.
2492
2493 This function is called when we have parsed all the method declarations,
2494 so we can look for the vptr base class info. */
2495
2496 static int
2497 read_tilde_fields (fip, pp, type, objfile)
2498 struct field_info *fip;
2499 char **pp;
2500 struct type *type;
2501 struct objfile *objfile;
2502 {
2503 register char *p;
2504
2505 STABS_CONTINUE (pp);
2506
2507 /* If we are positioned at a ';', then skip it. */
2508 if (**pp == ';')
2509 {
2510 (*pp)++;
2511 }
2512
2513 if (**pp == '~')
2514 {
2515 (*pp)++;
2516
2517 if (**pp == '=' || **pp == '+' || **pp == '-')
2518 {
2519 /* Obsolete flags that used to indicate the presence
2520 of constructors and/or destructors. */
2521 (*pp)++;
2522 }
2523
2524 /* Read either a '%' or the final ';'. */
2525 if (*(*pp)++ == '%')
2526 {
2527 /* The next number is the type number of the base class
2528 (possibly our own class) which supplies the vtable for
2529 this class. Parse it out, and search that class to find
2530 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2531 and TYPE_VPTR_FIELDNO. */
2532
2533 struct type *t;
2534 int i;
2535
2536 t = read_type (pp, objfile);
2537 p = (*pp)++;
2538 while (*p != '\0' && *p != ';')
2539 {
2540 p++;
2541 }
2542 if (*p == '\0')
2543 {
2544 /* Premature end of symbol. */
2545 return 0;
2546 }
2547
2548 TYPE_VPTR_BASETYPE (type) = t;
2549 if (type == t) /* Our own class provides vtbl ptr */
2550 {
2551 for (i = TYPE_NFIELDS (t) - 1;
2552 i >= TYPE_N_BASECLASSES (t);
2553 --i)
2554 {
2555 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2556 sizeof (vptr_name) - 1))
2557 {
2558 TYPE_VPTR_FIELDNO (type) = i;
2559 goto gotit;
2560 }
2561 }
2562 /* Virtual function table field not found. */
2563 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2564 return 0;
2565 }
2566 else
2567 {
2568 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2569 }
2570
2571 gotit:
2572 *pp = p + 1;
2573 }
2574 }
2575 return 1;
2576 }
2577
2578 static int
2579 attach_fn_fields_to_type (fip, type)
2580 struct field_info *fip;
2581 register struct type *type;
2582 {
2583 register int n;
2584
2585 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2586 {
2587 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2588 {
2589 /* @@ Memory leak on objfile -> type_obstack? */
2590 return 0;
2591 }
2592 TYPE_NFN_FIELDS_TOTAL (type) +=
2593 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2594 }
2595
2596 for (n = TYPE_NFN_FIELDS (type);
2597 fip -> fnlist != NULL;
2598 fip -> fnlist = fip -> fnlist -> next)
2599 {
2600 --n; /* Circumvent Sun3 compiler bug */
2601 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2602 }
2603 return 1;
2604 }
2605
2606 /* Create the vector of fields, and record how big it is.
