* stabsread.c (read_range_type): If !self-subrange and language
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "expression.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
37 #include "libaout.h"
38 #include "aout/aout64.h"
39 #include "gdb-stabs.h"
40 #include "buildsym.h"
41 #include "complaints.h"
42 #include "demangle.h"
43 #include "language.h"
44
45 #include <ctype.h>
46
47 /* Ask stabsread.h to define the vars it normally declares `extern'. */
48 #define EXTERN /**/
49 #include "stabsread.h" /* Our own declarations */
50 #undef EXTERN
51
52 /* The routines that read and process a complete stabs for a C struct or
53 C++ class pass lists of data member fields and lists of member function
54 fields in an instance of a field_info structure, as defined below.
55 This is part of some reorganization of low level C++ support and is
56 expected to eventually go away... (FIXME) */
57
58 struct field_info
59 {
60 struct nextfield
61 {
62 struct nextfield *next;
63
64 /* This is the raw visibility from the stab. It is not checked
65 for being one of the visibilities we recognize, so code which
66 examines this field better be able to deal. */
67 int visibility;
68
69 struct field field;
70 } *list;
71 struct next_fnfieldlist
72 {
73 struct next_fnfieldlist *next;
74 struct fn_fieldlist fn_fieldlist;
75 } *fnlist;
76 };
77
78 static struct type *
79 dbx_alloc_type PARAMS ((int [2], struct objfile *));
80
81 static long read_huge_number PARAMS ((char **, int, int *));
82
83 static struct type *error_type PARAMS ((char **, struct objfile *));
84
85 static void
86 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
87 struct objfile *));
88
89 static void
90 fix_common_block PARAMS ((struct symbol *, int));
91
92 static int
93 read_type_number PARAMS ((char **, int *));
94
95 static struct type *
96 read_range_type PARAMS ((char **, int [2], struct objfile *));
97
98 static struct type *
99 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
100
101 static struct type *
102 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
103
104 static struct type *
105 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
106
107 static struct type *
108 rs6000_builtin_type PARAMS ((int));
109
110 static int
111 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
112 struct objfile *));
113
114 static int
115 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
116 struct objfile *));
117
118 static int
119 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
120 struct objfile *));
121
122 static int
123 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
124 struct objfile *));
125
126 static int
127 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
128
129 static int
130 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
131 struct objfile *));
132
133 static struct type *
134 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
135
136 static struct type *
137 read_array_type PARAMS ((char **, struct type *, struct objfile *));
138
139 static struct type **
140 read_args PARAMS ((char **, int, struct objfile *));
141
142 static int
143 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
144 struct objfile *));
145
146 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
147 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
148
149 /* Define this as 1 if a pcc declaration of a char or short argument
150 gives the correct address. Otherwise assume pcc gives the
151 address of the corresponding int, which is not the same on a
152 big-endian machine. */
153
154 #ifndef BELIEVE_PCC_PROMOTION
155 #define BELIEVE_PCC_PROMOTION 0
156 #endif
157
158 struct complaint invalid_cpp_abbrev_complaint =
159 {"invalid C++ abbreviation `%s'", 0, 0};
160
161 struct complaint invalid_cpp_type_complaint =
162 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
163
164 struct complaint member_fn_complaint =
165 {"member function type missing, got '%c'", 0, 0};
166
167 struct complaint const_vol_complaint =
168 {"const/volatile indicator missing, got '%c'", 0, 0};
169
170 struct complaint error_type_complaint =
171 {"debug info mismatch between compiler and debugger", 0, 0};
172
173 struct complaint invalid_member_complaint =
174 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
175
176 struct complaint range_type_base_complaint =
177 {"base type %d of range type is not defined", 0, 0};
178
179 struct complaint reg_value_complaint =
180 {"register number %d too large (max %d) in symbol %s", 0, 0};
181
182 struct complaint vtbl_notfound_complaint =
183 {"virtual function table pointer not found when defining class `%s'", 0, 0};
184
185 struct complaint unrecognized_cplus_name_complaint =
186 {"Unknown C++ symbol name `%s'", 0, 0};
187
188 struct complaint rs6000_builtin_complaint =
189 {"Unknown builtin type %d", 0, 0};
190
191 struct complaint unresolved_sym_chain_complaint =
192 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
193
194 struct complaint stabs_general_complaint =
195 {"%s", 0, 0};
196
197 /* Make a list of forward references which haven't been defined. */
198
199 static struct type **undef_types;
200 static int undef_types_allocated;
201 static int undef_types_length;
202 static struct symbol *current_symbol = NULL;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211 /* FIXME: These probably should be our own types (like rs6000_builtin_type
212 has its own types) rather than builtin_type_*. */
213 static struct type **os9k_type_vector[] = {
214 0,
215 &builtin_type_int,
216 &builtin_type_char,
217 &builtin_type_long,
218 &builtin_type_short,
219 &builtin_type_unsigned_char,
220 &builtin_type_unsigned_short,
221 &builtin_type_unsigned_long,
222 &builtin_type_unsigned_int,
223 &builtin_type_float,
224 &builtin_type_double,
225 &builtin_type_void,
226 &builtin_type_long_double
227 };
228
229 static void os9k_init_type_vector PARAMS ((struct type **));
230
231 static void
232 os9k_init_type_vector(tv)
233 struct type **tv;
234 {
235 int i;
236 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
237 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
238 }
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 struct type **
248 dbx_lookup_type (typenums)
249 int typenums[2];
250 {
251 register int filenum = typenums[0];
252 register int index = typenums[1];
253 unsigned old_len;
254 register int real_filenum;
255 register struct header_file *f;
256 int f_orig_length;
257
258 if (filenum == -1) /* -1,-1 is for temporary types. */
259 return 0;
260
261 if (filenum < 0 || filenum >= n_this_object_header_files)
262 {
263 static struct complaint msg = {"\
264 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
265 0, 0};
266 complain (&msg, filenum, index, symnum);
267 goto error_return;
268 }
269
270 if (filenum == 0)
271 {
272 if (index < 0)
273 {
274 /* Caller wants address of address of type. We think
275 that negative (rs6k builtin) types will never appear as
276 "lvalues", (nor should they), so we stuff the real type
277 pointer into a temp, and return its address. If referenced,
278 this will do the right thing. */
279 static struct type *temp_type;
280
281 temp_type = rs6000_builtin_type(index);
282 return &temp_type;
283 }
284
285 /* Type is defined outside of header files.
286 Find it in this object file's type vector. */
287 if (index >= type_vector_length)
288 {
289 old_len = type_vector_length;
290 if (old_len == 0)
291 {
292 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
293 type_vector = (struct type **)
294 malloc (type_vector_length * sizeof (struct type *));
295 }
296 while (index >= type_vector_length)
297 {
298 type_vector_length *= 2;
299 }
300 type_vector = (struct type **)
301 xrealloc ((char *) type_vector,
302 (type_vector_length * sizeof (struct type *)));
303 memset (&type_vector[old_len], 0,
304 (type_vector_length - old_len) * sizeof (struct type *));
305
306 if (os9k_stabs)
307 /* Deal with OS9000 fundamental types. */
308 os9k_init_type_vector (type_vector);
309 }
310 return (&type_vector[index]);
311 }
312 else
313 {
314 real_filenum = this_object_header_files[filenum];
315
316 if (real_filenum >= n_header_files)
317 {
318 struct type *temp_type;
319 struct type **temp_type_p;
320
321 warning ("GDB internal error: bad real_filenum");
322
323 error_return:
324 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
325 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
326 *temp_type_p = temp_type;
327 return temp_type_p;
328 }
329
330 f = &header_files[real_filenum];
331
332 f_orig_length = f->length;
333 if (index >= f_orig_length)
334 {
335 while (index >= f->length)
336 {
337 f->length *= 2;
338 }
339 f->vector = (struct type **)
340 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
341 memset (&f->vector[f_orig_length], 0,
342 (f->length - f_orig_length) * sizeof (struct type *));
343 }
344 return (&f->vector[index]);
345 }
346 }
347
348 /* Make sure there is a type allocated for type numbers TYPENUMS
349 and return the type object.
350 This can create an empty (zeroed) type object.
351 TYPENUMS may be (-1, -1) to return a new type object that is not
352 put into the type vector, and so may not be referred to by number. */
353
354 static struct type *
355 dbx_alloc_type (typenums, objfile)
356 int typenums[2];
357 struct objfile *objfile;
358 {
359 register struct type **type_addr;
360
361 if (typenums[0] == -1)
362 {
363 return (alloc_type (objfile));
364 }
365
366 type_addr = dbx_lookup_type (typenums);
367
368 /* If we are referring to a type not known at all yet,
369 allocate an empty type for it.
370 We will fill it in later if we find out how. */
371 if (*type_addr == 0)
372 {
373 *type_addr = alloc_type (objfile);
374 }
375
376 return (*type_addr);
377 }
378
379 /* for all the stabs in a given stab vector, build appropriate types
380 and fix their symbols in given symbol vector. */
381
382 static void
383 patch_block_stabs (symbols, stabs, objfile)
384 struct pending *symbols;
385 struct pending_stabs *stabs;
386 struct objfile *objfile;
387 {
388 int ii;
389 char *name;
390 char *pp;
391 struct symbol *sym;
392
393 if (stabs)
394 {
395
396 /* for all the stab entries, find their corresponding symbols and
397 patch their types! */
398
399 for (ii = 0; ii < stabs->count; ++ii)
400 {
401 name = stabs->stab[ii];
402 pp = (char*) strchr (name, ':');
403 while (pp[1] == ':')
404 {
405 pp += 2;
406 pp = (char *)strchr(pp, ':');
407 }
408 sym = find_symbol_in_list (symbols, name, pp-name);
409 if (!sym)
410 {
411 /* FIXME-maybe: it would be nice if we noticed whether
412 the variable was defined *anywhere*, not just whether
413 it is defined in this compilation unit. But neither
414 xlc or GCC seem to need such a definition, and until
415 we do psymtabs (so that the minimal symbols from all
416 compilation units are available now), I'm not sure
417 how to get the information. */
418
419 /* On xcoff, if a global is defined and never referenced,
420 ld will remove it from the executable. There is then
421 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
422 sym = (struct symbol *)
423 obstack_alloc (&objfile->symbol_obstack,
424 sizeof (struct symbol));
425
426 memset (sym, 0, sizeof (struct symbol));
427 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
428 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
429 SYMBOL_NAME (sym) =
430 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
431 pp += 2;
432 if (*(pp-1) == 'F' || *(pp-1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, &global_symbols);
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp-1) == 'F' || *(pp-1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462
463 \f
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (pp, typenums)
474 register char **pp;
475 register int *typenums;
476 {
477 int nbits;
478 if (**pp == '(')
479 {
480 (*pp)++;
481 typenums[0] = read_huge_number (pp, ',', &nbits);
482 if (nbits != 0) return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits);
484 if (nbits != 0) return -1;
485 }
486 else
487 {
488 typenums[0] = 0;
489 typenums[1] = read_huge_number (pp, 0, &nbits);
490 if (nbits != 0) return -1;
491 }
492 return 0;
493 }
494
495 \f
496 #if !defined (REG_STRUCT_HAS_ADDR)
497 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
498 #endif
499
500 /* ARGSUSED */
501 struct symbol *
502 define_symbol (valu, string, desc, type, objfile)
503 CORE_ADDR valu;
504 char *string;
505 int desc;
506 int type;
507 struct objfile *objfile;
508 {
509 register struct symbol *sym;
510 char *p = (char *) strchr (string, ':');
511 int deftype;
512 int synonym = 0;
513 register int i;
514
515 /* We would like to eliminate nameless symbols, but keep their types.
516 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
517 to type 2, but, should not create a symbol to address that type. Since
518 the symbol will be nameless, there is no way any user can refer to it. */
519
520 int nameless;
521
522 /* Ignore syms with empty names. */
523 if (string[0] == 0)
524 return 0;
525
526 /* Ignore old-style symbols from cc -go */
527 if (p == 0)
528 return 0;
529
530 while (p[1] == ':')
531 {
532 p += 2;
533 p = strchr(p, ':');
534 }
535
536 /* If a nameless stab entry, all we need is the type, not the symbol.
537 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
538 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
539
540 current_symbol = sym = (struct symbol *)
541 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
542 memset (sym, 0, sizeof (struct symbol));
543
544 switch (type & N_TYPE)
545 {
546 case N_TEXT:
547 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
548 break;
549 case N_DATA:
550 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
551 break;
552 case N_BSS:
553 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
554 break;
555 }
556
557 if (processing_gcc_compilation)
558 {
559 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
560 number of bytes occupied by a type or object, which we ignore. */
561 SYMBOL_LINE(sym) = desc;
562 }
563 else
564 {
565 SYMBOL_LINE(sym) = 0; /* unknown */
566 }
567
568 if (string[0] == CPLUS_MARKER)
569 {
570 /* Special GNU C++ names. */
571 switch (string[1])
572 {
573 case 't':
574 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
575 &objfile -> symbol_obstack);
576 break;
577
578 case 'v': /* $vtbl_ptr_type */
579 /* Was: SYMBOL_NAME (sym) = "vptr"; */
580 goto normal;
581
582 case 'e':
583 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
584 &objfile -> symbol_obstack);
585 break;
586
587 case '_':
588 /* This was an anonymous type that was never fixed up. */
589 goto normal;
590
591 #ifdef STATIC_TRANSFORM_NAME
592 case 'X':
593 /* SunPRO (3.0 at least) static variable encoding. */
594 goto normal;
595 #endif
596
597 default:
598 complain (&unrecognized_cplus_name_complaint, string);
599 goto normal; /* Do *something* with it */
600 }
601 }
602 else
603 {
604 normal:
605 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
606 SYMBOL_NAME (sym) = (char *)
607 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
608 /* Open-coded memcpy--saves function call time. */
609 /* FIXME: Does it really? Try replacing with simple strcpy and
610 try it on an executable with a large symbol table. */
611 /* FIXME: considering that gcc can open code memcpy anyway, I
612 doubt it. xoxorich. */
613 {
614 register char *p1 = string;
615 register char *p2 = SYMBOL_NAME (sym);
616 while (p1 != p)
617 {
618 *p2++ = *p1++;
619 }
620 *p2++ = '\0';
621 }
622
623 /* If this symbol is from a C++ compilation, then attempt to cache the
624 demangled form for future reference. This is a typical time versus
625 space tradeoff, that was decided in favor of time because it sped up
626 C++ symbol lookups by a factor of about 20. */
627
628 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
629 }
630 p++;
631
632 /* Determine the type of name being defined. */
633 #if 0
634 /* Getting GDB to correctly skip the symbol on an undefined symbol
635 descriptor and not ever dump core is a very dodgy proposition if
636 we do things this way. I say the acorn RISC machine can just
637 fix their compiler. */
638 /* The Acorn RISC machine's compiler can put out locals that don't
639 start with "234=" or "(3,4)=", so assume anything other than the
640 deftypes we know how to handle is a local. */
641 if (!strchr ("cfFGpPrStTvVXCR", *p))
642 #else
643 if (isdigit (*p) || *p == '(' || *p == '-')
644 #endif
645 deftype = 'l';
646 else
647 deftype = *p++;
648
649 switch (deftype)
650 {
651 case 'c':
652 /* c is a special case, not followed by a type-number.
