* stabsread.c: Remove #if 0'd dbx_class_complaint. We now handle
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 #include <ctype.h>
40
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
42 #define EXTERN /**/
43 #include "stabsread.h" /* Our own declarations */
44 #undef EXTERN
45
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
51
52 struct field_info
53 {
54 struct nextfield
55 {
56 struct nextfield *next;
57
58 /* This is the raw visibility from the stab. It is not checked
59 for being one of the visibilities we recognize, so code which
60 examines this field better be able to deal. */
61 int visibility;
62
63 struct field field;
64 } *list;
65 struct next_fnfieldlist
66 {
67 struct next_fnfieldlist *next;
68 struct fn_fieldlist fn_fieldlist;
69 } *fnlist;
70 };
71
72 static struct type *
73 dbx_alloc_type PARAMS ((int [2], struct objfile *));
74
75 static long read_huge_number PARAMS ((char **, int, int *));
76
77 static struct type *error_type PARAMS ((char **));
78
79 static void
80 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
81 struct objfile *));
82
83 static void
84 fix_common_block PARAMS ((struct symbol *, int));
85
86 static int
87 read_type_number PARAMS ((char **, int *));
88
89 static struct type *
90 read_range_type PARAMS ((char **, int [2], struct objfile *));
91
92 static struct type *
93 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
94
95 static struct type *
96 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
97
98 static struct type *
99 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
100
101 static struct type *
102 rs6000_builtin_type PARAMS ((int));
103
104 static int
105 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
106 struct objfile *));
107
108 static int
109 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
122
123 static int
124 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
125 struct objfile *));
126
127 static struct type *
128 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
129
130 static struct type *
131 read_array_type PARAMS ((char **, struct type *, struct objfile *));
132
133 static struct type **
134 read_args PARAMS ((char **, int, struct objfile *));
135
136 static int
137 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
138 struct objfile *));
139
140 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
141 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
142
143 /* Define this as 1 if a pcc declaration of a char or short argument
144 gives the correct address. Otherwise assume pcc gives the
145 address of the corresponding int, which is not the same on a
146 big-endian machine. */
147
148 #ifndef BELIEVE_PCC_PROMOTION
149 #define BELIEVE_PCC_PROMOTION 0
150 #endif
151
152 struct complaint invalid_cpp_abbrev_complaint =
153 {"invalid C++ abbreviation `%s'", 0, 0};
154
155 struct complaint invalid_cpp_type_complaint =
156 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
157
158 struct complaint member_fn_complaint =
159 {"member function type missing, got '%c'", 0, 0};
160
161 struct complaint const_vol_complaint =
162 {"const/volatile indicator missing, got '%c'", 0, 0};
163
164 struct complaint error_type_complaint =
165 {"debug info mismatch between compiler and debugger", 0, 0};
166
167 struct complaint invalid_member_complaint =
168 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
169
170 struct complaint range_type_base_complaint =
171 {"base type %d of range type is not defined", 0, 0};
172
173 struct complaint reg_value_complaint =
174 {"register number too large in symbol %s", 0, 0};
175
176 struct complaint vtbl_notfound_complaint =
177 {"virtual function table pointer not found when defining class `%s'", 0, 0};
178
179 struct complaint unrecognized_cplus_name_complaint =
180 {"Unknown C++ symbol name `%s'", 0, 0};
181
182 struct complaint rs6000_builtin_complaint =
183 {"Unknown builtin type %d", 0, 0};
184
185 struct complaint stabs_general_complaint =
186 {"%s", 0, 0};
187
188 /* Make a list of forward references which haven't been defined. */
189
190 static struct type **undef_types;
191 static int undef_types_allocated;
192 static int undef_types_length;
193
194 /* Check for and handle cretinous stabs symbol name continuation! */
195 #define STABS_CONTINUE(pp) \
196 do { \
197 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
198 } while (0)
199
200 \f
201 /* Look up a dbx type-number pair. Return the address of the slot
202 where the type for that number-pair is stored.
203 The number-pair is in TYPENUMS.
204
205 This can be used for finding the type associated with that pair
206 or for associating a new type with the pair. */
207
208 struct type **
209 dbx_lookup_type (typenums)
210 int typenums[2];
211 {
212 register int filenum = typenums[0];
213 register int index = typenums[1];
214 unsigned old_len;
215 register int real_filenum;
216 register struct header_file *f;
217 int f_orig_length;
218
219 if (filenum == -1) /* -1,-1 is for temporary types. */
220 return 0;
221
222 if (filenum < 0 || filenum >= n_this_object_header_files)
223 {
224 static struct complaint msg = {"\
225 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
226 0, 0};
227 complain (&msg, filenum, index, symnum);
228 goto error_return;
229 }
230
231 if (filenum == 0)
232 {
233 if (index < 0)
234 {
235 /* Caller wants address of address of type. We think
236 that negative (rs6k builtin) types will never appear as
237 "lvalues", (nor should they), so we stuff the real type
238 pointer into a temp, and return its address. If referenced,
239 this will do the right thing. */
240 static struct type *temp_type;
241
242 temp_type = rs6000_builtin_type(index);
243 return &temp_type;
244 }
245
246 /* Type is defined outside of header files.
247 Find it in this object file's type vector. */
248 if (index >= type_vector_length)
249 {
250 old_len = type_vector_length;
251 if (old_len == 0)
252 {
253 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
254 type_vector = (struct type **)
255 malloc (type_vector_length * sizeof (struct type *));
256 }
257 while (index >= type_vector_length)
258 {
259 type_vector_length *= 2;
260 }
261 type_vector = (struct type **)
262 xrealloc ((char *) type_vector,
263 (type_vector_length * sizeof (struct type *)));
264 memset (&type_vector[old_len], 0,
265 (type_vector_length - old_len) * sizeof (struct type *));
266 }
267 return (&type_vector[index]);
268 }
269 else
270 {
271 real_filenum = this_object_header_files[filenum];
272
273 if (real_filenum >= n_header_files)
274 {
275 struct type *temp_type;
276 struct type **temp_type_p;
277
278 warning ("GDB internal error: bad real_filenum");
279
280 error_return:
281 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
282 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
283 *temp_type_p = temp_type;
284 return temp_type_p;
285 }
286
287 f = &header_files[real_filenum];
288
289 f_orig_length = f->length;
290 if (index >= f_orig_length)
291 {
292 while (index >= f->length)
293 {
294 f->length *= 2;
295 }
296 f->vector = (struct type **)
297 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
298 memset (&f->vector[f_orig_length], 0,
299 (f->length - f_orig_length) * sizeof (struct type *));
300 }
301 return (&f->vector[index]);
302 }
303 }
304
305 /* Make sure there is a type allocated for type numbers TYPENUMS
306 and return the type object.
307 This can create an empty (zeroed) type object.
308 TYPENUMS may be (-1, -1) to return a new type object that is not
309 put into the type vector, and so may not be referred to by number. */
310
311 static struct type *
312 dbx_alloc_type (typenums, objfile)
313 int typenums[2];
314 struct objfile *objfile;
315 {
316 register struct type **type_addr;
317
318 if (typenums[0] == -1)
319 {
320 return (alloc_type (objfile));
321 }
322
323 type_addr = dbx_lookup_type (typenums);
324
325 /* If we are referring to a type not known at all yet,
326 allocate an empty type for it.
327 We will fill it in later if we find out how. */
328 if (*type_addr == 0)
329 {
330 *type_addr = alloc_type (objfile);
331 }
332
333 return (*type_addr);
334 }
335
336 /* for all the stabs in a given stab vector, build appropriate types
337 and fix their symbols in given symbol vector. */
338
339 static void
340 patch_block_stabs (symbols, stabs, objfile)
341 struct pending *symbols;
342 struct pending_stabs *stabs;
343 struct objfile *objfile;
344 {
345 int ii;
346 char *name;
347 char *pp;
348 struct symbol *sym;
349
350 if (stabs)
351 {
352
353 /* for all the stab entries, find their corresponding symbols and
354 patch their types! */
355
356 for (ii = 0; ii < stabs->count; ++ii)
357 {
358 name = stabs->stab[ii];
359 pp = (char*) strchr (name, ':');
360 while (pp[1] == ':')
361 {
362 pp += 2;
363 pp = (char *)strchr(pp, ':');
364 }
365 sym = find_symbol_in_list (symbols, name, pp-name);
366 if (!sym)
367 {
368 /* On xcoff, if a global is defined and never referenced,
369 ld will remove it from the executable. There is then
370 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
371 sym = (struct symbol *)
372 obstack_alloc (&objfile->symbol_obstack,
373 sizeof (struct symbol));
374
375 memset (sym, 0, sizeof (struct symbol));
376 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
377 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
378 SYMBOL_NAME (sym) =
379 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
380 pp += 2;
381 if (*(pp-1) == 'F' || *(pp-1) == 'f')
382 {
383 /* I don't think the linker does this with functions,
384 so as far as I know this is never executed.
385 But it doesn't hurt to check. */
386 SYMBOL_TYPE (sym) =
387 lookup_function_type (read_type (&pp, objfile));
388 }
389 else
390 {
391 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
392 }
393 add_symbol_to_list (sym, &global_symbols);
394 }
395 else
396 {
397 pp += 2;
398 if (*(pp-1) == 'F' || *(pp-1) == 'f')
399 {
400 SYMBOL_TYPE (sym) =
401 lookup_function_type (read_type (&pp, objfile));
402 }
403 else
404 {
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 }
407 }
408 }
409 }
410 }
411
412 \f
413 /* Read a number by which a type is referred to in dbx data,
414 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
415 Just a single number N is equivalent to (0,N).
416 Return the two numbers by storing them in the vector TYPENUMS.
417 TYPENUMS will then be used as an argument to dbx_lookup_type.
418
419 Returns 0 for success, -1 for error. */
420
421 static int
422 read_type_number (pp, typenums)
423 register char **pp;
424 register int *typenums;
425 {
426 int nbits;
427 if (**pp == '(')
428 {
429 (*pp)++;
430 typenums[0] = read_huge_number (pp, ',', &nbits);
431 if (nbits != 0) return -1;
432 typenums[1] = read_huge_number (pp, ')', &nbits);
433 if (nbits != 0) return -1;
434 }
435 else
436 {
437 typenums[0] = 0;
438 typenums[1] = read_huge_number (pp, 0, &nbits);
439 if (nbits != 0) return -1;
440 }
441 return 0;
442 }
443
444 \f
445 /* To handle GNU C++ typename abbreviation, we need to be able to
446 fill in a type's name as soon as space for that type is allocated.
447 `type_synonym_name' is the name of the type being allocated.
448 It is cleared as soon as it is used (lest all allocated types
449 get this name). */
450
451 static char *type_synonym_name;
452
453 /* ARGSUSED */
454 struct symbol *
455 define_symbol (valu, string, desc, type, objfile)
456 CORE_ADDR valu;
457 char *string;
458 int desc;
459 int type;
460 struct objfile *objfile;
461 {
462 register struct symbol *sym;
463 char *p = (char *) strchr (string, ':');
464 int deftype;
465 int synonym = 0;
466 register int i;
467
468 /* We would like to eliminate nameless symbols, but keep their types.
469 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
470 to type 2, but, should not create a symbol to address that type. Since
471 the symbol will be nameless, there is no way any user can refer to it. */
472
473 int nameless;
474
475 /* Ignore syms with empty names. */
476 if (string[0] == 0)
477 return 0;
478
479 /* Ignore old-style symbols from cc -go */
480 if (p == 0)
481 return 0;
482
483 while (p[1] == ':')
484 {
485 p += 2;
486 p = strchr(p, ':');
487 }
488
489 /* If a nameless stab entry, all we need is the type, not the symbol.
490 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
491 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
492
493 sym = (struct symbol *)
494 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
495 memset (sym, 0, sizeof (struct symbol));
496
497 if (processing_gcc_compilation)
498 {
499 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
500 number of bytes occupied by a type or object, which we ignore. */
501 SYMBOL_LINE(sym) = desc;
502 }
503 else
504 {
505 SYMBOL_LINE(sym) = 0; /* unknown */
506 }
507
508 if (string[0] == CPLUS_MARKER)
509 {
510 /* Special GNU C++ names. */
511 switch (string[1])
512 {
513 case 't':
514 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
515 &objfile -> symbol_obstack);
516 break;
517
518 case 'v': /* $vtbl_ptr_type */
519 /* Was: SYMBOL_NAME (sym) = "vptr"; */
520 goto normal;
521
522 case 'e':
523 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
524 &objfile -> symbol_obstack);
525 break;
526
527 case '_':
528 /* This was an anonymous type that was never fixed up. */
529 goto normal;
530
531 default:
532 complain (&unrecognized_cplus_name_complaint, string);
533 goto normal; /* Do *something* with it */
534 }
535 }
536 else
537 {
538 normal:
539 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
540 SYMBOL_NAME (sym) = (char *)
541 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
542 /* Open-coded memcpy--saves function call time. */
543 /* FIXME: Does it really? Try replacing with simple strcpy and
544 try it on an executable with a large symbol table. */
545 /* FIXME: considering that gcc can open code memcpy anyway, I
546 doubt it. xoxorich. */
547 {
548 register char *p1 = string;
549 register char *p2 = SYMBOL_NAME (sym);
550 while (p1 != p)
551 {
552 *p2++ = *p1++;
553 }
554 *p2++ = '\0';
555 }
556
557 /* If this symbol is from a C++ compilation, then attempt to cache the
558 demangled form for future reference. This is a typical time versus
559 space tradeoff, that was decided in favor of time because it sped up
560 C++ symbol lookups by a factor of about 20. */
561
562 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
563 }
564 p++;
565
566 /* Determine the type of name being defined. */
567 #if 0
568 /* Getting GDB to correctly skip the symbol on an undefined symbol
569 descriptor and not ever dump core is a very dodgy proposition if
570 we do things this way. I say the acorn RISC machine can just
571 fix their compiler. */
572 /* The Acorn RISC machine's compiler can put out locals that don't
573 start with "234=" or "(3,4)=", so assume anything other than the
574 deftypes we know how to handle is a local. */
575 if (!strchr ("cfFGpPrStTvVXCR", *p))
576 #else
577 if (isdigit (*p) || *p == '(' || *p == '-')
578 #endif
579 deftype = 'l';
580 else
581 deftype = *p++;
582
583 switch (deftype)
584 {
585 case 'c':
586 /* c is a special case, not followed by a type-number.
