* i387-tdep.c: Reorder includes, fix some whitespace issues and
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include <readline/readline.h>
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_som_som_object_present;
69 extern int hp_cxx_exception_support_initialized;
70 #define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74 #endif
75
76 int (*ui_load_progress_hook) (const char *section, unsigned long num);
77 void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
82 void (*pre_add_symbol_hook) (char *);
83 void (*post_add_symbol_hook) (void);
84 void (*target_new_objfile_hook) (struct objfile *);
85
86 static void clear_symtab_users_cleanup (void *ignore);
87
88 /* Global variables owned by this file */
89 int readnow_symbol_files; /* Read full symbols immediately */
90
91 /* External variables and functions referenced. */
92
93 extern void report_transfer_performance (unsigned long, time_t, time_t);
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table (void);
99 static void simple_free_overlay_region_table (void);
100 #endif
101
102 static void set_initial_language (void);
103
104 static void load_command (char *, int);
105
106 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
108 static void add_symbol_file_command (char *, int);
109
110 static void add_shared_symbol_files_command (char *, int);
111
112 static void reread_separate_symbols (struct objfile *objfile);
113
114 static void cashier_psymtab (struct partial_symtab *);
115
116 bfd *symfile_bfd_open (char *);
117
118 int get_section_index (struct objfile *, char *);
119
120 static void find_sym_fns (struct objfile *);
121
122 static void decrement_reading_symtab (void *);
123
124 static void overlay_invalidate_all (void);
125
126 static int overlay_is_mapped (struct obj_section *);
127
128 void list_overlays_command (char *, int);
129
130 void map_overlay_command (char *, int);
131
132 void unmap_overlay_command (char *, int);
133
134 static void overlay_auto_command (char *, int);
135
136 static void overlay_manual_command (char *, int);
137
138 static void overlay_off_command (char *, int);
139
140 static void overlay_load_command (char *, int);
141
142 static void overlay_command (char *, int);
143
144 static void simple_free_overlay_table (void);
145
146 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
147
148 static int simple_read_overlay_table (void);
149
150 static int simple_overlay_update_1 (struct obj_section *);
151
152 static void add_filename_language (char *ext, enum language lang);
153
154 static void set_ext_lang_command (char *args, int from_tty);
155
156 static void info_ext_lang_command (char *args, int from_tty);
157
158 static char *find_separate_debug_file (struct objfile *objfile);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206 static int
207 compare_symbols (const void *s1p, const void *s2p)
208 {
209 register struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
213 return (strcmp (SYMBOL_NATURAL_NAME (*s1), SYMBOL_NATURAL_NAME (*s2)));
214 }
215
216 /* This compares two partial symbols by names, using strcmp_iw_ordered
217 for the comparison. */
218
219 static int
220 compare_psymbols (const void *s1p, const void *s2p)
221 {
222 struct partial_symbol *const *s1 = s1p;
223 struct partial_symbol *const *s2 = s2p;
224
225 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
226 SYMBOL_NATURAL_NAME (*s2));
227 }
228
229 void
230 sort_pst_symbols (struct partial_symtab *pst)
231 {
232 /* Sort the global list; don't sort the static list */
233
234 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
235 pst->n_global_syms, sizeof (struct partial_symbol *),
236 compare_psymbols);
237 }
238
239 /* Make a null terminated copy of the string at PTR with SIZE characters in
240 the obstack pointed to by OBSTACKP . Returns the address of the copy.
241 Note that the string at PTR does not have to be null terminated, I.E. it
242 may be part of a larger string and we are only saving a substring. */
243
244 char *
245 obsavestring (const char *ptr, int size, struct obstack *obstackp)
246 {
247 register char *p = (char *) obstack_alloc (obstackp, size + 1);
248 /* Open-coded memcpy--saves function call time. These strings are usually
249 short. FIXME: Is this really still true with a compiler that can
250 inline memcpy? */
251 {
252 register const char *p1 = ptr;
253 register char *p2 = p;
254 const char *end = ptr + size;
255 while (p1 != end)
256 *p2++ = *p1++;
257 }
258 p[size] = 0;
259 return p;
260 }
261
262 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
263 in the obstack pointed to by OBSTACKP. */
264
265 char *
266 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
267 const char *s3)
268 {
269 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
270 register char *val = (char *) obstack_alloc (obstackp, len);
271 strcpy (val, s1);
272 strcat (val, s2);
273 strcat (val, s3);
274 return val;
275 }
276
277 /* True if we are nested inside psymtab_to_symtab. */
278
279 int currently_reading_symtab = 0;
280
281 static void
282 decrement_reading_symtab (void *dummy)
283 {
284 currently_reading_symtab--;
285 }
286
287 /* Get the symbol table that corresponds to a partial_symtab.
288 This is fast after the first time you do it. In fact, there
289 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
290 case inline. */
291
292 struct symtab *
293 psymtab_to_symtab (register struct partial_symtab *pst)
294 {
295 /* If it's been looked up before, return it. */
296 if (pst->symtab)
297 return pst->symtab;
298
299 /* If it has not yet been read in, read it. */
300 if (!pst->readin)
301 {
302 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
303 currently_reading_symtab++;
304 (*pst->read_symtab) (pst);
305 do_cleanups (back_to);
306 }
307
308 return pst->symtab;
309 }
310
311 /* Initialize entry point information for this objfile. */
312
313 void
314 init_entry_point_info (struct objfile *objfile)
315 {
316 /* Save startup file's range of PC addresses to help blockframe.c
317 decide where the bottom of the stack is. */
318
319 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
320 {
321 /* Executable file -- record its entry point so we'll recognize
322 the startup file because it contains the entry point. */
323 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
324 }
325 else
326 {
327 /* Examination of non-executable.o files. Short-circuit this stuff. */
328 objfile->ei.entry_point = INVALID_ENTRY_POINT;
329 }
330 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
331 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
332 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
333 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
334 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
335 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
336 }
337
338 /* Get current entry point address. */
339
340 CORE_ADDR
341 entry_point_address (void)
342 {
343 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
344 }
345
346 /* Remember the lowest-addressed loadable section we've seen.
