* gdbtypes.h: Add TYPE_FLAG_TARGET_STUB.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 #include <ctype.h>
40
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
42 #define EXTERN /**/
43 #include "stabsread.h" /* Our own declarations */
44 #undef EXTERN
45
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
51
52 struct field_info
53 {
54 struct nextfield
55 {
56 struct nextfield *next;
57
58 /* This is the raw visibility from the stab. It is not checked
59 for being one of the visibilities we recognize, so code which
60 examines this field better be able to deal. */
61 int visibility;
62
63 struct field field;
64 } *list;
65 struct next_fnfieldlist
66 {
67 struct next_fnfieldlist *next;
68 struct fn_fieldlist fn_fieldlist;
69 } *fnlist;
70 };
71
72 static struct type *
73 dbx_alloc_type PARAMS ((int [2], struct objfile *));
74
75 static long read_huge_number PARAMS ((char **, int, int *));
76
77 static struct type *error_type PARAMS ((char **));
78
79 static void
80 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
81 struct objfile *));
82
83 static void
84 fix_common_block PARAMS ((struct symbol *, int));
85
86 static int
87 read_type_number PARAMS ((char **, int *));
88
89 static struct type *
90 read_range_type PARAMS ((char **, int [2], struct objfile *));
91
92 static struct type *
93 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
94
95 static struct type *
96 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
97
98 static struct type *
99 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
100
101 static struct type *
102 rs6000_builtin_type PARAMS ((int));
103
104 static int
105 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
106 struct objfile *));
107
108 static int
109 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
122
123 static int
124 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
125 struct objfile *));
126
127 static struct type *
128 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
129
130 static struct type *
131 read_array_type PARAMS ((char **, struct type *, struct objfile *));
132
133 static struct type **
134 read_args PARAMS ((char **, int, struct objfile *));
135
136 static int
137 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
138 struct objfile *));
139
140 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
141 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
142
143 /* Define this as 1 if a pcc declaration of a char or short argument
144 gives the correct address. Otherwise assume pcc gives the
145 address of the corresponding int, which is not the same on a
146 big-endian machine. */
147
148 #ifndef BELIEVE_PCC_PROMOTION
149 #define BELIEVE_PCC_PROMOTION 0
150 #endif
151
152 struct complaint invalid_cpp_abbrev_complaint =
153 {"invalid C++ abbreviation `%s'", 0, 0};
154
155 struct complaint invalid_cpp_type_complaint =
156 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
157
158 struct complaint member_fn_complaint =
159 {"member function type missing, got '%c'", 0, 0};
160
161 struct complaint const_vol_complaint =
162 {"const/volatile indicator missing, got '%c'", 0, 0};
163
164 struct complaint error_type_complaint =
165 {"debug info mismatch between compiler and debugger", 0, 0};
166
167 struct complaint invalid_member_complaint =
168 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
169
170 struct complaint range_type_base_complaint =
171 {"base type %d of range type is not defined", 0, 0};
172
173 struct complaint reg_value_complaint =
174 {"register number too large in symbol %s", 0, 0};
175
176 struct complaint vtbl_notfound_complaint =
177 {"virtual function table pointer not found when defining class `%s'", 0, 0};
178
179 struct complaint unrecognized_cplus_name_complaint =
180 {"Unknown C++ symbol name `%s'", 0, 0};
181
182 struct complaint rs6000_builtin_complaint =
183 {"Unknown builtin type %d", 0, 0};
184
185 struct complaint stabs_general_complaint =
186 {"%s", 0, 0};
187
188 /* Make a list of forward references which haven't been defined. */
189
190 static struct type **undef_types;
191 static int undef_types_allocated;
192 static int undef_types_length;
193
194 /* Check for and handle cretinous stabs symbol name continuation! */
195 #define STABS_CONTINUE(pp) \
196 do { \
197 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
198 } while (0)
199
200 \f
201 /* Look up a dbx type-number pair. Return the address of the slot
202 where the type for that number-pair is stored.
203 The number-pair is in TYPENUMS.
204
205 This can be used for finding the type associated with that pair
206 or for associating a new type with the pair. */
207
208 struct type **
209 dbx_lookup_type (typenums)
210 int typenums[2];
211 {
212 register int filenum = typenums[0];
213 register int index = typenums[1];
214 unsigned old_len;
215 register int real_filenum;
216 register struct header_file *f;
217 int f_orig_length;
218
219 if (filenum == -1) /* -1,-1 is for temporary types. */
220 return 0;
221
222 if (filenum < 0 || filenum >= n_this_object_header_files)
223 {
224 static struct complaint msg = {"\
225 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
226 0, 0};
227 complain (&msg, filenum, index, symnum);
228 goto error_return;
229 }
230
231 if (filenum == 0)
232 {
233 if (index < 0)
234 {
235 /* Caller wants address of address of type. We think
236 that negative (rs6k builtin) types will never appear as
237 "lvalues", (nor should they), so we stuff the real type
238 pointer into a temp, and return its address. If referenced,
239 this will do the right thing. */
240 static struct type *temp_type;
241
242 temp_type = rs6000_builtin_type(index);
243 return &temp_type;
244 }
245
246 /* Type is defined outside of header files.
247 Find it in this object file's type vector. */
248 if (index >= type_vector_length)
249 {
250 old_len = type_vector_length;
251 if (old_len == 0)
252 {
253 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
254 type_vector = (struct type **)
255 malloc (type_vector_length * sizeof (struct type *));
256 }
257 while (index >= type_vector_length)
258 {
259 type_vector_length *= 2;
260 }
261 type_vector = (struct type **)
262 xrealloc ((char *) type_vector,
263 (type_vector_length * sizeof (struct type *)));
264 memset (&type_vector[old_len], 0,
265 (type_vector_length - old_len) * sizeof (struct type *));
266 }
267 return (&type_vector[index]);
268 }
269 else
270 {
271 real_filenum = this_object_header_files[filenum];
272
273 if (real_filenum >= n_header_files)
274 {
275 struct type *temp_type;
276 struct type **temp_type_p;
277
278 warning ("GDB internal error: bad real_filenum");
279
280 error_return:
281 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
282 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
283 *temp_type_p = temp_type;
284 return temp_type_p;
285 }
286
287 f = &header_files[real_filenum];
288
289 f_orig_length = f->length;
290 if (index >= f_orig_length)
291 {
292 while (index >= f->length)
293 {
294 f->length *= 2;
295 }
296 f->vector = (struct type **)
297 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
298 memset (&f->vector[f_orig_length], 0,
299 (f->length - f_orig_length) * sizeof (struct type *));
300 }
301 return (&f->vector[index]);
302 }
303 }
304
305 /* Make sure there is a type allocated for type numbers TYPENUMS
306 and return the type object.
307 This can create an empty (zeroed) type object.
308 TYPENUMS may be (-1, -1) to return a new type object that is not
309 put into the type vector, and so may not be referred to by number. */
310
311 static struct type *
312 dbx_alloc_type (typenums, objfile)
313 int typenums[2];
314 struct objfile *objfile;
315 {
316 register struct type **type_addr;
317
318 if (typenums[0] == -1)
319 {
320 return (alloc_type (objfile));
321 }
322
323 type_addr = dbx_lookup_type (typenums);
324
325 /* If we are referring to a type not known at all yet,
326 allocate an empty type for it.
327 We will fill it in later if we find out how. */
328 if (*type_addr == 0)
329 {
330 *type_addr = alloc_type (objfile);
331 }
332
333 return (*type_addr);
334 }
335
336 /* for all the stabs in a given stab vector, build appropriate types
337 and fix their symbols in given symbol vector. */
338
339 static void
340 patch_block_stabs (symbols, stabs, objfile)
341 struct pending *symbols;
342 struct pending_stabs *stabs;
343 struct objfile *objfile;
344 {
345 int ii;
346 char *name;
347 char *pp;
348 struct symbol *sym;
349
350 if (stabs)
351 {
352
353 /* for all the stab entries, find their corresponding symbols and
354 patch their types! */
355
356 for (ii = 0; ii < stabs->count; ++ii)
357 {
358 name = stabs->stab[ii];
359 pp = (char*) strchr (name, ':');
360 while (pp[1] == ':')
361 {
362 pp += 2;
363 pp = (char *)strchr(pp, ':');
364 }
365 sym = find_symbol_in_list (symbols, name, pp-name);
366 if (!sym)
367 {
368 /* On xcoff, if a global is defined and never referenced,
369 ld will remove it from the executable. There is then
370 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
371 sym = (struct symbol *)
372 obstack_alloc (&objfile->symbol_obstack,
373 sizeof (struct symbol));
374
375 memset (sym, 0, sizeof (struct symbol));
376 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
377 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
378 SYMBOL_NAME (sym) =
379 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
380 pp += 2;
381 if (*(pp-1) == 'F' || *(pp-1) == 'f')
382 {
383 /* I don't think the linker does this with functions,
384 so as far as I know this is never executed.
385 But it doesn't hurt to check. */
386 SYMBOL_TYPE (sym) =
387 lookup_function_type (read_type (&pp, objfile));
388 }
389 else
390 {
391 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
392 }
393 add_symbol_to_list (sym, &global_symbols);
394 }
395 else
396 {
397 pp += 2;
398 if (*(pp-1) == 'F' || *(pp-1) == 'f')
399 {
400 SYMBOL_TYPE (sym) =
401 lookup_function_type (read_type (&pp, objfile));
402 }
403 else
404 {
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 }
407 }
408 }
409 }
410 }
411
412 \f
413 /* Read a number by which a type is referred to in dbx data,
414 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
415 Just a single number N is equivalent to (0,N).
416 Return the two numbers by storing them in the vector TYPENUMS.
417 TYPENUMS will then be used as an argument to dbx_lookup_type.
418
419 Returns 0 for success, -1 for error. */
420
421 static int
422 read_type_number (pp, typenums)
423 register char **pp;
424 register int *typenums;
425 {
426 int nbits;
427 if (**pp == '(')
428 {
429 (*pp)++;
430 typenums[0] = read_huge_number (pp, ',', &nbits);
431 if (nbits != 0) return -1;
432 typenums[1] = read_huge_number (pp, ')', &nbits);
433 if (nbits != 0) return -1;
434 }
435 else
436 {
437 typenums[0] = 0;
438 typenums[1] = read_huge_number (pp, 0, &nbits);
439 if (nbits != 0) return -1;
440 }
441 return 0;
442 }
443
444 \f
445 /* To handle GNU C++ typename abbreviation, we need to be able to
446 fill in a type's name as soon as space for that type is allocated.
447 `type_synonym_name' is the name of the type being allocated.
448 It is cleared as soon as it is used (lest all allocated types
449 get this name). */
450
451 static char *type_synonym_name;
452
453 /* ARGSUSED */
454 struct symbol *
455 define_symbol (valu, string, desc, type, objfile)
456 CORE_ADDR valu;
457 char *string;
458 int desc;
459 int type;
460 struct objfile *objfile;
461 {
462 register struct symbol *sym;
463 char *p = (char *) strchr (string, ':');
464 int deftype;
465 int synonym = 0;
466 register int i;
467
468 /* We would like to eliminate nameless symbols, but keep their types.
469 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
470 to type 2, but, should not create a symbol to address that type. Since
471 the symbol will be nameless, there is no way any user can refer to it. */
472
473 int nameless;
474
475 /* Ignore syms with empty names. */
476 if (string[0] == 0)
477 return 0;
478
479 /* Ignore old-style symbols from cc -go */
480 if (p == 0)
481 return 0;
482
483 while (p[1] == ':')
484 {
485 p += 2;
486 p = strchr(p, ':');
487 }
488
489 /* If a nameless stab entry, all we need is the type, not the symbol.
490 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
491 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
492
493 sym = (struct symbol *)
494 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
495 memset (sym, 0, sizeof (struct symbol));
496
497 if (processing_gcc_compilation)
498 {
499 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
500 number of bytes occupied by a type or object, which we ignore. */
501 SYMBOL_LINE(sym) = desc;
502 }
503 else
504 {
505 SYMBOL_LINE(sym) = 0; /* unknown */
506 }
507
508 if (string[0] == CPLUS_MARKER)
509 {
510 /* Special GNU C++ names. */
511 switch (string[1])
512 {
513 case 't':
514 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
515 &objfile -> symbol_obstack);
516 break;
517
518 case 'v': /* $vtbl_ptr_type */
519 /* Was: SYMBOL_NAME (sym) = "vptr"; */
520 goto normal;
521
522 case 'e':
523 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
524 &objfile -> symbol_obstack);
525 break;
526
527 case '_':
528 /* This was an anonymous type that was never fixed up. */
529 goto normal;
530
531 default:
532 complain (&unrecognized_cplus_name_complaint, string);
533 goto normal; /* Do *something* with it */
534 }
535 }
536 else
537 {
538 normal:
539 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
540 SYMBOL_NAME (sym) = (char *)
541 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
542 /* Open-coded memcpy--saves function call time. */
543 /* FIXME: Does it really? Try replacing with simple strcpy and
544 try it on an executable with a large symbol table. */
545 /* FIXME: considering that gcc can open code memcpy anyway, I
546 doubt it. xoxorich. */
547 {
548 register char *p1 = string;
549 register char *p2 = SYMBOL_NAME (sym);
550 while (p1 != p)
551 {
552 *p2++ = *p1++;
553 }
554 *p2++ = '\0';
555 }
556
557 /* If this symbol is from a C++ compilation, then attempt to cache the
558 demangled form for future reference. This is a typical time versus
559 space tradeoff, that was decided in favor of time because it sped up
560 C++ symbol lookups by a factor of about 20. */
561
562 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
563 }
564 p++;
565
566 /* Determine the type of name being defined. */
567 #if 0
568 /* Getting GDB to correctly skip the symbol on an undefined symbol
569 descriptor and not ever dump core is a very dodgy proposition if
570 we do things this way. I say the acorn RISC machine can just
571 fix their compiler. */
572 /* The Acorn RISC machine's compiler can put out locals that don't
573 start with "234=" or "(3,4)=", so assume anything other than the
574 deftypes we know how to handle is a local. */
575 if (!strchr ("cfFGpPrStTvVXCR", *p))
576 #else
577 if (isdigit (*p) || *p == '(' || *p == '-')
578 #endif
579 deftype = 'l';
580 else
581 deftype = *p++;
582
583 switch (deftype)
584 {
585 case 'c':
586 /* c is a special case, not followed by a type-number.