587 SYMBOL:c=iVALUE for an integer constant symbol.
588 SYMBOL:c=rVALUE for a floating constant symbol.
589 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
590 e.g. "b:c=e6,0" for "const b = blob1"
591 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
592 if (*p != '=')
593 {
594 SYMBOL_CLASS (sym) = LOC_CONST;
595 SYMBOL_TYPE (sym) = error_type (&p);
596 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
597 add_symbol_to_list (sym, &file_symbols);
598 return sym;
599 }
600 ++p;
601 switch (*p++)
602 {
603 case 'r':
604 {
605 double d = atof (p);
606 char *dbl_valu;
607
608 /* FIXME-if-picky-about-floating-accuracy: Should be using
609 target arithmetic to get the value. real.c in GCC
610 probably has the necessary code. */
611
612 /* FIXME: lookup_fundamental_type is a hack. We should be
613 creating a type especially for the type of float constants.
614 Problem is, what type should it be?
615
616 Also, what should the name of this type be? Should we
617 be using 'S' constants (see stabs.texinfo) instead? */
618
619 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
620 FT_DBL_PREC_FLOAT);
621 dbl_valu = (char *)
622 obstack_alloc (&objfile -> symbol_obstack,
623 TYPE_LENGTH (SYMBOL_TYPE (sym)));
624 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
625 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
626 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
627 }
628 break;
629 case 'i':
630 {
631 /* Defining integer constants this way is kind of silly,
632 since 'e' constants allows the compiler to give not
633 only the value, but the type as well. C has at least
634 int, long, unsigned int, and long long as constant
635 types; other languages probably should have at least
636 unsigned as well as signed constants. */
637
638 /* We just need one int constant type for all objfiles.
639 It doesn't depend on languages or anything (arguably its
640 name should be a language-specific name for a type of
641 that size, but I'm inclined to say that if the compiler
642 wants a nice name for the type, it can use 'e'). */
643 static struct type *int_const_type;
644
645 /* Yes, this is as long as a *host* int. That is because we
646 use atoi. */
647 if (int_const_type == NULL)
648 int_const_type =
649 init_type (TYPE_CODE_INT,
650 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
651 "integer constant",
652 (struct objfile *)NULL);
653 SYMBOL_TYPE (sym) = int_const_type;
654 SYMBOL_VALUE (sym) = atoi (p);
655 SYMBOL_CLASS (sym) = LOC_CONST;
656 }
657 break;
658 case 'e':
659 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
660 can be represented as integral.
661 e.g. "b:c=e6,0" for "const b = blob1"
662 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
663 {
664 SYMBOL_CLASS (sym) = LOC_CONST;
665 SYMBOL_TYPE (sym) = read_type (&p, objfile);
666
667 if (*p != ',')
668 {
669 SYMBOL_TYPE (sym) = error_type (&p);
670 break;
671 }
672 ++p;
673
674 /* If the value is too big to fit in an int (perhaps because
675 it is unsigned), or something like that, we silently get
676 a bogus value. The type and everything else about it is
677 correct. Ideally, we should be using whatever we have
678 available for parsing unsigned and long long values,
679 however. */
680 SYMBOL_VALUE (sym) = atoi (p);
681 }
682 break;
683 default:
684 {
685 SYMBOL_CLASS (sym) = LOC_CONST;
686 SYMBOL_TYPE (sym) = error_type (&p);
687 }
688 }
689 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
690 add_symbol_to_list (sym, &file_symbols);
691 return sym;
692
693 case 'C':
694 /* The name of a caught exception. */
695 SYMBOL_TYPE (sym) = read_type (&p, objfile);
696 SYMBOL_CLASS (sym) = LOC_LABEL;
697 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
698 SYMBOL_VALUE_ADDRESS (sym) = valu;
699 add_symbol_to_list (sym, &local_symbols);
700 break;
701
702 case 'f':
703 /* A static function definition. */
704 SYMBOL_TYPE (sym) = read_type (&p, objfile);
705 SYMBOL_CLASS (sym) = LOC_BLOCK;
706 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
707 add_symbol_to_list (sym, &file_symbols);
708 /* fall into process_function_types. */
709
710 process_function_types:
711 /* Function result types are described as the result type in stabs.
712 We need to convert this to the function-returning-type-X type
713 in GDB. E.g. "int" is converted to "function returning int". */
714 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
715 {
716 #if 0
717 /* This code doesn't work -- it needs to realloc and can't. */
718 /* Attempt to set up to record a function prototype... */
719 struct type *new = alloc_type (objfile);
720
721 /* Generate a template for the type of this function. The
722 types of the arguments will be added as we read the symbol
723 table. */
724 *new = *lookup_function_type (SYMBOL_TYPE(sym));
725 SYMBOL_TYPE(sym) = new;
726 TYPE_OBJFILE (new) = objfile;
727 in_function_type = new;
728 #else
729 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
730 #endif
731 }
732 /* fall into process_prototype_types */
733
734 process_prototype_types:
735 /* Sun acc puts declared types of arguments here. We don't care
736 about their actual types (FIXME -- we should remember the whole
737 function prototype), but the list may define some new types
738 that we have to remember, so we must scan it now. */
739 while (*p == ';') {
740 p++;
741 read_type (&p, objfile);
742 }
743 break;
744
745 case 'F':
746 /* A global function definition. */
747 SYMBOL_TYPE (sym) = read_type (&p, objfile);
748 SYMBOL_CLASS (sym) = LOC_BLOCK;
749 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
750 add_symbol_to_list (sym, &global_symbols);
751 goto process_function_types;
752
753 case 'G':
754 /* For a class G (global) symbol, it appears that the
755 value is not correct. It is necessary to search for the
756 corresponding linker definition to find the value.
757 These definitions appear at the end of the namelist. */
758 SYMBOL_TYPE (sym) = read_type (&p, objfile);
759 i = hashname (SYMBOL_NAME (sym));
760 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
761 global_sym_chain[i] = sym;
762 SYMBOL_CLASS (sym) = LOC_STATIC;
763 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
764 add_symbol_to_list (sym, &global_symbols);
765 break;
766
767 /* This case is faked by a conditional above,
768 when there is no code letter in the dbx data.
769 Dbx data never actually contains 'l'. */
770 case 'l':
771 SYMBOL_TYPE (sym) = read_type (&p, objfile);
772 SYMBOL_CLASS (sym) = LOC_LOCAL;
773 SYMBOL_VALUE (sym) = valu;
774 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
775 add_symbol_to_list (sym, &local_symbols);
776 break;
777
778 case 'p':
779 if (*p == 'F')
780 /* pF is a two-letter code that means a function parameter in Fortran.
781 The type-number specifies the type of the return value.
782 Translate it into a pointer-to-function type. */
783 {
784 p++;
785 SYMBOL_TYPE (sym)
786 = lookup_pointer_type
787 (lookup_function_type (read_type (&p, objfile)));
788 }
789 else
790 SYMBOL_TYPE (sym) = read_type (&p, objfile);
791
792 /* Normally this is a parameter, a LOC_ARG. On the i960, it
793 can also be a LOC_LOCAL_ARG depending on symbol type. */
794 #ifndef DBX_PARM_SYMBOL_CLASS
795 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
796 #endif
797
798 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
799 SYMBOL_VALUE (sym) = valu;
800 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
801 #if 0
802 /* This doesn't work yet. */
803 add_param_to_type (&in_function_type, sym);
804 #endif
805 add_symbol_to_list (sym, &local_symbols);
806
807 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
808 /* On little-endian machines, this crud is never necessary, and,
809 if the extra bytes contain garbage, is harmful. */
810 break;
811 #else /* Big endian. */
812 /* If it's gcc-compiled, if it says `short', believe it. */
813 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
814 break;
815
816 #if !BELIEVE_PCC_PROMOTION
817 {
818 /* This is the signed type which arguments get promoted to. */
819 static struct type *pcc_promotion_type;
820 /* This is the unsigned type which arguments get promoted to. */
821 static struct type *pcc_unsigned_promotion_type;
822
823 /* Call it "int" because this is mainly C lossage. */
824 if (pcc_promotion_type == NULL)
825 pcc_promotion_type =
826 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
827 0, "int", NULL);
828
829 if (pcc_unsigned_promotion_type == NULL)
830 pcc_unsigned_promotion_type =
831 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
832 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
833
834 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
835 /* This macro is defined on machines (e.g. sparc) where
836 we should believe the type of a PCC 'short' argument,
837 but shouldn't believe the address (the address is
838 the address of the corresponding int).
839
840 My guess is that this correction, as opposed to changing
841 the parameter to an 'int' (as done below, for PCC
842 on most machines), is the right thing to do
843 on all machines, but I don't want to risk breaking
844 something that already works. On most PCC machines,
845 the sparc problem doesn't come up because the calling
846 function has to zero the top bytes (not knowing whether
847 the called function wants an int or a short), so there
848 is little practical difference between an int and a short
849 (except perhaps what happens when the GDB user types
850 "print short_arg = 0x10000;").
851
852 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
853 actually produces the correct address (we don't need to fix it
854 up). I made this code adapt so that it will offset the symbol
855 if it was pointing at an int-aligned location and not
856 otherwise. This way you can use the same gdb for 4.0.x and
857 4.1 systems.
858
859 If the parameter is shorter than an int, and is integral
860 (e.g. char, short, or unsigned equivalent), and is claimed to
861 be passed on an integer boundary, don't believe it! Offset the
862 parameter's address to the tail-end of that integer. */
863
864 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
865 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
866 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
867 {
868 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
869 - TYPE_LENGTH (SYMBOL_TYPE (sym));
870 }
871 break;
872
873 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
874
875 /* If PCC says a parameter is a short or a char,
876 it is really an int. */
877 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
878 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
879 {
880 SYMBOL_TYPE (sym) =
881 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
882 ? pcc_unsigned_promotion_type
883 : pcc_promotion_type;
884 }
885 break;
886
887 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
888 }
889 #endif /* !BELIEVE_PCC_PROMOTION. */
890 #endif /* Big endian. */
891
892 case 'P':
893 /* acc seems to use P to delare the prototypes of functions that
894 are referenced by this file. gdb is not prepared to deal
895 with this extra information. FIXME, it ought to. */
896 if (type == N_FUN)
897 {
898 read_type (&p, objfile);
899 goto process_prototype_types;
900 }
901 /*FALLTHROUGH*/
902
903 case 'R':
904 /* Parameter which is in a register. */
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906 SYMBOL_CLASS (sym) = LOC_REGPARM;
907 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
908 if (SYMBOL_VALUE (sym) >= NUM_REGS)
909 {
910 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
911 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
912 }
913 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
914 add_symbol_to_list (sym, &local_symbols);
915 break;
916
917 case 'r':
918 /* Register variable (either global or local). */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_CLASS (sym) = LOC_REGISTER;
921 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
922 if (SYMBOL_VALUE (sym) >= NUM_REGS)
923 {
924 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
925 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
926 }
927 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
928 if (within_function)
929 {
930 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
931 name to represent an argument passed in a register.
932 GCC uses 'P' for the same case. So if we find such a symbol pair
933 we combine it into one 'P' symbol.