2607 We need this info to record proper virtual function table information
2608 for this class's virtual functions. */
2609
2610 static int
2611 attach_fields_to_type (fip, type, objfile)
2612 struct field_info *fip;
2613 register struct type *type;
2614 struct objfile *objfile;
2615 {
2616 register int nfields = 0;
2617 register int non_public_fields = 0;
2618 register struct nextfield *scan;
2619
2620 /* Count up the number of fields that we have, as well as taking note of
2621 whether or not there are any non-public fields, which requires us to
2622 allocate and build the private_field_bits and protected_field_bits
2623 bitfields. */
2624
2625 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2626 {
2627 nfields++;
2628 if (scan -> visibility != VISIBILITY_PUBLIC)
2629 {
2630 non_public_fields++;
2631 }
2632 }
2633
2634 /* Now we know how many fields there are, and whether or not there are any
2635 non-public fields. Record the field count, allocate space for the
2636 array of fields, and create blank visibility bitfields if necessary. */
2637
2638 TYPE_NFIELDS (type) = nfields;
2639 TYPE_FIELDS (type) = (struct field *)
2640 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2641 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2642
2643 if (non_public_fields)
2644 {
2645 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2646
2647 TYPE_FIELD_PRIVATE_BITS (type) =
2648 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2649 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2650
2651 TYPE_FIELD_PROTECTED_BITS (type) =
2652 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2653 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2654 }
2655
2656 /* Copy the saved-up fields into the field vector. Start from the head
2657 of the list, adding to the tail of the field array, so that they end
2658 up in the same order in the array in which they were added to the list. */
2659
2660 while (nfields-- > 0)
2661 {
2662 TYPE_FIELD (type, nfields) = fip -> list -> field;
2663 switch (fip -> list -> visibility)
2664 {
2665 case VISIBILITY_PRIVATE:
2666 SET_TYPE_FIELD_PRIVATE (type, nfields);
2667 break;
2668
2669 case VISIBILITY_PROTECTED:
2670 SET_TYPE_FIELD_PROTECTED (type, nfields);
2671 break;
2672
2673 case VISIBILITY_PUBLIC:
2674 break;
2675
2676 default:
2677 /* Should warn about this unknown visibility? */
2678 break;
2679 }
2680 fip -> list = fip -> list -> next;
2681 }
2682 return 1;
2683 }
2684
2685 /* Read the description of a structure (or union type) and return an object
2686 describing the type.
2687
2688 PP points to a character pointer that points to the next unconsumed token
2689 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2690 *PP will point to "4a:1,0,32;;".
2691
2692 TYPE points to an incomplete type that needs to be filled in.
2693
2694 OBJFILE points to the current objfile from which the stabs information is
2695 being read. (Note that it is redundant in that TYPE also contains a pointer
2696 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2697 */
2698
2699 static struct type *
2700 read_struct_type (pp, type, objfile)
2701 char **pp;
2702 struct type *type;
2703 struct objfile *objfile;
2704 {
2705 struct cleanup *back_to;
2706 struct field_info fi;
2707
2708 fi.list = NULL;
2709 fi.fnlist = NULL;
2710
2711 back_to = make_cleanup (null_cleanup, 0);
2712
2713 INIT_CPLUS_SPECIFIC (type);
2714 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2715
2716 /* First comes the total size in bytes. */
2717
2718 {
2719 int nbits;
2720 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2721 if (nbits != 0)
2722 return error_type (pp);
2723 }
2724
2725 /* Now read the baseclasses, if any, read the regular C struct or C++
2726 class member fields, attach the fields to the type, read the C++
2727 member functions, attach them to the type, and then read any tilde
2728 field (baseclass specifier for the class holding the main vtable). */
2729
2730 if (!read_baseclasses (&fi, pp, type, objfile)
2731 || !read_struct_fields (&fi, pp, type, objfile)
2732 || !attach_fields_to_type (&fi, type, objfile)
2733 || !read_member_functions (&fi, pp, type, objfile)
2734 || !attach_fn_fields_to_type (&fi, type)
2735 || !read_tilde_fields (&fi, pp, type, objfile))
2736 {
2737 do_cleanups (back_to);
2738 return (error_type (pp));
2739 }
2740
2741 do_cleanups (back_to);
2742 return (type);
2743 }
2744
2745 /* Read a definition of an array type,
2746 and create and return a suitable type object.
2747 Also creates a range type which represents the bounds of that
2748 array. */
2749
2750 static struct type *
2751 read_array_type (pp, type, objfile)
2752 register char **pp;
2753 register struct type *type;
2754 struct objfile *objfile;
2755 {
2756 struct type *index_type, *element_type, *range_type;
2757 int lower, upper;
2758 int adjustable = 0;
2759 int nbits;
2760
2761 /* Format of an array type:
2762 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2763 to handle this.
