2003-09-20 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Support routines for reading and decoding debugging information in
24 the "stabs" format. This format is used with many systems that use
25 the a.out object file format, as well as some systems that use
26 COFF or ELF where the stabs data is placed in a special section.
27 Avoid placing any object file format specific code in this file. */
28
29 #include "defs.h"
30 #include "gdb_string.h"
31 #include "bfd.h"
32 #include "gdb_obstack.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "expression.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "libaout.h"
40 #include "aout/aout64.h"
41 #include "gdb-stabs.h"
42 #include "buildsym.h"
43 #include "complaints.h"
44 #include "demangle.h"
45 #include "language.h"
46 #include "doublest.h"
47 #include "cp-abi.h"
48 #include "cp-support.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static char *get_substring (char **, int);
93
94 static struct type *dbx_alloc_type (int[2], struct objfile *);
95
96 static long read_huge_number (char **, int, int *);
97
98 static struct type *error_type (char **, struct objfile *);
99
100 static void
101 patch_block_stabs (struct pending *, struct pending_stabs *,
102 struct objfile *);
103
104 static void fix_common_block (struct symbol *, int);
105
106 static int read_type_number (char **, int *);
107
108 static struct type *read_type (char **, struct objfile *);
109
110 static struct type *read_range_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
113
114 static struct type *read_sun_floating_type (char **, int[2],
115 struct objfile *);
116
117 static struct type *read_enum_type (char **, struct type *, struct objfile *);
118
119 static struct type *rs6000_builtin_type (int);
120
121 static int
122 read_member_functions (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_struct_fields (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_baseclasses (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_tilde_fields (struct field_info *, char **, struct type *,
135 struct objfile *);
136
137 static int attach_fn_fields_to_type (struct field_info *, struct type *);
138
139 static int attach_fields_to_type (struct field_info *, struct type *,
140 struct objfile *);
141
142 static struct type *read_struct_type (char **, struct type *,
143 enum type_code,
144 struct objfile *);
145
146 static struct type *read_array_type (char **, struct type *,
147 struct objfile *);
148
149 static struct field *read_args (char **, int, struct objfile *, int *, int *);
150
151 static void add_undefined_type (struct type *);
152
153 static int
154 read_cpp_abbrev (struct field_info *, char **, struct type *,
155 struct objfile *);
156 #if 0 /* OBSOLETE CFront */
157 // OBSOLETE /* new functions added for cfront support */
158
159 // OBSOLETE static int
160 // OBSOLETE copy_cfront_struct_fields (struct field_info *, struct type *,
161 // OBSOLETE struct objfile *);
162
163 // OBSOLETE static char *get_cfront_method_physname (char *);
164
165 // OBSOLETE static int
166 // OBSOLETE read_cfront_baseclasses (struct field_info *, char **,
167 // OBSOLETE struct type *, struct objfile *);
168
169 // OBSOLETE static int
170 // OBSOLETE read_cfront_static_fields (struct field_info *, char **,
171 // OBSOLETE struct type *, struct objfile *);
172 // OBSOLETE static int
173 // OBSOLETE read_cfront_member_functions (struct field_info *, char **,
174 // OBSOLETE struct type *, struct objfile *);
175
176 // OBSOLETE /* end new functions added for cfront support */
177 #endif /* OBSOLETE CFront */
178
179 static char *find_name_end (char *name);
180
181 static void add_live_range (struct objfile *, struct symbol *, CORE_ADDR,
182 CORE_ADDR);
183
184 static int resolve_live_range (struct objfile *, struct symbol *, char *);
185
186 static int process_reference (char **string);
187
188 static CORE_ADDR ref_search_value (int refnum);
189
190 static int resolve_symbol_reference (struct objfile *, struct symbol *,
191 char *);
192
193 void stabsread_clear_cache (void);
194
195 static const char vptr_name[] = "_vptr$";
196 static const char vb_name[] = "_vb$";
197
198 /* Define this as 1 if a pcc declaration of a char or short argument
199 gives the correct address. Otherwise assume pcc gives the
200 address of the corresponding int, which is not the same on a
201 big-endian machine. */
202
203 #if !defined (BELIEVE_PCC_PROMOTION)
204 #define BELIEVE_PCC_PROMOTION 0
205 #endif
206
207 static void
208 invalid_cpp_abbrev_complaint (const char *arg1)
209 {
210 complaint (&symfile_complaints, "invalid C++ abbreviation `%s'", arg1);
211 }
212
213 static void
214 reg_value_complaint (int arg1, int arg2, const char *arg3)
215 {
216 complaint (&symfile_complaints,
217 "register number %d too large (max %d) in symbol %s", arg1, arg2,
218 arg3);
219 }
220
221 static void
222 stabs_general_complaint (const char *arg1)
223 {
224 complaint (&symfile_complaints, "%s", arg1);
225 }
226
227 static void
228 lrs_general_complaint (const char *arg1)
229 {
230 complaint (&symfile_complaints, "%s", arg1);
231 }
232
233 /* Make a list of forward references which haven't been defined. */
234
235 static struct type **undef_types;
236 static int undef_types_allocated;
237 static int undef_types_length;
238 static struct symbol *current_symbol = NULL;
239
240 /* Check for and handle cretinous stabs symbol name continuation! */
241 #define STABS_CONTINUE(pp,objfile) \
242 do { \
243 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
244 *(pp) = next_symbol_text (objfile); \
245 } while (0)
246 \f
247
248 /* Look up a dbx type-number pair. Return the address of the slot
249 where the type for that number-pair is stored.
250 The number-pair is in TYPENUMS.
251
252 This can be used for finding the type associated with that pair
253 or for associating a new type with the pair. */
254
255 static struct type **
256 dbx_lookup_type (int typenums[2])
257 {
258 int filenum = typenums[0];
259 int index = typenums[1];
260 unsigned old_len;
261 int real_filenum;
262 struct header_file *f;
263 int f_orig_length;
264
265 if (filenum == -1) /* -1,-1 is for temporary types. */
266 return 0;
267
268 if (filenum < 0 || filenum >= n_this_object_header_files)
269 {
270 complaint (&symfile_complaints,
271 "Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
272 filenum, index, symnum);
273 goto error_return;
274 }
275
276 if (filenum == 0)
277 {
278 if (index < 0)
279 {
280 /* Caller wants address of address of type. We think
281 that negative (rs6k builtin) types will never appear as
282 "lvalues", (nor should they), so we stuff the real type
283 pointer into a temp, and return its address. If referenced,
284 this will do the right thing. */
285 static struct type *temp_type;
286
287 temp_type = rs6000_builtin_type (index);
288 return &temp_type;
289 }
290
291 /* Type is defined outside of header files.
292 Find it in this object file's type vector. */
293 if (index >= type_vector_length)
294 {
295 old_len = type_vector_length;
296 if (old_len == 0)
297 {
298 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
299 type_vector = (struct type **)
300 xmalloc (type_vector_length * sizeof (struct type *));
301 }
302 while (index >= type_vector_length)
303 {
304 type_vector_length *= 2;
305 }
306 type_vector = (struct type **)
307 xrealloc ((char *) type_vector,
308 (type_vector_length * sizeof (struct type *)));
309 memset (&type_vector[old_len], 0,
310 (type_vector_length - old_len) * sizeof (struct type *));
311 }
312 return (&type_vector[index]);
313 }
314 else
315 {
316 real_filenum = this_object_header_files[filenum];
317
318 if (real_filenum >= N_HEADER_FILES (current_objfile))
319 {
320 struct type *temp_type;
321 struct type **temp_type_p;
322
323 warning ("GDB internal error: bad real_filenum");
324
325 error_return:
326 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
327 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
328 *temp_type_p = temp_type;
329 return temp_type_p;
330 }
331
332 f = HEADER_FILES (current_objfile) + real_filenum;
333
334 f_orig_length = f->length;
335 if (index >= f_orig_length)
336 {
337 while (index >= f->length)
338 {
339 f->length *= 2;
340 }
341 f->vector = (struct type **)
342 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
343 memset (&f->vector[f_orig_length], 0,
344 (f->length - f_orig_length) * sizeof (struct type *));
345 }
346 return (&f->vector[index]);
347 }
348 }
349
350 /* Make sure there is a type allocated for type numbers TYPENUMS
351 and return the type object.
352 This can create an empty (zeroed) type object.
353 TYPENUMS may be (-1, -1) to return a new type object that is not
354 put into the type vector, and so may not be referred to by number. */
355
356 static struct type *
357 dbx_alloc_type (int typenums[2], struct objfile *objfile)
358 {
359 struct type **type_addr;
360
361 if (typenums[0] == -1)
362 {
363 return (alloc_type (objfile));
364 }
365
366 type_addr = dbx_lookup_type (typenums);
367
368 /* If we are referring to a type not known at all yet,
369 allocate an empty type for it.
370 We will fill it in later if we find out how. */
371 if (*type_addr == 0)
372 {
373 *type_addr = alloc_type (objfile);
374 }
375
376 return (*type_addr);
377 }
378
379 /* for all the stabs in a given stab vector, build appropriate types
380 and fix their symbols in given symbol vector. */
381
382 static void
383 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
384 struct objfile *objfile)
385 {
386 int ii;
387 char *name;
388 char *pp;
389 struct symbol *sym;
390
391 if (stabs)
392 {
393
394 /* for all the stab entries, find their corresponding symbols and
395 patch their types! */
396
397 for (ii = 0; ii < stabs->count; ++ii)
398 {
399 name = stabs->stab[ii];
400 pp = (char *) strchr (name, ':');
401 while (pp[1] == ':')
402 {
403 pp += 2;
404 pp = (char *) strchr (pp, ':');
405 }
406 sym = find_symbol_in_list (symbols, name, pp - name);
407 if (!sym)
408 {
409 /* FIXME-maybe: it would be nice if we noticed whether
410 the variable was defined *anywhere*, not just whether
411 it is defined in this compilation unit. But neither
412 xlc or GCC seem to need such a definition, and until
413 we do psymtabs (so that the minimal symbols from all
414 compilation units are available now), I'm not sure
415 how to get the information. */
416
417 /* On xcoff, if a global is defined and never referenced,
418 ld will remove it from the executable. There is then
419 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
420 sym = (struct symbol *)
421 obstack_alloc (&objfile->symbol_obstack,
422 sizeof (struct symbol));
423
424 memset (sym, 0, sizeof (struct symbol));
425 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
426 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
427 DEPRECATED_SYMBOL_NAME (sym) =
428 obsavestring (name, pp - name, &objfile->symbol_obstack);
429 pp += 2;
430 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
431 {
432 /* I don't think the linker does this with functions,
433 so as far as I know this is never executed.
434 But it doesn't hurt to check. */
435 SYMBOL_TYPE (sym) =
436 lookup_function_type (read_type (&pp, objfile));
437 }
438 else
439 {
440 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
441 }
442 add_symbol_to_list (sym, &global_symbols);
443 }
444 else
445 {
446 pp += 2;
447 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
448 {
449 SYMBOL_TYPE (sym) =
450 lookup_function_type (read_type (&pp, objfile));
451 }
452 else
453 {
454 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
455 }
456 }
457 }
458 }
459 }
460 \f
461
462 /* Read a number by which a type is referred to in dbx data,
463 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
464 Just a single number N is equivalent to (0,N).
465 Return the two numbers by storing them in the vector TYPENUMS.
466 TYPENUMS will then be used as an argument to dbx_lookup_type.
467
468 Returns 0 for success, -1 for error. */
469
470 static int
471 read_type_number (char **pp, int *typenums)
472 {
473 int nbits;
474 if (**pp == '(')
475 {
476 (*pp)++;
477 typenums[0] = read_huge_number (pp, ',', &nbits);
478 if (nbits != 0)
479 return -1;
480 typenums[1] = read_huge_number (pp, ')', &nbits);
481 if (nbits != 0)
482 return -1;
483 }
484 else
485 {
486 typenums[0] = 0;
487 typenums[1] = read_huge_number (pp, 0, &nbits);
488 if (nbits != 0)
489 return -1;
490 }
491 return 0;
492 }
493 \f
494
495 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
496 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
497 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
498 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
499
500 #if 0 /* OBSOLETE CFront */
501 // OBSOLETE #define CFRONT_VISIBILITY_PRIVATE '2' /* Stabs character for private field */
502 // OBSOLETE #define CFRONT_VISIBILITY_PUBLIC '1' /* Stabs character for public field */
503
504 // OBSOLETE /* This code added to support parsing of ARM/Cfront stabs strings */
505
506 // OBSOLETE /* Get substring from string up to char c, advance string pointer past
507 // OBSOLETE suibstring. */
508
509 // OBSOLETE static char *
510 // OBSOLETE get_substring (char **p, int c)
511 // OBSOLETE {
512 // OBSOLETE char *str;
513 // OBSOLETE str = *p;
514 // OBSOLETE *p = strchr (*p, c);
515 // OBSOLETE if (*p)
516 // OBSOLETE {
517 // OBSOLETE **p = 0;
518 // OBSOLETE (*p)++;
519 // OBSOLETE }
520 // OBSOLETE else
521 // OBSOLETE str = 0;
522 // OBSOLETE return str;
523 // OBSOLETE }
524
525 // OBSOLETE /* Physname gets strcat'd onto sname in order to recreate the mangled
526 // OBSOLETE name (see funtion gdb_mangle_name in gdbtypes.c). For cfront, make
527 // OBSOLETE the physname look like that of g++ - take out the initial mangling
528 // OBSOLETE eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
529
530 // OBSOLETE static char *
531 // OBSOLETE get_cfront_method_physname (char *fname)
532 // OBSOLETE {
533 // OBSOLETE int len = 0;
534 // OBSOLETE /* FIXME would like to make this generic for g++ too, but
535 // OBSOLETE that is already handled in read_member_funcctions */
536 // OBSOLETE char *p = fname;
537
538 // OBSOLETE /* search ahead to find the start of the mangled suffix */
539 // OBSOLETE if (*p == '_' && *(p + 1) == '_') /* compiler generated; probably a ctor/dtor */
540 // OBSOLETE p += 2;
541 // OBSOLETE while (p && (unsigned) ((p + 1) - fname) < strlen (fname) && *(p + 1) != '_')
542 // OBSOLETE p = strchr (p, '_');
543 // OBSOLETE if (!(p && *p == '_' && *(p + 1) == '_'))
544 // OBSOLETE error ("Invalid mangled function name %s", fname);
545 // OBSOLETE p += 2; /* advance past '__' */
546
547 // OBSOLETE /* struct name length and name of type should come next; advance past it */
548 // OBSOLETE while (isdigit (*p))
549 // OBSOLETE {
550 // OBSOLETE len = len * 10 + (*p - '0');
551 // OBSOLETE p++;
552 // OBSOLETE }
553 // OBSOLETE p += len;
554
555 // OBSOLETE return p;
556 // OBSOLETE }
557
558 // OBSOLETE static void
559 // OBSOLETE msg_unknown_complaint (const char *arg1)
560 // OBSOLETE {
561 // OBSOLETE complaint (&symfile_complaints, "Unsupported token in stabs string %s", arg1);
562 // OBSOLETE }
563
564 // OBSOLETE /* Read base classes within cfront class definition.
565 // OBSOLETE eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
566 // OBSOLETE ^^^^^^^^^^^^^^^^^^
567
568 // OBSOLETE A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
569 // OBSOLETE ^
570 // OBSOLETE */
571
572 // OBSOLETE static int
573 // OBSOLETE read_cfront_baseclasses (struct field_info *fip, char **pp, struct type *type,
574 // OBSOLETE struct objfile *objfile)
575 // OBSOLETE {
576 // OBSOLETE int bnum = 0;
577 // OBSOLETE char *p;
578 // OBSOLETE int i;
579 // OBSOLETE struct nextfield *new;
580
581 // OBSOLETE if (**pp == ';') /* no base classes; return */
582 // OBSOLETE {
583 // OBSOLETE ++(*pp);
584 // OBSOLETE return 1;
585 // OBSOLETE }
586
587 // OBSOLETE /* first count base classes so we can allocate space before parsing */
588 // OBSOLETE for (p = *pp; p && *p && *p != ';'; p++)
589 // OBSOLETE {
590 // OBSOLETE if (*p == ' ')
591 // OBSOLETE bnum++;
592 // OBSOLETE }
593 // OBSOLETE bnum++; /* add one more for last one */
594
595 // OBSOLETE /* now parse the base classes until we get to the start of the methods
596 // OBSOLETE (code extracted and munged from read_baseclasses) */
597 // OBSOLETE ALLOCATE_CPLUS_STRUCT_TYPE (type);
598 // OBSOLETE TYPE_N_BASECLASSES (type) = bnum;
599
600 // OBSOLETE /* allocate space */
601 // OBSOLETE {
602 // OBSOLETE int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
603 // OBSOLETE char *pointer;
604
605 // OBSOLETE pointer = (char *) TYPE_ALLOC (type, num_bytes);
606 // OBSOLETE TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
607 // OBSOLETE }
608 // OBSOLETE B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
609
610 // OBSOLETE for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
611 // OBSOLETE {
612 // OBSOLETE new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
613 // OBSOLETE make_cleanup (xfree, new);
614 // OBSOLETE memset (new, 0, sizeof (struct nextfield));
615 // OBSOLETE new->next = fip->list;
616 // OBSOLETE fip->list = new;
617 // OBSOLETE FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
618
619 // OBSOLETE STABS_CONTINUE (pp, objfile);
620
621 // OBSOLETE /* virtual? eg: v2@Bvir */
622 // OBSOLETE if (**pp == 'v')
623 // OBSOLETE {
624 // OBSOLETE SET_TYPE_FIELD_VIRTUAL (type, i);
625 // OBSOLETE ++(*pp);
626 // OBSOLETE }
627
628 // OBSOLETE /* access? eg: 2@Bvir */
629 // OBSOLETE /* Note: protected inheritance not supported in cfront */
630 // OBSOLETE switch (*(*pp)++)
631 // OBSOLETE {
632 // OBSOLETE case CFRONT_VISIBILITY_PRIVATE:
633 // OBSOLETE new->visibility = VISIBILITY_PRIVATE;
634 // OBSOLETE break;
635 // OBSOLETE case CFRONT_VISIBILITY_PUBLIC:
636 // OBSOLETE new->visibility = VISIBILITY_PUBLIC;
637 // OBSOLETE break;
638 // OBSOLETE default:
639 // OBSOLETE /* Bad visibility format. Complain and treat it as
640 // OBSOLETE public. */
641 // OBSOLETE {
642 // OBSOLETE complaint (&symfile_complaints,
643 // OBSOLETE "Unknown visibility `%c' for baseclass",
644 // OBSOLETE new->visibility);
645 // OBSOLETE new->visibility = VISIBILITY_PUBLIC;
646 // OBSOLETE }
647 // OBSOLETE }
648
649 // OBSOLETE /* "@" comes next - eg: @Bvir */
650 // OBSOLETE if (**pp != '@')
651 // OBSOLETE {
652 // OBSOLETE msg_unknown_complaint (*pp);
653 // OBSOLETE return 1;
654 // OBSOLETE }
655 // OBSOLETE ++(*pp);
656
657
658 // OBSOLETE /* Set the bit offset of the portion of the object corresponding
659 // OBSOLETE to this baseclass. Always zero in the absence of
660 // OBSOLETE multiple inheritance. */
661 // OBSOLETE /* Unable to read bit position from stabs;
662 // OBSOLETE Assuming no multiple inheritance for now FIXME! */
663 // OBSOLETE /* We may have read this in the structure definition;
664 // OBSOLETE now we should fixup the members to be the actual base classes */
665 // OBSOLETE FIELD_BITPOS (new->field) = 0;
666
667 // OBSOLETE /* Get the base class name and type */
668 // OBSOLETE {
669 // OBSOLETE char *bname; /* base class name */
670 // OBSOLETE struct symbol *bsym; /* base class */
671 // OBSOLETE char *p1, *p2;
672 // OBSOLETE p1 = strchr (*pp, ' ');
673 // OBSOLETE p2 = strchr (*pp, ';');
674 // OBSOLETE if (p1 < p2)
675 // OBSOLETE bname = get_substring (pp, ' ');
676 // OBSOLETE else
677 // OBSOLETE bname = get_substring (pp, ';');
678 // OBSOLETE if (!bname || !*bname)
679 // OBSOLETE {
680 // OBSOLETE msg_unknown_complaint (*pp);
681 // OBSOLETE return 1;
682 // OBSOLETE }
683 // OBSOLETE /* FIXME! attach base info to type */
684 // OBSOLETE bsym = lookup_symbol (bname, 0, STRUCT_DOMAIN, 0, 0); /*demangled_name */
685 // OBSOLETE if (bsym)
686 // OBSOLETE {
687 // OBSOLETE new->field.type = SYMBOL_TYPE (bsym);
688 // OBSOLETE new->field.name = type_name_no_tag (new->field.type);
689 // OBSOLETE }
690 // OBSOLETE else
691 // OBSOLETE {
692 // OBSOLETE complaint (&symfile_complaints, "Unable to find base type for %s",
693 // OBSOLETE *pp);
694 // OBSOLETE return 1;
695 // OBSOLETE }
696 // OBSOLETE }
697
698 // OBSOLETE /* If more base classes to parse, loop again.
699 // OBSOLETE We ate the last ' ' or ';' in get_substring,
700 // OBSOLETE so on exit we will have skipped the trailing ';' */
701 // OBSOLETE /* if invalid, return 0; add code to detect - FIXME! */
702 // OBSOLETE }
703 // OBSOLETE return 1;
704 // OBSOLETE }
705
706 // OBSOLETE /* read cfront member functions.