347 This function is called via bfd_map_over_sections.
348
349 In case of equal vmas, the section with the largest size becomes the
350 lowest-addressed loadable section.
351
352 If the vmas and sizes are equal, the last section is considered the
353 lowest-addressed loadable section. */
354
355 void
356 find_lowest_section (bfd *abfd, asection *sect, void *obj)
357 {
358 asection **lowest = (asection **) obj;
359
360 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
361 return;
362 if (!*lowest)
363 *lowest = sect; /* First loadable section */
364 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
365 *lowest = sect; /* A lower loadable section */
366 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
367 && (bfd_section_size (abfd, (*lowest))
368 <= bfd_section_size (abfd, sect)))
369 *lowest = sect;
370 }
371
372 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
373
374 struct section_addr_info *
375 alloc_section_addr_info (size_t num_sections)
376 {
377 struct section_addr_info *sap;
378 size_t size;
379
380 size = (sizeof (struct section_addr_info)
381 + sizeof (struct other_sections) * (num_sections - 1));
382 sap = (struct section_addr_info *) xmalloc (size);
383 memset (sap, 0, size);
384 sap->num_sections = num_sections;
385
386 return sap;
387 }
388
389 /* Build (allocate and populate) a section_addr_info struct from
390 an existing section table. */
391
392 extern struct section_addr_info *
393 build_section_addr_info_from_section_table (const struct section_table *start,
394 const struct section_table *end)
395 {
396 struct section_addr_info *sap;
397 const struct section_table *stp;
398 int oidx;
399
400 sap = alloc_section_addr_info (end - start);
401
402 for (stp = start, oidx = 0; stp != end; stp++)
403 {
404 if (bfd_get_section_flags (stp->bfd,
405 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
406 && oidx < end - start)
407 {
408 sap->other[oidx].addr = stp->addr;
409 sap->other[oidx].name
410 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
411 sap->other[oidx].sectindex = stp->the_bfd_section->index;
412 oidx++;
413 }
414 }
415
416 return sap;
417 }
418
419
420 /* Free all memory allocated by build_section_addr_info_from_section_table. */
421
422 extern void
423 free_section_addr_info (struct section_addr_info *sap)
424 {
425 int idx;
426
427 for (idx = 0; idx < sap->num_sections; idx++)
428 if (sap->other[idx].name)
429 xfree (sap->other[idx].name);
430 xfree (sap);
431 }
432
433
434 /* Initialize OBJFILE's sect_index_* members. */
435 static void
436 init_objfile_sect_indices (struct objfile *objfile)
437 {
438 asection *sect;
439 int i;
440
441 sect = bfd_get_section_by_name (objfile->obfd, ".text");
442 if (sect)
443 objfile->sect_index_text = sect->index;
444
445 sect = bfd_get_section_by_name (objfile->obfd, ".data");
446 if (sect)
447 objfile->sect_index_data = sect->index;
448
449 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
450 if (sect)
451 objfile->sect_index_bss = sect->index;
452
453 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
454 if (sect)
455 objfile->sect_index_rodata = sect->index;
456
457 /* This is where things get really weird... We MUST have valid
458 indices for the various sect_index_* members or gdb will abort.
459 So if for example, there is no ".text" section, we have to
460 accomodate that. Except when explicitly adding symbol files at
461 some address, section_offsets contains nothing but zeros, so it
462 doesn't matter which slot in section_offsets the individual
463 sect_index_* members index into. So if they are all zero, it is
464 safe to just point all the currently uninitialized indices to the
465 first slot. */
466
467 for (i = 0; i < objfile->num_sections; i++)
468 {
469 if (ANOFFSET (objfile->section_offsets, i) != 0)
470 {
471 break;
472 }
473 }
474 if (i == objfile->num_sections)
475 {
476 if (objfile->sect_index_text == -1)
477 objfile->sect_index_text = 0;
478 if (objfile->sect_index_data == -1)
479 objfile->sect_index_data = 0;
480 if (objfile->sect_index_bss == -1)
481 objfile->sect_index_bss = 0;
482 if (objfile->sect_index_rodata == -1)
483 objfile->sect_index_rodata = 0;
484 }
485 }
486
487
488 /* Parse the user's idea of an offset for dynamic linking, into our idea
489 of how to represent it for fast symbol reading. This is the default
490 version of the sym_fns.sym_offsets function for symbol readers that
491 don't need to do anything special. It allocates a section_offsets table
492 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
493
494 void
495 default_symfile_offsets (struct objfile *objfile,
496 struct section_addr_info *addrs)
497 {
498 int i;
499
500 objfile->num_sections = bfd_count_sections (objfile->obfd);
501 objfile->section_offsets = (struct section_offsets *)
502 obstack_alloc (&objfile->psymbol_obstack,
503 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
504 memset (objfile->section_offsets, 0,
505 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
506
507 /* Now calculate offsets for section that were specified by the
508 caller. */
509 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
514 if (osp->addr == 0)
515 continue;
516
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 }
522
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525 init_objfile_sect_indices (objfile);
526 }
527
528
529 /* Process a symbol file, as either the main file or as a dynamically
530 loaded file.
531
532 OBJFILE is where the symbols are to be read from.
533
534 ADDRS is the list of section load addresses. If the user has given
535 an 'add-symbol-file' command, then this is the list of offsets and
536 addresses he or she provided as arguments to the command; or, if
537 we're handling a shared library, these are the actual addresses the
538 sections are loaded at, according to the inferior's dynamic linker
539 (as gleaned by GDB's shared library code). We convert each address
540 into an offset from the section VMA's as it appears in the object
541 file, and then call the file's sym_offsets function to convert this
542 into a format-specific offset table --- a `struct section_offsets'.