2764
2765 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2766 for these, produce a type like float[][]. */
2767
2768 index_type = read_type (pp, objfile);
2769 if (**pp != ';')
2770 /* Improper format of array type decl. */
2771 return error_type (pp);
2772 ++*pp;
2773
2774 if (!(**pp >= '0' && **pp <= '9'))
2775 {
2776 (*pp)++;
2777 adjustable = 1;
2778 }
2779 lower = read_huge_number (pp, ';', &nbits);
2780 if (nbits != 0)
2781 return error_type (pp);
2782
2783 if (!(**pp >= '0' && **pp <= '9'))
2784 {
2785 (*pp)++;
2786 adjustable = 1;
2787 }
2788 upper = read_huge_number (pp, ';', &nbits);
2789 if (nbits != 0)
2790 return error_type (pp);
2791
2792 element_type = read_type (pp, objfile);
2793
2794 if (adjustable)
2795 {
2796 lower = 0;
2797 upper = -1;
2798 }
2799
2800 range_type =
2801 create_range_type ((struct type *) NULL, index_type, lower, upper);
2802 type = create_array_type (type, element_type, range_type);
2803
2804 /* If we have an array whose element type is not yet known, but whose
2805 bounds *are* known, record it to be adjusted at the end of the file. */
2806
2807 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2808 {
2809 add_undefined_type (type);
2810 }
2811
2812 return type;
2813 }
2814
2815
2816 /* Read a definition of an enumeration type,
2817 and create and return a suitable type object.
2818 Also defines the symbols that represent the values of the type. */
2819
2820 static struct type *
2821 read_enum_type (pp, type, objfile)
2822 register char **pp;
2823 register struct type *type;
2824 struct objfile *objfile;
2825 {
2826 register char *p;
2827 char *name;
2828 register long n;
2829 register struct symbol *sym;
2830 int nsyms = 0;
2831 struct pending **symlist;
2832 struct pending *osyms, *syms;
2833 int o_nsyms;
2834
2835 #if 0
2836 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2837 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2838 to do? For now, force all enum values to file scope. */
2839 if (within_function)
2840 symlist = &local_symbols;
2841 else
2842 #endif
2843 symlist = &file_symbols;
2844 osyms = *symlist;
2845 o_nsyms = osyms ? osyms->nsyms : 0;
2846
2847 /* Read the value-names and their values.
2848 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2849 A semicolon or comma instead of a NAME means the end. */
2850 while (**pp && **pp != ';' && **pp != ',')
2851 {
2852 int nbits;
2853 STABS_CONTINUE (pp);
2854 p = *pp;
2855 while (*p != ':') p++;
2856 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2857 *pp = p + 1;
2858 n = read_huge_number (pp, ',', &nbits);
2859 if (nbits != 0)
2860 return error_type (pp);
2861
2862 sym = (struct symbol *)
2863 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2864 memset (sym, 0, sizeof (struct symbol));
2865 SYMBOL_NAME (sym) = name;
2866 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2867 SYMBOL_CLASS (sym) = LOC_CONST;
2868 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2869 SYMBOL_VALUE (sym) = n;
2870 add_symbol_to_list (sym, symlist);
2871 nsyms++;
2872 }
2873
2874 if (**pp == ';')
2875 (*pp)++; /* Skip the semicolon. */
2876
2877 /* Now fill in the fields of the type-structure. */
2878
2879 TYPE_LENGTH (type) = sizeof (int);
2880 TYPE_CODE (type) = TYPE_CODE_ENUM;
2881 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2882 TYPE_NFIELDS (type) = nsyms;
2883 TYPE_FIELDS (type) = (struct field *)
2884 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2885 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2886
2887 /* Find the symbols for the values and put them into the type.
2888 The symbols can be found in the symlist that we put them on
2889 to cause them to be defined. osyms contains the old value
2890 of that symlist; everything up to there was defined by us. */
2891 /* Note that we preserve the order of the enum constants, so
2892 that in something like "enum {FOO, LAST_THING=FOO}" we print
2893 FOO, not LAST_THING. */
2894
2895 for (syms = *symlist, n = 0; syms; syms = syms->next)
2896 {
2897 int j = 0;
2898 if (syms == osyms)
2899 j = o_nsyms;
2900 for (; j < syms->nsyms; j++,n++)
2901 {
2902 struct symbol *xsym = syms->symbol[j];
2903 SYMBOL_TYPE (xsym) = type;
2904 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2905 TYPE_FIELD_VALUE (type, n) = 0;
2906 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2907 TYPE_FIELD_BITSIZE (type, n) = 0;
2908 }
2909 if (syms == osyms)
2910 break;
2911 }
2912
2913 #if 0
2914 /* This screws up perfectly good C programs with enums. FIXME. */
2915 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2916 if(TYPE_NFIELDS(type) == 2 &&
2917 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2918 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2919 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2920 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2921 TYPE_CODE(type) = TYPE_CODE_BOOL;
2922 #endif
2923
2924 return type;
2925 }
2926
2927 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2928 typedefs in every file (for int, long, etc):
2929
2930 type = b <signed> <width>; <offset>; <nbits>
2931 signed = u or s. Possible c in addition to u or s (for char?).