707 // OBSOLETE pp points to string starting with list of functions
708 // OBSOLETE eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
709 // OBSOLETE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
710 // OBSOLETE A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
711 // OBSOLETE ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
712 // OBSOLETE */
713
714 // OBSOLETE static int
715 // OBSOLETE read_cfront_member_functions (struct field_info *fip, char **pp,
716 // OBSOLETE struct type *type, struct objfile *objfile)
717 // OBSOLETE {
718 // OBSOLETE /* This code extracted from read_member_functions
719 // OBSOLETE so as to do the similar thing for our funcs */
720
721 // OBSOLETE int nfn_fields = 0;
722 // OBSOLETE int length = 0;
723 // OBSOLETE /* Total number of member functions defined in this class. If the class
724 // OBSOLETE defines two `f' functions, and one `g' function, then this will have
725 // OBSOLETE the value 3. */
726 // OBSOLETE int total_length = 0;
727 // OBSOLETE int i;
728 // OBSOLETE struct next_fnfield
729 // OBSOLETE {
730 // OBSOLETE struct next_fnfield *next;
731 // OBSOLETE struct fn_field fn_field;
732 // OBSOLETE }
733 // OBSOLETE *sublist;
734 // OBSOLETE struct type *look_ahead_type;
735 // OBSOLETE struct next_fnfieldlist *new_fnlist;
736 // OBSOLETE struct next_fnfield *new_sublist;
737 // OBSOLETE char *main_fn_name;
738 // OBSOLETE char *fname;
739 // OBSOLETE struct symbol *ref_func = 0;
740
741 // OBSOLETE /* Process each list until we find the end of the member functions.
742 // OBSOLETE eg: p = "__ct__1AFv foo__1AFv ;;;" */
743
744 // OBSOLETE STABS_CONTINUE (pp, objfile); /* handle \\ */
745
746 // OBSOLETE while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
747 // OBSOLETE {
748 // OBSOLETE int is_static = 0;
749 // OBSOLETE int sublist_count = 0;
750 // OBSOLETE char *pname;
751 // OBSOLETE if (fname[0] == '*') /* static member */
752 // OBSOLETE {
753 // OBSOLETE is_static = 1;
754 // OBSOLETE sublist_count++;
755 // OBSOLETE fname++;
756 // OBSOLETE }
757 // OBSOLETE ref_func = lookup_symbol (fname, 0, VAR_DOMAIN, 0, 0); /* demangled name */
758 // OBSOLETE if (!ref_func)
759 // OBSOLETE {
760 // OBSOLETE complaint (&symfile_complaints,
761 // OBSOLETE "Unable to find function symbol for %s", fname);
762 // OBSOLETE continue;
763 // OBSOLETE }
764 // OBSOLETE sublist = NULL;
765 // OBSOLETE look_ahead_type = NULL;
766 // OBSOLETE length = 0;
767
768 // OBSOLETE new_fnlist = (struct next_fnfieldlist *)
769 // OBSOLETE xmalloc (sizeof (struct next_fnfieldlist));
770 // OBSOLETE make_cleanup (xfree, new_fnlist);
771 // OBSOLETE memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
772
773 // OBSOLETE /* The following is code to work around cfront generated stabs.
774 // OBSOLETE The stabs contains full mangled name for each field.
775 // OBSOLETE We try to demangle the name and extract the field name out of it. */
776 // OBSOLETE {
777 // OBSOLETE char *dem, *dem_p, *dem_args;
778 // OBSOLETE int dem_len;
779 // OBSOLETE dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
780 // OBSOLETE if (dem != NULL)
781 // OBSOLETE {
782 // OBSOLETE dem_p = strrchr (dem, ':');
783 // OBSOLETE if (dem_p != 0 && *(dem_p - 1) == ':')
784 // OBSOLETE dem_p++;
785 // OBSOLETE /* get rid of args */
786 // OBSOLETE dem_args = strchr (dem_p, '(');
787 // OBSOLETE if (dem_args == NULL)
788 // OBSOLETE dem_len = strlen (dem_p);
789 // OBSOLETE else
790 // OBSOLETE dem_len = dem_args - dem_p;
791 // OBSOLETE main_fn_name =
792 // OBSOLETE obsavestring (dem_p, dem_len, &objfile->type_obstack);
793 // OBSOLETE }
794 // OBSOLETE else
795 // OBSOLETE {
796 // OBSOLETE main_fn_name =
797 // OBSOLETE obsavestring (fname, strlen (fname), &objfile->type_obstack);
798 // OBSOLETE }
799 // OBSOLETE } /* end of code for cfront work around */
800
801 // OBSOLETE new_fnlist->fn_fieldlist.name = main_fn_name;
802
803 // OBSOLETE /*-------------------------------------------------*/
804 // OBSOLETE /* Set up the sublists
805 // OBSOLETE Sublists are stuff like args, static, visibility, etc.
806 // OBSOLETE so in ARM, we have to set that info some other way.
807 // OBSOLETE Multiple sublists happen if overloading
808 // OBSOLETE eg: foo::26=##1;:;2A.;
809 // OBSOLETE In g++, we'd loop here thru all the sublists... */
810
811 // OBSOLETE new_sublist =
812 // OBSOLETE (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
813 // OBSOLETE make_cleanup (xfree, new_sublist);
814 // OBSOLETE memset (new_sublist, 0, sizeof (struct next_fnfield));
815
816 // OBSOLETE /* eat 1; from :;2A.; */
817 // OBSOLETE new_sublist->fn_field.type = SYMBOL_TYPE (ref_func); /* normally takes a read_type */
818 // OBSOLETE /* Make this type look like a method stub for gdb */
819 // OBSOLETE TYPE_FLAGS (new_sublist->fn_field.type) |= TYPE_FLAG_STUB;
820 // OBSOLETE TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
821
822 // OBSOLETE /* If this is just a stub, then we don't have the real name here. */
823 // OBSOLETE if (TYPE_STUB (new_sublist->fn_field.type))
824 // OBSOLETE {
825 // OBSOLETE if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
826 // OBSOLETE TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
827 // OBSOLETE new_sublist->fn_field.is_stub = 1;
828 // OBSOLETE }
829
830 // OBSOLETE /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
831 // OBSOLETE physname gets strcat'd in order to recreate the onto mangled name */
832 // OBSOLETE pname = get_cfront_method_physname (fname);
833 // OBSOLETE new_sublist->fn_field.physname = savestring (pname, strlen (pname));
834
835
836 // OBSOLETE /* Set this member function's visibility fields.
837 // OBSOLETE Unable to distinguish access from stabs definition!
838 // OBSOLETE Assuming public for now. FIXME!
839 // OBSOLETE (for private, set new_sublist->fn_field.is_private = 1,
840 // OBSOLETE for public, set new_sublist->fn_field.is_protected = 1) */
841
842 // OBSOLETE /* Unable to distinguish const/volatile from stabs definition!
843 // OBSOLETE Assuming normal for now. FIXME! */
844
845 // OBSOLETE new_sublist->fn_field.is_const = 0;
846 // OBSOLETE new_sublist->fn_field.is_volatile = 0; /* volatile not implemented in cfront */
847
848 // OBSOLETE /* Set virtual/static function info
849 // OBSOLETE How to get vtable offsets ?
850 // OBSOLETE Assuming normal for now FIXME!!
851 // OBSOLETE For vtables, figure out from whence this virtual function came.
852 // OBSOLETE It may belong to virtual function table of
853 // OBSOLETE one of its baseclasses.
854 // OBSOLETE set:
855 // OBSOLETE new_sublist -> fn_field.voffset = vtable offset,
856 // OBSOLETE new_sublist -> fn_field.fcontext = look_ahead_type;
857 // OBSOLETE where look_ahead_type is type of baseclass */
858 // OBSOLETE if (is_static)
859 // OBSOLETE new_sublist->fn_field.voffset = VOFFSET_STATIC;
860 // OBSOLETE else /* normal member function. */
861 // OBSOLETE new_sublist->fn_field.voffset = 0;
862 // OBSOLETE new_sublist->fn_field.fcontext = 0;
863
864
865 // OBSOLETE /* Prepare new sublist */
866 // OBSOLETE new_sublist->next = sublist;
867 // OBSOLETE sublist = new_sublist;
868 // OBSOLETE length++;
869
870 // OBSOLETE /* In g++, we loop thu sublists - now we set from functions. */
871 // OBSOLETE new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
872 // OBSOLETE obstack_alloc (&objfile->type_obstack,
873 // OBSOLETE sizeof (struct fn_field) * length);
874 // OBSOLETE memset (new_fnlist->fn_fieldlist.fn_fields, 0,
875 // OBSOLETE sizeof (struct fn_field) * length);
876 // OBSOLETE for (i = length; (i--, sublist); sublist = sublist->next)
877 // OBSOLETE {
878 // OBSOLETE new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
879 // OBSOLETE }
880
881 // OBSOLETE new_fnlist->fn_fieldlist.length = length;
882 // OBSOLETE new_fnlist->next = fip->fnlist;
883 // OBSOLETE fip->fnlist = new_fnlist;
884 // OBSOLETE nfn_fields++;
885 // OBSOLETE total_length += length;
886 // OBSOLETE STABS_CONTINUE (pp, objfile); /* handle \\ */
887 // OBSOLETE } /* end of loop */
888
889 // OBSOLETE if (nfn_fields)
890 // OBSOLETE {
891 // OBSOLETE /* type should already have space */
892 // OBSOLETE TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
893 // OBSOLETE TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
894 // OBSOLETE memset (TYPE_FN_FIELDLISTS (type), 0,
895 // OBSOLETE sizeof (struct fn_fieldlist) * nfn_fields);
896 // OBSOLETE TYPE_NFN_FIELDS (type) = nfn_fields;
897 // OBSOLETE TYPE_NFN_FIELDS_TOTAL (type) = total_length;
898 // OBSOLETE }
899
900 // OBSOLETE /* end of scope for reading member func */
901
902 // OBSOLETE /* eg: ";;" */
903
904 // OBSOLETE /* Skip trailing ';' and bump count of number of fields seen */
905 // OBSOLETE if (**pp == ';')
906 // OBSOLETE (*pp)++;
907 // OBSOLETE else
908 // OBSOLETE return 0;
909 // OBSOLETE return 1;
910 // OBSOLETE }
911
912 // OBSOLETE /* This routine fixes up partial cfront types that were created
913 // OBSOLETE while parsing the stabs. The main need for this function is
914 // OBSOLETE to add information such as methods to classes.
915 // OBSOLETE Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
916 // OBSOLETE int
917 // OBSOLETE resolve_cfront_continuation (struct objfile *objfile, struct symbol *sym,
918 // OBSOLETE char *p)
919 // OBSOLETE {
920 // OBSOLETE struct symbol *ref_sym = 0;
921 // OBSOLETE char *sname;
922 // OBSOLETE /* snarfed from read_struct_type */
923 // OBSOLETE struct field_info fi;
924 // OBSOLETE struct type *type;
925 // OBSOLETE struct cleanup *back_to;
926
927 // OBSOLETE /* Need to make sure that fi isn't gunna conflict with struct
928 // OBSOLETE in case struct already had some fnfs */
929 // OBSOLETE fi.list = NULL;
930 // OBSOLETE fi.fnlist = NULL;
931 // OBSOLETE back_to = make_cleanup (null_cleanup, 0);
932
933 // OBSOLETE /* We only accept structs, classes and unions at the moment.
934 // OBSOLETE Other continuation types include t (typedef), r (long dbl), ...
935 // OBSOLETE We may want to add support for them as well;
936 // OBSOLETE right now they are handled by duplicating the symbol information
937 // OBSOLETE into the type information (see define_symbol) */
938 // OBSOLETE if (*p != 's' /* structs */
939 // OBSOLETE && *p != 'c' /* class */
940 // OBSOLETE && *p != 'u') /* union */
941 // OBSOLETE return 0; /* only handle C++ types */
942 // OBSOLETE p++;
943
944 // OBSOLETE /* Get symbol typs name and validate
945 // OBSOLETE eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
946 // OBSOLETE sname = get_substring (&p, ';');
947 // OBSOLETE if (!sname || strcmp (sname, DEPRECATED_SYMBOL_NAME (sym)))
948 // OBSOLETE error ("Internal error: base symbol type name does not match\n");
949
950 // OBSOLETE /* Find symbol's internal gdb reference using demangled_name.
951 // OBSOLETE This is the real sym that we want;
952 // OBSOLETE sym was a temp hack to make debugger happy */
953 // OBSOLETE ref_sym = lookup_symbol (DEPRECATED_SYMBOL_NAME (sym), 0, STRUCT_DOMAIN, 0, 0);
954 // OBSOLETE type = SYMBOL_TYPE (ref_sym);
955
956
957 // OBSOLETE /* Now read the baseclasses, if any, read the regular C struct or C++
958 // OBSOLETE class member fields, attach the fields to the type, read the C++
959 // OBSOLETE member functions, attach them to the type, and then read any tilde
960 // OBSOLETE field (baseclass specifier for the class holding the main vtable). */
961
962 // OBSOLETE if (!read_cfront_baseclasses (&fi, &p, type, objfile)
963 // OBSOLETE /* g++ does this next, but cfront already did this:
964 // OBSOLETE || !read_struct_fields (&fi, &p, type, objfile) */
965 // OBSOLETE || !copy_cfront_struct_fields (&fi, type, objfile)
966 // OBSOLETE || !read_cfront_member_functions (&fi, &p, type, objfile)
967 // OBSOLETE || !read_cfront_static_fields (&fi, &p, type, objfile)
968 // OBSOLETE || !attach_fields_to_type (&fi, type, objfile)
969 // OBSOLETE || !attach_fn_fields_to_type (&fi, type)
970 // OBSOLETE /* g++ does this next, but cfront doesn't seem to have this:
971 // OBSOLETE || !read_tilde_fields (&fi, &p, type, objfile) */
972 // OBSOLETE )
973 // OBSOLETE {
974 // OBSOLETE type = error_type (&p, objfile);
975 // OBSOLETE }
976
977 // OBSOLETE do_cleanups (back_to);
978 // OBSOLETE return 0;
979 // OBSOLETE }
980 // OBSOLETE /* End of code added to support parsing of ARM/Cfront stabs strings */
981 #endif /* OBSOLETE CFront */
982
983 /* This routine fixes up symbol references/aliases to point to the original
984 symbol definition. Returns 0 on failure, non-zero on success. */
985
986 static int
987 resolve_symbol_reference (struct objfile *objfile, struct symbol *sym, char *p)
988 {
989 int refnum;
990 struct symbol *ref_sym = 0;
991 struct alias_list *alias;
992
993 /* If this is not a symbol reference return now. */
994 if (*p != '#')
995 return 0;
996
997 /* Use "#<num>" as the name; we'll fix the name later.
998 We stored the original symbol name as "#<id>=<name>"
999 so we can now search for "#<id>" to resolving the reference.
1000 We'll fix the names later by removing the "#<id>" or "#<id>=" */
1001
1002 /*---------------------------------------------------------*/
1003 /* Get the reference id number, and
1004 advance p past the names so we can parse the rest.
1005 eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
1006 /*---------------------------------------------------------*/
1007
1008 /* This gets reference name from string. sym may not have a name. */
1009
1010 /* Get the reference number associated with the reference id in the
1011 gdb stab string. From that reference number, get the main/primary
1012 symbol for this alias. */
1013 refnum = process_reference (&p);
1014 ref_sym = ref_search (refnum);
1015 if (!ref_sym)
1016 {
1017 lrs_general_complaint ("symbol for reference not found");
1018 return 0;
1019 }
1020
1021 /* Parse the stab of the referencing symbol
1022 now that we have the referenced symbol.
1023 Add it as a new symbol and a link back to the referenced symbol.
1024 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1025
1026
1027 /* If the stab symbol table and string contain:
1028 RSYM 0 5 00000000 868 #15=z:r(0,1)
1029 LBRAC 0 0 00000000 899 #5=
1030 SLINE 0 16 00000003 923 #6=
1031 Then the same symbols can be later referenced by:
1032 RSYM 0 5 00000000 927 #15:r(0,1);l(#5,#6)
1033 This is used in live range splitting to:
1034 1) specify that a symbol (#15) is actually just a new storage
1035 class for a symbol (#15=z) which was previously defined.
1036 2) specify that the beginning and ending ranges for a symbol
1037 (#15) are the values of the beginning (#5) and ending (#6)
1038 symbols. */
1039
1040 /* Read number as reference id.
1041 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1042 /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
1043 in case of "l(0,0)"? */
1044
1045 /*--------------------------------------------------*/
1046 /* Add this symbol to the reference list. */
1047 /*--------------------------------------------------*/
1048
1049 alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
1050 sizeof (struct alias_list));
1051 if (!alias)
1052 {
1053 lrs_general_complaint ("Unable to allocate alias list memory");
1054 return 0;
1055 }
1056
1057 alias->next = 0;
1058 alias->sym = sym;
1059
1060 if (!SYMBOL_ALIASES (ref_sym))
1061 {
1062 SYMBOL_ALIASES (ref_sym) = alias;
1063 }
1064 else
1065 {
1066 struct alias_list *temp;
1067
1068 /* Get to the end of the list. */
1069 for (temp = SYMBOL_ALIASES (ref_sym);
1070 temp->next;
1071 temp = temp->next)
1072 ;
1073 temp->next = alias;
1074 }
1075
1076 /* Want to fix up name so that other functions (eg. valops)
1077 will correctly print the name.
1078 Don't add_symbol_to_list so that lookup_symbol won't find it.
1079 nope... needed for fixups. */
1080 DEPRECATED_SYMBOL_NAME (sym) = DEPRECATED_SYMBOL_NAME (ref_sym);
1081
1082 /* Done! */
1083 return 1;
1084 }
1085
1086 /* Structure for storing pointers to reference definitions for fast lookup
1087 during "process_later". */
1088
1089 struct ref_map
1090 {
1091 char *stabs;
1092 CORE_ADDR value;
1093 struct symbol *sym;
1094 };
1095
1096 #define MAX_CHUNK_REFS 100
1097 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
1098 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
1099
1100 static struct ref_map *ref_map;
1101
1102 /* Ptr to free cell in chunk's linked list. */
1103 static int ref_count = 0;
1104
1105 /* Number of chunks malloced. */
1106 static int ref_chunk = 0;
1107
1108 /* This file maintains a cache of stabs aliases found in the symbol
1109 table. If the symbol table changes, this cache must be cleared
1110 or we are left holding onto data in invalid obstacks. */
1111 void
1112 stabsread_clear_cache (void)
1113 {
1114 ref_count = 0;
1115 ref_chunk = 0;
1116 }
1117
1118 /* Create array of pointers mapping refids to symbols and stab strings.
1119 Add pointers to reference definition symbols and/or their values as we
1120 find them, using their reference numbers as our index.
1121 These will be used later when we resolve references. */
1122 void
1123 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
1124 {
1125 if (ref_count == 0)
1126 ref_chunk = 0;
1127 if (refnum >= ref_count)
1128 ref_count = refnum + 1;
1129 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
1130 {
1131 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
1132 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
1133 ref_map = (struct ref_map *)
1134 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
1135 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
1136 ref_chunk += new_chunks;
1137 }
1138 ref_map[refnum].stabs = stabs;
1139 ref_map[refnum].sym = sym;
1140 ref_map[refnum].value = value;
1141 }
1142
1143 /* Return defined sym for the reference REFNUM. */
1144 struct symbol *
1145 ref_search (int refnum)
1146 {
1147 if (refnum < 0 || refnum > ref_count)
1148 return 0;
1149 return ref_map[refnum].sym;
1150 }
1151
1152 /* Return value for the reference REFNUM. */
1153
1154 static CORE_ADDR
1155 ref_search_value (int refnum)
1156 {
1157 if (refnum < 0 || refnum > ref_count)
1158 return 0;
1159 return ref_map[refnum].value;
1160 }
1161
1162 /* Parse a reference id in STRING and return the resulting
1163 reference number. Move STRING beyond the reference id. */
1164
1165 static int
1166 process_reference (char **string)
1167 {
1168 char *p;
1169 int refnum = 0;
1170
1171 if (**string != '#')
1172 return 0;
1173
1174 /* Advance beyond the initial '#'. */
1175 p = *string + 1;
1176
1177 /* Read number as reference id. */
1178 while (*p && isdigit (*p))
1179 {
1180 refnum = refnum * 10 + *p - '0';
1181 p++;
1182 }
1183 *string = p;
1184 return refnum;
1185 }
1186
1187 /* If STRING defines a reference, store away a pointer to the reference
1188 definition for later use. Return the reference number. */
1189
1190 int
1191 symbol_reference_defined (char **string)
1192 {
1193 char *p = *string;
1194 int refnum = 0;
1195
1196 refnum = process_reference (&p);
1197
1198 /* Defining symbols end in '=' */
1199 if (*p == '=')
1200 {
1201 /* Symbol is being defined here. */
1202 *string = p + 1;
1203 return refnum;
1204 }
1205 else
1206 {
1207 /* Must be a reference. Either the symbol has already been defined,
1208 or this is a forward reference to it. */
1209 *string = p;
1210 return -1;
1211 }
1212 }
1213
1214 struct symbol *
1215 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
1216 struct objfile *objfile)
1217 {
1218 struct symbol *sym;
1219 char *p = (char *) find_name_end (string);
1220 int deftype;
1221 int synonym = 0;
1222 int i;
1223
1224 /* We would like to eliminate nameless symbols, but keep their types.
1225 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1226 to type 2, but, should not create a symbol to address that type. Since
1227 the symbol will be nameless, there is no way any user can refer to it. */
1228
1229 int nameless;
1230
1231 /* Ignore syms with empty names. */
1232 if (string[0] == 0)
1233 return 0;
1234
1235 /* Ignore old-style symbols from cc -go */
1236 if (p == 0)
1237 return 0;
1238
1239 while (p[1] == ':')
1240 {
1241 p += 2;
1242 p = strchr (p, ':');
1243 }
1244
1245 /* If a nameless stab entry, all we need is the type, not the symbol.