587 SYMBOL:c=iVALUE for an integer constant symbol.
588 SYMBOL:c=rVALUE for a floating constant symbol.
589 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
590 e.g. "b:c=e6,0" for "const b = blob1"
591 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
592 if (*p != '=')
593 {
594 SYMBOL_CLASS (sym) = LOC_CONST;
595 SYMBOL_TYPE (sym) = error_type (&p);
596 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
597 add_symbol_to_list (sym, &file_symbols);
598 return sym;
599 }
600 ++p;
601 switch (*p++)
602 {
603 case 'r':
604 {
605 double d = atof (p);
606 char *dbl_valu;
607
608 /* FIXME-if-picky-about-floating-accuracy: Should be using
609 target arithmetic to get the value. real.c in GCC
610 probably has the necessary code. */
611
612 /* FIXME: lookup_fundamental_type is a hack. We should be
613 creating a type especially for the type of float constants.
614 Problem is, what type should it be?
615
616 Also, what should the name of this type be? Should we
617 be using 'S' constants (see stabs.texinfo) instead? */
618
619 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
620 FT_DBL_PREC_FLOAT);
621 dbl_valu = (char *)
622 obstack_alloc (&objfile -> symbol_obstack,
623 TYPE_LENGTH (SYMBOL_TYPE (sym)));
624 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
625 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
626 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
627 }
628 break;
629 case 'i':
630 {
631 /* Defining integer constants this way is kind of silly,
632 since 'e' constants allows the compiler to give not
633 only the value, but the type as well. C has at least
634 int, long, unsigned int, and long long as constant
635 types; other languages probably should have at least
636 unsigned as well as signed constants. */
637
638 /* We just need one int constant type for all objfiles.
639 It doesn't depend on languages or anything (arguably its
640 name should be a language-specific name for a type of
641 that size, but I'm inclined to say that if the compiler
642 wants a nice name for the type, it can use 'e'). */
643 static struct type *int_const_type;
644
645 /* Yes, this is as long as a *host* int. That is because we
646 use atoi. */
647 if (int_const_type == NULL)
648 int_const_type =
649 init_type (TYPE_CODE_INT,
650 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
651 "integer constant",
652 (struct objfile *)NULL);
653 SYMBOL_TYPE (sym) = int_const_type;
654 SYMBOL_VALUE (sym) = atoi (p);
655 SYMBOL_CLASS (sym) = LOC_CONST;
656 }
657 break;
658 case 'e':
659 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
660 can be represented as integral.
661 e.g. "b:c=e6,0" for "const b = blob1"
662 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
663 {
664 SYMBOL_CLASS (sym) = LOC_CONST;
665 SYMBOL_TYPE (sym) = read_type (&p, objfile);
666
667 if (*p != ',')
668 {
669 SYMBOL_TYPE (sym) = error_type (&p);
670 break;
671 }
672 ++p;
673
674 /* If the value is too big to fit in an int (perhaps because
675 it is unsigned), or something like that, we silently get
676 a bogus value. The type and everything else about it is
677 correct. Ideally, we should be using whatever we have
678 available for parsing unsigned and long long values,
679 however. */
680 SYMBOL_VALUE (sym) = atoi (p);
681 }
682 break;
683 default:
684 {
685 SYMBOL_CLASS (sym) = LOC_CONST;
686 SYMBOL_TYPE (sym) = error_type (&p);
687 }
688 }
689 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
690 add_symbol_to_list (sym, &file_symbols);
691 return sym;
692
693 case 'C':
694 /* The name of a caught exception. */
695 SYMBOL_TYPE (sym) = read_type (&p, objfile);
696 SYMBOL_CLASS (sym) = LOC_LABEL;
697 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
698 SYMBOL_VALUE_ADDRESS (sym) = valu;
699 add_symbol_to_list (sym, &local_symbols);
700 break;
701
702 case 'f':
703 /* A static function definition. */
704 SYMBOL_TYPE (sym) = read_type (&p, objfile);
705 SYMBOL_CLASS (sym) = LOC_BLOCK;
706 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
707 add_symbol_to_list (sym, &file_symbols);
708 /* fall into process_function_types. */
709
710 process_function_types:
711 /* Function result types are described as the result type in stabs.
712 We need to convert this to the function-returning-type-X type
713 in GDB. E.g. "int" is converted to "function returning int". */
714 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
715 {
716 #if 0
717 /* This code doesn't work -- it needs to realloc and can't. */
718 /* Attempt to set up to record a function prototype... */
719 struct type *new = alloc_type (objfile);
720
721 /* Generate a template for the type of this function. The
722 types of the arguments will be added as we read the symbol
723 table. */
724 *new = *lookup_function_type (SYMBOL_TYPE(sym));
725 SYMBOL_TYPE(sym) = new;
726 TYPE_OBJFILE (new) = objfile;
727 in_function_type = new;
728 #else
729 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
730 #endif
731 }
732 /* fall into process_prototype_types */
733
734 process_prototype_types:
735 /* Sun acc puts declared types of arguments here. We don't care
736 about their actual types (FIXME -- we should remember the whole
737 function prototype), but the list may define some new types
738 that we have to remember, so we must scan it now. */
739 while (*p == ';') {
740 p++;
741 read_type (&p, objfile);
742 }
743 break;
744
745 case 'F':
746 /* A global function definition. */
747 SYMBOL_TYPE (sym) = read_type (&p, objfile);
748 SYMBOL_CLASS (sym) = LOC_BLOCK;
749 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
750 add_symbol_to_list (sym, &global_symbols);
751 goto process_function_types;
752
753 case 'G':
754 /* For a class G (global) symbol, it appears that the
755 value is not correct. It is necessary to search for the
756 corresponding linker definition to find the value.
757 These definitions appear at the end of the namelist. */
758 SYMBOL_TYPE (sym) = read_type (&p, objfile);
759 i = hashname (SYMBOL_NAME (sym));
760 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
761 global_sym_chain[i] = sym;
762 SYMBOL_CLASS (sym) = LOC_STATIC;
763 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
764 add_symbol_to_list (sym, &global_symbols);
765 break;
766
767 /* This case is faked by a conditional above,
768 when there is no code letter in the dbx data.
769 Dbx data never actually contains 'l'. */
770 case 'l':
771 SYMBOL_TYPE (sym) = read_type (&p, objfile);
772 SYMBOL_CLASS (sym) = LOC_LOCAL;
773 SYMBOL_VALUE (sym) = valu;
774 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
775 add_symbol_to_list (sym, &local_symbols);
776 break;
777
778 case 'p':
779 if (*p == 'F')
780 /* pF is a two-letter code that means a function parameter in Fortran.
781 The type-number specifies the type of the return value.
782 Translate it into a pointer-to-function type. */
783 {
784 p++;
785 SYMBOL_TYPE (sym)
786 = lookup_pointer_type
787 (lookup_function_type (read_type (&p, objfile)));
788 }
789 else
790 SYMBOL_TYPE (sym) = read_type (&p, objfile);
791
792 /* Normally this is a parameter, a LOC_ARG. On the i960, it
793 can also be a LOC_LOCAL_ARG depending on symbol type. */
794 #ifndef DBX_PARM_SYMBOL_CLASS
795 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
796 #endif
797
798 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
799 SYMBOL_VALUE (sym) = valu;
800 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
801 #if 0
802 /* This doesn't work yet. */
803 add_param_to_type (&in_function_type, sym);
804 #endif
805 add_symbol_to_list (sym, &local_symbols);
806
807 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
808 /* On little-endian machines, this crud is never necessary, and,
809 if the extra bytes contain garbage, is harmful. */
810 break;
811 #else /* Big endian. */
812 /* If it's gcc-compiled, if it says `short', believe it. */
813 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
814 break;
815
816 #if !BELIEVE_PCC_PROMOTION
817 {
818 /* This is the signed type which arguments get promoted to. */
819 static struct type *pcc_promotion_type;
820 /* This is the unsigned type which arguments get promoted to. */
821 static struct type *pcc_unsigned_promotion_type;
822
823 /* Call it "int" because this is mainly C lossage. */
824 if (pcc_promotion_type == NULL)
825 pcc_promotion_type =
826 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
827 0, "int", NULL);
828
829 if (pcc_unsigned_promotion_type == NULL)
830 pcc_unsigned_promotion_type =
831 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
832 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
833
834 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
835 /* This macro is defined on machines (e.g. sparc) where
836 we should believe the type of a PCC 'short' argument,
837 but shouldn't believe the address (the address is
838 the address of the corresponding int).
839
840 My guess is that this correction, as opposed to changing
841 the parameter to an 'int' (as done below, for PCC
842 on most machines), is the right thing to do
843 on all machines, but I don't want to risk breaking
844 something that already works. On most PCC machines,
845 the sparc problem doesn't come up because the calling
846 function has to zero the top bytes (not knowing whether
847 the called function wants an int or a short), so there
848 is little practical difference between an int and a short
849 (except perhaps what happens when the GDB user types
850 "print short_arg = 0x10000;").
851
852 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
853 actually produces the correct address (we don't need to fix it
854 up). I made this code adapt so that it will offset the symbol
855 if it was pointing at an int-aligned location and not
856 otherwise. This way you can use the same gdb for 4.0.x and
857 4.1 systems.
858
859 If the parameter is shorter than an int, and is integral
860 (e.g. char, short, or unsigned equivalent), and is claimed to
861 be passed on an integer boundary, don't believe it! Offset the
862 parameter's address to the tail-end of that integer. */
863
864 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
865 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
866 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
867 {
868 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
869 - TYPE_LENGTH (SYMBOL_TYPE (sym));
870 }
871 break;
872
873 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
874
875 /* If PCC says a parameter is a short or a char,
876 it is really an int. */
877 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
878 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
879 {
880 SYMBOL_TYPE (sym) =
881 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
882 ? pcc_unsigned_promotion_type
883 : pcc_promotion_type;
884 }
885 break;
886
887 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
888 }
889 #endif /* !BELIEVE_PCC_PROMOTION. */
890 #endif /* Big endian. */
891
892 case 'P':
893 /* acc seems to use P to delare the prototypes of functions that
894 are referenced by this file. gdb is not prepared to deal
895 with this extra information. FIXME, it ought to. */
896 if (type == N_FUN)
897 {
898 read_type (&p, objfile);
899 goto process_prototype_types;
900 }
901 /*FALLTHROUGH*/
902
903 case 'R':
904 /* Parameter which is in a register. */
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906 SYMBOL_CLASS (sym) = LOC_REGPARM;
907 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
908 if (SYMBOL_VALUE (sym) >= NUM_REGS)
909 {
910 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
911 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
912 }
913 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
914 add_symbol_to_list (sym, &local_symbols);
915 break;
916
917 case 'r':
918 /* Register variable (either global or local). */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_CLASS (sym) = LOC_REGISTER;
921 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
922 if (SYMBOL_VALUE (sym) >= NUM_REGS)
923 {
924 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
925 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
926 }
927 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
928 if (within_function)
929 {
930 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
931 name to represent an argument passed in a register.
932 GCC uses 'P' for the same case. So if we find such a symbol pair
933 we combine it into one 'P' symbol.
934 Note that this code illegally combines
935 main(argc) int argc; { register int argc = 1; }
936 but this case is considered pathological and causes a warning
937 from a decent compiler. */
938 if (local_symbols
939 && local_symbols->nsyms > 0)
940 {
941 struct symbol *prev_sym;
942 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
943 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
944 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
945 {
946 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
947 /* Use the type from the LOC_REGISTER; that is the type
948 that is actually in that register. */
949 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
950 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
951 sym = prev_sym;
952 break;
953 }
954 }
955 add_symbol_to_list (sym, &local_symbols);
956 }
957 else
958 add_symbol_to_list (sym, &file_symbols);
959 break;
960
961 case 'S':
962 /* Static symbol at top level of file */
963 SYMBOL_TYPE (sym) = read_type (&p, objfile);
964 SYMBOL_CLASS (sym) = LOC_STATIC;
965 SYMBOL_VALUE_ADDRESS (sym) = valu;
966 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
967 add_symbol_to_list (sym, &file_symbols);
968 break;
969
970 case 't':
971 SYMBOL_TYPE (sym) = read_type (&p, objfile);
972
973 /* For a nameless type, we don't want a create a symbol, thus we
974 did not use `sym'. Return without further processing. */
975 if (nameless) return NULL;
976
977 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
978 SYMBOL_VALUE (sym) = valu;
979 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
980 /* C++ vagaries: we may have a type which is derived from
981 a base type which did not have its name defined when the
982 derived class was output. We fill in the derived class's
983 base part member's name here in that case. */
984 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
985 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
986 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
987 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
988 {
989 int j;
990 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
991 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
992 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
993 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
994 }
995
996 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
997 {
998 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
999 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1000 {
1001 /* If we are giving a name to a type such as "pointer to
1002 foo" or "function returning foo", we better not set
1003 the TYPE_NAME. If the program contains "typedef char
1004 *caddr_t;", we don't want all variables of type char
1005 * to print as caddr_t. This is not just a
1006 consequence of GDB's type management; PCC and GCC (at
1007 least through version 2.4) both output variables of
1008 either type char * or caddr_t with the type number
1009 defined in the 't' symbol for caddr_t. If a future
1010 compiler cleans this up it GDB is not ready for it
1011 yet, but if it becomes ready we somehow need to
1012 disable this check (without breaking the PCC/GCC2.4
1013 case).
