2004-02-02 David Carlton <carlton@kealia.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include <readline/readline.h>
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_som_som_object_present;
69 extern int hp_cxx_exception_support_initialized;
70 #define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74 #endif
75
76 int (*ui_load_progress_hook) (const char *section, unsigned long num);
77 void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
82 void (*pre_add_symbol_hook) (char *);
83 void (*post_add_symbol_hook) (void);
84 void (*target_new_objfile_hook) (struct objfile *);
85
86 static void clear_symtab_users_cleanup (void *ignore);
87
88 /* Global variables owned by this file */
89 int readnow_symbol_files; /* Read full symbols immediately */
90
91 /* External variables and functions referenced. */
92
93 extern void report_transfer_performance (unsigned long, time_t, time_t);
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table (void);
99 static void simple_free_overlay_region_table (void);
100 #endif
101
102 static void set_initial_language (void);
103
104 static void load_command (char *, int);
105
106 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
108 static void add_symbol_file_command (char *, int);
109
110 static void add_shared_symbol_files_command (char *, int);
111
112 static void reread_separate_symbols (struct objfile *objfile);
113
114 static void cashier_psymtab (struct partial_symtab *);
115
116 bfd *symfile_bfd_open (char *);
117
118 int get_section_index (struct objfile *, char *);
119
120 static void find_sym_fns (struct objfile *);
121
122 static void decrement_reading_symtab (void *);
123
124 static void overlay_invalidate_all (void);
125
126 static int overlay_is_mapped (struct obj_section *);
127
128 void list_overlays_command (char *, int);
129
130 void map_overlay_command (char *, int);
131
132 void unmap_overlay_command (char *, int);
133
134 static void overlay_auto_command (char *, int);
135
136 static void overlay_manual_command (char *, int);
137
138 static void overlay_off_command (char *, int);
139
140 static void overlay_load_command (char *, int);
141
142 static void overlay_command (char *, int);
143
144 static void simple_free_overlay_table (void);
145
146 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
147
148 static int simple_read_overlay_table (void);
149
150 static int simple_overlay_update_1 (struct obj_section *);
151
152 static void add_filename_language (char *ext, enum language lang);
153
154 static void set_ext_lang_command (char *args, int from_tty);
155
156 static void info_ext_lang_command (char *args, int from_tty);
157
158 static char *find_separate_debug_file (struct objfile *objfile);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* This compares two partial symbols by names, using strcmp_iw_ordered
203 for the comparison. */
204
205 static int
206 compare_psymbols (const void *s1p, const void *s2p)
207 {
208 struct partial_symbol *const *s1 = s1p;
209 struct partial_symbol *const *s2 = s2p;
210
211 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
212 SYMBOL_NATURAL_NAME (*s2));
213 }
214
215 void
216 sort_pst_symbols (struct partial_symtab *pst)
217 {
218 /* Sort the global list; don't sort the static list */
219
220 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
221 pst->n_global_syms, sizeof (struct partial_symbol *),
222 compare_psymbols);
223 }
224
225 /* Make a null terminated copy of the string at PTR with SIZE characters in
226 the obstack pointed to by OBSTACKP . Returns the address of the copy.
227 Note that the string at PTR does not have to be null terminated, I.E. it
228 may be part of a larger string and we are only saving a substring. */
229
230 char *
231 obsavestring (const char *ptr, int size, struct obstack *obstackp)
232 {
233 char *p = (char *) obstack_alloc (obstackp, size + 1);
234 /* Open-coded memcpy--saves function call time. These strings are usually
235 short. FIXME: Is this really still true with a compiler that can
236 inline memcpy? */
237 {
238 const char *p1 = ptr;
239 char *p2 = p;
240 const char *end = ptr + size;
241 while (p1 != end)
242 *p2++ = *p1++;
243 }
244 p[size] = 0;
245 return p;
246 }
247
248 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
249 in the obstack pointed to by OBSTACKP. */
250
251 char *
252 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
253 const char *s3)
254 {
255 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
256 char *val = (char *) obstack_alloc (obstackp, len);
257 strcpy (val, s1);
258 strcat (val, s2);
259 strcat (val, s3);
260 return val;
261 }
262
263 /* True if we are nested inside psymtab_to_symtab. */
264
265 int currently_reading_symtab = 0;
266
267 static void
268 decrement_reading_symtab (void *dummy)
269 {
270 currently_reading_symtab--;
271 }
272
273 /* Get the symbol table that corresponds to a partial_symtab.
274 This is fast after the first time you do it. In fact, there
275 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
276 case inline. */
277
278 struct symtab *
279 psymtab_to_symtab (struct partial_symtab *pst)
280 {
281 /* If it's been looked up before, return it. */
282 if (pst->symtab)
283 return pst->symtab;
284
285 /* If it has not yet been read in, read it. */
286 if (!pst->readin)
287 {
288 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
289 currently_reading_symtab++;
290 (*pst->read_symtab) (pst);
291 do_cleanups (back_to);
292 }
293
294 return pst->symtab;
295 }
296
297 /* Initialize entry point information for this objfile. */
298
299 void
300 init_entry_point_info (struct objfile *objfile)
301 {
302 /* Save startup file's range of PC addresses to help blockframe.c
303 decide where the bottom of the stack is. */
304
305 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
306 {
307 /* Executable file -- record its entry point so we'll recognize
308 the startup file because it contains the entry point. */
309 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
310 }
311 else
312 {
313 /* Examination of non-executable.o files. Short-circuit this stuff. */
314 objfile->ei.entry_point = INVALID_ENTRY_POINT;
315 }
316 objfile->ei.deprecated_entry_file_lowpc = INVALID_ENTRY_LOWPC;
317 objfile->ei.deprecated_entry_file_highpc = INVALID_ENTRY_HIGHPC;
318 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
319 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
320 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
321 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
322 }
323
324 /* Get current entry point address. */
325
326 CORE_ADDR
327 entry_point_address (void)
328 {
329 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
330 }
331
332 /* Remember the lowest-addressed loadable section we've seen.
333 This function is called via bfd_map_over_sections.
334
335 In case of equal vmas, the section with the largest size becomes the
336 lowest-addressed loadable section.
337
338 If the vmas and sizes are equal, the last section is considered the
339 lowest-addressed loadable section. */
340
341 void
342 find_lowest_section (bfd *abfd, asection *sect, void *obj)
343 {
344 asection **lowest = (asection **) obj;
345
346 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
347 return;
348 if (!*lowest)
349 *lowest = sect; /* First loadable section */
350 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
351 *lowest = sect; /* A lower loadable section */
352 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
353 && (bfd_section_size (abfd, (*lowest))
354 <= bfd_section_size (abfd, sect)))
355 *lowest = sect;
356 }
357
358 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
359
360 struct section_addr_info *
361 alloc_section_addr_info (size_t num_sections)
362 {
363 struct section_addr_info *sap;
364 size_t size;
365
366 size = (sizeof (struct section_addr_info)
367 + sizeof (struct other_sections) * (num_sections - 1));
368 sap = (struct section_addr_info *) xmalloc (size);
369 memset (sap, 0, size);
370 sap->num_sections = num_sections;
371
372 return sap;
373 }
374
375 /* Build (allocate and populate) a section_addr_info struct from
376 an existing section table. */
377
378 extern struct section_addr_info *
379 build_section_addr_info_from_section_table (const struct section_table *start,
380 const struct section_table *end)
381 {
382 struct section_addr_info *sap;
383 const struct section_table *stp;
384 int oidx;
385
386 sap = alloc_section_addr_info (end - start);
387
388 for (stp = start, oidx = 0; stp != end; stp++)
389 {
390 if (bfd_get_section_flags (stp->bfd,
391 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
392 && oidx < end - start)
393 {
394 sap->other[oidx].addr = stp->addr;
395 sap->other[oidx].name
396 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
397 sap->other[oidx].sectindex = stp->the_bfd_section->index;
398 oidx++;
399 }
400 }
401
402 return sap;
403 }
404
405
406 /* Free all memory allocated by build_section_addr_info_from_section_table. */
407
408 extern void
409 free_section_addr_info (struct section_addr_info *sap)
410 {
411 int idx;
412
413 for (idx = 0; idx < sap->num_sections; idx++)
414 if (sap->other[idx].name)
415 xfree (sap->other[idx].name);
416 xfree (sap);
417 }
418
419
420 /* Initialize OBJFILE's sect_index_* members. */
421 static void
422 init_objfile_sect_indices (struct objfile *objfile)
423 {
424 asection *sect;
425 int i;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".text");
428 if (sect)
429 objfile->sect_index_text = sect->index;
430
431 sect = bfd_get_section_by_name (objfile->obfd, ".data");
432 if (sect)
433 objfile->sect_index_data = sect->index;
434
435 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
436 if (sect)
437 objfile->sect_index_bss = sect->index;
438
439 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
440 if (sect)
441 objfile->sect_index_rodata = sect->index;
442
443 /* This is where things get really weird... We MUST have valid
444 indices for the various sect_index_* members or gdb will abort.
445 So if for example, there is no ".text" section, we have to
446 accomodate that. Except when explicitly adding symbol files at
447 some address, section_offsets contains nothing but zeros, so it
448 doesn't matter which slot in section_offsets the individual
449 sect_index_* members index into. So if they are all zero, it is
450 safe to just point all the currently uninitialized indices to the
451 first slot. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473
474 /* Parse the user's idea of an offset for dynamic linking, into our idea
475 of how to represent it for fast symbol reading. This is the default
476 version of the sym_fns.sym_offsets function for symbol readers that
477 don't need to do anything special. It allocates a section_offsets table
478 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
479
480 void
481 default_symfile_offsets (struct objfile *objfile,
482 struct section_addr_info *addrs)
483 {
484 int i;
485
486 objfile->num_sections = bfd_count_sections (objfile->obfd);
487 objfile->section_offsets = (struct section_offsets *)
488 obstack_alloc (&objfile->psymbol_obstack,
489 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
490 memset (objfile->section_offsets, 0,
491 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
492
493 /* Now calculate offsets for section that were specified by the
494 caller. */
495 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
496 {
497 struct other_sections *osp ;
498
499 osp = &addrs->other[i] ;
500 if (osp->addr == 0)
501 continue;
502
503 /* Record all sections in offsets */
504 /* The section_offsets in the objfile are here filled in using
505 the BFD index. */
506 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
507 }
508
509 /* Remember the bfd indexes for the .text, .data, .bss and
510 .rodata sections. */
511 init_objfile_sect_indices (objfile);
512 }
513
514
515 /* Process a symbol file, as either the main file or as a dynamically
516 loaded file.
517
518 OBJFILE is where the symbols are to be read from.
519
520 ADDRS is the list of section load addresses. If the user has given
521 an 'add-symbol-file' command, then this is the list of offsets and
522 addresses he or she provided as arguments to the command; or, if
523 we're handling a shared library, these are the actual addresses the
524 sections are loaded at, according to the inferior's dynamic linker
525 (as gleaned by GDB's shared library code). We convert each address
526 into an offset from the section VMA's as it appears in the object
527 file, and then call the file's sym_offsets function to convert this
528 into a format-specific offset table --- a `struct section_offsets'.
529 If ADDRS is non-zero, OFFSETS must be zero.
530
531 OFFSETS is a table of section offsets already in the right
532 format-specific representation. NUM_OFFSETS is the number of
533 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
534 assume this is the proper table the call to sym_offsets described
535 above would produce. Instead of calling sym_offsets, we just dump
536 it right into objfile->section_offsets. (When we're re-reading
537 symbols from an objfile, we don't have the original load address
538 list any more; all we have is the section offset table.) If
539 OFFSETS is non-zero, ADDRS must be zero.
540
541 MAINLINE is nonzero if this is the main symbol file, or zero if
542 it's an extra symbol file such as dynamically loaded code.
543
544 VERBO is nonzero if the caller has printed a verbose message about
545 the symbol reading (and complaints can be more terse about it). */
546
547 void
548 syms_from_objfile (struct objfile *objfile,
549 struct section_addr_info *addrs,
550 struct section_offsets *offsets,
551 int num_offsets,
552 int mainline,
553 int verbo)
554 {
555 struct section_addr_info *local_addr = NULL;
556 struct cleanup *old_chain;
557
558 gdb_assert (! (addrs && offsets));
559
560 init_entry_point_info (objfile);
561 find_sym_fns (objfile);
562
563 if (objfile->sf == NULL)
564 return; /* No symbols. */
565
566 /* Make sure that partially constructed symbol tables will be cleaned up
567 if an error occurs during symbol reading. */
568 old_chain = make_cleanup_free_objfile (objfile);
569
570 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
571 list. We now establish the convention that an addr of zero means
572 no load address was specified. */
573 if (! addrs && ! offsets)
574 {
575 local_addr
576 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
577 make_cleanup (xfree, local_addr);
578 addrs = local_addr;
579 }
580
581 /* Now either addrs or offsets is non-zero. */
582
583 if (mainline)
584 {
585 /* We will modify the main symbol table, make sure that all its users
586 will be cleaned up if an error occurs during symbol reading. */
587 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
588
589 /* Since no error yet, throw away the old symbol table. */
590
591 if (symfile_objfile != NULL)
592 {
593 free_objfile (symfile_objfile);
594 symfile_objfile = NULL;
595 }
596
597 /* Currently we keep symbols from the add-symbol-file command.
598 If the user wants to get rid of them, they should do "symbol-file"
599 without arguments first. Not sure this is the best behavior
600 (PR 2207). */
601
602 (*objfile->sf->sym_new_init) (objfile);
603 }
604
605 /* Convert addr into an offset rather than an absolute address.
606 We find the lowest address of a loaded segment in the objfile,
607 and assume that <addr> is where that got loaded.