1246 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
1247 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
1248
1249 current_symbol = sym = (struct symbol *)
1250 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1251 memset (sym, 0, sizeof (struct symbol));
1252
1253 switch (type & N_TYPE)
1254 {
1255 case N_TEXT:
1256 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
1257 break;
1258 case N_DATA:
1259 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
1260 break;
1261 case N_BSS:
1262 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
1263 break;
1264 }
1265
1266 if (processing_gcc_compilation)
1267 {
1268 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1269 number of bytes occupied by a type or object, which we ignore. */
1270 SYMBOL_LINE (sym) = desc;
1271 }
1272 else
1273 {
1274 SYMBOL_LINE (sym) = 0; /* unknown */
1275 }
1276
1277 if (is_cplus_marker (string[0]))
1278 {
1279 /* Special GNU C++ names. */
1280 switch (string[1])
1281 {
1282 case 't':
1283 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1284 &objfile->symbol_obstack);
1285 break;
1286
1287 case 'v': /* $vtbl_ptr_type */
1288 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
1289 goto normal;
1290
1291 case 'e':
1292 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1293 &objfile->symbol_obstack);
1294 break;
1295
1296 case '_':
1297 /* This was an anonymous type that was never fixed up. */
1298 goto normal;
1299
1300 #ifdef STATIC_TRANSFORM_NAME
1301 case 'X':
1302 /* SunPRO (3.0 at least) static variable encoding. */
1303 goto normal;
1304 #endif
1305
1306 default:
1307 complaint (&symfile_complaints, "Unknown C++ symbol name `%s'",
1308 string);
1309 goto normal; /* Do *something* with it */
1310 }
1311 }
1312 else if (string[0] == '#')
1313 {
1314 /* Special GNU C extension for referencing symbols. */
1315 char *s;
1316 int refnum, nlen;
1317
1318 /* If STRING defines a new reference id, then add it to the
1319 reference map. Else it must be referring to a previously
1320 defined symbol, so add it to the alias list of the previously
1321 defined symbol. */
1322 s = string;
1323 refnum = symbol_reference_defined (&s);
1324 if (refnum >= 0)
1325 ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
1326 else if (!resolve_symbol_reference (objfile, sym, string))
1327 return NULL;
1328
1329 /* S..P contains the name of the symbol. We need to store
1330 the correct name into DEPRECATED_SYMBOL_NAME. */
1331 nlen = p - s;
1332 if (refnum >= 0)
1333 {
1334 if (nlen > 0)
1335 SYMBOL_SET_NAMES (sym, s, nlen, objfile);
1336 else
1337 /* FIXME! Want DEPRECATED_SYMBOL_NAME (sym) = 0;
1338 Get error if leave name 0. So give it something. */
1339 {
1340 nlen = p - string;
1341 SYMBOL_SET_NAMES (sym, string, nlen, objfile);
1342 }
1343 }
1344 /* Advance STRING beyond the reference id. */
1345 string = s;
1346 }
1347 else
1348 {
1349 normal:
1350 SYMBOL_LANGUAGE (sym) = current_subfile->language;
1351 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
1352 }
1353 p++;
1354
1355 /* Determine the type of name being defined. */
1356 #if 0
1357 /* Getting GDB to correctly skip the symbol on an undefined symbol
1358 descriptor and not ever dump core is a very dodgy proposition if
1359 we do things this way. I say the acorn RISC machine can just
1360 fix their compiler. */
1361 /* The Acorn RISC machine's compiler can put out locals that don't
1362 start with "234=" or "(3,4)=", so assume anything other than the
1363 deftypes we know how to handle is a local. */
1364 if (!strchr ("cfFGpPrStTvVXCR", *p))
1365 #else
1366 if (isdigit (*p) || *p == '(' || *p == '-')
1367 #endif
1368 deftype = 'l';
1369 else
1370 deftype = *p++;
1371
1372 switch (deftype)
1373 {
1374 case 'c':
1375 /* c is a special case, not followed by a type-number.
1376 SYMBOL:c=iVALUE for an integer constant symbol.
1377 SYMBOL:c=rVALUE for a floating constant symbol.
1378 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1379 e.g. "b:c=e6,0" for "const b = blob1"
1380 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1381 if (*p != '=')
1382 {
1383 SYMBOL_CLASS (sym) = LOC_CONST;
1384 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1385 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1386 add_symbol_to_list (sym, &file_symbols);
1387 return sym;
1388 }
1389 ++p;
1390 switch (*p++)
1391 {
1392 case 'r':
1393 {
1394 double d = atof (p);
1395 char *dbl_valu;
1396
1397 /* FIXME-if-picky-about-floating-accuracy: Should be using
1398 target arithmetic to get the value. real.c in GCC
1399 probably has the necessary code. */
1400
1401 /* FIXME: lookup_fundamental_type is a hack. We should be
1402 creating a type especially for the type of float constants.
1403 Problem is, what type should it be?
1404
1405 Also, what should the name of this type be? Should we
1406 be using 'S' constants (see stabs.texinfo) instead? */
1407
1408 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1409 FT_DBL_PREC_FLOAT);
1410 dbl_valu = (char *)
1411 obstack_alloc (&objfile->symbol_obstack,
1412 TYPE_LENGTH (SYMBOL_TYPE (sym)));
1413 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
1414 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1415 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1416 }
1417 break;
1418 case 'i':
1419 {
1420 /* Defining integer constants this way is kind of silly,
1421 since 'e' constants allows the compiler to give not
1422 only the value, but the type as well. C has at least
1423 int, long, unsigned int, and long long as constant
1424 types; other languages probably should have at least
1425 unsigned as well as signed constants. */
1426
1427 /* We just need one int constant type for all objfiles.
1428 It doesn't depend on languages or anything (arguably its
1429 name should be a language-specific name for a type of
1430 that size, but I'm inclined to say that if the compiler
1431 wants a nice name for the type, it can use 'e'). */
1432 static struct type *int_const_type;
1433
1434 /* Yes, this is as long as a *host* int. That is because we
1435 use atoi. */
1436 if (int_const_type == NULL)
1437 int_const_type =
1438 init_type (TYPE_CODE_INT,
1439 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
1440 "integer constant",
1441 (struct objfile *) NULL);
1442 SYMBOL_TYPE (sym) = int_const_type;
1443 SYMBOL_VALUE (sym) = atoi (p);
1444 SYMBOL_CLASS (sym) = LOC_CONST;
1445 }
1446 break;
1447 case 'e':
1448 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
1449 can be represented as integral.
1450 e.g. "b:c=e6,0" for "const b = blob1"
1451 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1452 {
1453 SYMBOL_CLASS (sym) = LOC_CONST;
1454 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1455
1456 if (*p != ',')
1457 {
1458 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1459 break;
1460 }
1461 ++p;
1462
1463 /* If the value is too big to fit in an int (perhaps because
1464 it is unsigned), or something like that, we silently get
1465 a bogus value. The type and everything else about it is
1466 correct. Ideally, we should be using whatever we have
1467 available for parsing unsigned and long long values,
1468 however. */
1469 SYMBOL_VALUE (sym) = atoi (p);
1470 }
1471 break;
1472 default:
1473 {
1474 SYMBOL_CLASS (sym) = LOC_CONST;
1475 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1476 }
1477 }
1478 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1479 add_symbol_to_list (sym, &file_symbols);
1480 return sym;
1481
1482 case 'C':
1483 /* The name of a caught exception. */
1484 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1485 SYMBOL_CLASS (sym) = LOC_LABEL;
1486 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1487 SYMBOL_VALUE_ADDRESS (sym) = valu;
1488 add_symbol_to_list (sym, &local_symbols);
1489 break;
1490
1491 case 'f':
1492 /* A static function definition. */
1493 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1494 SYMBOL_CLASS (sym) = LOC_BLOCK;
1495 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1496 add_symbol_to_list (sym, &file_symbols);
1497 /* fall into process_function_types. */
1498
1499 process_function_types:
1500 /* Function result types are described as the result type in stabs.
1501 We need to convert this to the function-returning-type-X type
1502 in GDB. E.g. "int" is converted to "function returning int". */
1503 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
1504 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
1505
1506 /* All functions in C++ have prototypes. Stabs does not offer an
1507 explicit way to identify prototyped or unprototyped functions,
1508 but both GCC and Sun CC emit stabs for the "call-as" type rather
1509 than the "declared-as" type for unprototyped functions, so
1510 we treat all functions as if they were prototyped. This is used
1511 primarily for promotion when calling the function from GDB. */
1512 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
1513
1514 /* fall into process_prototype_types */
1515
1516 process_prototype_types:
1517 /* Sun acc puts declared types of arguments here. */
1518 if (*p == ';')
1519 {
1520 struct type *ftype = SYMBOL_TYPE (sym);
1521 int nsemi = 0;
1522 int nparams = 0;
1523 char *p1 = p;
1524
1525 /* Obtain a worst case guess for the number of arguments
1526 by counting the semicolons. */
1527 while (*p1)
1528 {
1529 if (*p1++ == ';')
1530 nsemi++;
1531 }
1532
1533 /* Allocate parameter information fields and fill them in. */
1534 TYPE_FIELDS (ftype) = (struct field *)
1535 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
1536 while (*p++ == ';')
1537 {
1538 struct type *ptype;
1539
1540 /* A type number of zero indicates the start of varargs.
1541 FIXME: GDB currently ignores vararg functions. */
1542 if (p[0] == '0' && p[1] == '\0')
1543 break;
1544 ptype = read_type (&p, objfile);
1545
1546 /* The Sun compilers mark integer arguments, which should
1547 be promoted to the width of the calling conventions, with
1548 a type which references itself. This type is turned into
1549 a TYPE_CODE_VOID type by read_type, and we have to turn
1550 it back into builtin_type_int here.
1551 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
1552 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1553 ptype = builtin_type_int;
1554 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1555 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1556 }
1557 TYPE_NFIELDS (ftype) = nparams;
1558 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
1559 }
1560 break;
1561
1562 case 'F':
1563 /* A global function definition. */
1564 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1565 SYMBOL_CLASS (sym) = LOC_BLOCK;
1566 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1567 add_symbol_to_list (sym, &global_symbols);
1568 goto process_function_types;
1569
1570 case 'G':
1571 /* For a class G (global) symbol, it appears that the
1572 value is not correct. It is necessary to search for the
1573 corresponding linker definition to find the value.
1574 These definitions appear at the end of the namelist. */
1575 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1576 SYMBOL_CLASS (sym) = LOC_STATIC;
1577 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1578 /* Don't add symbol references to global_sym_chain.
1579 Symbol references don't have valid names and wont't match up with
1580 minimal symbols when the global_sym_chain is relocated.
1581 We'll fixup symbol references when we fixup the defining symbol. */
1582 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
1583 {
1584 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
1585 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1586 global_sym_chain[i] = sym;
1587 }
1588 add_symbol_to_list (sym, &global_symbols);
1589 break;
1590
1591 /* This case is faked by a conditional above,
1592 when there is no code letter in the dbx data.
1593 Dbx data never actually contains 'l'. */
1594 case 's':
1595 case 'l':
1596 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1597 SYMBOL_CLASS (sym) = LOC_LOCAL;
1598 SYMBOL_VALUE (sym) = valu;
1599 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1600 add_symbol_to_list (sym, &local_symbols);
1601 break;
1602
1603 case 'p':
1604 if (*p == 'F')
1605 /* pF is a two-letter code that means a function parameter in Fortran.
1606 The type-number specifies the type of the return value.
1607 Translate it into a pointer-to-function type. */
1608 {
1609 p++;
1610 SYMBOL_TYPE (sym)
1611 = lookup_pointer_type
1612 (lookup_function_type (read_type (&p, objfile)));
1613 }
1614 else
1615 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1616
1617 SYMBOL_CLASS (sym) = LOC_ARG;
1618 SYMBOL_VALUE (sym) = valu;
1619 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1620 add_symbol_to_list (sym, &local_symbols);
1621
1622 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
1623 {
1624 /* On little-endian machines, this crud is never necessary,
1625 and, if the extra bytes contain garbage, is harmful. */
1626 break;
1627 }
1628
1629 /* If it's gcc-compiled, if it says `short', believe it. */
1630 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1631 break;
1632
1633 if (!BELIEVE_PCC_PROMOTION)
1634 {
1635 /* This is the signed type which arguments get promoted to. */
1636 static struct type *pcc_promotion_type;
1637 /* This is the unsigned type which arguments get promoted to. */
1638 static struct type *pcc_unsigned_promotion_type;
1639
1640 /* Call it "int" because this is mainly C lossage. */
1641 if (pcc_promotion_type == NULL)
1642 pcc_promotion_type =
1643 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1644 0, "int", NULL);
1645
1646 if (pcc_unsigned_promotion_type == NULL)
1647 pcc_unsigned_promotion_type =
1648 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1649 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
1650
1651 if (BELIEVE_PCC_PROMOTION_TYPE)
1652 {
1653 /* This is defined on machines (e.g. sparc) where we
1654 should believe the type of a PCC 'short' argument,
1655 but shouldn't believe the address (the address is the
1656 address of the corresponding int).
1657
1658 My guess is that this correction, as opposed to
1659 changing the parameter to an 'int' (as done below,
1660 for PCC on most machines), is the right thing to do
1661 on all machines, but I don't want to risk breaking
1662 something that already works. On most PCC machines,
1663 the sparc problem doesn't come up because the calling
1664 function has to zero the top bytes (not knowing
1665 whether the called function wants an int or a short),
1666 so there is little practical difference between an
1667 int and a short (except perhaps what happens when the
1668 GDB user types "print short_arg = 0x10000;").
1669
1670 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1671 compiler actually produces the correct address (we
1672 don't need to fix it up). I made this code adapt so
1673 that it will offset the symbol if it was pointing at
1674 an int-aligned location and not otherwise. This way
1675 you can use the same gdb for 4.0.x and 4.1 systems.
1676
1677 If the parameter is shorter than an int, and is
1678 integral (e.g. char, short, or unsigned equivalent),
1679 and is claimed to be passed on an integer boundary,
1680 don't believe it! Offset the parameter's address to
1681 the tail-end of that integer. */
1682
1683 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1684 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1685 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1686 {
1687 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1688 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1689 }
1690 break;
1691 }
1692 else
1693 {
1694 /* If PCC says a parameter is a short or a char,
1695 it is really an int. */
1696 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1697 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1698 {
1699 SYMBOL_TYPE (sym) =
1700 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1701 ? pcc_unsigned_promotion_type
1702 : pcc_promotion_type;
1703 }
1704 break;
1705 }
1706 }
1707
1708 case 'P':
1709 /* acc seems to use P to declare the prototypes of functions that
1710 are referenced by this file. gdb is not prepared to deal
1711 with this extra information. FIXME, it ought to. */
1712 if (type == N_FUN)
1713 {
1714 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1715 goto process_prototype_types;
1716 }
1717 /*FALLTHROUGH */
1718
1719 case 'R':
1720 /* Parameter which is in a register. */
1721 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1722 SYMBOL_CLASS (sym) = LOC_REGPARM;
1723 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1724 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1725 {
1726 reg_value_complaint (SYMBOL_VALUE (sym),
1727 NUM_REGS + NUM_PSEUDO_REGS,
1728 SYMBOL_PRINT_NAME (sym));
1729 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1730 }
1731 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1732 add_symbol_to_list (sym, &local_symbols);
1733 break;
1734
1735 case 'r':
1736 /* Register variable (either global or local). */
1737 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1738 SYMBOL_CLASS (sym) = LOC_REGISTER;
1739 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1740 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1741 {
1742 reg_value_complaint (SYMBOL_VALUE (sym),
1743 NUM_REGS + NUM_PSEUDO_REGS,
1744 SYMBOL_PRINT_NAME (sym));
1745 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1746 }
1747 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1748 if (within_function)
1749 {
1750 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1751 the same name to represent an argument passed in a
1752 register. GCC uses 'P' for the same case. So if we find
1753 such a symbol pair we combine it into one 'P' symbol.
1754 For Sun cc we need to do this regardless of
1755 stabs_argument_has_addr, because the compiler puts out
1756 the 'p' symbol even if it never saves the argument onto
1757 the stack.
1758
1759 On most machines, we want to preserve both symbols, so
1760 that we can still get information about what is going on
1761 with the stack (VAX for computing args_printed, using
1762 stack slots instead of saved registers in backtraces,
1763 etc.).
1764
1765 Note that this code illegally combines
1766 main(argc) struct foo argc; { register struct foo argc; }
1767 but this case is considered pathological and causes a warning
1768 from a decent compiler. */
1769
1770 if (local_symbols
1771 && local_symbols->nsyms > 0
1772 #ifndef USE_REGISTER_NOT_ARG
1773 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1774 SYMBOL_TYPE (sym))
1775 #endif
1776 )
1777 {
1778 struct symbol *prev_sym;
1779 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1780 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1781 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1782 && STREQ (DEPRECATED_SYMBOL_NAME (prev_sym), DEPRECATED_SYMBOL_NAME (sym)))
1783 {
1784 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1785 /* Use the type from the LOC_REGISTER; that is the type
1786 that is actually in that register. */
1787 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1788 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1789 sym = prev_sym;
1790 break;
1791 }
1792 }
1793 add_symbol_to_list (sym, &local_symbols);
1794 }
1795 else
1796 add_symbol_to_list (sym, &file_symbols);
1797 break;
1798
1799 case 'S':
1800 /* Static symbol at top level of file */
1801 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1802 SYMBOL_CLASS (sym) = LOC_STATIC;
1803 SYMBOL_VALUE_ADDRESS (sym) = valu;
1804 #ifdef STATIC_TRANSFORM_NAME
1805 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1806 {
1807 struct minimal_symbol *msym;
1808 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1809 if (msym != NULL)
1810 {
1811 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1812 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1813 }
1814 }
1815 #endif
1816 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1817 add_symbol_to_list (sym, &file_symbols);
1818 break;
1819
1820 case 't':
1821 /* Typedef */
1822 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1823
1824 /* For a nameless type, we don't want a create a symbol, thus we
1825 did not use `sym'. Return without further processing. */
1826 if (nameless)
1827 return NULL;
1828
1829 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1830 SYMBOL_VALUE (sym) = valu;
1831 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1832 /* C++ vagaries: we may have a type which is derived from
1833 a base type which did not have its name defined when the
1834 derived class was output. We fill in the derived class's
1835 base part member's name here in that case. */
1836 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1837 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1838 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1839 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1840 {
1841 int j;
1842 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1843 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1844 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1845 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1846 }
1847
1848 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1849 {
1850 /* gcc-2.6 or later (when using -fvtable-thunks)
1851 emits a unique named type for a vtable entry.
1852 Some gdb code depends on that specific name. */
1853 extern const char vtbl_ptr_name[];
1854
1855 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1856 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1857 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1858 {
1859 /* If we are giving a name to a type such as "pointer to
1860 foo" or "function returning foo", we better not set
1861 the TYPE_NAME. If the program contains "typedef char
1862 *caddr_t;", we don't want all variables of type char
1863 * to print as caddr_t. This is not just a
1864 consequence of GDB's type management; PCC and GCC (at
1865 least through version 2.4) both output variables of
1866 either type char * or caddr_t with the type number
1867 defined in the 't' symbol for caddr_t. If a future
1868 compiler cleans this up it GDB is not ready for it
1869 yet, but if it becomes ready we somehow need to
1870 disable this check (without breaking the PCC/GCC2.4
1871 case).
1872
1873 Sigh.
1874
1875 Fortunately, this check seems not to be necessary
1876 for anything except pointers or functions. */
1877 /* ezannoni: 2000-10-26. This seems to apply for
1878 versions of gcc older than 2.8. This was the original
1879 problem: with the following code gdb would tell that
1880 the type for name1 is caddr_t, and func is char()
1881 typedef char *caddr_t;
1882 char *name2;
1883 struct x
1884 {
1885 char *name1;
1886 } xx;
1887 char *func()
1888 {
1889 }
1890 main () {}
1891 */
1892
1893 /* Pascal accepts names for pointer types. */
1894 if (current_subfile->language == language_pascal)
1895 {
1896 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1897 }
1898 }
1899 else
1900 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1901 }
1902
1903 add_symbol_to_list (sym, &file_symbols);
1904 break;
1905
1906 case 'T':
1907 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1908 by 't' which means we are typedef'ing it as well. */
1909 synonym = *p == 't';
1910
1911 if (synonym)
1912 p++;
1913 #if 0 /* OBSOLETE CFront */
1914 // OBSOLETE /* The semantics of C++ state that "struct foo { ... }" also defines
1915 // OBSOLETE a typedef for "foo". Unfortunately, cfront never makes the typedef
1916 // OBSOLETE when translating C++ into C. We make the typedef here so that
1917 // OBSOLETE "ptype foo" works as expected for cfront translated code. */
1918 // OBSOLETE else if ((current_subfile->language == language_cplus)
1919 // OBSOLETE || (current_subfile->language == language_objc))
1920 // OBSOLETE synonym = 1;
1921 #endif /* OBSOLETE CFront */
1922
1923 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1924
1925 /* For a nameless type, we don't want a create a symbol, thus we
1926 did not use `sym'. Return without further processing. */
1927 if (nameless)
1928 return NULL;
1929
1930 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1931 SYMBOL_VALUE (sym) = valu;
1932 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1933 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1934 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1935 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1936 add_symbol_to_list (sym, &file_symbols);
1937
1938 if (synonym)
1939 {
1940 /* Clone the sym and then modify it. */
1941 struct symbol *typedef_sym = (struct symbol *)
1942 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1943 *typedef_sym = *sym;
1944 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1945 SYMBOL_VALUE (typedef_sym) = valu;
1946 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1947 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1948 TYPE_NAME (SYMBOL_TYPE (sym))
1949 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1950 add_symbol_to_list (typedef_sym, &file_symbols);
1951 }
1952 break;
1953
1954 case 'V':
1955 /* Static symbol of local scope */
1956 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1957 SYMBOL_CLASS (sym) = LOC_STATIC;
1958 SYMBOL_VALUE_ADDRESS (sym) = valu;
1959 #ifdef STATIC_TRANSFORM_NAME
1960 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1961 {
1962 struct minimal_symbol *msym;
1963 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1964 if (msym != NULL)
1965 {
1966 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1967 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1968 }
1969 }
1970 #endif
1971 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1972 add_symbol_to_list (sym, &local_symbols);
1973 break;
1974
1975 case 'v':
1976 /* Reference parameter */
1977 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1978 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1979 SYMBOL_VALUE (sym) = valu;
1980 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1981 add_symbol_to_list (sym, &local_symbols);
1982 break;
1983
1984 case 'a':
1985 /* Reference parameter which is in a register. */
1986 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1987 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1988 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1989 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1990 {
1991 reg_value_complaint (SYMBOL_VALUE (sym),
1992 NUM_REGS + NUM_PSEUDO_REGS,
1993 SYMBOL_PRINT_NAME (sym));
1994 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1995 }
1996 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1997 add_symbol_to_list (sym, &local_symbols);
1998 break;
1999
2000 case 'X':
2001 /* This is used by Sun FORTRAN for "function result value".