1014
1015 Sigh.
1016
1017 Fortunately, this check seems not to be necessary
1018 for anything except pointers or functions. */
1019 }
1020 else
1021 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1022 }
1023
1024 add_symbol_to_list (sym, &file_symbols);
1025 break;
1026
1027 case 'T':
1028 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1029 by 't' which means we are typedef'ing it as well. */
1030 synonym = *p == 't';
1031
1032 if (synonym)
1033 {
1034 p++;
1035 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1036 strlen (SYMBOL_NAME (sym)),
1037 &objfile -> symbol_obstack);
1038 }
1039 /* The semantics of C++ state that "struct foo { ... }" also defines
1040 a typedef for "foo". Unfortunately, cfront never makes the typedef
1041 when translating C++ into C. We make the typedef here so that
1042 "ptype foo" works as expected for cfront translated code. */
1043 else if (current_subfile->language == language_cplus)
1044 {
1045 synonym = 1;
1046 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1047 strlen (SYMBOL_NAME (sym)),
1048 &objfile -> symbol_obstack);
1049 }
1050
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052
1053 /* For a nameless type, we don't want a create a symbol, thus we
1054 did not use `sym'. Return without further processing. */
1055 if (nameless) return NULL;
1056
1057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1060 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1061 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1062 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1063 add_symbol_to_list (sym, &file_symbols);
1064
1065 if (synonym)
1066 {
1067 /* Clone the sym and then modify it. */
1068 register struct symbol *typedef_sym = (struct symbol *)
1069 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1070 *typedef_sym = *sym;
1071 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1072 SYMBOL_VALUE (typedef_sym) = valu;
1073 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1074 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1075 TYPE_NAME (SYMBOL_TYPE (sym))
1076 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1077 add_symbol_to_list (typedef_sym, &file_symbols);
1078 }
1079 break;
1080
1081 case 'V':
1082 /* Static symbol of local scope */
1083 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1084 SYMBOL_CLASS (sym) = LOC_STATIC;
1085 SYMBOL_VALUE_ADDRESS (sym) = valu;
1086 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1087 add_symbol_to_list (sym, &local_symbols);
1088 break;
1089
1090 case 'v':
1091 /* Reference parameter */
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1094 SYMBOL_VALUE (sym) = valu;
1095 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1096 add_symbol_to_list (sym, &local_symbols);
1097 break;
1098
1099 case 'X':
1100 /* This is used by Sun FORTRAN for "function result value".
1101 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1102 that Pascal uses it too, but when I tried it Pascal used
1103 "x:3" (local symbol) instead. */
1104 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1105 SYMBOL_CLASS (sym) = LOC_LOCAL;
1106 SYMBOL_VALUE (sym) = valu;
1107 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1108 add_symbol_to_list (sym, &local_symbols);
1109 break;
1110
1111 default:
1112 SYMBOL_TYPE (sym) = error_type (&p);
1113 SYMBOL_CLASS (sym) = LOC_CONST;
1114 SYMBOL_VALUE (sym) = 0;
1115 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1116 add_symbol_to_list (sym, &file_symbols);
1117 break;
1118 }
1119
1120 /* When passing structures to a function, some systems sometimes pass
1121 the address in a register, not the structure itself.
1122
1123 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1124 to LOC_REGPARM_ADDR for structures and unions. */
1125
1126 #if !defined (REG_STRUCT_HAS_ADDR)
1127 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1128 #endif
1129
1130 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1131 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1132 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1133 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1134 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1135
1136 return sym;
1137 }
1138
1139 \f
1140 /* Skip rest of this symbol and return an error type.
1141
1142 General notes on error recovery: error_type always skips to the
1143 end of the symbol (modulo cretinous dbx symbol name continuation).
1144 Thus code like this:
1145
1146 if (*(*pp)++ != ';')
1147 return error_type (pp);
1148
1149 is wrong because if *pp starts out pointing at '\0' (typically as the
1150 result of an earlier error), it will be incremented to point to the
1151 start of the next symbol, which might produce strange results, at least
1152 if you run off the end of the string table. Instead use
1153
1154 if (**pp != ';')
1155 return error_type (pp);
1156 ++*pp;
1157
1158 or
1159
1160 if (**pp != ';')
1161 foo = error_type (pp);
1162 else
1163 ++*pp;
1164
1165 And in case it isn't obvious, the point of all this hair is so the compiler
1166 can define new types and new syntaxes, and old versions of the
1167 debugger will be able to read the new symbol tables. */
1168
1169 static struct type *
1170 error_type (pp)
1171 char **pp;
1172 {
1173 complain (&error_type_complaint);
1174 while (1)
1175 {
1176 /* Skip to end of symbol. */
1177 while (**pp != '\0')
1178 {
1179 (*pp)++;
1180 }
1181
1182 /* Check for and handle cretinous dbx symbol name continuation! */
1183 if ((*pp)[-1] == '\\')
1184 {
1185 *pp = next_symbol_text ();
1186 }
1187 else
1188 {
1189 break;
1190 }
1191 }
1192 return (builtin_type_error);
1193 }
1194
1195 \f
1196 /* Read type information or a type definition; return the type. Even
1197 though this routine accepts either type information or a type
1198 definition, the distinction is relevant--some parts of stabsread.c
1199 assume that type information starts with a digit, '-', or '(' in
1200 deciding whether to call read_type. */
1201
1202 struct type *
1203 read_type (pp, objfile)
1204 register char **pp;
1205 struct objfile *objfile;
1206 {
1207 register struct type *type = 0;
1208 struct type *type1;
1209 int typenums[2];
1210 int xtypenums[2];
1211 char type_descriptor;
1212
1213 /* Size in bits of type if specified by a type attribute, or -1 if
1214 there is no size attribute. */
1215 int type_size = -1;
1216
1217 /* Read type number if present. The type number may be omitted.
1218 for instance in a two-dimensional array declared with type
1219 "ar1;1;10;ar1;1;10;4". */
1220 if ((**pp >= '0' && **pp <= '9')
1221 || **pp == '('
1222 || **pp == '-')
1223 {
1224 if (read_type_number (pp, typenums) != 0)
1225 return error_type (pp);
1226
1227 /* Type is not being defined here. Either it already exists,
1228 or this is a forward reference to it. dbx_alloc_type handles
1229 both cases. */
1230 if (**pp != '=')
1231 return dbx_alloc_type (typenums, objfile);
1232
1233 /* Type is being defined here. */
1234 /* Skip the '='. */
1235 ++(*pp);
1236
1237 while (**pp == '@')
1238 {
1239 char *p = *pp + 1;
1240 /* It might be a type attribute or a member type. */
1241 if (isdigit (*p) || *p == '(' || *p == '-')
1242 /* Member type. */
1243 break;
1244 else
1245 {
1246 /* Type attributes. */
1247 char *attr = p;
1248
1249 /* Skip to the semicolon. */
1250 while (*p != ';' && *p != '\0')
1251 ++p;
1252 *pp = p;
1253 if (*p == '\0')
1254 return error_type (pp);
1255 else
1256 /* Skip the semicolon. */
1257 ++*pp;
1258
1259 switch (*attr)
1260 {
1261 case 's':
1262 type_size = atoi (attr + 1);
1263 if (type_size <= 0)
1264 type_size = -1;
1265 break;
1266 default:
1267 /* Ignore unrecognized type attributes, so future compilers
1268 can invent new ones. */
1269 break;
1270 }
1271 }
1272 }
1273 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1274 ++(*pp);
1275 }
1276 else
1277 {
1278 /* 'typenums=' not present, type is anonymous. Read and return
1279 the definition, but don't put it in the type vector. */
1280 typenums[0] = typenums[1] = -1;
1281 (*pp)++;
1282 }
1283
1284 type_descriptor = (*pp)[-1];
1285 switch (type_descriptor)
1286 {
1287 case 'x':
1288 {
1289 enum type_code code;
1290
1291 /* Used to index through file_symbols. */
1292 struct pending *ppt;
1293 int i;
1294
1295 /* Name including "struct", etc. */
1296 char *type_name;
1297
1298 {
1299 char *from, *to, *p;
1300
1301 /* Set the type code according to the following letter. */
1302 switch ((*pp)[0])
1303 {
1304 case 's':
1305 code = TYPE_CODE_STRUCT;
1306 break;
1307 case 'u':
1308 code = TYPE_CODE_UNION;
1309 break;
1310 case 'e':
1311 code = TYPE_CODE_ENUM;
1312 break;
1313 default:
1314 {
1315 /* Complain and keep going, so compilers can invent new
1316 cross-reference types. */
1317 static struct complaint msg =
1318 {"Unrecognized cross-reference type `%c'", 0, 0};
1319 complain (&msg, (*pp)[0]);
1320 code = TYPE_CODE_STRUCT;
1321 break;
1322 }
1323 }
1324
1325 p = strchr(*pp, ':');
1326 if (p == NULL)
1327 return error_type (pp);
1328 while (p[1] == ':')
1329 {
1330 p += 2;
1331 p = strchr(p, ':');
1332 if (p == NULL)
1333 return error_type (pp);
1334 }
1335 to = type_name =
1336 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1337
1338 /* Copy the name. */
1339 from = *pp + 1;
1340 while (from < p)
1341 *to++ = *from++;
1342 *to = '\0';
1343
1344 /* Set the pointer ahead of the name which we just read, and
1345 the colon. */
1346 *pp = from + 1;
1347 }
1348
1349 /* Now check to see whether the type has already been
1350 declared. This was written for arrays of cross-referenced
1351 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1352 sure it is not necessary anymore. But it might be a good
1353 idea, to save a little memory. */
1354
1355 for (ppt = file_symbols; ppt; ppt = ppt->next)
1356 for (i = 0; i < ppt->nsyms; i++)
1357 {
1358 struct symbol *sym = ppt->symbol[i];
1359
1360 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1361 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1362 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1363 && STREQ (SYMBOL_NAME (sym), type_name))
1364 {
1365 obstack_free (&objfile -> type_obstack, type_name);
1366 type = SYMBOL_TYPE (sym);
1367 return type;
1368 }
1369 }
1370
1371 /* Didn't find the type to which this refers, so we must
1372 be dealing with a forward reference. Allocate a type
1373 structure for it, and keep track of it so we can
1374 fill in the rest of the fields when we get the full
1375 type. */
1376 type = dbx_alloc_type (typenums, objfile);
1377 TYPE_CODE (type) = code;
1378 TYPE_TAG_NAME (type) = type_name;
1379 INIT_CPLUS_SPECIFIC(type);
1380 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1381
1382 add_undefined_type (type);
1383 return type;
1384 }
1385
1386 case '-': /* RS/6000 built-in type */
1387 case '0':
1388 case '1':
1389 case '2':
1390 case '3':
1391 case '4':
1392 case '5':
1393 case '6':
1394 case '7':
1395 case '8':
1396 case '9':
1397 case '(':
1398
1399 (*pp)--;
1400 if (read_type_number (pp, xtypenums) != 0)
1401 return error_type (pp);
1402
1403 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1404 /* It's being defined as itself. That means it is "void". */
1405 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1406 else
1407 {
1408 struct type *xtype = *dbx_lookup_type (xtypenums);
1409
1410 /* This can happen if we had '-' followed by a garbage character,
1411 for example. */
1412 if (xtype == NULL)
1413 return error_type (pp);
1414
1415 /* The type is being defined to another type. So we copy the type.