608
609 We no longer warn if the lowest section is not a text segment (as
610 happens for the PA64 port. */
611 if (!mainline && addrs && addrs->other[0].name)
612 {
613 asection *lower_sect;
614 asection *sect;
615 CORE_ADDR lower_offset;
616 int i;
617
618 /* Find lowest loadable section to be used as starting point for
619 continguous sections. FIXME!! won't work without call to find
620 .text first, but this assumes text is lowest section. */
621 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
622 if (lower_sect == NULL)
623 bfd_map_over_sections (objfile->obfd, find_lowest_section,
624 &lower_sect);
625 if (lower_sect == NULL)
626 warning ("no loadable sections found in added symbol-file %s",
627 objfile->name);
628 else
629 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
630 warning ("Lowest section in %s is %s at %s",
631 objfile->name,
632 bfd_section_name (objfile->obfd, lower_sect),
633 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
634 if (lower_sect != NULL)
635 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
636 else
637 lower_offset = 0;
638
639 /* Calculate offsets for the loadable sections.
640 FIXME! Sections must be in order of increasing loadable section
641 so that contiguous sections can use the lower-offset!!!
642
643 Adjust offsets if the segments are not contiguous.
644 If the section is contiguous, its offset should be set to
645 the offset of the highest loadable section lower than it
646 (the loadable section directly below it in memory).
647 this_offset = lower_offset = lower_addr - lower_orig_addr */
648
649 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
650 {
651 if (addrs->other[i].addr != 0)
652 {
653 sect = bfd_get_section_by_name (objfile->obfd,
654 addrs->other[i].name);
655 if (sect)
656 {
657 addrs->other[i].addr
658 -= bfd_section_vma (objfile->obfd, sect);
659 lower_offset = addrs->other[i].addr;
660 /* This is the index used by BFD. */
661 addrs->other[i].sectindex = sect->index ;
662 }
663 else
664 {
665 warning ("section %s not found in %s",
666 addrs->other[i].name,
667 objfile->name);
668 addrs->other[i].addr = 0;
669 }
670 }
671 else
672 addrs->other[i].addr = lower_offset;
673 }
674 }
675
676 /* Initialize symbol reading routines for this objfile, allow complaints to
677 appear for this new file, and record how verbose to be, then do the
678 initial symbol reading for this file. */
679
680 (*objfile->sf->sym_init) (objfile);
681 clear_complaints (&symfile_complaints, 1, verbo);
682
683 if (addrs)
684 (*objfile->sf->sym_offsets) (objfile, addrs);
685 else
686 {
687 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
688
689 /* Just copy in the offset table directly as given to us. */
690 objfile->num_sections = num_offsets;
691 objfile->section_offsets
692 = ((struct section_offsets *)
693 obstack_alloc (&objfile->psymbol_obstack, size));
694 memcpy (objfile->section_offsets, offsets, size);
695
696 init_objfile_sect_indices (objfile);
697 }
698
699 #ifndef DEPRECATED_IBM6000_TARGET
700 /* This is a SVR4/SunOS specific hack, I think. In any event, it
701 screws RS/6000. sym_offsets should be doing this sort of thing,
702 because it knows the mapping between bfd sections and
703 section_offsets. */
704 /* This is a hack. As far as I can tell, section offsets are not
705 target dependent. They are all set to addr with a couple of
706 exceptions. The exceptions are sysvr4 shared libraries, whose
707 offsets are kept in solib structures anyway and rs6000 xcoff
708 which handles shared libraries in a completely unique way.
709
710 Section offsets are built similarly, except that they are built
711 by adding addr in all cases because there is no clear mapping
712 from section_offsets into actual sections. Note that solib.c
713 has a different algorithm for finding section offsets.
714
715 These should probably all be collapsed into some target
716 independent form of shared library support. FIXME. */
717
718 if (addrs)
719 {
720 struct obj_section *s;
721
722 /* Map section offsets in "addr" back to the object's
723 sections by comparing the section names with bfd's
724 section names. Then adjust the section address by
725 the offset. */ /* for gdb/13815 */
726
727 ALL_OBJFILE_OSECTIONS (objfile, s)
728 {
729 CORE_ADDR s_addr = 0;
730 int i;
731
732 for (i = 0;
733 !s_addr && i < addrs->num_sections && addrs->other[i].name;
734 i++)
735 if (strcmp (bfd_section_name (s->objfile->obfd,
736 s->the_bfd_section),
737 addrs->other[i].name) == 0)
738 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
739
740 s->addr -= s->offset;
741 s->addr += s_addr;
742 s->endaddr -= s->offset;
743 s->endaddr += s_addr;
744 s->offset += s_addr;
745 }
746 }
747 #endif /* not DEPRECATED_IBM6000_TARGET */
748
749 (*objfile->sf->sym_read) (objfile, mainline);
750
751 /* Don't allow char * to have a typename (else would get caddr_t).
752 Ditto void *. FIXME: Check whether this is now done by all the
753 symbol readers themselves (many of them now do), and if so remove
754 it from here. */
755
756 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
757 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
758
759 /* Mark the objfile has having had initial symbol read attempted. Note
760 that this does not mean we found any symbols... */
761
762 objfile->flags |= OBJF_SYMS;
763
764 /* Discard cleanups as symbol reading was successful. */
765
766 discard_cleanups (old_chain);
767 }
768
769 /* Perform required actions after either reading in the initial
770 symbols for a new objfile, or mapping in the symbols from a reusable
771 objfile. */
772
773 void
774 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
775 {
776
777 /* If this is the main symbol file we have to clean up all users of the
778 old main symbol file. Otherwise it is sufficient to fixup all the
779 breakpoints that may have been redefined by this symbol file. */
780 if (mainline)
781 {
782 /* OK, make it the "real" symbol file. */
783 symfile_objfile = objfile;
784
785 clear_symtab_users ();
786 }
787 else
788 {
789 breakpoint_re_set ();
790 }
791
792 /* We're done reading the symbol file; finish off complaints. */
793 clear_complaints (&symfile_complaints, 0, verbo);
794 }
795
796 /* Process a symbol file, as either the main file or as a dynamically
797 loaded file.
798
799 NAME is the file name (which will be tilde-expanded and made
800 absolute herein) (but we don't free or modify NAME itself).
801
802 FROM_TTY says how verbose to be.
803
804 MAINLINE specifies whether this is the main symbol file, or whether
805 it's an extra symbol file such as dynamically loaded code.
806
807 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
808 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
809 non-zero.
810
811 Upon success, returns a pointer to the objfile that was added.
812 Upon failure, jumps back to command level (never returns). */
813 static struct objfile *
814 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
815 struct section_addr_info *addrs,
816 struct section_offsets *offsets,
817 int num_offsets,
818 int mainline, int flags)
819 {
820 struct objfile *objfile;
821 struct partial_symtab *psymtab;
822 char *debugfile;
823 bfd *abfd;
824 struct section_addr_info *orig_addrs;
825 struct cleanup *my_cleanups;
826
827 /* Open a bfd for the file, and give user a chance to burp if we'd be
828 interactively wiping out any existing symbols. */
829
830 abfd = symfile_bfd_open (name);
831
832 if ((have_full_symbols () || have_partial_symbols ())
833 && mainline
834 && from_tty
835 && !query ("Load new symbol table from \"%s\"? ", name))
836 error ("Not confirmed.");
837
838 objfile = allocate_objfile (abfd, flags);
839
840 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
841 my_cleanups = make_cleanup (xfree, orig_addrs);
842 if (addrs)
843 {
844 int i;
845 orig_addrs->num_sections = addrs->num_sections;
846 for (i = 0; i < addrs->num_sections; i++)
847 orig_addrs->other[i] = addrs->other[i];
848 }
849
850 /* We either created a new mapped symbol table, mapped an existing
851 symbol table file which has not had initial symbol reading
852 performed, or need to read an unmapped symbol table. */
853 if (from_tty || info_verbose)
854 {
855 if (pre_add_symbol_hook)
856 pre_add_symbol_hook (name);
857 else
858 {
859 printf_unfiltered ("Reading symbols from %s...", name);
860 wrap_here ("");
861 gdb_flush (gdb_stdout);
862 }
863 }
864 syms_from_objfile (objfile, addrs, offsets, num_offsets,
865 mainline, from_tty);
866
867 /* We now have at least a partial symbol table. Check to see if the
868 user requested that all symbols be read on initial access via either
869 the gdb startup command line or on a per symbol file basis. Expand
870 all partial symbol tables for this objfile if so. */
871
872 if ((flags & OBJF_READNOW) || readnow_symbol_files)
873 {
874 if (from_tty || info_verbose)
875 {
876 printf_unfiltered ("expanding to full symbols...");
877 wrap_here ("");
878 gdb_flush (gdb_stdout);
879 }
880
881 for (psymtab = objfile->psymtabs;
882 psymtab != NULL;
883 psymtab = psymtab->next)
884 {
885 psymtab_to_symtab (psymtab);
886 }
887 }
888
889 debugfile = find_separate_debug_file (objfile);
890 if (debugfile)
891 {
892 if (addrs != NULL)
893 {
894 objfile->separate_debug_objfile
895 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
896 }
897 else
898 {
899 objfile->separate_debug_objfile
900 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
901 }
902 objfile->separate_debug_objfile->separate_debug_objfile_backlink
903 = objfile;
904
905 /* Put the separate debug object before the normal one, this is so that
906 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
907 put_objfile_before (objfile->separate_debug_objfile, objfile);
908
909 xfree (debugfile);
910 }
911
912 if (!have_partial_symbols () && !have_full_symbols ())
913 {
914 wrap_here ("");
915 printf_unfiltered ("(no debugging symbols found)...");
916 wrap_here ("");
917 }
918
919 if (from_tty || info_verbose)
920 {
921 if (post_add_symbol_hook)
922 post_add_symbol_hook ();
923 else
924 {
925 printf_unfiltered ("done.\n");
926 }
927 }
928
929 /* We print some messages regardless of whether 'from_tty ||
930 info_verbose' is true, so make sure they go out at the right
931 time. */
932 gdb_flush (gdb_stdout);
933
934 do_cleanups (my_cleanups);
935
936 if (objfile->sf == NULL)
937 return objfile; /* No symbols. */
938
939 new_symfile_objfile (objfile, mainline, from_tty);
940
941 if (target_new_objfile_hook)
942 target_new_objfile_hook (objfile);
943
944 return (objfile);
945 }
946
947
948 /* Process a symbol file, as either the main file or as a dynamically
949 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
950 for details. */
951 struct objfile *
952 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
953 int mainline, int flags)
954 {
955 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
956 mainline, flags);
957 }
958
959
960 /* Call symbol_file_add() with default values and update whatever is
961 affected by the loading of a new main().
962 Used when the file is supplied in the gdb command line
963 and by some targets with special loading requirements.
964 The auxiliary function, symbol_file_add_main_1(), has the flags
965 argument for the switches that can only be specified in the symbol_file
966 command itself. */
967
968 void
969 symbol_file_add_main (char *args, int from_tty)
970 {
971 symbol_file_add_main_1 (args, from_tty, 0);
972 }
973
974 static void
975 symbol_file_add_main_1 (char *args, int from_tty, int flags)
976 {
977 symbol_file_add (args, from_tty, NULL, 1, flags);
978
979 #ifdef HPUXHPPA
980 RESET_HP_UX_GLOBALS ();
981 #endif
982
983 /* Getting new symbols may change our opinion about
984 what is frameless. */
985 reinit_frame_cache ();
986
987 set_initial_language ();
988 }
989
990 void
991 symbol_file_clear (int from_tty)
992 {
993 if ((have_full_symbols () || have_partial_symbols ())
994 && from_tty
995 && !query ("Discard symbol table from `%s'? ",
996 symfile_objfile->name))
997 error ("Not confirmed.");
998 free_all_objfiles ();
999
1000 /* solib descriptors may have handles to objfiles. Since their
1001 storage has just been released, we'd better wipe the solib
1002 descriptors as well.