653 SYMBOL:c=iVALUE for an integer constant symbol.
654 SYMBOL:c=rVALUE for a floating constant symbol.
655 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
656 e.g. "b:c=e6,0" for "const b = blob1"
657 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
658 if (*p != '=')
659 {
660 SYMBOL_CLASS (sym) = LOC_CONST;
661 SYMBOL_TYPE (sym) = error_type (&p, objfile);
662 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
663 add_symbol_to_list (sym, &file_symbols);
664 return sym;
665 }
666 ++p;
667 switch (*p++)
668 {
669 case 'r':
670 {
671 double d = atof (p);
672 char *dbl_valu;
673
674 /* FIXME-if-picky-about-floating-accuracy: Should be using
675 target arithmetic to get the value. real.c in GCC
676 probably has the necessary code. */
677
678 /* FIXME: lookup_fundamental_type is a hack. We should be
679 creating a type especially for the type of float constants.
680 Problem is, what type should it be?
681
682 Also, what should the name of this type be? Should we
683 be using 'S' constants (see stabs.texinfo) instead? */
684
685 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
686 FT_DBL_PREC_FLOAT);
687 dbl_valu = (char *)
688 obstack_alloc (&objfile -> symbol_obstack,
689 TYPE_LENGTH (SYMBOL_TYPE (sym)));
690 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
691 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
692 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
693 }
694 break;
695 case 'i':
696 {
697 /* Defining integer constants this way is kind of silly,
698 since 'e' constants allows the compiler to give not
699 only the value, but the type as well. C has at least
700 int, long, unsigned int, and long long as constant
701 types; other languages probably should have at least
702 unsigned as well as signed constants. */
703
704 /* We just need one int constant type for all objfiles.
705 It doesn't depend on languages or anything (arguably its
706 name should be a language-specific name for a type of
707 that size, but I'm inclined to say that if the compiler
708 wants a nice name for the type, it can use 'e'). */
709 static struct type *int_const_type;
710
711 /* Yes, this is as long as a *host* int. That is because we
712 use atoi. */
713 if (int_const_type == NULL)
714 int_const_type =
715 init_type (TYPE_CODE_INT,
716 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
717 "integer constant",
718 (struct objfile *)NULL);
719 SYMBOL_TYPE (sym) = int_const_type;
720 SYMBOL_VALUE (sym) = atoi (p);
721 SYMBOL_CLASS (sym) = LOC_CONST;
722 }
723 break;
724 case 'e':
725 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
726 can be represented as integral.
727 e.g. "b:c=e6,0" for "const b = blob1"
728 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
729 {
730 SYMBOL_CLASS (sym) = LOC_CONST;
731 SYMBOL_TYPE (sym) = read_type (&p, objfile);
732
733 if (*p != ',')
734 {
735 SYMBOL_TYPE (sym) = error_type (&p, objfile);
736 break;
737 }
738 ++p;
739
740 /* If the value is too big to fit in an int (perhaps because
741 it is unsigned), or something like that, we silently get
742 a bogus value. The type and everything else about it is
743 correct. Ideally, we should be using whatever we have
744 available for parsing unsigned and long long values,
745 however. */
746 SYMBOL_VALUE (sym) = atoi (p);
747 }
748 break;
749 default:
750 {
751 SYMBOL_CLASS (sym) = LOC_CONST;
752 SYMBOL_TYPE (sym) = error_type (&p, objfile);
753 }
754 }
755 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
756 add_symbol_to_list (sym, &file_symbols);
757 return sym;
758
759 case 'C':
760 /* The name of a caught exception. */
761 SYMBOL_TYPE (sym) = read_type (&p, objfile);
762 SYMBOL_CLASS (sym) = LOC_LABEL;
763 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
764 SYMBOL_VALUE_ADDRESS (sym) = valu;
765 add_symbol_to_list (sym, &local_symbols);
766 break;
767
768 case 'f':
769 /* A static function definition. */
770 SYMBOL_TYPE (sym) = read_type (&p, objfile);
771 SYMBOL_CLASS (sym) = LOC_BLOCK;
772 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
773 add_symbol_to_list (sym, &file_symbols);
774 /* fall into process_function_types. */
775
776 process_function_types:
777 /* Function result types are described as the result type in stabs.
778 We need to convert this to the function-returning-type-X type
779 in GDB. E.g. "int" is converted to "function returning int". */
780 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
781 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
782 /* fall into process_prototype_types */
783
784 process_prototype_types:
785 /* Sun acc puts declared types of arguments here. We don't care
786 about their actual types (FIXME -- we should remember the whole
787 function prototype), but the list may define some new types
788 that we have to remember, so we must scan it now. */
789 while (*p == ';') {
790 p++;
791 read_type (&p, objfile);
792 }
793 break;
794
795 case 'F':
796 /* A global function definition. */
797 SYMBOL_TYPE (sym) = read_type (&p, objfile);
798 SYMBOL_CLASS (sym) = LOC_BLOCK;
799 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
800 add_symbol_to_list (sym, &global_symbols);
801 goto process_function_types;
802
803 case 'G':
804 /* For a class G (global) symbol, it appears that the
805 value is not correct. It is necessary to search for the
806 corresponding linker definition to find the value.
807 These definitions appear at the end of the namelist. */
808 SYMBOL_TYPE (sym) = read_type (&p, objfile);
809 i = hashname (SYMBOL_NAME (sym));
810 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
811 global_sym_chain[i] = sym;
812 SYMBOL_CLASS (sym) = LOC_STATIC;
813 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
814 add_symbol_to_list (sym, &global_symbols);
815 break;
816
817 /* This case is faked by a conditional above,
818 when there is no code letter in the dbx data.
819 Dbx data never actually contains 'l'. */
820 case 's':
821 case 'l':
822 SYMBOL_TYPE (sym) = read_type (&p, objfile);
823 SYMBOL_CLASS (sym) = LOC_LOCAL;
824 SYMBOL_VALUE (sym) = valu;
825 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
826 add_symbol_to_list (sym, &local_symbols);
827 break;
828
829 case 'p':
830 if (*p == 'F')
831 /* pF is a two-letter code that means a function parameter in Fortran.
832 The type-number specifies the type of the return value.
833 Translate it into a pointer-to-function type. */
834 {
835 p++;
836 SYMBOL_TYPE (sym)
837 = lookup_pointer_type
838 (lookup_function_type (read_type (&p, objfile)));
839 }
840 else
841 SYMBOL_TYPE (sym) = read_type (&p, objfile);
842
843 /* Normally this is a parameter, a LOC_ARG. On the i960, it
844 can also be a LOC_LOCAL_ARG depending on symbol type. */
845 #ifndef DBX_PARM_SYMBOL_CLASS
846 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
847 #endif
848
849 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
850 SYMBOL_VALUE (sym) = valu;
851 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
852 add_symbol_to_list (sym, &local_symbols);
853
854 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
855 {
856 /* On little-endian machines, this crud is never necessary,
857 and, if the extra bytes contain garbage, is harmful. */
858 break;
859 }
860
861 /* If it's gcc-compiled, if it says `short', believe it. */
862 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
863 break;
864
865 #if !BELIEVE_PCC_PROMOTION
866 {
867 /* This is the signed type which arguments get promoted to. */
868 static struct type *pcc_promotion_type;
869 /* This is the unsigned type which arguments get promoted to. */
870 static struct type *pcc_unsigned_promotion_type;
871
872 /* Call it "int" because this is mainly C lossage. */
873 if (pcc_promotion_type == NULL)
874 pcc_promotion_type =
875 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
876 0, "int", NULL);
877
878 if (pcc_unsigned_promotion_type == NULL)
879 pcc_unsigned_promotion_type =
880 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
881 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
882
883 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
884 /* This macro is defined on machines (e.g. sparc) where
885 we should believe the type of a PCC 'short' argument,
886 but shouldn't believe the address (the address is
887 the address of the corresponding int).
888
889 My guess is that this correction, as opposed to changing
890 the parameter to an 'int' (as done below, for PCC
891 on most machines), is the right thing to do
892 on all machines, but I don't want to risk breaking
893 something that already works. On most PCC machines,
894 the sparc problem doesn't come up because the calling
895 function has to zero the top bytes (not knowing whether
896 the called function wants an int or a short), so there
897 is little practical difference between an int and a short
898 (except perhaps what happens when the GDB user types
899 "print short_arg = 0x10000;").
900
901 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
902 actually produces the correct address (we don't need to fix it
903 up). I made this code adapt so that it will offset the symbol
904 if it was pointing at an int-aligned location and not
905 otherwise. This way you can use the same gdb for 4.0.x and
906 4.1 systems.
907
908 If the parameter is shorter than an int, and is integral
909 (e.g. char, short, or unsigned equivalent), and is claimed to
910 be passed on an integer boundary, don't believe it! Offset the
911 parameter's address to the tail-end of that integer. */
912
913 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
914 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
915 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
916 {
917 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
918 - TYPE_LENGTH (SYMBOL_TYPE (sym));
919 }
920 break;
921
922 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
923
924 /* If PCC says a parameter is a short or a char,
925 it is really an int. */
926 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
927 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
928 {
929 SYMBOL_TYPE (sym) =
930 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
931 ? pcc_unsigned_promotion_type
932 : pcc_promotion_type;
933 }
934 break;
935
936 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
937 }
938 #endif /* !BELIEVE_PCC_PROMOTION. */
939
940 case 'P':
941 /* acc seems to use P to delare the prototypes of functions that
942 are referenced by this file. gdb is not prepared to deal
943 with this extra information. FIXME, it ought to. */
944 if (type == N_FUN)
945 {
946 read_type (&p, objfile);
947 goto process_prototype_types;
948 }
949 /*FALLTHROUGH*/
950
951 case 'R':
952 /* Parameter which is in a register. */
953 SYMBOL_TYPE (sym) = read_type (&p, objfile);
954 SYMBOL_CLASS (sym) = LOC_REGPARM;
955 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
956 if (SYMBOL_VALUE (sym) >= NUM_REGS)
957 {
958 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
959 SYMBOL_SOURCE_NAME (sym));
960 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
961 }
962 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
963 add_symbol_to_list (sym, &local_symbols);
964 break;
965
966 case 'r':
967 /* Register variable (either global or local). */
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969 SYMBOL_CLASS (sym) = LOC_REGISTER;
970 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
971 if (SYMBOL_VALUE (sym) >= NUM_REGS)
972 {
973 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
974 SYMBOL_SOURCE_NAME (sym));
975 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
976 }
977 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
978 if (within_function)
979 {
980 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
981 name to represent an argument passed in a register.
982 GCC uses 'P' for the same case. So if we find such a symbol pair
983 we combine it into one 'P' symbol. For Sun cc we need to do this
984 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
985 the 'p' symbol even if it never saves the argument onto the stack.
986
987 On most machines, we want to preserve both symbols, so that
988 we can still get information about what is going on with the
989 stack (VAX for computing args_printed, using stack slots instead
990 of saved registers in backtraces, etc.).
991
992 Note that this code illegally combines
993 main(argc) struct foo argc; { register struct foo argc; }
994 but this case is considered pathological and causes a warning
995 from a decent compiler. */
996
997 if (local_symbols
998 && local_symbols->nsyms > 0
999 #ifndef USE_REGISTER_NOT_ARG
1000 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1001 SYMBOL_TYPE (sym))
1002 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1003 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1004 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1005 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1006 #endif
1007 )
1008 {
1009 struct symbol *prev_sym;
1010 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1011 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1012 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1013 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1014 {
1015 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1016 /* Use the type from the LOC_REGISTER; that is the type
1017 that is actually in that register. */
1018 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1019 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1020 sym = prev_sym;
1021 break;
1022 }
1023 }
1024 add_symbol_to_list (sym, &local_symbols);
1025 }
1026 else
1027 add_symbol_to_list (sym, &file_symbols);
1028 break;
1029
1030 case 'S':
1031 /* Static symbol at top level of file */
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033 SYMBOL_CLASS (sym) = LOC_STATIC;
1034 SYMBOL_VALUE_ADDRESS (sym) = valu;
1035 #ifdef STATIC_TRANSFORM_NAME
1036 if (SYMBOL_NAME (sym)[0] == '$')
1037 {
1038 struct minimal_symbol *msym;
1039 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1040 if (msym != NULL)
1041 {
1042 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1043 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1044 }
1045 }
1046 #endif
1047 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1048 add_symbol_to_list (sym, &file_symbols);
1049 break;
1050
1051 case 't':
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053
1054 /* For a nameless type, we don't want a create a symbol, thus we
1055 did not use `sym'. Return without further processing. */
1056 if (nameless) return NULL;
1057
1058 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1059 SYMBOL_VALUE (sym) = valu;
1060 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1061 /* C++ vagaries: we may have a type which is derived from
1062 a base type which did not have its name defined when the
1063 derived class was output. We fill in the derived class's
1064 base part member's name here in that case. */
1065 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1066 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1067 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1068 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1069 {
1070 int j;
1071 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1072 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1073 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1074 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1075 }
1076
1077 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1078 {
1079 /* gcc-2.6 or later (when using -fvtable-thunks)
1080 emits a unique named type for a vtable entry.