934 Note that this code illegally combines
935 main(argc) int argc; { register int argc = 1; }
936 but this case is considered pathological and causes a warning
937 from a decent compiler. */
938 if (local_symbols
939 && local_symbols->nsyms > 0)
940 {
941 struct symbol *prev_sym;
942 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
943 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
944 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
945 {
946 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
947 /* Use the type from the LOC_REGISTER; that is the type
948 that is actually in that register. */
949 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
950 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
951 sym = prev_sym;
952 break;
953 }
954 }
955 add_symbol_to_list (sym, &local_symbols);
956 }
957 else
958 add_symbol_to_list (sym, &file_symbols);
959 break;
960
961 case 'S':
962 /* Static symbol at top level of file */
963 SYMBOL_TYPE (sym) = read_type (&p, objfile);
964 SYMBOL_CLASS (sym) = LOC_STATIC;
965 SYMBOL_VALUE_ADDRESS (sym) = valu;
966 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
967 add_symbol_to_list (sym, &file_symbols);
968 break;
969
970 case 't':
971 SYMBOL_TYPE (sym) = read_type (&p, objfile);
972
973 /* For a nameless type, we don't want a create a symbol, thus we
974 did not use `sym'. Return without further processing. */
975 if (nameless) return NULL;
976
977 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
978 SYMBOL_VALUE (sym) = valu;
979 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
980 /* C++ vagaries: we may have a type which is derived from
981 a base type which did not have its name defined when the
982 derived class was output. We fill in the derived class's
983 base part member's name here in that case. */
984 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
985 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
986 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
987 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
988 {
989 int j;
990 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
991 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
992 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
993 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
994 }
995
996 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
997 {
998 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
999 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1000 {
1001 /* If we are giving a name to a type such as "pointer to
1002 foo" or "function returning foo", we better not set
1003 the TYPE_NAME. If the program contains "typedef char
1004 *caddr_t;", we don't want all variables of type char
1005 * to print as caddr_t. This is not just a
1006 consequence of GDB's type management; PCC and GCC (at
1007 least through version 2.4) both output variables of
1008 either type char * or caddr_t with the type number
1009 defined in the 't' symbol for caddr_t. If a future
1010 compiler cleans this up it GDB is not ready for it
1011 yet, but if it becomes ready we somehow need to
1012 disable this check (without breaking the PCC/GCC2.4
1013 case).
1014
1015 Sigh.
1016
1017 Fortunately, this check seems not to be necessary
1018 for anything except pointers or functions. */
1019 }
1020 else
1021 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1022 }
1023
1024 add_symbol_to_list (sym, &file_symbols);
1025 break;
1026
1027 case 'T':
1028 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1029 by 't' which means we are typedef'ing it as well. */
1030 synonym = *p == 't';
1031
1032 if (synonym)
1033 {
1034 p++;
1035 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1036 strlen (SYMBOL_NAME (sym)),
1037 &objfile -> symbol_obstack);
1038 }
1039 /* The semantics of C++ state that "struct foo { ... }" also defines
1040 a typedef for "foo". Unfortunately, cfront never makes the typedef
1041 when translating C++ into C. We make the typedef here so that
1042 "ptype foo" works as expected for cfront translated code. */
1043 else if (current_subfile->language == language_cplus)
1044 {
1045 synonym = 1;
1046 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1047 strlen (SYMBOL_NAME (sym)),
1048 &objfile -> symbol_obstack);
1049 }
1050
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052
1053 /* For a nameless type, we don't want a create a symbol, thus we
1054 did not use `sym'. Return without further processing. */
1055 if (nameless) return NULL;
1056
1057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1060 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1061 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1062 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1063 add_symbol_to_list (sym, &file_symbols);
1064
1065 if (synonym)
1066 {
1067 /* Clone the sym and then modify it. */
1068 register struct symbol *typedef_sym = (struct symbol *)
1069 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1070 *typedef_sym = *sym;
1071 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1072 SYMBOL_VALUE (typedef_sym) = valu;
1073 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1074 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1075 TYPE_NAME (SYMBOL_TYPE (sym))
1076 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1077 add_symbol_to_list (typedef_sym, &file_symbols);
1078 }
1079 break;
1080
1081 case 'V':
1082 /* Static symbol of local scope */
1083 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1084 SYMBOL_CLASS (sym) = LOC_STATIC;
1085 SYMBOL_VALUE_ADDRESS (sym) = valu;
1086 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1087 add_symbol_to_list (sym, &local_symbols);
1088 break;
1089
1090 case 'v':
1091 /* Reference parameter */
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1094 SYMBOL_VALUE (sym) = valu;
1095 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1096 add_symbol_to_list (sym, &local_symbols);
1097 break;
1098
1099 case 'X':
1100 /* This is used by Sun FORTRAN for "function result value".
1101 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1102 that Pascal uses it too, but when I tried it Pascal used
1103 "x:3" (local symbol) instead. */
1104 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1105 SYMBOL_CLASS (sym) = LOC_LOCAL;
1106 SYMBOL_VALUE (sym) = valu;
1107 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1108 add_symbol_to_list (sym, &local_symbols);
1109 break;
1110
1111 default:
1112 SYMBOL_TYPE (sym) = error_type (&p);
1113 SYMBOL_CLASS (sym) = LOC_CONST;
1114 SYMBOL_VALUE (sym) = 0;
1115 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1116 add_symbol_to_list (sym, &file_symbols);
1117 break;
1118 }
1119
1120 /* When passing structures to a function, some systems sometimes pass
1121 the address in a register, not the structure itself.
1122
1123 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1124 to LOC_REGPARM_ADDR for structures and unions. */
1125
1126 #if !defined (REG_STRUCT_HAS_ADDR)
1127 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1128 #endif
1129
1130 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1131 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1132 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1133 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1134 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1135
1136 return sym;
1137 }
1138
1139 \f
1140 /* Skip rest of this symbol and return an error type.
1141
1142 General notes on error recovery: error_type always skips to the
1143 end of the symbol (modulo cretinous dbx symbol name continuation).
1144 Thus code like this:
1145
1146 if (*(*pp)++ != ';')
1147 return error_type (pp);
1148
1149 is wrong because if *pp starts out pointing at '\0' (typically as the
1150 result of an earlier error), it will be incremented to point to the
1151 start of the next symbol, which might produce strange results, at least
1152 if you run off the end of the string table. Instead use
1153
1154 if (**pp != ';')
1155 return error_type (pp);
1156 ++*pp;
1157
1158 or
1159
1160 if (**pp != ';')
1161 foo = error_type (pp);
1162 else
1163 ++*pp;
1164
1165 And in case it isn't obvious, the point of all this hair is so the compiler
1166 can define new types and new syntaxes, and old versions of the
1167 debugger will be able to read the new symbol tables. */
1168
1169 static struct type *
1170 error_type (pp)
1171 char **pp;
1172 {
1173 complain (&error_type_complaint);
1174 while (1)
1175 {
1176 /* Skip to end of symbol. */
1177 while (**pp != '\0')
1178 {
1179 (*pp)++;
1180 }
1181
1182 /* Check for and handle cretinous dbx symbol name continuation! */
1183 if ((*pp)[-1] == '\\')
1184 {
1185 *pp = next_symbol_text ();
1186 }
1187 else
1188 {
1189 break;
1190 }
1191 }
1192 return (builtin_type_error);
1193 }
1194
1195 \f
1196 /* Read type information or a type definition; return the type. Even
1197 though this routine accepts either type information or a type
1198 definition, the distinction is relevant--some parts of stabsread.c
1199 assume that type information starts with a digit, '-', or '(' in
1200 deciding whether to call read_type. */
1201
1202 struct type *
1203 read_type (pp, objfile)
1204 register char **pp;
1205 struct objfile *objfile;
1206 {
1207 register struct type *type = 0;
1208 struct type *type1;
1209 int typenums[2];
1210 int xtypenums[2];
1211 char type_descriptor;
1212
1213 /* Size in bits of type if specified by a type attribute, or -1 if
1214 there is no size attribute. */
1215 int type_size = -1;
1216
1217 /* Read type number if present. The type number may be omitted.
1218 for instance in a two-dimensional array declared with type
1219 "ar1;1;10;ar1;1;10;4". */
1220 if ((**pp >= '0' && **pp <= '9')
1221 || **pp == '('
1222 || **pp == '-')
1223 {
1224 if (read_type_number (pp, typenums) != 0)
1225 return error_type (pp);
1226
1227 /* Type is not being defined here. Either it already exists,
1228 or this is a forward reference to it. dbx_alloc_type handles
1229 both cases. */
1230 if (**pp != '=')
1231 return dbx_alloc_type (typenums, objfile);
1232
1233 /* Type is being defined here. */
1234 /* Skip the '='. */
1235 ++(*pp);
1236
1237 while (**pp == '@')
1238 {
1239 char *p = *pp + 1;
1240 /* It might be a type attribute or a member type. */
1241 if (isdigit (*p) || *p == '(' || *p == '-')
1242 /* Member type. */
1243 break;
1244 else
1245 {
1246 /* Type attributes. */
1247 char *attr = p;
1248
1249 /* Skip to the semicolon. */
1250 while (*p != ';' && *p != '\0')
1251 ++p;
1252 *pp = p;
1253 if (*p == '\0')
1254 return error_type (pp);
1255 else
1256 /* Skip the semicolon. */
1257 ++*pp;
1258
1259 switch (*attr)
1260 {
1261 case 's':
1262 type_size = atoi (attr + 1);
1263 if (type_size <= 0)
1264 type_size = -1;
1265 break;
1266 default:
1267 /* Ignore unrecognized type attributes, so future compilers
1268 can invent new ones. */
1269 break;
1270 }
1271 }
1272 }
1273 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1274 ++(*pp);
1275 }
1276 else
1277 {
1278 /* 'typenums=' not present, type is anonymous. Read and return
1279 the definition, but don't put it in the type vector. */
1280 typenums[0] = typenums[1] = -1;
1281 (*pp)++;
1282 }
1283
1284 type_descriptor = (*pp)[-1];
1285 switch (type_descriptor)
1286 {
1287 case 'x':
1288 {
1289 enum type_code code;
1290
1291 /* Used to index through file_symbols. */
1292 struct pending *ppt;
1293 int i;
1294
1295 /* Name including "struct", etc. */
1296 char *type_name;
1297
1298 {
1299 char *from, *to, *p;
1300
1301 /* Set the type code according to the following letter. */
1302 switch ((*pp)[0])
1303 {
1304 case 's':
1305 code = TYPE_CODE_STRUCT;
1306 break;
1307 case 'u':
1308 code = TYPE_CODE_UNION;
1309 break;
1310 case 'e':
1311 code = TYPE_CODE_ENUM;
1312 break;
1313 default:
1314 {
1315 /* Complain and keep going, so compilers can invent new
1316 cross-reference types. */
1317 static struct complaint msg =
1318 {"Unrecognized cross-reference type `%c'", 0, 0};
1319 complain (&msg, (*pp)[0]);
1320 code = TYPE_CODE_STRUCT;
1321 break;
1322 }
1323 }
1324
1325 p = strchr(*pp, ':');
1326 if (p == NULL)
1327 return error_type (pp);
1328 while (p[1] == ':')
1329 {
1330 p += 2;
1331 p = strchr(p, ':');
1332 if (p == NULL)
1333 return error_type (pp);
1334 }
1335 to = type_name =
1336 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1337
1338 /* Copy the name. */
1339 from = *pp + 1;
1340 while (from < p)
1341 *to++ = *from++;
1342 *to = '\0';
1343
1344 /* Set the pointer ahead of the name which we just read, and
1345 the colon. */
1346 *pp = from + 1;
1347 }
1348
1349 /* Now check to see whether the type has already been declared. */
1350 /* This is necessary at least in the case where the
1351 program says something like
1352 struct foo bar[5];
1353 The compiler puts out a cross-reference; we better find
1354 set the length of the structure correctly so we can
1355 set the length of the array. */
1356 for (ppt = file_symbols; ppt; ppt = ppt->next)
1357 for (i = 0; i < ppt->nsyms; i++)
1358 {
1359 struct symbol *sym = ppt->symbol[i];
1360
1361 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1362 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1363 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1364 && STREQ (SYMBOL_NAME (sym), type_name))
1365 {
1366 obstack_free (&objfile -> type_obstack, type_name);
1367 type = SYMBOL_TYPE (sym);
1368 return type;
1369 }
1370 }
1371
1372 /* Didn't find the type to which this refers, so we must
1373 be dealing with a forward reference. Allocate a type
1374 structure for it, and keep track of it so we can
1375 fill in the rest of the fields when we get the full
1376 type. */
1377 type = dbx_alloc_type (typenums, objfile);
1378 TYPE_CODE (type) = code;
1379 TYPE_TAG_NAME (type) = type_name;
1380 INIT_CPLUS_SPECIFIC(type);
1381 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1382
1383 add_undefined_type (type);
1384 return type;
1385 }
1386
1387 case '-': /* RS/6000 built-in type */
1388 case '0':
1389 case '1':
1390 case '2':
1391 case '3':
1392 case '4':
1393 case '5':
1394 case '6':
1395 case '7':
1396 case '8':
1397 case '9':
1398 case '(':
1399
1400 (*pp)--;
1401 if (read_type_number (pp, xtypenums) != 0)
1402 return error_type (pp);
1403
1404 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1405 /* It's being defined as itself. That means it is "void". */
1406 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1407 else
1408 {
1409 struct type *xtype = *dbx_lookup_type (xtypenums);
1410
1411 /* This can happen if we had '-' followed by a garbage character,
1412 for example. */
1413 if (xtype == NULL)
1414 return error_type (pp);
1415
1416 /* The type is being defined to another type. So we copy the type.