543 If ADDRS is non-zero, OFFSETS must be zero.
544
545 OFFSETS is a table of section offsets already in the right
546 format-specific representation. NUM_OFFSETS is the number of
547 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
548 assume this is the proper table the call to sym_offsets described
549 above would produce. Instead of calling sym_offsets, we just dump
550 it right into objfile->section_offsets. (When we're re-reading
551 symbols from an objfile, we don't have the original load address
552 list any more; all we have is the section offset table.) If
553 OFFSETS is non-zero, ADDRS must be zero.
554
555 MAINLINE is nonzero if this is the main symbol file, or zero if
556 it's an extra symbol file such as dynamically loaded code.
557
558 VERBO is nonzero if the caller has printed a verbose message about
559 the symbol reading (and complaints can be more terse about it). */
560
561 void
562 syms_from_objfile (struct objfile *objfile,
563 struct section_addr_info *addrs,
564 struct section_offsets *offsets,
565 int num_offsets,
566 int mainline,
567 int verbo)
568 {
569 asection *lower_sect;
570 asection *sect;
571 CORE_ADDR lower_offset;
572 struct section_addr_info *local_addr = NULL;
573 struct cleanup *old_chain;
574 int i;
575
576 gdb_assert (! (addrs && offsets));
577
578 init_entry_point_info (objfile);
579 find_sym_fns (objfile);
580
581 if (objfile->sf == NULL)
582 return; /* No symbols. */
583
584 /* Make sure that partially constructed symbol tables will be cleaned up
585 if an error occurs during symbol reading. */
586 old_chain = make_cleanup_free_objfile (objfile);
587
588 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
589 list. We now establish the convention that an addr of zero means
590 no load address was specified. */
591 if (! addrs && ! offsets)
592 {
593 local_addr
594 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
595 make_cleanup (xfree, local_addr);
596 addrs = local_addr;
597 }
598
599 /* Now either addrs or offsets is non-zero. */
600
601 if (mainline)
602 {
603 /* We will modify the main symbol table, make sure that all its users
604 will be cleaned up if an error occurs during symbol reading. */
605 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
606
607 /* Since no error yet, throw away the old symbol table. */
608
609 if (symfile_objfile != NULL)
610 {
611 free_objfile (symfile_objfile);
612 symfile_objfile = NULL;
613 }
614
615 /* Currently we keep symbols from the add-symbol-file command.
616 If the user wants to get rid of them, they should do "symbol-file"
617 without arguments first. Not sure this is the best behavior
618 (PR 2207). */
619
620 (*objfile->sf->sym_new_init) (objfile);
621 }
622
623 /* Convert addr into an offset rather than an absolute address.
624 We find the lowest address of a loaded segment in the objfile,
625 and assume that <addr> is where that got loaded.
626
627 We no longer warn if the lowest section is not a text segment (as
628 happens for the PA64 port. */
629 if (!mainline)
630 {
631 /* Find lowest loadable section to be used as starting point for
632 continguous sections. FIXME!! won't work without call to find
633 .text first, but this assumes text is lowest section. */
634 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
635 if (lower_sect == NULL)
636 bfd_map_over_sections (objfile->obfd, find_lowest_section,
637 &lower_sect);
638 if (lower_sect == NULL)
639 warning ("no loadable sections found in added symbol-file %s",
640 objfile->name);
641 else
642 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
643 warning ("Lowest section in %s is %s at %s",
644 objfile->name,
645 bfd_section_name (objfile->obfd, lower_sect),
646 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
647 if (lower_sect != NULL)
648 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
649 else
650 lower_offset = 0;
651
652 /* Calculate offsets for the loadable sections.
653 FIXME! Sections must be in order of increasing loadable section
654 so that contiguous sections can use the lower-offset!!!
655
656 Adjust offsets if the segments are not contiguous.
657 If the section is contiguous, its offset should be set to
658 the offset of the highest loadable section lower than it
659 (the loadable section directly below it in memory).
660 this_offset = lower_offset = lower_addr - lower_orig_addr */
661
662 /* Calculate offsets for sections. */
663 if (addrs)
664 for (i=0 ; i < addrs->num_sections && addrs->other[i].name; i++)
665 {
666 if (addrs->other[i].addr != 0)
667 {
668 sect = bfd_get_section_by_name (objfile->obfd,
669 addrs->other[i].name);
670 if (sect)
671 {
672 addrs->other[i].addr
673 -= bfd_section_vma (objfile->obfd, sect);
674 lower_offset = addrs->other[i].addr;
675 /* This is the index used by BFD. */
676 addrs->other[i].sectindex = sect->index ;
677 }
678 else
679 {
680 warning ("section %s not found in %s",
681 addrs->other[i].name,
682 objfile->name);
683 addrs->other[i].addr = 0;
684 }
685 }
686 else
687 addrs->other[i].addr = lower_offset;
688 }
689 }
690
691 /* Initialize symbol reading routines for this objfile, allow complaints to
692 appear for this new file, and record how verbose to be, then do the
693 initial symbol reading for this file. */
694
695 (*objfile->sf->sym_init) (objfile);
696 clear_complaints (&symfile_complaints, 1, verbo);
697
698 if (addrs)
699 (*objfile->sf->sym_offsets) (objfile, addrs);
700 else
701 {
702 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
703
704 /* Just copy in the offset table directly as given to us. */
705 objfile->num_sections = num_offsets;
706 objfile->section_offsets
707 = ((struct section_offsets *)
708 obstack_alloc (&objfile->psymbol_obstack, size));
709 memcpy (objfile->section_offsets, offsets, size);
710
711 init_objfile_sect_indices (objfile);
712 }
713
714 #ifndef IBM6000_TARGET
715 /* This is a SVR4/SunOS specific hack, I think. In any event, it
716 screws RS/6000. sym_offsets should be doing this sort of thing,
717 because it knows the mapping between bfd sections and
718 section_offsets. */
719 /* This is a hack. As far as I can tell, section offsets are not
720 target dependent. They are all set to addr with a couple of
721 exceptions. The exceptions are sysvr4 shared libraries, whose
722 offsets are kept in solib structures anyway and rs6000 xcoff
723 which handles shared libraries in a completely unique way.