1081 Some gdb code depends on that specific name. */
1082 extern const char vtbl_ptr_name[];
1083
1084 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1085 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1086 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1087 {
1088 /* If we are giving a name to a type such as "pointer to
1089 foo" or "function returning foo", we better not set
1090 the TYPE_NAME. If the program contains "typedef char
1091 *caddr_t;", we don't want all variables of type char
1092 * to print as caddr_t. This is not just a
1093 consequence of GDB's type management; PCC and GCC (at
1094 least through version 2.4) both output variables of
1095 either type char * or caddr_t with the type number
1096 defined in the 't' symbol for caddr_t. If a future
1097 compiler cleans this up it GDB is not ready for it
1098 yet, but if it becomes ready we somehow need to
1099 disable this check (without breaking the PCC/GCC2.4
1100 case).
1101
1102 Sigh.
1103
1104 Fortunately, this check seems not to be necessary
1105 for anything except pointers or functions. */
1106 }
1107 else
1108 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1109 }
1110
1111 add_symbol_to_list (sym, &file_symbols);
1112 break;
1113
1114 case 'T':
1115 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1116 by 't' which means we are typedef'ing it as well. */
1117 synonym = *p == 't';
1118
1119 if (synonym)
1120 p++;
1121 /* The semantics of C++ state that "struct foo { ... }" also defines
1122 a typedef for "foo". Unfortunately, cfront never makes the typedef
1123 when translating C++ into C. We make the typedef here so that
1124 "ptype foo" works as expected for cfront translated code. */
1125 else if (current_subfile->language == language_cplus)
1126 synonym = 1;
1127
1128 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1129
1130 /* For a nameless type, we don't want a create a symbol, thus we
1131 did not use `sym'. Return without further processing. */
1132 if (nameless) return NULL;
1133
1134 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1135 SYMBOL_VALUE (sym) = valu;
1136 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1137 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1138 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1139 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1140 add_symbol_to_list (sym, &file_symbols);
1141
1142 if (synonym)
1143 {
1144 /* Clone the sym and then modify it. */
1145 register struct symbol *typedef_sym = (struct symbol *)
1146 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1147 *typedef_sym = *sym;
1148 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1149 SYMBOL_VALUE (typedef_sym) = valu;
1150 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1151 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1152 TYPE_NAME (SYMBOL_TYPE (sym))
1153 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1154 add_symbol_to_list (typedef_sym, &file_symbols);
1155 }
1156 break;
1157
1158 case 'V':
1159 /* Static symbol of local scope */
1160 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1161 SYMBOL_CLASS (sym) = LOC_STATIC;
1162 SYMBOL_VALUE_ADDRESS (sym) = valu;
1163 #ifdef STATIC_TRANSFORM_NAME
1164 if (SYMBOL_NAME (sym)[0] == '$')
1165 {
1166 struct minimal_symbol *msym;
1167 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1168 if (msym != NULL)
1169 {
1170 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1171 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1172 }
1173 }
1174 #endif
1175 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1176 if (os9k_stabs)
1177 add_symbol_to_list (sym, &global_symbols);
1178 else
1179 add_symbol_to_list (sym, &local_symbols);
1180 break;
1181
1182 case 'v':
1183 /* Reference parameter */
1184 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1185 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1186 SYMBOL_VALUE (sym) = valu;
1187 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1188 add_symbol_to_list (sym, &local_symbols);
1189 break;
1190
1191 case 'a':
1192 /* Reference parameter which is in a register. */
1193 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1194 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1195 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1196 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1197 {
1198 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1199 SYMBOL_SOURCE_NAME (sym));
1200 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1201 }
1202 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1203 add_symbol_to_list (sym, &local_symbols);
1204 break;
1205
1206 case 'X':
1207 /* This is used by Sun FORTRAN for "function result value".
1208 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1209 that Pascal uses it too, but when I tried it Pascal used
1210 "x:3" (local symbol) instead. */
1211 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1212 SYMBOL_CLASS (sym) = LOC_LOCAL;
1213 SYMBOL_VALUE (sym) = valu;
1214 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1215 add_symbol_to_list (sym, &local_symbols);
1216 break;
1217
1218 default:
1219 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1220 SYMBOL_CLASS (sym) = LOC_CONST;
1221 SYMBOL_VALUE (sym) = 0;
1222 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1223 add_symbol_to_list (sym, &file_symbols);
1224 break;
1225 }
1226
1227 /* When passing structures to a function, some systems sometimes pass
1228 the address in a register, not the structure itself. */
1229
1230 if (REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1231 SYMBOL_TYPE (sym))
1232 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1233 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1234 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1235 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET)))
1236 {
1237 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to
1238 convert LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
1239 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1240 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1241 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1242 subsequent arguments on the sparc, for example). */
1243 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1244 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1245 }
1246
1247 return sym;
1248 }
1249
1250 \f
1251 /* Skip rest of this symbol and return an error type.
1252
1253 General notes on error recovery: error_type always skips to the
1254 end of the symbol (modulo cretinous dbx symbol name continuation).
1255 Thus code like this:
1256
1257 if (*(*pp)++ != ';')
1258 return error_type (pp, objfile);
1259
1260 is wrong because if *pp starts out pointing at '\0' (typically as the
1261 result of an earlier error), it will be incremented to point to the
1262 start of the next symbol, which might produce strange results, at least
1263 if you run off the end of the string table. Instead use
1264
1265 if (**pp != ';')
1266 return error_type (pp, objfile);
1267 ++*pp;
1268
1269 or
1270
1271 if (**pp != ';')
1272 foo = error_type (pp, objfile);
1273 else
1274 ++*pp;
1275
1276 And in case it isn't obvious, the point of all this hair is so the compiler
1277 can define new types and new syntaxes, and old versions of the
1278 debugger will be able to read the new symbol tables. */
1279
1280 static struct type *
1281 error_type (pp, objfile)
1282 char **pp;
1283 struct objfile *objfile;
1284 {
1285 complain (&error_type_complaint);
1286 while (1)
1287 {
1288 /* Skip to end of symbol. */
1289 while (**pp != '\0')
1290 {
1291 (*pp)++;
1292 }
1293
1294 /* Check for and handle cretinous dbx symbol name continuation! */
1295 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1296 {
1297 *pp = next_symbol_text (objfile);
1298 }
1299 else
1300 {
1301 break;
1302 }
1303 }
1304 return (builtin_type_error);
1305 }
1306
1307 \f
1308 /* Read type information or a type definition; return the type. Even
1309 though this routine accepts either type information or a type
1310 definition, the distinction is relevant--some parts of stabsread.c
1311 assume that type information starts with a digit, '-', or '(' in
1312 deciding whether to call read_type. */
1313
1314 struct type *
1315 read_type (pp, objfile)
1316 register char **pp;
1317 struct objfile *objfile;
1318 {
1319 register struct type *type = 0;
1320 struct type *type1;
1321 int typenums[2];
1322 int xtypenums[2];
1323 char type_descriptor;
1324
1325 /* Size in bits of type if specified by a type attribute, or -1 if
1326 there is no size attribute. */
1327 int type_size = -1;
1328
1329 /* Used to distinguish string and bitstring from char-array and set. */
1330 int is_string = 0;
1331
1332 /* Read type number if present. The type number may be omitted.
1333 for instance in a two-dimensional array declared with type
1334 "ar1;1;10;ar1;1;10;4". */
1335 if ((**pp >= '0' && **pp <= '9')
1336 || **pp == '('
1337 || **pp == '-')
1338 {
1339 if (read_type_number (pp, typenums) != 0)
1340 return error_type (pp, objfile);
1341
1342 /* Type is not being defined here. Either it already exists,
1343 or this is a forward reference to it. dbx_alloc_type handles
1344 both cases. */
1345 if (**pp != '=')
1346 return dbx_alloc_type (typenums, objfile);
1347
1348 /* Type is being defined here. */
1349 /* Skip the '='. */
1350 ++(*pp);
1351
1352 while (**pp == '@')
1353 {
1354 char *p = *pp + 1;
1355 /* It might be a type attribute or a member type. */
1356 if (isdigit (*p) || *p == '(' || *p == '-')
1357 /* Member type. */
1358 break;
1359 else
1360 {
1361 /* Type attributes. */
1362 char *attr = p;
1363
1364 /* Skip to the semicolon. */
1365 while (*p != ';' && *p != '\0')
1366 ++p;
1367 *pp = p;
1368 if (*p == '\0')
1369 return error_type (pp, objfile);
1370 else
1371 /* Skip the semicolon. */
1372 ++*pp;
1373
1374 switch (*attr)
1375 {
1376 case 's':
1377 type_size = atoi (attr + 1);
1378 if (type_size <= 0)
1379 type_size = -1;
1380 break;
1381
1382 case 'S':
1383 is_string = 1;
1384 break;
1385
1386 default:
1387 /* Ignore unrecognized type attributes, so future compilers
1388 can invent new ones. */
1389 break;
1390 }
1391 }
1392 }
1393 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1394 ++(*pp);
1395 }
1396 else
1397 {
1398 /* 'typenums=' not present, type is anonymous. Read and return
1399 the definition, but don't put it in the type vector. */
1400 typenums[0] = typenums[1] = -1;
1401 (*pp)++;
1402 }
1403
1404 type_descriptor = (*pp)[-1];
1405 switch (type_descriptor)
1406 {
1407 case 'x':
1408 {
1409 enum type_code code;
1410
1411 /* Used to index through file_symbols. */
1412 struct pending *ppt;
1413 int i;
1414
1415 /* Name including "struct", etc. */
1416 char *type_name;
1417
1418 {
1419 char *from, *to, *p, *q1, *q2;
1420
1421 /* Set the type code according to the following letter. */
1422 switch ((*pp)[0])
1423 {
1424 case 's':
1425 code = TYPE_CODE_STRUCT;
1426 break;
1427 case 'u':
1428 code = TYPE_CODE_UNION;
1429 break;
1430 case 'e':
1431 code = TYPE_CODE_ENUM;
1432 break;
1433 default:
1434 {
1435 /* Complain and keep going, so compilers can invent new
1436 cross-reference types. */
1437 static struct complaint msg =
1438 {"Unrecognized cross-reference type `%c'", 0, 0};
1439 complain (&msg, (*pp)[0]);
1440 code = TYPE_CODE_STRUCT;
1441 break;
1442 }
1443 }
1444
1445 q1 = strchr(*pp, '<');
1446 p = strchr(*pp, ':');
1447 if (p == NULL)
1448 return error_type (pp, objfile);
1449 while (q1 && p > q1 && p[1] == ':')
1450 {
1451 q2 = strchr(q1, '>');
1452 if (!q2 || q2 < p)
1453 break;
1454 p += 2;
1455 p = strchr(p, ':');
1456 if (p == NULL)
1457 return error_type (pp, objfile);
1458 }
1459 to = type_name =
1460 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1461
1462 /* Copy the name. */
1463 from = *pp + 1;
1464 while (from < p)
1465 *to++ = *from++;
1466 *to = '\0';
1467
1468 /* Set the pointer ahead of the name which we just read, and
1469 the colon. */
1470 *pp = from + 1;
1471 }
1472
1473 /* Now check to see whether the type has already been
1474 declared. This was written for arrays of cross-referenced
1475 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1476 sure it is not necessary anymore. But it might be a good
1477 idea, to save a little memory. */
1478
1479 for (ppt = file_symbols; ppt; ppt = ppt->next)
1480 for (i = 0; i < ppt->nsyms; i++)
1481 {
1482 struct symbol *sym = ppt->symbol[i];
1483
1484 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1485 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1486 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1487 && STREQ (SYMBOL_NAME (sym), type_name))
1488 {
1489 obstack_free (&objfile -> type_obstack, type_name);
1490 type = SYMBOL_TYPE (sym);
1491 return type;
1492 }
1493 }
1494
1495 /* Didn't find the type to which this refers, so we must
1496 be dealing with a forward reference. Allocate a type
1497 structure for it, and keep track of it so we can
1498 fill in the rest of the fields when we get the full
1499 type. */
1500 type = dbx_alloc_type (typenums, objfile);
1501 TYPE_CODE (type) = code;
1502 TYPE_TAG_NAME (type) = type_name;
1503 INIT_CPLUS_SPECIFIC(type);
1504 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1505
1506 add_undefined_type (type);
1507 return type;
1508 }
1509
1510 case '-': /* RS/6000 built-in type */
1511 case '0':
1512 case '1':
1513 case '2':
1514 case '3':
1515 case '4':
1516 case '5':
1517 case '6':
1518 case '7':
1519 case '8':
1520 case '9':
1521 case '(':
1522
1523 {
1524 char *pp_saved;
1525
1526 (*pp)--;
1527 pp_saved = *pp;
1528
1529 /* Peek ahead at the number to detect void. */
1530 if (read_type_number (pp, xtypenums) != 0)
1531 return error_type (pp, objfile);
1532
1533 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1534 /* It's being defined as itself. That means it is "void". */
1535 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1536 else
1537 {
1538 struct type *xtype;
1539
1540 /* Go back to the number and have read_type get it. This means
1541 that we can deal with something like t(1,2)=(3,4)=... which
1542 the Lucid compiler uses. */
1543 *pp = pp_saved;
1544 xtype = read_type (pp, objfile);
1545
1546 /* The type is being defined to another type. So we copy the type.