1003 */
1004 #if defined(SOLIB_RESTART)
1005 SOLIB_RESTART ();
1006 #endif
1007
1008 symfile_objfile = NULL;
1009 if (from_tty)
1010 printf_unfiltered ("No symbol file now.\n");
1011 #ifdef HPUXHPPA
1012 RESET_HP_UX_GLOBALS ();
1013 #endif
1014 }
1015
1016 static char *
1017 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1018 {
1019 asection *sect;
1020 bfd_size_type debuglink_size;
1021 unsigned long crc32;
1022 char *contents;
1023 int crc_offset;
1024 unsigned char *p;
1025
1026 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1027
1028 if (sect == NULL)
1029 return NULL;
1030
1031 debuglink_size = bfd_section_size (objfile->obfd, sect);
1032
1033 contents = xmalloc (debuglink_size);
1034 bfd_get_section_contents (objfile->obfd, sect, contents,
1035 (file_ptr)0, (bfd_size_type)debuglink_size);
1036
1037 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1038 crc_offset = strlen (contents) + 1;
1039 crc_offset = (crc_offset + 3) & ~3;
1040
1041 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1042
1043 *crc32_out = crc32;
1044 return contents;
1045 }
1046
1047 static int
1048 separate_debug_file_exists (const char *name, unsigned long crc)
1049 {
1050 unsigned long file_crc = 0;
1051 int fd;
1052 char buffer[8*1024];
1053 int count;
1054
1055 fd = open (name, O_RDONLY | O_BINARY);
1056 if (fd < 0)
1057 return 0;
1058
1059 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1060 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1061
1062 close (fd);
1063
1064 return crc == file_crc;
1065 }
1066
1067 static char *debug_file_directory = NULL;
1068
1069 #if ! defined (DEBUG_SUBDIRECTORY)
1070 #define DEBUG_SUBDIRECTORY ".debug"
1071 #endif
1072
1073 static char *
1074 find_separate_debug_file (struct objfile *objfile)
1075 {
1076 asection *sect;
1077 char *basename;
1078 char *dir;
1079 char *debugfile;
1080 char *name_copy;
1081 bfd_size_type debuglink_size;
1082 unsigned long crc32;
1083 int i;
1084
1085 basename = get_debug_link_info (objfile, &crc32);
1086
1087 if (basename == NULL)
1088 return NULL;
1089
1090 dir = xstrdup (objfile->name);
1091
1092 /* Strip off the final filename part, leaving the directory name,
1093 followed by a slash. Objfile names should always be absolute and
1094 tilde-expanded, so there should always be a slash in there
1095 somewhere. */
1096 for (i = strlen(dir) - 1; i >= 0; i--)
1097 {
1098 if (IS_DIR_SEPARATOR (dir[i]))
1099 break;
1100 }
1101 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1102 dir[i+1] = '\0';
1103
1104 debugfile = alloca (strlen (debug_file_directory) + 1
1105 + strlen (dir)
1106 + strlen (DEBUG_SUBDIRECTORY)
1107 + strlen ("/")
1108 + strlen (basename)
1109 + 1);
1110
1111 /* First try in the same directory as the original file. */
1112 strcpy (debugfile, dir);
1113 strcat (debugfile, basename);
1114
1115 if (separate_debug_file_exists (debugfile, crc32))
1116 {
1117 xfree (basename);
1118 xfree (dir);
1119 return xstrdup (debugfile);
1120 }
1121
1122 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1123 strcpy (debugfile, dir);
1124 strcat (debugfile, DEBUG_SUBDIRECTORY);
1125 strcat (debugfile, "/");
1126 strcat (debugfile, basename);
1127
1128 if (separate_debug_file_exists (debugfile, crc32))
1129 {
1130 xfree (basename);
1131 xfree (dir);
1132 return xstrdup (debugfile);
1133 }
1134
1135 /* Then try in the global debugfile directory. */
1136 strcpy (debugfile, debug_file_directory);
1137 strcat (debugfile, "/");
1138 strcat (debugfile, dir);
1139 strcat (debugfile, basename);
1140
1141 if (separate_debug_file_exists (debugfile, crc32))
1142 {
1143 xfree (basename);
1144 xfree (dir);
1145 return xstrdup (debugfile);
1146 }
1147
1148 xfree (basename);
1149 xfree (dir);
1150 return NULL;
1151 }
1152
1153
1154 /* This is the symbol-file command. Read the file, analyze its
1155 symbols, and add a struct symtab to a symtab list. The syntax of
1156 the command is rather bizarre--(1) buildargv implements various
1157 quoting conventions which are undocumented and have little or
1158 nothing in common with the way things are quoted (or not quoted)
1159 elsewhere in GDB, (2) options are used, which are not generally
1160 used in GDB (perhaps "set mapped on", "set readnow on" would be
1161 better), (3) the order of options matters, which is contrary to GNU
1162 conventions (because it is confusing and inconvenient). */
1163 /* Note: ezannoni 2000-04-17. This function used to have support for
1164 rombug (see remote-os9k.c). It consisted of a call to target_link()
1165 (target.c) to get the address of the text segment from the target,
1166 and pass that to symbol_file_add(). This is no longer supported. */
1167
1168 void
1169 symbol_file_command (char *args, int from_tty)
1170 {
1171 char **argv;
1172 char *name = NULL;
1173 struct cleanup *cleanups;
1174 int flags = OBJF_USERLOADED;
1175
1176 dont_repeat ();
1177
1178 if (args == NULL)
1179 {
1180 symbol_file_clear (from_tty);
1181 }
1182 else
1183 {
1184 if ((argv = buildargv (args)) == NULL)
1185 {
1186 nomem (0);
1187 }
1188 cleanups = make_cleanup_freeargv (argv);
1189 while (*argv != NULL)
1190 {
1191 if (strcmp (*argv, "-readnow") == 0)
1192 flags |= OBJF_READNOW;
1193 else if (**argv == '-')
1194 error ("unknown option `%s'", *argv);
1195 else
1196 {
1197 name = *argv;
1198
1199 symbol_file_add_main_1 (name, from_tty, flags);
1200 }
1201 argv++;
1202 }
1203
1204 if (name == NULL)
1205 {
1206 error ("no symbol file name was specified");
1207 }
1208 do_cleanups (cleanups);
1209 }
1210 }
1211
1212 /* Set the initial language.
1213
1214 A better solution would be to record the language in the psymtab when reading
1215 partial symbols, and then use it (if known) to set the language. This would
1216 be a win for formats that encode the language in an easily discoverable place,
1217 such as DWARF. For stabs, we can jump through hoops looking for specially
1218 named symbols or try to intuit the language from the specific type of stabs
1219 we find, but we can't do that until later when we read in full symbols.
1220 FIXME. */
1221
1222 static void
1223 set_initial_language (void)
1224 {
1225 struct partial_symtab *pst;
1226 enum language lang = language_unknown;
1227
1228 pst = find_main_psymtab ();
1229 if (pst != NULL)
1230 {
1231 if (pst->filename != NULL)
1232 {
1233 lang = deduce_language_from_filename (pst->filename);
1234 }
1235 if (lang == language_unknown)
1236 {
1237 /* Make C the default language */
1238 lang = language_c;
1239 }
1240 set_language (lang);
1241 expected_language = current_language; /* Don't warn the user */
1242 }
1243 }
1244
1245 /* Open file specified by NAME and hand it off to BFD for preliminary
1246 analysis. Result is a newly initialized bfd *, which includes a newly
1247 malloc'd` copy of NAME (tilde-expanded and made absolute).
1248 In case of trouble, error() is called. */
1249
1250 bfd *
1251 symfile_bfd_open (char *name)
1252 {
1253 bfd *sym_bfd;
1254 int desc;
1255 char *absolute_name;
1256
1257
1258
1259 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1260
1261 /* Look down path for it, allocate 2nd new malloc'd copy. */
1262 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1263 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1264 if (desc < 0)
1265 {
1266 char *exename = alloca (strlen (name) + 5);
1267 strcat (strcpy (exename, name), ".exe");
1268 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1269 0, &absolute_name);
1270 }
1271 #endif
1272 if (desc < 0)
1273 {
1274 make_cleanup (xfree, name);
1275 perror_with_name (name);
1276 }
1277 xfree (name); /* Free 1st new malloc'd copy */
1278 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1279 /* It'll be freed in free_objfile(). */
1280
1281 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1282 if (!sym_bfd)
1283 {
1284 close (desc);
1285 make_cleanup (xfree, name);
1286 error ("\"%s\": can't open to read symbols: %s.", name,
1287 bfd_errmsg (bfd_get_error ()));
1288 }
1289 sym_bfd->cacheable = 1;
1290
1291 if (!bfd_check_format (sym_bfd, bfd_object))
1292 {
1293 /* FIXME: should be checking for errors from bfd_close (for one thing,
1294 on error it does not free all the storage associated with the
1295 bfd). */
1296 bfd_close (sym_bfd); /* This also closes desc */
1297 make_cleanup (xfree, name);
1298 error ("\"%s\": can't read symbols: %s.", name,
1299 bfd_errmsg (bfd_get_error ()));
1300 }
1301 return (sym_bfd);
1302 }
1303
1304 /* Return the section index for the given section name. Return -1 if
1305 the section was not found. */
1306 int
1307 get_section_index (struct objfile *objfile, char *section_name)
1308 {
1309 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1310 if (sect)
1311 return sect->index;
1312 else
1313 return -1;
1314 }
1315
1316 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1317 startup by the _initialize routine in each object file format reader,
1318 to register information about each format the the reader is prepared
1319 to handle. */
1320
1321 void
1322 add_symtab_fns (struct sym_fns *sf)
1323 {
1324 sf->next = symtab_fns;
1325 symtab_fns = sf;
1326 }
1327
1328
1329 /* Initialize to read symbols from the symbol file sym_bfd. It either
1330 returns or calls error(). The result is an initialized struct sym_fns
1331 in the objfile structure, that contains cached information about the
1332 symbol file. */
1333
1334 static void
1335 find_sym_fns (struct objfile *objfile)
1336 {
1337 struct sym_fns *sf;
1338 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1339 char *our_target = bfd_get_target (objfile->obfd);
1340
1341 if (our_flavour == bfd_target_srec_flavour
1342 || our_flavour == bfd_target_ihex_flavour
1343 || our_flavour == bfd_target_tekhex_flavour)
1344 return; /* No symbols. */
1345
1346 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1347 {
1348 if (our_flavour == sf->sym_flavour)
1349 {
1350 objfile->sf = sf;
1351 return;
1352 }
1353 }
1354 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1355 bfd_get_target (objfile->obfd));
1356 }
1357 \f
1358 /* This function runs the load command of our current target. */
1359
1360 static void
1361 load_command (char *arg, int from_tty)
1362 {
1363 if (arg == NULL)
1364 arg = get_exec_file (1);
1365 target_load (arg, from_tty);
1366
1367 /* After re-loading the executable, we don't really know which
1368 overlays are mapped any more. */
1369 overlay_cache_invalid = 1;
1370 }
1371
1372 /* This version of "load" should be usable for any target. Currently
1373 it is just used for remote targets, not inftarg.c or core files,
1374 on the theory that only in that case is it useful.
1375
1376 Avoiding xmodem and the like seems like a win (a) because we don't have
1377 to worry about finding it, and (b) On VMS, fork() is very slow and so
1378 we don't want to run a subprocess. On the other hand, I'm not sure how
1379 performance compares. */
1380
1381 static int download_write_size = 512;
1382 static int validate_download = 0;
1383
1384 /* Callback service function for generic_load (bfd_map_over_sections). */
1385
1386 static void
1387 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1388 {
1389 bfd_size_type *sum = data;
1390
1391 *sum += bfd_get_section_size_before_reloc (asec);
1392 }
1393
1394 /* Opaque data for load_section_callback. */
1395 struct load_section_data {
1396 unsigned long load_offset;
1397 unsigned long write_count;
1398 unsigned long data_count;
1399 bfd_size_type total_size;
1400 };
1401
1402 /* Callback service function for generic_load (bfd_map_over_sections). */
1403
1404 static void
1405 load_section_callback (bfd *abfd, asection *asec, void *data)
1406 {
1407 struct load_section_data *args = data;
1408
1409 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1410 {
1411 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1412 if (size > 0)
1413 {
1414 char *buffer;
1415 struct cleanup *old_chain;
1416 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1417 bfd_size_type block_size;
1418 int err;
1419 const char *sect_name = bfd_get_section_name (abfd, asec);
1420 bfd_size_type sent;
1421
1422 if (download_write_size > 0 && size > download_write_size)
1423 block_size = download_write_size;
1424 else
1425 block_size = size;
1426
1427 buffer = xmalloc (size);
1428 old_chain = make_cleanup (xfree, buffer);
1429
1430 /* Is this really necessary? I guess it gives the user something
1431 to look at during a long download. */
1432 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1433 sect_name, paddr_nz (size), paddr_nz (lma));
1434
1435 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1436
1437 sent = 0;
1438 do
1439 {
1440 int len;
1441 bfd_size_type this_transfer = size - sent;
1442
1443 if (this_transfer >= block_size)
1444 this_transfer = block_size;
1445 len = target_write_memory_partial (lma, buffer,
1446 this_transfer, &err);
1447 if (err)
1448 break;
1449 if (validate_download)
1450 {
1451 /* Broken memories and broken monitors manifest
1452 themselves here when bring new computers to
1453 life. This doubles already slow downloads. */
1454 /* NOTE: cagney/1999-10-18: A more efficient
1455 implementation might add a verify_memory()
1456 method to the target vector and then use
1457 that. remote.c could implement that method
1458 using the ``qCRC'' packet. */
1459 char *check = xmalloc (len);
1460 struct cleanup *verify_cleanups =
1461 make_cleanup (xfree, check);
1462
1463 if (target_read_memory (lma, check, len) != 0)
1464 error ("Download verify read failed at 0x%s",
1465 paddr (lma));
1466 if (memcmp (buffer, check, len) != 0)
1467 error ("Download verify compare failed at 0x%s",
1468 paddr (lma));
1469 do_cleanups (verify_cleanups);
1470 }
1471 args->data_count += len;
1472 lma += len;
1473 buffer += len;
1474 args->write_count += 1;
1475 sent += len;
1476 if (quit_flag
1477 || (ui_load_progress_hook != NULL
1478 && ui_load_progress_hook (sect_name, sent)))
1479 error ("Canceled the download");
1480
1481 if (show_load_progress != NULL)
1482 show_load_progress (sect_name, sent, size,
1483 args->data_count, args->total_size);
1484 }
1485 while (sent < size);
1486
1487 if (err != 0)
1488 error ("Memory access error while loading section %s.", sect_name);
1489
1490 do_cleanups (old_chain);
1491 }
1492 }
1493 }
1494
1495 void
1496 generic_load (char *args, int from_tty)
1497 {
1498 asection *s;
1499 bfd *loadfile_bfd;
1500 time_t start_time, end_time; /* Start and end times of download */
1501 char *filename;
1502 struct cleanup *old_cleanups;
1503 char *offptr;
1504 struct load_section_data cbdata;
1505 CORE_ADDR entry;
1506
1507 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1508 cbdata.write_count = 0; /* Number of writes needed. */
1509 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1510 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1511
1512 /* Parse the input argument - the user can specify a load offset as
1513 a second argument. */
1514 filename = xmalloc (strlen (args) + 1);
1515 old_cleanups = make_cleanup (xfree, filename);
1516 strcpy (filename, args);
1517 offptr = strchr (filename, ' ');
1518 if (offptr != NULL)
1519 {
1520 char *endptr;
1521
1522 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1523 if (offptr == endptr)
1524 error ("Invalid download offset:%s\n", offptr);
1525 *offptr = '\0';
1526 }
1527 else
1528 cbdata.load_offset = 0;
1529
1530 /* Open the file for loading. */
1531 loadfile_bfd = bfd_openr (filename, gnutarget);
1532 if (loadfile_bfd == NULL)
1533 {
1534 perror_with_name (filename);
1535 return;
1536 }
1537
1538 /* FIXME: should be checking for errors from bfd_close (for one thing,
1539 on error it does not free all the storage associated with the
1540 bfd). */
1541 make_cleanup_bfd_close (loadfile_bfd);
1542
1543 if (!bfd_check_format (loadfile_bfd, bfd_object))
1544 {
1545 error ("\"%s\" is not an object file: %s", filename,
1546 bfd_errmsg (bfd_get_error ()));
1547 }
1548
1549 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1550 (void *) &cbdata.total_size);
1551
1552 start_time = time (NULL);
1553
1554 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1555
1556 end_time = time (NULL);
1557
1558 entry = bfd_get_start_address (loadfile_bfd);
1559 ui_out_text (uiout, "Start address ");
1560 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1561 ui_out_text (uiout, ", load size ");
1562 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1563 ui_out_text (uiout, "\n");
1564 /* We were doing this in remote-mips.c, I suspect it is right
1565 for other targets too. */
1566 write_pc (entry);
1567
1568 /* FIXME: are we supposed to call symbol_file_add or not? According
1569 to a comment from remote-mips.c (where a call to symbol_file_add
1570 was commented out), making the call confuses GDB if more than one
1571 file is loaded in. Some targets do (e.g., remote-vx.c) but
1572 others don't (or didn't - perhaphs they have all been deleted). */
1573
1574 print_transfer_performance (gdb_stdout, cbdata.data_count,
1575 cbdata.write_count, end_time - start_time);
1576
1577 do_cleanups (old_cleanups);
1578 }
1579
1580 /* Report how fast the transfer went. */
1581
1582 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1583 replaced by print_transfer_performance (with a very different
1584 function signature). */
1585
1586 void
1587 report_transfer_performance (unsigned long data_count, time_t start_time,
1588 time_t end_time)
1589 {
1590 print_transfer_performance (gdb_stdout, data_count,
1591 end_time - start_time, 0);
1592 }
1593
1594 void
1595 print_transfer_performance (struct ui_file *stream,
1596 unsigned long data_count,
1597 unsigned long write_count,
1598 unsigned long time_count)
1599 {
1600 ui_out_text (uiout, "Transfer rate: ");
1601 if (time_count > 0)
1602 {
1603 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1604 (data_count * 8) / time_count);
1605 ui_out_text (uiout, " bits/sec");
1606 }
1607 else
1608 {
1609 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1610 ui_out_text (uiout, " bits in <1 sec");
1611 }
1612 if (write_count > 0)
1613 {
1614 ui_out_text (uiout, ", ");
1615 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1616 ui_out_text (uiout, " bytes/write");
1617 }
1618 ui_out_text (uiout, ".\n");
1619 }
1620
1621 /* This function allows the addition of incrementally linked object files.