1416 This loses if we copy a C++ class and so we lose track of how
1417 the names are mangled (but g++ doesn't output stabs like this
1418 now anyway). */
1419
1420 type = alloc_type (objfile);
1421 memcpy (type, xtype, sizeof (struct type));
1422
1423 /* The idea behind clearing the names is that the only purpose
1424 for defining a type to another type is so that the name of
1425 one can be different. So we probably don't need to worry much
1426 about the case where the compiler doesn't give a name to the
1427 new type. */
1428 TYPE_NAME (type) = NULL;
1429 TYPE_TAG_NAME (type) = NULL;
1430 }
1431 if (typenums[0] != -1)
1432 *dbx_lookup_type (typenums) = type;
1433 break;
1434
1435 /* In the following types, we must be sure to overwrite any existing
1436 type that the typenums refer to, rather than allocating a new one
1437 and making the typenums point to the new one. This is because there
1438 may already be pointers to the existing type (if it had been
1439 forward-referenced), and we must change it to a pointer, function,
1440 reference, or whatever, *in-place*. */
1441
1442 case '*':
1443 type1 = read_type (pp, objfile);
1444 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1445 break;
1446
1447 case '&': /* Reference to another type */
1448 type1 = read_type (pp, objfile);
1449 type = make_reference_type (type1, dbx_lookup_type (typenums));
1450 break;
1451
1452 case 'f': /* Function returning another type */
1453 type1 = read_type (pp, objfile);
1454 type = make_function_type (type1, dbx_lookup_type (typenums));
1455 break;
1456
1457 case 'k': /* Const qualifier on some type (Sun) */
1458 type = read_type (pp, objfile);
1459 /* FIXME! For now, we ignore const and volatile qualifiers. */
1460 break;
1461
1462 case 'B': /* Volatile qual on some type (Sun) */
1463 type = read_type (pp, objfile);
1464 /* FIXME! For now, we ignore const and volatile qualifiers. */
1465 break;
1466
1467 /* FIXME -- we should be doing smash_to_XXX types here. */
1468 case '@': /* Member (class & variable) type */
1469 {
1470 struct type *domain = read_type (pp, objfile);
1471 struct type *memtype;
1472
1473 if (**pp != ',')
1474 /* Invalid member type data format. */
1475 return error_type (pp);
1476 ++*pp;
1477
1478 memtype = read_type (pp, objfile);
1479 type = dbx_alloc_type (typenums, objfile);
1480 smash_to_member_type (type, domain, memtype);
1481 }
1482 break;
1483
1484 case '#': /* Method (class & fn) type */
1485 if ((*pp)[0] == '#')
1486 {
1487 /* We'll get the parameter types from the name. */
1488 struct type *return_type;
1489
1490 (*pp)++;
1491 return_type = read_type (pp, objfile);
1492 if (*(*pp)++ != ';')
1493 complain (&invalid_member_complaint, symnum);
1494 type = allocate_stub_method (return_type);
1495 if (typenums[0] != -1)
1496 *dbx_lookup_type (typenums) = type;
1497 }
1498 else
1499 {
1500 struct type *domain = read_type (pp, objfile);
1501 struct type *return_type;
1502 struct type **args;
1503
1504 if (**pp != ',')
1505 /* Invalid member type data format. */
1506 return error_type (pp);
1507 else
1508 ++(*pp);
1509
1510 return_type = read_type (pp, objfile);
1511 args = read_args (pp, ';', objfile);
1512 type = dbx_alloc_type (typenums, objfile);
1513 smash_to_method_type (type, domain, return_type, args);
1514 }
1515 break;
1516
1517 case 'r': /* Range type */
1518 type = read_range_type (pp, typenums, objfile);
1519 if (typenums[0] != -1)
1520 *dbx_lookup_type (typenums) = type;
1521 break;
1522
1523 case 'b': /* Sun ACC builtin int type */
1524 type = read_sun_builtin_type (pp, typenums, objfile);
1525 if (typenums[0] != -1)
1526 *dbx_lookup_type (typenums) = type;
1527 break;
1528
1529 case 'R': /* Sun ACC builtin float type */
1530 type = read_sun_floating_type (pp, typenums, objfile);
1531 if (typenums[0] != -1)
1532 *dbx_lookup_type (typenums) = type;
1533 break;
1534
1535 case 'e': /* Enumeration type */
1536 type = dbx_alloc_type (typenums, objfile);
1537 type = read_enum_type (pp, type, objfile);
1538 if (typenums[0] != -1)
1539 *dbx_lookup_type (typenums) = type;
1540 break;
1541
1542 case 's': /* Struct type */
1543 case 'u': /* Union type */
1544 type = dbx_alloc_type (typenums, objfile);
1545 if (!TYPE_NAME (type))
1546 {
1547 TYPE_NAME (type) = type_synonym_name;
1548 }
1549 type_synonym_name = NULL;
1550 switch (type_descriptor)
1551 {
1552 case 's':
1553 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1554 break;
1555 case 'u':
1556 TYPE_CODE (type) = TYPE_CODE_UNION;
1557 break;
1558 }
1559 type = read_struct_type (pp, type, objfile);
1560 break;
1561
1562 case 'a': /* Array type */
1563 if (**pp != 'r')
1564 return error_type (pp);
1565 ++*pp;
1566
1567 type = dbx_alloc_type (typenums, objfile);
1568 type = read_array_type (pp, type, objfile);
1569 break;
1570
1571 default:
1572 --*pp; /* Go back to the symbol in error */
1573 /* Particularly important if it was \0! */
1574 return error_type (pp);
1575 }
1576
1577 if (type == 0)
1578 {
1579 warning ("GDB internal error, type is NULL in stabsread.c\n");
1580 return error_type (pp);
1581 }
1582
1583 /* Size specified in a type attribute overrides any other size. */
1584 if (type_size != -1)
1585 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1586
1587 return type;
1588 }
1589 \f
1590 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1591 Return the proper type node for a given builtin type number. */
1592
1593 static struct type *
1594 rs6000_builtin_type (typenum)
1595 int typenum;
1596 {
1597 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1598 #define NUMBER_RECOGNIZED 30
1599 /* This includes an empty slot for type number -0. */
1600 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1601 struct type *rettype = NULL;
1602
1603 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1604 {
1605 complain (&rs6000_builtin_complaint, typenum);
1606 return builtin_type_error;
1607 }
1608 if (negative_types[-typenum] != NULL)
1609 return negative_types[-typenum];
1610
1611 #if TARGET_CHAR_BIT != 8
1612 #error This code wrong for TARGET_CHAR_BIT not 8
1613 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1614 that if that ever becomes not true, the correct fix will be to
1615 make the size in the struct type to be in bits, not in units of
1616 TARGET_CHAR_BIT. */
1617 #endif
1618
1619 switch (-typenum)
1620 {
1621 case 1:
1622 /* The size of this and all the other types are fixed, defined
1623 by the debugging format. If there is a type called "int" which
1624 is other than 32 bits, then it should use a new negative type
1625 number (or avoid negative type numbers for that case).
1626 See stabs.texinfo. */
1627 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1628 break;
1629 case 2:
1630 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1631 break;
1632 case 3:
1633 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1634 break;
1635 case 4:
1636 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1637 break;
1638 case 5:
1639 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1640 "unsigned char", NULL);
1641 break;
1642 case 6:
1643 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1644 break;
1645 case 7:
1646 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1647 "unsigned short", NULL);
1648 break;
1649 case 8:
1650 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1651 "unsigned int", NULL);
1652 break;
1653 case 9:
1654 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1655 "unsigned", NULL);
1656 case 10:
1657 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1658 "unsigned long", NULL);
1659 break;
1660 case 11:
1661 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1662 break;
1663 case 12:
1664 /* IEEE single precision (32 bit). */
1665 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1666 break;
1667 case 13:
1668 /* IEEE double precision (64 bit). */
1669 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1670 break;
1671 case 14:
1672 /* This is an IEEE double on the RS/6000, and different machines with
1673 different sizes for "long double" should use different negative
1674 type numbers. See stabs.texinfo. */
1675 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1676 break;
1677 case 15:
1678 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1679 break;
1680 case 16:
1681 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1682 break;
1683 case 17:
1684 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1685 break;
1686 case 18:
1687 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1688 break;
1689 case 19:
1690 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1691 break;
1692 case 20:
1693 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1694 "character", NULL);
1695 break;
1696 case 21:
1697 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1698 "logical*1", NULL);
1699 break;
1700 case 22:
1701 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1702 "logical*2", NULL);
1703 break;
1704 case 23:
1705 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1706 "logical*4", NULL);
1707 break;
1708 case 24:
1709 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1710 "logical", NULL);
1711 break;
1712 case 25:
1713 /* Complex type consisting of two IEEE single precision values. */
1714 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1715 break;
1716 case 26:
1717 /* Complex type consisting of two IEEE double precision values. */
1718 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1719 break;
1720 case 27:
1721 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1722 break;
1723 case 28:
1724 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1725 break;
1726 case 29:
1727 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1728 break;
1729 case 30:
1730 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1731 break;
1732 }
1733 negative_types[-typenum] = rettype;
1734 return rettype;
1735 }
1736 \f
1737 /* This page contains subroutines of read_type. */
1738
1739 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1740 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1741 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1742 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1743
1744 /* Read member function stabs info for C++ classes. The form of each member
1745 function data is:
1746
1747 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1748
1749 An example with two member functions is:
1750
1751 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1752
1753 For the case of overloaded operators, the format is op$::*.funcs, where
1754 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1755 name (such as `+=') and `.' marks the end of the operator name.
1756
1757 Returns 1 for success, 0 for failure. */
1758
1759 static int
1760 read_member_functions (fip, pp, type, objfile)
1761 struct field_info *fip;
1762 char **pp;
1763 struct type *type;
1764 struct objfile *objfile;
1765 {
1766 int nfn_fields = 0;
1767 int length = 0;
1768 /* Total number of member functions defined in this class. If the class
1769 defines two `f' functions, and one `g' function, then this will have
1770 the value 3. */
1771 int total_length = 0;
1772 int i;
1773 struct next_fnfield
1774 {
1775 struct next_fnfield *next;
1776 struct fn_field fn_field;
1777 } *sublist;
1778 struct type *look_ahead_type;
1779 struct next_fnfieldlist *new_fnlist;
1780 struct next_fnfield *new_sublist;
1781 char *main_fn_name;
1782 register char *p;
1783
1784 /* Process each list until we find something that is not a member function
1785 or find the end of the functions. */
1786
1787 while (**pp != ';')
1788 {
1789 /* We should be positioned at the start of the function name.
1790 Scan forward to find the first ':' and if it is not the
1791 first of a "::" delimiter, then this is not a member function. */
1792 p = *pp;
1793 while (*p != ':')
1794 {
1795 p++;
1796 }
1797 if (p[1] != ':')
1798 {
1799 break;
1800 }
1801
1802 sublist = NULL;
1803 look_ahead_type = NULL;
1804 length = 0;
1805
1806 new_fnlist = (struct next_fnfieldlist *)
1807 xmalloc (sizeof (struct next_fnfieldlist));
1808 make_cleanup (free, new_fnlist);
1809 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1810
1811 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1812 {
1813 /* This is a completely wierd case. In order to stuff in the
1814 names that might contain colons (the usual name delimiter),
1815 Mike Tiemann defined a different name format which is
1816 signalled if the identifier is "op$". In that case, the
1817 format is "op$::XXXX." where XXXX is the name. This is
1818 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1819 /* This lets the user type "break operator+".
1820 We could just put in "+" as the name, but that wouldn't
1821 work for "*". */
1822 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1823 char *o = opname + 3;
1824
1825 /* Skip past '::'. */
1826 *pp = p + 2;
1827
1828 STABS_CONTINUE (pp);
1829 p = *pp;
1830 while (*p != '.')
1831 {
1832 *o++ = *p++;
1833 }
1834 main_fn_name = savestring (opname, o - opname);
1835 /* Skip past '.' */
1836 *pp = p + 1;
1837 }
1838 else
1839 {
1840 main_fn_name = savestring (*pp, p - *pp);
1841 /* Skip past '::'. */
1842 *pp = p + 2;
1843 }
1844 new_fnlist -> fn_fieldlist.name = main_fn_name;
1845
1846 do
1847 {
1848 new_sublist =
1849 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1850 make_cleanup (free, new_sublist);
1851 memset (new_sublist, 0, sizeof (struct next_fnfield));
1852
1853 /* Check for and handle cretinous dbx symbol name continuation! */
1854 if (look_ahead_type == NULL)
1855 {
1856 /* Normal case. */
1857 STABS_CONTINUE (pp);
1858
1859 new_sublist -> fn_field.type = read_type (pp, objfile);
1860 if (**pp != ':')
1861 {
1862 /* Invalid symtab info for member function. */
1863 return 0;
1864 }
1865 }
1866 else
1867 {
1868 /* g++ version 1 kludge */
1869 new_sublist -> fn_field.type = look_ahead_type;
1870 look_ahead_type = NULL;
1871 }
1872
1873 (*pp)++;
1874 p = *pp;
1875 while (*p != ';')
1876 {
1877 p++;
1878 }
1879
1880 /* If this is just a stub, then we don't have the real name here. */
1881
1882 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1883 {
1884 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1885 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1886 new_sublist -> fn_field.is_stub = 1;
1887 }
1888 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1889 *pp = p + 1;
1890
1891 /* Set this member function's visibility fields. */
1892 switch (*(*pp)++)
1893 {
1894 case VISIBILITY_PRIVATE:
1895 new_sublist -> fn_field.is_private = 1;
1896 break;
1897 case VISIBILITY_PROTECTED:
1898 new_sublist -> fn_field.is_protected = 1;
1899 break;
1900 }
1901
1902 STABS_CONTINUE (pp);
1903 switch (**pp)
1904 {
1905 case 'A': /* Normal functions. */
1906 new_sublist -> fn_field.is_const = 0;
1907 new_sublist -> fn_field.is_volatile = 0;
1908 (*pp)++;
1909 break;
1910 case 'B': /* `const' member functions. */
1911 new_sublist -> fn_field.is_const = 1;
1912 new_sublist -> fn_field.is_volatile = 0;
1913 (*pp)++;
1914 break;
1915 case 'C': /* `volatile' member function. */
1916 new_sublist -> fn_field.is_const = 0;
1917 new_sublist -> fn_field.is_volatile = 1;
1918 (*pp)++;
1919 break;
1920 case 'D': /* `const volatile' member function. */
1921 new_sublist -> fn_field.is_const = 1;
1922 new_sublist -> fn_field.is_volatile = 1;
1923 (*pp)++;
1924 break;
1925 case '*': /* File compiled with g++ version 1 -- no info */
1926 case '?':
1927 case '.':
1928 break;
1929 default:
1930 complain (&const_vol_complaint, **pp);
1931 break;
1932 }
1933
1934 switch (*(*pp)++)
1935 {
1936 case '*':
1937 {
1938 int nbits;
1939 /* virtual member function, followed by index.