1547 This loses if we copy a C++ class and so we lose track of how
1548 the names are mangled (but g++ doesn't output stabs like this
1549 now anyway). */
1550
1551 type = alloc_type (objfile);
1552 if (SYMBOL_LINE (current_symbol) == 0)
1553 {
1554 *type = *xtype;
1555 /* The idea behind clearing the names is that the only purpose
1556 for defining a type to another type is so that the name of
1557 one can be different. So we probably don't need to worry
1558 much about the case where the compiler doesn't give a name
1559 to the new type. */
1560 TYPE_NAME (type) = NULL;
1561 TYPE_TAG_NAME (type) = NULL;
1562 }
1563 else
1564 {
1565 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1566 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1567 TYPE_TARGET_TYPE (type) = xtype;
1568 }
1569 }
1570 if (typenums[0] != -1)
1571 *dbx_lookup_type (typenums) = type;
1572 break;
1573 }
1574
1575 /* In the following types, we must be sure to overwrite any existing
1576 type that the typenums refer to, rather than allocating a new one
1577 and making the typenums point to the new one. This is because there
1578 may already be pointers to the existing type (if it had been
1579 forward-referenced), and we must change it to a pointer, function,
1580 reference, or whatever, *in-place*. */
1581
1582 case '*':
1583 type1 = read_type (pp, objfile);
1584 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1585 break;
1586
1587 case '&': /* Reference to another type */
1588 type1 = read_type (pp, objfile);
1589 type = make_reference_type (type1, dbx_lookup_type (typenums));
1590 break;
1591
1592 case 'f': /* Function returning another type */
1593 if (os9k_stabs && **pp == '(')
1594 {
1595 /* Function prototype; parse it.
1596 We must conditionalize this on os9k_stabs because otherwise
1597 it could be confused with a Sun-style (1,3) typenumber
1598 (I think). */
1599 struct type *t;
1600 ++*pp;
1601 while (**pp != ')')
1602 {
1603 t = read_type(pp, objfile);
1604 if (**pp == ',') ++*pp;
1605 }
1606 }
1607 type1 = read_type (pp, objfile);
1608 type = make_function_type (type1, dbx_lookup_type (typenums));
1609 break;
1610
1611 case 'k': /* Const qualifier on some type (Sun) */
1612 case 'c': /* Const qualifier on some type (OS9000) */
1613 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1614 only accept 'c' in the os9k_stabs case. */
1615 if (type_descriptor == 'c' && !os9k_stabs)
1616 return error_type (pp, objfile);
1617 type = read_type (pp, objfile);
1618 /* FIXME! For now, we ignore const and volatile qualifiers. */
1619 break;
1620
1621 case 'B': /* Volatile qual on some type (Sun) */
1622 case 'i': /* Volatile qual on some type (OS9000) */
1623 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1624 only accept 'i' in the os9k_stabs case. */
1625 if (type_descriptor == 'i' && !os9k_stabs)
1626 return error_type (pp, objfile);
1627 type = read_type (pp, objfile);
1628 /* FIXME! For now, we ignore const and volatile qualifiers. */
1629 break;
1630
1631 /* FIXME -- we should be doing smash_to_XXX types here. */
1632 case '@': /* Member (class & variable) type */
1633 {
1634 struct type *domain = read_type (pp, objfile);
1635 struct type *memtype;
1636
1637 if (**pp != ',')
1638 /* Invalid member type data format. */
1639 return error_type (pp, objfile);
1640 ++*pp;
1641
1642 memtype = read_type (pp, objfile);
1643 type = dbx_alloc_type (typenums, objfile);
1644 smash_to_member_type (type, domain, memtype);
1645 }
1646 break;
1647
1648 case '#': /* Method (class & fn) type */
1649 if ((*pp)[0] == '#')
1650 {
1651 /* We'll get the parameter types from the name. */
1652 struct type *return_type;
1653
1654 (*pp)++;
1655 return_type = read_type (pp, objfile);
1656 if (*(*pp)++ != ';')
1657 complain (&invalid_member_complaint, symnum);
1658 type = allocate_stub_method (return_type);
1659 if (typenums[0] != -1)
1660 *dbx_lookup_type (typenums) = type;
1661 }
1662 else
1663 {
1664 struct type *domain = read_type (pp, objfile);
1665 struct type *return_type;
1666 struct type **args;
1667
1668 if (**pp != ',')
1669 /* Invalid member type data format. */
1670 return error_type (pp, objfile);
1671 else
1672 ++(*pp);
1673
1674 return_type = read_type (pp, objfile);
1675 args = read_args (pp, ';', objfile);
1676 type = dbx_alloc_type (typenums, objfile);
1677 smash_to_method_type (type, domain, return_type, args);
1678 }
1679 break;
1680
1681 case 'r': /* Range type */
1682 type = read_range_type (pp, typenums, objfile);
1683 if (typenums[0] != -1)
1684 *dbx_lookup_type (typenums) = type;
1685 break;
1686
1687 case 'b':
1688 if (os9k_stabs)
1689 /* Const and volatile qualified type. */
1690 type = read_type (pp, objfile);
1691 else
1692 {
1693 /* Sun ACC builtin int type */
1694 type = read_sun_builtin_type (pp, typenums, objfile);
1695 if (typenums[0] != -1)
1696 *dbx_lookup_type (typenums) = type;
1697 }
1698 break;
1699
1700 case 'R': /* Sun ACC builtin float type */
1701 type = read_sun_floating_type (pp, typenums, objfile);
1702 if (typenums[0] != -1)
1703 *dbx_lookup_type (typenums) = type;
1704 break;
1705
1706 case 'e': /* Enumeration type */
1707 type = dbx_alloc_type (typenums, objfile);
1708 type = read_enum_type (pp, type, objfile);
1709 if (typenums[0] != -1)
1710 *dbx_lookup_type (typenums) = type;
1711 break;
1712
1713 case 's': /* Struct type */
1714 case 'u': /* Union type */
1715 type = dbx_alloc_type (typenums, objfile);
1716 switch (type_descriptor)
1717 {
1718 case 's':
1719 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1720 break;
1721 case 'u':
1722 TYPE_CODE (type) = TYPE_CODE_UNION;
1723 break;
1724 }
1725 type = read_struct_type (pp, type, objfile);
1726 break;
1727
1728 case 'a': /* Array type */
1729 if (**pp != 'r')
1730 return error_type (pp, objfile);
1731 ++*pp;
1732
1733 type = dbx_alloc_type (typenums, objfile);
1734 type = read_array_type (pp, type, objfile);
1735 if (is_string)
1736 TYPE_CODE (type) = TYPE_CODE_STRING;
1737 break;
1738
1739 case 'S':
1740 type1 = read_type (pp, objfile);
1741 type = create_set_type ((struct type*) NULL, type1);
1742 if (is_string)
1743 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1744 if (typenums[0] != -1)
1745 *dbx_lookup_type (typenums) = type;
1746 break;
1747
1748 default:
1749 --*pp; /* Go back to the symbol in error */
1750 /* Particularly important if it was \0! */
1751 return error_type (pp, objfile);
1752 }
1753
1754 if (type == 0)
1755 {
1756 warning ("GDB internal error, type is NULL in stabsread.c\n");
1757 return error_type (pp, objfile);
1758 }
1759
1760 /* Size specified in a type attribute overrides any other size. */
1761 if (type_size != -1)
1762 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1763
1764 return type;
1765 }
1766 \f
1767 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1768 Return the proper type node for a given builtin type number. */
1769
1770 static struct type *
1771 rs6000_builtin_type (typenum)
1772 int typenum;
1773 {
1774 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1775 #define NUMBER_RECOGNIZED 34
1776 /* This includes an empty slot for type number -0. */
1777 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1778 struct type *rettype = NULL;
1779
1780 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1781 {
1782 complain (&rs6000_builtin_complaint, typenum);
1783 return builtin_type_error;
1784 }
1785 if (negative_types[-typenum] != NULL)
1786 return negative_types[-typenum];
1787
1788 #if TARGET_CHAR_BIT != 8
1789 #error This code wrong for TARGET_CHAR_BIT not 8
1790 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1791 that if that ever becomes not true, the correct fix will be to
1792 make the size in the struct type to be in bits, not in units of
1793 TARGET_CHAR_BIT. */
1794 #endif
1795
1796 switch (-typenum)
1797 {
1798 case 1:
1799 /* The size of this and all the other types are fixed, defined
1800 by the debugging format. If there is a type called "int" which
1801 is other than 32 bits, then it should use a new negative type
1802 number (or avoid negative type numbers for that case).
1803 See stabs.texinfo. */
1804 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1805 break;
1806 case 2:
1807 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1808 break;
1809 case 3:
1810 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1811 break;
1812 case 4:
1813 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1814 break;
1815 case 5:
1816 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1817 "unsigned char", NULL);
1818 break;
1819 case 6:
1820 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1821 break;
1822 case 7:
1823 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1824 "unsigned short", NULL);
1825 break;
1826 case 8:
1827 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1828 "unsigned int", NULL);
1829 break;
1830 case 9:
1831 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1832 "unsigned", NULL);
1833 case 10:
1834 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1835 "unsigned long", NULL);
1836 break;
1837 case 11:
1838 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1839 break;
1840 case 12:
1841 /* IEEE single precision (32 bit). */
1842 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1843 break;
1844 case 13:
1845 /* IEEE double precision (64 bit). */
1846 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1847 break;
1848 case 14:
1849 /* This is an IEEE double on the RS/6000, and different machines with
1850 different sizes for "long double" should use different negative
1851 type numbers. See stabs.texinfo. */
1852 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1853 break;
1854 case 15:
1855 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1856 break;
1857 case 16:
1858 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1859 "boolean", NULL);
1860 break;
1861 case 17:
1862 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1863 break;
1864 case 18:
1865 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1866 break;
1867 case 19:
1868 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1869 break;
1870 case 20:
1871 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1872 "character", NULL);
1873 break;
1874 case 21:
1875 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1876 "logical*1", NULL);
1877 break;
1878 case 22:
1879 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1880 "logical*2", NULL);
1881 break;
1882 case 23:
1883 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1884 "logical*4", NULL);
1885 break;
1886 case 24:
1887 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1888 "logical", NULL);
1889 break;
1890 case 25:
1891 /* Complex type consisting of two IEEE single precision values. */
1892 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1893 break;
1894 case 26:
1895 /* Complex type consisting of two IEEE double precision values. */
1896 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1897 break;
1898 case 27:
1899 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1900 break;
1901 case 28:
1902 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1903 break;
1904 case 29:
1905 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1906 break;
1907 case 30:
1908 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1909 break;
1910 case 31:
1911 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
1912 break;
1913 case 32:
1914 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1915 "unsigned long long", NULL);
1916 break;
1917 case 33:
1918 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1919 "logical*8", NULL);
1920 break;
1921 case 34:
1922 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
1923 break;
1924 }
1925 negative_types[-typenum] = rettype;
1926 return rettype;
1927 }
1928 \f
1929 /* This page contains subroutines of read_type. */
1930
1931 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1932 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1933 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1934 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1935
1936 /* Read member function stabs info for C++ classes. The form of each member
1937 function data is:
1938
1939 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1940
1941 An example with two member functions is:
1942
1943 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1944
1945 For the case of overloaded operators, the format is op$::*.funcs, where
1946 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1947 name (such as `+=') and `.' marks the end of the operator name.
1948
1949 Returns 1 for success, 0 for failure. */
1950
1951 static int
1952 read_member_functions (fip, pp, type, objfile)
1953 struct field_info *fip;
1954 char **pp;
1955 struct type *type;
1956 struct objfile *objfile;
1957 {
1958 int nfn_fields = 0;
1959 int length = 0;
1960 /* Total number of member functions defined in this class. If the class
1961 defines two `f' functions, and one `g' function, then this will have
1962 the value 3. */
1963 int total_length = 0;
1964 int i;
1965 struct next_fnfield
1966 {
1967 struct next_fnfield *next;
1968 struct fn_field fn_field;
1969 } *sublist;
1970 struct type *look_ahead_type;
1971 struct next_fnfieldlist *new_fnlist;
1972 struct next_fnfield *new_sublist;
1973 char *main_fn_name;
1974 register char *p;
1975
1976 /* Process each list until we find something that is not a member function
1977 or find the end of the functions. */
1978
1979 while (**pp != ';')
1980 {
1981 /* We should be positioned at the start of the function name.
1982 Scan forward to find the first ':' and if it is not the
1983 first of a "::" delimiter, then this is not a member function. */
1984 p = *pp;
1985 while (*p != ':')
1986 {
1987 p++;
1988 }
1989 if (p[1] != ':')
1990 {
1991 break;
1992 }
1993
1994 sublist = NULL;
1995 look_ahead_type = NULL;
1996 length = 0;
1997
1998 new_fnlist = (struct next_fnfieldlist *)
1999 xmalloc (sizeof (struct next_fnfieldlist));
2000 make_cleanup (free, new_fnlist);
2001 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2002
2003 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
2004 {
2005 /* This is a completely wierd case. In order to stuff in the
2006 names that might contain colons (the usual name delimiter),
2007 Mike Tiemann defined a different name format which is
2008 signalled if the identifier is "op$". In that case, the
2009 format is "op$::XXXX." where XXXX is the name. This is
2010 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2011 /* This lets the user type "break operator+".
2012 We could just put in "+" as the name, but that wouldn't
2013 work for "*". */
2014 static char opname[32] = {'o', 'p', CPLUS_MARKER};
2015 char *o = opname + 3;
2016
2017 /* Skip past '::'. */
2018 *pp = p + 2;
2019
2020 STABS_CONTINUE (pp, objfile);
2021 p = *pp;
2022 while (*p != '.')