2002 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
2003 that Pascal uses it too, but when I tried it Pascal used
2004 "x:3" (local symbol) instead. */
2005 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2006 SYMBOL_CLASS (sym) = LOC_LOCAL;
2007 SYMBOL_VALUE (sym) = valu;
2008 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2009 add_symbol_to_list (sym, &local_symbols);
2010 break;
2011 #if 0 /* OBSOLETE CFront */
2012 // OBSOLETE /* New code added to support cfront stabs strings.
2013 // OBSOLETE Note: case 'P' already handled above */
2014 // OBSOLETE case 'Z':
2015 // OBSOLETE /* Cfront type continuation coming up!
2016 // OBSOLETE Find the original definition and add to it.
2017 // OBSOLETE We'll have to do this for the typedef too,
2018 // OBSOLETE since we cloned the symbol to define a type in read_type.
2019 // OBSOLETE Stabs info examples:
2020 // OBSOLETE __1C :Ztl
2021 // OBSOLETE foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
2022 // OBSOLETE C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
2023 // OBSOLETE where C is the name of the class.
2024 // OBSOLETE Unfortunately, we can't lookup the original symbol yet 'cuz
2025 // OBSOLETE we haven't finished reading all the symbols.
2026 // OBSOLETE Instead, we save it for processing later */
2027 // OBSOLETE process_later (sym, p, resolve_cfront_continuation);
2028 // OBSOLETE SYMBOL_TYPE (sym) = error_type (&p, objfile); /* FIXME! change later */
2029 // OBSOLETE SYMBOL_CLASS (sym) = LOC_CONST;
2030 // OBSOLETE SYMBOL_VALUE (sym) = 0;
2031 // OBSOLETE SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2032 // OBSOLETE /* Don't add to list - we'll delete it later when
2033 // OBSOLETE we add the continuation to the real sym */
2034 // OBSOLETE return sym;
2035 // OBSOLETE /* End of new code added to support cfront stabs strings */
2036 #endif /* OBSOLETE CFront */
2037
2038 default:
2039 SYMBOL_TYPE (sym) = error_type (&p, objfile);
2040 SYMBOL_CLASS (sym) = LOC_CONST;
2041 SYMBOL_VALUE (sym) = 0;
2042 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2043 add_symbol_to_list (sym, &file_symbols);
2044 break;
2045 }
2046
2047 /* Some systems pass variables of certain types by reference instead
2048 of by value, i.e. they will pass the address of a structure (in a
2049 register or on the stack) instead of the structure itself. */
2050
2051 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
2052 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
2053 {
2054 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
2055 variables passed in a register). */
2056 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
2057 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2058 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
2059 and subsequent arguments on SPARC, for example). */
2060 else if (SYMBOL_CLASS (sym) == LOC_ARG)
2061 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2062 }
2063
2064 /* Is there more to parse? For example LRS/alias information? */
2065 while (*p && *p == ';')
2066 {
2067 p++;
2068 if (*p && p[0] == 'l' && p[1] == '(')
2069 {
2070 /* GNU extensions for live range splitting may be appended to
2071 the end of the stab string. eg. "l(#1,#2);l(#3,#5)" */
2072
2073 /* Resolve the live range and add it to SYM's live range list. */
2074 if (!resolve_live_range (objfile, sym, p))
2075 return NULL;
2076
2077 /* Find end of live range info. */
2078 p = strchr (p, ')');
2079 if (!*p || *p != ')')
2080 {
2081 lrs_general_complaint ("live range format not recognized");
2082 return NULL;
2083 }
2084 p++;
2085 }
2086 }
2087 return sym;
2088 }
2089
2090 /* Add the live range found in P to the symbol SYM in objfile OBJFILE. Returns
2091 non-zero on success, zero otherwise. */
2092
2093 static int
2094 resolve_live_range (struct objfile *objfile, struct symbol *sym, char *p)
2095 {
2096 int refnum;
2097 CORE_ADDR start, end;
2098
2099 /* Sanity check the beginning of the stabs string. */
2100 if (!*p || *p != 'l')
2101 {
2102 lrs_general_complaint ("live range string 1");
2103 return 0;
2104 }
2105 p++;
2106
2107 if (!*p || *p != '(')
2108 {
2109 lrs_general_complaint ("live range string 2");
2110 return 0;
2111 }
2112 p++;
2113
2114 /* Get starting value of range and advance P past the reference id.
2115
2116 ?!? In theory, the process_reference should never fail, but we should
2117 catch that case just in case the compiler scrogged the stabs. */
2118 refnum = process_reference (&p);
2119 start = ref_search_value (refnum);
2120 if (!start)
2121 {
2122 lrs_general_complaint ("Live range symbol not found 1");
2123 return 0;
2124 }
2125
2126 if (!*p || *p != ',')
2127 {
2128 lrs_general_complaint ("live range string 3");
2129 return 0;
2130 }
2131 p++;
2132
2133 /* Get ending value of range and advance P past the reference id.
2134
2135 ?!? In theory, the process_reference should never fail, but we should
2136 catch that case just in case the compiler scrogged the stabs. */
2137 refnum = process_reference (&p);
2138 end = ref_search_value (refnum);
2139 if (!end)
2140 {
2141 lrs_general_complaint ("Live range symbol not found 2");
2142 return 0;
2143 }
2144
2145 if (!*p || *p != ')')
2146 {
2147 lrs_general_complaint ("live range string 4");
2148 return 0;
2149 }
2150
2151 /* Now that we know the bounds of the range, add it to the
2152 symbol. */
2153 add_live_range (objfile, sym, start, end);
2154
2155 return 1;
2156 }
2157
2158 /* Add a new live range defined by START and END to the symbol SYM
2159 in objfile OBJFILE. */
2160
2161 static void
2162 add_live_range (struct objfile *objfile, struct symbol *sym, CORE_ADDR start,
2163 CORE_ADDR end)
2164 {
2165 struct range_list *r, *rs;
2166
2167 if (start >= end)
2168 {
2169 lrs_general_complaint ("end of live range follows start");
2170 return;
2171 }
2172
2173 /* Alloc new live range structure. */
2174 r = (struct range_list *)
2175 obstack_alloc (&objfile->type_obstack,
2176 sizeof (struct range_list));
2177 r->start = start;
2178 r->end = end;
2179 r->next = 0;
2180
2181 /* Append this range to the symbol's range list. */
2182 if (!SYMBOL_RANGES (sym))
2183 SYMBOL_RANGES (sym) = r;
2184 else
2185 {
2186 /* Get the last range for the symbol. */
2187 for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
2188 ;
2189 rs->next = r;
2190 }
2191 }
2192 \f
2193
2194 /* Skip rest of this symbol and return an error type.
2195
2196 General notes on error recovery: error_type always skips to the
2197 end of the symbol (modulo cretinous dbx symbol name continuation).
2198 Thus code like this:
2199
2200 if (*(*pp)++ != ';')
2201 return error_type (pp, objfile);
2202
2203 is wrong because if *pp starts out pointing at '\0' (typically as the
2204 result of an earlier error), it will be incremented to point to the
2205 start of the next symbol, which might produce strange results, at least
2206 if you run off the end of the string table. Instead use
2207
2208 if (**pp != ';')
2209 return error_type (pp, objfile);
2210 ++*pp;
2211
2212 or
2213
2214 if (**pp != ';')
2215 foo = error_type (pp, objfile);
2216 else
2217 ++*pp;
2218
2219 And in case it isn't obvious, the point of all this hair is so the compiler
2220 can define new types and new syntaxes, and old versions of the
2221 debugger will be able to read the new symbol tables. */
2222
2223 static struct type *
2224 error_type (char **pp, struct objfile *objfile)
2225 {
2226 complaint (&symfile_complaints, "couldn't parse type; debugger out of date?");
2227 while (1)
2228 {
2229 /* Skip to end of symbol. */
2230 while (**pp != '\0')
2231 {
2232 (*pp)++;
2233 }
2234
2235 /* Check for and handle cretinous dbx symbol name continuation! */
2236 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
2237 {
2238 *pp = next_symbol_text (objfile);
2239 }
2240 else
2241 {
2242 break;
2243 }
2244 }
2245 return (builtin_type_error);
2246 }
2247 \f
2248
2249 /* Read type information or a type definition; return the type. Even
2250 though this routine accepts either type information or a type
2251 definition, the distinction is relevant--some parts of stabsread.c
2252 assume that type information starts with a digit, '-', or '(' in
2253 deciding whether to call read_type. */
2254
2255 static struct type *
2256 read_type (char **pp, struct objfile *objfile)
2257 {
2258 struct type *type = 0;
2259 struct type *type1;
2260 int typenums[2];
2261 char type_descriptor;
2262
2263 /* Size in bits of type if specified by a type attribute, or -1 if
2264 there is no size attribute. */
2265 int type_size = -1;
2266
2267 /* Used to distinguish string and bitstring from char-array and set. */
2268 int is_string = 0;
2269
2270 /* Used to distinguish vector from array. */
2271 int is_vector = 0;
2272
2273 /* Read type number if present. The type number may be omitted.
2274 for instance in a two-dimensional array declared with type
2275 "ar1;1;10;ar1;1;10;4". */
2276 if ((**pp >= '0' && **pp <= '9')
2277 || **pp == '('
2278 || **pp == '-')
2279 {
2280 if (read_type_number (pp, typenums) != 0)
2281 return error_type (pp, objfile);
2282
2283 /* Type is not being defined here. Either it already exists,
2284 or this is a forward reference to it. dbx_alloc_type handles
2285 both cases. */
2286 if (**pp != '=')
2287 return dbx_alloc_type (typenums, objfile);
2288
2289 /* Type is being defined here. */
2290 /* Skip the '='.
2291 Also skip the type descriptor - we get it below with (*pp)[-1]. */
2292 (*pp) += 2;
2293 }
2294 else
2295 {
2296 /* 'typenums=' not present, type is anonymous. Read and return
2297 the definition, but don't put it in the type vector. */
2298 typenums[0] = typenums[1] = -1;
2299 (*pp)++;
2300 }
2301
2302 again:
2303 type_descriptor = (*pp)[-1];
2304 switch (type_descriptor)
2305 {
2306 case 'x':
2307 {
2308 enum type_code code;
2309
2310 /* Used to index through file_symbols. */
2311 struct pending *ppt;
2312 int i;
2313
2314 /* Name including "struct", etc. */
2315 char *type_name;
2316
2317 {
2318 char *from, *to, *p, *q1, *q2;
2319
2320 /* Set the type code according to the following letter. */
2321 switch ((*pp)[0])
2322 {
2323 case 's':
2324 code = TYPE_CODE_STRUCT;
2325 break;
2326 case 'u':
2327 code = TYPE_CODE_UNION;
2328 break;
2329 case 'e':
2330 code = TYPE_CODE_ENUM;
2331 break;
2332 default:
2333 {
2334 /* Complain and keep going, so compilers can invent new
2335 cross-reference types. */
2336 complaint (&symfile_complaints,
2337 "Unrecognized cross-reference type `%c'", (*pp)[0]);
2338 code = TYPE_CODE_STRUCT;
2339 break;
2340 }
2341 }
2342
2343 q1 = strchr (*pp, '<');
2344 p = strchr (*pp, ':');
2345 if (p == NULL)
2346 return error_type (pp, objfile);
2347 if (q1 && p > q1 && p[1] == ':')
2348 {
2349 int nesting_level = 0;
2350 for (q2 = q1; *q2; q2++)
2351 {
2352 if (*q2 == '<')
2353 nesting_level++;
2354 else if (*q2 == '>')
2355 nesting_level--;
2356 else if (*q2 == ':' && nesting_level == 0)
2357 break;
2358 }
2359 p = q2;
2360 if (*p != ':')
2361 return error_type (pp, objfile);
2362 }
2363 to = type_name =
2364 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
2365
2366 /* Copy the name. */
2367 from = *pp + 1;
2368 while (from < p)
2369 *to++ = *from++;
2370 *to = '\0';
2371
2372 /* Set the pointer ahead of the name which we just read, and
2373 the colon. */
2374 *pp = from + 1;
2375 }
2376
2377 /* Now check to see whether the type has already been
2378 declared. This was written for arrays of cross-referenced
2379 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
2380 sure it is not necessary anymore. But it might be a good
2381 idea, to save a little memory. */
2382
2383 for (ppt = file_symbols; ppt; ppt = ppt->next)
2384 for (i = 0; i < ppt->nsyms; i++)
2385 {
2386 struct symbol *sym = ppt->symbol[i];
2387
2388 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2389 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
2390 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
2391 && STREQ (DEPRECATED_SYMBOL_NAME (sym), type_name))
2392 {
2393 obstack_free (&objfile->type_obstack, type_name);
2394 type = SYMBOL_TYPE (sym);
2395 return type;
2396 }
2397 }
2398
2399 /* Didn't find the type to which this refers, so we must
2400 be dealing with a forward reference. Allocate a type
2401 structure for it, and keep track of it so we can
2402 fill in the rest of the fields when we get the full
2403 type. */
2404 type = dbx_alloc_type (typenums, objfile);
2405 TYPE_CODE (type) = code;
2406 TYPE_TAG_NAME (type) = type_name;
2407 INIT_CPLUS_SPECIFIC (type);
2408 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
2409
2410 add_undefined_type (type);
2411 return type;
2412 }
2413
2414 case '-': /* RS/6000 built-in type */
2415 case '0':
2416 case '1':
2417 case '2':
2418 case '3':
2419 case '4':
2420 case '5':
2421 case '6':
2422 case '7':
2423 case '8':
2424 case '9':
2425 case '(':
2426 (*pp)--;
2427
2428 /* We deal with something like t(1,2)=(3,4)=... which
2429 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
2430
2431 /* Allocate and enter the typedef type first.
2432 This handles recursive types. */
2433 type = dbx_alloc_type (typenums, objfile);
2434 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
2435 {
2436 struct type *xtype = read_type (pp, objfile);
2437 if (type == xtype)
2438 {
2439 /* It's being defined as itself. That means it is "void". */
2440 TYPE_CODE (type) = TYPE_CODE_VOID;
2441 TYPE_LENGTH (type) = 1;
2442 }
2443 else if (type_size >= 0 || is_string)
2444 {
2445 /* This is the absolute wrong way to construct types. Every
2446 other debug format has found a way around this problem and
2447 the related problems with unnecessarily stubbed types;
2448 someone motivated should attempt to clean up the issue
2449 here as well. Once a type pointed to has been created it
2450 should not be modified.
2451
2452 Well, it's not *absolutely* wrong. Constructing recursive
2453 types (trees, linked lists) necessarily entails modifying
2454 types after creating them. Constructing any loop structure
2455 entails side effects. The Dwarf 2 reader does handle this
2456 more gracefully (it never constructs more than once
2457 instance of a type object, so it doesn't have to copy type
2458 objects wholesale), but it still mutates type objects after
2459 other folks have references to them.
2460
2461 Keep in mind that this circularity/mutation issue shows up
2462 at the source language level, too: C's "incomplete types",
2463 for example. So the proper cleanup, I think, would be to
2464 limit GDB's type smashing to match exactly those required
2465 by the source language. So GDB could have a
2466 "complete_this_type" function, but never create unnecessary
2467 copies of a type otherwise. */
2468 replace_type (type, xtype);
2469 TYPE_NAME (type) = NULL;
2470 TYPE_TAG_NAME (type) = NULL;
2471 }
2472 else
2473 {
2474 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2475 TYPE_TARGET_TYPE (type) = xtype;
2476 }
2477 }
2478 break;
2479
2480 /* In the following types, we must be sure to overwrite any existing
2481 type that the typenums refer to, rather than allocating a new one
2482 and making the typenums point to the new one. This is because there
2483 may already be pointers to the existing type (if it had been
2484 forward-referenced), and we must change it to a pointer, function,
2485 reference, or whatever, *in-place*. */
2486
2487 case '*': /* Pointer to another type */
2488 type1 = read_type (pp, objfile);
2489 type = make_pointer_type (type1, dbx_lookup_type (typenums));
2490 break;
2491
2492 case '&': /* Reference to another type */
2493 type1 = read_type (pp, objfile);
2494 type = make_reference_type (type1, dbx_lookup_type (typenums));
2495 break;
2496
2497 case 'f': /* Function returning another type */
2498 type1 = read_type (pp, objfile);
2499 type = make_function_type (type1, dbx_lookup_type (typenums));
2500 break;
2501
2502 case 'g': /* Prototyped function. (Sun) */
2503 {
2504 /* Unresolved questions:
2505
2506 - According to Sun's ``STABS Interface Manual'', for 'f'
2507 and 'F' symbol descriptors, a `0' in the argument type list
2508 indicates a varargs function. But it doesn't say how 'g'
2509 type descriptors represent that info. Someone with access
2510 to Sun's toolchain should try it out.