1940 The sign bit is set to distinguish pointers-to-methods
1941 from virtual function indicies. Since the array is
1942 in words, the quantity must be shifted left by 1
1943 on 16 bit machine, and by 2 on 32 bit machine, forcing
1944 the sign bit out, and usable as a valid index into
1945 the array. Remove the sign bit here. */
1946 new_sublist -> fn_field.voffset =
1947 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1948 if (nbits != 0)
1949 return 0;
1950
1951 STABS_CONTINUE (pp);
1952 if (**pp == ';' || **pp == '\0')
1953 {
1954 /* Must be g++ version 1. */
1955 new_sublist -> fn_field.fcontext = 0;
1956 }
1957 else
1958 {
1959 /* Figure out from whence this virtual function came.
1960 It may belong to virtual function table of
1961 one of its baseclasses. */
1962 look_ahead_type = read_type (pp, objfile);
1963 if (**pp == ':')
1964 {
1965 /* g++ version 1 overloaded methods. */
1966 }
1967 else
1968 {
1969 new_sublist -> fn_field.fcontext = look_ahead_type;
1970 if (**pp != ';')
1971 {
1972 return 0;
1973 }
1974 else
1975 {
1976 ++*pp;
1977 }
1978 look_ahead_type = NULL;
1979 }
1980 }
1981 break;
1982 }
1983 case '?':
1984 /* static member function. */
1985 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1986 if (strncmp (new_sublist -> fn_field.physname,
1987 main_fn_name, strlen (main_fn_name)))
1988 {
1989 new_sublist -> fn_field.is_stub = 1;
1990 }
1991 break;
1992
1993 default:
1994 /* error */
1995 complain (&member_fn_complaint, (*pp)[-1]);
1996 /* Fall through into normal member function. */
1997
1998 case '.':
1999 /* normal member function. */
2000 new_sublist -> fn_field.voffset = 0;
2001 new_sublist -> fn_field.fcontext = 0;
2002 break;
2003 }
2004
2005 new_sublist -> next = sublist;
2006 sublist = new_sublist;
2007 length++;
2008 STABS_CONTINUE (pp);
2009 }
2010 while (**pp != ';' && **pp != '\0');
2011
2012 (*pp)++;
2013
2014 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2015 obstack_alloc (&objfile -> type_obstack,
2016 sizeof (struct fn_field) * length);
2017 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2018 sizeof (struct fn_field) * length);
2019 for (i = length; (i--, sublist); sublist = sublist -> next)
2020 {
2021 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2022 }
2023
2024 new_fnlist -> fn_fieldlist.length = length;
2025 new_fnlist -> next = fip -> fnlist;
2026 fip -> fnlist = new_fnlist;
2027 nfn_fields++;
2028 total_length += length;
2029 STABS_CONTINUE (pp);
2030 }
2031
2032 if (nfn_fields)
2033 {
2034 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2035 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2036 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2037 memset (TYPE_FN_FIELDLISTS (type), 0,
2038 sizeof (struct fn_fieldlist) * nfn_fields);
2039 TYPE_NFN_FIELDS (type) = nfn_fields;
2040 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2041 }
2042
2043 return 1;
2044 }
2045
2046 /* Special GNU C++ name.
2047
2048 Returns 1 for success, 0 for failure. "failure" means that we can't
2049 keep parsing and it's time for error_type(). */
2050
2051 static int
2052 read_cpp_abbrev (fip, pp, type, objfile)
2053 struct field_info *fip;
2054 char **pp;
2055 struct type *type;
2056 struct objfile *objfile;
2057 {
2058 register char *p;
2059 char *name;
2060 char cpp_abbrev;
2061 struct type *context;
2062
2063 p = *pp;
2064 if (*++p == 'v')
2065 {
2066 name = NULL;
2067 cpp_abbrev = *++p;
2068
2069 *pp = p + 1;
2070
2071 /* At this point, *pp points to something like "22:23=*22...",
2072 where the type number before the ':' is the "context" and
2073 everything after is a regular type definition. Lookup the
2074 type, find it's name, and construct the field name. */
2075
2076 context = read_type (pp, objfile);
2077
2078 switch (cpp_abbrev)
2079 {
2080 case 'f': /* $vf -- a virtual function table pointer */
2081 fip->list->field.name =
2082 obconcat (&objfile->type_obstack, vptr_name, "", "");
2083 break;
2084
2085 case 'b': /* $vb -- a virtual bsomethingorother */
2086 name = type_name_no_tag (context);
2087 if (name == NULL)
2088 {
2089 complain (&invalid_cpp_type_complaint, symnum);
2090 name = "FOO";
2091 }
2092 fip->list->field.name =
2093 obconcat (&objfile->type_obstack, vb_name, name, "");
2094 break;
2095
2096 default:
2097 complain (&invalid_cpp_abbrev_complaint, *pp);
2098 fip->list->field.name =
2099 obconcat (&objfile->type_obstack,
2100 "INVALID_CPLUSPLUS_ABBREV", "", "");
2101 break;
2102 }
2103
2104 /* At this point, *pp points to the ':'. Skip it and read the
2105 field type. */
2106
2107 p = ++(*pp);
2108 if (p[-1] != ':')
2109 {
2110 complain (&invalid_cpp_abbrev_complaint, *pp);
2111 return 0;
2112 }
2113 fip->list->field.type = read_type (pp, objfile);
2114 if (**pp == ',')
2115 (*pp)++; /* Skip the comma. */
2116 else
2117 return 0;
2118
2119 {
2120 int nbits;
2121 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2122 if (nbits != 0)
2123 return 0;
2124 }
2125 /* This field is unpacked. */
2126 fip->list->field.bitsize = 0;
2127 fip->list->visibility = VISIBILITY_PRIVATE;
2128 }
2129 else
2130 {
2131 complain (&invalid_cpp_abbrev_complaint, *pp);
2132 /* We have no idea what syntax an unrecognized abbrev would have, so
2133 better return 0. If we returned 1, we would need to at least advance
2134 *pp to avoid an infinite loop. */
2135 return 0;
2136 }
2137 return 1;
2138 }
2139
2140 static void
2141 read_one_struct_field (fip, pp, p, type, objfile)
2142 struct field_info *fip;
2143 char **pp;
2144 char *p;
2145 struct type *type;
2146 struct objfile *objfile;
2147 {
2148 fip -> list -> field.name =
2149 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2150 *pp = p + 1;
2151
2152 /* This means we have a visibility for a field coming. */
2153 if (**pp == '/')
2154 {
2155 (*pp)++;
2156 fip -> list -> visibility = *(*pp)++;
2157 }
2158 else
2159 {
2160 /* normal dbx-style format, no explicit visibility */
2161 fip -> list -> visibility = VISIBILITY_PUBLIC;
2162 }
2163
2164 fip -> list -> field.type = read_type (pp, objfile);
2165 if (**pp == ':')
2166 {
2167 p = ++(*pp);
2168 #if 0
2169 /* Possible future hook for nested types. */
2170 if (**pp == '!')
2171 {
2172 fip -> list -> field.bitpos = (long)-2; /* nested type */
2173 p = ++(*pp);
2174 }
2175 else
2176 #endif
2177 {
2178 /* Static class member. */
2179 fip -> list -> field.bitpos = (long) -1;
2180 }
2181 while (*p != ';')
2182 {
2183 p++;
2184 }
2185 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2186 *pp = p + 1;
2187 return;
2188 }
2189 else if (**pp != ',')
2190 {
2191 /* Bad structure-type format. */
2192 complain (&stabs_general_complaint, "bad structure-type format");
2193 return;
2194 }
2195
2196 (*pp)++; /* Skip the comma. */
2197
2198 {
2199 int nbits;
2200 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2201 if (nbits != 0)
2202 {
2203 complain (&stabs_general_complaint, "bad structure-type format");
2204 return;
2205 }
2206 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2207 if (nbits != 0)
2208 {
2209 complain (&stabs_general_complaint, "bad structure-type format");
2210 return;
2211 }
2212 }
2213
2214 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2215 {
2216 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2217 it is a field which has been optimized out. The correct stab for
2218 this case is to use VISIBILITY_IGNORE, but that is a recent
2219 invention. (2) It is a 0-size array. For example
2220 union { int num; char str[0]; } foo. Printing "<no value>" for
2221 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2222 will continue to work, and a 0-size array as a whole doesn't
2223 have any contents to print.
2224
2225 I suspect this probably could also happen with gcc -gstabs (not
2226 -gstabs+) for static fields, and perhaps other C++ extensions.
2227 Hopefully few people use -gstabs with gdb, since it is intended
2228 for dbx compatibility. */
2229
2230 /* Ignore this field. */
2231 fip -> list-> visibility = VISIBILITY_IGNORE;
2232 }
2233 else
2234 {
2235 /* Detect an unpacked field and mark it as such.
2236 dbx gives a bit size for all fields.
2237 Note that forward refs cannot be packed,
2238 and treat enums as if they had the width of ints. */
2239
2240 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2241 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2242 {
2243 fip -> list -> field.bitsize = 0;
2244 }
2245 if ((fip -> list -> field.bitsize
2246 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2247 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2248 && (fip -> list -> field.bitsize
2249 == TARGET_INT_BIT)
2250 )
2251 )
2252 &&
2253 fip -> list -> field.bitpos % 8 == 0)
2254 {
2255 fip -> list -> field.bitsize = 0;
2256 }
2257 }
2258 }
2259
2260
2261 /* Read struct or class data fields. They have the form:
2262
2263 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2264
2265 At the end, we see a semicolon instead of a field.
2266
2267 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2268 a static field.
2269
2270 The optional VISIBILITY is one of:
2271
2272 '/0' (VISIBILITY_PRIVATE)
2273 '/1' (VISIBILITY_PROTECTED)
2274 '/2' (VISIBILITY_PUBLIC)
2275 '/9' (VISIBILITY_IGNORE)
2276
2277 or nothing, for C style fields with public visibility.
2278
2279 Returns 1 for success, 0 for failure. */
2280
2281 static int
2282 read_struct_fields (fip, pp, type, objfile)
2283 struct field_info *fip;
2284 char **pp;
2285 struct type *type;
2286 struct objfile *objfile;
2287 {
2288 register char *p;
2289 struct nextfield *new;
2290
2291 /* We better set p right now, in case there are no fields at all... */
2292
2293 p = *pp;
2294
2295 /* Read each data member type until we find the terminating ';' at the end of
2296 the data member list, or break for some other reason such as finding the
2297 start of the member function list. */
2298
2299 while (**pp != ';')
2300 {
2301 STABS_CONTINUE (pp);
2302 /* Get space to record the next field's data. */
2303 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2304 make_cleanup (free, new);
2305 memset (new, 0, sizeof (struct nextfield));
2306 new -> next = fip -> list;
2307 fip -> list = new;
2308
2309 /* Get the field name. */
2310 p = *pp;
2311
2312 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2313 unless the CPLUS_MARKER is followed by an underscore, in
2314 which case it is just the name of an anonymous type, which we
2315 should handle like any other type name. We accept either '$'
2316 or '.', because a field name can never contain one of these
2317 characters except as a CPLUS_MARKER (we probably should be
2318 doing that in most parts of GDB). */
2319
2320 if ((*p == '$' || *p == '.') && p[1] != '_')
2321 {
2322 if (!read_cpp_abbrev (fip, pp, type, objfile))
2323 return 0;
2324 continue;
2325 }
2326
2327 /* Look for the ':' that separates the field name from the field
2328 values. Data members are delimited by a single ':', while member
2329 functions are delimited by a pair of ':'s. When we hit the member
2330 functions (if any), terminate scan loop and return. */
2331
2332 while (*p != ':' && *p != '\0')
2333 {
2334 p++;
2335 }
2336 if (*p == '\0')
2337 return 0;
2338
2339 /* Check to see if we have hit the member functions yet. */
2340 if (p[1] == ':')
2341 {
2342 break;
2343 }
2344 read_one_struct_field (fip, pp, p, type, objfile);
2345 }
2346 if (p[1] == ':')
2347 {
2348 /* chill the list of fields: the last entry (at the head) is a
2349 partially constructed entry which we now scrub. */
2350 fip -> list = fip -> list -> next;
2351 }
2352 return 1;
2353 }
2354
2355 /* The stabs for C++ derived classes contain baseclass information which
2356 is marked by a '!' character after the total size. This function is
2357 called when we encounter the baseclass marker, and slurps up all the
2358 baseclass information.
2359
2360 Immediately following the '!' marker is the number of base classes that
2361 the class is derived from, followed by information for each base class.
2362 For each base class, there are two visibility specifiers, a bit offset
2363 to the base class information within the derived class, a reference to
2364 the type for the base class, and a terminating semicolon.