2023 {
2024 *o++ = *p++;
2025 }
2026 main_fn_name = savestring (opname, o - opname);
2027 /* Skip past '.' */
2028 *pp = p + 1;
2029 }
2030 else
2031 {
2032 main_fn_name = savestring (*pp, p - *pp);
2033 /* Skip past '::'. */
2034 *pp = p + 2;
2035 }
2036 new_fnlist -> fn_fieldlist.name = main_fn_name;
2037
2038 do
2039 {
2040 new_sublist =
2041 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2042 make_cleanup (free, new_sublist);
2043 memset (new_sublist, 0, sizeof (struct next_fnfield));
2044
2045 /* Check for and handle cretinous dbx symbol name continuation! */
2046 if (look_ahead_type == NULL)
2047 {
2048 /* Normal case. */
2049 STABS_CONTINUE (pp, objfile);
2050
2051 new_sublist -> fn_field.type = read_type (pp, objfile);
2052 if (**pp != ':')
2053 {
2054 /* Invalid symtab info for member function. */
2055 return 0;
2056 }
2057 }
2058 else
2059 {
2060 /* g++ version 1 kludge */
2061 new_sublist -> fn_field.type = look_ahead_type;
2062 look_ahead_type = NULL;
2063 }
2064
2065 (*pp)++;
2066 p = *pp;
2067 while (*p != ';')
2068 {
2069 p++;
2070 }
2071
2072 /* If this is just a stub, then we don't have the real name here. */
2073
2074 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2075 {
2076 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2077 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2078 new_sublist -> fn_field.is_stub = 1;
2079 }
2080 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2081 *pp = p + 1;
2082
2083 /* Set this member function's visibility fields. */
2084 switch (*(*pp)++)
2085 {
2086 case VISIBILITY_PRIVATE:
2087 new_sublist -> fn_field.is_private = 1;
2088 break;
2089 case VISIBILITY_PROTECTED:
2090 new_sublist -> fn_field.is_protected = 1;
2091 break;
2092 }
2093
2094 STABS_CONTINUE (pp, objfile);
2095 switch (**pp)
2096 {
2097 case 'A': /* Normal functions. */
2098 new_sublist -> fn_field.is_const = 0;
2099 new_sublist -> fn_field.is_volatile = 0;
2100 (*pp)++;
2101 break;
2102 case 'B': /* `const' member functions. */
2103 new_sublist -> fn_field.is_const = 1;
2104 new_sublist -> fn_field.is_volatile = 0;
2105 (*pp)++;
2106 break;
2107 case 'C': /* `volatile' member function. */
2108 new_sublist -> fn_field.is_const = 0;
2109 new_sublist -> fn_field.is_volatile = 1;
2110 (*pp)++;
2111 break;
2112 case 'D': /* `const volatile' member function. */
2113 new_sublist -> fn_field.is_const = 1;
2114 new_sublist -> fn_field.is_volatile = 1;
2115 (*pp)++;
2116 break;
2117 case '*': /* File compiled with g++ version 1 -- no info */
2118 case '?':
2119 case '.':
2120 break;
2121 default:
2122 complain (&const_vol_complaint, **pp);
2123 break;
2124 }
2125
2126 switch (*(*pp)++)
2127 {
2128 case '*':
2129 {
2130 int nbits;
2131 /* virtual member function, followed by index.
2132 The sign bit is set to distinguish pointers-to-methods
2133 from virtual function indicies. Since the array is
2134 in words, the quantity must be shifted left by 1
2135 on 16 bit machine, and by 2 on 32 bit machine, forcing
2136 the sign bit out, and usable as a valid index into
2137 the array. Remove the sign bit here. */
2138 new_sublist -> fn_field.voffset =
2139 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2140 if (nbits != 0)
2141 return 0;
2142
2143 STABS_CONTINUE (pp, objfile);
2144 if (**pp == ';' || **pp == '\0')
2145 {
2146 /* Must be g++ version 1. */
2147 new_sublist -> fn_field.fcontext = 0;
2148 }
2149 else
2150 {
2151 /* Figure out from whence this virtual function came.
2152 It may belong to virtual function table of
2153 one of its baseclasses. */
2154 look_ahead_type = read_type (pp, objfile);
2155 if (**pp == ':')
2156 {
2157 /* g++ version 1 overloaded methods. */
2158 }
2159 else
2160 {
2161 new_sublist -> fn_field.fcontext = look_ahead_type;
2162 if (**pp != ';')
2163 {
2164 return 0;
2165 }
2166 else
2167 {
2168 ++*pp;
2169 }
2170 look_ahead_type = NULL;
2171 }
2172 }
2173 break;
2174 }
2175 case '?':
2176 /* static member function. */
2177 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2178 if (strncmp (new_sublist -> fn_field.physname,
2179 main_fn_name, strlen (main_fn_name)))
2180 {
2181 new_sublist -> fn_field.is_stub = 1;
2182 }
2183 break;
2184
2185 default:
2186 /* error */
2187 complain (&member_fn_complaint, (*pp)[-1]);
2188 /* Fall through into normal member function. */
2189
2190 case '.':
2191 /* normal member function. */
2192 new_sublist -> fn_field.voffset = 0;
2193 new_sublist -> fn_field.fcontext = 0;
2194 break;
2195 }
2196
2197 new_sublist -> next = sublist;
2198 sublist = new_sublist;
2199 length++;
2200 STABS_CONTINUE (pp, objfile);
2201 }
2202 while (**pp != ';' && **pp != '\0');
2203
2204 (*pp)++;
2205
2206 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2207 obstack_alloc (&objfile -> type_obstack,
2208 sizeof (struct fn_field) * length);
2209 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2210 sizeof (struct fn_field) * length);
2211 for (i = length; (i--, sublist); sublist = sublist -> next)
2212 {
2213 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2214 }
2215
2216 new_fnlist -> fn_fieldlist.length = length;
2217 new_fnlist -> next = fip -> fnlist;
2218 fip -> fnlist = new_fnlist;
2219 nfn_fields++;
2220 total_length += length;
2221 STABS_CONTINUE (pp, objfile);
2222 }
2223
2224 if (nfn_fields)
2225 {
2226 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2227 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2228 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2229 memset (TYPE_FN_FIELDLISTS (type), 0,
2230 sizeof (struct fn_fieldlist) * nfn_fields);
2231 TYPE_NFN_FIELDS (type) = nfn_fields;
2232 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2233 }
2234
2235 return 1;
2236 }
2237
2238 /* Special GNU C++ name.
2239
2240 Returns 1 for success, 0 for failure. "failure" means that we can't
2241 keep parsing and it's time for error_type(). */
2242
2243 static int
2244 read_cpp_abbrev (fip, pp, type, objfile)
2245 struct field_info *fip;
2246 char **pp;
2247 struct type *type;
2248 struct objfile *objfile;
2249 {
2250 register char *p;
2251 char *name;
2252 char cpp_abbrev;
2253 struct type *context;
2254
2255 p = *pp;
2256 if (*++p == 'v')
2257 {
2258 name = NULL;
2259 cpp_abbrev = *++p;
2260
2261 *pp = p + 1;
2262
2263 /* At this point, *pp points to something like "22:23=*22...",
2264 where the type number before the ':' is the "context" and
2265 everything after is a regular type definition. Lookup the
2266 type, find it's name, and construct the field name. */
2267
2268 context = read_type (pp, objfile);
2269
2270 switch (cpp_abbrev)
2271 {
2272 case 'f': /* $vf -- a virtual function table pointer */
2273 fip->list->field.name =
2274 obconcat (&objfile->type_obstack, vptr_name, "", "");
2275 break;
2276
2277 case 'b': /* $vb -- a virtual bsomethingorother */
2278 name = type_name_no_tag (context);
2279 if (name == NULL)
2280 {
2281 complain (&invalid_cpp_type_complaint, symnum);
2282 name = "FOO";
2283 }
2284 fip->list->field.name =
2285 obconcat (&objfile->type_obstack, vb_name, name, "");
2286 break;
2287
2288 default:
2289 complain (&invalid_cpp_abbrev_complaint, *pp);
2290 fip->list->field.name =
2291 obconcat (&objfile->type_obstack,
2292 "INVALID_CPLUSPLUS_ABBREV", "", "");
2293 break;
2294 }
2295
2296 /* At this point, *pp points to the ':'. Skip it and read the
2297 field type. */
2298
2299 p = ++(*pp);
2300 if (p[-1] != ':')
2301 {
2302 complain (&invalid_cpp_abbrev_complaint, *pp);
2303 return 0;
2304 }
2305 fip->list->field.type = read_type (pp, objfile);
2306 if (**pp == ',')
2307 (*pp)++; /* Skip the comma. */
2308 else
2309 return 0;
2310
2311 {
2312 int nbits;
2313 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2314 if (nbits != 0)
2315 return 0;
2316 }
2317 /* This field is unpacked. */
2318 fip->list->field.bitsize = 0;
2319 fip->list->visibility = VISIBILITY_PRIVATE;
2320 }
2321 else
2322 {
2323 complain (&invalid_cpp_abbrev_complaint, *pp);
2324 /* We have no idea what syntax an unrecognized abbrev would have, so
2325 better return 0. If we returned 1, we would need to at least advance
2326 *pp to avoid an infinite loop. */
2327 return 0;
2328 }
2329 return 1;
2330 }
2331
2332 static void
2333 read_one_struct_field (fip, pp, p, type, objfile)
2334 struct field_info *fip;
2335 char **pp;
2336 char *p;
2337 struct type *type;
2338 struct objfile *objfile;
2339 {
2340 /* The following is code to work around cfront generated stabs.
2341 The stabs contains full mangled name for each field.
2342 We try to demangle the name and extract the field name out of it.
2343 */
2344 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
2345 {
2346 char save_p;
2347 char *dem, *dem_p;
2348 save_p = *p;
2349 *p = '\0';
2350 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
2351 if (dem != NULL)
2352 {
2353 dem_p = strrchr (dem, ':');
2354 if (dem_p != 0 && *(dem_p-1)==':')
2355 dem_p++;
2356 fip->list->field.name =
2357 obsavestring (dem_p, strlen(dem_p), &objfile -> type_obstack);
2358 }
2359 else
2360 {
2361 fip->list->field.name =
2362 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2363 }
2364 *p = save_p;
2365 }
2366 /* end of code for cfront work around */
2367
2368 else
2369 fip -> list -> field.name =
2370 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2371 *pp = p + 1;
2372
2373 /* This means we have a visibility for a field coming. */
2374 if (**pp == '/')
2375 {
2376 (*pp)++;
2377 fip -> list -> visibility = *(*pp)++;
2378 }
2379 else
2380 {
2381 /* normal dbx-style format, no explicit visibility */
2382 fip -> list -> visibility = VISIBILITY_PUBLIC;
2383 }
2384
2385 fip -> list -> field.type = read_type (pp, objfile);
2386 if (**pp == ':')
2387 {
2388 p = ++(*pp);
2389 #if 0
2390 /* Possible future hook for nested types. */
2391 if (**pp == '!')
2392 {
2393 fip -> list -> field.bitpos = (long)-2; /* nested type */
2394 p = ++(*pp);
2395 }
2396 else
2397 #endif
2398 {
2399 /* Static class member. */
2400 fip -> list -> field.bitpos = (long) -1;
2401 }
2402 while (*p != ';')
2403 {
2404 p++;
2405 }
2406 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2407 *pp = p + 1;
2408 return;
2409 }
2410 else if (**pp != ',')
2411 {
2412 /* Bad structure-type format. */
2413 complain (&stabs_general_complaint, "bad structure-type format");
2414 return;
2415 }
2416
2417 (*pp)++; /* Skip the comma. */
2418
2419 {
2420 int nbits;
2421 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2422 if (nbits != 0)
2423 {
2424 complain (&stabs_general_complaint, "bad structure-type format");
2425 return;
2426 }
2427 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2428 if (nbits != 0)
2429 {
2430 complain (&stabs_general_complaint, "bad structure-type format");
2431 return;
2432 }
2433 }
2434
2435 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2436 {
2437 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2438 it is a field which has been optimized out. The correct stab for
2439 this case is to use VISIBILITY_IGNORE, but that is a recent
2440 invention. (2) It is a 0-size array. For example
2441 union { int num; char str[0]; } foo. Printing "<no value>" for
2442 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2443 will continue to work, and a 0-size array as a whole doesn't
2444 have any contents to print.
2445
2446 I suspect this probably could also happen with gcc -gstabs (not
2447 -gstabs+) for static fields, and perhaps other C++ extensions.
2448 Hopefully few people use -gstabs with gdb, since it is intended
2449 for dbx compatibility. */
2450
2451 /* Ignore this field. */
2452 fip -> list-> visibility = VISIBILITY_IGNORE;
2453 }
2454 else
2455 {
2456 /* Detect an unpacked field and mark it as such.
2457 dbx gives a bit size for all fields.
2458 Note that forward refs cannot be packed,
2459 and treat enums as if they had the width of ints. */
2460
2461 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2462 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_BOOL
2463 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2464 {
2465 fip -> list -> field.bitsize = 0;
2466 }
2467 if ((fip -> list -> field.bitsize
2468 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2469 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2470 && (fip -> list -> field.bitsize
2471 == TARGET_INT_BIT)
2472 )
2473 )
2474 &&
2475 fip -> list -> field.bitpos % 8 == 0)
2476 {
2477 fip -> list -> field.bitsize = 0;
2478 }
2479 }
2480 }
2481
2482
2483 /* Read struct or class data fields. They have the form:
2484
2485 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2486
2487 At the end, we see a semicolon instead of a field.
2488
2489 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2490 a static field.
2491
2492 The optional VISIBILITY is one of:
2493
2494 '/0' (VISIBILITY_PRIVATE)
2495 '/1' (VISIBILITY_PROTECTED)
2496 '/2' (VISIBILITY_PUBLIC)
2497 '/9' (VISIBILITY_IGNORE)
2498
2499 or nothing, for C style fields with public visibility.
2500
2501 Returns 1 for success, 0 for failure. */
2502
2503 static int
2504 read_struct_fields (fip, pp, type, objfile)
2505 struct field_info *fip;
2506 char **pp;
2507 struct type *type;
2508 struct objfile *objfile;
2509 {
2510 register char *p;
2511 struct nextfield *new;
2512
2513 /* We better set p right now, in case there are no fields at all... */
2514
2515 p = *pp;
2516
2517 /* Read each data member type until we find the terminating ';' at the end of
2518 the data member list, or break for some other reason such as finding the
2519 start of the member function list. */
2520
2521 while (**pp != ';')
2522 {
2523 if (os9k_stabs && **pp == ',') break;
2524 STABS_CONTINUE (pp, objfile);
2525 /* Get space to record the next field's data. */
2526 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2527 make_cleanup (free, new);
2528 memset (new, 0, sizeof (struct nextfield));
2529 new -> next = fip -> list;
2530 fip -> list = new;
2531
2532 /* Get the field name. */
2533 p = *pp;
2534
2535 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2536 unless the CPLUS_MARKER is followed by an underscore, in
2537 which case it is just the name of an anonymous type, which we
2538 should handle like any other type name. We accept either '$'
2539 or '.', because a field name can never contain one of these
2540 characters except as a CPLUS_MARKER (we probably should be
2541 doing that in most parts of GDB). */
2542
2543 if ((*p == '$' || *p == '.') && p[1] != '_')
2544 {
2545 if (!read_cpp_abbrev (fip, pp, type, objfile))
2546 return 0;
2547 continue;
2548 }
2549
2550 /* Look for the ':' that separates the field name from the field
2551 values. Data members are delimited by a single ':', while member
2552 functions are delimited by a pair of ':'s. When we hit the member
2553 functions (if any), terminate scan loop and return. */
2554
2555 while (*p != ':' && *p != '\0')
2556 {
2557 p++;
2558 }
2559 if (*p == '\0')
2560 return 0;
2561
2562 /* Check to see if we have hit the member functions yet. */
2563 if (p[1] == ':')
2564 {
2565 break;
2566 }
2567 read_one_struct_field (fip, pp, p, type, objfile);
2568 }
2569 if (p[0] == ':' && p[1] == ':')
2570 {
2571 /* chill the list of fields: the last entry (at the head) is a
2572 partially constructed entry which we now scrub. */
2573 fip -> list = fip -> list -> next;
2574 }
2575 return 1;
2576 }
2577
2578 /* The stabs for C++ derived classes contain baseclass information which
2579 is marked by a '!' character after the total size. This function is
2580 called when we encounter the baseclass marker, and slurps up all the
2581 baseclass information.