2932 offset = offset from high order bit to start bit of type.
2933 width is # bytes in object of this type, nbits is # bits in type.
2934
2935 The width/offset stuff appears to be for small objects stored in
2936 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2937 FIXME. */
2938
2939 static struct type *
2940 read_sun_builtin_type (pp, typenums, objfile)
2941 char **pp;
2942 int typenums[2];
2943 struct objfile *objfile;
2944 {
2945 int type_bits;
2946 int nbits;
2947 int signed_type;
2948
2949 switch (**pp)
2950 {
2951 case 's':
2952 signed_type = 1;
2953 break;
2954 case 'u':
2955 signed_type = 0;
2956 break;
2957 default:
2958 return error_type (pp);
2959 }
2960 (*pp)++;
2961
2962 /* For some odd reason, all forms of char put a c here. This is strange
2963 because no other type has this honor. We can safely ignore this because
2964 we actually determine 'char'acterness by the number of bits specified in
2965 the descriptor. */
2966
2967 if (**pp == 'c')
2968 (*pp)++;
2969
2970 /* The first number appears to be the number of bytes occupied
2971 by this type, except that unsigned short is 4 instead of 2.
2972 Since this information is redundant with the third number,
2973 we will ignore it. */
2974 read_huge_number (pp, ';', &nbits);
2975 if (nbits != 0)
2976 return error_type (pp);
2977
2978 /* The second number is always 0, so ignore it too. */
2979 read_huge_number (pp, ';', &nbits);
2980 if (nbits != 0)
2981 return error_type (pp);
2982
2983 /* The third number is the number of bits for this type. */
2984 type_bits = read_huge_number (pp, 0, &nbits);
2985 if (nbits != 0)
2986 return error_type (pp);
2987
2988 #if 0
2989 /* FIXME. Here we should just be able to make a type of the right
2990 number of bits and signedness. FIXME. */
2991
2992 if (type_bits == TARGET_LONG_LONG_BIT)
2993 return (lookup_fundamental_type (objfile,
2994 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
2995
2996 if (type_bits == TARGET_INT_BIT)
2997 {
2998 /* FIXME -- the only way to distinguish `int' from `long'
2999 is to look at its name! */
3000 if (signed_type)
3001 {
3002 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
3003 return lookup_fundamental_type (objfile, FT_LONG);
3004 else
3005 return lookup_fundamental_type (objfile, FT_INTEGER);
3006 }
3007 else
3008 {
3009 if (long_kludge_name
3010 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
3011 long_kludge_name[9] == 'l' /* long */)
3012 || (long_kludge_name[0] == 'l' /* long unsigned */)))
3013 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
3014 else
3015 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
3016 }
3017 }
3018
3019 if (type_bits == TARGET_SHORT_BIT)
3020 return (lookup_fundamental_type (objfile,
3021 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
3022
3023 if (type_bits == TARGET_CHAR_BIT)
3024 return (lookup_fundamental_type (objfile,
3025 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
3026
3027 if (type_bits == 0)
3028 return lookup_fundamental_type (objfile, FT_VOID);
3029
3030 return error_type (pp);
3031 #else
3032 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3033 type_bits / TARGET_CHAR_BIT,
3034 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3035 objfile);
3036 #endif
3037 }
3038
3039 static struct type *
3040 read_sun_floating_type (pp, typenums, objfile)
3041 char **pp;
3042 int typenums[2];
3043 struct objfile *objfile;
3044 {
3045 int nbits;
3046 int details;
3047 int nbytes;
3048
3049 /* The first number has more details about the type, for example
3050 FN_COMPLEX. */
3051 details = read_huge_number (pp, ';', &nbits);
3052 if (nbits != 0)
3053 return error_type (pp);
3054
3055 /* The second number is the number of bytes occupied by this type */
3056 nbytes = read_huge_number (pp, ';', &nbits);
3057 if (nbits != 0)
3058 return error_type (pp);
3059
3060 if (details == NF_COMPLEX || details == NF_COMPLEX16
3061 || details == NF_COMPLEX32)
3062 /* This is a type we can't handle, but we do know the size.