1622 It does not modify any state in the target, only in the debugger. */
1623 /* Note: ezannoni 2000-04-13 This function/command used to have a
1624 special case syntax for the rombug target (Rombug is the boot
1625 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1626 rombug case, the user doesn't need to supply a text address,
1627 instead a call to target_link() (in target.c) would supply the
1628 value to use. We are now discontinuing this type of ad hoc syntax. */
1629
1630 static void
1631 add_symbol_file_command (char *args, int from_tty)
1632 {
1633 char *filename = NULL;
1634 int flags = OBJF_USERLOADED;
1635 char *arg;
1636 int expecting_option = 0;
1637 int section_index = 0;
1638 int argcnt = 0;
1639 int sec_num = 0;
1640 int i;
1641 int expecting_sec_name = 0;
1642 int expecting_sec_addr = 0;
1643
1644 struct sect_opt
1645 {
1646 char *name;
1647 char *value;
1648 };
1649
1650 struct section_addr_info *section_addrs;
1651 struct sect_opt *sect_opts = NULL;
1652 size_t num_sect_opts = 0;
1653 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1654
1655 num_sect_opts = 16;
1656 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1657 * sizeof (struct sect_opt));
1658
1659 dont_repeat ();
1660
1661 if (args == NULL)
1662 error ("add-symbol-file takes a file name and an address");
1663
1664 /* Make a copy of the string that we can safely write into. */
1665 args = xstrdup (args);
1666
1667 while (*args != '\000')
1668 {
1669 /* Any leading spaces? */
1670 while (isspace (*args))
1671 args++;
1672
1673 /* Point arg to the beginning of the argument. */
1674 arg = args;
1675
1676 /* Move args pointer over the argument. */
1677 while ((*args != '\000') && !isspace (*args))
1678 args++;
1679
1680 /* If there are more arguments, terminate arg and
1681 proceed past it. */
1682 if (*args != '\000')
1683 *args++ = '\000';
1684
1685 /* Now process the argument. */
1686 if (argcnt == 0)
1687 {
1688 /* The first argument is the file name. */
1689 filename = tilde_expand (arg);
1690 make_cleanup (xfree, filename);
1691 }
1692 else
1693 if (argcnt == 1)
1694 {
1695 /* The second argument is always the text address at which
1696 to load the program. */
1697 sect_opts[section_index].name = ".text";
1698 sect_opts[section_index].value = arg;
1699 if (++section_index > num_sect_opts)
1700 {
1701 num_sect_opts *= 2;
1702 sect_opts = ((struct sect_opt *)
1703 xrealloc (sect_opts,
1704 num_sect_opts
1705 * sizeof (struct sect_opt)));
1706 }
1707 }
1708 else
1709 {
1710 /* It's an option (starting with '-') or it's an argument
1711 to an option */
1712
1713 if (*arg == '-')
1714 {
1715 if (strcmp (arg, "-readnow") == 0)
1716 flags |= OBJF_READNOW;
1717 else if (strcmp (arg, "-s") == 0)
1718 {
1719 expecting_sec_name = 1;
1720 expecting_sec_addr = 1;
1721 }
1722 }
1723 else
1724 {
1725 if (expecting_sec_name)
1726 {
1727 sect_opts[section_index].name = arg;
1728 expecting_sec_name = 0;
1729 }
1730 else
1731 if (expecting_sec_addr)
1732 {
1733 sect_opts[section_index].value = arg;
1734 expecting_sec_addr = 0;
1735 if (++section_index > num_sect_opts)
1736 {
1737 num_sect_opts *= 2;
1738 sect_opts = ((struct sect_opt *)
1739 xrealloc (sect_opts,
1740 num_sect_opts
1741 * sizeof (struct sect_opt)));
1742 }
1743 }
1744 else
1745 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1746 }
1747 }
1748 argcnt++;
1749 }
1750
1751 /* Print the prompt for the query below. And save the arguments into
1752 a sect_addr_info structure to be passed around to other
1753 functions. We have to split this up into separate print
1754 statements because local_hex_string returns a local static
1755 string. */
1756
1757 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1758 section_addrs = alloc_section_addr_info (section_index);
1759 make_cleanup (xfree, section_addrs);
1760 for (i = 0; i < section_index; i++)
1761 {
1762 CORE_ADDR addr;
1763 char *val = sect_opts[i].value;
1764 char *sec = sect_opts[i].name;
1765
1766 addr = parse_and_eval_address (val);
1767
1768 /* Here we store the section offsets in the order they were
1769 entered on the command line. */
1770 section_addrs->other[sec_num].name = sec;
1771 section_addrs->other[sec_num].addr = addr;
1772 printf_unfiltered ("\t%s_addr = %s\n",
1773 sec,
1774 local_hex_string ((unsigned long)addr));
1775 sec_num++;
1776
1777 /* The object's sections are initialized when a
1778 call is made to build_objfile_section_table (objfile).
1779 This happens in reread_symbols.
1780 At this point, we don't know what file type this is,
1781 so we can't determine what section names are valid. */
1782 }
1783
1784 if (from_tty && (!query ("%s", "")))
1785 error ("Not confirmed.");
1786
1787 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1788
1789 /* Getting new symbols may change our opinion about what is
1790 frameless. */
1791 reinit_frame_cache ();
1792 do_cleanups (my_cleanups);
1793 }
1794 \f
1795 static void
1796 add_shared_symbol_files_command (char *args, int from_tty)
1797 {
1798 #ifdef ADD_SHARED_SYMBOL_FILES
1799 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1800 #else
1801 error ("This command is not available in this configuration of GDB.");
1802 #endif
1803 }
1804 \f
1805 /* Re-read symbols if a symbol-file has changed. */
1806 void
1807 reread_symbols (void)
1808 {
1809 struct objfile *objfile;
1810 long new_modtime;
1811 int reread_one = 0;
1812 struct stat new_statbuf;
1813 int res;
1814
1815 /* With the addition of shared libraries, this should be modified,
1816 the load time should be saved in the partial symbol tables, since
1817 different tables may come from different source files. FIXME.
1818 This routine should then walk down each partial symbol table
1819 and see if the symbol table that it originates from has been changed */
1820
1821 for (objfile = object_files; objfile; objfile = objfile->next)
1822 {
1823 if (objfile->obfd)
1824 {
1825 #ifdef DEPRECATED_IBM6000_TARGET
1826 /* If this object is from a shared library, then you should
1827 stat on the library name, not member name. */
1828
1829 if (objfile->obfd->my_archive)
1830 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1831 else
1832 #endif
1833 res = stat (objfile->name, &new_statbuf);
1834 if (res != 0)
1835 {
1836 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1837 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1838 objfile->name);
1839 continue;
1840 }
1841 new_modtime = new_statbuf.st_mtime;
1842 if (new_modtime != objfile->mtime)
1843 {
1844 struct cleanup *old_cleanups;
1845 struct section_offsets *offsets;
1846 int num_offsets;
1847 char *obfd_filename;
1848
1849 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1850 objfile->name);
1851
1852 /* There are various functions like symbol_file_add,
1853 symfile_bfd_open, syms_from_objfile, etc., which might
1854 appear to do what we want. But they have various other
1855 effects which we *don't* want. So we just do stuff
1856 ourselves. We don't worry about mapped files (for one thing,
1857 any mapped file will be out of date). */
1858
1859 /* If we get an error, blow away this objfile (not sure if
1860 that is the correct response for things like shared
1861 libraries). */
1862 old_cleanups = make_cleanup_free_objfile (objfile);
1863 /* We need to do this whenever any symbols go away. */
1864 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1865
1866 /* Clean up any state BFD has sitting around. We don't need
1867 to close the descriptor but BFD lacks a way of closing the
1868 BFD without closing the descriptor. */
1869 obfd_filename = bfd_get_filename (objfile->obfd);
1870 if (!bfd_close (objfile->obfd))
1871 error ("Can't close BFD for %s: %s", objfile->name,
1872 bfd_errmsg (bfd_get_error ()));
1873 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1874 if (objfile->obfd == NULL)
1875 error ("Can't open %s to read symbols.", objfile->name);
1876 /* bfd_openr sets cacheable to true, which is what we want. */
1877 if (!bfd_check_format (objfile->obfd, bfd_object))
1878 error ("Can't read symbols from %s: %s.", objfile->name,
1879 bfd_errmsg (bfd_get_error ()));
1880
1881 /* Save the offsets, we will nuke them with the rest of the
1882 psymbol_obstack. */
1883 num_offsets = objfile->num_sections;
1884 offsets = ((struct section_offsets *)
1885 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1886 memcpy (offsets, objfile->section_offsets,
1887 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1888
1889 /* Nuke all the state that we will re-read. Much of the following
1890 code which sets things to NULL really is necessary to tell
1891 other parts of GDB that there is nothing currently there. */
1892
1893 /* FIXME: Do we have to free a whole linked list, or is this
1894 enough? */
1895 if (objfile->global_psymbols.list)
1896 xmfree (objfile->md, objfile->global_psymbols.list);
1897 memset (&objfile->global_psymbols, 0,
1898 sizeof (objfile->global_psymbols));
1899 if (objfile->static_psymbols.list)
1900 xmfree (objfile->md, objfile->static_psymbols.list);
1901 memset (&objfile->static_psymbols, 0,
1902 sizeof (objfile->static_psymbols));
1903
1904 /* Free the obstacks for non-reusable objfiles */
1905 bcache_xfree (objfile->psymbol_cache);
1906 objfile->psymbol_cache = bcache_xmalloc ();
1907 bcache_xfree (objfile->macro_cache);
1908 objfile->macro_cache = bcache_xmalloc ();
1909 if (objfile->demangled_names_hash != NULL)
1910 {
1911 htab_delete (objfile->demangled_names_hash);
1912 objfile->demangled_names_hash = NULL;
1913 }
1914 obstack_free (&objfile->psymbol_obstack, 0);
1915 obstack_free (&objfile->symbol_obstack, 0);
1916 obstack_free (&objfile->type_obstack, 0);
1917 objfile->sections = NULL;
1918 objfile->symtabs = NULL;
1919 objfile->psymtabs = NULL;
1920 objfile->free_psymtabs = NULL;
1921 objfile->cp_namespace_symtab = NULL;
1922 objfile->msymbols = NULL;
1923 objfile->sym_private = NULL;
1924 objfile->minimal_symbol_count = 0;
1925 memset (&objfile->msymbol_hash, 0,
1926 sizeof (objfile->msymbol_hash));
1927 memset (&objfile->msymbol_demangled_hash, 0,
1928 sizeof (objfile->msymbol_demangled_hash));
1929 objfile->fundamental_types = NULL;
1930 clear_objfile_data (objfile);
1931 if (objfile->sf != NULL)
1932 {
1933 (*objfile->sf->sym_finish) (objfile);
1934 }
1935
1936 /* We never make this a mapped file. */
1937 objfile->md = NULL;
1938 /* obstack_specify_allocation also initializes the obstack so
1939 it is empty. */
1940 objfile->psymbol_cache = bcache_xmalloc ();
1941 objfile->macro_cache = bcache_xmalloc ();
1942 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1943 xmalloc, xfree);
1944 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1945 xmalloc, xfree);
1946 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1947 xmalloc, xfree);
1948 if (build_objfile_section_table (objfile))
1949 {
1950 error ("Can't find the file sections in `%s': %s",
1951 objfile->name, bfd_errmsg (bfd_get_error ()));
1952 }
1953 terminate_minimal_symbol_table (objfile);
1954
1955 /* We use the same section offsets as from last time. I'm not
1956 sure whether that is always correct for shared libraries. */
1957 objfile->section_offsets = (struct section_offsets *)
1958 obstack_alloc (&objfile->psymbol_obstack,
1959 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1960 memcpy (objfile->section_offsets, offsets,
1961 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1962 objfile->num_sections = num_offsets;
1963
1964 /* What the hell is sym_new_init for, anyway? The concept of
1965 distinguishing between the main file and additional files
1966 in this way seems rather dubious. */
1967 if (objfile == symfile_objfile)
1968 {
1969 (*objfile->sf->sym_new_init) (objfile);
1970 #ifdef HPUXHPPA
1971 RESET_HP_UX_GLOBALS ();
1972 #endif
1973 }
1974
1975 (*objfile->sf->sym_init) (objfile);
1976 clear_complaints (&symfile_complaints, 1, 1);
1977 /* The "mainline" parameter is a hideous hack; I think leaving it
1978 zero is OK since dbxread.c also does what it needs to do if
1979 objfile->global_psymbols.size is 0. */
1980 (*objfile->sf->sym_read) (objfile, 0);
1981 if (!have_partial_symbols () && !have_full_symbols ())
1982 {
1983 wrap_here ("");
1984 printf_unfiltered ("(no debugging symbols found)\n");
1985 wrap_here ("");
1986 }
1987 objfile->flags |= OBJF_SYMS;
1988
1989 /* We're done reading the symbol file; finish off complaints. */
1990 clear_complaints (&symfile_complaints, 0, 1);
1991
1992 /* Getting new symbols may change our opinion about what is
1993 frameless. */
1994
1995 reinit_frame_cache ();
1996
1997 /* Discard cleanups as symbol reading was successful. */
1998 discard_cleanups (old_cleanups);
1999
2000 /* If the mtime has changed between the time we set new_modtime
2001 and now, we *want* this to be out of date, so don't call stat
2002 again now. */
2003 objfile->mtime = new_modtime;
2004 reread_one = 1;
2005 reread_separate_symbols (objfile);
2006 }
2007 }
2008 }
2009
2010 if (reread_one)
2011 clear_symtab_users ();
2012 }
2013
2014
2015 /* Handle separate debug info for OBJFILE, which has just been
2016 re-read:
2017 - If we had separate debug info before, but now we don't, get rid
2018 of the separated objfile.