2582
2583 Immediately following the '!' marker is the number of base classes that
2584 the class is derived from, followed by information for each base class.
2585 For each base class, there are two visibility specifiers, a bit offset
2586 to the base class information within the derived class, a reference to
2587 the type for the base class, and a terminating semicolon.
2588
2589 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2590 ^^ ^ ^ ^ ^ ^ ^
2591 Baseclass information marker __________________|| | | | | | |
2592 Number of baseclasses __________________________| | | | | | |
2593 Visibility specifiers (2) ________________________| | | | | |
2594 Offset in bits from start of class _________________| | | | |
2595 Type number for base class ___________________________| | | |
2596 Visibility specifiers (2) _______________________________| | |
2597 Offset in bits from start of class ________________________| |
2598 Type number of base class ____________________________________|
2599
2600 Return 1 for success, 0 for (error-type-inducing) failure. */
2601
2602 static int
2603 read_baseclasses (fip, pp, type, objfile)
2604 struct field_info *fip;
2605 char **pp;
2606 struct type *type;
2607 struct objfile *objfile;
2608 {
2609 int i;
2610 struct nextfield *new;
2611
2612 if (**pp != '!')
2613 {
2614 return 1;
2615 }
2616 else
2617 {
2618 /* Skip the '!' baseclass information marker. */
2619 (*pp)++;
2620 }
2621
2622 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2623 {
2624 int nbits;
2625 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2626 if (nbits != 0)
2627 return 0;
2628 }
2629
2630 #if 0
2631 /* Some stupid compilers have trouble with the following, so break
2632 it up into simpler expressions. */
2633 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2634 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2635 #else
2636 {
2637 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2638 char *pointer;
2639
2640 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2641 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2642 }
2643 #endif /* 0 */
2644
2645 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2646
2647 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2648 {
2649 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2650 make_cleanup (free, new);
2651 memset (new, 0, sizeof (struct nextfield));
2652 new -> next = fip -> list;
2653 fip -> list = new;
2654 new -> field.bitsize = 0; /* this should be an unpacked field! */
2655
2656 STABS_CONTINUE (pp, objfile);
2657 switch (**pp)
2658 {
2659 case '0':
2660 /* Nothing to do. */
2661 break;
2662 case '1':
2663 SET_TYPE_FIELD_VIRTUAL (type, i);
2664 break;
2665 default:
2666 /* Unknown character. Complain and treat it as non-virtual. */
2667 {
2668 static struct complaint msg = {
2669 "Unknown virtual character `%c' for baseclass", 0, 0};
2670 complain (&msg, **pp);
2671 }
2672 }
2673 ++(*pp);
2674
2675 new -> visibility = *(*pp)++;
2676 switch (new -> visibility)
2677 {
2678 case VISIBILITY_PRIVATE:
2679 case VISIBILITY_PROTECTED:
2680 case VISIBILITY_PUBLIC:
2681 break;
2682 default:
2683 /* Bad visibility format. Complain and treat it as
2684 public. */
2685 {
2686 static struct complaint msg = {
2687 "Unknown visibility `%c' for baseclass", 0, 0};
2688 complain (&msg, new -> visibility);
2689 new -> visibility = VISIBILITY_PUBLIC;
2690 }
2691 }
2692
2693 {
2694 int nbits;
2695
2696 /* The remaining value is the bit offset of the portion of the object
2697 corresponding to this baseclass. Always zero in the absence of
2698 multiple inheritance. */
2699
2700 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2701 if (nbits != 0)
2702 return 0;
2703 }
2704
2705 /* The last piece of baseclass information is the type of the
2706 base class. Read it, and remember it's type name as this
2707 field's name. */
2708
2709 new -> field.type = read_type (pp, objfile);
2710 new -> field.name = type_name_no_tag (new -> field.type);
2711
2712 /* skip trailing ';' and bump count of number of fields seen */
2713 if (**pp == ';')
2714 (*pp)++;
2715 else
2716 return 0;
2717 }
2718 return 1;
2719 }
2720
2721 /* The tail end of stabs for C++ classes that contain a virtual function
2722 pointer contains a tilde, a %, and a type number.
2723 The type number refers to the base class (possibly this class itself) which
2724 contains the vtable pointer for the current class.
2725
2726 This function is called when we have parsed all the method declarations,
2727 so we can look for the vptr base class info. */
2728
2729 static int
2730 read_tilde_fields (fip, pp, type, objfile)
2731 struct field_info *fip;
2732 char **pp;
2733 struct type *type;
2734 struct objfile *objfile;
2735 {
2736 register char *p;
2737
2738 STABS_CONTINUE (pp, objfile);
2739
2740 /* If we are positioned at a ';', then skip it. */
2741 if (**pp == ';')
2742 {
2743 (*pp)++;
2744 }
2745
2746 if (**pp == '~')
2747 {
2748 (*pp)++;
2749
2750 if (**pp == '=' || **pp == '+' || **pp == '-')
2751 {
2752 /* Obsolete flags that used to indicate the presence
2753 of constructors and/or destructors. */
2754 (*pp)++;
2755 }
2756
2757 /* Read either a '%' or the final ';'. */
2758 if (*(*pp)++ == '%')
2759 {
2760 /* The next number is the type number of the base class
2761 (possibly our own class) which supplies the vtable for
2762 this class. Parse it out, and search that class to find
2763 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2764 and TYPE_VPTR_FIELDNO. */
2765
2766 struct type *t;
2767 int i;
2768
2769 t = read_type (pp, objfile);
2770 p = (*pp)++;
2771 while (*p != '\0' && *p != ';')
2772 {
2773 p++;
2774 }
2775 if (*p == '\0')
2776 {
2777 /* Premature end of symbol. */
2778 return 0;
2779 }
2780
2781 TYPE_VPTR_BASETYPE (type) = t;
2782 if (type == t) /* Our own class provides vtbl ptr */
2783 {
2784 for (i = TYPE_NFIELDS (t) - 1;
2785 i >= TYPE_N_BASECLASSES (t);
2786 --i)
2787 {
2788 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2789 sizeof (vptr_name) - 1))
2790 {
2791 TYPE_VPTR_FIELDNO (type) = i;
2792 goto gotit;
2793 }
2794 }
2795 /* Virtual function table field not found. */
2796 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2797 return 0;
2798 }
2799 else
2800 {
2801 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2802 }
2803
2804 gotit:
2805 *pp = p + 1;
2806 }
2807 }
2808 return 1;
2809 }
2810
2811 static int
2812 attach_fn_fields_to_type (fip, type)
2813 struct field_info *fip;
2814 register struct type *type;
2815 {
2816 register int n;
2817
2818 for (n = TYPE_NFN_FIELDS (type);
2819 fip -> fnlist != NULL;
2820 fip -> fnlist = fip -> fnlist -> next)
2821 {
2822 --n; /* Circumvent Sun3 compiler bug */
2823 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2824 }
2825 return 1;
2826 }
2827
2828 /* Create the vector of fields, and record how big it is.
2829 We need this info to record proper virtual function table information
2830 for this class's virtual functions. */
2831
2832 static int
2833 attach_fields_to_type (fip, type, objfile)
2834 struct field_info *fip;
2835 register struct type *type;
2836 struct objfile *objfile;
2837 {
2838 register int nfields = 0;
2839 register int non_public_fields = 0;
2840 register struct nextfield *scan;
2841
2842 /* Count up the number of fields that we have, as well as taking note of
2843 whether or not there are any non-public fields, which requires us to
2844 allocate and build the private_field_bits and protected_field_bits
2845 bitfields. */
2846
2847 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2848 {
2849 nfields++;
2850 if (scan -> visibility != VISIBILITY_PUBLIC)
2851 {
2852 non_public_fields++;
2853 }
2854 }
2855
2856 /* Now we know how many fields there are, and whether or not there are any
2857 non-public fields. Record the field count, allocate space for the
2858 array of fields, and create blank visibility bitfields if necessary. */
2859
2860 TYPE_NFIELDS (type) = nfields;
2861 TYPE_FIELDS (type) = (struct field *)
2862 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2863 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2864
2865 if (non_public_fields)
2866 {
2867 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2868
2869 TYPE_FIELD_PRIVATE_BITS (type) =
2870 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2871 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2872
2873 TYPE_FIELD_PROTECTED_BITS (type) =
2874 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2875 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2876
2877 TYPE_FIELD_IGNORE_BITS (type) =
2878 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2879 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2880 }
2881
2882 /* Copy the saved-up fields into the field vector. Start from the head
2883 of the list, adding to the tail of the field array, so that they end
2884 up in the same order in the array in which they were added to the list. */
2885
2886 while (nfields-- > 0)
2887 {
2888 TYPE_FIELD (type, nfields) = fip -> list -> field;
2889 switch (fip -> list -> visibility)
2890 {
2891 case VISIBILITY_PRIVATE:
2892 SET_TYPE_FIELD_PRIVATE (type, nfields);
2893 break;
2894
2895 case VISIBILITY_PROTECTED:
2896 SET_TYPE_FIELD_PROTECTED (type, nfields);
2897 break;
2898
2899 case VISIBILITY_IGNORE:
2900 SET_TYPE_FIELD_IGNORE (type, nfields);
2901 break;
2902
2903 case VISIBILITY_PUBLIC:
2904 break;
2905
2906 default:
2907 /* Unknown visibility. Complain and treat it as public. */
2908 {
2909 static struct complaint msg = {
2910 "Unknown visibility `%c' for field", 0, 0};
2911 complain (&msg, fip -> list -> visibility);
2912 }
2913 break;
2914 }
2915 fip -> list = fip -> list -> next;
2916 }
2917 return 1;
2918 }
2919
2920 /* Read the description of a structure (or union type) and return an object
2921 describing the type.
2922
2923 PP points to a character pointer that points to the next unconsumed token
2924 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2925 *PP will point to "4a:1,0,32;;".
2926
2927 TYPE points to an incomplete type that needs to be filled in.
2928
2929 OBJFILE points to the current objfile from which the stabs information is
2930 being read. (Note that it is redundant in that TYPE also contains a pointer
2931 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2932 */
2933
2934 static struct type *
2935 read_struct_type (pp, type, objfile)
2936 char **pp;
2937 struct type *type;
2938 struct objfile *objfile;
2939 {
2940 struct cleanup *back_to;
2941 struct field_info fi;
2942
2943 fi.list = NULL;
2944 fi.fnlist = NULL;
2945
2946 back_to = make_cleanup (null_cleanup, 0);
2947
2948 INIT_CPLUS_SPECIFIC (type);
2949 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2950
2951 /* First comes the total size in bytes. */
2952
2953 {
2954 int nbits;
2955 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2956 if (nbits != 0)
2957 return error_type (pp, objfile);
2958 }
2959
2960 /* Now read the baseclasses, if any, read the regular C struct or C++
2961 class member fields, attach the fields to the type, read the C++
2962 member functions, attach them to the type, and then read any tilde
2963 field (baseclass specifier for the class holding the main vtable). */
2964
2965 if (!read_baseclasses (&fi, pp, type, objfile)
2966 || !read_struct_fields (&fi, pp, type, objfile)
2967 || !attach_fields_to_type (&fi, type, objfile)
2968 || !read_member_functions (&fi, pp, type, objfile)
2969 || !attach_fn_fields_to_type (&fi, type)
2970 || !read_tilde_fields (&fi, pp, type, objfile))
2971 {
2972 type = error_type (pp, objfile);
2973 }
2974
2975 do_cleanups (back_to);
2976 return (type);
2977 }
2978
2979 /* Read a definition of an array type,
2980 and create and return a suitable type object.
2981 Also creates a range type which represents the bounds of that
2982 array. */
2983
2984 static struct type *
2985 read_array_type (pp, type, objfile)
2986 register char **pp;
2987 register struct type *type;
2988 struct objfile *objfile;
2989 {
2990 struct type *index_type, *element_type, *range_type;
2991 int lower, upper;
2992 int adjustable = 0;
2993 int nbits;
2994
2995 /* Format of an array type:
2996 "ar<index type>;lower;upper;<array_contents_type>".
2997 OS9000: "arlower,upper;<array_contents_type>".
2998
2999 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3000 for these, produce a type like float[][]. */
3001
3002 if (os9k_stabs)
3003 index_type = builtin_type_int;
3004 else
3005 {
3006 index_type = read_type (pp, objfile);
3007 if (**pp != ';')
3008 /* Improper format of array type decl. */
3009 return error_type (pp, objfile);
3010 ++*pp;
3011 }
3012
3013 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3014 {
3015 (*pp)++;
3016 adjustable = 1;
3017 }
3018 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
3019 if (nbits != 0)
3020 return error_type (pp, objfile);
3021
3022 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3023 {
3024 (*pp)++;
3025 adjustable = 1;
3026 }
3027 upper = read_huge_number (pp, ';', &nbits);
3028 if (nbits != 0)
3029 return error_type (pp, objfile);
3030
3031 element_type = read_type (pp, objfile);
3032
3033 if (adjustable)
3034 {
3035 lower = 0;
3036 upper = -1;
3037 }
3038
3039 range_type =
3040 create_range_type ((struct type *) NULL, index_type, lower, upper);
3041 type = create_array_type (type, element_type, range_type);
3042
3043 return type;
3044 }
3045
3046
3047 /* Read a definition of an enumeration type,
3048 and create and return a suitable type object.