724
725 Section offsets are built similarly, except that they are built
726 by adding addr in all cases because there is no clear mapping
727 from section_offsets into actual sections. Note that solib.c
728 has a different algorithm for finding section offsets.
729
730 These should probably all be collapsed into some target
731 independent form of shared library support. FIXME. */
732
733 if (addrs)
734 {
735 struct obj_section *s;
736
737 /* Map section offsets in "addr" back to the object's
738 sections by comparing the section names with bfd's
739 section names. Then adjust the section address by
740 the offset. */ /* for gdb/13815 */
741
742 ALL_OBJFILE_OSECTIONS (objfile, s)
743 {
744 CORE_ADDR s_addr = 0;
745 int i;
746
747 for (i = 0;
748 !s_addr && i < addrs->num_sections && addrs->other[i].name;
749 i++)
750 if (strcmp (bfd_section_name (s->objfile->obfd,
751 s->the_bfd_section),
752 addrs->other[i].name) == 0)
753 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
754
755 s->addr -= s->offset;
756 s->addr += s_addr;
757 s->endaddr -= s->offset;
758 s->endaddr += s_addr;
759 s->offset += s_addr;
760 }
761 }
762 #endif /* not IBM6000_TARGET */
763
764 (*objfile->sf->sym_read) (objfile, mainline);
765
766 /* Don't allow char * to have a typename (else would get caddr_t).
767 Ditto void *. FIXME: Check whether this is now done by all the
768 symbol readers themselves (many of them now do), and if so remove
769 it from here. */
770
771 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
772 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
773
774 /* Mark the objfile has having had initial symbol read attempted. Note
775 that this does not mean we found any symbols... */
776
777 objfile->flags |= OBJF_SYMS;
778
779 /* Discard cleanups as symbol reading was successful. */
780
781 discard_cleanups (old_chain);
782 }
783
784 /* Perform required actions after either reading in the initial
785 symbols for a new objfile, or mapping in the symbols from a reusable
786 objfile. */
787
788 void
789 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
790 {
791
792 /* If this is the main symbol file we have to clean up all users of the
793 old main symbol file. Otherwise it is sufficient to fixup all the
794 breakpoints that may have been redefined by this symbol file. */
795 if (mainline)
796 {
797 /* OK, make it the "real" symbol file. */
798 symfile_objfile = objfile;
799
800 clear_symtab_users ();
801 }
802 else
803 {
804 breakpoint_re_set ();
805 }
806
807 /* We're done reading the symbol file; finish off complaints. */
808 clear_complaints (&symfile_complaints, 0, verbo);
809 }
810
811 /* Process a symbol file, as either the main file or as a dynamically
812 loaded file.
813
814 NAME is the file name (which will be tilde-expanded and made
815 absolute herein) (but we don't free or modify NAME itself).
816
817 FROM_TTY says how verbose to be.
818
819 MAINLINE specifies whether this is the main symbol file, or whether
820 it's an extra symbol file such as dynamically loaded code.
821
822 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
823 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
824 non-zero.
825
826 Upon success, returns a pointer to the objfile that was added.
827 Upon failure, jumps back to command level (never returns). */
828 static struct objfile *
829 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
830 struct section_addr_info *addrs,
831 struct section_offsets *offsets,
832 int num_offsets,
833 int mainline, int flags)
834 {
835 struct objfile *objfile;
836 struct partial_symtab *psymtab;
837 char *debugfile;
838 bfd *abfd;
839 struct section_addr_info *orig_addrs;
840 struct cleanup *my_cleanups;
841
842 /* Open a bfd for the file, and give user a chance to burp if we'd be
843 interactively wiping out any existing symbols. */
844
845 abfd = symfile_bfd_open (name);
846
847 if ((have_full_symbols () || have_partial_symbols ())
848 && mainline
849 && from_tty
850 && !query ("Load new symbol table from \"%s\"? ", name))
851 error ("Not confirmed.");
852
853 objfile = allocate_objfile (abfd, flags);
854
855 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
856 my_cleanups = make_cleanup (xfree, orig_addrs);
857 if (addrs)
858 *orig_addrs = *addrs;
859
860 /* If the objfile uses a mapped symbol file, and we have a psymtab for
861 it, then skip reading any symbols at this time. */
862
863 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
864 {
865 /* We mapped in an existing symbol table file that already has had
866 initial symbol reading performed, so we can skip that part. Notify
867 the user that instead of reading the symbols, they have been mapped.