2019 - If we didn't have separated debug info before, but now we do,
2020 read in the new separated debug info file.
2021 - If the debug link points to a different file, toss the old one
2022 and read the new one.
2023 This function does *not* handle the case where objfile is still
2024 using the same separate debug info file, but that file's timestamp
2025 has changed. That case should be handled by the loop in
2026 reread_symbols already. */
2027 static void
2028 reread_separate_symbols (struct objfile *objfile)
2029 {
2030 char *debug_file;
2031 unsigned long crc32;
2032
2033 /* Does the updated objfile's debug info live in a
2034 separate file? */
2035 debug_file = find_separate_debug_file (objfile);
2036
2037 if (objfile->separate_debug_objfile)
2038 {
2039 /* There are two cases where we need to get rid of
2040 the old separated debug info objfile:
2041 - if the new primary objfile doesn't have
2042 separated debug info, or
2043 - if the new primary objfile has separate debug
2044 info, but it's under a different filename.
2045
2046 If the old and new objfiles both have separate
2047 debug info, under the same filename, then we're
2048 okay --- if the separated file's contents have
2049 changed, we will have caught that when we
2050 visited it in this function's outermost
2051 loop. */
2052 if (! debug_file
2053 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2054 free_objfile (objfile->separate_debug_objfile);
2055 }
2056
2057 /* If the new objfile has separate debug info, and we
2058 haven't loaded it already, do so now. */
2059 if (debug_file
2060 && ! objfile->separate_debug_objfile)
2061 {
2062 /* Use the same section offset table as objfile itself.
2063 Preserve the flags from objfile that make sense. */
2064 objfile->separate_debug_objfile
2065 = (symbol_file_add_with_addrs_or_offsets
2066 (debug_file,
2067 info_verbose, /* from_tty: Don't override the default. */
2068 0, /* No addr table. */
2069 objfile->section_offsets, objfile->num_sections,
2070 0, /* Not mainline. See comments about this above. */
2071 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2072 | OBJF_USERLOADED)));
2073 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2074 = objfile;
2075 }
2076 }
2077
2078
2079 \f
2080
2081
2082 typedef struct
2083 {
2084 char *ext;
2085 enum language lang;
2086 }
2087 filename_language;
2088
2089 static filename_language *filename_language_table;
2090 static int fl_table_size, fl_table_next;
2091
2092 static void
2093 add_filename_language (char *ext, enum language lang)
2094 {
2095 if (fl_table_next >= fl_table_size)
2096 {
2097 fl_table_size += 10;
2098 filename_language_table =
2099 xrealloc (filename_language_table,
2100 fl_table_size * sizeof (*filename_language_table));
2101 }
2102
2103 filename_language_table[fl_table_next].ext = xstrdup (ext);
2104 filename_language_table[fl_table_next].lang = lang;
2105 fl_table_next++;
2106 }
2107
2108 static char *ext_args;
2109
2110 static void
2111 set_ext_lang_command (char *args, int from_tty)
2112 {
2113 int i;
2114 char *cp = ext_args;
2115 enum language lang;
2116
2117 /* First arg is filename extension, starting with '.' */
2118 if (*cp != '.')
2119 error ("'%s': Filename extension must begin with '.'", ext_args);
2120
2121 /* Find end of first arg. */
2122 while (*cp && !isspace (*cp))
2123 cp++;
2124
2125 if (*cp == '\0')
2126 error ("'%s': two arguments required -- filename extension and language",
2127 ext_args);
2128
2129 /* Null-terminate first arg */
2130 *cp++ = '\0';
2131
2132 /* Find beginning of second arg, which should be a source language. */
2133 while (*cp && isspace (*cp))
2134 cp++;
2135
2136 if (*cp == '\0')
2137 error ("'%s': two arguments required -- filename extension and language",
2138 ext_args);
2139
2140 /* Lookup the language from among those we know. */
2141 lang = language_enum (cp);
2142
2143 /* Now lookup the filename extension: do we already know it? */
2144 for (i = 0; i < fl_table_next; i++)
2145 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2146 break;
2147
2148 if (i >= fl_table_next)
2149 {
2150 /* new file extension */
2151 add_filename_language (ext_args, lang);
2152 }
2153 else
2154 {
2155 /* redefining a previously known filename extension */
2156
2157 /* if (from_tty) */
2158 /* query ("Really make files of type %s '%s'?", */
2159 /* ext_args, language_str (lang)); */
2160
2161 xfree (filename_language_table[i].ext);
2162 filename_language_table[i].ext = xstrdup (ext_args);
2163 filename_language_table[i].lang = lang;
2164 }
2165 }
2166
2167 static void
2168 info_ext_lang_command (char *args, int from_tty)
2169 {
2170 int i;
2171
2172 printf_filtered ("Filename extensions and the languages they represent:");
2173 printf_filtered ("\n\n");
2174 for (i = 0; i < fl_table_next; i++)
2175 printf_filtered ("\t%s\t- %s\n",
2176 filename_language_table[i].ext,
2177 language_str (filename_language_table[i].lang));
2178 }
2179
2180 static void
2181 init_filename_language_table (void)
2182 {
2183 if (fl_table_size == 0) /* protect against repetition */
2184 {
2185 fl_table_size = 20;
2186 fl_table_next = 0;
2187 filename_language_table =
2188 xmalloc (fl_table_size * sizeof (*filename_language_table));
2189 add_filename_language (".c", language_c);
2190 add_filename_language (".C", language_cplus);
2191 add_filename_language (".cc", language_cplus);
2192 add_filename_language (".cp", language_cplus);
2193 add_filename_language (".cpp", language_cplus);
2194 add_filename_language (".cxx", language_cplus);
2195 add_filename_language (".c++", language_cplus);
2196 add_filename_language (".java", language_java);
2197 add_filename_language (".class", language_java);
2198 add_filename_language (".m", language_objc);
2199 add_filename_language (".f", language_fortran);
2200 add_filename_language (".F", language_fortran);
2201 add_filename_language (".s", language_asm);
2202 add_filename_language (".S", language_asm);
2203 add_filename_language (".pas", language_pascal);
2204 add_filename_language (".p", language_pascal);
2205 add_filename_language (".pp", language_pascal);
2206 }
2207 }
2208
2209 enum language
2210 deduce_language_from_filename (char *filename)
2211 {
2212 int i;
2213 char *cp;
2214
2215 if (filename != NULL)
2216 if ((cp = strrchr (filename, '.')) != NULL)
2217 for (i = 0; i < fl_table_next; i++)
2218 if (strcmp (cp, filename_language_table[i].ext) == 0)
2219 return filename_language_table[i].lang;
2220
2221 return language_unknown;
2222 }
2223 \f
2224 /* allocate_symtab:
2225
2226 Allocate and partly initialize a new symbol table. Return a pointer
2227 to it. error() if no space.
2228
2229 Caller must set these fields:
2230 LINETABLE(symtab)
2231 symtab->blockvector
2232 symtab->dirname
2233 symtab->free_code
2234 symtab->free_ptr
2235 possibly free_named_symtabs (symtab->filename);
2236 */
2237
2238 struct symtab *
2239 allocate_symtab (char *filename, struct objfile *objfile)
2240 {
2241 struct symtab *symtab;
2242
2243 symtab = (struct symtab *)
2244 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2245 memset (symtab, 0, sizeof (*symtab));
2246 symtab->filename = obsavestring (filename, strlen (filename),
2247 &objfile->symbol_obstack);
2248 symtab->fullname = NULL;
2249 symtab->language = deduce_language_from_filename (filename);
2250 symtab->debugformat = obsavestring ("unknown", 7,
2251 &objfile->symbol_obstack);
2252
2253 /* Hook it to the objfile it comes from */
2254
2255 symtab->objfile = objfile;
2256 symtab->next = objfile->symtabs;
2257 objfile->symtabs = symtab;
2258
2259 /* FIXME: This should go away. It is only defined for the Z8000,
2260 and the Z8000 definition of this macro doesn't have anything to
2261 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2262 here for convenience. */
2263 #ifdef INIT_EXTRA_SYMTAB_INFO
2264 INIT_EXTRA_SYMTAB_INFO (symtab);
2265 #endif
2266
2267 return (symtab);
2268 }
2269
2270 struct partial_symtab *
2271 allocate_psymtab (char *filename, struct objfile *objfile)
2272 {
2273 struct partial_symtab *psymtab;
2274
2275 if (objfile->free_psymtabs)
2276 {
2277 psymtab = objfile->free_psymtabs;
2278 objfile->free_psymtabs = psymtab->next;
2279 }
2280 else
2281 psymtab = (struct partial_symtab *)
2282 obstack_alloc (&objfile->psymbol_obstack,
2283 sizeof (struct partial_symtab));
2284
2285 memset (psymtab, 0, sizeof (struct partial_symtab));
2286 psymtab->filename = obsavestring (filename, strlen (filename),
2287 &objfile->psymbol_obstack);
2288 psymtab->symtab = NULL;
2289
2290 /* Prepend it to the psymtab list for the objfile it belongs to.
2291 Psymtabs are searched in most recent inserted -> least recent
2292 inserted order. */
2293
2294 psymtab->objfile = objfile;
2295 psymtab->next = objfile->psymtabs;
2296 objfile->psymtabs = psymtab;
2297 #if 0
2298 {
2299 struct partial_symtab **prev_pst;
2300 psymtab->objfile = objfile;
2301 psymtab->next = NULL;
2302 prev_pst = &(objfile->psymtabs);
2303 while ((*prev_pst) != NULL)
2304 prev_pst = &((*prev_pst)->next);
2305 (*prev_pst) = psymtab;
2306 }
2307 #endif
2308
2309 return (psymtab);
2310 }
2311
2312 void
2313 discard_psymtab (struct partial_symtab *pst)
2314 {
2315 struct partial_symtab **prev_pst;
2316
2317 /* From dbxread.c:
2318 Empty psymtabs happen as a result of header files which don't
2319 have any symbols in them. There can be a lot of them. But this
2320 check is wrong, in that a psymtab with N_SLINE entries but
2321 nothing else is not empty, but we don't realize that. Fixing
2322 that without slowing things down might be tricky. */
2323
2324 /* First, snip it out of the psymtab chain */
2325
2326 prev_pst = &(pst->objfile->psymtabs);
2327 while ((*prev_pst) != pst)
2328 prev_pst = &((*prev_pst)->next);
2329 (*prev_pst) = pst->next;
2330
2331 /* Next, put it on a free list for recycling */
2332
2333 pst->next = pst->objfile->free_psymtabs;
2334 pst->objfile->free_psymtabs = pst;
2335 }
2336 \f
2337
2338 /* Reset all data structures in gdb which may contain references to symbol
2339 table data. */
2340
2341 void
2342 clear_symtab_users (void)
2343 {
2344 /* Someday, we should do better than this, by only blowing away
2345 the things that really need to be blown. */
2346 clear_value_history ();
2347 clear_displays ();
2348 clear_internalvars ();
2349 breakpoint_re_set ();
2350 set_default_breakpoint (0, 0, 0, 0);
2351 clear_current_source_symtab_and_line ();
2352 clear_pc_function_cache ();
2353 if (target_new_objfile_hook)
2354 target_new_objfile_hook (NULL);
2355 }
2356
2357 static void
2358 clear_symtab_users_cleanup (void *ignore)
2359 {
2360 clear_symtab_users ();
2361 }
2362
2363 /* clear_symtab_users_once:
2364
2365 This function is run after symbol reading, or from a cleanup.
2366 If an old symbol table was obsoleted, the old symbol table
2367 has been blown away, but the other GDB data structures that may
2368 reference it have not yet been cleared or re-directed. (The old
2369 symtab was zapped, and the cleanup queued, in free_named_symtab()
2370 below.)