3063 We also will be able to give it a name. */
3064 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3065
3066 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3067 }
3068
3069 /* Read a number from the string pointed to by *PP.
3070 The value of *PP is advanced over the number.
3071 If END is nonzero, the character that ends the
3072 number must match END, or an error happens;
3073 and that character is skipped if it does match.
3074 If END is zero, *PP is left pointing to that character.
3075
3076 If the number fits in a long, set *BITS to 0 and return the value.
3077 If not, set *BITS to be the number of bits in the number and return 0.
3078
3079 If encounter garbage, set *BITS to -1 and return 0. */
3080
3081 static long
3082 read_huge_number (pp, end, bits)
3083 char **pp;
3084 int end;
3085 int *bits;
3086 {
3087 char *p = *pp;
3088 int sign = 1;
3089 long n = 0;
3090 int radix = 10;
3091 char overflow = 0;
3092 int nbits = 0;
3093 int c;
3094 long upper_limit;
3095
3096 if (*p == '-')
3097 {
3098 sign = -1;
3099 p++;
3100 }
3101
3102 /* Leading zero means octal. GCC uses this to output values larger
3103 than an int (because that would be hard in decimal). */
3104 if (*p == '0')
3105 {
3106 radix = 8;
3107 p++;
3108 }
3109
3110 upper_limit = LONG_MAX / radix;
3111 while ((c = *p++) >= '0' && c < ('0' + radix))
3112 {
3113 if (n <= upper_limit)
3114 {
3115 n *= radix;
3116 n += c - '0'; /* FIXME this overflows anyway */
3117 }
3118 else
3119 overflow = 1;
3120
3121 /* This depends on large values being output in octal, which is
3122 what GCC does. */
3123 if (radix == 8)
3124 {
3125 if (nbits == 0)
3126 {
3127 if (c == '0')
3128 /* Ignore leading zeroes. */
3129 ;
3130 else if (c == '1')
3131 nbits = 1;
3132 else if (c == '2' || c == '3')
3133 nbits = 2;
3134 else
3135 nbits = 3;
3136 }
3137 else
3138 nbits += 3;
3139 }
3140 }
3141 if (end)
3142 {
3143 if (c && c != end)
3144 {
3145 if (bits != NULL)
3146 *bits = -1;
3147 return 0;
3148 }
3149 }
3150 else
3151 --p;
3152
3153 *pp = p;
3154 if (overflow)
3155 {
3156 if (nbits == 0)
3157 {
3158 /* Large decimal constants are an error (because it is hard to
3159 count how many bits are in them). */
3160 if (bits != NULL)
3161 *bits = -1;
3162 return 0;
3163 }
3164
3165 /* -0x7f is the same as 0x80. So deal with it by adding one to
3166 the number of bits. */
3167 if (sign == -1)
3168 ++nbits;
3169 if (bits)
3170 *bits = nbits;
3171 }
3172 else
3173 {
3174 if (bits)
3175 *bits = 0;
3176 return n * sign;
3177 }
3178 /* It's *BITS which has the interesting information. */
3179 return 0;
3180 }
3181
3182 static struct type *
3183 read_range_type (pp, typenums, objfile)
3184 char **pp;
3185 int typenums[2];
3186 struct objfile *objfile;
3187 {
3188 int rangenums[2];
3189 long n2, n3;
3190 int n2bits, n3bits;
3191 int self_subrange;
3192 struct type *result_type;
3193 struct type *index_type;
3194
3195 /* First comes a type we are a subrange of.