3049 Also defines the symbols that represent the values of the type. */
3050
3051 static struct type *
3052 read_enum_type (pp, type, objfile)
3053 register char **pp;
3054 register struct type *type;
3055 struct objfile *objfile;
3056 {
3057 register char *p;
3058 char *name;
3059 register long n;
3060 register struct symbol *sym;
3061 int nsyms = 0;
3062 struct pending **symlist;
3063 struct pending *osyms, *syms;
3064 int o_nsyms;
3065 int nbits;
3066 int unsigned_enum = 1;
3067
3068 #if 0
3069 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3070 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3071 to do? For now, force all enum values to file scope. */
3072 if (within_function)
3073 symlist = &local_symbols;
3074 else
3075 #endif
3076 symlist = &file_symbols;
3077 osyms = *symlist;
3078 o_nsyms = osyms ? osyms->nsyms : 0;
3079
3080 if (os9k_stabs)
3081 {
3082 /* Size. Perhaps this does not have to be conditionalized on
3083 os9k_stabs (assuming the name of an enum constant can't start
3084 with a digit). */
3085 read_huge_number (pp, 0, &nbits);
3086 if (nbits != 0)
3087 return error_type (pp, objfile);
3088 }
3089
3090 /* The aix4 compiler emits an extra field before the enum members;
3091 my guess is it's a type of some sort. Just ignore it. */
3092 if (**pp == '-')
3093 {
3094 /* Skip over the type. */
3095 while (**pp != ':')
3096 (*pp)++;
3097
3098 /* Skip over the colon. */
3099 (*pp)++;
3100 }
3101
3102 /* Read the value-names and their values.
3103 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3104 A semicolon or comma instead of a NAME means the end. */
3105 while (**pp && **pp != ';' && **pp != ',')
3106 {
3107 STABS_CONTINUE (pp, objfile);
3108 p = *pp;
3109 while (*p != ':') p++;
3110 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3111 *pp = p + 1;
3112 n = read_huge_number (pp, ',', &nbits);
3113 if (nbits != 0)
3114 return error_type (pp, objfile);
3115
3116 sym = (struct symbol *)
3117 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3118 memset (sym, 0, sizeof (struct symbol));
3119 SYMBOL_NAME (sym) = name;
3120 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3121 SYMBOL_CLASS (sym) = LOC_CONST;
3122 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3123 SYMBOL_VALUE (sym) = n;
3124 if (n < 0)
3125 unsigned_enum = 0;
3126 add_symbol_to_list (sym, symlist);
3127 nsyms++;
3128 }
3129
3130 if (**pp == ';')
3131 (*pp)++; /* Skip the semicolon. */
3132
3133 /* Now fill in the fields of the type-structure. */
3134
3135 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3136 TYPE_CODE (type) = TYPE_CODE_ENUM;
3137 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3138 if (unsigned_enum)
3139 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3140 TYPE_NFIELDS (type) = nsyms;
3141 TYPE_FIELDS (type) = (struct field *)
3142 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3143 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3144
3145 /* Find the symbols for the values and put them into the type.
3146 The symbols can be found in the symlist that we put them on
3147 to cause them to be defined. osyms contains the old value
3148 of that symlist; everything up to there was defined by us. */
3149 /* Note that we preserve the order of the enum constants, so
3150 that in something like "enum {FOO, LAST_THING=FOO}" we print
3151 FOO, not LAST_THING. */
3152
3153 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3154 {
3155 int last = syms == osyms ? o_nsyms : 0;
3156 int j = syms->nsyms;
3157 for (; --j >= last; --n)
3158 {
3159 struct symbol *xsym = syms->symbol[j];
3160 SYMBOL_TYPE (xsym) = type;
3161 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3162 TYPE_FIELD_VALUE (type, n) = 0;
3163 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3164 TYPE_FIELD_BITSIZE (type, n) = 0;
3165 }
3166 if (syms == osyms)
3167 break;
3168 }
3169
3170 return type;
3171 }
3172
3173 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3174 typedefs in every file (for int, long, etc):
3175
3176 type = b <signed> <width>; <offset>; <nbits>
3177 signed = u or s. Possible c in addition to u or s (for char?).
3178 offset = offset from high order bit to start bit of type.
3179 width is # bytes in object of this type, nbits is # bits in type.
3180
3181 The width/offset stuff appears to be for small objects stored in
3182 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3183 FIXME. */
3184
3185 static struct type *
3186 read_sun_builtin_type (pp, typenums, objfile)
3187 char **pp;
3188 int typenums[2];
3189 struct objfile *objfile;
3190 {
3191 int type_bits;
3192 int nbits;
3193 int signed_type;
3194
3195 switch (**pp)
3196 {
3197 case 's':
3198 signed_type = 1;
3199 break;
3200 case 'u':
3201 signed_type = 0;
3202 break;
3203 default:
3204 return error_type (pp, objfile);
3205 }
3206 (*pp)++;
3207
3208 /* For some odd reason, all forms of char put a c here. This is strange
3209 because no other type has this honor. We can safely ignore this because
3210 we actually determine 'char'acterness by the number of bits specified in
3211 the descriptor. */
3212
3213 if (**pp == 'c')
3214 (*pp)++;
3215
3216 /* The first number appears to be the number of bytes occupied
3217 by this type, except that unsigned short is 4 instead of 2.
3218 Since this information is redundant with the third number,
3219 we will ignore it. */
3220 read_huge_number (pp, ';', &nbits);
3221 if (nbits != 0)
3222 return error_type (pp, objfile);
3223
3224 /* The second number is always 0, so ignore it too. */
3225 read_huge_number (pp, ';', &nbits);
3226 if (nbits != 0)
3227 return error_type (pp, objfile);
3228
3229 /* The third number is the number of bits for this type. */
3230 type_bits = read_huge_number (pp, 0, &nbits);
3231 if (nbits != 0)
3232 return error_type (pp, objfile);
3233 /* The type *should* end with a semicolon. If it are embedded
3234 in a larger type the semicolon may be the only way to know where
3235 the type ends. If this type is at the end of the stabstring we
3236 can deal with the omitted semicolon (but we don't have to like
3237 it). Don't bother to complain(), Sun's compiler omits the semicolon
3238 for "void". */
3239 if (**pp == ';')
3240 ++(*pp);
3241
3242 if (type_bits == 0)
3243 return init_type (TYPE_CODE_VOID, 1,
3244 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3245 objfile);
3246 else
3247 return init_type (TYPE_CODE_INT,
3248 type_bits / TARGET_CHAR_BIT,
3249 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3250 objfile);
3251 }
3252
3253 static struct type *
3254 read_sun_floating_type (pp, typenums, objfile)
3255 char **pp;
3256 int typenums[2];
3257 struct objfile *objfile;
3258 {
3259 int nbits;
3260 int details;
3261 int nbytes;
3262
3263 /* The first number has more details about the type, for example
3264 FN_COMPLEX. */
3265 details = read_huge_number (pp, ';', &nbits);
3266 if (nbits != 0)
3267 return error_type (pp, objfile);
3268
3269 /* The second number is the number of bytes occupied by this type */
3270 nbytes = read_huge_number (pp, ';', &nbits);
3271 if (nbits != 0)
3272 return error_type (pp, objfile);
3273
3274 if (details == NF_COMPLEX || details == NF_COMPLEX16
3275 || details == NF_COMPLEX32)
3276 /* This is a type we can't handle, but we do know the size.
3277 We also will be able to give it a name. */
3278 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3279
3280 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3281 }
3282
3283 /* Read a number from the string pointed to by *PP.
3284 The value of *PP is advanced over the number.
3285 If END is nonzero, the character that ends the
3286 number must match END, or an error happens;
3287 and that character is skipped if it does match.
3288 If END is zero, *PP is left pointing to that character.
3289
3290 If the number fits in a long, set *BITS to 0 and return the value.
3291 If not, set *BITS to be the number of bits in the number and return 0.
3292
3293 If encounter garbage, set *BITS to -1 and return 0. */
3294
3295 static long
3296 read_huge_number (pp, end, bits)
3297 char **pp;
3298 int end;
3299 int *bits;
3300 {
3301 char *p = *pp;
3302 int sign = 1;
3303 long n = 0;
3304 int radix = 10;
3305 char overflow = 0;
3306 int nbits = 0;
3307 int c;
3308 long upper_limit;
3309
3310 if (*p == '-')
3311 {
3312 sign = -1;
3313 p++;
3314 }
3315
3316 /* Leading zero means octal. GCC uses this to output values larger
3317 than an int (because that would be hard in decimal). */
3318 if (*p == '0')
3319 {
3320 radix = 8;
3321 p++;
3322 }
3323
3324 if (os9k_stabs)
3325 upper_limit = ULONG_MAX / radix;
3326 else
3327 upper_limit = LONG_MAX / radix;
3328
3329 while ((c = *p++) >= '0' && c < ('0' + radix))
3330 {
3331 if (n <= upper_limit)
3332 {
3333 n *= radix;
3334 n += c - '0'; /* FIXME this overflows anyway */
3335 }
3336 else
3337 overflow = 1;
3338
3339 /* This depends on large values being output in octal, which is
3340 what GCC does. */
3341 if (radix == 8)
3342 {
3343 if (nbits == 0)
3344 {
3345 if (c == '0')
3346 /* Ignore leading zeroes. */
3347 ;
3348 else if (c == '1')
3349 nbits = 1;
3350 else if (c == '2' || c == '3')
3351 nbits = 2;
3352 else
3353 nbits = 3;
3354 }
3355 else
3356 nbits += 3;
3357 }
3358 }
3359 if (end)
3360 {
3361 if (c && c != end)
3362 {
3363 if (bits != NULL)
3364 *bits = -1;
3365 return 0;
3366 }
3367 }
3368 else
3369 --p;
3370
3371 *pp = p;
3372 if (overflow)
3373 {
3374 if (nbits == 0)
3375 {
3376 /* Large decimal constants are an error (because it is hard to
3377 count how many bits are in them). */
3378 if (bits != NULL)
3379 *bits = -1;
3380 return 0;
3381 }
3382
3383 /* -0x7f is the same as 0x80. So deal with it by adding one to
3384 the number of bits. */
3385 if (sign == -1)
3386 ++nbits;
3387 if (bits)
3388 *bits = nbits;
3389 }
3390 else
3391 {
3392 if (bits)
3393 *bits = 0;
3394 return n * sign;
3395 }
3396 /* It's *BITS which has the interesting information. */
3397 return 0;
3398 }
3399
3400 static struct type *
3401 read_range_type (pp, typenums, objfile)
3402 char **pp;
3403 int typenums[2];
3404 struct objfile *objfile;
3405 {
3406 char *orig_pp = *pp;
3407 int rangenums[2];
3408 long n2, n3;
3409 int n2bits, n3bits;
3410 int self_subrange;
3411 struct type *result_type;
3412 struct type *index_type = NULL;
3413
3414 /* First comes a type we are a subrange of.
3415 In C it is usually 0, 1 or the type being defined. */
3416 if (read_type_number (pp, rangenums) != 0)
3417 return error_type (pp, objfile);
3418 self_subrange = (rangenums[0] == typenums[0] &&
3419 rangenums[1] == typenums[1]);
3420
3421 if (**pp == '=')
3422 {
3423 *pp = orig_pp;
3424 index_type = read_type (pp, objfile);
3425 }
3426
3427 /* A semicolon should now follow; skip it. */
3428 if (**pp == ';')
3429 (*pp)++;
3430
3431 /* The remaining two operands are usually lower and upper bounds
3432 of the range. But in some special cases they mean something else. */
3433 n2 = read_huge_number (pp, ';', &n2bits);
3434 n3 = read_huge_number (pp, ';', &n3bits);
3435
3436 if (n2bits == -1 || n3bits == -1)
3437 return error_type (pp, objfile);
3438
3439 if (index_type)
3440 goto handle_true_range;
3441
3442 /* If limits are huge, must be large integral type. */
3443 if (n2bits != 0 || n3bits != 0)
3444 {
3445 char got_signed = 0;
3446 char got_unsigned = 0;
3447 /* Number of bits in the type. */
3448 int nbits = 0;
3449
3450 /* Range from 0 to <large number> is an unsigned large integral type. */
3451 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3452 {
3453 got_unsigned = 1;
3454 nbits = n3bits;
3455 }
3456 /* Range from <large number> to <large number>-1 is a large signed
3457 integral type. Take care of the case where <large number> doesn't
3458 fit in a long but <large number>-1 does. */
3459 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3460 || (n2bits != 0 && n3bits == 0
3461 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3462 && n3 == LONG_MAX))
3463 {
3464 got_signed = 1;
3465 nbits = n2bits;
3466 }
3467
3468 if (got_signed || got_unsigned)
3469 {
3470 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3471 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3472 objfile);
3473 }
3474 else
3475 return error_type (pp, objfile);
3476 }
3477
3478 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3479 if (self_subrange && n2 == 0 && n3 == 0)
3480 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3481
3482 /* If n3 is zero and n2 is positive, we want a floating type,
3483 and n2 is the width in bytes.
3484
3485 Fortran programs appear to use this for complex types also,
3486 and they give no way to distinguish between double and single-complex!