2371
2372 This function can be queued N times as a cleanup, or called
2373 directly; it will do all the work the first time, and then will be a
2374 no-op until the next time it is queued. This works by bumping a
2375 counter at queueing time. Much later when the cleanup is run, or at
2376 the end of symbol processing (in case the cleanup is discarded), if
2377 the queued count is greater than the "done-count", we do the work
2378 and set the done-count to the queued count. If the queued count is
2379 less than or equal to the done-count, we just ignore the call. This
2380 is needed because reading a single .o file will often replace many
2381 symtabs (one per .h file, for example), and we don't want to reset
2382 the breakpoints N times in the user's face.
2383
2384 The reason we both queue a cleanup, and call it directly after symbol
2385 reading, is because the cleanup protects us in case of errors, but is
2386 discarded if symbol reading is successful. */
2387
2388 #if 0
2389 /* FIXME: As free_named_symtabs is currently a big noop this function
2390 is no longer needed. */
2391 static void clear_symtab_users_once (void);
2392
2393 static int clear_symtab_users_queued;
2394 static int clear_symtab_users_done;
2395
2396 static void
2397 clear_symtab_users_once (void)
2398 {
2399 /* Enforce once-per-`do_cleanups'-semantics */
2400 if (clear_symtab_users_queued <= clear_symtab_users_done)
2401 return;
2402 clear_symtab_users_done = clear_symtab_users_queued;
2403
2404 clear_symtab_users ();
2405 }
2406 #endif
2407
2408 /* Delete the specified psymtab, and any others that reference it. */
2409
2410 static void
2411 cashier_psymtab (struct partial_symtab *pst)
2412 {
2413 struct partial_symtab *ps, *pprev = NULL;
2414 int i;
2415
2416 /* Find its previous psymtab in the chain */
2417 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2418 {
2419 if (ps == pst)
2420 break;
2421 pprev = ps;
2422 }
2423
2424 if (ps)
2425 {
2426 /* Unhook it from the chain. */
2427 if (ps == pst->objfile->psymtabs)
2428 pst->objfile->psymtabs = ps->next;
2429 else
2430 pprev->next = ps->next;
2431
2432 /* FIXME, we can't conveniently deallocate the entries in the
2433 partial_symbol lists (global_psymbols/static_psymbols) that
2434 this psymtab points to. These just take up space until all
2435 the psymtabs are reclaimed. Ditto the dependencies list and
2436 filename, which are all in the psymbol_obstack. */
2437
2438 /* We need to cashier any psymtab that has this one as a dependency... */
2439 again:
2440 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2441 {
2442 for (i = 0; i < ps->number_of_dependencies; i++)
2443 {
2444 if (ps->dependencies[i] == pst)
2445 {
2446 cashier_psymtab (ps);
2447 goto again; /* Must restart, chain has been munged. */
2448 }
2449 }
2450 }
2451 }
2452 }
2453
2454 /* If a symtab or psymtab for filename NAME is found, free it along
2455 with any dependent breakpoints, displays, etc.
2456 Used when loading new versions of object modules with the "add-file"
2457 command. This is only called on the top-level symtab or psymtab's name;
2458 it is not called for subsidiary files such as .h files.
2459
2460 Return value is 1 if we blew away the environment, 0 if not.
2461 FIXME. The return value appears to never be used.
2462
2463 FIXME. I think this is not the best way to do this. We should
2464 work on being gentler to the environment while still cleaning up
2465 all stray pointers into the freed symtab. */
2466
2467 int
2468 free_named_symtabs (char *name)
2469 {
2470 #if 0
2471 /* FIXME: With the new method of each objfile having it's own
2472 psymtab list, this function needs serious rethinking. In particular,
2473 why was it ever necessary to toss psymtabs with specific compilation
2474 unit filenames, as opposed to all psymtabs from a particular symbol
2475 file? -- fnf
2476 Well, the answer is that some systems permit reloading of particular
2477 compilation units. We want to blow away any old info about these
2478 compilation units, regardless of which objfiles they arrived in. --gnu. */
2479
2480 struct symtab *s;
2481 struct symtab *prev;
2482 struct partial_symtab *ps;
2483 struct blockvector *bv;
2484 int blewit = 0;
2485
2486 /* We only wack things if the symbol-reload switch is set. */
2487 if (!symbol_reloading)
2488 return 0;
2489
2490 /* Some symbol formats have trouble providing file names... */
2491 if (name == 0 || *name == '\0')
2492 return 0;
2493
2494 /* Look for a psymtab with the specified name. */
2495
2496 again2:
2497 for (ps = partial_symtab_list; ps; ps = ps->next)
2498 {
2499 if (strcmp (name, ps->filename) == 0)
2500 {
2501 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2502 goto again2; /* Must restart, chain has been munged */
2503 }
2504 }
2505
2506 /* Look for a symtab with the specified name. */
2507
2508 for (s = symtab_list; s; s = s->next)
2509 {
2510 if (strcmp (name, s->filename) == 0)
2511 break;
2512 prev = s;
2513 }
2514
2515 if (s)
2516 {
2517 if (s == symtab_list)
2518 symtab_list = s->next;
2519 else
2520 prev->next = s->next;
2521
2522 /* For now, queue a delete for all breakpoints, displays, etc., whether
2523 or not they depend on the symtab being freed. This should be
2524 changed so that only those data structures affected are deleted. */
2525
2526 /* But don't delete anything if the symtab is empty.
2527 This test is necessary due to a bug in "dbxread.c" that
2528 causes empty symtabs to be created for N_SO symbols that
2529 contain the pathname of the object file. (This problem
2530 has been fixed in GDB 3.9x). */
2531
2532 bv = BLOCKVECTOR (s);
2533 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2534 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2535 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2536 {
2537 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2538 name);
2539 clear_symtab_users_queued++;
2540 make_cleanup (clear_symtab_users_once, 0);
2541 blewit = 1;
2542 }
2543 else
2544 {
2545 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2546 name);
2547 }
2548
2549 free_symtab (s);
2550 }
2551 else
2552 {
2553 /* It is still possible that some breakpoints will be affected
2554 even though no symtab was found, since the file might have
2555 been compiled without debugging, and hence not be associated
2556 with a symtab. In order to handle this correctly, we would need
2557 to keep a list of text address ranges for undebuggable files.
2558 For now, we do nothing, since this is a fairly obscure case. */
2559 ;
2560 }
2561
2562 /* FIXME, what about the minimal symbol table? */
2563 return blewit;
2564 #else
2565 return (0);
2566 #endif
2567 }
2568 \f
2569 /* Allocate and partially fill a partial symtab. It will be
2570 completely filled at the end of the symbol list.
2571
2572 FILENAME is the name of the symbol-file we are reading from. */
2573
2574 struct partial_symtab *
2575 start_psymtab_common (struct objfile *objfile,
2576 struct section_offsets *section_offsets, char *filename,
2577 CORE_ADDR textlow, struct partial_symbol **global_syms,
2578 struct partial_symbol **static_syms)
2579 {
2580 struct partial_symtab *psymtab;
2581
2582 psymtab = allocate_psymtab (filename, objfile);
2583 psymtab->section_offsets = section_offsets;
2584 psymtab->textlow = textlow;
2585 psymtab->texthigh = psymtab->textlow; /* default */
2586 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2587 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2588 return (psymtab);
2589 }
2590 \f
2591 /* Add a symbol with a long value to a psymtab.
2592 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2593 Return the partial symbol that has been added. */
2594
2595 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2596 symbol is so that callers can get access to the symbol's demangled
2597 name, which they don't have any cheap way to determine otherwise.
2598 (Currenly, dwarf2read.c is the only file who uses that information,
2599 though it's possible that other readers might in the future.)
2600 Elena wasn't thrilled about that, and I don't blame her, but we
2601 couldn't come up with a better way to get that information. If
2602 it's needed in other situations, we could consider breaking up
2603 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2604 cache. */
2605
2606 const struct partial_symbol *
2607 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2608 enum address_class class,
2609 struct psymbol_allocation_list *list, long val, /* Value as a long */
2610 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2611 enum language language, struct objfile *objfile)
2612 {
2613 struct partial_symbol *psym;
2614 char *buf = alloca (namelength + 1);
2615 /* psymbol is static so that there will be no uninitialized gaps in the
2616 structure which might contain random data, causing cache misses in
2617 bcache. */
2618 static struct partial_symbol psymbol;
2619
2620 /* Create local copy of the partial symbol */
2621 memcpy (buf, name, namelength);
2622 buf[namelength] = '\0';
2623 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2624 if (val != 0)
2625 {
2626 SYMBOL_VALUE (&psymbol) = val;
2627 }
2628 else
2629 {
2630 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2631 }
2632 SYMBOL_SECTION (&psymbol) = 0;
2633 SYMBOL_LANGUAGE (&psymbol) = language;
2634 PSYMBOL_DOMAIN (&psymbol) = domain;
2635 PSYMBOL_CLASS (&psymbol) = class;
2636
2637 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2638
2639 /* Stash the partial symbol away in the cache */
2640 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2641 objfile->psymbol_cache);
2642
2643 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2644 if (list->next >= list->list + list->size)
2645 {
2646 extend_psymbol_list (list, objfile);
2647 }
2648 *list->next++ = psym;
2649 OBJSTAT (objfile, n_psyms++);
2650
2651 return psym;
2652 }
2653
2654 /* Add a symbol with a long value to a psymtab. This differs from
2655 * add_psymbol_to_list above in taking both a mangled and a demangled
2656 * name. */
2657
2658 void
2659 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2660 int dem_namelength, domain_enum domain,
2661 enum address_class class,
2662 struct psymbol_allocation_list *list, long val, /* Value as a long */
2663 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2664 enum language language,
2665 struct objfile *objfile)
2666 {
2667 struct partial_symbol *psym;
2668 char *buf = alloca (namelength + 1);
2669 /* psymbol is static so that there will be no uninitialized gaps in the
2670 structure which might contain random data, causing cache misses in
2671 bcache. */
2672 static struct partial_symbol psymbol;
2673
2674 /* Create local copy of the partial symbol */
2675
2676 memcpy (buf, name, namelength);
2677 buf[namelength] = '\0';
2678 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2679 objfile->psymbol_cache);
2680
2681 buf = alloca (dem_namelength + 1);
2682 memcpy (buf, dem_name, dem_namelength);
2683 buf[dem_namelength] = '\0';
2684
2685 switch (language)
2686 {
2687 case language_c:
2688 case language_cplus:
2689 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2690 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2691 break;
2692 /* FIXME What should be done for the default case? Ignoring for now. */
2693 }
2694
2695 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2696 if (val != 0)
2697 {
2698 SYMBOL_VALUE (&psymbol) = val;
2699 }
2700 else
2701 {
2702 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2703 }
2704 SYMBOL_SECTION (&psymbol) = 0;
2705 SYMBOL_LANGUAGE (&psymbol) = language;
2706 PSYMBOL_DOMAIN (&psymbol) = domain;
2707 PSYMBOL_CLASS (&psymbol) = class;
2708 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2709
2710 /* Stash the partial symbol away in the cache */
2711 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2712 objfile->psymbol_cache);
2713
2714 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2715 if (list->next >= list->list + list->size)
2716 {
2717 extend_psymbol_list (list, objfile);
2718 }
2719 *list->next++ = psym;
2720 OBJSTAT (objfile, n_psyms++);
2721 }
2722
2723 /* Initialize storage for partial symbols. */
2724
2725 void
2726 init_psymbol_list (struct objfile *objfile, int total_symbols)
2727 {
2728 /* Free any previously allocated psymbol lists. */
2729
2730 if (objfile->global_psymbols.list)
2731 {
2732 xmfree (objfile->md, objfile->global_psymbols.list);
2733 }
2734 if (objfile->static_psymbols.list)
2735 {
2736 xmfree (objfile->md, objfile->static_psymbols.list);
2737 }
2738
2739 /* Current best guess is that approximately a twentieth
2740 of the total symbols (in a debugging file) are global or static
2741 oriented symbols */
2742
2743 objfile->global_psymbols.size = total_symbols / 10;
2744 objfile->static_psymbols.size = total_symbols / 10;
2745
2746 if (objfile->global_psymbols.size > 0)
2747 {
2748 objfile->global_psymbols.next =
2749 objfile->global_psymbols.list = (struct partial_symbol **)
2750 xmmalloc (objfile->md, (objfile->global_psymbols.size
2751 * sizeof (struct partial_symbol *)));
2752 }
2753 if (objfile->static_psymbols.size > 0)
2754 {
2755 objfile->static_psymbols.next =
2756 objfile->static_psymbols.list = (struct partial_symbol **)
2757 xmmalloc (objfile->md, (objfile->static_psymbols.size
2758 * sizeof (struct partial_symbol *)));
2759 }
2760 }
2761
2762 /* OVERLAYS:
2763 The following code implements an abstraction for debugging overlay sections.
2764
2765 The target model is as follows:
2766 1) The gnu linker will permit multiple sections to be mapped into the
2767 same VMA, each with its own unique LMA (or load address).
2768 2) It is assumed that some runtime mechanism exists for mapping the
2769 sections, one by one, from the load address into the VMA address.
2770 3) This code provides a mechanism for gdb to keep track of which
2771 sections should be considered to be mapped from the VMA to the LMA.
2772 This information is used for symbol lookup, and memory read/write.
2773 For instance, if a section has been mapped then its contents
2774 should be read from the VMA, otherwise from the LMA.
2775
2776 Two levels of debugger support for overlays are available. One is
2777 "manual", in which the debugger relies on the user to tell it which
2778 overlays are currently mapped. This level of support is
2779 implemented entirely in the core debugger, and the information about
2780 whether a section is mapped is kept in the objfile->obj_section table.
2781
2782 The second level of support is "automatic", and is only available if
2783 the target-specific code provides functionality to read the target's
2784 overlay mapping table, and translate its contents for the debugger
2785 (by updating the mapped state information in the obj_section tables).