1417 This loses if we copy a C++ class and so we lose track of how
1418 the names are mangled (but g++ doesn't output stabs like this
1419 now anyway). */
1420
1421 type = alloc_type (objfile);
1422 memcpy (type, xtype, sizeof (struct type));
1423
1424 /* The idea behind clearing the names is that the only purpose
1425 for defining a type to another type is so that the name of
1426 one can be different. So we probably don't need to worry much
1427 about the case where the compiler doesn't give a name to the
1428 new type. */
1429 TYPE_NAME (type) = NULL;
1430 TYPE_TAG_NAME (type) = NULL;
1431 }
1432 if (typenums[0] != -1)
1433 *dbx_lookup_type (typenums) = type;
1434 break;
1435
1436 /* In the following types, we must be sure to overwrite any existing
1437 type that the typenums refer to, rather than allocating a new one
1438 and making the typenums point to the new one. This is because there
1439 may already be pointers to the existing type (if it had been
1440 forward-referenced), and we must change it to a pointer, function,
1441 reference, or whatever, *in-place*. */
1442
1443 case '*':
1444 type1 = read_type (pp, objfile);
1445 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1446 break;
1447
1448 case '&': /* Reference to another type */
1449 type1 = read_type (pp, objfile);
1450 type = make_reference_type (type1, dbx_lookup_type (typenums));
1451 break;
1452
1453 case 'f': /* Function returning another type */
1454 type1 = read_type (pp, objfile);
1455 type = make_function_type (type1, dbx_lookup_type (typenums));
1456 break;
1457
1458 case 'k': /* Const qualifier on some type (Sun) */
1459 type = read_type (pp, objfile);
1460 /* FIXME! For now, we ignore const and volatile qualifiers. */
1461 break;
1462
1463 case 'B': /* Volatile qual on some type (Sun) */
1464 type = read_type (pp, objfile);
1465 /* FIXME! For now, we ignore const and volatile qualifiers. */
1466 break;
1467
1468 /* FIXME -- we should be doing smash_to_XXX types here. */
1469 case '@': /* Member (class & variable) type */
1470 {
1471 struct type *domain = read_type (pp, objfile);
1472 struct type *memtype;
1473
1474 if (**pp != ',')
1475 /* Invalid member type data format. */
1476 return error_type (pp);
1477 ++*pp;
1478
1479 memtype = read_type (pp, objfile);
1480 type = dbx_alloc_type (typenums, objfile);
1481 smash_to_member_type (type, domain, memtype);
1482 }
1483 break;
1484
1485 case '#': /* Method (class & fn) type */
1486 if ((*pp)[0] == '#')
1487 {
1488 /* We'll get the parameter types from the name. */
1489 struct type *return_type;
1490
1491 (*pp)++;
1492 return_type = read_type (pp, objfile);
1493 if (*(*pp)++ != ';')
1494 complain (&invalid_member_complaint, symnum);
1495 type = allocate_stub_method (return_type);
1496 if (typenums[0] != -1)
1497 *dbx_lookup_type (typenums) = type;
1498 }
1499 else
1500 {
1501 struct type *domain = read_type (pp, objfile);
1502 struct type *return_type;
1503 struct type **args;
1504
1505 if (**pp != ',')
1506 /* Invalid member type data format. */
1507 return error_type (pp);
1508 else
1509 ++(*pp);
1510
1511 return_type = read_type (pp, objfile);
1512 args = read_args (pp, ';', objfile);
1513 type = dbx_alloc_type (typenums, objfile);
1514 smash_to_method_type (type, domain, return_type, args);
1515 }
1516 break;
1517
1518 case 'r': /* Range type */
1519 type = read_range_type (pp, typenums, objfile);
1520 if (typenums[0] != -1)
1521 *dbx_lookup_type (typenums) = type;
1522 break;
1523
1524 case 'b': /* Sun ACC builtin int type */
1525 type = read_sun_builtin_type (pp, typenums, objfile);
1526 if (typenums[0] != -1)
1527 *dbx_lookup_type (typenums) = type;
1528 break;
1529
1530 case 'R': /* Sun ACC builtin float type */
1531 type = read_sun_floating_type (pp, typenums, objfile);
1532 if (typenums[0] != -1)
1533 *dbx_lookup_type (typenums) = type;
1534 break;
1535
1536 case 'e': /* Enumeration type */
1537 type = dbx_alloc_type (typenums, objfile);
1538 type = read_enum_type (pp, type, objfile);
1539 if (typenums[0] != -1)
1540 *dbx_lookup_type (typenums) = type;
1541 break;
1542
1543 case 's': /* Struct type */
1544 case 'u': /* Union type */
1545 type = dbx_alloc_type (typenums, objfile);
1546 if (!TYPE_NAME (type))
1547 {
1548 TYPE_NAME (type) = type_synonym_name;
1549 }
1550 type_synonym_name = NULL;
1551 switch (type_descriptor)
1552 {
1553 case 's':
1554 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1555 break;
1556 case 'u':
1557 TYPE_CODE (type) = TYPE_CODE_UNION;
1558 break;
1559 }
1560 type = read_struct_type (pp, type, objfile);
1561 break;
1562
1563 case 'a': /* Array type */
1564 if (**pp != 'r')
1565 return error_type (pp);
1566 ++*pp;
1567
1568 type = dbx_alloc_type (typenums, objfile);
1569 type = read_array_type (pp, type, objfile);
1570 break;
1571
1572 default:
1573 --*pp; /* Go back to the symbol in error */
1574 /* Particularly important if it was \0! */
1575 return error_type (pp);
1576 }
1577
1578 if (type == 0)
1579 {
1580 warning ("GDB internal error, type is NULL in stabsread.c\n");
1581 return error_type (pp);
1582 }
1583
1584 /* Size specified in a type attribute overrides any other size. */
1585 if (type_size != -1)
1586 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1587
1588 return type;
1589 }
1590 \f
1591 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1592 Return the proper type node for a given builtin type number. */
1593
1594 static struct type *
1595 rs6000_builtin_type (typenum)
1596 int typenum;
1597 {
1598 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1599 #define NUMBER_RECOGNIZED 30
1600 /* This includes an empty slot for type number -0. */
1601 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1602 struct type *rettype = NULL;
1603
1604 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1605 {
1606 complain (&rs6000_builtin_complaint, typenum);
1607 return builtin_type_error;
1608 }
1609 if (negative_types[-typenum] != NULL)
1610 return negative_types[-typenum];
1611
1612 #if TARGET_CHAR_BIT != 8
1613 #error This code wrong for TARGET_CHAR_BIT not 8
1614 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1615 that if that ever becomes not true, the correct fix will be to
1616 make the size in the struct type to be in bits, not in units of
1617 TARGET_CHAR_BIT. */
1618 #endif
1619
1620 switch (-typenum)
1621 {
1622 case 1:
1623 /* The size of this and all the other types are fixed, defined
1624 by the debugging format. If there is a type called "int" which
1625 is other than 32 bits, then it should use a new negative type
1626 number (or avoid negative type numbers for that case).
1627 See stabs.texinfo. */
1628 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1629 break;
1630 case 2:
1631 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1632 break;
1633 case 3:
1634 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1635 break;
1636 case 4:
1637 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1638 break;
1639 case 5:
1640 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1641 "unsigned char", NULL);
1642 break;
1643 case 6:
1644 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1645 break;
1646 case 7:
1647 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1648 "unsigned short", NULL);
1649 break;
1650 case 8:
1651 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1652 "unsigned int", NULL);
1653 break;
1654 case 9:
1655 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1656 "unsigned", NULL);
1657 case 10:
1658 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1659 "unsigned long", NULL);
1660 break;
1661 case 11:
1662 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1663 break;
1664 case 12:
1665 /* IEEE single precision (32 bit). */
1666 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1667 break;
1668 case 13:
1669 /* IEEE double precision (64 bit). */
1670 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1671 break;
1672 case 14:
1673 /* This is an IEEE double on the RS/6000, and different machines with
1674 different sizes for "long double" should use different negative
1675 type numbers. See stabs.texinfo. */
1676 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1677 break;
1678 case 15:
1679 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1680 break;
1681 case 16:
1682 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1683 break;
1684 case 17:
1685 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1686 break;
1687 case 18:
1688 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1689 break;
1690 case 19:
1691 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1692 break;
1693 case 20:
1694 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1695 "character", NULL);
1696 break;
1697 case 21:
1698 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1699 "logical*1", NULL);
1700 break;
1701 case 22:
1702 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1703 "logical*2", NULL);
1704 break;
1705 case 23:
1706 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1707 "logical*4", NULL);
1708 break;
1709 case 24:
1710 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1711 "logical", NULL);
1712 break;
1713 case 25:
1714 /* Complex type consisting of two IEEE single precision values. */
1715 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1716 break;
1717 case 26:
1718 /* Complex type consisting of two IEEE double precision values. */
1719 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1720 break;
1721 case 27:
1722 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1723 break;
1724 case 28:
1725 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1726 break;
1727 case 29:
1728 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1729 break;
1730 case 30:
1731 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1732 break;
1733 }
1734 negative_types[-typenum] = rettype;
1735 return rettype;
1736 }
1737 \f
1738 /* This page contains subroutines of read_type. */
1739
1740 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1741 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1742 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1743 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1744
1745 /* Read member function stabs info for C++ classes. The form of each member
1746 function data is:
1747
1748 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1749
1750 An example with two member functions is:
1751
1752 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1753
1754 For the case of overloaded operators, the format is op$::*.funcs, where
1755 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1756 name (such as `+=') and `.' marks the end of the operator name.
1757
1758 Returns 1 for success, 0 for failure. */
1759
1760 static int
1761 read_member_functions (fip, pp, type, objfile)
1762 struct field_info *fip;
1763 char **pp;
1764 struct type *type;
1765 struct objfile *objfile;
1766 {
1767 int nfn_fields = 0;
1768 int length = 0;
1769 /* Total number of member functions defined in this class. If the class
1770 defines two `f' functions, and one `g' function, then this will have
1771 the value 3. */
1772 int total_length = 0;
1773 int i;
1774 struct next_fnfield
1775 {
1776 struct next_fnfield *next;
1777 struct fn_field fn_field;
1778 } *sublist;
1779 struct type *look_ahead_type;
1780 struct next_fnfieldlist *new_fnlist;
1781 struct next_fnfield *new_sublist;
1782 char *main_fn_name;
1783 register char *p;
1784
1785 /* Process each list until we find something that is not a member function
1786 or find the end of the functions. */
1787
1788 while (**pp != ';')
1789 {
1790 /* We should be positioned at the start of the function name.
1791 Scan forward to find the first ':' and if it is not the
1792 first of a "::" delimiter, then this is not a member function. */
1793 p = *pp;
1794 while (*p != ':')
1795 {
1796 p++;
1797 }
1798 if (p[1] != ':')
1799 {
1800 break;
1801 }
1802
1803 sublist = NULL;
1804 look_ahead_type = NULL;
1805 length = 0;
1806
1807 new_fnlist = (struct next_fnfieldlist *)
1808 xmalloc (sizeof (struct next_fnfieldlist));
1809 make_cleanup (free, new_fnlist);
1810 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1811
1812 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1813 {
1814 /* This is a completely wierd case. In order to stuff in the
1815 names that might contain colons (the usual name delimiter),
1816 Mike Tiemann defined a different name format which is
1817 signalled if the identifier is "op$". In that case, the
1818 format is "op$::XXXX." where XXXX is the name. This is
1819 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1820 /* This lets the user type "break operator+".
1821 We could just put in "+" as the name, but that wouldn't
1822 work for "*". */
1823 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1824 char *o = opname + 3;
1825
1826 /* Skip past '::'. */
1827 *pp = p + 2;
1828
1829 STABS_CONTINUE (pp);
1830 p = *pp;
1831 while (*p != '.')
1832 {
1833 *o++ = *p++;
1834 }
1835 main_fn_name = savestring (opname, o - opname);
1836 /* Skip past '.' */
1837 *pp = p + 1;
1838 }
1839 else
1840 {
1841 main_fn_name = savestring (*pp, p - *pp);
1842 /* Skip past '::'. */
1843 *pp = p + 2;
1844 }
1845 new_fnlist -> fn_fieldlist.name = main_fn_name;
1846
1847 do
1848 {
1849 new_sublist =
1850 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1851 make_cleanup (free, new_sublist);
1852 memset (new_sublist, 0, sizeof (struct next_fnfield));
1853
1854 /* Check for and handle cretinous dbx symbol name continuation! */
1855 if (look_ahead_type == NULL)
1856 {
1857 /* Normal case. */
1858 STABS_CONTINUE (pp);
1859
1860 new_sublist -> fn_field.type = read_type (pp, objfile);
1861 if (**pp != ':')
1862 {
1863 /* Invalid symtab info for member function. */
1864 return 0;
1865 }
1866 }
1867 else
1868 {
1869 /* g++ version 1 kludge */
1870 new_sublist -> fn_field.type = look_ahead_type;
1871 look_ahead_type = NULL;
1872 }
1873
1874 (*pp)++;
1875 p = *pp;
1876 while (*p != ';')
1877 {
1878 p++;
1879 }
1880
1881 /* If this is just a stub, then we don't have the real name here. */
1882
1883 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1884 {
1885 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1886 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1887 new_sublist -> fn_field.is_stub = 1;
1888 }
1889 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1890 *pp = p + 1;
1891
1892 /* Set this member function's visibility fields. */
1893 switch (*(*pp)++)
1894 {
1895 case VISIBILITY_PRIVATE:
1896 new_sublist -> fn_field.is_private = 1;
1897 break;
1898 case VISIBILITY_PROTECTED:
1899 new_sublist -> fn_field.is_protected = 1;
1900 break;
1901 }
1902
1903 STABS_CONTINUE (pp);
1904 switch (**pp)
1905 {
1906 case 'A': /* Normal functions. */
1907 new_sublist -> fn_field.is_const = 0;
1908 new_sublist -> fn_field.is_volatile = 0;
1909 (*pp)++;
1910 break;
1911 case 'B': /* `const' member functions. */
1912 new_sublist -> fn_field.is_const = 1;
1913 new_sublist -> fn_field.is_volatile = 0;
1914 (*pp)++;
1915 break;
1916 case 'C': /* `volatile' member function. */
1917 new_sublist -> fn_field.is_const = 0;
1918 new_sublist -> fn_field.is_volatile = 1;
1919 (*pp)++;
1920 break;
1921 case 'D': /* `const volatile' member function. */
1922 new_sublist -> fn_field.is_const = 1;
1923 new_sublist -> fn_field.is_volatile = 1;
1924 (*pp)++;
1925 break;
1926 case '*': /* File compiled with g++ version 1 -- no info */
1927 case '?':
1928 case '.':
1929 break;
1930 default:
1931 complain (&const_vol_complaint, **pp);
1932 break;
1933 }
1934
1935 switch (*(*pp)++)
1936 {
1937 case '*':
1938 {
1939 int nbits;
1940 /* virtual member function, followed by index.