3196 In C it is usually 0, 1 or the type being defined. */
3197 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3198 not just a type number. */
3199 if (read_type_number (pp, rangenums) != 0)
3200 return error_type (pp);
3201 self_subrange = (rangenums[0] == typenums[0] &&
3202 rangenums[1] == typenums[1]);
3203
3204 /* A semicolon should now follow; skip it. */
3205 if (**pp == ';')
3206 (*pp)++;
3207
3208 /* The remaining two operands are usually lower and upper bounds
3209 of the range. But in some special cases they mean something else. */
3210 n2 = read_huge_number (pp, ';', &n2bits);
3211 n3 = read_huge_number (pp, ';', &n3bits);
3212
3213 if (n2bits == -1 || n3bits == -1)
3214 return error_type (pp);
3215
3216 /* If limits are huge, must be large integral type. */
3217 if (n2bits != 0 || n3bits != 0)
3218 {
3219 char got_signed = 0;
3220 char got_unsigned = 0;
3221 /* Number of bits in the type. */
3222 int nbits = 0;
3223
3224 /* Range from 0 to <large number> is an unsigned large integral type. */
3225 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3226 {
3227 got_unsigned = 1;
3228 nbits = n3bits;
3229 }
3230 /* Range from <large number> to <large number>-1 is a large signed
3231 integral type. Take care of the case where <large number> doesn't
3232 fit in a long but <large number>-1 does. */
3233 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3234 || (n2bits != 0 && n3bits == 0
3235 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3236 && n3 == LONG_MAX))
3237 {
3238 got_signed = 1;
3239 nbits = n2bits;
3240 }
3241
3242 if (got_signed || got_unsigned)
3243 {
3244 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3245 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3246 objfile);
3247 }
3248 else
3249 return error_type (pp);
3250 }
3251
3252 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3253 if (self_subrange && n2 == 0 && n3 == 0)
3254 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3255
3256 /* If n3 is zero and n2 is not, we want a floating type,
3257 and n2 is the width in bytes.
3258
3259 Fortran programs appear to use this for complex types also,
3260 and they give no way to distinguish between double and single-complex!
3261
3262 GDB does not have complex types.
3263
3264 Just return the complex as a float of that size. It won't work right
3265 for the complex values, but at least it makes the file loadable.
3266
3267 FIXME, we may be able to distinguish these by their names. FIXME. */
3268
3269 if (n3 == 0 && n2 > 0)
3270 {
3271 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3272 }
3273
3274 /* If the upper bound is -1, it must really be an unsigned int. */
3275
3276 else if (n2 == 0 && n3 == -1)
3277 {
3278 /* It is unsigned int or unsigned long. */
3279 /* GCC sometimes uses this for long long too. We could
3280 distinguish it by the name, but we don't. */
3281 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3282 TYPE_FLAG_UNSIGNED, NULL, objfile);
3283 }
3284
3285 /* Special case: char is defined (Who knows why) as a subrange of
3286 itself with range 0-127. */
3287 else if (self_subrange && n2 == 0 && n3 == 127)
3288 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3289
3290 /* We used to do this only for subrange of self or subrange of int. */
3291 else if (n2 == 0)
3292 {
3293 if (n3 < 0)
3294 /* n3 actually gives the size. */
3295 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3296 NULL, objfile);
3297 if (n3 == 0xff)
3298 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3299 if (n3 == 0xffff)
3300 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3301
3302 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3303 "unsigned long", and we already checked for that,
3304 so don't need to test for it here. */
3305 }
3306 /* I think this is for Convex "long long". Since I don't know whether
3307 Convex sets self_subrange, I also accept that particular size regardless
3308 of self_subrange. */
3309 else if (n3 == 0 && n2 < 0
3310 && (self_subrange
3311 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3312 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3313 else if (n2 == -n3 -1)
3314 {
3315 if (n3 == 0x7f)
3316 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3317 if (n3 == 0x7fff)
3318 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3319 if (n3 == 0x7fffffff)
3320 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3321 }
3322
3323 /* We have a real range type on our hands. Allocate space and
3324 return a real pointer. */
3325
3326 /* At this point I don't have the faintest idea how to deal with