2786
2787 The interface is as follows:
2788 User commands:
2789 overlay map <name> -- tell gdb to consider this section mapped
2790 overlay unmap <name> -- tell gdb to consider this section unmapped
2791 overlay list -- list the sections that GDB thinks are mapped
2792 overlay read-target -- get the target's state of what's mapped
2793 overlay off/manual/auto -- set overlay debugging state
2794 Functional interface:
2795 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2796 section, return that section.
2797 find_pc_overlay(pc): find any overlay section that contains
2798 the pc, either in its VMA or its LMA
2799 overlay_is_mapped(sect): true if overlay is marked as mapped
2800 section_is_overlay(sect): true if section's VMA != LMA
2801 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2802 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2803 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2804 overlay_mapped_address(...): map an address from section's LMA to VMA
2805 overlay_unmapped_address(...): map an address from section's VMA to LMA
2806 symbol_overlayed_address(...): Return a "current" address for symbol:
2807 either in VMA or LMA depending on whether
2808 the symbol's section is currently mapped
2809 */
2810
2811 /* Overlay debugging state: */
2812
2813 enum overlay_debugging_state overlay_debugging = ovly_off;
2814 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2815
2816 /* Target vector for refreshing overlay mapped state */
2817 static void simple_overlay_update (struct obj_section *);
2818 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2819
2820 /* Function: section_is_overlay (SECTION)
2821 Returns true if SECTION has VMA not equal to LMA, ie.
2822 SECTION is loaded at an address different from where it will "run". */
2823
2824 int
2825 section_is_overlay (asection *section)
2826 {
2827 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2828
2829 if (overlay_debugging)
2830 if (section && section->lma != 0 &&
2831 section->vma != section->lma)
2832 return 1;
2833
2834 return 0;
2835 }
2836
2837 /* Function: overlay_invalidate_all (void)
2838 Invalidate the mapped state of all overlay sections (mark it as stale). */
2839
2840 static void
2841 overlay_invalidate_all (void)
2842 {
2843 struct objfile *objfile;
2844 struct obj_section *sect;
2845
2846 ALL_OBJSECTIONS (objfile, sect)
2847 if (section_is_overlay (sect->the_bfd_section))
2848 sect->ovly_mapped = -1;
2849 }
2850
2851 /* Function: overlay_is_mapped (SECTION)
2852 Returns true if section is an overlay, and is currently mapped.
2853 Private: public access is thru function section_is_mapped.
2854
2855 Access to the ovly_mapped flag is restricted to this function, so
2856 that we can do automatic update. If the global flag
2857 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2858 overlay_invalidate_all. If the mapped state of the particular
2859 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2860
2861 static int
2862 overlay_is_mapped (struct obj_section *osect)
2863 {
2864 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2865 return 0;
2866
2867 switch (overlay_debugging)
2868 {
2869 default:
2870 case ovly_off:
2871 return 0; /* overlay debugging off */
2872 case ovly_auto: /* overlay debugging automatic */
2873 /* Unles there is a target_overlay_update function,
2874 there's really nothing useful to do here (can't really go auto) */
2875 if (target_overlay_update)
2876 {
2877 if (overlay_cache_invalid)
2878 {
2879 overlay_invalidate_all ();
2880 overlay_cache_invalid = 0;
2881 }
2882 if (osect->ovly_mapped == -1)
2883 (*target_overlay_update) (osect);
2884 }
2885 /* fall thru to manual case */
2886 case ovly_on: /* overlay debugging manual */
2887 return osect->ovly_mapped == 1;
2888 }
2889 }
2890
2891 /* Function: section_is_mapped
2892 Returns true if section is an overlay, and is currently mapped. */
2893
2894 int
2895 section_is_mapped (asection *section)
2896 {
2897 struct objfile *objfile;
2898 struct obj_section *osect;
2899
2900 if (overlay_debugging)
2901 if (section && section_is_overlay (section))
2902 ALL_OBJSECTIONS (objfile, osect)
2903 if (osect->the_bfd_section == section)
2904 return overlay_is_mapped (osect);
2905
2906 return 0;
2907 }
2908
2909 /* Function: pc_in_unmapped_range
2910 If PC falls into the lma range of SECTION, return true, else false. */
2911
2912 CORE_ADDR
2913 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2914 {
2915 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2916
2917 int size;
2918
2919 if (overlay_debugging)
2920 if (section && section_is_overlay (section))
2921 {
2922 size = bfd_get_section_size_before_reloc (section);
2923 if (section->lma <= pc && pc < section->lma + size)
2924 return 1;
2925 }
2926 return 0;
2927 }
2928
2929 /* Function: pc_in_mapped_range
2930 If PC falls into the vma range of SECTION, return true, else false. */
2931
2932 CORE_ADDR
2933 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2934 {
2935 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2936
2937 int size;
2938
2939 if (overlay_debugging)
2940 if (section && section_is_overlay (section))
2941 {
2942 size = bfd_get_section_size_before_reloc (section);
2943 if (section->vma <= pc && pc < section->vma + size)
2944 return 1;
2945 }
2946 return 0;
2947 }
2948
2949
2950 /* Return true if the mapped ranges of sections A and B overlap, false
2951 otherwise. */
2952 static int
2953 sections_overlap (asection *a, asection *b)
2954 {
2955 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2956
2957 CORE_ADDR a_start = a->vma;
2958 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2959 CORE_ADDR b_start = b->vma;
2960 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2961
2962 return (a_start < b_end && b_start < a_end);
2963 }
2964
2965 /* Function: overlay_unmapped_address (PC, SECTION)
2966 Returns the address corresponding to PC in the unmapped (load) range.
2967 May be the same as PC. */
2968
2969 CORE_ADDR
2970 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2971 {
2972 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2973
2974 if (overlay_debugging)
2975 if (section && section_is_overlay (section) &&
2976 pc_in_mapped_range (pc, section))
2977 return pc + section->lma - section->vma;
2978
2979 return pc;
2980 }
2981
2982 /* Function: overlay_mapped_address (PC, SECTION)
2983 Returns the address corresponding to PC in the mapped (runtime) range.
2984 May be the same as PC. */
2985
2986 CORE_ADDR
2987 overlay_mapped_address (CORE_ADDR pc, asection *section)
2988 {
2989 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2990
2991 if (overlay_debugging)
2992 if (section && section_is_overlay (section) &&
2993 pc_in_unmapped_range (pc, section))
2994 return pc + section->vma - section->lma;
2995
2996 return pc;
2997 }
2998
2999
3000 /* Function: symbol_overlayed_address
3001 Return one of two addresses (relative to the VMA or to the LMA),
3002 depending on whether the section is mapped or not. */
3003
3004 CORE_ADDR
3005 symbol_overlayed_address (CORE_ADDR address, asection *section)
3006 {
3007 if (overlay_debugging)
3008 {
3009 /* If the symbol has no section, just return its regular address. */
3010 if (section == 0)
3011 return address;
3012 /* If the symbol's section is not an overlay, just return its address */
3013 if (!section_is_overlay (section))
3014 return address;
3015 /* If the symbol's section is mapped, just return its address */
3016 if (section_is_mapped (section))
3017 return address;
3018 /*
3019 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3020 * then return its LOADED address rather than its vma address!!
3021 */
3022 return overlay_unmapped_address (address, section);
3023 }
3024 return address;
3025 }
3026
3027 /* Function: find_pc_overlay (PC)
3028 Return the best-match overlay section for PC:
3029 If PC matches a mapped overlay section's VMA, return that section.
3030 Else if PC matches an unmapped section's VMA, return that section.
3031 Else if PC matches an unmapped section's LMA, return that section. */
3032
3033 asection *
3034 find_pc_overlay (CORE_ADDR pc)
3035 {
3036 struct objfile *objfile;
3037 struct obj_section *osect, *best_match = NULL;
3038
3039 if (overlay_debugging)
3040 ALL_OBJSECTIONS (objfile, osect)
3041 if (section_is_overlay (osect->the_bfd_section))
3042 {
3043 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3044 {
3045 if (overlay_is_mapped (osect))
3046 return osect->the_bfd_section;
3047 else
3048 best_match = osect;
3049 }
3050 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3051 best_match = osect;
3052 }
3053 return best_match ? best_match->the_bfd_section : NULL;
3054 }
3055
3056 /* Function: find_pc_mapped_section (PC)
3057 If PC falls into the VMA address range of an overlay section that is
3058 currently marked as MAPPED, return that section. Else return NULL. */
3059
3060 asection *
3061 find_pc_mapped_section (CORE_ADDR pc)
3062 {
3063 struct objfile *objfile;
3064 struct obj_section *osect;
3065
3066 if (overlay_debugging)
3067 ALL_OBJSECTIONS (objfile, osect)
3068 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3069 overlay_is_mapped (osect))
3070 return osect->the_bfd_section;
3071
3072 return NULL;
3073 }
3074
3075 /* Function: list_overlays_command
3076 Print a list of mapped sections and their PC ranges */
3077
3078 void
3079 list_overlays_command (char *args, int from_tty)
3080 {
3081 int nmapped = 0;
3082 struct objfile *objfile;
3083 struct obj_section *osect;
3084
3085 if (overlay_debugging)
3086 ALL_OBJSECTIONS (objfile, osect)
3087 if (overlay_is_mapped (osect))
3088 {
3089 const char *name;
3090 bfd_vma lma, vma;
3091 int size;
3092
3093 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3094 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3095 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3096 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3097
3098 printf_filtered ("Section %s, loaded at ", name);
3099 print_address_numeric (lma, 1, gdb_stdout);
3100 puts_filtered (" - ");
3101 print_address_numeric (lma + size, 1, gdb_stdout);
3102 printf_filtered (", mapped at ");
3103 print_address_numeric (vma, 1, gdb_stdout);
3104 puts_filtered (" - ");
3105 print_address_numeric (vma + size, 1, gdb_stdout);
3106 puts_filtered ("\n");
3107
3108 nmapped++;
3109 }
3110 if (nmapped == 0)
3111 printf_filtered ("No sections are mapped.\n");
3112 }
3113
3114 /* Function: map_overlay_command
3115 Mark the named section as mapped (ie. residing at its VMA address). */
3116
3117 void
3118 map_overlay_command (char *args, int from_tty)
3119 {
3120 struct objfile *objfile, *objfile2;
3121 struct obj_section *sec, *sec2;
3122 asection *bfdsec;
3123
3124 if (!overlay_debugging)
3125 error ("\
3126 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3127 the 'overlay manual' command.");
3128
3129 if (args == 0 || *args == 0)
3130 error ("Argument required: name of an overlay section");
3131
3132 /* First, find a section matching the user supplied argument */
3133 ALL_OBJSECTIONS (objfile, sec)
3134 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3135 {
3136 /* Now, check to see if the section is an overlay. */
3137 bfdsec = sec->the_bfd_section;
3138 if (!section_is_overlay (bfdsec))
3139 continue; /* not an overlay section */
3140
3141 /* Mark the overlay as "mapped" */
3142 sec->ovly_mapped = 1;
3143
3144 /* Next, make a pass and unmap any sections that are
3145 overlapped by this new section: */
3146 ALL_OBJSECTIONS (objfile2, sec2)
3147 if (sec2->ovly_mapped
3148 && sec != sec2
3149 && sec->the_bfd_section != sec2->the_bfd_section
3150 && sections_overlap (sec->the_bfd_section,
3151 sec2->the_bfd_section))
3152 {
3153 if (info_verbose)
3154 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3155 bfd_section_name (objfile->obfd,
3156 sec2->the_bfd_section));
3157 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3158 }
3159 return;
3160 }
3161 error ("No overlay section called %s", args);
3162 }
3163
3164 /* Function: unmap_overlay_command
3165 Mark the overlay section as unmapped
3166 (ie. resident in its LMA address range, rather than the VMA range). */
3167
3168 void
3169 unmap_overlay_command (char *args, int from_tty)
3170 {
3171 struct objfile *objfile;
3172 struct obj_section *sec;
3173
3174 if (!overlay_debugging)
3175 error ("\
3176 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3177 the 'overlay manual' command.");
3178
3179 if (args == 0 || *args == 0)
3180 error ("Argument required: name of an overlay section");
3181
3182 /* First, find a section matching the user supplied argument */
3183 ALL_OBJSECTIONS (objfile, sec)
3184 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3185 {
3186 if (!sec->ovly_mapped)
3187 error ("Section %s is not mapped", args);
3188 sec->ovly_mapped = 0;
3189 return;
3190 }
3191 error ("No overlay section called %s", args);
3192 }
3193
3194 /* Function: overlay_auto_command
3195 A utility command to turn on overlay debugging.
3196 Possibly this should be done via a set/show command. */
3197
3198 static void
3199 overlay_auto_command (char *args, int from_tty)
3200 {
3201 overlay_debugging = ovly_auto;
3202 enable_overlay_breakpoints ();
3203 if (info_verbose)
3204 printf_unfiltered ("Automatic overlay debugging enabled.");
3205 }
3206
3207 /* Function: overlay_manual_command
3208 A utility command to turn on overlay debugging.
3209 Possibly this should be done via a set/show command. */
3210
3211 static void
3212 overlay_manual_command (char *args, int from_tty)
3213 {
3214 overlay_debugging = ovly_on;
3215 disable_overlay_breakpoints ();
3216 if (info_verbose)
3217 printf_unfiltered ("Overlay debugging enabled.");
3218 }
3219
3220 /* Function: overlay_off_command
3221 A utility command to turn on overlay debugging.
3222 Possibly this should be done via a set/show command. */
3223
3224 static void
3225 overlay_off_command (char *args, int from_tty)
3226 {
3227 overlay_debugging = ovly_off;
3228 disable_overlay_breakpoints ();
3229 if (info_verbose)
3230 printf_unfiltered ("Overlay debugging disabled.");
3231 }
3232
3233 static void
3234 overlay_load_command (char *args, int from_tty)
3235 {
3236 if (target_overlay_update)
3237 (*target_overlay_update) (NULL);
3238 else
3239 error ("This target does not know how to read its overlay state.");
3240 }
3241
3242 /* Function: overlay_command
3243 A place-holder for a mis-typed command */
3244
3245 /* Command list chain containing all defined "overlay" subcommands. */
3246 struct cmd_list_element *overlaylist;
3247
3248 static void
3249 overlay_command (char *args, int from_tty)
3250 {
3251 printf_unfiltered
3252 ("\"overlay\" must be followed by the name of an overlay command.\n");
3253 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3254 }
3255
3256
3257 /* Target Overlays for the "Simplest" overlay manager:
3258
3259 This is GDB's default target overlay layer. It works with the
3260 minimal overlay manager supplied as an example by Cygnus. The
3261 entry point is via a function pointer "target_overlay_update",
3262 so targets that use a different runtime overlay manager can
3263 substitute their own overlay_update function and take over the
3264 function pointer.