3487
3488 GDB does not have complex types.
3489
3490 Just return the complex as a float of that size. It won't work right
3491 for the complex values, but at least it makes the file loadable. */
3492
3493 if (n3 == 0 && n2 > 0)
3494 {
3495 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3496 }
3497
3498 /* If the upper bound is -1, it must really be an unsigned int. */
3499
3500 else if (n2 == 0 && n3 == -1)
3501 {
3502 /* It is unsigned int or unsigned long. */
3503 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3504 compatibility hack. */
3505 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3506 TYPE_FLAG_UNSIGNED, NULL, objfile);
3507 }
3508
3509 /* Special case: char is defined (Who knows why) as a subrange of
3510 itself with range 0-127. */
3511 else if (self_subrange && n2 == 0 && n3 == 127)
3512 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3513
3514 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
3515 && !self_subrange)
3516 goto handle_true_range;
3517
3518 /* We used to do this only for subrange of self or subrange of int. */
3519 else if (n2 == 0)
3520 {
3521 if (n3 < 0)
3522 /* n3 actually gives the size. */
3523 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3524 NULL, objfile);
3525 if (n3 == 0xff)
3526 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3527 if (n3 == 0xffff)
3528 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3529
3530 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3531 "unsigned long", and we already checked for that,
3532 so don't need to test for it here. */
3533 }
3534 /* I think this is for Convex "long long". Since I don't know whether
3535 Convex sets self_subrange, I also accept that particular size regardless
3536 of self_subrange. */
3537 else if (n3 == 0 && n2 < 0
3538 && (self_subrange
3539 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3540 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3541 else if (n2 == -n3 -1)
3542 {
3543 if (n3 == 0x7f)
3544 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3545 if (n3 == 0x7fff)
3546 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3547 if (n3 == 0x7fffffff)
3548 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3549 }
3550
3551 /* We have a real range type on our hands. Allocate space and
3552 return a real pointer. */
3553 handle_true_range:
3554
3555 if (self_subrange)
3556 index_type = builtin_type_int;
3557 else
3558 index_type = *dbx_lookup_type (rangenums);
3559 if (index_type == NULL)
3560 {
3561 /* Does this actually ever happen? Is that why we are worrying
3562 about dealing with it rather than just calling error_type? */
3563
3564 static struct type *range_type_index;
3565
3566 complain (&range_type_base_complaint, rangenums[1]);
3567 if (range_type_index == NULL)
3568 range_type_index =
3569 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3570 0, "range type index type", NULL);
3571 index_type = range_type_index;
3572 }
3573
3574 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3575 return (result_type);
3576 }
3577
3578 /* Read in an argument list. This is a list of types, separated by commas
3579 and terminated with END. Return the list of types read in, or (struct type
3580 **)-1 if there is an error. */
3581
3582 static struct type **
3583 read_args (pp, end, objfile)
3584 char **pp;
3585 int end;
3586 struct objfile *objfile;
3587 {
3588 /* FIXME! Remove this arbitrary limit! */
3589 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3590 int n = 0;
3591
3592 while (**pp != end)
3593 {
3594 if (**pp != ',')
3595 /* Invalid argument list: no ','. */
3596 return (struct type **)-1;
3597 (*pp)++;
3598 STABS_CONTINUE (pp, objfile);
3599 types[n++] = read_type (pp, objfile);
3600 }
3601 (*pp)++; /* get past `end' (the ':' character) */
3602
3603 if (n == 1)
3604 {
3605 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3606 }
3607 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3608 {
3609 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3610 memset (rval + n, 0, sizeof (struct type *));
3611 }
3612 else
3613 {
3614 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3615 }
3616 memcpy (rval, types, n * sizeof (struct type *));
3617 return rval;
3618 }
3619 \f
3620 /* Common block handling. */
3621
3622 /* List of symbols declared since the last BCOMM. This list is a tail
3623 of local_symbols. When ECOMM is seen, the symbols on the list
3624 are noted so their proper addresses can be filled in later,
3625 using the common block base address gotten from the assembler
3626 stabs. */
3627
3628 static struct pending *common_block;
3629 static int common_block_i;
3630
3631 /* Name of the current common block. We get it from the BCOMM instead of the
3632 ECOMM to match IBM documentation (even though IBM puts the name both places
3633 like everyone else). */
3634 static char *common_block_name;
3635
3636 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3637 to remain after this function returns. */
3638
3639 void
3640 common_block_start (name, objfile)
3641 char *name;
3642 struct objfile *objfile;
3643 {
3644 if (common_block_name != NULL)
3645 {
3646 static struct complaint msg = {
3647 "Invalid symbol data: common block within common block",
3648 0, 0};
3649 complain (&msg);
3650 }
3651 common_block = local_symbols;
3652 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3653 common_block_name = obsavestring (name, strlen (name),
3654 &objfile -> symbol_obstack);
3655 }
3656
3657 /* Process a N_ECOMM symbol. */
3658
3659 void
3660 common_block_end (objfile)
3661 struct objfile *objfile;
3662 {
3663 /* Symbols declared since the BCOMM are to have the common block
3664 start address added in when we know it. common_block and
3665 common_block_i point to the first symbol after the BCOMM in
3666 the local_symbols list; copy the list and hang it off the
3667 symbol for the common block name for later fixup. */
3668 int i;
3669 struct symbol *sym;
3670 struct pending *new = 0;
3671 struct pending *next;
3672 int j;
3673
3674 if (common_block_name == NULL)
3675 {
3676 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3677 complain (&msg);
3678 return;
3679 }
3680
3681 sym = (struct symbol *)
3682 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3683 memset (sym, 0, sizeof (struct symbol));
3684 SYMBOL_NAME (sym) = common_block_name;
3685 SYMBOL_CLASS (sym) = LOC_BLOCK;
3686
3687 /* Now we copy all the symbols which have been defined since the BCOMM. */
3688
3689 /* Copy all the struct pendings before common_block. */
3690 for (next = local_symbols;
3691 next != NULL && next != common_block;
3692 next = next->next)
3693 {
3694 for (j = 0; j < next->nsyms; j++)
3695 add_symbol_to_list (next->symbol[j], &new);
3696 }
3697
3698 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3699 NULL, it means copy all the local symbols (which we already did
3700 above). */
3701
3702 if (common_block != NULL)
3703 for (j = common_block_i; j < common_block->nsyms; j++)
3704 add_symbol_to_list (common_block->symbol[j], &new);
3705
3706 SYMBOL_TYPE (sym) = (struct type *) new;
3707
3708 /* Should we be putting local_symbols back to what it was?
3709 Does it matter? */
3710
3711 i = hashname (SYMBOL_NAME (sym));
3712 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3713 global_sym_chain[i] = sym;
3714 common_block_name = NULL;
3715 }
3716
3717 /* Add a common block's start address to the offset of each symbol
3718 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3719 the common block name). */
3720
3721 static void
3722 fix_common_block (sym, valu)
3723 struct symbol *sym;
3724 int valu;
3725 {
3726 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3727 for ( ; next; next = next->next)
3728 {
3729 register int j;
3730 for (j = next->nsyms - 1; j >= 0; j--)
3731 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3732 }
3733 }
3734
3735
3736 \f
3737 /* What about types defined as forward references inside of a small lexical
3738 scope? */
3739 /* Add a type to the list of undefined types to be checked through
3740 once this file has been read in. */
3741
3742 void
3743 add_undefined_type (type)
3744 struct type *type;
3745 {
3746 if (undef_types_length == undef_types_allocated)
3747 {
3748 undef_types_allocated *= 2;
3749 undef_types = (struct type **)
3750 xrealloc ((char *) undef_types,
3751 undef_types_allocated * sizeof (struct type *));
3752 }
3753 undef_types[undef_types_length++] = type;
3754 }
3755
3756 /* Go through each undefined type, see if it's still undefined, and fix it
3757 up if possible. We have two kinds of undefined types:
3758
3759 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3760 Fix: update array length using the element bounds
3761 and the target type's length.
3762 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3763 yet defined at the time a pointer to it was made.
3764 Fix: Do a full lookup on the struct/union tag. */
3765 void
3766 cleanup_undefined_types ()
3767 {
3768 struct type **type;
3769
3770 for (type = undef_types; type < undef_types + undef_types_length; type++)
3771 {
3772 switch (TYPE_CODE (*type))
3773 {
3774
3775 case TYPE_CODE_STRUCT:
3776 case TYPE_CODE_UNION:
3777 case TYPE_CODE_ENUM:
3778 {
3779 /* Check if it has been defined since. Need to do this here
3780 as well as in check_typedef to deal with the (legitimate in
3781 C though not C++) case of several types with the same name
3782 in different source files. */
3783 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3784 {
3785 struct pending *ppt;
3786 int i;
3787 /* Name of the type, without "struct" or "union" */
3788 char *typename = TYPE_TAG_NAME (*type);
3789
3790 if (typename == NULL)
3791 {
3792 static struct complaint msg = {"need a type name", 0, 0};
3793 complain (&msg);
3794 break;
3795 }
3796 for (ppt = file_symbols; ppt; ppt = ppt->next)
3797 {
3798 for (i = 0; i < ppt->nsyms; i++)
3799 {
3800 struct symbol *sym = ppt->symbol[i];
3801
3802 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3803 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3804 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3805 TYPE_CODE (*type))
3806 && STREQ (SYMBOL_NAME (sym), typename))
3807 {
3808 memcpy (*type, SYMBOL_TYPE (sym),
3809 sizeof (struct type));
3810 }
3811 }
3812 }
3813 }
3814 }
3815 break;
3816
3817 default:
3818 badtype:
3819 {
3820 static struct complaint msg = {"\
3821 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3822 complain (&msg, TYPE_CODE (*type));
3823 }
3824 break;
3825 }
3826 }
3827
3828 undef_types_length = 0;
3829 }
3830
3831 /* Scan through all of the global symbols defined in the object file,
3832 assigning values to the debugging symbols that need to be assigned
3833 to. Get these symbols from the minimal symbol table. */
3834
3835 void
3836 scan_file_globals (objfile)
3837 struct objfile *objfile;
3838 {
3839 int hash;
3840 struct minimal_symbol *msymbol;
3841 struct symbol *sym, *prev;
3842
3843 /* Avoid expensive loop through all minimal symbols if there are
3844 no unresolved symbols. */
3845 for (hash = 0; hash < HASHSIZE; hash++)
3846 {
3847 if (global_sym_chain[hash])
3848 break;
3849 }
3850 if (hash >= HASHSIZE)
3851 return;
3852
3853 for (msymbol = objfile -> msymbols;
3854 msymbol && SYMBOL_NAME (msymbol) != NULL;
3855 msymbol++)
3856 {
3857 QUIT;
3858
3859 /* Skip static symbols. */
3860 switch (MSYMBOL_TYPE (msymbol))
3861 {
3862 case mst_file_text:
3863 case mst_file_data:
3864 case mst_file_bss:
3865 continue;
3866 default:
3867 break;
3868 }
3869
3870 prev = NULL;
3871
3872 /* Get the hash index and check all the symbols
3873 under that hash index. */
3874
3875 hash = hashname (SYMBOL_NAME (msymbol));
3876
3877 for (sym = global_sym_chain[hash]; sym;)
3878 {
3879 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3880 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3881 {
3882 /* Splice this symbol out of the hash chain and
3883 assign the value we have to it. */
3884 if (prev)
3885 {
3886 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3887 }
3888 else
3889 {
3890 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3891 }
3892
3893 /* Check to see whether we need to fix up a common block. */
3894 /* Note: this code might be executed several times for
3895 the same symbol if there are multiple references. */
3896
3897 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3898 {
3899 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3900 }
3901 else
3902 {
3903 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3904 }
3905
3906 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3907
3908 if (prev)
3909 {
3910 sym = SYMBOL_VALUE_CHAIN (prev);
3911 }
3912 else
3913 {
3914 sym = global_sym_chain[hash];
3915 }
3916 }
3917 else
3918 {
3919 prev = sym;
3920 sym = SYMBOL_VALUE_CHAIN (sym);
3921 }
3922 }
3923 }
3924
3925 /* Change the storage class of any remaining unresolved globals to
3926 LOC_UNRESOLVED and remove them from the chain. */
3927 for (hash = 0; hash < HASHSIZE; hash++)
3928 {
3929 sym = global_sym_chain[hash];
3930 while (sym)
3931 {
3932 prev = sym;
3933 sym = SYMBOL_VALUE_CHAIN (sym);
3934
3935 /* Change the symbol address from the misleading chain value
3936 to address zero. */
3937 SYMBOL_VALUE_ADDRESS (prev) = 0;
3938
3939 /* Complain about unresolved common block symbols. */
3940 if (SYMBOL_CLASS (prev) == LOC_STATIC)
3941 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
3942 else
3943 complain (&unresolved_sym_chain_complaint,
3944 objfile->name, SYMBOL_NAME (prev));
3945 }
3946 }
3947 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3948 }
3949
3950 /* Initialize anything that needs initializing when starting to read
3951 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3952 to a psymtab. */
3953
3954 void
3955 stabsread_init ()
3956 {
3957 }
3958
3959 /* Initialize anything that needs initializing when a completely new
3960 symbol file is specified (not just adding some symbols from another
3961 file, e.g. a shared library). */
3962
3963 void
3964 stabsread_new_init ()
3965 {
3966 /* Empty the hash table of global syms looking for values. */
3967 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3968 }
3969
3970 /* Initialize anything that needs initializing at the same time as
3971 start_symtab() is called. */
3972
3973 void start_stabs ()
3974 {
3975 global_stabs = NULL; /* AIX COFF */
3976 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3977 n_this_object_header_files = 1;
3978 type_vector_length = 0;
3979 type_vector = (struct type **) 0;
3980
3981 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3982 common_block_name = NULL;
3983
3984 os9k_stabs = 0;
3985 }
3986
3987 /* Call after end_symtab() */
3988
3989 void end_stabs ()
3990 {
3991 if (type_vector)
3992 {
3993 free ((char *) type_vector);
3994 }
3995 type_vector = 0;
3996 type_vector_length = 0;
3997 previous_stab_code = 0;
3998 }
3999
4000 void
4001 finish_global_stabs (objfile)
4002 struct objfile *objfile;
4003 {
4004 if (global_stabs)
4005 {
4006 patch_block_stabs (global_symbols, global_stabs, objfile);
4007 free ((PTR) global_stabs);
4008 global_stabs = NULL;
4009 }
4010 }
4011
4012 /* Initializer for this module */
4013
4014 void
4015 _initialize_stabsread ()
4016 {
4017 undef_types_allocated = 20;
4018 undef_types_length = 0;
4019 undef_types = (struct type **)
4020 xmalloc (undef_types_allocated * sizeof (struct type *));
4021 }
This page took 0.10986 seconds and 5 git commands to generate.