2511
2512 - According to the comment in define_symbol (search for
2513 `process_prototype_types:'), Sun emits integer arguments as
2514 types which ref themselves --- like `void' types. Do we
2515 have to deal with that here, too? Again, someone with
2516 access to Sun's toolchain should try it out and let us
2517 know. */
2518
2519 const char *type_start = (*pp) - 1;
2520 struct type *return_type = read_type (pp, objfile);
2521 struct type *func_type
2522 = make_function_type (return_type, dbx_lookup_type (typenums));
2523 struct type_list {
2524 struct type *type;
2525 struct type_list *next;
2526 } *arg_types = 0;
2527 int num_args = 0;
2528
2529 while (**pp && **pp != '#')
2530 {
2531 struct type *arg_type = read_type (pp, objfile);
2532 struct type_list *new = alloca (sizeof (*new));
2533 new->type = arg_type;
2534 new->next = arg_types;
2535 arg_types = new;
2536 num_args++;
2537 }
2538 if (**pp == '#')
2539 ++*pp;
2540 else
2541 {
2542 complaint (&symfile_complaints,
2543 "Prototyped function type didn't end arguments with `#':\n%s",
2544 type_start);
2545 }
2546
2547 /* If there is just one argument whose type is `void', then
2548 that's just an empty argument list. */
2549 if (arg_types
2550 && ! arg_types->next
2551 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
2552 num_args = 0;
2553
2554 TYPE_FIELDS (func_type)
2555 = (struct field *) TYPE_ALLOC (func_type,
2556 num_args * sizeof (struct field));
2557 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
2558 {
2559 int i;
2560 struct type_list *t;
2561
2562 /* We stuck each argument type onto the front of the list
2563 when we read it, so the list is reversed. Build the
2564 fields array right-to-left. */
2565 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
2566 TYPE_FIELD_TYPE (func_type, i) = t->type;
2567 }
2568 TYPE_NFIELDS (func_type) = num_args;
2569 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
2570
2571 type = func_type;
2572 break;
2573 }
2574
2575 case 'k': /* Const qualifier on some type (Sun) */
2576 type = read_type (pp, objfile);
2577 type = make_cv_type (1, TYPE_VOLATILE (type), type,
2578 dbx_lookup_type (typenums));
2579 break;
2580
2581 case 'B': /* Volatile qual on some type (Sun) */
2582 type = read_type (pp, objfile);
2583 type = make_cv_type (TYPE_CONST (type), 1, type,
2584 dbx_lookup_type (typenums));
2585 break;
2586
2587 case '@':
2588 if (isdigit (**pp) || **pp == '(' || **pp == '-')
2589 { /* Member (class & variable) type */
2590 /* FIXME -- we should be doing smash_to_XXX types here. */
2591
2592 struct type *domain = read_type (pp, objfile);
2593 struct type *memtype;
2594
2595 if (**pp != ',')
2596 /* Invalid member type data format. */
2597 return error_type (pp, objfile);
2598 ++*pp;
2599
2600 memtype = read_type (pp, objfile);
2601 type = dbx_alloc_type (typenums, objfile);
2602 smash_to_member_type (type, domain, memtype);
2603 }
2604 else
2605 /* type attribute */
2606 {
2607 char *attr = *pp;
2608 /* Skip to the semicolon. */
2609 while (**pp != ';' && **pp != '\0')
2610 ++(*pp);
2611 if (**pp == '\0')
2612 return error_type (pp, objfile);
2613 else
2614 ++ * pp; /* Skip the semicolon. */
2615
2616 switch (*attr)
2617 {
2618 case 's': /* Size attribute */
2619 type_size = atoi (attr + 1);
2620 if (type_size <= 0)
2621 type_size = -1;
2622 break;
2623
2624 case 'S': /* String attribute */
2625 /* FIXME: check to see if following type is array? */
2626 is_string = 1;
2627 break;
2628
2629 case 'V': /* Vector attribute */
2630 /* FIXME: check to see if following type is array? */
2631 is_vector = 1;
2632 break;
2633
2634 default:
2635 /* Ignore unrecognized type attributes, so future compilers
2636 can invent new ones. */
2637 break;
2638 }
2639 ++*pp;
2640 goto again;
2641 }
2642 break;
2643
2644 case '#': /* Method (class & fn) type */
2645 if ((*pp)[0] == '#')
2646 {
2647 /* We'll get the parameter types from the name. */
2648 struct type *return_type;
2649
2650 (*pp)++;
2651 return_type = read_type (pp, objfile);
2652 if (*(*pp)++ != ';')
2653 complaint (&symfile_complaints,
2654 "invalid (minimal) member type data format at symtab pos %d.",
2655 symnum);
2656 type = allocate_stub_method (return_type);
2657 if (typenums[0] != -1)
2658 *dbx_lookup_type (typenums) = type;
2659 }
2660 else
2661 {
2662 struct type *domain = read_type (pp, objfile);
2663 struct type *return_type;
2664 struct field *args;
2665 int nargs, varargs;
2666
2667 if (**pp != ',')
2668 /* Invalid member type data format. */
2669 return error_type (pp, objfile);
2670 else
2671 ++(*pp);
2672
2673 return_type = read_type (pp, objfile);
2674 args = read_args (pp, ';', objfile, &nargs, &varargs);
2675 type = dbx_alloc_type (typenums, objfile);
2676 smash_to_method_type (type, domain, return_type, args,
2677 nargs, varargs);
2678 }
2679 break;
2680
2681 case 'r': /* Range type */
2682 type = read_range_type (pp, typenums, objfile);
2683 if (typenums[0] != -1)
2684 *dbx_lookup_type (typenums) = type;
2685 break;
2686
2687 case 'b':
2688 {
2689 /* Sun ACC builtin int type */
2690 type = read_sun_builtin_type (pp, typenums, objfile);
2691 if (typenums[0] != -1)
2692 *dbx_lookup_type (typenums) = type;
2693 }
2694 break;
2695
2696 case 'R': /* Sun ACC builtin float type */
2697 type = read_sun_floating_type (pp, typenums, objfile);
2698 if (typenums[0] != -1)
2699 *dbx_lookup_type (typenums) = type;
2700 break;
2701
2702 case 'e': /* Enumeration type */
2703 type = dbx_alloc_type (typenums, objfile);
2704 type = read_enum_type (pp, type, objfile);
2705 if (typenums[0] != -1)
2706 *dbx_lookup_type (typenums) = type;
2707 break;
2708
2709 case 's': /* Struct type */
2710 case 'u': /* Union type */
2711 {
2712 enum type_code type_code = TYPE_CODE_UNDEF;
2713 type = dbx_alloc_type (typenums, objfile);
2714 switch (type_descriptor)
2715 {
2716 case 's':
2717 type_code = TYPE_CODE_STRUCT;
2718 break;
2719 case 'u':
2720 type_code = TYPE_CODE_UNION;
2721 break;
2722 }
2723 type = read_struct_type (pp, type, type_code, objfile);
2724 break;
2725 }
2726
2727 case 'a': /* Array type */
2728 if (**pp != 'r')
2729 return error_type (pp, objfile);
2730 ++*pp;
2731
2732 type = dbx_alloc_type (typenums, objfile);
2733 type = read_array_type (pp, type, objfile);
2734 if (is_string)
2735 TYPE_CODE (type) = TYPE_CODE_STRING;
2736 if (is_vector)
2737 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
2738 break;
2739
2740 case 'S': /* Set or bitstring type */
2741 type1 = read_type (pp, objfile);
2742 type = create_set_type ((struct type *) NULL, type1);
2743 if (is_string)
2744 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2745 if (typenums[0] != -1)
2746 *dbx_lookup_type (typenums) = type;
2747 break;
2748
2749 default:
2750 --*pp; /* Go back to the symbol in error */
2751 /* Particularly important if it was \0! */
2752 return error_type (pp, objfile);
2753 }
2754
2755 if (type == 0)
2756 {
2757 warning ("GDB internal error, type is NULL in stabsread.c\n");
2758 return error_type (pp, objfile);
2759 }
2760
2761 /* Size specified in a type attribute overrides any other size. */
2762 if (type_size != -1)
2763 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2764
2765 return type;
2766 }
2767 \f
2768 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2769 Return the proper type node for a given builtin type number. */
2770
2771 static struct type *
2772 rs6000_builtin_type (int typenum)
2773 {
2774 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2775 #define NUMBER_RECOGNIZED 34
2776 /* This includes an empty slot for type number -0. */
2777 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
2778 struct type *rettype = NULL;
2779
2780 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2781 {
2782 complaint (&symfile_complaints, "Unknown builtin type %d", typenum);
2783 return builtin_type_error;
2784 }
2785 if (negative_types[-typenum] != NULL)
2786 return negative_types[-typenum];
2787
2788 #if TARGET_CHAR_BIT != 8
2789 #error This code wrong for TARGET_CHAR_BIT not 8
2790 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2791 that if that ever becomes not true, the correct fix will be to
2792 make the size in the struct type to be in bits, not in units of
2793 TARGET_CHAR_BIT. */
2794 #endif
2795
2796 switch (-typenum)
2797 {
2798 case 1:
2799 /* The size of this and all the other types are fixed, defined
2800 by the debugging format. If there is a type called "int" which
2801 is other than 32 bits, then it should use a new negative type
2802 number (or avoid negative type numbers for that case).
2803 See stabs.texinfo. */
2804 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
2805 break;
2806 case 2:
2807 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
2808 break;
2809 case 3:
2810 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2811 break;
2812 case 4:
2813 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2814 break;
2815 case 5:
2816 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2817 "unsigned char", NULL);
2818 break;
2819 case 6:
2820 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2821 break;
2822 case 7:
2823 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2824 "unsigned short", NULL);
2825 break;
2826 case 8:
2827 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2828 "unsigned int", NULL);
2829 break;
2830 case 9:
2831 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2832 "unsigned", NULL);
2833 case 10:
2834 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2835 "unsigned long", NULL);
2836 break;
2837 case 11:
2838 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2839 break;
2840 case 12:
2841 /* IEEE single precision (32 bit). */
2842 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2843 break;
2844 case 13:
2845 /* IEEE double precision (64 bit). */
2846 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2847 break;
2848 case 14:
2849 /* This is an IEEE double on the RS/6000, and different machines with
2850 different sizes for "long double" should use different negative
2851 type numbers. See stabs.texinfo. */
2852 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2853 break;
2854 case 15:
2855 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2856 break;
2857 case 16:
2858 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2859 "boolean", NULL);
2860 break;
2861 case 17:
2862 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2863 break;
2864 case 18:
2865 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2866 break;
2867 case 19:
2868 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2869 break;
2870 case 20:
2871 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2872 "character", NULL);
2873 break;
2874 case 21:
2875 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2876 "logical*1", NULL);
2877 break;
2878 case 22:
2879 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2880 "logical*2", NULL);
2881 break;
2882 case 23:
2883 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2884 "logical*4", NULL);
2885 break;
2886 case 24:
2887 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2888 "logical", NULL);
2889 break;
2890 case 25:
2891 /* Complex type consisting of two IEEE single precision values. */
2892 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2893 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2894 NULL);
2895 break;
2896 case 26:
2897 /* Complex type consisting of two IEEE double precision values. */
2898 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2899 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2900 NULL);
2901 break;
2902 case 27:
2903 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2904 break;
2905 case 28:
2906 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2907 break;
2908 case 29:
2909 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2910 break;
2911 case 30:
2912 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2913 break;
2914 case 31:
2915 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2916 break;
2917 case 32:
2918 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2919 "unsigned long long", NULL);
2920 break;
2921 case 33:
2922 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2923 "logical*8", NULL);
2924 break;
2925 case 34:
2926 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2927 break;
2928 }
2929 negative_types[-typenum] = rettype;
2930 return rettype;
2931 }
2932 \f
2933 /* This page contains subroutines of read_type. */
2934
2935 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2936
2937 static void
2938 update_method_name_from_physname (char **old_name, char *physname)
2939 {
2940 char *method_name;
2941
2942 method_name = method_name_from_physname (physname);
2943
2944 if (method_name == NULL)
2945 {
2946 complaint (&symfile_complaints,
2947 "Method has bad physname %s\n", physname);
2948 return;
2949 }
2950
2951 if (strcmp (*old_name, method_name) != 0)
2952 {
2953 xfree (*old_name);
2954 *old_name = method_name;
2955 }
2956 else
2957 xfree (method_name);
2958 }
2959
2960 /* Read member function stabs info for C++ classes. The form of each member
2961 function data is:
2962
2963 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2964
2965 An example with two member functions is:
2966
2967 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2968
2969 For the case of overloaded operators, the format is op$::*.funcs, where
2970 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2971 name (such as `+=') and `.' marks the end of the operator name.
2972
2973 Returns 1 for success, 0 for failure. */
2974
2975 static int
2976 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2977 struct objfile *objfile)
2978 {
2979 int nfn_fields = 0;
2980 int length = 0;
2981 /* Total number of member functions defined in this class. If the class
2982 defines two `f' functions, and one `g' function, then this will have
2983 the value 3. */
2984 int total_length = 0;
2985 int i;
2986 struct next_fnfield
2987 {
2988 struct next_fnfield *next;
2989 struct fn_field fn_field;
2990 }
2991 *sublist;
2992 struct type *look_ahead_type;
2993 struct next_fnfieldlist *new_fnlist;
2994 struct next_fnfield *new_sublist;
2995 char *main_fn_name;
2996 char *p;
2997
2998 /* Process each list until we find something that is not a member function
2999 or find the end of the functions. */
3000
3001 while (**pp != ';')
3002 {
3003 /* We should be positioned at the start of the function name.
3004 Scan forward to find the first ':' and if it is not the
3005 first of a "::" delimiter, then this is not a member function. */
3006 p = *pp;
3007 while (*p != ':')
3008 {
3009 p++;
3010 }
3011 if (p[1] != ':')
3012 {
3013 break;
3014 }
3015
3016 sublist = NULL;
3017 look_ahead_type = NULL;
3018 length = 0;
3019
3020 new_fnlist = (struct next_fnfieldlist *)
3021 xmalloc (sizeof (struct next_fnfieldlist));
3022 make_cleanup (xfree, new_fnlist);
3023 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
3024
3025 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
3026 {
3027 /* This is a completely wierd case. In order to stuff in the
3028 names that might contain colons (the usual name delimiter),
3029 Mike Tiemann defined a different name format which is
3030 signalled if the identifier is "op$". In that case, the
3031 format is "op$::XXXX." where XXXX is the name. This is
3032 used for names like "+" or "=". YUUUUUUUK! FIXME! */
3033 /* This lets the user type "break operator+".
3034 We could just put in "+" as the name, but that wouldn't
3035 work for "*". */
3036 static char opname[32] = "op$";
3037 char *o = opname + 3;
3038
3039 /* Skip past '::'. */
3040 *pp = p + 2;
3041
3042 STABS_CONTINUE (pp, objfile);
3043 p = *pp;
3044 while (*p != '.')
3045 {
3046 *o++ = *p++;
3047 }
3048 main_fn_name = savestring (opname, o - opname);
3049 /* Skip past '.' */
3050 *pp = p + 1;
3051 }
3052 else
3053 {
3054 main_fn_name = savestring (*pp, p - *pp);
3055 /* Skip past '::'. */
3056 *pp = p + 2;
3057 }
3058 new_fnlist->fn_fieldlist.name = main_fn_name;
3059
3060 do
3061 {
3062 new_sublist =
3063 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
3064 make_cleanup (xfree, new_sublist);
3065 memset (new_sublist, 0, sizeof (struct next_fnfield));
3066
3067 /* Check for and handle cretinous dbx symbol name continuation! */
3068 if (look_ahead_type == NULL)
3069 {
3070 /* Normal case. */
3071 STABS_CONTINUE (pp, objfile);
3072
3073 new_sublist->fn_field.type = read_type (pp, objfile);
3074 if (**pp != ':')
3075 {
3076 /* Invalid symtab info for member function. */
3077 return 0;
3078 }
3079 }
3080 else
3081 {
3082 /* g++ version 1 kludge */
3083 new_sublist->fn_field.type = look_ahead_type;
3084 look_ahead_type = NULL;
3085 }
3086
3087 (*pp)++;
3088 p = *pp;
3089 while (*p != ';')
3090 {
3091 p++;
3092 }
3093
3094 /* If this is just a stub, then we don't have the real name here. */
3095
3096 if (TYPE_STUB (new_sublist->fn_field.type))
3097 {
3098 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
3099 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
3100 new_sublist->fn_field.is_stub = 1;
3101 }
3102 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
3103 *pp = p + 1;
3104
3105 /* Set this member function's visibility fields. */
3106 switch (*(*pp)++)
3107 {
3108 case VISIBILITY_PRIVATE:
3109 new_sublist->fn_field.is_private = 1;
3110 break;
3111 case VISIBILITY_PROTECTED:
3112 new_sublist->fn_field.is_protected = 1;
3113 break;
3114 }
3115
3116 STABS_CONTINUE (pp, objfile);
3117 switch (**pp)
3118 {
3119 case 'A': /* Normal functions. */
3120 new_sublist->fn_field.is_const = 0;
3121 new_sublist->fn_field.is_volatile = 0;
3122 (*pp)++;
3123 break;
3124 case 'B': /* `const' member functions. */
3125 new_sublist->fn_field.is_const = 1;
3126 new_sublist->fn_field.is_volatile = 0;
3127 (*pp)++;
3128 break;
3129 case 'C': /* `volatile' member function. */
3130 new_sublist->fn_field.is_const = 0;
3131 new_sublist->fn_field.is_volatile = 1;
3132 (*pp)++;
3133 break;
3134 case 'D': /* `const volatile' member function. */
3135 new_sublist->fn_field.is_const = 1;
3136 new_sublist->fn_field.is_volatile = 1;
3137 (*pp)++;
3138 break;
3139 case '*': /* File compiled with g++ version 1 -- no info */
3140 case '?':
3141 case '.':
3142 break;
3143 default:
3144 complaint (&symfile_complaints,
3145 "const/volatile indicator missing, got '%c'", **pp);
3146 break;
3147 }
3148
3149 switch (*(*pp)++)
3150 {
3151 case '*':
3152 {
3153 int nbits;
3154 /* virtual member function, followed by index.
3155 The sign bit is set to distinguish pointers-to-methods
3156 from virtual function indicies. Since the array is
3157 in words, the quantity must be shifted left by 1
3158 on 16 bit machine, and by 2 on 32 bit machine, forcing
3159 the sign bit out, and usable as a valid index into
3160 the array. Remove the sign bit here. */
3161 new_sublist->fn_field.voffset =
3162 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
3163 if (nbits != 0)
3164 return 0;
3165
3166 STABS_CONTINUE (pp, objfile);
3167 if (**pp == ';' || **pp == '\0')
3168 {
3169 /* Must be g++ version 1. */
3170 new_sublist->fn_field.fcontext = 0;
3171 }
3172 else
3173 {
3174 /* Figure out from whence this virtual function came.
3175 It may belong to virtual function table of
3176 one of its baseclasses. */
3177 look_ahead_type = read_type (pp, objfile);
3178 if (**pp == ':')
3179 {
3180 /* g++ version 1 overloaded methods. */
3181 }
3182 else
3183 {
3184 new_sublist->fn_field.fcontext = look_ahead_type;
3185 if (**pp != ';')
3186 {
3187 return 0;
3188 }
3189 else
3190 {
3191 ++*pp;
3192 }
3193 look_ahead_type = NULL;
3194 }
3195 }
3196 break;
3197 }
3198 case '?':
3199 /* static member function. */
3200 {
3201 int slen = strlen (main_fn_name);
3202
3203 new_sublist->fn_field.voffset = VOFFSET_STATIC;
3204
3205 /* For static member functions, we can't tell if they
3206 are stubbed, as they are put out as functions, and not as
3207 methods.
3208 GCC v2 emits the fully mangled name if
3209 dbxout.c:flag_minimal_debug is not set, so we have to
3210 detect a fully mangled physname here and set is_stub
3211 accordingly. Fully mangled physnames in v2 start with
3212 the member function name, followed by two underscores.
3213 GCC v3 currently always emits stubbed member functions,
3214 but with fully mangled physnames, which start with _Z. */
3215 if (!(strncmp (new_sublist->fn_field.physname,
3216 main_fn_name, slen) == 0
3217 && new_sublist->fn_field.physname[slen] == '_'
3218 && new_sublist->fn_field.physname[slen + 1] == '_'))
3219 {
3220 new_sublist->fn_field.is_stub = 1;
3221 }
3222 break;
3223 }
3224
3225 default:
3226 /* error */
3227 complaint (&symfile_complaints,
3228 "member function type missing, got '%c'", (*pp)[-1]);
3229 /* Fall through into normal member function. */
3230
3231 case '.':
3232 /* normal member function. */
3233 new_sublist->fn_field.voffset = 0;
3234 new_sublist->fn_field.fcontext = 0;
3235 break;
3236 }
3237
3238 new_sublist->next = sublist;
3239 sublist = new_sublist;
3240 length++;
3241 STABS_CONTINUE (pp, objfile);
3242 }
3243 while (**pp != ';' && **pp != '\0');
3244
3245 (*pp)++;
3246 STABS_CONTINUE (pp, objfile);
3247
3248 /* Skip GCC 3.X member functions which are duplicates of the callable
3249 constructor/destructor. */
3250 if (strcmp (main_fn_name, "__base_ctor") == 0
3251 || strcmp (main_fn_name, "__base_dtor") == 0
3252 || strcmp (main_fn_name, "__deleting_dtor") == 0)
3253 {
3254 xfree (main_fn_name);
3255 }
3256 else
3257 {
3258 int has_stub = 0;
3259 int has_destructor = 0, has_other = 0;
3260 int is_v3 = 0;
3261 struct next_fnfield *tmp_sublist;
3262
3263 /* Various versions of GCC emit various mostly-useless
3264 strings in the name field for special member functions.
3265
3266 For stub methods, we need to defer correcting the name
3267 until we are ready to unstub the method, because the current
3268 name string is used by gdb_mangle_name. The only stub methods
3269 of concern here are GNU v2 operators; other methods have their
3270 names correct (see caveat below).
3271
3272 For non-stub methods, in GNU v3, we have a complete physname.
3273 Therefore we can safely correct the name now. This primarily
3274 affects constructors and destructors, whose name will be
3275 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
3276 operators will also have incorrect names; for instance,
3277 "operator int" will be named "operator i" (i.e. the type is
3278 mangled).
3279
3280 For non-stub methods in GNU v2, we have no easy way to
3281 know if we have a complete physname or not. For most
3282 methods the result depends on the platform (if CPLUS_MARKER
3283 can be `$' or `.', it will use minimal debug information, or
3284 otherwise the full physname will be included).
3285
3286 Rather than dealing with this, we take a different approach.
3287 For v3 mangled names, we can use the full physname; for v2,
3288 we use cplus_demangle_opname (which is actually v2 specific),
3289 because the only interesting names are all operators - once again
3290 barring the caveat below. Skip this process if any method in the
3291 group is a stub, to prevent our fouling up the workings of
3292 gdb_mangle_name.
3293
3294 The caveat: GCC 2.95.x (and earlier?) put constructors and
3295 destructors in the same method group. We need to split this
3296 into two groups, because they should have different names.
3297 So for each method group we check whether it contains both
3298 routines whose physname appears to be a destructor (the physnames
3299 for and destructors are always provided, due to quirks in v2
3300 mangling) and routines whose physname does not appear to be a
3301 destructor. If so then we break up the list into two halves.
3302 Even if the constructors and destructors aren't in the same group
3303 the destructor will still lack the leading tilde, so that also
3304 needs to be fixed.