868 */
869 if (from_tty || info_verbose)
870 {
871 printf_filtered ("Mapped symbols for %s...", name);
872 wrap_here ("");
873 gdb_flush (gdb_stdout);
874 }
875 init_entry_point_info (objfile);
876 find_sym_fns (objfile);
877 }
878 else
879 {
880 /* We either created a new mapped symbol table, mapped an existing
881 symbol table file which has not had initial symbol reading
882 performed, or need to read an unmapped symbol table. */
883 if (from_tty || info_verbose)
884 {
885 if (pre_add_symbol_hook)
886 pre_add_symbol_hook (name);
887 else
888 {
889 printf_filtered ("Reading symbols from %s...", name);
890 wrap_here ("");
891 gdb_flush (gdb_stdout);
892 }
893 }
894 syms_from_objfile (objfile, addrs, offsets, num_offsets,
895 mainline, from_tty);
896 }
897
898 /* We now have at least a partial symbol table. Check to see if the
899 user requested that all symbols be read on initial access via either
900 the gdb startup command line or on a per symbol file basis. Expand
901 all partial symbol tables for this objfile if so. */
902
903 if ((flags & OBJF_READNOW) || readnow_symbol_files)
904 {
905 if (from_tty || info_verbose)
906 {
907 printf_filtered ("expanding to full symbols...");
908 wrap_here ("");
909 gdb_flush (gdb_stdout);
910 }
911
912 for (psymtab = objfile->psymtabs;
913 psymtab != NULL;
914 psymtab = psymtab->next)
915 {
916 psymtab_to_symtab (psymtab);
917 }
918 }
919
920 debugfile = find_separate_debug_file (objfile);
921 if (debugfile)
922 {
923 if (addrs != NULL)
924 {
925 objfile->separate_debug_objfile
926 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
927 }
928 else
929 {
930 objfile->separate_debug_objfile
931 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
932 }
933 objfile->separate_debug_objfile->separate_debug_objfile_backlink
934 = objfile;
935
936 /* Put the separate debug object before the normal one, this is so that
937 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
938 put_objfile_before (objfile->separate_debug_objfile, objfile);
939
940 xfree (debugfile);
941 }
942
943 if (!have_partial_symbols () && !have_full_symbols ())
944 {
945 wrap_here ("");
946 printf_filtered ("(no debugging symbols found)...");
947 wrap_here ("");
948 }
949
950 if (from_tty || info_verbose)
951 {
952 if (post_add_symbol_hook)
953 post_add_symbol_hook ();
954 else
955 {
956 printf_filtered ("done.\n");
957 }
958 }
959
960 /* We print some messages regardless of whether 'from_tty ||
961 info_verbose' is true, so make sure they go out at the right
962 time. */
963 gdb_flush (gdb_stdout);
964
965 do_cleanups (my_cleanups);
966
967 if (objfile->sf == NULL)
968 return objfile; /* No symbols. */
969
970 new_symfile_objfile (objfile, mainline, from_tty);
971
972 if (target_new_objfile_hook)
973 target_new_objfile_hook (objfile);
974
975 return (objfile);
976 }
977
978
979 /* Process a symbol file, as either the main file or as a dynamically
980 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
981 for details. */
982 struct objfile *
983 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
984 int mainline, int flags)
985 {
986 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
987 mainline, flags);
988 }
989
990
991 /* Call symbol_file_add() with default values and update whatever is
992 affected by the loading of a new main().
993 Used when the file is supplied in the gdb command line
994 and by some targets with special loading requirements.
995 The auxiliary function, symbol_file_add_main_1(), has the flags
996 argument for the switches that can only be specified in the symbol_file
997 command itself. */
998
999 void
1000 symbol_file_add_main (char *args, int from_tty)
1001 {
1002 symbol_file_add_main_1 (args, from_tty, 0);
1003 }
1004
1005 static void
1006 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1007 {
1008 symbol_file_add (args, from_tty, NULL, 1, flags);
1009
1010 #ifdef HPUXHPPA
1011 RESET_HP_UX_GLOBALS ();
1012 #endif
1013
1014 /* Getting new symbols may change our opinion about
1015 what is frameless. */
1016 reinit_frame_cache ();
1017
1018 set_initial_language ();
1019 }
1020
1021 void
1022 symbol_file_clear (int from_tty)
1023 {
1024 if ((have_full_symbols () || have_partial_symbols ())
1025 && from_tty
1026 && !query ("Discard symbol table from `%s'? ",
1027 symfile_objfile->name))
1028 error ("Not confirmed.");
1029 free_all_objfiles ();
1030
1031 /* solib descriptors may have handles to objfiles. Since their
1032 storage has just been released, we'd better wipe the solib
1033 descriptors as well.
1034 */
1035 #if defined(SOLIB_RESTART)
1036 SOLIB_RESTART ();
1037 #endif
1038
1039 symfile_objfile = NULL;
1040 if (from_tty)
1041 printf_unfiltered ("No symbol file now.\n");
1042 #ifdef HPUXHPPA
1043 RESET_HP_UX_GLOBALS ();
1044 #endif
1045 }
1046
1047 static char *
1048 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1049 {
1050 asection *sect;
1051 bfd_size_type debuglink_size;
1052 unsigned long crc32;
1053 char *contents;
1054 int crc_offset;
1055 unsigned char *p;
1056
1057 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1058
1059 if (sect == NULL)
1060 return NULL;
1061
1062 debuglink_size = bfd_section_size (objfile->obfd, sect);
1063
1064 contents = xmalloc (debuglink_size);
1065 bfd_get_section_contents (objfile->obfd, sect, contents,
1066 (file_ptr)0, (bfd_size_type)debuglink_size);
1067
1068 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1069 crc_offset = strlen (contents) + 1;
1070 crc_offset = (crc_offset + 3) & ~3;
1071
1072 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1073
1074 *crc32_out = crc32;
1075 return contents;
1076 }
1077
1078 static int
1079 separate_debug_file_exists (const char *name, unsigned long crc)