2365
2366 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2367 ^^ ^ ^ ^ ^ ^ ^
2368 Baseclass information marker __________________|| | | | | | |
2369 Number of baseclasses __________________________| | | | | | |
2370 Visibility specifiers (2) ________________________| | | | | |
2371 Offset in bits from start of class _________________| | | | |
2372 Type number for base class ___________________________| | | |
2373 Visibility specifiers (2) _______________________________| | |
2374 Offset in bits from start of class ________________________| |
2375 Type number of base class ____________________________________|
2376
2377 Return 1 for success, 0 for (error-type-inducing) failure. */
2378
2379 static int
2380 read_baseclasses (fip, pp, type, objfile)
2381 struct field_info *fip;
2382 char **pp;
2383 struct type *type;
2384 struct objfile *objfile;
2385 {
2386 int i;
2387 struct nextfield *new;
2388
2389 if (**pp != '!')
2390 {
2391 return 1;
2392 }
2393 else
2394 {
2395 /* Skip the '!' baseclass information marker. */
2396 (*pp)++;
2397 }
2398
2399 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2400 {
2401 int nbits;
2402 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2403 if (nbits != 0)
2404 return 0;
2405 }
2406
2407 #if 0
2408 /* Some stupid compilers have trouble with the following, so break
2409 it up into simpler expressions. */
2410 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2411 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2412 #else
2413 {
2414 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2415 char *pointer;
2416
2417 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2418 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2419 }
2420 #endif /* 0 */
2421
2422 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2423
2424 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2425 {
2426 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2427 make_cleanup (free, new);
2428 memset (new, 0, sizeof (struct nextfield));
2429 new -> next = fip -> list;
2430 fip -> list = new;
2431 new -> field.bitsize = 0; /* this should be an unpacked field! */
2432
2433 STABS_CONTINUE (pp);
2434 switch (**pp)
2435 {
2436 case '0':
2437 /* Nothing to do. */
2438 break;
2439 case '1':
2440 SET_TYPE_FIELD_VIRTUAL (type, i);
2441 break;
2442 default:
2443 /* Unknown character. Complain and treat it as non-virtual. */
2444 {
2445 static struct complaint msg = {
2446 "Unknown virtual character `%c' for baseclass", 0, 0};
2447 complain (&msg, **pp);
2448 }
2449 }
2450 ++(*pp);
2451
2452 new -> visibility = *(*pp)++;
2453 switch (new -> visibility)
2454 {
2455 case VISIBILITY_PRIVATE:
2456 case VISIBILITY_PROTECTED:
2457 case VISIBILITY_PUBLIC:
2458 break;
2459 default:
2460 /* Bad visibility format. Complain and treat it as
2461 public. */
2462 {
2463 static struct complaint msg = {
2464 "Unknown visibility `%c' for baseclass", 0, 0};
2465 complain (&msg, new -> visibility);
2466 new -> visibility = VISIBILITY_PUBLIC;
2467 }
2468 }
2469
2470 {
2471 int nbits;
2472
2473 /* The remaining value is the bit offset of the portion of the object
2474 corresponding to this baseclass. Always zero in the absence of
2475 multiple inheritance. */
2476
2477 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2478 if (nbits != 0)
2479 return 0;
2480 }
2481
2482 /* The last piece of baseclass information is the type of the
2483 base class. Read it, and remember it's type name as this
2484 field's name. */
2485
2486 new -> field.type = read_type (pp, objfile);
2487 new -> field.name = type_name_no_tag (new -> field.type);
2488
2489 /* skip trailing ';' and bump count of number of fields seen */
2490 if (**pp == ';')
2491 (*pp)++;
2492 else
2493 return 0;
2494 }
2495 return 1;
2496 }
2497
2498 /* The tail end of stabs for C++ classes that contain a virtual function
2499 pointer contains a tilde, a %, and a type number.
2500 The type number refers to the base class (possibly this class itself) which
2501 contains the vtable pointer for the current class.
2502
2503 This function is called when we have parsed all the method declarations,
2504 so we can look for the vptr base class info. */
2505
2506 static int
2507 read_tilde_fields (fip, pp, type, objfile)
2508 struct field_info *fip;
2509 char **pp;
2510 struct type *type;
2511 struct objfile *objfile;
2512 {
2513 register char *p;
2514
2515 STABS_CONTINUE (pp);
2516
2517 /* If we are positioned at a ';', then skip it. */
2518 if (**pp == ';')
2519 {
2520 (*pp)++;
2521 }
2522
2523 if (**pp == '~')
2524 {
2525 (*pp)++;
2526
2527 if (**pp == '=' || **pp == '+' || **pp == '-')
2528 {
2529 /* Obsolete flags that used to indicate the presence
2530 of constructors and/or destructors. */
2531 (*pp)++;
2532 }
2533
2534 /* Read either a '%' or the final ';'. */
2535 if (*(*pp)++ == '%')
2536 {
2537 /* The next number is the type number of the base class
2538 (possibly our own class) which supplies the vtable for
2539 this class. Parse it out, and search that class to find
2540 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2541 and TYPE_VPTR_FIELDNO. */
2542
2543 struct type *t;
2544 int i;
2545
2546 t = read_type (pp, objfile);
2547 p = (*pp)++;
2548 while (*p != '\0' && *p != ';')
2549 {
2550 p++;
2551 }
2552 if (*p == '\0')
2553 {
2554 /* Premature end of symbol. */
2555 return 0;
2556 }
2557
2558 TYPE_VPTR_BASETYPE (type) = t;
2559 if (type == t) /* Our own class provides vtbl ptr */
2560 {
2561 for (i = TYPE_NFIELDS (t) - 1;
2562 i >= TYPE_N_BASECLASSES (t);
2563 --i)
2564 {
2565 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2566 sizeof (vptr_name) - 1))
2567 {
2568 TYPE_VPTR_FIELDNO (type) = i;
2569 goto gotit;
2570 }
2571 }
2572 /* Virtual function table field not found. */
2573 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2574 return 0;
2575 }
2576 else
2577 {
2578 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2579 }
2580
2581 gotit:
2582 *pp = p + 1;
2583 }
2584 }
2585 return 1;
2586 }
2587
2588 static int
2589 attach_fn_fields_to_type (fip, type)
2590 struct field_info *fip;
2591 register struct type *type;
2592 {
2593 register int n;
2594
2595 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2596 {
2597 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2598 {
2599 /* @@ Memory leak on objfile -> type_obstack? */
2600 return 0;
2601 }
2602 TYPE_NFN_FIELDS_TOTAL (type) +=
2603 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2604 }
2605
2606 for (n = TYPE_NFN_FIELDS (type);
2607 fip -> fnlist != NULL;
2608 fip -> fnlist = fip -> fnlist -> next)
2609 {
2610 --n; /* Circumvent Sun3 compiler bug */
2611 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2612 }
2613 return 1;
2614 }
2615
2616 /* Create the vector of fields, and record how big it is.
2617 We need this info to record proper virtual function table information
2618 for this class's virtual functions. */
2619
2620 static int
2621 attach_fields_to_type (fip, type, objfile)
2622 struct field_info *fip;
2623 register struct type *type;
2624 struct objfile *objfile;
2625 {
2626 register int nfields = 0;
2627 register int non_public_fields = 0;
2628 register struct nextfield *scan;
2629
2630 /* Count up the number of fields that we have, as well as taking note of
2631 whether or not there are any non-public fields, which requires us to
2632 allocate and build the private_field_bits and protected_field_bits
2633 bitfields. */
2634
2635 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2636 {
2637 nfields++;
2638 if (scan -> visibility != VISIBILITY_PUBLIC)
2639 {
2640 non_public_fields++;
2641 }
2642 }
2643
2644 /* Now we know how many fields there are, and whether or not there are any
2645 non-public fields. Record the field count, allocate space for the
2646 array of fields, and create blank visibility bitfields if necessary. */
2647
2648 TYPE_NFIELDS (type) = nfields;
2649 TYPE_FIELDS (type) = (struct field *)
2650 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2651 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2652
2653 if (non_public_fields)
2654 {
2655 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2656
2657 TYPE_FIELD_PRIVATE_BITS (type) =
2658 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2659 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2660
2661 TYPE_FIELD_PROTECTED_BITS (type) =
2662 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2663 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2664
2665 TYPE_FIELD_IGNORE_BITS (type) =
2666 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2667 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2668 }
2669
2670 /* Copy the saved-up fields into the field vector. Start from the head
2671 of the list, adding to the tail of the field array, so that they end
2672 up in the same order in the array in which they were added to the list. */
2673
2674 while (nfields-- > 0)
2675 {
2676 TYPE_FIELD (type, nfields) = fip -> list -> field;
2677 switch (fip -> list -> visibility)
2678 {
2679 case VISIBILITY_PRIVATE:
2680 SET_TYPE_FIELD_PRIVATE (type, nfields);
2681 break;
2682
2683 case VISIBILITY_PROTECTED:
2684 SET_TYPE_FIELD_PROTECTED (type, nfields);
2685 break;
2686
2687 case VISIBILITY_IGNORE:
2688 SET_TYPE_FIELD_IGNORE (type, nfields);
2689 break;
2690
2691 case VISIBILITY_PUBLIC:
2692 break;
2693
2694 default:
2695 /* Unknown visibility. Complain and treat it as public. */
2696 {
2697 static struct complaint msg = {
2698 "Unknown visibility `%c' for field", 0, 0};
2699 complain (&msg, fip -> list -> visibility);
2700 }
2701 break;
2702 }
2703 fip -> list = fip -> list -> next;
2704 }
2705 return 1;
2706 }
2707
2708 /* Read the description of a structure (or union type) and return an object
2709 describing the type.
2710
2711 PP points to a character pointer that points to the next unconsumed token
2712 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2713 *PP will point to "4a:1,0,32;;".
2714
2715 TYPE points to an incomplete type that needs to be filled in.
2716
2717 OBJFILE points to the current objfile from which the stabs information is
2718 being read. (Note that it is redundant in that TYPE also contains a pointer
2719 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2720 */
2721
2722 static struct type *
2723 read_struct_type (pp, type, objfile)
2724 char **pp;
2725 struct type *type;
2726 struct objfile *objfile;
2727 {
2728 struct cleanup *back_to;
2729 struct field_info fi;
2730
2731 fi.list = NULL;
2732 fi.fnlist = NULL;
2733
2734 back_to = make_cleanup (null_cleanup, 0);
2735
2736 INIT_CPLUS_SPECIFIC (type);
2737 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2738
2739 /* First comes the total size in bytes. */
2740
2741 {
2742 int nbits;
2743 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2744 if (nbits != 0)
2745 return error_type (pp);
2746 }
2747
2748 /* Now read the baseclasses, if any, read the regular C struct or C++
2749 class member fields, attach the fields to the type, read the C++
2750 member functions, attach them to the type, and then read any tilde
2751 field (baseclass specifier for the class holding the main vtable). */
2752
2753 if (!read_baseclasses (&fi, pp, type, objfile)
2754 || !read_struct_fields (&fi, pp, type, objfile)
2755 || !attach_fields_to_type (&fi, type, objfile)
2756 || !read_member_functions (&fi, pp, type, objfile)
2757 || !attach_fn_fields_to_type (&fi, type)
2758 || !read_tilde_fields (&fi, pp, type, objfile))
2759 {
2760 do_cleanups (back_to);
2761 return (error_type (pp));
2762 }
2763
2764 do_cleanups (back_to);
2765 return (type);
2766 }
2767
2768 /* Read a definition of an array type,
2769 and create and return a suitable type object.
2770 Also creates a range type which represents the bounds of that
2771 array. */
2772
2773 static struct type *
2774 read_array_type (pp, type, objfile)
2775 register char **pp;
2776 register struct type *type;
2777 struct objfile *objfile;
2778 {
2779 struct type *index_type, *element_type, *range_type;
2780 int lower, upper;
2781 int adjustable = 0;
2782 int nbits;
2783
2784 /* Format of an array type:
2785 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2786 to handle this.
2787
2788 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2789 for these, produce a type like float[][]. */
2790
2791 index_type = read_type (pp, objfile);
2792 if (**pp != ';')
2793 /* Improper format of array type decl. */
2794 return error_type (pp);
2795 ++*pp;
2796
2797 if (!(**pp >= '0' && **pp <= '9'))
2798 {
2799 (*pp)++;
2800 adjustable = 1;
2801 }
2802 lower = read_huge_number (pp, ';', &nbits);
2803 if (nbits != 0)
2804 return error_type (pp);
2805
2806 if (!(**pp >= '0' && **pp <= '9'))
2807 {
2808 (*pp)++;
2809 adjustable = 1;
2810 }
2811 upper = read_huge_number (pp, ';', &nbits);
2812 if (nbits != 0)
2813 return error_type (pp);
2814
2815 element_type = read_type (pp, objfile);
2816
2817 if (adjustable)
2818 {
2819 lower = 0;
2820 upper = -1;
2821 }
2822
2823 range_type =
2824 create_range_type ((struct type *) NULL, index_type, lower, upper);
2825 type = create_array_type (type, element_type, range_type);
2826
2827 /* If we have an array whose element type is not yet known, but whose
2828 bounds *are* known, record it to be adjusted at the end of the file. */
2829 /* FIXME: Why check for zero length rather than TYPE_FLAG_STUB? I think
2830 the two have the same effect except that the latter is cleaner and the
2831 former would be wrong for types which really are zero-length (if we
2832 have any). */
2833
2834 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2835 {
2836 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2837 add_undefined_type (type);
2838 }
2839
2840 return type;
2841 }
2842
2843
2844 /* Read a definition of an enumeration type,
2845 and create and return a suitable type object.