3305
3306 So, to summarize what we expect and handle here:
3307
3308 Given Given Real Real Action
3309 method name physname physname method name
3310
3311 __opi [none] __opi__3Foo operator int opname
3312 [now or later]
3313 Foo _._3Foo _._3Foo ~Foo separate and
3314 rename
3315 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
3316 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
3317 */
3318
3319 tmp_sublist = sublist;
3320 while (tmp_sublist != NULL)
3321 {
3322 if (tmp_sublist->fn_field.is_stub)
3323 has_stub = 1;
3324 if (tmp_sublist->fn_field.physname[0] == '_'
3325 && tmp_sublist->fn_field.physname[1] == 'Z')
3326 is_v3 = 1;
3327
3328 if (is_destructor_name (tmp_sublist->fn_field.physname))
3329 has_destructor++;
3330 else
3331 has_other++;
3332
3333 tmp_sublist = tmp_sublist->next;
3334 }
3335
3336 if (has_destructor && has_other)
3337 {
3338 struct next_fnfieldlist *destr_fnlist;
3339 struct next_fnfield *last_sublist;
3340
3341 /* Create a new fn_fieldlist for the destructors. */
3342
3343 destr_fnlist = (struct next_fnfieldlist *)
3344 xmalloc (sizeof (struct next_fnfieldlist));
3345 make_cleanup (xfree, destr_fnlist);
3346 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
3347 destr_fnlist->fn_fieldlist.name
3348 = obconcat (&objfile->type_obstack, "", "~",
3349 new_fnlist->fn_fieldlist.name);
3350
3351 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
3352 obstack_alloc (&objfile->type_obstack,
3353 sizeof (struct fn_field) * has_destructor);
3354 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
3355 sizeof (struct fn_field) * has_destructor);
3356 tmp_sublist = sublist;
3357 last_sublist = NULL;
3358 i = 0;
3359 while (tmp_sublist != NULL)
3360 {
3361 if (!is_destructor_name (tmp_sublist->fn_field.physname))
3362 {
3363 tmp_sublist = tmp_sublist->next;
3364 continue;
3365 }
3366
3367 destr_fnlist->fn_fieldlist.fn_fields[i++]
3368 = tmp_sublist->fn_field;
3369 if (last_sublist)
3370 last_sublist->next = tmp_sublist->next;
3371 else
3372 sublist = tmp_sublist->next;
3373 last_sublist = tmp_sublist;
3374 tmp_sublist = tmp_sublist->next;
3375 }
3376
3377 destr_fnlist->fn_fieldlist.length = has_destructor;
3378 destr_fnlist->next = fip->fnlist;
3379 fip->fnlist = destr_fnlist;
3380 nfn_fields++;
3381 total_length += has_destructor;
3382 length -= has_destructor;
3383 }
3384 else if (is_v3)
3385 {
3386 /* v3 mangling prevents the use of abbreviated physnames,
3387 so we can do this here. There are stubbed methods in v3
3388 only:
3389 - in -gstabs instead of -gstabs+
3390 - or for static methods, which are output as a function type
3391 instead of a method type. */
3392
3393 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
3394 sublist->fn_field.physname);
3395 }
3396 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
3397 {
3398 new_fnlist->fn_fieldlist.name = concat ("~", main_fn_name, NULL);
3399 xfree (main_fn_name);
3400 }
3401 else if (!has_stub)
3402 {
3403 char dem_opname[256];
3404 int ret;
3405 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
3406 dem_opname, DMGL_ANSI);
3407 if (!ret)
3408 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
3409 dem_opname, 0);
3410 if (ret)
3411 new_fnlist->fn_fieldlist.name
3412 = obsavestring (dem_opname, strlen (dem_opname),
3413 &objfile->type_obstack);
3414 }
3415
3416 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
3417 obstack_alloc (&objfile->type_obstack,
3418 sizeof (struct fn_field) * length);
3419 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
3420 sizeof (struct fn_field) * length);
3421 for (i = length; (i--, sublist); sublist = sublist->next)
3422 {
3423 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
3424 }
3425
3426 new_fnlist->fn_fieldlist.length = length;
3427 new_fnlist->next = fip->fnlist;
3428 fip->fnlist = new_fnlist;
3429 nfn_fields++;
3430 total_length += length;
3431 }
3432 }
3433
3434 if (nfn_fields)
3435 {
3436 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3437 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3438 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
3439 memset (TYPE_FN_FIELDLISTS (type), 0,
3440 sizeof (struct fn_fieldlist) * nfn_fields);
3441 TYPE_NFN_FIELDS (type) = nfn_fields;
3442 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3443 }
3444
3445 return 1;
3446 }
3447
3448 /* Special GNU C++ name.
3449
3450 Returns 1 for success, 0 for failure. "failure" means that we can't
3451 keep parsing and it's time for error_type(). */
3452
3453 static int
3454 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
3455 struct objfile *objfile)
3456 {
3457 char *p;
3458 char *name;
3459 char cpp_abbrev;
3460 struct type *context;
3461
3462 p = *pp;
3463 if (*++p == 'v')
3464 {
3465 name = NULL;
3466 cpp_abbrev = *++p;
3467
3468 *pp = p + 1;
3469
3470 /* At this point, *pp points to something like "22:23=*22...",
3471 where the type number before the ':' is the "context" and
3472 everything after is a regular type definition. Lookup the
3473 type, find it's name, and construct the field name. */
3474
3475 context = read_type (pp, objfile);
3476
3477 switch (cpp_abbrev)
3478 {
3479 case 'f': /* $vf -- a virtual function table pointer */
3480 name = type_name_no_tag (context);
3481 if (name == NULL)
3482 {
3483 name = "";
3484 }
3485 fip->list->field.name =
3486 obconcat (&objfile->type_obstack, vptr_name, name, "");
3487 break;
3488
3489 case 'b': /* $vb -- a virtual bsomethingorother */
3490 name = type_name_no_tag (context);
3491 if (name == NULL)
3492 {
3493 complaint (&symfile_complaints,
3494 "C++ abbreviated type name unknown at symtab pos %d",
3495 symnum);
3496 name = "FOO";
3497 }
3498 fip->list->field.name =
3499 obconcat (&objfile->type_obstack, vb_name, name, "");
3500 break;
3501
3502 default:
3503 invalid_cpp_abbrev_complaint (*pp);
3504 fip->list->field.name =
3505 obconcat (&objfile->type_obstack,
3506 "INVALID_CPLUSPLUS_ABBREV", "", "");
3507 break;
3508 }
3509
3510 /* At this point, *pp points to the ':'. Skip it and read the
3511 field type. */
3512
3513 p = ++(*pp);
3514 if (p[-1] != ':')
3515 {
3516 invalid_cpp_abbrev_complaint (*pp);
3517 return 0;
3518 }
3519 fip->list->field.type = read_type (pp, objfile);
3520 if (**pp == ',')
3521 (*pp)++; /* Skip the comma. */
3522 else
3523 return 0;
3524
3525 {
3526 int nbits;
3527 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
3528 if (nbits != 0)
3529 return 0;
3530 }
3531 /* This field is unpacked. */
3532 FIELD_BITSIZE (fip->list->field) = 0;
3533 fip->list->visibility = VISIBILITY_PRIVATE;
3534 }
3535 else
3536 {
3537 invalid_cpp_abbrev_complaint (*pp);
3538 /* We have no idea what syntax an unrecognized abbrev would have, so
3539 better return 0. If we returned 1, we would need to at least advance
3540 *pp to avoid an infinite loop. */
3541 return 0;
3542 }
3543 return 1;
3544 }
3545
3546 static void
3547 read_one_struct_field (struct field_info *fip, char **pp, char *p,
3548 struct type *type, struct objfile *objfile)
3549 {
3550 #if 0 /* OBSOLETE CFront */
3551 // OBSOLETE /* The following is code to work around cfront generated stabs.
3552 // OBSOLETE The stabs contains full mangled name for each field.
3553 // OBSOLETE We try to demangle the name and extract the field name out of it.
3554 // OBSOLETE */
3555 // OBSOLETE if (ARM_DEMANGLING && current_subfile->language == language_cplus)
3556 // OBSOLETE {
3557 // OBSOLETE char save_p;
3558 // OBSOLETE char *dem, *dem_p;
3559 // OBSOLETE save_p = *p;
3560 // OBSOLETE *p = '\0';
3561 // OBSOLETE dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
3562 // OBSOLETE if (dem != NULL)
3563 // OBSOLETE {
3564 // OBSOLETE dem_p = strrchr (dem, ':');
3565 // OBSOLETE if (dem_p != 0 && *(dem_p - 1) == ':')
3566 // OBSOLETE dem_p++;
3567 // OBSOLETE FIELD_NAME (fip->list->field) =
3568 // OBSOLETE obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
3569 // OBSOLETE }
3570 // OBSOLETE else
3571 // OBSOLETE {
3572 // OBSOLETE FIELD_NAME (fip->list->field) =
3573 // OBSOLETE obsavestring (*pp, p - *pp, &objfile->type_obstack);
3574 // OBSOLETE }
3575 // OBSOLETE *p = save_p;
3576 // OBSOLETE }
3577 // OBSOLETE /* end of code for cfront work around */
3578
3579 // OBSOLETE else
3580 #endif /* OBSOLETE CFront */
3581 fip->list->field.name =
3582 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3583 *pp = p + 1;
3584
3585 /* This means we have a visibility for a field coming. */
3586 if (**pp == '/')
3587 {
3588 (*pp)++;
3589 fip->list->visibility = *(*pp)++;
3590 }
3591 else
3592 {
3593 /* normal dbx-style format, no explicit visibility */
3594 fip->list->visibility = VISIBILITY_PUBLIC;
3595 }
3596
3597 fip->list->field.type = read_type (pp, objfile);
3598 if (**pp == ':')
3599 {
3600 p = ++(*pp);
3601 #if 0
3602 /* Possible future hook for nested types. */
3603 if (**pp == '!')
3604 {
3605 fip->list->field.bitpos = (long) -2; /* nested type */
3606 p = ++(*pp);
3607 }
3608 else
3609 ...;
3610 #endif
3611 while (*p != ';')
3612 {
3613 p++;
3614 }
3615 /* Static class member. */
3616 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
3617 *pp = p + 1;
3618 return;
3619 }
3620 else if (**pp != ',')
3621 {
3622 /* Bad structure-type format. */
3623 stabs_general_complaint ("bad structure-type format");
3624 return;
3625 }
3626
3627 (*pp)++; /* Skip the comma. */
3628
3629 {
3630 int nbits;
3631 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
3632 if (nbits != 0)
3633 {
3634 stabs_general_complaint ("bad structure-type format");
3635 return;
3636 }
3637 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
3638 if (nbits != 0)
3639 {
3640 stabs_general_complaint ("bad structure-type format");
3641 return;
3642 }
3643 }
3644
3645 if (FIELD_BITPOS (fip->list->field) == 0
3646 && FIELD_BITSIZE (fip->list->field) == 0)
3647 {
3648 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
3649 it is a field which has been optimized out. The correct stab for
3650 this case is to use VISIBILITY_IGNORE, but that is a recent
3651 invention. (2) It is a 0-size array. For example
3652 union { int num; char str[0]; } foo. Printing "<no value>" for
3653 str in "p foo" is OK, since foo.str (and thus foo.str[3])
3654 will continue to work, and a 0-size array as a whole doesn't
3655 have any contents to print.
3656
3657 I suspect this probably could also happen with gcc -gstabs (not
3658 -gstabs+) for static fields, and perhaps other C++ extensions.
3659 Hopefully few people use -gstabs with gdb, since it is intended
3660 for dbx compatibility. */
3661
3662 /* Ignore this field. */
3663 fip->list->visibility = VISIBILITY_IGNORE;
3664 }
3665 else
3666 {
3667 /* Detect an unpacked field and mark it as such.
3668 dbx gives a bit size for all fields.
3669 Note that forward refs cannot be packed,
3670 and treat enums as if they had the width of ints. */
3671
3672 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
3673
3674 if (TYPE_CODE (field_type) != TYPE_CODE_INT
3675 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
3676 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
3677 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
3678 {
3679 FIELD_BITSIZE (fip->list->field) = 0;
3680 }
3681 if ((FIELD_BITSIZE (fip->list->field)
3682 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
3683 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
3684 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
3685 )
3686 &&
3687 FIELD_BITPOS (fip->list->field) % 8 == 0)
3688 {
3689 FIELD_BITSIZE (fip->list->field) = 0;
3690 }
3691 }
3692 }
3693
3694
3695 /* Read struct or class data fields. They have the form:
3696
3697 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
3698
3699 At the end, we see a semicolon instead of a field.
3700
3701 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3702 a static field.
3703
3704 The optional VISIBILITY is one of:
3705
3706 '/0' (VISIBILITY_PRIVATE)
3707 '/1' (VISIBILITY_PROTECTED)
3708 '/2' (VISIBILITY_PUBLIC)
3709 '/9' (VISIBILITY_IGNORE)
3710
3711 or nothing, for C style fields with public visibility.
3712
3713 Returns 1 for success, 0 for failure. */
3714
3715 static int
3716 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3717 struct objfile *objfile)
3718 {
3719 char *p;
3720 struct nextfield *new;
3721
3722 /* We better set p right now, in case there are no fields at all... */
3723
3724 p = *pp;
3725
3726 /* Read each data member type until we find the terminating ';' at the end of
3727 the data member list, or break for some other reason such as finding the
3728 start of the member function list. */
3729 /* Stab string for structure/union does not end with two ';' in
3730 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3731
3732 while (**pp != ';' && **pp != '\0')
3733 {
3734 STABS_CONTINUE (pp, objfile);
3735 /* Get space to record the next field's data. */
3736 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3737 make_cleanup (xfree, new);
3738 memset (new, 0, sizeof (struct nextfield));
3739 new->next = fip->list;
3740 fip->list = new;
3741
3742 /* Get the field name. */
3743 p = *pp;
3744
3745 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3746 unless the CPLUS_MARKER is followed by an underscore, in
3747 which case it is just the name of an anonymous type, which we
3748 should handle like any other type name. */
3749
3750 if (is_cplus_marker (p[0]) && p[1] != '_')
3751 {
3752 if (!read_cpp_abbrev (fip, pp, type, objfile))
3753 return 0;
3754 continue;
3755 }
3756
3757 /* Look for the ':' that separates the field name from the field
3758 values. Data members are delimited by a single ':', while member
3759 functions are delimited by a pair of ':'s. When we hit the member
3760 functions (if any), terminate scan loop and return. */
3761
3762 while (*p != ':' && *p != '\0')
3763 {
3764 p++;
3765 }
3766 if (*p == '\0')
3767 return 0;
3768
3769 /* Check to see if we have hit the member functions yet. */
3770 if (p[1] == ':')
3771 {
3772 break;
3773 }
3774 read_one_struct_field (fip, pp, p, type, objfile);
3775 }
3776 if (p[0] == ':' && p[1] == ':')
3777 {
3778 /* (the deleted) chill the list of fields: the last entry (at
3779 the head) is a partially constructed entry which we now
3780 scrub. */
3781 fip->list = fip->list->next;
3782 }
3783 return 1;
3784 }
3785 /* *INDENT-OFF* */
3786 /* The stabs for C++ derived classes contain baseclass information which
3787 is marked by a '!' character after the total size. This function is
3788 called when we encounter the baseclass marker, and slurps up all the
3789 baseclass information.
3790
3791 Immediately following the '!' marker is the number of base classes that
3792 the class is derived from, followed by information for each base class.
3793 For each base class, there are two visibility specifiers, a bit offset
3794 to the base class information within the derived class, a reference to
3795 the type for the base class, and a terminating semicolon.
3796
3797 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3798 ^^ ^ ^ ^ ^ ^ ^
3799 Baseclass information marker __________________|| | | | | | |
3800 Number of baseclasses __________________________| | | | | | |
3801 Visibility specifiers (2) ________________________| | | | | |
3802 Offset in bits from start of class _________________| | | | |
3803 Type number for base class ___________________________| | | |
3804 Visibility specifiers (2) _______________________________| | |
3805 Offset in bits from start of class ________________________| |
3806 Type number of base class ____________________________________|
3807
3808 Return 1 for success, 0 for (error-type-inducing) failure. */
3809 /* *INDENT-ON* */
3810
3811
3812
3813 static int
3814 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3815 struct objfile *objfile)
3816 {
3817 int i;
3818 struct nextfield *new;
3819
3820 if (**pp != '!')
3821 {
3822 return 1;
3823 }
3824 else
3825 {
3826 /* Skip the '!' baseclass information marker. */
3827 (*pp)++;
3828 }
3829
3830 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3831 {
3832 int nbits;
3833 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
3834 if (nbits != 0)
3835 return 0;
3836 }
3837
3838 #if 0
3839 /* Some stupid compilers have trouble with the following, so break
3840 it up into simpler expressions. */
3841 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3842 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3843 #else
3844 {
3845 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3846 char *pointer;
3847
3848 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3849 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3850 }
3851 #endif /* 0 */
3852
3853 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3854
3855 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3856 {
3857 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3858 make_cleanup (xfree, new);
3859 memset (new, 0, sizeof (struct nextfield));
3860 new->next = fip->list;
3861 fip->list = new;
3862 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3863
3864 STABS_CONTINUE (pp, objfile);
3865 switch (**pp)
3866 {
3867 case '0':
3868 /* Nothing to do. */
3869 break;
3870 case '1':
3871 SET_TYPE_FIELD_VIRTUAL (type, i);
3872 break;
3873 default:
3874 /* Unknown character. Complain and treat it as non-virtual. */
3875 {
3876 complaint (&symfile_complaints,
3877 "Unknown virtual character `%c' for baseclass", **pp);
3878 }
3879 }
3880 ++(*pp);
3881
3882 new->visibility = *(*pp)++;
3883 switch (new->visibility)
3884 {
3885 case VISIBILITY_PRIVATE:
3886 case VISIBILITY_PROTECTED:
3887 case VISIBILITY_PUBLIC:
3888 break;
3889 default:
3890 /* Bad visibility format. Complain and treat it as
3891 public. */
3892 {
3893 complaint (&symfile_complaints,
3894 "Unknown visibility `%c' for baseclass",
3895 new->visibility);
3896 new->visibility = VISIBILITY_PUBLIC;
3897 }
3898 }
3899
3900 {
3901 int nbits;
3902
3903 /* The remaining value is the bit offset of the portion of the object
3904 corresponding to this baseclass. Always zero in the absence of
3905 multiple inheritance. */
3906
3907 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3908 if (nbits != 0)
3909 return 0;
3910 }
3911
3912 /* The last piece of baseclass information is the type of the
3913 base class. Read it, and remember it's type name as this
3914 field's name. */
3915
3916 new->field.type = read_type (pp, objfile);
3917 new->field.name = type_name_no_tag (new->field.type);
3918
3919 /* skip trailing ';' and bump count of number of fields seen */
3920 if (**pp == ';')
3921 (*pp)++;
3922 else
3923 return 0;
3924 }
3925 return 1;
3926 }
3927
3928 /* The tail end of stabs for C++ classes that contain a virtual function
3929 pointer contains a tilde, a %, and a type number.
3930 The type number refers to the base class (possibly this class itself) which
3931 contains the vtable pointer for the current class.
3932
3933 This function is called when we have parsed all the method declarations,
3934 so we can look for the vptr base class info. */
3935
3936 static int
3937 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3938 struct objfile *objfile)
3939 {
3940 char *p;
3941
3942 STABS_CONTINUE (pp, objfile);
3943
3944 /* If we are positioned at a ';', then skip it. */
3945 if (**pp == ';')
3946 {
3947 (*pp)++;
3948 }
3949
3950 if (**pp == '~')
3951 {
3952 (*pp)++;
3953
3954 if (**pp == '=' || **pp == '+' || **pp == '-')
3955 {
3956 /* Obsolete flags that used to indicate the presence
3957 of constructors and/or destructors. */
3958 (*pp)++;
3959 }
3960
3961 /* Read either a '%' or the final ';'. */
3962 if (*(*pp)++ == '%')
3963 {
3964 /* The next number is the type number of the base class
3965 (possibly our own class) which supplies the vtable for
3966 this class. Parse it out, and search that class to find
3967 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3968 and TYPE_VPTR_FIELDNO. */
3969
3970 struct type *t;
3971 int i;
3972
3973 t = read_type (pp, objfile);
3974 p = (*pp)++;
3975 while (*p != '\0' && *p != ';')
3976 {
3977 p++;
3978 }
3979 if (*p == '\0')
3980 {
3981 /* Premature end of symbol. */
3982 return 0;
3983 }
3984
3985 TYPE_VPTR_BASETYPE (type) = t;
3986 if (type == t) /* Our own class provides vtbl ptr */
3987 {
3988 for (i = TYPE_NFIELDS (t) - 1;
3989 i >= TYPE_N_BASECLASSES (t);
3990 --i)
3991 {
3992 char *name = TYPE_FIELD_NAME (t, i);
3993 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3994 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3995 {
3996 TYPE_VPTR_FIELDNO (type) = i;
3997 goto gotit;
3998 }
3999 }
4000 /* Virtual function table field not found. */
4001 complaint (&symfile_complaints,
4002 "virtual function table pointer not found when defining class `%s'",
4003 TYPE_NAME (type));
4004 return 0;
4005 }
4006 else
4007 {
4008 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4009 }
4010
4011 gotit:
4012 *pp = p + 1;
4013 }
4014 }
4015 return 1;
4016 }
4017
4018 static int
4019 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
4020 {
4021 int n;
4022
4023 for (n = TYPE_NFN_FIELDS (type);
4024 fip->fnlist != NULL;
4025 fip->fnlist = fip->fnlist->next)
4026 {
4027 --n; /* Circumvent Sun3 compiler bug */
4028 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
4029 }
4030 return 1;
4031 }
4032
4033 #if 0 /* OBSOLETE CFront */
4034 // OBSOLETE /* read cfront class static data.
4035 // OBSOLETE pp points to string starting with the list of static data
4036 // OBSOLETE eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
4037 // OBSOLETE ^^^^^^^^
4038
4039 // OBSOLETE A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
4040 // OBSOLETE ^
4041 // OBSOLETE */
4042
4043 // OBSOLETE static int
4044 // OBSOLETE read_cfront_static_fields (struct field_info *fip, char **pp, struct type *type,
4045 // OBSOLETE struct objfile *objfile)
4046 // OBSOLETE {
4047 // OBSOLETE struct nextfield *new;
4048 // OBSOLETE struct type *stype;
4049 // OBSOLETE char *sname;
4050 // OBSOLETE struct symbol *ref_static = 0;
4051
4052 // OBSOLETE if (**pp == ';') /* no static data; return */
4053 // OBSOLETE {
4054 // OBSOLETE ++(*pp);
4055 // OBSOLETE return 1;
4056 // OBSOLETE }
4057
4058 // OBSOLETE /* Process each field in the list until we find the terminating ";" */
4059
4060 // OBSOLETE /* eg: p = "as__1A ;;;" */
4061 // OBSOLETE STABS_CONTINUE (pp, objfile); /* handle \\ */
4062 // OBSOLETE while (**pp != ';' && (sname = get_substring (pp, ' '), sname))
4063 // OBSOLETE {
4064 // OBSOLETE ref_static = lookup_symbol (sname, 0, VAR_DOMAIN, 0, 0); /*demangled_name */
4065 // OBSOLETE if (!ref_static)
4066 // OBSOLETE {
4067 // OBSOLETE complaint (&symfile_complaints,
4068 // OBSOLETE "Unable to find symbol for static data field %s", sname);
4069 // OBSOLETE continue;
4070 // OBSOLETE }
4071 // OBSOLETE stype = SYMBOL_TYPE (ref_static);
4072
4073 // OBSOLETE /* allocate a new fip */
4074 // OBSOLETE new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4075 // OBSOLETE make_cleanup (xfree, new);
4076 // OBSOLETE memset (new, 0, sizeof (struct nextfield));
4077 // OBSOLETE new->next = fip->list;
4078 // OBSOLETE fip->list = new;
4079
4080 // OBSOLETE /* set visibility */
4081 // OBSOLETE /* FIXME! no way to tell visibility from stabs??? */
4082 // OBSOLETE new->visibility = VISIBILITY_PUBLIC;
4083
4084 // OBSOLETE /* set field info into fip */
4085 // OBSOLETE fip->list->field.type = stype;
4086
4087 // OBSOLETE /* set bitpos & bitsize */
4088 // OBSOLETE SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
4089
4090 // OBSOLETE /* set name field */
4091 // OBSOLETE /* The following is code to work around cfront generated stabs.