3327 a self_subrange type; I'm going to assume that this is used
3328 as an idiom, and that all of them are special cases. So . . . */
3329 if (self_subrange)
3330 return error_type (pp);
3331
3332 index_type = *dbx_lookup_type (rangenums);
3333 if (index_type == NULL)
3334 {
3335 /* Does this actually ever happen? Is that why we are worrying
3336 about dealing with it rather than just calling error_type? */
3337
3338 static struct type *range_type_index;
3339
3340 complain (&range_type_base_complaint, rangenums[1]);
3341 if (range_type_index == NULL)
3342 range_type_index =
3343 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3344 0, "range type index type", NULL);
3345 index_type = range_type_index;
3346 }
3347
3348 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3349 return (result_type);
3350 }
3351
3352 /* Read in an argument list. This is a list of types, separated by commas
3353 and terminated with END. Return the list of types read in, or (struct type
3354 **)-1 if there is an error. */
3355
3356 static struct type **
3357 read_args (pp, end, objfile)
3358 char **pp;
3359 int end;
3360 struct objfile *objfile;
3361 {
3362 /* FIXME! Remove this arbitrary limit! */
3363 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3364 int n = 0;
3365
3366 while (**pp != end)
3367 {
3368 if (**pp != ',')
3369 /* Invalid argument list: no ','. */
3370 return (struct type **)-1;
3371 (*pp)++;
3372 STABS_CONTINUE (pp);
3373 types[n++] = read_type (pp, objfile);
3374 }
3375 (*pp)++; /* get past `end' (the ':' character) */
3376
3377 if (n == 1)
3378 {
3379 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3380 }
3381 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3382 {
3383 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3384 memset (rval + n, 0, sizeof (struct type *));
3385 }
3386 else
3387 {
3388 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3389 }
3390 memcpy (rval, types, n * sizeof (struct type *));
3391 return rval;
3392 }
3393
3394 /* Add a common block's start address to the offset of each symbol
3395 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3396 the common block name). */
3397
3398 static void
3399 fix_common_block (sym, valu)
3400 struct symbol *sym;
3401 int valu;
3402 {
3403 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3404 for ( ; next; next = next->next)
3405 {
3406 register int j;
3407 for (j = next->nsyms - 1; j >= 0; j--)
3408 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3409 }
3410 }
3411
3412
3413 \f
3414 /* What about types defined as forward references inside of a small lexical
3415 scope? */
3416 /* Add a type to the list of undefined types to be checked through
3417 once this file has been read in. */
3418
3419 void
3420 add_undefined_type (type)
3421 struct type *type;
3422 {
3423 if (undef_types_length == undef_types_allocated)
3424 {
3425 undef_types_allocated *= 2;
3426 undef_types = (struct type **)
3427 xrealloc ((char *) undef_types,
3428 undef_types_allocated * sizeof (struct type *));
3429 }
3430 undef_types[undef_types_length++] = type;
3431 }
3432
3433 /* Go through each undefined type, see if it's still undefined, and fix it
3434 up if possible. We have two kinds of undefined types:
3435
3436 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3437 Fix: update array length using the element bounds
3438 and the target type's length.
3439 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3440 yet defined at the time a pointer to it was made.
3441 Fix: Do a full lookup on the struct/union tag. */
3442 void
3443 cleanup_undefined_types ()
3444 {
3445 struct type **type;
3446
3447 for (type = undef_types; type < undef_types + undef_types_length; type++)
3448 {
3449 switch (TYPE_CODE (*type))
3450 {
3451
3452 case TYPE_CODE_STRUCT:
3453 case TYPE_CODE_UNION:
3454 case TYPE_CODE_ENUM:
3455 {
3456 /* Check if it has been defined since. */
3457 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3458 {
3459 struct pending *ppt;
3460 int i;
3461 /* Name of the type, without "struct" or "union" */
3462 char *typename = TYPE_TAG_NAME (*type);
3463
3464 if (typename == NULL)
3465 {
3466 static struct complaint msg = {"need a type name", 0, 0};
3467 complain (&msg);
3468 break;
3469 }
3470 for (ppt = file_symbols; ppt; ppt = ppt->next)
3471 {
3472 for (i = 0; i < ppt->nsyms; i++)
3473 {
3474 struct symbol *sym = ppt->symbol[i];
3475
3476 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3477 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3478 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3479 TYPE_CODE (*type))
3480 && STREQ (SYMBOL_NAME (sym), typename))