2846 Also defines the symbols that represent the values of the type. */
2847
2848 static struct type *
2849 read_enum_type (pp, type, objfile)
2850 register char **pp;
2851 register struct type *type;
2852 struct objfile *objfile;
2853 {
2854 register char *p;
2855 char *name;
2856 register long n;
2857 register struct symbol *sym;
2858 int nsyms = 0;
2859 struct pending **symlist;
2860 struct pending *osyms, *syms;
2861 int o_nsyms;
2862
2863 #if 0
2864 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2865 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2866 to do? For now, force all enum values to file scope. */
2867 if (within_function)
2868 symlist = &local_symbols;
2869 else
2870 #endif
2871 symlist = &file_symbols;
2872 osyms = *symlist;
2873 o_nsyms = osyms ? osyms->nsyms : 0;
2874
2875 /* Read the value-names and their values.
2876 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2877 A semicolon or comma instead of a NAME means the end. */
2878 while (**pp && **pp != ';' && **pp != ',')
2879 {
2880 int nbits;
2881 STABS_CONTINUE (pp);
2882 p = *pp;
2883 while (*p != ':') p++;
2884 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2885 *pp = p + 1;
2886 n = read_huge_number (pp, ',', &nbits);
2887 if (nbits != 0)
2888 return error_type (pp);
2889
2890 sym = (struct symbol *)
2891 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2892 memset (sym, 0, sizeof (struct symbol));
2893 SYMBOL_NAME (sym) = name;
2894 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2895 SYMBOL_CLASS (sym) = LOC_CONST;
2896 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2897 SYMBOL_VALUE (sym) = n;
2898 add_symbol_to_list (sym, symlist);
2899 nsyms++;
2900 }
2901
2902 if (**pp == ';')
2903 (*pp)++; /* Skip the semicolon. */
2904
2905 /* Now fill in the fields of the type-structure. */
2906
2907 TYPE_LENGTH (type) = sizeof (int);
2908 TYPE_CODE (type) = TYPE_CODE_ENUM;
2909 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2910 TYPE_NFIELDS (type) = nsyms;
2911 TYPE_FIELDS (type) = (struct field *)
2912 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2913 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2914
2915 /* Find the symbols for the values and put them into the type.
2916 The symbols can be found in the symlist that we put them on
2917 to cause them to be defined. osyms contains the old value
2918 of that symlist; everything up to there was defined by us. */
2919 /* Note that we preserve the order of the enum constants, so
2920 that in something like "enum {FOO, LAST_THING=FOO}" we print
2921 FOO, not LAST_THING. */
2922
2923 for (syms = *symlist, n = 0; syms; syms = syms->next)
2924 {
2925 int j = 0;
2926 if (syms == osyms)
2927 j = o_nsyms;
2928 for (; j < syms->nsyms; j++,n++)
2929 {
2930 struct symbol *xsym = syms->symbol[j];
2931 SYMBOL_TYPE (xsym) = type;
2932 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2933 TYPE_FIELD_VALUE (type, n) = 0;
2934 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2935 TYPE_FIELD_BITSIZE (type, n) = 0;
2936 }
2937 if (syms == osyms)
2938 break;
2939 }
2940
2941 #if 0
2942 /* This screws up perfectly good C programs with enums. FIXME. */
2943 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2944 if(TYPE_NFIELDS(type) == 2 &&
2945 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2946 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2947 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2948 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2949 TYPE_CODE(type) = TYPE_CODE_BOOL;
2950 #endif
2951
2952 return type;
2953 }
2954
2955 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2956 typedefs in every file (for int, long, etc):
2957
2958 type = b <signed> <width>; <offset>; <nbits>
2959 signed = u or s. Possible c in addition to u or s (for char?).
2960 offset = offset from high order bit to start bit of type.
2961 width is # bytes in object of this type, nbits is # bits in type.
2962
2963 The width/offset stuff appears to be for small objects stored in
2964 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2965 FIXME. */
2966
2967 static struct type *
2968 read_sun_builtin_type (pp, typenums, objfile)
2969 char **pp;
2970 int typenums[2];
2971 struct objfile *objfile;
2972 {
2973 int type_bits;
2974 int nbits;
2975 int signed_type;
2976
2977 switch (**pp)
2978 {
2979 case 's':
2980 signed_type = 1;
2981 break;
2982 case 'u':
2983 signed_type = 0;
2984 break;
2985 default:
2986 return error_type (pp);
2987 }
2988 (*pp)++;
2989
2990 /* For some odd reason, all forms of char put a c here. This is strange
2991 because no other type has this honor. We can safely ignore this because
2992 we actually determine 'char'acterness by the number of bits specified in
2993 the descriptor. */
2994
2995 if (**pp == 'c')
2996 (*pp)++;
2997
2998 /* The first number appears to be the number of bytes occupied
2999 by this type, except that unsigned short is 4 instead of 2.
3000 Since this information is redundant with the third number,
3001 we will ignore it. */
3002 read_huge_number (pp, ';', &nbits);
3003 if (nbits != 0)
3004 return error_type (pp);
3005
3006 /* The second number is always 0, so ignore it too. */
3007 read_huge_number (pp, ';', &nbits);
3008 if (nbits != 0)
3009 return error_type (pp);
3010
3011 /* The third number is the number of bits for this type. */
3012 type_bits = read_huge_number (pp, 0, &nbits);
3013 if (nbits != 0)
3014 return error_type (pp);
3015
3016 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3017 type_bits / TARGET_CHAR_BIT,
3018 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3019 objfile);
3020 }
3021
3022 static struct type *
3023 read_sun_floating_type (pp, typenums, objfile)
3024 char **pp;
3025 int typenums[2];
3026 struct objfile *objfile;
3027 {
3028 int nbits;
3029 int details;
3030 int nbytes;
3031
3032 /* The first number has more details about the type, for example
3033 FN_COMPLEX. */
3034 details = read_huge_number (pp, ';', &nbits);
3035 if (nbits != 0)
3036 return error_type (pp);
3037
3038 /* The second number is the number of bytes occupied by this type */
3039 nbytes = read_huge_number (pp, ';', &nbits);
3040 if (nbits != 0)
3041 return error_type (pp);
3042
3043 if (details == NF_COMPLEX || details == NF_COMPLEX16
3044 || details == NF_COMPLEX32)
3045 /* This is a type we can't handle, but we do know the size.
3046 We also will be able to give it a name. */
3047 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3048
3049 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3050 }
3051
3052 /* Read a number from the string pointed to by *PP.
3053 The value of *PP is advanced over the number.
3054 If END is nonzero, the character that ends the
3055 number must match END, or an error happens;
3056 and that character is skipped if it does match.
3057 If END is zero, *PP is left pointing to that character.
3058
3059 If the number fits in a long, set *BITS to 0 and return the value.
3060 If not, set *BITS to be the number of bits in the number and return 0.
3061
3062 If encounter garbage, set *BITS to -1 and return 0. */
3063
3064 static long
3065 read_huge_number (pp, end, bits)
3066 char **pp;
3067 int end;
3068 int *bits;
3069 {
3070 char *p = *pp;
3071 int sign = 1;
3072 long n = 0;
3073 int radix = 10;
3074 char overflow = 0;
3075 int nbits = 0;
3076 int c;
3077 long upper_limit;
3078
3079 if (*p == '-')
3080 {
3081 sign = -1;
3082 p++;
3083 }
3084
3085 /* Leading zero means octal. GCC uses this to output values larger
3086 than an int (because that would be hard in decimal). */
3087 if (*p == '0')
3088 {
3089 radix = 8;
3090 p++;
3091 }
3092
3093 upper_limit = LONG_MAX / radix;
3094 while ((c = *p++) >= '0' && c < ('0' + radix))
3095 {
3096 if (n <= upper_limit)
3097 {
3098 n *= radix;
3099 n += c - '0'; /* FIXME this overflows anyway */
3100 }
3101 else
3102 overflow = 1;
3103
3104 /* This depends on large values being output in octal, which is
3105 what GCC does. */
3106 if (radix == 8)
3107 {
3108 if (nbits == 0)
3109 {
3110 if (c == '0')
3111 /* Ignore leading zeroes. */
3112 ;
3113 else if (c == '1')
3114 nbits = 1;
3115 else if (c == '2' || c == '3')
3116 nbits = 2;
3117 else
3118 nbits = 3;
3119 }
3120 else
3121 nbits += 3;
3122 }
3123 }
3124 if (end)
3125 {
3126 if (c && c != end)
3127 {
3128 if (bits != NULL)
3129 *bits = -1;
3130 return 0;
3131 }
3132 }
3133 else
3134 --p;
3135
3136 *pp = p;
3137 if (overflow)
3138 {
3139 if (nbits == 0)
3140 {
3141 /* Large decimal constants are an error (because it is hard to
3142 count how many bits are in them). */
3143 if (bits != NULL)
3144 *bits = -1;
3145 return 0;
3146 }
3147
3148 /* -0x7f is the same as 0x80. So deal with it by adding one to
3149 the number of bits. */
3150 if (sign == -1)
3151 ++nbits;
3152 if (bits)
3153 *bits = nbits;
3154 }
3155 else
3156 {
3157 if (bits)
3158 *bits = 0;
3159 return n * sign;
3160 }
3161 /* It's *BITS which has the interesting information. */
3162 return 0;
3163 }
3164
3165 static struct type *
3166 read_range_type (pp, typenums, objfile)
3167 char **pp;
3168 int typenums[2];
3169 struct objfile *objfile;
3170 {
3171 int rangenums[2];
3172 long n2, n3;
3173 int n2bits, n3bits;
3174 int self_subrange;
3175 struct type *result_type;
3176 struct type *index_type;
3177
3178 /* First comes a type we are a subrange of.
3179 In C it is usually 0, 1 or the type being defined. */
3180 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3181 not just a type number. */
3182 if (read_type_number (pp, rangenums) != 0)
3183 return error_type (pp);
3184 self_subrange = (rangenums[0] == typenums[0] &&
3185 rangenums[1] == typenums[1]);
3186
3187 /* A semicolon should now follow; skip it. */
3188 if (**pp == ';')
3189 (*pp)++;
3190
3191 /* The remaining two operands are usually lower and upper bounds
3192 of the range. But in some special cases they mean something else. */
3193 n2 = read_huge_number (pp, ';', &n2bits);
3194 n3 = read_huge_number (pp, ';', &n3bits);
3195
3196 if (n2bits == -1 || n3bits == -1)
3197 return error_type (pp);
3198
3199 /* If limits are huge, must be large integral type. */
3200 if (n2bits != 0 || n3bits != 0)
3201 {
3202 char got_signed = 0;
3203 char got_unsigned = 0;
3204 /* Number of bits in the type. */
3205 int nbits = 0;
3206
3207 /* Range from 0 to <large number> is an unsigned large integral type. */
3208 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3209 {
3210 got_unsigned = 1;
3211 nbits = n3bits;
3212 }
3213 /* Range from <large number> to <large number>-1 is a large signed
3214 integral type. Take care of the case where <large number> doesn't
3215 fit in a long but <large number>-1 does. */
3216 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3217 || (n2bits != 0 && n3bits == 0
3218 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3219 && n3 == LONG_MAX))
3220 {
3221 got_signed = 1;
3222 nbits = n2bits;
3223 }
3224
3225 if (got_signed || got_unsigned)
3226 {
3227 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3228 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3229 objfile);
3230 }
3231 else
3232 return error_type (pp);
3233 }
3234
3235 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3236 if (self_subrange && n2 == 0 && n3 == 0)
3237 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3238
3239 /* If n3 is zero and n2 is not, we want a floating type,
3240 and n2 is the width in bytes.
3241
3242 Fortran programs appear to use this for complex types also,
3243 and they give no way to distinguish between double and single-complex!