4092 // OBSOLETE The stabs contains full mangled name for each field.
4093 // OBSOLETE We try to demangle the name and extract the field name out of it.
4094 // OBSOLETE */
4095 // OBSOLETE if (ARM_DEMANGLING)
4096 // OBSOLETE {
4097 // OBSOLETE char *dem, *dem_p;
4098 // OBSOLETE dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
4099 // OBSOLETE if (dem != NULL)
4100 // OBSOLETE {
4101 // OBSOLETE dem_p = strrchr (dem, ':');
4102 // OBSOLETE if (dem_p != 0 && *(dem_p - 1) == ':')
4103 // OBSOLETE dem_p++;
4104 // OBSOLETE fip->list->field.name =
4105 // OBSOLETE obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
4106 // OBSOLETE }
4107 // OBSOLETE else
4108 // OBSOLETE {
4109 // OBSOLETE fip->list->field.name =
4110 // OBSOLETE obsavestring (sname, strlen (sname), &objfile->type_obstack);
4111 // OBSOLETE }
4112 // OBSOLETE } /* end of code for cfront work around */
4113 // OBSOLETE } /* loop again for next static field */
4114 // OBSOLETE return 1;
4115 // OBSOLETE }
4116
4117 // OBSOLETE /* Copy structure fields to fip so attach_fields_to_type will work.
4118 // OBSOLETE type has already been created with the initial instance data fields.
4119 // OBSOLETE Now we want to be able to add the other members to the class,
4120 // OBSOLETE so we want to add them back to the fip and reattach them again
4121 // OBSOLETE once we have collected all the class members. */
4122
4123 // OBSOLETE static int
4124 // OBSOLETE copy_cfront_struct_fields (struct field_info *fip, struct type *type,
4125 // OBSOLETE struct objfile *objfile)
4126 // OBSOLETE {
4127 // OBSOLETE int nfields = TYPE_NFIELDS (type);
4128 // OBSOLETE int i;
4129 // OBSOLETE struct nextfield *new;
4130
4131 // OBSOLETE /* Copy the fields into the list of fips and reset the types
4132 // OBSOLETE to remove the old fields */
4133
4134 // OBSOLETE for (i = 0; i < nfields; i++)
4135 // OBSOLETE {
4136 // OBSOLETE /* allocate a new fip */
4137 // OBSOLETE new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4138 // OBSOLETE make_cleanup (xfree, new);
4139 // OBSOLETE memset (new, 0, sizeof (struct nextfield));
4140 // OBSOLETE new->next = fip->list;
4141 // OBSOLETE fip->list = new;
4142
4143 // OBSOLETE /* copy field info into fip */
4144 // OBSOLETE new->field = TYPE_FIELD (type, i);
4145 // OBSOLETE /* set visibility */
4146 // OBSOLETE if (TYPE_FIELD_PROTECTED (type, i))
4147 // OBSOLETE new->visibility = VISIBILITY_PROTECTED;
4148 // OBSOLETE else if (TYPE_FIELD_PRIVATE (type, i))
4149 // OBSOLETE new->visibility = VISIBILITY_PRIVATE;
4150 // OBSOLETE else
4151 // OBSOLETE new->visibility = VISIBILITY_PUBLIC;
4152 // OBSOLETE }
4153 // OBSOLETE /* Now delete the fields from the type since we will be
4154 // OBSOLETE allocing new space once we get the rest of the fields
4155 // OBSOLETE in attach_fields_to_type.
4156 // OBSOLETE The pointer TYPE_FIELDS(type) is left dangling but should
4157 // OBSOLETE be freed later by objstack_free */
4158 // OBSOLETE TYPE_FIELDS (type) = 0;
4159 // OBSOLETE TYPE_NFIELDS (type) = 0;
4160
4161 // OBSOLETE return 1;
4162 // OBSOLETE }
4163 #endif /* OBSOLETE CFront */
4164
4165 /* Create the vector of fields, and record how big it is.
4166 We need this info to record proper virtual function table information
4167 for this class's virtual functions. */
4168
4169 static int
4170 attach_fields_to_type (struct field_info *fip, struct type *type,
4171 struct objfile *objfile)
4172 {
4173 int nfields = 0;
4174 int non_public_fields = 0;
4175 struct nextfield *scan;
4176
4177 /* Count up the number of fields that we have, as well as taking note of
4178 whether or not there are any non-public fields, which requires us to
4179 allocate and build the private_field_bits and protected_field_bits
4180 bitfields. */
4181
4182 for (scan = fip->list; scan != NULL; scan = scan->next)
4183 {
4184 nfields++;
4185 if (scan->visibility != VISIBILITY_PUBLIC)
4186 {
4187 non_public_fields++;
4188 }
4189 }
4190
4191 /* Now we know how many fields there are, and whether or not there are any
4192 non-public fields. Record the field count, allocate space for the
4193 array of fields, and create blank visibility bitfields if necessary. */
4194
4195 TYPE_NFIELDS (type) = nfields;
4196 TYPE_FIELDS (type) = (struct field *)
4197 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4198 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4199
4200 if (non_public_fields)
4201 {
4202 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4203
4204 TYPE_FIELD_PRIVATE_BITS (type) =
4205 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4206 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4207
4208 TYPE_FIELD_PROTECTED_BITS (type) =
4209 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4210 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4211
4212 TYPE_FIELD_IGNORE_BITS (type) =
4213 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4214 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4215 }
4216
4217 /* Copy the saved-up fields into the field vector. Start from the head
4218 of the list, adding to the tail of the field array, so that they end
4219 up in the same order in the array in which they were added to the list. */
4220
4221 while (nfields-- > 0)
4222 {
4223 TYPE_FIELD (type, nfields) = fip->list->field;
4224 switch (fip->list->visibility)
4225 {
4226 case VISIBILITY_PRIVATE:
4227 SET_TYPE_FIELD_PRIVATE (type, nfields);
4228 break;
4229
4230 case VISIBILITY_PROTECTED:
4231 SET_TYPE_FIELD_PROTECTED (type, nfields);
4232 break;
4233
4234 case VISIBILITY_IGNORE:
4235 SET_TYPE_FIELD_IGNORE (type, nfields);
4236 break;
4237
4238 case VISIBILITY_PUBLIC:
4239 break;
4240
4241 default:
4242 /* Unknown visibility. Complain and treat it as public. */
4243 {
4244 complaint (&symfile_complaints, "Unknown visibility `%c' for field",
4245 fip->list->visibility);
4246 }
4247 break;
4248 }
4249 fip->list = fip->list->next;
4250 }
4251 return 1;
4252 }
4253
4254
4255 /* Complain that the compiler has emitted more than one definition for the
4256 structure type TYPE. */
4257 static void
4258 complain_about_struct_wipeout (struct type *type)
4259 {
4260 char *name = "";
4261 char *kind = "";
4262
4263 if (TYPE_TAG_NAME (type))
4264 {
4265 name = TYPE_TAG_NAME (type);
4266 switch (TYPE_CODE (type))
4267 {
4268 case TYPE_CODE_STRUCT: kind = "struct "; break;
4269 case TYPE_CODE_UNION: kind = "union "; break;
4270 case TYPE_CODE_ENUM: kind = "enum "; break;
4271 default: kind = "";
4272 }
4273 }
4274 else if (TYPE_NAME (type))
4275 {
4276 name = TYPE_NAME (type);
4277 kind = "";
4278 }
4279 else
4280 {
4281 name = "<unknown>";
4282 kind = "";
4283 }
4284
4285 complaint (&symfile_complaints,
4286 "struct/union type gets multiply defined: %s%s", kind, name);
4287 }
4288
4289
4290 /* Read the description of a structure (or union type) and return an object
4291 describing the type.
4292
4293 PP points to a character pointer that points to the next unconsumed token
4294 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
4295 *PP will point to "4a:1,0,32;;".
4296
4297 TYPE points to an incomplete type that needs to be filled in.
4298
4299 OBJFILE points to the current objfile from which the stabs information is
4300 being read. (Note that it is redundant in that TYPE also contains a pointer
4301 to this same objfile, so it might be a good idea to eliminate it. FIXME).
4302 */
4303
4304 static struct type *
4305 read_struct_type (char **pp, struct type *type, enum type_code type_code,
4306 struct objfile *objfile)
4307 {
4308 struct cleanup *back_to;
4309 struct field_info fi;
4310
4311 fi.list = NULL;
4312 fi.fnlist = NULL;
4313
4314 /* When describing struct/union/class types in stabs, G++ always drops
4315 all qualifications from the name. So if you've got:
4316 struct A { ... struct B { ... }; ... };
4317 then G++ will emit stabs for `struct A::B' that call it simply
4318 `struct B'. Obviously, if you've got a real top-level definition for
4319 `struct B', or other nested definitions, this is going to cause
4320 problems.
4321
4322 Obviously, GDB can't fix this by itself, but it can at least avoid
4323 scribbling on existing structure type objects when new definitions
4324 appear. */
4325 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
4326 || TYPE_STUB (type)))
4327 {
4328 complain_about_struct_wipeout (type);
4329
4330 /* It's probably best to return the type unchanged. */
4331 return type;
4332 }
4333
4334 back_to = make_cleanup (null_cleanup, 0);
4335
4336 INIT_CPLUS_SPECIFIC (type);
4337 TYPE_CODE (type) = type_code;
4338 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4339
4340 /* First comes the total size in bytes. */
4341
4342 {
4343 int nbits;
4344 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
4345 if (nbits != 0)
4346 return error_type (pp, objfile);
4347 }
4348
4349 /* Now read the baseclasses, if any, read the regular C struct or C++
4350 class member fields, attach the fields to the type, read the C++
4351 member functions, attach them to the type, and then read any tilde
4352 field (baseclass specifier for the class holding the main vtable). */
4353
4354 if (!read_baseclasses (&fi, pp, type, objfile)
4355 || !read_struct_fields (&fi, pp, type, objfile)
4356 || !attach_fields_to_type (&fi, type, objfile)
4357 || !read_member_functions (&fi, pp, type, objfile)
4358 || !attach_fn_fields_to_type (&fi, type)
4359 || !read_tilde_fields (&fi, pp, type, objfile))
4360 {
4361 type = error_type (pp, objfile);
4362 }
4363
4364 do_cleanups (back_to);
4365 return (type);
4366 }
4367
4368 /* Read a definition of an array type,
4369 and create and return a suitable type object.
4370 Also creates a range type which represents the bounds of that
4371 array. */
4372
4373 static struct type *
4374 read_array_type (char **pp, struct type *type,
4375 struct objfile *objfile)
4376 {
4377 struct type *index_type, *element_type, *range_type;
4378 int lower, upper;
4379 int adjustable = 0;
4380 int nbits;
4381
4382 /* Format of an array type:
4383 "ar<index type>;lower;upper;<array_contents_type>".
4384 OS9000: "arlower,upper;<array_contents_type>".
4385
4386 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4387 for these, produce a type like float[][]. */
4388
4389 {
4390 index_type = read_type (pp, objfile);
4391 if (**pp != ';')
4392 /* Improper format of array type decl. */
4393 return error_type (pp, objfile);
4394 ++*pp;
4395 }
4396
4397 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4398 {
4399 (*pp)++;
4400 adjustable = 1;
4401 }
4402 lower = read_huge_number (pp, ';', &nbits);
4403
4404 if (nbits != 0)
4405 return error_type (pp, objfile);
4406
4407 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4408 {
4409 (*pp)++;
4410 adjustable = 1;
4411 }
4412 upper = read_huge_number (pp, ';', &nbits);
4413 if (nbits != 0)
4414 return error_type (pp, objfile);
4415
4416 element_type = read_type (pp, objfile);
4417
4418 if (adjustable)
4419 {
4420 lower = 0;
4421 upper = -1;
4422 }
4423
4424 range_type =
4425 create_range_type ((struct type *) NULL, index_type, lower, upper);
4426 type = create_array_type (type, element_type, range_type);
4427
4428 return type;
4429 }
4430
4431
4432 /* Read a definition of an enumeration type,
4433 and create and return a suitable type object.
4434 Also defines the symbols that represent the values of the type. */
4435
4436 static struct type *
4437 read_enum_type (char **pp, struct type *type,
4438 struct objfile *objfile)
4439 {
4440 char *p;
4441 char *name;
4442 long n;
4443 struct symbol *sym;
4444 int nsyms = 0;
4445 struct pending **symlist;
4446 struct pending *osyms, *syms;
4447 int o_nsyms;
4448 int nbits;
4449 int unsigned_enum = 1;
4450
4451 #if 0
4452 /* FIXME! The stabs produced by Sun CC merrily define things that ought
4453 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
4454 to do? For now, force all enum values to file scope. */
4455 if (within_function)
4456 symlist = &local_symbols;
4457 else
4458 #endif
4459 symlist = &file_symbols;
4460 osyms = *symlist;
4461 o_nsyms = osyms ? osyms->nsyms : 0;
4462
4463 /* The aix4 compiler emits an extra field before the enum members;
4464 my guess is it's a type of some sort. Just ignore it. */
4465 if (**pp == '-')
4466 {
4467 /* Skip over the type. */
4468 while (**pp != ':')
4469 (*pp)++;
4470
4471 /* Skip over the colon. */
4472 (*pp)++;
4473 }
4474
4475 /* Read the value-names and their values.
4476 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4477 A semicolon or comma instead of a NAME means the end. */
4478 while (**pp && **pp != ';' && **pp != ',')
4479 {
4480 STABS_CONTINUE (pp, objfile);
4481 p = *pp;
4482 while (*p != ':')
4483 p++;
4484 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
4485 *pp = p + 1;
4486 n = read_huge_number (pp, ',', &nbits);
4487 if (nbits != 0)
4488 return error_type (pp, objfile);
4489
4490 sym = (struct symbol *)
4491 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4492 memset (sym, 0, sizeof (struct symbol));
4493 DEPRECATED_SYMBOL_NAME (sym) = name;
4494 SYMBOL_LANGUAGE (sym) = current_subfile->language;
4495 SYMBOL_CLASS (sym) = LOC_CONST;
4496 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
4497 SYMBOL_VALUE (sym) = n;
4498 if (n < 0)
4499 unsigned_enum = 0;
4500 add_symbol_to_list (sym, symlist);
4501 nsyms++;
4502 }
4503
4504 if (**pp == ';')
4505 (*pp)++; /* Skip the semicolon. */
4506
4507 /* Now fill in the fields of the type-structure. */
4508
4509 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
4510 TYPE_CODE (type) = TYPE_CODE_ENUM;
4511 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4512 if (unsigned_enum)
4513 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
4514 TYPE_NFIELDS (type) = nsyms;
4515 TYPE_FIELDS (type) = (struct field *)
4516 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
4517 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
4518
4519 /* Find the symbols for the values and put them into the type.
4520 The symbols can be found in the symlist that we put them on
4521 to cause them to be defined. osyms contains the old value
4522 of that symlist; everything up to there was defined by us. */
4523 /* Note that we preserve the order of the enum constants, so
4524 that in something like "enum {FOO, LAST_THING=FOO}" we print
4525 FOO, not LAST_THING. */
4526
4527 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
4528 {
4529 int last = syms == osyms ? o_nsyms : 0;
4530 int j = syms->nsyms;
4531 for (; --j >= last; --n)
4532 {
4533 struct symbol *xsym = syms->symbol[j];
4534 SYMBOL_TYPE (xsym) = type;
4535 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
4536 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4537 TYPE_FIELD_BITSIZE (type, n) = 0;
4538 }
4539 if (syms == osyms)
4540 break;
4541 }
4542
4543 return type;
4544 }
4545
4546 /* Sun's ACC uses a somewhat saner method for specifying the builtin
4547 typedefs in every file (for int, long, etc):
4548
4549 type = b <signed> <width> <format type>; <offset>; <nbits>
4550 signed = u or s.
4551 optional format type = c or b for char or boolean.
4552 offset = offset from high order bit to start bit of type.
4553 width is # bytes in object of this type, nbits is # bits in type.
4554
4555 The width/offset stuff appears to be for small objects stored in
4556 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
4557 FIXME. */
4558
4559 static struct type *
4560 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
4561 {
4562 int type_bits;
4563 int nbits;
4564 int signed_type;
4565 enum type_code code = TYPE_CODE_INT;
4566
4567 switch (**pp)
4568 {
4569 case 's':
4570 signed_type = 1;
4571 break;
4572 case 'u':
4573 signed_type = 0;
4574 break;
4575 default:
4576 return error_type (pp, objfile);
4577 }
4578 (*pp)++;
4579
4580 /* For some odd reason, all forms of char put a c here. This is strange
4581 because no other type has this honor. We can safely ignore this because
4582 we actually determine 'char'acterness by the number of bits specified in
4583 the descriptor.
4584 Boolean forms, e.g Fortran logical*X, put a b here. */
4585
4586 if (**pp == 'c')
4587 (*pp)++;
4588 else if (**pp == 'b')
4589 {
4590 code = TYPE_CODE_BOOL;
4591 (*pp)++;
4592 }
4593
4594 /* The first number appears to be the number of bytes occupied
4595 by this type, except that unsigned short is 4 instead of 2.
4596 Since this information is redundant with the third number,
4597 we will ignore it. */
4598 read_huge_number (pp, ';', &nbits);
4599 if (nbits != 0)
4600 return error_type (pp, objfile);
4601
4602 /* The second number is always 0, so ignore it too. */
4603 read_huge_number (pp, ';', &nbits);
4604 if (nbits != 0)
4605 return error_type (pp, objfile);
4606
4607 /* The third number is the number of bits for this type. */
4608 type_bits = read_huge_number (pp, 0, &nbits);
4609 if (nbits != 0)
4610 return error_type (pp, objfile);
4611 /* The type *should* end with a semicolon. If it are embedded
4612 in a larger type the semicolon may be the only way to know where
4613 the type ends. If this type is at the end of the stabstring we
4614 can deal with the omitted semicolon (but we don't have to like
4615 it). Don't bother to complain(), Sun's compiler omits the semicolon
4616 for "void". */
4617 if (**pp == ';')
4618 ++(*pp);
4619
4620 if (type_bits == 0)
4621 return init_type (TYPE_CODE_VOID, 1,
4622 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4623 objfile);
4624 else
4625 return init_type (code,
4626 type_bits / TARGET_CHAR_BIT,
4627 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4628 objfile);
4629 }
4630
4631 static struct type *
4632 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
4633 {
4634 int nbits;
4635 int details;
4636 int nbytes;
4637 struct type *rettype;
4638
4639 /* The first number has more details about the type, for example
4640 FN_COMPLEX. */
4641 details = read_huge_number (pp, ';', &nbits);
4642 if (nbits != 0)
4643 return error_type (pp, objfile);
4644
4645 /* The second number is the number of bytes occupied by this type */
4646 nbytes = read_huge_number (pp, ';', &nbits);
4647 if (nbits != 0)
4648 return error_type (pp, objfile);
4649
4650 if (details == NF_COMPLEX || details == NF_COMPLEX16
4651 || details == NF_COMPLEX32)
4652 {
4653 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
4654 TYPE_TARGET_TYPE (rettype)
4655 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
4656 return rettype;
4657 }
4658
4659 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
4660 }
4661
4662 /* Read a number from the string pointed to by *PP.
4663 The value of *PP is advanced over the number.
4664 If END is nonzero, the character that ends the
4665 number must match END, or an error happens;
4666 and that character is skipped if it does match.