1941 The sign bit is set to distinguish pointers-to-methods
1942 from virtual function indicies. Since the array is
1943 in words, the quantity must be shifted left by 1
1944 on 16 bit machine, and by 2 on 32 bit machine, forcing
1945 the sign bit out, and usable as a valid index into
1946 the array. Remove the sign bit here. */
1947 new_sublist -> fn_field.voffset =
1948 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1949 if (nbits != 0)
1950 return 0;
1951
1952 STABS_CONTINUE (pp);
1953 if (**pp == ';' || **pp == '\0')
1954 {
1955 /* Must be g++ version 1. */
1956 new_sublist -> fn_field.fcontext = 0;
1957 }
1958 else
1959 {
1960 /* Figure out from whence this virtual function came.
1961 It may belong to virtual function table of
1962 one of its baseclasses. */
1963 look_ahead_type = read_type (pp, objfile);
1964 if (**pp == ':')
1965 {
1966 /* g++ version 1 overloaded methods. */
1967 }
1968 else
1969 {
1970 new_sublist -> fn_field.fcontext = look_ahead_type;
1971 if (**pp != ';')
1972 {
1973 return 0;
1974 }
1975 else
1976 {
1977 ++*pp;
1978 }
1979 look_ahead_type = NULL;
1980 }
1981 }
1982 break;
1983 }
1984 case '?':
1985 /* static member function. */
1986 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1987 if (strncmp (new_sublist -> fn_field.physname,
1988 main_fn_name, strlen (main_fn_name)))
1989 {
1990 new_sublist -> fn_field.is_stub = 1;
1991 }
1992 break;
1993
1994 default:
1995 /* error */
1996 complain (&member_fn_complaint, (*pp)[-1]);
1997 /* Fall through into normal member function. */
1998
1999 case '.':
2000 /* normal member function. */
2001 new_sublist -> fn_field.voffset = 0;
2002 new_sublist -> fn_field.fcontext = 0;
2003 break;
2004 }
2005
2006 new_sublist -> next = sublist;
2007 sublist = new_sublist;
2008 length++;
2009 STABS_CONTINUE (pp);
2010 }
2011 while (**pp != ';' && **pp != '\0');
2012
2013 (*pp)++;
2014
2015 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2016 obstack_alloc (&objfile -> type_obstack,
2017 sizeof (struct fn_field) * length);
2018 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2019 sizeof (struct fn_field) * length);
2020 for (i = length; (i--, sublist); sublist = sublist -> next)
2021 {
2022 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2023 }
2024
2025 new_fnlist -> fn_fieldlist.length = length;
2026 new_fnlist -> next = fip -> fnlist;
2027 fip -> fnlist = new_fnlist;
2028 nfn_fields++;
2029 total_length += length;
2030 STABS_CONTINUE (pp);
2031 }
2032
2033 if (nfn_fields)
2034 {
2035 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2036 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2037 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2038 memset (TYPE_FN_FIELDLISTS (type), 0,
2039 sizeof (struct fn_fieldlist) * nfn_fields);
2040 TYPE_NFN_FIELDS (type) = nfn_fields;
2041 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2042 }
2043
2044 return 1;
2045 }
2046
2047 /* Special GNU C++ name.
2048
2049 Returns 1 for success, 0 for failure. "failure" means that we can't
2050 keep parsing and it's time for error_type(). */
2051
2052 static int
2053 read_cpp_abbrev (fip, pp, type, objfile)
2054 struct field_info *fip;
2055 char **pp;
2056 struct type *type;
2057 struct objfile *objfile;
2058 {
2059 register char *p;
2060 char *name;
2061 char cpp_abbrev;
2062 struct type *context;
2063
2064 p = *pp;
2065 if (*++p == 'v')
2066 {
2067 name = NULL;
2068 cpp_abbrev = *++p;
2069
2070 *pp = p + 1;
2071
2072 /* At this point, *pp points to something like "22:23=*22...",
2073 where the type number before the ':' is the "context" and
2074 everything after is a regular type definition. Lookup the
2075 type, find it's name, and construct the field name. */
2076
2077 context = read_type (pp, objfile);
2078
2079 switch (cpp_abbrev)
2080 {
2081 case 'f': /* $vf -- a virtual function table pointer */
2082 fip->list->field.name =
2083 obconcat (&objfile->type_obstack, vptr_name, "", "");
2084 break;
2085
2086 case 'b': /* $vb -- a virtual bsomethingorother */
2087 name = type_name_no_tag (context);
2088 if (name == NULL)
2089 {
2090 complain (&invalid_cpp_type_complaint, symnum);
2091 name = "FOO";
2092 }
2093 fip->list->field.name =
2094 obconcat (&objfile->type_obstack, vb_name, name, "");
2095 break;
2096
2097 default:
2098 complain (&invalid_cpp_abbrev_complaint, *pp);
2099 fip->list->field.name =
2100 obconcat (&objfile->type_obstack,
2101 "INVALID_CPLUSPLUS_ABBREV", "", "");
2102 break;
2103 }
2104
2105 /* At this point, *pp points to the ':'. Skip it and read the
2106 field type. */
2107
2108 p = ++(*pp);
2109 if (p[-1] != ':')
2110 {
2111 complain (&invalid_cpp_abbrev_complaint, *pp);
2112 return 0;
2113 }
2114 fip->list->field.type = read_type (pp, objfile);
2115 if (**pp == ',')
2116 (*pp)++; /* Skip the comma. */
2117 else
2118 return 0;
2119
2120 {
2121 int nbits;
2122 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2123 if (nbits != 0)
2124 return 0;
2125 }
2126 /* This field is unpacked. */
2127 fip->list->field.bitsize = 0;
2128 fip->list->visibility = VISIBILITY_PRIVATE;
2129 }
2130 else
2131 {
2132 complain (&invalid_cpp_abbrev_complaint, *pp);
2133 /* We have no idea what syntax an unrecognized abbrev would have, so
2134 better return 0. If we returned 1, we would need to at least advance
2135 *pp to avoid an infinite loop. */
2136 return 0;
2137 }
2138 return 1;
2139 }
2140
2141 static void
2142 read_one_struct_field (fip, pp, p, type, objfile)
2143 struct field_info *fip;
2144 char **pp;
2145 char *p;
2146 struct type *type;
2147 struct objfile *objfile;
2148 {
2149 fip -> list -> field.name =
2150 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2151 *pp = p + 1;
2152
2153 /* This means we have a visibility for a field coming. */
2154 if (**pp == '/')
2155 {
2156 (*pp)++;
2157 fip -> list -> visibility = *(*pp)++;
2158 }
2159 else
2160 {
2161 /* normal dbx-style format, no explicit visibility */
2162 fip -> list -> visibility = VISIBILITY_PUBLIC;
2163 }
2164
2165 fip -> list -> field.type = read_type (pp, objfile);
2166 if (**pp == ':')
2167 {
2168 p = ++(*pp);
2169 #if 0
2170 /* Possible future hook for nested types. */
2171 if (**pp == '!')
2172 {
2173 fip -> list -> field.bitpos = (long)-2; /* nested type */
2174 p = ++(*pp);
2175 }
2176 else
2177 #endif
2178 {
2179 /* Static class member. */
2180 fip -> list -> field.bitpos = (long) -1;
2181 }
2182 while (*p != ';')
2183 {
2184 p++;
2185 }
2186 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2187 *pp = p + 1;
2188 return;
2189 }
2190 else if (**pp != ',')
2191 {
2192 /* Bad structure-type format. */
2193 complain (&stabs_general_complaint, "bad structure-type format");
2194 return;
2195 }
2196
2197 (*pp)++; /* Skip the comma. */
2198
2199 {
2200 int nbits;
2201 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2202 if (nbits != 0)
2203 {
2204 complain (&stabs_general_complaint, "bad structure-type format");
2205 return;
2206 }
2207 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2208 if (nbits != 0)
2209 {
2210 complain (&stabs_general_complaint, "bad structure-type format");
2211 return;
2212 }
2213 }
2214
2215 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2216 {
2217 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2218 it is a field which has been optimized out. The correct stab for
2219 this case is to use VISIBILITY_IGNORE, but that is a recent
2220 invention. (2) It is a 0-size array. For example
2221 union { int num; char str[0]; } foo. Printing "<no value>" for
2222 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2223 will continue to work, and a 0-size array as a whole doesn't
2224 have any contents to print.
2225
2226 I suspect this probably could also happen with gcc -gstabs (not
2227 -gstabs+) for static fields, and perhaps other C++ extensions.
2228 Hopefully few people use -gstabs with gdb, since it is intended
2229 for dbx compatibility. */
2230
2231 /* Ignore this field. */
2232 fip -> list-> visibility = VISIBILITY_IGNORE;
2233 }
2234 else
2235 {
2236 /* Detect an unpacked field and mark it as such.
2237 dbx gives a bit size for all fields.
2238 Note that forward refs cannot be packed,
2239 and treat enums as if they had the width of ints. */
2240
2241 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2242 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2243 {
2244 fip -> list -> field.bitsize = 0;
2245 }
2246 if ((fip -> list -> field.bitsize
2247 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2248 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2249 && (fip -> list -> field.bitsize
2250 == TARGET_INT_BIT)
2251 )
2252 )
2253 &&
2254 fip -> list -> field.bitpos % 8 == 0)
2255 {
2256 fip -> list -> field.bitsize = 0;
2257 }
2258 }
2259 }
2260
2261
2262 /* Read struct or class data fields. They have the form:
2263
2264 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2265
2266 At the end, we see a semicolon instead of a field.
2267
2268 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2269 a static field.
2270
2271 The optional VISIBILITY is one of:
2272
2273 '/0' (VISIBILITY_PRIVATE)
2274 '/1' (VISIBILITY_PROTECTED)
2275 '/2' (VISIBILITY_PUBLIC)
2276 '/9' (VISIBILITY_IGNORE)
2277
2278 or nothing, for C style fields with public visibility.
2279
2280 Returns 1 for success, 0 for failure. */
2281
2282 static int
2283 read_struct_fields (fip, pp, type, objfile)
2284 struct field_info *fip;
2285 char **pp;
2286 struct type *type;
2287 struct objfile *objfile;
2288 {
2289 register char *p;
2290 struct nextfield *new;
2291
2292 /* We better set p right now, in case there are no fields at all... */
2293
2294 p = *pp;
2295
2296 /* Read each data member type until we find the terminating ';' at the end of
2297 the data member list, or break for some other reason such as finding the
2298 start of the member function list. */
2299
2300 while (**pp != ';')
2301 {
2302 STABS_CONTINUE (pp);
2303 /* Get space to record the next field's data. */
2304 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2305 make_cleanup (free, new);
2306 memset (new, 0, sizeof (struct nextfield));
2307 new -> next = fip -> list;
2308 fip -> list = new;
2309
2310 /* Get the field name. */
2311 p = *pp;
2312
2313 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2314 unless the CPLUS_MARKER is followed by an underscore, in
2315 which case it is just the name of an anonymous type, which we
2316 should handle like any other type name. We accept either '$'
2317 or '.', because a field name can never contain one of these
2318 characters except as a CPLUS_MARKER (we probably should be
2319 doing that in most parts of GDB). */
2320
2321 if ((*p == '$' || *p == '.') && p[1] != '_')
2322 {
2323 if (!read_cpp_abbrev (fip, pp, type, objfile))
2324 return 0;
2325 continue;
2326 }
2327
2328 /* Look for the ':' that separates the field name from the field
2329 values. Data members are delimited by a single ':', while member
2330 functions are delimited by a pair of ':'s. When we hit the member
2331 functions (if any), terminate scan loop and return. */
2332
2333 while (*p != ':' && *p != '\0')
2334 {
2335 p++;
2336 }
2337 if (*p == '\0')
2338 return 0;
2339
2340 /* Check to see if we have hit the member functions yet. */
2341 if (p[1] == ':')
2342 {
2343 break;
2344 }
2345 read_one_struct_field (fip, pp, p, type, objfile);
2346 }
2347 if (p[1] == ':')
2348 {
2349 /* chill the list of fields: the last entry (at the head) is a
2350 partially constructed entry which we now scrub. */
2351 fip -> list = fip -> list -> next;
2352 }
2353 return 1;
2354 }
2355
2356 /* The stabs for C++ derived classes contain baseclass information which
2357 is marked by a '!' character after the total size. This function is
2358 called when we encounter the baseclass marker, and slurps up all the
2359 baseclass information.