1080 {
1081 unsigned long file_crc = 0;
1082 int fd;
1083 char buffer[8*1024];
1084 int count;
1085
1086 fd = open (name, O_RDONLY | O_BINARY);
1087 if (fd < 0)
1088 return 0;
1089
1090 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1091 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1092
1093 close (fd);
1094
1095 return crc == file_crc;
1096 }
1097
1098 static char *debug_file_directory = NULL;
1099
1100 #if ! defined (DEBUG_SUBDIRECTORY)
1101 #define DEBUG_SUBDIRECTORY ".debug"
1102 #endif
1103
1104 static char *
1105 find_separate_debug_file (struct objfile *objfile)
1106 {
1107 asection *sect;
1108 char *basename;
1109 char *dir;
1110 char *debugfile;
1111 char *name_copy;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 int i;
1115
1116 basename = get_debug_link_info (objfile, &crc32);
1117
1118 if (basename == NULL)
1119 return NULL;
1120
1121 dir = xstrdup (objfile->name);
1122
1123 /* Strip off the final filename part, leaving the directory name,
1124 followed by a slash. Objfile names should always be absolute and
1125 tilde-expanded, so there should always be a slash in there
1126 somewhere. */
1127 for (i = strlen(dir) - 1; i >= 0; i--)
1128 {
1129 if (IS_DIR_SEPARATOR (dir[i]))
1130 break;
1131 }
1132 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1133 dir[i+1] = '\0';
1134
1135 debugfile = alloca (strlen (debug_file_directory) + 1
1136 + strlen (dir)
1137 + strlen (DEBUG_SUBDIRECTORY)
1138 + strlen ("/")
1139 + strlen (basename)
1140 + 1);
1141
1142 /* First try in the same directory as the original file. */
1143 strcpy (debugfile, dir);
1144 strcat (debugfile, basename);
1145
1146 if (separate_debug_file_exists (debugfile, crc32))
1147 {
1148 xfree (basename);
1149 xfree (dir);
1150 return xstrdup (debugfile);
1151 }
1152
1153 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1154 strcpy (debugfile, dir);
1155 strcat (debugfile, DEBUG_SUBDIRECTORY);
1156 strcat (debugfile, "/");
1157 strcat (debugfile, basename);
1158
1159 if (separate_debug_file_exists (debugfile, crc32))
1160 {
1161 xfree (basename);
1162 xfree (dir);
1163 return xstrdup (debugfile);
1164 }
1165
1166 /* Then try in the global debugfile directory. */
1167 strcpy (debugfile, debug_file_directory);
1168 strcat (debugfile, "/");
1169 strcat (debugfile, dir);
1170 strcat (debugfile, basename);
1171
1172 if (separate_debug_file_exists (debugfile, crc32))
1173 {
1174 xfree (basename);
1175 xfree (dir);
1176 return xstrdup (debugfile);
1177 }
1178
1179 xfree (basename);
1180 xfree (dir);
1181 return NULL;
1182 }
1183
1184
1185 /* This is the symbol-file command. Read the file, analyze its
1186 symbols, and add a struct symtab to a symtab list. The syntax of
1187 the command is rather bizarre--(1) buildargv implements various
1188 quoting conventions which are undocumented and have little or
1189 nothing in common with the way things are quoted (or not quoted)
1190 elsewhere in GDB, (2) options are used, which are not generally
1191 used in GDB (perhaps "set mapped on", "set readnow on" would be
1192 better), (3) the order of options matters, which is contrary to GNU
1193 conventions (because it is confusing and inconvenient). */
1194 /* Note: ezannoni 2000-04-17. This function used to have support for
1195 rombug (see remote-os9k.c). It consisted of a call to target_link()
1196 (target.c) to get the address of the text segment from the target,
1197 and pass that to symbol_file_add(). This is no longer supported. */
1198
1199 void
1200 symbol_file_command (char *args, int from_tty)
1201 {
1202 char **argv;
1203 char *name = NULL;
1204 struct cleanup *cleanups;
1205 int flags = OBJF_USERLOADED;
1206
1207 dont_repeat ();
1208
1209 if (args == NULL)
1210 {
1211 symbol_file_clear (from_tty);
1212 }
1213 else
1214 {
1215 if ((argv = buildargv (args)) == NULL)
1216 {
1217 nomem (0);
1218 }
1219 cleanups = make_cleanup_freeargv (argv);
1220 while (*argv != NULL)
1221 {
1222 if (STREQ (*argv, "-mapped"))
1223 flags |= OBJF_MAPPED;
1224 else
1225 if (STREQ (*argv, "-readnow"))
1226 flags |= OBJF_READNOW;
1227 else
1228 if (**argv == '-')
1229 error ("unknown option `%s'", *argv);
1230 else
1231 {
1232 name = *argv;
1233
1234 symbol_file_add_main_1 (name, from_tty, flags);
1235 }
1236 argv++;
1237 }
1238
1239 if (name == NULL)
1240 {
1241 error ("no symbol file name was specified");
1242 }
1243 do_cleanups (cleanups);
1244 }
1245 }
1246
1247 /* Set the initial language.
1248
1249 A better solution would be to record the language in the psymtab when reading
1250 partial symbols, and then use it (if known) to set the language. This would
1251 be a win for formats that encode the language in an easily discoverable place,
1252 such as DWARF. For stabs, we can jump through hoops looking for specially
1253 named symbols or try to intuit the language from the specific type of stabs
1254 we find, but we can't do that until later when we read in full symbols.
1255 FIXME. */
1256
1257 static void
1258 set_initial_language (void)
1259 {
1260 struct partial_symtab *pst;
1261 enum language lang = language_unknown;
1262
1263 pst = find_main_psymtab ();
1264 if (pst != NULL)
1265 {
1266 if (pst->filename != NULL)
1267 {
1268 lang = deduce_language_from_filename (pst->filename);
1269 }
1270 if (lang == language_unknown)
1271 {
1272 /* Make C the default language */
1273 lang = language_c;
1274 }
1275 set_language (lang);
1276 expected_language = current_language; /* Don't warn the user */
1277 }
1278 }
1279
1280 /* Open file specified by NAME and hand it off to BFD for preliminary
1281 analysis. Result is a newly initialized bfd *, which includes a newly
1282 malloc'd` copy of NAME (tilde-expanded and made absolute).