4667 If END is zero, *PP is left pointing to that character.
4668
4669 If the number fits in a long, set *BITS to 0 and return the value.
4670 If not, set *BITS to be the number of bits in the number and return 0.
4671
4672 If encounter garbage, set *BITS to -1 and return 0. */
4673
4674 static long
4675 read_huge_number (char **pp, int end, int *bits)
4676 {
4677 char *p = *pp;
4678 int sign = 1;
4679 long n = 0;
4680 int radix = 10;
4681 char overflow = 0;
4682 int nbits = 0;
4683 int c;
4684 long upper_limit;
4685
4686 if (*p == '-')
4687 {
4688 sign = -1;
4689 p++;
4690 }
4691
4692 /* Leading zero means octal. GCC uses this to output values larger
4693 than an int (because that would be hard in decimal). */
4694 if (*p == '0')
4695 {
4696 radix = 8;
4697 p++;
4698 }
4699
4700 upper_limit = LONG_MAX / radix;
4701
4702 while ((c = *p++) >= '0' && c < ('0' + radix))
4703 {
4704 if (n <= upper_limit)
4705 {
4706 n *= radix;
4707 n += c - '0'; /* FIXME this overflows anyway */
4708 }
4709 else
4710 overflow = 1;
4711
4712 /* This depends on large values being output in octal, which is
4713 what GCC does. */
4714 if (radix == 8)
4715 {
4716 if (nbits == 0)
4717 {
4718 if (c == '0')
4719 /* Ignore leading zeroes. */
4720 ;
4721 else if (c == '1')
4722 nbits = 1;
4723 else if (c == '2' || c == '3')
4724 nbits = 2;
4725 else
4726 nbits = 3;
4727 }
4728 else
4729 nbits += 3;
4730 }
4731 }
4732 if (end)
4733 {
4734 if (c && c != end)
4735 {
4736 if (bits != NULL)
4737 *bits = -1;
4738 return 0;
4739 }
4740 }
4741 else
4742 --p;
4743
4744 *pp = p;
4745 if (overflow)
4746 {
4747 if (nbits == 0)
4748 {
4749 /* Large decimal constants are an error (because it is hard to
4750 count how many bits are in them). */
4751 if (bits != NULL)
4752 *bits = -1;
4753 return 0;
4754 }
4755
4756 /* -0x7f is the same as 0x80. So deal with it by adding one to
4757 the number of bits. */
4758 if (sign == -1)
4759 ++nbits;
4760 if (bits)
4761 *bits = nbits;
4762 }
4763 else
4764 {
4765 if (bits)
4766 *bits = 0;
4767 return n * sign;
4768 }
4769 /* It's *BITS which has the interesting information. */
4770 return 0;
4771 }
4772
4773 static struct type *
4774 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
4775 {
4776 char *orig_pp = *pp;
4777 int rangenums[2];
4778 long n2, n3;
4779 int n2bits, n3bits;
4780 int self_subrange;
4781 struct type *result_type;
4782 struct type *index_type = NULL;
4783
4784 /* First comes a type we are a subrange of.
4785 In C it is usually 0, 1 or the type being defined. */
4786 if (read_type_number (pp, rangenums) != 0)
4787 return error_type (pp, objfile);
4788 self_subrange = (rangenums[0] == typenums[0] &&
4789 rangenums[1] == typenums[1]);
4790
4791 if (**pp == '=')
4792 {
4793 *pp = orig_pp;
4794 index_type = read_type (pp, objfile);
4795 }
4796
4797 /* A semicolon should now follow; skip it. */
4798 if (**pp == ';')
4799 (*pp)++;
4800
4801 /* The remaining two operands are usually lower and upper bounds
4802 of the range. But in some special cases they mean something else. */
4803 n2 = read_huge_number (pp, ';', &n2bits);
4804 n3 = read_huge_number (pp, ';', &n3bits);
4805
4806 if (n2bits == -1 || n3bits == -1)
4807 return error_type (pp, objfile);
4808
4809 if (index_type)
4810 goto handle_true_range;
4811
4812 /* If limits are huge, must be large integral type. */
4813 if (n2bits != 0 || n3bits != 0)
4814 {
4815 char got_signed = 0;
4816 char got_unsigned = 0;
4817 /* Number of bits in the type. */
4818 int nbits = 0;
4819
4820 /* Range from 0 to <large number> is an unsigned large integral type. */
4821 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4822 {
4823 got_unsigned = 1;
4824 nbits = n3bits;
4825 }
4826 /* Range from <large number> to <large number>-1 is a large signed
4827 integral type. Take care of the case where <large number> doesn't
4828 fit in a long but <large number>-1 does. */
4829 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4830 || (n2bits != 0 && n3bits == 0
4831 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4832 && n3 == LONG_MAX))
4833 {
4834 got_signed = 1;
4835 nbits = n2bits;
4836 }
4837
4838 if (got_signed || got_unsigned)
4839 {
4840 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4841 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4842 objfile);
4843 }
4844 else
4845 return error_type (pp, objfile);
4846 }
4847
4848 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4849 if (self_subrange && n2 == 0 && n3 == 0)
4850 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4851
4852 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4853 is the width in bytes.
4854
4855 Fortran programs appear to use this for complex types also. To
4856 distinguish between floats and complex, g77 (and others?) seem
4857 to use self-subranges for the complexes, and subranges of int for
4858 the floats.
4859
4860 Also note that for complexes, g77 sets n2 to the size of one of
4861 the member floats, not the whole complex beast. My guess is that
4862 this was to work well with pre-COMPLEX versions of gdb. */
4863
4864 if (n3 == 0 && n2 > 0)
4865 {
4866 struct type *float_type
4867 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4868
4869 if (self_subrange)
4870 {
4871 struct type *complex_type =
4872 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4873 TYPE_TARGET_TYPE (complex_type) = float_type;
4874 return complex_type;
4875 }
4876 else
4877 return float_type;
4878 }
4879
4880 /* If the upper bound is -1, it must really be an unsigned int. */
4881
4882 else if (n2 == 0 && n3 == -1)
4883 {
4884 /* It is unsigned int or unsigned long. */
4885 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
4886 compatibility hack. */
4887 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4888 TYPE_FLAG_UNSIGNED, NULL, objfile);
4889 }
4890
4891 /* Special case: char is defined (Who knows why) as a subrange of
4892 itself with range 0-127. */
4893 else if (self_subrange && n2 == 0 && n3 == 127)
4894 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4895
4896 /* We used to do this only for subrange of self or subrange of int. */
4897 else if (n2 == 0)
4898 {
4899 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4900 "unsigned long", and we already checked for that,
4901 so don't need to test for it here. */
4902
4903 if (n3 < 0)
4904 /* n3 actually gives the size. */
4905 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4906 NULL, objfile);
4907
4908 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4909 unsigned n-byte integer. But do require n to be a power of
4910 two; we don't want 3- and 5-byte integers flying around. */
4911 {
4912 int bytes;
4913 unsigned long bits;
4914
4915 bits = n3;
4916 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4917 bits >>= 8;
4918 if (bits == 0
4919 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4920 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4921 objfile);
4922 }
4923 }
4924 /* I think this is for Convex "long long". Since I don't know whether
4925 Convex sets self_subrange, I also accept that particular size regardless
4926 of self_subrange. */
4927 else if (n3 == 0 && n2 < 0
4928 && (self_subrange
4929 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4930 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4931 else if (n2 == -n3 - 1)
4932 {
4933 if (n3 == 0x7f)
4934 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4935 if (n3 == 0x7fff)
4936 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4937 if (n3 == 0x7fffffff)
4938 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4939 }
4940
4941 /* We have a real range type on our hands. Allocate space and
4942 return a real pointer. */
4943 handle_true_range:
4944
4945 if (self_subrange)
4946 index_type = builtin_type_int;
4947 else
4948 index_type = *dbx_lookup_type (rangenums);
4949 if (index_type == NULL)
4950 {
4951 /* Does this actually ever happen? Is that why we are worrying
4952 about dealing with it rather than just calling error_type? */
4953
4954 static struct type *range_type_index;
4955
4956 complaint (&symfile_complaints,
4957 "base type %d of range type is not defined", rangenums[1]);
4958 if (range_type_index == NULL)
4959 range_type_index =
4960 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4961 0, "range type index type", NULL);
4962 index_type = range_type_index;
4963 }
4964
4965 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4966 return (result_type);
4967 }
4968
4969 /* Read in an argument list. This is a list of types, separated by commas
4970 and terminated with END. Return the list of types read in, or (struct type
4971 **)-1 if there is an error. */
4972
4973 static struct field *
4974 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4975 int *varargsp)
4976 {
4977 /* FIXME! Remove this arbitrary limit! */
4978 struct type *types[1024]; /* allow for fns of 1023 parameters */
4979 int n = 0, i;
4980 struct field *rval;
4981
4982 while (**pp != end)
4983 {
4984 if (**pp != ',')
4985 /* Invalid argument list: no ','. */
4986 return (struct field *) -1;
4987 (*pp)++;
4988 STABS_CONTINUE (pp, objfile);
4989 types[n++] = read_type (pp, objfile);
4990 }
4991 (*pp)++; /* get past `end' (the ':' character) */
4992
4993 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4994 *varargsp = 1;
4995 else
4996 {
4997 n--;
4998 *varargsp = 0;
4999 }
5000
5001 rval = (struct field *) xmalloc (n * sizeof (struct field));
5002 memset (rval, 0, n * sizeof (struct field));
5003 for (i = 0; i < n; i++)
5004 rval[i].type = types[i];
5005 *nargsp = n;
5006 return rval;
5007 }
5008 \f
5009 /* Common block handling. */
5010
5011 /* List of symbols declared since the last BCOMM. This list is a tail
5012 of local_symbols. When ECOMM is seen, the symbols on the list
5013 are noted so their proper addresses can be filled in later,
5014 using the common block base address gotten from the assembler
5015 stabs. */
5016
5017 static struct pending *common_block;
5018 static int common_block_i;
5019
5020 /* Name of the current common block. We get it from the BCOMM instead of the
5021 ECOMM to match IBM documentation (even though IBM puts the name both places
5022 like everyone else). */
5023 static char *common_block_name;
5024
5025 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
5026 to remain after this function returns. */
5027
5028 void
5029 common_block_start (char *name, struct objfile *objfile)
5030 {
5031 if (common_block_name != NULL)
5032 {
5033 complaint (&symfile_complaints,
5034 "Invalid symbol data: common block within common block");
5035 }
5036 common_block = local_symbols;
5037 common_block_i = local_symbols ? local_symbols->nsyms : 0;
5038 common_block_name = obsavestring (name, strlen (name),
5039 &objfile->symbol_obstack);
5040 }
5041
5042 /* Process a N_ECOMM symbol. */
5043
5044 void
5045 common_block_end (struct objfile *objfile)
5046 {
5047 /* Symbols declared since the BCOMM are to have the common block
5048 start address added in when we know it. common_block and
5049 common_block_i point to the first symbol after the BCOMM in
5050 the local_symbols list; copy the list and hang it off the
5051 symbol for the common block name for later fixup. */
5052 int i;
5053 struct symbol *sym;
5054 struct pending *new = 0;
5055 struct pending *next;
5056 int j;
5057
5058 if (common_block_name == NULL)
5059 {
5060 complaint (&symfile_complaints, "ECOMM symbol unmatched by BCOMM");
5061 return;
5062 }
5063
5064 sym = (struct symbol *)
5065 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
5066 memset (sym, 0, sizeof (struct symbol));
5067 /* Note: common_block_name already saved on symbol_obstack */
5068 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
5069 SYMBOL_CLASS (sym) = LOC_BLOCK;
5070
5071 /* Now we copy all the symbols which have been defined since the BCOMM. */
5072
5073 /* Copy all the struct pendings before common_block. */
5074 for (next = local_symbols;
5075 next != NULL && next != common_block;
5076 next = next->next)
5077 {
5078 for (j = 0; j < next->nsyms; j++)
5079 add_symbol_to_list (next->symbol[j], &new);
5080 }
5081
5082 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
5083 NULL, it means copy all the local symbols (which we already did
5084 above). */
5085
5086 if (common_block != NULL)
5087 for (j = common_block_i; j < common_block->nsyms; j++)
5088 add_symbol_to_list (common_block->symbol[j], &new);
5089
5090 SYMBOL_TYPE (sym) = (struct type *) new;
5091
5092 /* Should we be putting local_symbols back to what it was?
5093 Does it matter? */
5094
5095 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
5096 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
5097 global_sym_chain[i] = sym;
5098 common_block_name = NULL;
5099 }
5100
5101 /* Add a common block's start address to the offset of each symbol
5102 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5103 the common block name). */
5104
5105 static void
5106 fix_common_block (struct symbol *sym, int valu)
5107 {
5108 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
5109 for (; next; next = next->next)
5110 {
5111 int j;
5112 for (j = next->nsyms - 1; j >= 0; j--)
5113 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5114 }
5115 }
5116 \f
5117
5118
5119 /* What about types defined as forward references inside of a small lexical
5120 scope? */
5121 /* Add a type to the list of undefined types to be checked through
5122 once this file has been read in. */
5123
5124 static void
5125 add_undefined_type (struct type *type)
5126 {
5127 if (undef_types_length == undef_types_allocated)
5128 {
5129 undef_types_allocated *= 2;
5130 undef_types = (struct type **)
5131 xrealloc ((char *) undef_types,
5132 undef_types_allocated * sizeof (struct type *));
5133 }
5134 undef_types[undef_types_length++] = type;
5135 }
5136
5137 /* Go through each undefined type, see if it's still undefined, and fix it
5138 up if possible. We have two kinds of undefined types:
5139
5140 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
5141 Fix: update array length using the element bounds
5142 and the target type's length.
5143 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
5144 yet defined at the time a pointer to it was made.
5145 Fix: Do a full lookup on the struct/union tag. */
5146 void
5147 cleanup_undefined_types (void)
5148 {
5149 struct type **type;
5150
5151 for (type = undef_types; type < undef_types + undef_types_length; type++)
5152 {
5153 switch (TYPE_CODE (*type))
5154 {
5155
5156 case TYPE_CODE_STRUCT:
5157 case TYPE_CODE_UNION:
5158 case TYPE_CODE_ENUM:
5159 {
5160 /* Check if it has been defined since. Need to do this here
5161 as well as in check_typedef to deal with the (legitimate in
5162 C though not C++) case of several types with the same name
5163 in different source files. */
5164 if (TYPE_STUB (*type))
5165 {
5166 struct pending *ppt;
5167 int i;
5168 /* Name of the type, without "struct" or "union" */
5169 char *typename = TYPE_TAG_NAME (*type);
5170
5171 if (typename == NULL)
5172 {
5173 complaint (&symfile_complaints, "need a type name");
5174 break;
5175 }
5176 for (ppt = file_symbols; ppt; ppt = ppt->next)
5177 {
5178 for (i = 0; i < ppt->nsyms; i++)
5179 {
5180 struct symbol *sym = ppt->symbol[i];
5181
5182 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
5183 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5184 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
5185 TYPE_CODE (*type))
5186 && STREQ (DEPRECATED_SYMBOL_NAME (sym), typename))
5187 replace_type (*type, SYMBOL_TYPE (sym));
5188 }
5189 }
5190 }
5191 }
5192 break;
5193
5194 default:
5195 {
5196 complaint (&symfile_complaints,
5197 "GDB internal error. cleanup_undefined_types with bad type %d.",
5198 TYPE_CODE (*type));
5199 }
5200 break;
5201 }
5202 }
5203
5204 undef_types_length = 0;
5205 }
5206
5207 /* Scan through all of the global symbols defined in the object file,
5208 assigning values to the debugging symbols that need to be assigned
5209 to. Get these symbols from the minimal symbol table. */
5210
5211 void
5212 scan_file_globals (struct objfile *objfile)
5213 {
5214 int hash;
5215 struct minimal_symbol *msymbol;
5216 struct symbol *sym, *prev, *rsym;
5217 struct objfile *resolve_objfile;
5218
5219 /* SVR4 based linkers copy referenced global symbols from shared
5220 libraries to the main executable.
5221 If we are scanning the symbols for a shared library, try to resolve
5222 them from the minimal symbols of the main executable first. */
5223
5224 if (symfile_objfile && objfile != symfile_objfile)
5225 resolve_objfile = symfile_objfile;
5226 else
5227 resolve_objfile = objfile;
5228
5229 while (1)
5230 {
5231 /* Avoid expensive loop through all minimal symbols if there are
5232 no unresolved symbols. */
5233 for (hash = 0; hash < HASHSIZE; hash++)
5234 {
5235 if (global_sym_chain[hash])
5236 break;
5237 }
5238 if (hash >= HASHSIZE)
5239 return;
5240
5241 for (msymbol = resolve_objfile->msymbols;
5242 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
5243 msymbol++)
5244 {
5245 QUIT;
5246
5247 /* Skip static symbols. */
5248 switch (MSYMBOL_TYPE (msymbol))
5249 {
5250 case mst_file_text:
5251 case mst_file_data:
5252 case mst_file_bss:
5253 continue;
5254 default:
5255 break;
5256 }
5257
5258 prev = NULL;
5259
5260 /* Get the hash index and check all the symbols
5261 under that hash index. */
5262
5263 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
5264
5265 for (sym = global_sym_chain[hash]; sym;)
5266 {
5267 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
5268 STREQ (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1))
5269 {
5270
5271 struct alias_list *aliases;
5272
5273 /* Splice this symbol out of the hash chain and
5274 assign the value we have to it. */
5275 if (prev)
5276 {
5277 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
5278 }
5279 else
5280 {
5281 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
5282 }
5283
5284 /* Check to see whether we need to fix up a common block. */
5285 /* Note: this code might be executed several times for
5286 the same symbol if there are multiple references. */
5287
5288 /* If symbol has aliases, do minimal symbol fixups for each.
5289 These live aliases/references weren't added to
5290 global_sym_chain hash but may also need to be fixed up. */
5291 /* FIXME: Maybe should have added aliases to the global chain, resolved symbol name, then treated aliases as normal
5292 symbols? Still, we wouldn't want to add_to_list. */
5293 /* Now do the same for each alias of this symbol */
5294 rsym = sym;
5295 aliases = SYMBOL_ALIASES (sym);
5296 while (rsym)
5297 {
5298 if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
5299 {
5300 fix_common_block (rsym,
5301 SYMBOL_VALUE_ADDRESS (msymbol));
5302 }
5303 else
5304 {
5305 SYMBOL_VALUE_ADDRESS (rsym)
5306 = SYMBOL_VALUE_ADDRESS (msymbol);
5307 }
5308 SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
5309 if (aliases)
5310 {
5311 rsym = aliases->sym;
5312 aliases = aliases->next;
5313 }
5314 else
5315 rsym = NULL;
5316 }
5317
5318
5319 if (prev)
5320 {
5321 sym = SYMBOL_VALUE_CHAIN (prev);
5322 }
5323 else
5324 {
5325 sym = global_sym_chain[hash];
5326 }
5327 }
5328 else
5329 {
5330 prev = sym;
5331 sym = SYMBOL_VALUE_CHAIN (sym);
5332 }
5333 }
5334 }
5335 if (resolve_objfile == objfile)
5336 break;
5337 resolve_objfile = objfile;
5338 }
5339
5340 /* Change the storage class of any remaining unresolved globals to
5341 LOC_UNRESOLVED and remove them from the chain. */
5342 for (hash = 0; hash < HASHSIZE; hash++)
5343 {
5344 sym = global_sym_chain[hash];
5345 while (sym)
5346 {
5347 prev = sym;
5348 sym = SYMBOL_VALUE_CHAIN (sym);
5349
5350 /* Change the symbol address from the misleading chain value
5351 to address zero. */
5352 SYMBOL_VALUE_ADDRESS (prev) = 0;
5353
5354 /* Complain about unresolved common block symbols. */
5355 if (SYMBOL_CLASS (prev) == LOC_STATIC)
5356 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
5357 else
5358 complaint (&symfile_complaints,
5359 "%s: common block `%s' from global_sym_chain unresolved",
5360 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
5361 }
5362 }
5363 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5364 }
5365
5366 /* Initialize anything that needs initializing when starting to read
5367 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
5368 to a psymtab. */
5369
5370 void
5371 stabsread_init (void)
5372 {
5373 }
5374
5375 /* Initialize anything that needs initializing when a completely new
5376 symbol file is specified (not just adding some symbols from another
5377 file, e.g. a shared library). */
5378
5379 void
5380 stabsread_new_init (void)
5381 {
5382 /* Empty the hash table of global syms looking for values. */
5383 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5384 }
5385
5386 /* Initialize anything that needs initializing at the same time as
5387 start_symtab() is called. */
5388
5389 void
5390 start_stabs (void)
5391 {
5392 global_stabs = NULL; /* AIX COFF */
5393 /* Leave FILENUM of 0 free for builtin types and this file's types. */
5394 n_this_object_header_files = 1;
5395 type_vector_length = 0;
5396 type_vector = (struct type **) 0;
5397
5398 /* FIXME: If common_block_name is not already NULL, we should complain(). */
5399 common_block_name = NULL;
5400 }
5401
5402 /* Call after end_symtab() */
5403
5404 void
5405 end_stabs (void)
5406 {
5407 if (type_vector)
5408 {
5409 xfree (type_vector);
5410 }
5411 type_vector = 0;
5412 type_vector_length = 0;
5413 previous_stab_code = 0;
5414 }
5415
5416 void
5417 finish_global_stabs (struct objfile *objfile)
5418 {
5419 if (global_stabs)
5420 {
5421 patch_block_stabs (global_symbols, global_stabs, objfile);
5422 xfree (global_stabs);
5423 global_stabs = NULL;
5424 }
5425 }
5426
5427 /* Find the end of the name, delimited by a ':', but don't match
5428 ObjC symbols which look like -[Foo bar::]:bla. */
5429 static char *
5430 find_name_end (char *name)
5431 {
5432 char *s = name;
5433 if (s[0] == '-' || *s == '+')
5434 {
5435 /* Must be an ObjC method symbol. */
5436 if (s[1] != '[')
5437 {
5438 error ("invalid symbol name \"%s\"", name);
5439 }
5440 s = strchr (s, ']');
5441 if (s == NULL)
5442 {
5443 error ("invalid symbol name \"%s\"", name);
5444 }
5445 return strchr (s, ':');
5446 }
5447 else
5448 {
5449 return strchr (s, ':');
5450 }
5451 }
5452
5453 /* Initializer for this module */
5454
5455 void
5456 _initialize_stabsread (void)
5457 {
5458 undef_types_allocated = 20;
5459 undef_types_length = 0;
5460 undef_types = (struct type **)
5461 xmalloc (undef_types_allocated * sizeof (struct type *));
5462 }
This page took 0.140682 seconds and 5 git commands to generate.