2360
2361 Immediately following the '!' marker is the number of base classes that
2362 the class is derived from, followed by information for each base class.
2363 For each base class, there are two visibility specifiers, a bit offset
2364 to the base class information within the derived class, a reference to
2365 the type for the base class, and a terminating semicolon.
2366
2367 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2368 ^^ ^ ^ ^ ^ ^ ^
2369 Baseclass information marker __________________|| | | | | | |
2370 Number of baseclasses __________________________| | | | | | |
2371 Visibility specifiers (2) ________________________| | | | | |
2372 Offset in bits from start of class _________________| | | | |
2373 Type number for base class ___________________________| | | |
2374 Visibility specifiers (2) _______________________________| | |
2375 Offset in bits from start of class ________________________| |
2376 Type number of base class ____________________________________|
2377
2378 Return 1 for success, 0 for (error-type-inducing) failure. */
2379
2380 static int
2381 read_baseclasses (fip, pp, type, objfile)
2382 struct field_info *fip;
2383 char **pp;
2384 struct type *type;
2385 struct objfile *objfile;
2386 {
2387 int i;
2388 struct nextfield *new;
2389
2390 if (**pp != '!')
2391 {
2392 return 1;
2393 }
2394 else
2395 {
2396 /* Skip the '!' baseclass information marker. */
2397 (*pp)++;
2398 }
2399
2400 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2401 {
2402 int nbits;
2403 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2404 if (nbits != 0)
2405 return 0;
2406 }
2407
2408 #if 0
2409 /* Some stupid compilers have trouble with the following, so break
2410 it up into simpler expressions. */
2411 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2412 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2413 #else
2414 {
2415 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2416 char *pointer;
2417
2418 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2419 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2420 }
2421 #endif /* 0 */
2422
2423 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2424
2425 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2426 {
2427 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2428 make_cleanup (free, new);
2429 memset (new, 0, sizeof (struct nextfield));
2430 new -> next = fip -> list;
2431 fip -> list = new;
2432 new -> field.bitsize = 0; /* this should be an unpacked field! */
2433
2434 STABS_CONTINUE (pp);
2435 switch (**pp)
2436 {
2437 case '0':
2438 /* Nothing to do. */
2439 break;
2440 case '1':
2441 SET_TYPE_FIELD_VIRTUAL (type, i);
2442 break;
2443 default:
2444 /* Unknown character. Complain and treat it as non-virtual. */
2445 {
2446 static struct complaint msg = {
2447 "Unknown virtual character `%c' for baseclass", 0, 0};
2448 complain (&msg, **pp);
2449 }
2450 }
2451 ++(*pp);
2452
2453 new -> visibility = *(*pp)++;
2454 switch (new -> visibility)
2455 {
2456 case VISIBILITY_PRIVATE:
2457 case VISIBILITY_PROTECTED:
2458 case VISIBILITY_PUBLIC:
2459 break;
2460 default:
2461 /* Bad visibility format. Complain and treat it as
2462 public. */
2463 {
2464 static struct complaint msg = {
2465 "Unknown visibility `%c' for baseclass", 0, 0};
2466 complain (&msg, new -> visibility);
2467 new -> visibility = VISIBILITY_PUBLIC;
2468 }
2469 }
2470
2471 {
2472 int nbits;
2473
2474 /* The remaining value is the bit offset of the portion of the object
2475 corresponding to this baseclass. Always zero in the absence of
2476 multiple inheritance. */
2477
2478 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2479 if (nbits != 0)
2480 return 0;
2481 }
2482
2483 /* The last piece of baseclass information is the type of the
2484 base class. Read it, and remember it's type name as this
2485 field's name. */
2486
2487 new -> field.type = read_type (pp, objfile);
2488 new -> field.name = type_name_no_tag (new -> field.type);
2489
2490 /* skip trailing ';' and bump count of number of fields seen */
2491 if (**pp == ';')
2492 (*pp)++;
2493 else
2494 return 0;
2495 }
2496 return 1;
2497 }
2498
2499 /* The tail end of stabs for C++ classes that contain a virtual function
2500 pointer contains a tilde, a %, and a type number.
2501 The type number refers to the base class (possibly this class itself) which
2502 contains the vtable pointer for the current class.
2503
2504 This function is called when we have parsed all the method declarations,
2505 so we can look for the vptr base class info. */
2506
2507 static int
2508 read_tilde_fields (fip, pp, type, objfile)
2509 struct field_info *fip;
2510 char **pp;
2511 struct type *type;
2512 struct objfile *objfile;
2513 {
2514 register char *p;
2515
2516 STABS_CONTINUE (pp);
2517
2518 /* If we are positioned at a ';', then skip it. */
2519 if (**pp == ';')
2520 {
2521 (*pp)++;
2522 }
2523
2524 if (**pp == '~')
2525 {
2526 (*pp)++;
2527
2528 if (**pp == '=' || **pp == '+' || **pp == '-')
2529 {
2530 /* Obsolete flags that used to indicate the presence
2531 of constructors and/or destructors. */
2532 (*pp)++;
2533 }
2534
2535 /* Read either a '%' or the final ';'. */
2536 if (*(*pp)++ == '%')
2537 {
2538 /* The next number is the type number of the base class
2539 (possibly our own class) which supplies the vtable for
2540 this class. Parse it out, and search that class to find
2541 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2542 and TYPE_VPTR_FIELDNO. */
2543
2544 struct type *t;
2545 int i;
2546
2547 t = read_type (pp, objfile);
2548 p = (*pp)++;
2549 while (*p != '\0' && *p != ';')
2550 {
2551 p++;
2552 }
2553 if (*p == '\0')
2554 {
2555 /* Premature end of symbol. */
2556 return 0;
2557 }
2558
2559 TYPE_VPTR_BASETYPE (type) = t;
2560 if (type == t) /* Our own class provides vtbl ptr */
2561 {
2562 for (i = TYPE_NFIELDS (t) - 1;
2563 i >= TYPE_N_BASECLASSES (t);
2564 --i)
2565 {
2566 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2567 sizeof (vptr_name) - 1))
2568 {
2569 TYPE_VPTR_FIELDNO (type) = i;
2570 goto gotit;
2571 }
2572 }
2573 /* Virtual function table field not found. */
2574 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2575 return 0;
2576 }
2577 else
2578 {
2579 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2580 }
2581
2582 gotit:
2583 *pp = p + 1;
2584 }
2585 }
2586 return 1;
2587 }
2588
2589 static int
2590 attach_fn_fields_to_type (fip, type)
2591 struct field_info *fip;
2592 register struct type *type;
2593 {
2594 register int n;
2595
2596 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2597 {
2598 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2599 {
2600 /* @@ Memory leak on objfile -> type_obstack? */
2601 return 0;
2602 }
2603 TYPE_NFN_FIELDS_TOTAL (type) +=
2604 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2605 }
2606
2607 for (n = TYPE_NFN_FIELDS (type);
2608 fip -> fnlist != NULL;
2609 fip -> fnlist = fip -> fnlist -> next)
2610 {
2611 --n; /* Circumvent Sun3 compiler bug */
2612 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2613 }
2614 return 1;
2615 }
2616
2617 /* Create the vector of fields, and record how big it is.
2618 We need this info to record proper virtual function table information
2619 for this class's virtual functions. */
2620
2621 static int
2622 attach_fields_to_type (fip, type, objfile)
2623 struct field_info *fip;
2624 register struct type *type;
2625 struct objfile *objfile;
2626 {
2627 register int nfields = 0;
2628 register int non_public_fields = 0;
2629 register struct nextfield *scan;
2630
2631 /* Count up the number of fields that we have, as well as taking note of
2632 whether or not there are any non-public fields, which requires us to
2633 allocate and build the private_field_bits and protected_field_bits
2634 bitfields. */
2635
2636 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2637 {
2638 nfields++;
2639 if (scan -> visibility != VISIBILITY_PUBLIC)
2640 {
2641 non_public_fields++;
2642 }
2643 }
2644
2645 /* Now we know how many fields there are, and whether or not there are any
2646 non-public fields. Record the field count, allocate space for the
2647 array of fields, and create blank visibility bitfields if necessary. */
2648
2649 TYPE_NFIELDS (type) = nfields;
2650 TYPE_FIELDS (type) = (struct field *)
2651 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2652 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2653
2654 if (non_public_fields)
2655 {
2656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2657
2658 TYPE_FIELD_PRIVATE_BITS (type) =
2659 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2660 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2661
2662 TYPE_FIELD_PROTECTED_BITS (type) =
2663 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2664 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2665
2666 TYPE_FIELD_IGNORE_BITS (type) =
2667 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2668 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2669 }
2670
2671 /* Copy the saved-up fields into the field vector. Start from the head
2672 of the list, adding to the tail of the field array, so that they end
2673 up in the same order in the array in which they were added to the list. */
2674
2675 while (nfields-- > 0)
2676 {
2677 TYPE_FIELD (type, nfields) = fip -> list -> field;
2678 switch (fip -> list -> visibility)
2679 {
2680 case VISIBILITY_PRIVATE:
2681 SET_TYPE_FIELD_PRIVATE (type, nfields);
2682 break;
2683
2684 case VISIBILITY_PROTECTED:
2685 SET_TYPE_FIELD_PROTECTED (type, nfields);
2686 break;
2687
2688 case VISIBILITY_IGNORE:
2689 SET_TYPE_FIELD_IGNORE (type, nfields);
2690 break;
2691
2692 case VISIBILITY_PUBLIC:
2693 break;
2694
2695 default:
2696 /* Unknown visibility. Complain and treat it as public. */
2697 {
2698 static struct complaint msg = {
2699 "Unknown visibility `%c' for field", 0, 0};
2700 complain (&msg, fip -> list -> visibility);
2701 }
2702 break;
2703 }
2704 fip -> list = fip -> list -> next;
2705 }
2706 return 1;
2707 }
2708
2709 /* Read the description of a structure (or union type) and return an object
2710 describing the type.
2711
2712 PP points to a character pointer that points to the next unconsumed token
2713 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2714 *PP will point to "4a:1,0,32;;".
2715
2716 TYPE points to an incomplete type that needs to be filled in.
2717
2718 OBJFILE points to the current objfile from which the stabs information is
2719 being read. (Note that it is redundant in that TYPE also contains a pointer
2720 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2721 */
2722
2723 static struct type *
2724 read_struct_type (pp, type, objfile)
2725 char **pp;
2726 struct type *type;
2727 struct objfile *objfile;
2728 {
2729 struct cleanup *back_to;
2730 struct field_info fi;
2731
2732 fi.list = NULL;
2733 fi.fnlist = NULL;
2734
2735 back_to = make_cleanup (null_cleanup, 0);
2736
2737 INIT_CPLUS_SPECIFIC (type);
2738 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2739
2740 /* First comes the total size in bytes. */
2741
2742 {
2743 int nbits;
2744 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2745 if (nbits != 0)
2746 return error_type (pp);
2747 }
2748
2749 /* Now read the baseclasses, if any, read the regular C struct or C++
2750 class member fields, attach the fields to the type, read the C++
2751 member functions, attach them to the type, and then read any tilde
2752 field (baseclass specifier for the class holding the main vtable). */
2753
2754 if (!read_baseclasses (&fi, pp, type, objfile)
2755 || !read_struct_fields (&fi, pp, type, objfile)
2756 || !attach_fields_to_type (&fi, type, objfile)
2757 || !read_member_functions (&fi, pp, type, objfile)
2758 || !attach_fn_fields_to_type (&fi, type)
2759 || !read_tilde_fields (&fi, pp, type, objfile))
2760 {
2761 do_cleanups (back_to);
2762 return (error_type (pp));
2763 }
2764
2765 do_cleanups (back_to);
2766 return (type);
2767 }
2768
2769 /* Read a definition of an array type,
2770 and create and return a suitable type object.
2771 Also creates a range type which represents the bounds of that
2772 array. */
2773
2774 static struct type *
2775 read_array_type (pp, type, objfile)
2776 register char **pp;
2777 register struct type *type;
2778 struct objfile *objfile;
2779 {
2780 struct type *index_type, *element_type, *range_type;
2781 int lower, upper;
2782 int adjustable = 0;
2783 int nbits;
2784
2785 /* Format of an array type:
2786 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2787 to handle this.