1283 In case of trouble, error() is called. */
1284
1285 bfd *
1286 symfile_bfd_open (char *name)
1287 {
1288 bfd *sym_bfd;
1289 int desc;
1290 char *absolute_name;
1291
1292
1293
1294 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1295
1296 /* Look down path for it, allocate 2nd new malloc'd copy. */
1297 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1298 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1299 if (desc < 0)
1300 {
1301 char *exename = alloca (strlen (name) + 5);
1302 strcat (strcpy (exename, name), ".exe");
1303 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1304 0, &absolute_name);
1305 }
1306 #endif
1307 if (desc < 0)
1308 {
1309 make_cleanup (xfree, name);
1310 perror_with_name (name);
1311 }
1312 xfree (name); /* Free 1st new malloc'd copy */
1313 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1314 /* It'll be freed in free_objfile(). */
1315
1316 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1317 if (!sym_bfd)
1318 {
1319 close (desc);
1320 make_cleanup (xfree, name);
1321 error ("\"%s\": can't open to read symbols: %s.", name,
1322 bfd_errmsg (bfd_get_error ()));
1323 }
1324 sym_bfd->cacheable = 1;
1325
1326 if (!bfd_check_format (sym_bfd, bfd_object))
1327 {
1328 /* FIXME: should be checking for errors from bfd_close (for one thing,
1329 on error it does not free all the storage associated with the
1330 bfd). */
1331 bfd_close (sym_bfd); /* This also closes desc */
1332 make_cleanup (xfree, name);
1333 error ("\"%s\": can't read symbols: %s.", name,
1334 bfd_errmsg (bfd_get_error ()));
1335 }
1336 return (sym_bfd);
1337 }
1338
1339 /* Return the section index for the given section name. Return -1 if
1340 the section was not found. */
1341 int
1342 get_section_index (struct objfile *objfile, char *section_name)
1343 {
1344 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1345 if (sect)
1346 return sect->index;
1347 else
1348 return -1;
1349 }
1350
1351 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1352 startup by the _initialize routine in each object file format reader,
1353 to register information about each format the the reader is prepared
1354 to handle. */
1355
1356 void
1357 add_symtab_fns (struct sym_fns *sf)
1358 {
1359 sf->next = symtab_fns;
1360 symtab_fns = sf;
1361 }
1362
1363
1364 /* Initialize to read symbols from the symbol file sym_bfd. It either
1365 returns or calls error(). The result is an initialized struct sym_fns
1366 in the objfile structure, that contains cached information about the
1367 symbol file. */
1368
1369 static void
1370 find_sym_fns (struct objfile *objfile)
1371 {
1372 struct sym_fns *sf;
1373 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1374 char *our_target = bfd_get_target (objfile->obfd);
1375
1376 if (our_flavour == bfd_target_srec_flavour
1377 || our_flavour == bfd_target_ihex_flavour
1378 || our_flavour == bfd_target_tekhex_flavour)
1379 return; /* No symbols. */
1380
1381 /* Special kludge for apollo. See dstread.c. */
1382 if (STREQN (our_target, "apollo", 6))
1383 our_flavour = (enum bfd_flavour) -2;
1384
1385 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1386 {
1387 if (our_flavour == sf->sym_flavour)
1388 {
1389 objfile->sf = sf;
1390 return;
1391 }
1392 }
1393 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1394 bfd_get_target (objfile->obfd));
1395 }
1396 \f
1397 /* This function runs the load command of our current target. */
1398
1399 static void
1400 load_command (char *arg, int from_tty)
1401 {
1402 if (arg == NULL)
1403 arg = get_exec_file (1);
1404 target_load (arg, from_tty);
1405
1406 /* After re-loading the executable, we don't really know which
1407 overlays are mapped any more. */
1408 overlay_cache_invalid = 1;
1409 }
1410
1411 /* This version of "load" should be usable for any target. Currently
1412 it is just used for remote targets, not inftarg.c or core files,
1413 on the theory that only in that case is it useful.
1414
1415 Avoiding xmodem and the like seems like a win (a) because we don't have
1416 to worry about finding it, and (b) On VMS, fork() is very slow and so
1417 we don't want to run a subprocess. On the other hand, I'm not sure how
1418 performance compares. */
1419
1420 static int download_write_size = 512;
1421 static int validate_download = 0;
1422
1423 /* Callback service function for generic_load (bfd_map_over_sections). */
1424
1425 static void
1426 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1427 {
1428 bfd_size_type *sum = data;
1429
1430 *sum += bfd_get_section_size_before_reloc (asec);
1431 }
1432
1433 /* Opaque data for load_section_callback. */
1434 struct load_section_data {
1435 unsigned long load_offset;
1436 unsigned long write_count;
1437 unsigned long data_count;
1438 bfd_size_type total_size;
1439 };
1440
1441 /* Callback service function for generic_load (bfd_map_over_sections). */
1442
1443 static void
1444 load_section_callback (bfd *abfd, asection *asec, void *data)
1445 {
1446 struct load_section_data *args = data;
1447
1448 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1449 {
1450 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1451 if (size > 0)
1452 {
1453 char *buffer;
1454 struct cleanup *old_chain;
1455 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1456 bfd_size_type block_size;
1457 int err;
1458 const char *sect_name = bfd_get_section_name (abfd, asec);
1459 bfd_size_type sent;
1460
1461 if (download_write_size > 0 && size > download_write_size)
1462 block_size = download_write_size;
1463 else
1464 block_size = size;
1465
1466 buffer = xmalloc (size);
1467 old_chain = make_cleanup (xfree, buffer);
1468
1469 /* Is this really necessary? I guess it gives the user something
1470 to look at during a long download. */