3265
3266 The overlay_update function pokes around in the target's data structures
3267 to see what overlays are mapped, and updates GDB's overlay mapping with
3268 this information.
3269
3270 In this simple implementation, the target data structures are as follows:
3271 unsigned _novlys; /# number of overlay sections #/
3272 unsigned _ovly_table[_novlys][4] = {
3273 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3274 {..., ..., ..., ...},
3275 }
3276 unsigned _novly_regions; /# number of overlay regions #/
3277 unsigned _ovly_region_table[_novly_regions][3] = {
3278 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3279 {..., ..., ...},
3280 }
3281 These functions will attempt to update GDB's mappedness state in the
3282 symbol section table, based on the target's mappedness state.
3283
3284 To do this, we keep a cached copy of the target's _ovly_table, and
3285 attempt to detect when the cached copy is invalidated. The main
3286 entry point is "simple_overlay_update(SECT), which looks up SECT in
3287 the cached table and re-reads only the entry for that section from
3288 the target (whenever possible).
3289 */
3290
3291 /* Cached, dynamically allocated copies of the target data structures: */
3292 static unsigned (*cache_ovly_table)[4] = 0;
3293 #if 0
3294 static unsigned (*cache_ovly_region_table)[3] = 0;
3295 #endif
3296 static unsigned cache_novlys = 0;
3297 #if 0
3298 static unsigned cache_novly_regions = 0;
3299 #endif
3300 static CORE_ADDR cache_ovly_table_base = 0;
3301 #if 0
3302 static CORE_ADDR cache_ovly_region_table_base = 0;
3303 #endif
3304 enum ovly_index
3305 {
3306 VMA, SIZE, LMA, MAPPED
3307 };
3308 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3309
3310 /* Throw away the cached copy of _ovly_table */
3311 static void
3312 simple_free_overlay_table (void)
3313 {
3314 if (cache_ovly_table)
3315 xfree (cache_ovly_table);
3316 cache_novlys = 0;
3317 cache_ovly_table = NULL;
3318 cache_ovly_table_base = 0;
3319 }
3320
3321 #if 0
3322 /* Throw away the cached copy of _ovly_region_table */
3323 static void
3324 simple_free_overlay_region_table (void)
3325 {
3326 if (cache_ovly_region_table)
3327 xfree (cache_ovly_region_table);
3328 cache_novly_regions = 0;
3329 cache_ovly_region_table = NULL;
3330 cache_ovly_region_table_base = 0;
3331 }
3332 #endif
3333
3334 /* Read an array of ints from the target into a local buffer.
3335 Convert to host order. int LEN is number of ints */
3336 static void
3337 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3338 {
3339 /* FIXME (alloca): Not safe if array is very large. */
3340 char *buf = alloca (len * TARGET_LONG_BYTES);
3341 int i;
3342
3343 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3344 for (i = 0; i < len; i++)
3345 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3346 TARGET_LONG_BYTES);
3347 }
3348
3349 /* Find and grab a copy of the target _ovly_table
3350 (and _novlys, which is needed for the table's size) */
3351 static int
3352 simple_read_overlay_table (void)
3353 {
3354 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3355
3356 simple_free_overlay_table ();
3357 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3358 if (! novlys_msym)
3359 {
3360 error ("Error reading inferior's overlay table: "
3361 "couldn't find `_novlys' variable\n"
3362 "in inferior. Use `overlay manual' mode.");
3363 return 0;
3364 }
3365
3366 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3367 if (! ovly_table_msym)
3368 {
3369 error ("Error reading inferior's overlay table: couldn't find "
3370 "`_ovly_table' array\n"
3371 "in inferior. Use `overlay manual' mode.");
3372 return 0;
3373 }
3374
3375 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3376 cache_ovly_table
3377 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3378 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3379 read_target_long_array (cache_ovly_table_base,
3380 (int *) cache_ovly_table,
3381 cache_novlys * 4);
3382
3383 return 1; /* SUCCESS */
3384 }
3385
3386 #if 0
3387 /* Find and grab a copy of the target _ovly_region_table
3388 (and _novly_regions, which is needed for the table's size) */
3389 static int
3390 simple_read_overlay_region_table (void)
3391 {
3392 struct minimal_symbol *msym;
3393
3394 simple_free_overlay_region_table ();
3395 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3396 if (msym != NULL)
3397 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3398 else
3399 return 0; /* failure */
3400 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3401 if (cache_ovly_region_table != NULL)
3402 {
3403 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3404 if (msym != NULL)
3405 {
3406 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3407 read_target_long_array (cache_ovly_region_table_base,
3408 (int *) cache_ovly_region_table,
3409 cache_novly_regions * 3);
3410 }
3411 else
3412 return 0; /* failure */
3413 }
3414 else
3415 return 0; /* failure */
3416 return 1; /* SUCCESS */
3417 }
3418 #endif
3419
3420 /* Function: simple_overlay_update_1
3421 A helper function for simple_overlay_update. Assuming a cached copy
3422 of _ovly_table exists, look through it to find an entry whose vma,
3423 lma and size match those of OSECT. Re-read the entry and make sure
3424 it still matches OSECT (else the table may no longer be valid).
3425 Set OSECT's mapped state to match the entry. Return: 1 for
3426 success, 0 for failure. */
3427
3428 static int
3429 simple_overlay_update_1 (struct obj_section *osect)
3430 {
3431 int i, size;
3432 bfd *obfd = osect->objfile->obfd;
3433 asection *bsect = osect->the_bfd_section;
3434
3435 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3436 for (i = 0; i < cache_novlys; i++)
3437 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3438 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3439 /* && cache_ovly_table[i][SIZE] == size */ )
3440 {
3441 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3442 (int *) cache_ovly_table[i], 4);
3443 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3444 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3445 /* && cache_ovly_table[i][SIZE] == size */ )
3446 {
3447 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3448 return 1;
3449 }
3450 else /* Warning! Warning! Target's ovly table has changed! */
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Function: simple_overlay_update
3457 If OSECT is NULL, then update all sections' mapped state
3458 (after re-reading the entire target _ovly_table).
3459 If OSECT is non-NULL, then try to find a matching entry in the
3460 cached ovly_table and update only OSECT's mapped state.
3461 If a cached entry can't be found or the cache isn't valid, then
3462 re-read the entire cache, and go ahead and update all sections. */
3463
3464 static void
3465 simple_overlay_update (struct obj_section *osect)
3466 {
3467 struct objfile *objfile;
3468
3469 /* Were we given an osect to look up? NULL means do all of them. */
3470 if (osect)
3471 /* Have we got a cached copy of the target's overlay table? */
3472 if (cache_ovly_table != NULL)
3473 /* Does its cached location match what's currently in the symtab? */
3474 if (cache_ovly_table_base ==
3475 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3476 /* Then go ahead and try to look up this single section in the cache */
3477 if (simple_overlay_update_1 (osect))
3478 /* Found it! We're done. */
3479 return;
3480
3481 /* Cached table no good: need to read the entire table anew.
3482 Or else we want all the sections, in which case it's actually
3483 more efficient to read the whole table in one block anyway. */
3484
3485 if (! simple_read_overlay_table ())
3486 return;
3487
3488 /* Now may as well update all sections, even if only one was requested. */
3489 ALL_OBJSECTIONS (objfile, osect)
3490 if (section_is_overlay (osect->the_bfd_section))
3491 {
3492 int i, size;
3493 bfd *obfd = osect->objfile->obfd;
3494 asection *bsect = osect->the_bfd_section;
3495
3496 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3497 for (i = 0; i < cache_novlys; i++)
3498 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3499 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3500 /* && cache_ovly_table[i][SIZE] == size */ )
3501 { /* obj_section matches i'th entry in ovly_table */
3502 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3503 break; /* finished with inner for loop: break out */
3504 }
3505 }
3506 }
3507
3508 /* Set the output sections and output offsets for section SECTP in
3509 ABFD. The relocation code in BFD will read these offsets, so we
3510 need to be sure they're initialized. We map each section to itself,
3511 with no offset; this means that SECTP->vma will be honored. */
3512
3513 static void
3514 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3515 {
3516 sectp->output_section = sectp;
3517 sectp->output_offset = 0;
3518 }
3519
3520 /* Relocate the contents of a debug section SECTP in ABFD. The
3521 contents are stored in BUF if it is non-NULL, or returned in a
3522 malloc'd buffer otherwise.
3523
3524 For some platforms and debug info formats, shared libraries contain
3525 relocations against the debug sections (particularly for DWARF-2;
3526 one affected platform is PowerPC GNU/Linux, although it depends on
3527 the version of the linker in use). Also, ELF object files naturally
3528 have unresolved relocations for their debug sections. We need to apply
3529 the relocations in order to get the locations of symbols correct. */
3530
3531 bfd_byte *
3532 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3533 {
3534 /* We're only interested in debugging sections with relocation
3535 information. */
3536 if ((sectp->flags & SEC_RELOC) == 0)
3537 return NULL;
3538 if ((sectp->flags & SEC_DEBUGGING) == 0)
3539 return NULL;
3540
3541 /* We will handle section offsets properly elsewhere, so relocate as if
3542 all sections begin at 0. */
3543 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3544
3545 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3546 }
3547
3548 void
3549 _initialize_symfile (void)
3550 {
3551 struct cmd_list_element *c;
3552
3553 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3554 "Load symbol table from executable file FILE.\n\
3555 The `file' command can also load symbol tables, as well as setting the file\n\
3556 to execute.", &cmdlist);
3557 set_cmd_completer (c, filename_completer);
3558
3559 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3560 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3561 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3562 ADDR is the starting address of the file's text.\n\
3563 The optional arguments are section-name section-address pairs and\n\
3564 should be specified if the data and bss segments are not contiguous\n\
3565 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3566 &cmdlist);
3567 set_cmd_completer (c, filename_completer);
3568
3569 c = add_cmd ("add-shared-symbol-files", class_files,
3570 add_shared_symbol_files_command,
3571 "Load the symbols from shared objects in the dynamic linker's link map.",
3572 &cmdlist);
3573 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3574 &cmdlist);
3575
3576 c = add_cmd ("load", class_files, load_command,
3577 "Dynamically load FILE into the running program, and record its symbols\n\
3578 for access from GDB.", &cmdlist);
3579 set_cmd_completer (c, filename_completer);
3580
3581 add_show_from_set
3582 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3583 (char *) &symbol_reloading,
3584 "Set dynamic symbol table reloading multiple times in one run.",
3585 &setlist),
3586 &showlist);
3587
3588 add_prefix_cmd ("overlay", class_support, overlay_command,
3589 "Commands for debugging overlays.", &overlaylist,
3590 "overlay ", 0, &cmdlist);
3591
3592 add_com_alias ("ovly", "overlay", class_alias, 1);
3593 add_com_alias ("ov", "overlay", class_alias, 1);
3594
3595 add_cmd ("map-overlay", class_support, map_overlay_command,
3596 "Assert that an overlay section is mapped.", &overlaylist);
3597
3598 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3599 "Assert that an overlay section is unmapped.", &overlaylist);
3600
3601 add_cmd ("list-overlays", class_support, list_overlays_command,
3602 "List mappings of overlay sections.", &overlaylist);
3603
3604 add_cmd ("manual", class_support, overlay_manual_command,
3605 "Enable overlay debugging.", &overlaylist);
3606 add_cmd ("off", class_support, overlay_off_command,
3607 "Disable overlay debugging.", &overlaylist);
3608 add_cmd ("auto", class_support, overlay_auto_command,
3609 "Enable automatic overlay debugging.", &overlaylist);
3610 add_cmd ("load-target", class_support, overlay_load_command,
3611 "Read the overlay mapping state from the target.", &overlaylist);
3612
3613 /* Filename extension to source language lookup table: */
3614 init_filename_language_table ();
3615 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3616 (char *) &ext_args,
3617 "Set mapping between filename extension and source language.\n\
3618 Usage: set extension-language .foo bar",
3619 &setlist);
3620 set_cmd_cfunc (c, set_ext_lang_command);
3621
3622 add_info ("extensions", info_ext_lang_command,
3623 "All filename extensions associated with a source language.");
3624
3625 add_show_from_set
3626 (add_set_cmd ("download-write-size", class_obscure,
3627 var_integer, (char *) &download_write_size,
3628 "Set the write size used when downloading a program.\n"
3629 "Only used when downloading a program onto a remote\n"
3630 "target. Specify zero, or a negative value, to disable\n"
3631 "blocked writes. The actual size of each transfer is also\n"
3632 "limited by the size of the target packet and the memory\n"
3633 "cache.\n",
3634 &setlist),
3635 &showlist);
3636
3637 debug_file_directory = xstrdup (DEBUGDIR);
3638 c = (add_set_cmd
3639 ("debug-file-directory", class_support, var_string,
3640 (char *) &debug_file_directory,
3641 "Set the directory where separate debug symbols are searched for.\n"
3642 "Separate debug symbols are first searched for in the same\n"
3643 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3644 "' subdirectory,\n"
3645 "and lastly at the path of the directory of the binary with\n"
3646 "the global debug-file directory prepended\n",
3647 &setlist));
3648 add_show_from_set (c, &showlist);
3649 set_cmd_completer (c, filename_completer);
3650 }
This page took 0.104237 seconds and 4 git commands to generate.