2788
2789 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2790 for these, produce a type like float[][]. */
2791
2792 index_type = read_type (pp, objfile);
2793 if (**pp != ';')
2794 /* Improper format of array type decl. */
2795 return error_type (pp);
2796 ++*pp;
2797
2798 if (!(**pp >= '0' && **pp <= '9'))
2799 {
2800 (*pp)++;
2801 adjustable = 1;
2802 }
2803 lower = read_huge_number (pp, ';', &nbits);
2804 if (nbits != 0)
2805 return error_type (pp);
2806
2807 if (!(**pp >= '0' && **pp <= '9'))
2808 {
2809 (*pp)++;
2810 adjustable = 1;
2811 }
2812 upper = read_huge_number (pp, ';', &nbits);
2813 if (nbits != 0)
2814 return error_type (pp);
2815
2816 element_type = read_type (pp, objfile);
2817
2818 if (adjustable)
2819 {
2820 lower = 0;
2821 upper = -1;
2822 }
2823
2824 range_type =
2825 create_range_type ((struct type *) NULL, index_type, lower, upper);
2826 type = create_array_type (type, element_type, range_type);
2827
2828 /* If we have an array whose element type is not yet known, but whose
2829 bounds *are* known, record it to be adjusted at the end of the file. */
2830
2831 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2832 {
2833 add_undefined_type (type);
2834 }
2835
2836 return type;
2837 }
2838
2839
2840 /* Read a definition of an enumeration type,
2841 and create and return a suitable type object.
2842 Also defines the symbols that represent the values of the type. */
2843
2844 static struct type *
2845 read_enum_type (pp, type, objfile)
2846 register char **pp;
2847 register struct type *type;
2848 struct objfile *objfile;
2849 {
2850 register char *p;
2851 char *name;
2852 register long n;
2853 register struct symbol *sym;
2854 int nsyms = 0;
2855 struct pending **symlist;
2856 struct pending *osyms, *syms;
2857 int o_nsyms;
2858
2859 #if 0
2860 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2861 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2862 to do? For now, force all enum values to file scope. */
2863 if (within_function)
2864 symlist = &local_symbols;
2865 else
2866 #endif
2867 symlist = &file_symbols;
2868 osyms = *symlist;
2869 o_nsyms = osyms ? osyms->nsyms : 0;
2870
2871 /* Read the value-names and their values.
2872 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2873 A semicolon or comma instead of a NAME means the end. */
2874 while (**pp && **pp != ';' && **pp != ',')
2875 {
2876 int nbits;
2877 STABS_CONTINUE (pp);
2878 p = *pp;
2879 while (*p != ':') p++;
2880 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2881 *pp = p + 1;
2882 n = read_huge_number (pp, ',', &nbits);
2883 if (nbits != 0)
2884 return error_type (pp);
2885
2886 sym = (struct symbol *)
2887 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2888 memset (sym, 0, sizeof (struct symbol));
2889 SYMBOL_NAME (sym) = name;
2890 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2891 SYMBOL_CLASS (sym) = LOC_CONST;
2892 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2893 SYMBOL_VALUE (sym) = n;
2894 add_symbol_to_list (sym, symlist);
2895 nsyms++;
2896 }
2897
2898 if (**pp == ';')
2899 (*pp)++; /* Skip the semicolon. */
2900
2901 /* Now fill in the fields of the type-structure. */
2902
2903 TYPE_LENGTH (type) = sizeof (int);
2904 TYPE_CODE (type) = TYPE_CODE_ENUM;
2905 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2906 TYPE_NFIELDS (type) = nsyms;
2907 TYPE_FIELDS (type) = (struct field *)
2908 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2909 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2910
2911 /* Find the symbols for the values and put them into the type.
2912 The symbols can be found in the symlist that we put them on
2913 to cause them to be defined. osyms contains the old value
2914 of that symlist; everything up to there was defined by us. */
2915 /* Note that we preserve the order of the enum constants, so
2916 that in something like "enum {FOO, LAST_THING=FOO}" we print
2917 FOO, not LAST_THING. */
2918
2919 for (syms = *symlist, n = 0; syms; syms = syms->next)
2920 {
2921 int j = 0;
2922 if (syms == osyms)
2923 j = o_nsyms;
2924 for (; j < syms->nsyms; j++,n++)
2925 {
2926 struct symbol *xsym = syms->symbol[j];
2927 SYMBOL_TYPE (xsym) = type;
2928 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2929 TYPE_FIELD_VALUE (type, n) = 0;
2930 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2931 TYPE_FIELD_BITSIZE (type, n) = 0;
2932 }
2933 if (syms == osyms)
2934 break;
2935 }
2936
2937 #if 0
2938 /* This screws up perfectly good C programs with enums. FIXME. */
2939 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2940 if(TYPE_NFIELDS(type) == 2 &&
2941 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2942 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2943 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2944 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2945 TYPE_CODE(type) = TYPE_CODE_BOOL;
2946 #endif
2947
2948 return type;
2949 }
2950
2951 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2952 typedefs in every file (for int, long, etc):
2953
2954 type = b <signed> <width>; <offset>; <nbits>
2955 signed = u or s. Possible c in addition to u or s (for char?).
2956 offset = offset from high order bit to start bit of type.
2957 width is # bytes in object of this type, nbits is # bits in type.
2958
2959 The width/offset stuff appears to be for small objects stored in
2960 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2961 FIXME. */
2962
2963 static struct type *
2964 read_sun_builtin_type (pp, typenums, objfile)
2965 char **pp;
2966 int typenums[2];
2967 struct objfile *objfile;
2968 {
2969 int type_bits;
2970 int nbits;
2971 int signed_type;
2972
2973 switch (**pp)
2974 {
2975 case 's':
2976 signed_type = 1;
2977 break;
2978 case 'u':
2979 signed_type = 0;
2980 break;
2981 default:
2982 return error_type (pp);
2983 }
2984 (*pp)++;
2985
2986 /* For some odd reason, all forms of char put a c here. This is strange
2987 because no other type has this honor. We can safely ignore this because
2988 we actually determine 'char'acterness by the number of bits specified in
2989 the descriptor. */
2990
2991 if (**pp == 'c')
2992 (*pp)++;
2993
2994 /* The first number appears to be the number of bytes occupied
2995 by this type, except that unsigned short is 4 instead of 2.
2996 Since this information is redundant with the third number,
2997 we will ignore it. */
2998 read_huge_number (pp, ';', &nbits);
2999 if (nbits != 0)
3000 return error_type (pp);
3001
3002 /* The second number is always 0, so ignore it too. */
3003 read_huge_number (pp, ';', &nbits);
3004 if (nbits != 0)
3005 return error_type (pp);
3006
3007 /* The third number is the number of bits for this type. */
3008 type_bits = read_huge_number (pp, 0, &nbits);
3009 if (nbits != 0)
3010 return error_type (pp);
3011
3012 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3013 type_bits / TARGET_CHAR_BIT,
3014 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3015 objfile);
3016 }
3017
3018 static struct type *
3019 read_sun_floating_type (pp, typenums, objfile)
3020 char **pp;
3021 int typenums[2];
3022 struct objfile *objfile;
3023 {
3024 int nbits;
3025 int details;
3026 int nbytes;
3027
3028 /* The first number has more details about the type, for example
3029 FN_COMPLEX. */
3030 details = read_huge_number (pp, ';', &nbits);
3031 if (nbits != 0)
3032 return error_type (pp);
3033
3034 /* The second number is the number of bytes occupied by this type */
3035 nbytes = read_huge_number (pp, ';', &nbits);
3036 if (nbits != 0)
3037 return error_type (pp);
3038
3039 if (details == NF_COMPLEX || details == NF_COMPLEX16
3040 || details == NF_COMPLEX32)
3041 /* This is a type we can't handle, but we do know the size.
3042 We also will be able to give it a name. */
3043 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3044
3045 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3046 }
3047
3048 /* Read a number from the string pointed to by *PP.
3049 The value of *PP is advanced over the number.
3050 If END is nonzero, the character that ends the
3051 number must match END, or an error happens;
3052 and that character is skipped if it does match.
3053 If END is zero, *PP is left pointing to that character.
3054
3055 If the number fits in a long, set *BITS to 0 and return the value.
3056 If not, set *BITS to be the number of bits in the number and return 0.
3057
3058 If encounter garbage, set *BITS to -1 and return 0. */
3059
3060 static long
3061 read_huge_number (pp, end, bits)
3062 char **pp;
3063 int end;
3064 int *bits;
3065 {
3066 char *p = *pp;
3067 int sign = 1;
3068 long n = 0;
3069 int radix = 10;
3070 char overflow = 0;
3071 int nbits = 0;
3072 int c;
3073 long upper_limit;
3074
3075 if (*p == '-')
3076 {
3077 sign = -1;
3078 p++;
3079 }
3080
3081 /* Leading zero means octal. GCC uses this to output values larger
3082 than an int (because that would be hard in decimal). */
3083 if (*p == '0')
3084 {
3085 radix = 8;
3086 p++;
3087 }
3088
3089 upper_limit = LONG_MAX / radix;
3090 while ((c = *p++) >= '0' && c < ('0' + radix))
3091 {
3092 if (n <= upper_limit)
3093 {
3094 n *= radix;
3095 n += c - '0'; /* FIXME this overflows anyway */
3096 }
3097 else
3098 overflow = 1;
3099
3100 /* This depends on large values being output in octal, which is
3101 what GCC does. */
3102 if (radix == 8)
3103 {
3104 if (nbits == 0)
3105 {
3106 if (c == '0')
3107 /* Ignore leading zeroes. */
3108 ;
3109 else if (c == '1')
3110 nbits = 1;
3111 else if (c == '2' || c == '3')
3112 nbits = 2;
3113 else
3114 nbits = 3;
3115 }
3116 else
3117 nbits += 3;
3118 }
3119 }
3120 if (end)
3121 {
3122 if (c && c != end)
3123 {
3124 if (bits != NULL)
3125 *bits = -1;
3126 return 0;
3127 }
3128 }
3129 else
3130 --p;
3131
3132 *pp = p;
3133 if (overflow)
3134 {
3135 if (nbits == 0)
3136 {
3137 /* Large decimal constants are an error (because it is hard to
3138 count how many bits are in them). */
3139 if (bits != NULL)
3140 *bits = -1;
3141 return 0;
3142 }
3143
3144 /* -0x7f is the same as 0x80. So deal with it by adding one to
3145 the number of bits. */
3146 if (sign == -1)
3147 ++nbits;
3148 if (bits)
3149 *bits = nbits;
3150 }
3151 else
3152 {
3153 if (bits)
3154 *bits = 0;
3155 return n * sign;
3156 }
3157 /* It's *BITS which has the interesting information. */
3158 return 0;
3159 }
3160
3161 static struct type *
3162 read_range_type (pp, typenums, objfile)
3163 char **pp;
3164 int typenums[2];
3165 struct objfile *objfile;
3166 {
3167 int rangenums[2];
3168 long n2, n3;
3169 int n2bits, n3bits;
3170 int self_subrange;
3171 struct type *result_type;
3172 struct type *index_type;
3173
3174 /* First comes a type we are a subrange of.
3175 In C it is usually 0, 1 or the type being defined. */
3176 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3177 not just a type number. */
3178 if (read_type_number (pp, rangenums) != 0)
3179 return error_type (pp);
3180 self_subrange = (rangenums[0] == typenums[0] &&
3181 rangenums[1] == typenums[1]);
3182
3183 /* A semicolon should now follow; skip it. */
3184 if (**pp == ';')
3185 (*pp)++;
3186
3187 /* The remaining two operands are usually lower and upper bounds
3188 of the range. But in some special cases they mean something else. */
3189 n2 = read_huge_number (pp, ';', &n2bits);
3190 n3 = read_huge_number (pp, ';', &n3bits);
3191
3192 if (n2bits == -1 || n3bits == -1)
3193 return error_type (pp);
3194
3195 /* If limits are huge, must be large integral type. */
3196 if (n2bits != 0 || n3bits != 0)
3197 {
3198 char got_signed = 0;
3199 char got_unsigned = 0;
3200 /* Number of bits in the type. */
3201 int nbits = 0;
3202
3203 /* Range from 0 to <large number> is an unsigned large integral type. */
3204 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3205 {
3206 got_unsigned = 1;
3207 nbits = n3bits;
3208 }
3209 /* Range from <large number> to <large number>-1 is a large signed
3210 integral type. Take care of the case where <large number> doesn't
3211 fit in a long but <large number>-1 does. */
3212 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3213 || (n2bits != 0 && n3bits == 0
3214 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3215 && n3 == LONG_MAX))
3216 {
3217 got_signed = 1;
3218 nbits = n2bits;
3219 }
3220
3221 if (got_signed || got_unsigned)
3222 {
3223 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3224 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3225 objfile);
3226 }
3227 else
3228 return error_type (pp);
3229 }
3230
3231 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3232 if (self_subrange && n2 == 0 && n3 == 0)
3233 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3234
3235 /* If n3 is zero and n2 is not, we want a floating type,
3236 and n2 is the width in bytes.
3237
3238 Fortran programs appear to use this for complex types also,
3239 and they give no way to distinguish between double and single-complex!