3481 {
3482 memcpy (*type, SYMBOL_TYPE (sym),
3483 sizeof (struct type));
3484 }
3485 }
3486 }
3487 }
3488 }
3489 break;
3490
3491 case TYPE_CODE_ARRAY:
3492 {
3493 struct type *range_type;
3494 int lower, upper;
3495
3496 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3497 goto badtype;
3498 if (TYPE_NFIELDS (*type) != 1)
3499 goto badtype;
3500 range_type = TYPE_FIELD_TYPE (*type, 0);
3501 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3502 goto badtype;
3503
3504 /* Now recompute the length of the array type, based on its
3505 number of elements and the target type's length. */
3506 lower = TYPE_FIELD_BITPOS (range_type, 0);
3507 upper = TYPE_FIELD_BITPOS (range_type, 1);
3508 TYPE_LENGTH (*type) = (upper - lower + 1)
3509 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3510 }
3511 break;
3512
3513 default:
3514 badtype:
3515 {
3516 static struct complaint msg = {"\
3517 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3518 complain (&msg, TYPE_CODE (*type));
3519 }
3520 break;
3521 }
3522 }
3523 undef_types_length = 0;
3524 }
3525
3526 /* Scan through all of the global symbols defined in the object file,
3527 assigning values to the debugging symbols that need to be assigned
3528 to. Get these symbols from the minimal symbol table. */
3529
3530 void
3531 scan_file_globals (objfile)
3532 struct objfile *objfile;
3533 {
3534 int hash;
3535 struct minimal_symbol *msymbol;
3536 struct symbol *sym, *prev;
3537
3538 if (objfile->msymbols == 0) /* Beware the null file. */
3539 return;
3540
3541 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3542 {
3543 QUIT;
3544
3545 prev = NULL;
3546
3547 /* Get the hash index and check all the symbols
3548 under that hash index. */
3549
3550 hash = hashname (SYMBOL_NAME (msymbol));
3551
3552 for (sym = global_sym_chain[hash]; sym;)
3553 {
3554 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3555 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3556 {
3557 /* Splice this symbol out of the hash chain and
3558 assign the value we have to it. */
3559 if (prev)
3560 {
3561 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3562 }
3563 else
3564 {
3565 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3566 }
3567
3568 /* Check to see whether we need to fix up a common block. */
3569 /* Note: this code might be executed several times for
3570 the same symbol if there are multiple references. */
3571
3572 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3573 {
3574 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3575 }
3576 else
3577 {
3578 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3579 }
3580
3581 if (prev)
3582 {
3583 sym = SYMBOL_VALUE_CHAIN (prev);
3584 }
3585 else
3586 {
3587 sym = global_sym_chain[hash];
3588 }
3589 }
3590 else
3591 {
3592 prev = sym;
3593 sym = SYMBOL_VALUE_CHAIN (sym);
3594 }
3595 }
3596 }
3597 }
3598
3599 /* Initialize anything that needs initializing when starting to read
3600 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3601 to a psymtab. */
3602
3603 void
3604 stabsread_init ()
3605 {
3606 }
3607
3608 /* Initialize anything that needs initializing when a completely new
3609 symbol file is specified (not just adding some symbols from another
3610 file, e.g. a shared library). */
3611
3612 void
3613 stabsread_new_init ()
3614 {
3615 /* Empty the hash table of global syms looking for values. */
3616 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3617 }
3618
3619 /* Initialize anything that needs initializing at the same time as
3620 start_symtab() is called. */
3621
3622 void start_stabs ()
3623 {
3624 global_stabs = NULL; /* AIX COFF */
3625 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3626 n_this_object_header_files = 1;
3627 type_vector_length = 0;
3628 type_vector = (struct type **) 0;
3629 }
3630
3631 /* Call after end_symtab() */
3632
3633 void end_stabs ()
3634 {
3635 if (type_vector)
3636 {
3637 free ((char *) type_vector);
3638 }
3639 type_vector = 0;
3640 type_vector_length = 0;
3641 previous_stab_code = 0;
3642 }
3643
3644 void
3645 finish_global_stabs (objfile)
3646 struct objfile *objfile;
3647 {
3648 if (global_stabs)
3649 {
3650 patch_block_stabs (global_symbols, global_stabs, objfile);
3651 free ((PTR) global_stabs);
3652 global_stabs = NULL;
3653 }
3654 }
3655
3656 /* Initializer for this module */
3657
3658 void
3659 _initialize_stabsread ()
3660 {
3661 undef_types_allocated = 20;
3662 undef_types_length = 0;
3663 undef_types = (struct type **)
3664 xmalloc (undef_types_allocated * sizeof (struct type *));
3665 }
This page took 0.10012 seconds and 5 git commands to generate.