3244
3245 GDB does not have complex types.
3246
3247 Just return the complex as a float of that size. It won't work right
3248 for the complex values, but at least it makes the file loadable. */
3249
3250 if (n3 == 0 && n2 > 0)
3251 {
3252 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3253 }
3254
3255 /* If the upper bound is -1, it must really be an unsigned int. */
3256
3257 else if (n2 == 0 && n3 == -1)
3258 {
3259 /* It is unsigned int or unsigned long. */
3260 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3261 compatibility hack. */
3262 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3263 TYPE_FLAG_UNSIGNED, NULL, objfile);
3264 }
3265
3266 /* Special case: char is defined (Who knows why) as a subrange of
3267 itself with range 0-127. */
3268 else if (self_subrange && n2 == 0 && n3 == 127)
3269 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3270
3271 /* We used to do this only for subrange of self or subrange of int. */
3272 else if (n2 == 0)
3273 {
3274 if (n3 < 0)
3275 /* n3 actually gives the size. */
3276 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3277 NULL, objfile);
3278 if (n3 == 0xff)
3279 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3280 if (n3 == 0xffff)
3281 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3282
3283 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3284 "unsigned long", and we already checked for that,
3285 so don't need to test for it here. */
3286 }
3287 /* I think this is for Convex "long long". Since I don't know whether
3288 Convex sets self_subrange, I also accept that particular size regardless
3289 of self_subrange. */
3290 else if (n3 == 0 && n2 < 0
3291 && (self_subrange
3292 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3293 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3294 else if (n2 == -n3 -1)
3295 {
3296 if (n3 == 0x7f)
3297 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3298 if (n3 == 0x7fff)
3299 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3300 if (n3 == 0x7fffffff)
3301 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3302 }
3303
3304 /* We have a real range type on our hands. Allocate space and
3305 return a real pointer. */
3306
3307 /* At this point I don't have the faintest idea how to deal with
3308 a self_subrange type; I'm going to assume that this is used
3309 as an idiom, and that all of them are special cases. So . . . */
3310 if (self_subrange)
3311 return error_type (pp);
3312
3313 index_type = *dbx_lookup_type (rangenums);
3314 if (index_type == NULL)
3315 {
3316 /* Does this actually ever happen? Is that why we are worrying
3317 about dealing with it rather than just calling error_type? */
3318
3319 static struct type *range_type_index;
3320
3321 complain (&range_type_base_complaint, rangenums[1]);
3322 if (range_type_index == NULL)
3323 range_type_index =
3324 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3325 0, "range type index type", NULL);
3326 index_type = range_type_index;
3327 }
3328
3329 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3330 return (result_type);
3331 }
3332
3333 /* Read in an argument list. This is a list of types, separated by commas
3334 and terminated with END. Return the list of types read in, or (struct type
3335 **)-1 if there is an error. */
3336
3337 static struct type **
3338 read_args (pp, end, objfile)
3339 char **pp;
3340 int end;
3341 struct objfile *objfile;
3342 {
3343 /* FIXME! Remove this arbitrary limit! */
3344 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3345 int n = 0;
3346
3347 while (**pp != end)
3348 {
3349 if (**pp != ',')
3350 /* Invalid argument list: no ','. */
3351 return (struct type **)-1;
3352 (*pp)++;
3353 STABS_CONTINUE (pp);
3354 types[n++] = read_type (pp, objfile);
3355 }
3356 (*pp)++; /* get past `end' (the ':' character) */
3357
3358 if (n == 1)
3359 {
3360 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3361 }
3362 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3363 {
3364 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3365 memset (rval + n, 0, sizeof (struct type *));
3366 }
3367 else
3368 {
3369 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3370 }
3371 memcpy (rval, types, n * sizeof (struct type *));
3372 return rval;
3373 }
3374 \f
3375 /* Common block handling. */
3376
3377 /* List of symbols declared since the last BCOMM. This list is a tail
3378 of local_symbols. When ECOMM is seen, the symbols on the list
3379 are noted so their proper addresses can be filled in later,
3380 using the common block base address gotten from the assembler
3381 stabs. */
3382
3383 static struct pending *common_block;
3384 static int common_block_i;
3385
3386 /* Name of the current common block. We get it from the BCOMM instead of the
3387 ECOMM to match IBM documentation (even though IBM puts the name both places
3388 like everyone else). */
3389 static char *common_block_name;
3390
3391 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3392 to remain after this function returns. */
3393
3394 void
3395 common_block_start (name, objfile)
3396 char *name;
3397 struct objfile *objfile;
3398 {
3399 if (common_block_name != NULL)
3400 {
3401 static struct complaint msg = {
3402 "Invalid symbol data: common block within common block",
3403 0, 0};
3404 complain (&msg);
3405 }
3406 common_block = local_symbols;
3407 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3408 common_block_name = obsavestring (name, strlen (name),
3409 &objfile -> symbol_obstack);
3410 }
3411
3412 /* Process a N_ECOMM symbol. */
3413
3414 void
3415 common_block_end (objfile)
3416 struct objfile *objfile;
3417 {
3418 /* Symbols declared since the BCOMM are to have the common block
3419 start address added in when we know it. common_block and
3420 common_block_i point to the first symbol after the BCOMM in
3421 the local_symbols list; copy the list and hang it off the
3422 symbol for the common block name for later fixup. */
3423 int i;
3424 struct symbol *sym;
3425 struct pending *new = 0;
3426 struct pending *next;
3427 int j;
3428
3429 if (common_block_name == NULL)
3430 {
3431 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3432 complain (&msg);
3433 return;
3434 }
3435
3436 sym = (struct symbol *)
3437 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3438 memset (sym, 0, sizeof (struct symbol));
3439 SYMBOL_NAME (sym) = common_block_name;
3440 SYMBOL_CLASS (sym) = LOC_BLOCK;
3441
3442 /* Now we copy all the symbols which have been defined since the BCOMM. */
3443
3444 /* Copy all the struct pendings before common_block. */
3445 for (next = local_symbols;
3446 next != NULL && next != common_block;
3447 next = next->next)
3448 {
3449 for (j = 0; j < next->nsyms; j++)
3450 add_symbol_to_list (next->symbol[j], &new);
3451 }
3452
3453 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3454 NULL, it means copy all the local symbols (which we already did
3455 above). */
3456
3457 if (common_block != NULL)
3458 for (j = common_block_i; j < common_block->nsyms; j++)
3459 add_symbol_to_list (common_block->symbol[j], &new);
3460
3461 SYMBOL_NAMESPACE (sym) = (enum namespace)((long) new);
3462
3463 /* Should we be putting local_symbols back to what it was?
3464 Does it matter? */
3465
3466 i = hashname (SYMBOL_NAME (sym));
3467 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3468 global_sym_chain[i] = sym;
3469 common_block_name = NULL;
3470 }
3471
3472 /* Add a common block's start address to the offset of each symbol
3473 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3474 the common block name). */
3475
3476 static void
3477 fix_common_block (sym, valu)
3478 struct symbol *sym;
3479 int valu;
3480 {
3481 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3482 for ( ; next; next = next->next)
3483 {
3484 register int j;
3485 for (j = next->nsyms - 1; j >= 0; j--)
3486 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3487 }
3488 }
3489
3490
3491 \f
3492 /* What about types defined as forward references inside of a small lexical
3493 scope? */
3494 /* Add a type to the list of undefined types to be checked through
3495 once this file has been read in. */
3496
3497 void
3498 add_undefined_type (type)
3499 struct type *type;
3500 {
3501 if (undef_types_length == undef_types_allocated)
3502 {
3503 undef_types_allocated *= 2;
3504 undef_types = (struct type **)
3505 xrealloc ((char *) undef_types,
3506 undef_types_allocated * sizeof (struct type *));
3507 }
3508 undef_types[undef_types_length++] = type;
3509 }
3510
3511 /* Go through each undefined type, see if it's still undefined, and fix it
3512 up if possible. We have two kinds of undefined types:
3513
3514 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3515 Fix: update array length using the element bounds
3516 and the target type's length.
3517 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3518 yet defined at the time a pointer to it was made.
3519 Fix: Do a full lookup on the struct/union tag. */
3520 void
3521 cleanup_undefined_types ()
3522 {
3523 struct type **type;
3524
3525 for (type = undef_types; type < undef_types + undef_types_length; type++)
3526 {
3527 switch (TYPE_CODE (*type))
3528 {
3529
3530 case TYPE_CODE_STRUCT:
3531 case TYPE_CODE_UNION:
3532 case TYPE_CODE_ENUM:
3533 {
3534 /* Check if it has been defined since. Need to do this here
3535 as well as in check_stub_type to deal with the (legitimate in
3536 C though not C++) case of several types with the same name
3537 in different source files. */
3538 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3539 {
3540 struct pending *ppt;
3541 int i;
3542 /* Name of the type, without "struct" or "union" */
3543 char *typename = TYPE_TAG_NAME (*type);
3544
3545 if (typename == NULL)
3546 {
3547 static struct complaint msg = {"need a type name", 0, 0};
3548 complain (&msg);
3549 break;
3550 }
3551 for (ppt = file_symbols; ppt; ppt = ppt->next)
3552 {
3553 for (i = 0; i < ppt->nsyms; i++)
3554 {
3555 struct symbol *sym = ppt->symbol[i];
3556
3557 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3558 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3559 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3560 TYPE_CODE (*type))
3561 && STREQ (SYMBOL_NAME (sym), typename))
3562 {
3563 memcpy (*type, SYMBOL_TYPE (sym),
3564 sizeof (struct type));
3565 }
3566 }
3567 }
3568 }
3569 }
3570 break;
3571
3572 case TYPE_CODE_ARRAY:
3573 {
3574 /* This is a kludge which is here for historical reasons
3575 because I suspect that check_stub_type does not get
3576 called everywhere it needs to be called for arrays. Even
3577 with this kludge, those places are broken for the case
3578 where the stub type is defined in another compilation
3579 unit, but this kludge at least deals with it for the case
3580 in which it is the same compilation unit.
3581
3582 Don't try to do this by calling check_stub_type; it might
3583 cause symbols to be read in lookup_symbol, and the symbol
3584 reader is not reentrant. */
3585
3586 struct type *range_type;
3587 int lower, upper;
3588
3589 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3590 goto badtype;
3591 if (TYPE_NFIELDS (*type) != 1)
3592 goto badtype;
3593 range_type = TYPE_FIELD_TYPE (*type, 0);
3594 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3595 goto badtype;
3596
3597 /* Now recompute the length of the array type, based on its
3598 number of elements and the target type's length. */
3599 lower = TYPE_FIELD_BITPOS (range_type, 0);
3600 upper = TYPE_FIELD_BITPOS (range_type, 1);
3601 TYPE_LENGTH (*type) = (upper - lower + 1)
3602 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3603
3604 /* If the target type is not a stub, we could be clearing
3605 TYPE_FLAG_TARGET_STUB for *type. */
3606 }
3607 break;
3608
3609 default:
3610 badtype:
3611 {
3612 static struct complaint msg = {"\
3613 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3614 complain (&msg, TYPE_CODE (*type));
3615 }
3616 break;
3617 }
3618 }
3619
3620 undef_types_length = 0;
3621 }
3622
3623 /* Scan through all of the global symbols defined in the object file,
3624 assigning values to the debugging symbols that need to be assigned
3625 to. Get these symbols from the minimal symbol table. */
3626
3627 void
3628 scan_file_globals (objfile)
3629 struct objfile *objfile;
3630 {
3631 int hash;
3632 struct minimal_symbol *msymbol;
3633 struct symbol *sym, *prev;
3634
3635 if (objfile->msymbols == 0) /* Beware the null file. */
3636 return;
3637
3638 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3639 {
3640 QUIT;
3641
3642 prev = NULL;
3643
3644 /* Get the hash index and check all the symbols
3645 under that hash index. */
3646
3647 hash = hashname (SYMBOL_NAME (msymbol));
3648
3649 for (sym = global_sym_chain[hash]; sym;)
3650 {
3651 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3652 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3653 {
3654 /* Splice this symbol out of the hash chain and
3655 assign the value we have to it. */
3656 if (prev)
3657 {
3658 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3659 }
3660 else
3661 {
3662 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3663 }
3664
3665 /* Check to see whether we need to fix up a common block. */
3666 /* Note: this code might be executed several times for
3667 the same symbol if there are multiple references. */
3668
3669 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3670 {
3671 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3672 }
3673 else
3674 {
3675 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3676 }
3677
3678 if (prev)
3679 {
3680 sym = SYMBOL_VALUE_CHAIN (prev);
3681 }
3682 else
3683 {
3684 sym = global_sym_chain[hash];
3685 }
3686 }
3687 else
3688 {
3689 prev = sym;
3690 sym = SYMBOL_VALUE_CHAIN (sym);
3691 }
3692 }
3693 }
3694 }
3695
3696 /* Initialize anything that needs initializing when starting to read
3697 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3698 to a psymtab. */
3699
3700 void
3701 stabsread_init ()
3702 {
3703 }
3704
3705 /* Initialize anything that needs initializing when a completely new
3706 symbol file is specified (not just adding some symbols from another
3707 file, e.g. a shared library). */
3708
3709 void
3710 stabsread_new_init ()
3711 {
3712 /* Empty the hash table of global syms looking for values. */
3713 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3714 }
3715
3716 /* Initialize anything that needs initializing at the same time as
3717 start_symtab() is called. */
3718
3719 void start_stabs ()
3720 {
3721 global_stabs = NULL; /* AIX COFF */
3722 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3723 n_this_object_header_files = 1;
3724 type_vector_length = 0;
3725 type_vector = (struct type **) 0;
3726
3727 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3728 common_block_name = NULL;
3729 }
3730
3731 /* Call after end_symtab() */
3732
3733 void end_stabs ()
3734 {
3735 if (type_vector)
3736 {
3737 free ((char *) type_vector);
3738 }
3739 type_vector = 0;
3740 type_vector_length = 0;
3741 previous_stab_code = 0;
3742 }
3743
3744 void
3745 finish_global_stabs (objfile)
3746 struct objfile *objfile;
3747 {
3748 if (global_stabs)
3749 {
3750 patch_block_stabs (global_symbols, global_stabs, objfile);
3751 free ((PTR) global_stabs);
3752 global_stabs = NULL;
3753 }
3754 }
3755
3756 /* Initializer for this module */
3757
3758 void
3759 _initialize_stabsread ()
3760 {
3761 undef_types_allocated = 20;
3762 undef_types_length = 0;
3763 undef_types = (struct type **)
3764 xmalloc (undef_types_allocated * sizeof (struct type *));
3765 }
This page took 0.104066 seconds and 5 git commands to generate.