3240
3241 GDB does not have complex types.
3242
3243 Just return the complex as a float of that size. It won't work right
3244 for the complex values, but at least it makes the file loadable. */
3245
3246 if (n3 == 0 && n2 > 0)
3247 {
3248 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3249 }
3250
3251 /* If the upper bound is -1, it must really be an unsigned int. */
3252
3253 else if (n2 == 0 && n3 == -1)
3254 {
3255 /* It is unsigned int or unsigned long. */
3256 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3257 compatibility hack. */
3258 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3259 TYPE_FLAG_UNSIGNED, NULL, objfile);
3260 }
3261
3262 /* Special case: char is defined (Who knows why) as a subrange of
3263 itself with range 0-127. */
3264 else if (self_subrange && n2 == 0 && n3 == 127)
3265 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3266
3267 /* We used to do this only for subrange of self or subrange of int. */
3268 else if (n2 == 0)
3269 {
3270 if (n3 < 0)
3271 /* n3 actually gives the size. */
3272 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3273 NULL, objfile);
3274 if (n3 == 0xff)
3275 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3276 if (n3 == 0xffff)
3277 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3278
3279 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3280 "unsigned long", and we already checked for that,
3281 so don't need to test for it here. */
3282 }
3283 /* I think this is for Convex "long long". Since I don't know whether
3284 Convex sets self_subrange, I also accept that particular size regardless
3285 of self_subrange. */
3286 else if (n3 == 0 && n2 < 0
3287 && (self_subrange
3288 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3289 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3290 else if (n2 == -n3 -1)
3291 {
3292 if (n3 == 0x7f)
3293 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3294 if (n3 == 0x7fff)
3295 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3296 if (n3 == 0x7fffffff)
3297 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3298 }
3299
3300 /* We have a real range type on our hands. Allocate space and
3301 return a real pointer. */
3302
3303 /* At this point I don't have the faintest idea how to deal with
3304 a self_subrange type; I'm going to assume that this is used
3305 as an idiom, and that all of them are special cases. So . . . */
3306 if (self_subrange)
3307 return error_type (pp);
3308
3309 index_type = *dbx_lookup_type (rangenums);
3310 if (index_type == NULL)
3311 {
3312 /* Does this actually ever happen? Is that why we are worrying
3313 about dealing with it rather than just calling error_type? */
3314
3315 static struct type *range_type_index;
3316
3317 complain (&range_type_base_complaint, rangenums[1]);
3318 if (range_type_index == NULL)
3319 range_type_index =
3320 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3321 0, "range type index type", NULL);
3322 index_type = range_type_index;
3323 }
3324
3325 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3326 return (result_type);
3327 }
3328
3329 /* Read in an argument list. This is a list of types, separated by commas
3330 and terminated with END. Return the list of types read in, or (struct type
3331 **)-1 if there is an error. */
3332
3333 static struct type **
3334 read_args (pp, end, objfile)
3335 char **pp;
3336 int end;
3337 struct objfile *objfile;
3338 {
3339 /* FIXME! Remove this arbitrary limit! */
3340 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3341 int n = 0;
3342
3343 while (**pp != end)
3344 {
3345 if (**pp != ',')
3346 /* Invalid argument list: no ','. */
3347 return (struct type **)-1;
3348 (*pp)++;
3349 STABS_CONTINUE (pp);
3350 types[n++] = read_type (pp, objfile);
3351 }
3352 (*pp)++; /* get past `end' (the ':' character) */
3353
3354 if (n == 1)
3355 {
3356 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3357 }
3358 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3359 {
3360 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3361 memset (rval + n, 0, sizeof (struct type *));
3362 }
3363 else
3364 {
3365 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3366 }
3367 memcpy (rval, types, n * sizeof (struct type *));
3368 return rval;
3369 }
3370 \f
3371 /* Common block handling. */
3372
3373 /* List of symbols declared since the last BCOMM. This list is a tail
3374 of local_symbols. When ECOMM is seen, the symbols on the list
3375 are noted so their proper addresses can be filled in later,
3376 using the common block base address gotten from the assembler
3377 stabs. */
3378
3379 static struct pending *common_block;
3380 static int common_block_i;
3381
3382 /* Name of the current common block. We get it from the BCOMM instead of the
3383 ECOMM to match IBM documentation (even though IBM puts the name both places
3384 like everyone else). */
3385 static char *common_block_name;
3386
3387 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3388 to remain after this function returns. */
3389
3390 void
3391 common_block_start (name, objfile)
3392 char *name;
3393 struct objfile *objfile;
3394 {
3395 if (common_block_name != NULL)
3396 {
3397 static struct complaint msg = {
3398 "Invalid symbol data: common block within common block",
3399 0, 0};
3400 complain (&msg);
3401 }
3402 common_block = local_symbols;
3403 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3404 common_block_name = obsavestring (name, strlen (name),
3405 &objfile -> symbol_obstack);
3406 }
3407
3408 /* Process a N_ECOMM symbol. */
3409
3410 void
3411 common_block_end (objfile)
3412 struct objfile *objfile;
3413 {
3414 /* Symbols declared since the BCOMM are to have the common block
3415 start address added in when we know it. common_block and
3416 common_block_i point to the first symbol after the BCOMM in
3417 the local_symbols list; copy the list and hang it off the
3418 symbol for the common block name for later fixup. */
3419 int i;
3420 struct symbol *sym;
3421 struct pending *new = 0;
3422 struct pending *next;
3423 int j;
3424
3425 if (common_block_name == NULL)
3426 {
3427 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3428 complain (&msg);
3429 return;
3430 }
3431
3432 sym = (struct symbol *)
3433 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3434 memset (sym, 0, sizeof (struct symbol));
3435 SYMBOL_NAME (sym) = common_block_name;
3436 SYMBOL_CLASS (sym) = LOC_BLOCK;
3437
3438 /* Now we copy all the symbols which have been defined since the BCOMM. */
3439
3440 /* Copy all the struct pendings before common_block. */
3441 for (next = local_symbols;
3442 next != NULL && next != common_block;
3443 next = next->next)
3444 {
3445 for (j = 0; j < next->nsyms; j++)
3446 add_symbol_to_list (next->symbol[j], &new);
3447 }
3448
3449 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3450 NULL, it means copy all the local symbols (which we already did
3451 above). */
3452
3453 if (common_block != NULL)
3454 for (j = common_block_i; j < common_block->nsyms; j++)
3455 add_symbol_to_list (common_block->symbol[j], &new);
3456
3457 SYMBOL_NAMESPACE (sym) = (enum namespace)((long) new);
3458
3459 /* Should we be putting local_symbols back to what it was?
3460 Does it matter? */
3461
3462 i = hashname (SYMBOL_NAME (sym));
3463 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3464 global_sym_chain[i] = sym;
3465 common_block_name = NULL;
3466 }
3467
3468 /* Add a common block's start address to the offset of each symbol
3469 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3470 the common block name). */
3471
3472 static void
3473 fix_common_block (sym, valu)
3474 struct symbol *sym;
3475 int valu;
3476 {
3477 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3478 for ( ; next; next = next->next)
3479 {
3480 register int j;
3481 for (j = next->nsyms - 1; j >= 0; j--)
3482 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3483 }
3484 }
3485
3486
3487 \f
3488 /* What about types defined as forward references inside of a small lexical
3489 scope? */
3490 /* Add a type to the list of undefined types to be checked through
3491 once this file has been read in. */
3492
3493 void
3494 add_undefined_type (type)
3495 struct type *type;
3496 {
3497 if (undef_types_length == undef_types_allocated)
3498 {
3499 undef_types_allocated *= 2;
3500 undef_types = (struct type **)
3501 xrealloc ((char *) undef_types,
3502 undef_types_allocated * sizeof (struct type *));
3503 }
3504 undef_types[undef_types_length++] = type;
3505 }
3506
3507 /* Go through each undefined type, see if it's still undefined, and fix it
3508 up if possible. We have two kinds of undefined types:
3509
3510 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3511 Fix: update array length using the element bounds
3512 and the target type's length.
3513 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3514 yet defined at the time a pointer to it was made.
3515 Fix: Do a full lookup on the struct/union tag. */
3516 void
3517 cleanup_undefined_types ()
3518 {
3519 struct type **type;
3520
3521 for (type = undef_types; type < undef_types + undef_types_length; type++)
3522 {
3523 switch (TYPE_CODE (*type))
3524 {
3525
3526 case TYPE_CODE_STRUCT:
3527 case TYPE_CODE_UNION:
3528 case TYPE_CODE_ENUM:
3529 {
3530 /* Check if it has been defined since. */
3531 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3532 {
3533 struct pending *ppt;
3534 int i;
3535 /* Name of the type, without "struct" or "union" */
3536 char *typename = TYPE_TAG_NAME (*type);
3537
3538 if (typename == NULL)
3539 {
3540 static struct complaint msg = {"need a type name", 0, 0};
3541 complain (&msg);
3542 break;
3543 }
3544 for (ppt = file_symbols; ppt; ppt = ppt->next)
3545 {
3546 for (i = 0; i < ppt->nsyms; i++)
3547 {
3548 struct symbol *sym = ppt->symbol[i];
3549
3550 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3551 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3552 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3553 TYPE_CODE (*type))
3554 && STREQ (SYMBOL_NAME (sym), typename))
3555 {
3556 memcpy (*type, SYMBOL_TYPE (sym),
3557 sizeof (struct type));
3558 }
3559 }
3560 }
3561 }
3562 }
3563 break;
3564
3565 case TYPE_CODE_ARRAY:
3566 {
3567 struct type *range_type;
3568 int lower, upper;
3569
3570 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3571 goto badtype;
3572 if (TYPE_NFIELDS (*type) != 1)
3573 goto badtype;
3574 range_type = TYPE_FIELD_TYPE (*type, 0);
3575 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3576 goto badtype;
3577
3578 /* Now recompute the length of the array type, based on its
3579 number of elements and the target type's length. */
3580 lower = TYPE_FIELD_BITPOS (range_type, 0);
3581 upper = TYPE_FIELD_BITPOS (range_type, 1);
3582 TYPE_LENGTH (*type) = (upper - lower + 1)
3583 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3584 }
3585 break;
3586
3587 default:
3588 badtype:
3589 {
3590 static struct complaint msg = {"\
3591 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3592 complain (&msg, TYPE_CODE (*type));
3593 }
3594 break;
3595 }
3596 }
3597 undef_types_length = 0;
3598 }
3599
3600 /* Scan through all of the global symbols defined in the object file,
3601 assigning values to the debugging symbols that need to be assigned
3602 to. Get these symbols from the minimal symbol table. */
3603
3604 void
3605 scan_file_globals (objfile)
3606 struct objfile *objfile;
3607 {
3608 int hash;
3609 struct minimal_symbol *msymbol;
3610 struct symbol *sym, *prev;
3611
3612 if (objfile->msymbols == 0) /* Beware the null file. */
3613 return;
3614
3615 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3616 {
3617 QUIT;
3618
3619 prev = NULL;
3620
3621 /* Get the hash index and check all the symbols
3622 under that hash index. */
3623
3624 hash = hashname (SYMBOL_NAME (msymbol));
3625
3626 for (sym = global_sym_chain[hash]; sym;)
3627 {
3628 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3629 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3630 {
3631 /* Splice this symbol out of the hash chain and
3632 assign the value we have to it. */
3633 if (prev)
3634 {
3635 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3636 }
3637 else
3638 {
3639 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3640 }
3641
3642 /* Check to see whether we need to fix up a common block. */
3643 /* Note: this code might be executed several times for
3644 the same symbol if there are multiple references. */
3645
3646 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3647 {
3648 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3649 }
3650 else
3651 {
3652 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3653 }
3654
3655 if (prev)
3656 {
3657 sym = SYMBOL_VALUE_CHAIN (prev);
3658 }
3659 else
3660 {
3661 sym = global_sym_chain[hash];
3662 }
3663 }
3664 else
3665 {
3666 prev = sym;
3667 sym = SYMBOL_VALUE_CHAIN (sym);
3668 }
3669 }
3670 }
3671 }
3672
3673 /* Initialize anything that needs initializing when starting to read
3674 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3675 to a psymtab. */
3676
3677 void
3678 stabsread_init ()
3679 {
3680 }
3681
3682 /* Initialize anything that needs initializing when a completely new
3683 symbol file is specified (not just adding some symbols from another
3684 file, e.g. a shared library). */
3685
3686 void
3687 stabsread_new_init ()
3688 {
3689 /* Empty the hash table of global syms looking for values. */
3690 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3691 }
3692
3693 /* Initialize anything that needs initializing at the same time as
3694 start_symtab() is called. */
3695
3696 void start_stabs ()
3697 {
3698 global_stabs = NULL; /* AIX COFF */
3699 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3700 n_this_object_header_files = 1;
3701 type_vector_length = 0;
3702 type_vector = (struct type **) 0;
3703
3704 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3705 common_block_name = NULL;
3706 }
3707
3708 /* Call after end_symtab() */
3709
3710 void end_stabs ()
3711 {
3712 if (type_vector)
3713 {
3714 free ((char *) type_vector);
3715 }
3716 type_vector = 0;
3717 type_vector_length = 0;
3718 previous_stab_code = 0;
3719 }
3720
3721 void
3722 finish_global_stabs (objfile)
3723 struct objfile *objfile;
3724 {
3725 if (global_stabs)
3726 {
3727 patch_block_stabs (global_symbols, global_stabs, objfile);
3728 free ((PTR) global_stabs);
3729 global_stabs = NULL;
3730 }
3731 }
3732
3733 /* Initializer for this module */
3734
3735 void
3736 _initialize_stabsread ()
3737 {
3738 undef_types_allocated = 20;
3739 undef_types_length = 0;
3740 undef_types = (struct type **)
3741 xmalloc (undef_types_allocated * sizeof (struct type *));
3742 }
This page took 0.152476 seconds and 5 git commands to generate.