1471 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1472 sect_name, paddr_nz (size), paddr_nz (lma));
1473
1474 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1475
1476 sent = 0;
1477 do
1478 {
1479 int len;
1480 bfd_size_type this_transfer = size - sent;
1481
1482 if (this_transfer >= block_size)
1483 this_transfer = block_size;
1484 len = target_write_memory_partial (lma, buffer,
1485 this_transfer, &err);
1486 if (err)
1487 break;
1488 if (validate_download)
1489 {
1490 /* Broken memories and broken monitors manifest
1491 themselves here when bring new computers to
1492 life. This doubles already slow downloads. */
1493 /* NOTE: cagney/1999-10-18: A more efficient
1494 implementation might add a verify_memory()
1495 method to the target vector and then use
1496 that. remote.c could implement that method
1497 using the ``qCRC'' packet. */
1498 char *check = xmalloc (len);
1499 struct cleanup *verify_cleanups =
1500 make_cleanup (xfree, check);
1501
1502 if (target_read_memory (lma, check, len) != 0)
1503 error ("Download verify read failed at 0x%s",
1504 paddr (lma));
1505 if (memcmp (buffer, check, len) != 0)
1506 error ("Download verify compare failed at 0x%s",
1507 paddr (lma));
1508 do_cleanups (verify_cleanups);
1509 }
1510 args->data_count += len;
1511 lma += len;
1512 buffer += len;
1513 args->write_count += 1;
1514 sent += len;
1515 if (quit_flag
1516 || (ui_load_progress_hook != NULL
1517 && ui_load_progress_hook (sect_name, sent)))
1518 error ("Canceled the download");
1519
1520 if (show_load_progress != NULL)
1521 show_load_progress (sect_name, sent, size,
1522 args->data_count, args->total_size);
1523 }
1524 while (sent < size);
1525
1526 if (err != 0)
1527 error ("Memory access error while loading section %s.", sect_name);
1528
1529 do_cleanups (old_chain);
1530 }
1531 }
1532 }
1533
1534 void
1535 generic_load (char *args, int from_tty)
1536 {
1537 asection *s;
1538 bfd *loadfile_bfd;
1539 time_t start_time, end_time; /* Start and end times of download */
1540 char *filename;
1541 struct cleanup *old_cleanups;
1542 char *offptr;
1543 struct load_section_data cbdata;
1544 CORE_ADDR entry;
1545
1546 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1547 cbdata.write_count = 0; /* Number of writes needed. */
1548 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1549 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1550
1551 /* Parse the input argument - the user can specify a load offset as
1552 a second argument. */
1553 filename = xmalloc (strlen (args) + 1);
1554 old_cleanups = make_cleanup (xfree, filename);
1555 strcpy (filename, args);
1556 offptr = strchr (filename, ' ');
1557 if (offptr != NULL)
1558 {
1559 char *endptr;
1560
1561 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1562 if (offptr == endptr)
1563 error ("Invalid download offset:%s\n", offptr);
1564 *offptr = '\0';
1565 }
1566 else
1567 cbdata.load_offset = 0;
1568
1569 /* Open the file for loading. */
1570 loadfile_bfd = bfd_openr (filename, gnutarget);
1571 if (loadfile_bfd == NULL)
1572 {
1573 perror_with_name (filename);
1574 return;
1575 }
1576
1577 /* FIXME: should be checking for errors from bfd_close (for one thing,
1578 on error it does not free all the storage associated with the
1579 bfd). */
1580 make_cleanup_bfd_close (loadfile_bfd);
1581
1582 if (!bfd_check_format (loadfile_bfd, bfd_object))
1583 {
1584 error ("\"%s\" is not an object file: %s", filename,
1585 bfd_errmsg (bfd_get_error ()));
1586 }
1587
1588 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1589 (void *) &cbdata.total_size);
1590
1591 start_time = time (NULL);
1592
1593 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1594
1595 end_time = time (NULL);
1596
1597 entry = bfd_get_start_address (loadfile_bfd);
1598 ui_out_text (uiout, "Start address ");
1599 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1600 ui_out_text (uiout, ", load size ");
1601 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1602 ui_out_text (uiout, "\n");
1603 /* We were doing this in remote-mips.c, I suspect it is right
1604 for other targets too. */
1605 write_pc (entry);
1606
1607 /* FIXME: are we supposed to call symbol_file_add or not? According
1608 to a comment from remote-mips.c (where a call to symbol_file_add
1609 was commented out), making the call confuses GDB if more than one
1610 file is loaded in. Some targets do (e.g., remote-vx.c) but
1611 others don't (or didn't - perhaphs they have all been deleted). */
1612
1613 print_transfer_performance (gdb_stdout, cbdata.data_count,
1614 cbdata.write_count, end_time - start_time);
1615
1616 do_cleanups (old_cleanups);
1617 }
1618
1619 /* Report how fast the transfer went. */
1620
1621 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1622 replaced by print_transfer_performance (with a very different
1623 function signature). */
1624
1625 void
1626 report_transfer_performance (unsigned long data_count, time_t start_time,
1627 time_t end_time)
1628 {
1629 print_transfer_performance (gdb_stdout, data_count,
1630 end_time - start_time, 0);
1631 }
1632
1633 void
1634 print_transfer_performance (struct ui_file *stream,
1635 unsigned long data_count,
1636 unsigned long write_count,
1637 unsigned long time_count)
1638 {
1639 ui_out_text (uiout, "Transfer rate: ");
1640 if (time_count > 0)
1641 {
1642 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1643 (data_count * 8) / time_count);
1644 ui_out_text (uiout, " bits/sec");
1645 }
1646 else
1647 {
1648 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1649 ui_out_text (uiout, " bits in <1 sec");
1650 }
1651 if (write_count > 0)
1652 {
1653 ui_out_text (uiout, ", ");
1654 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1655 ui_out_text (uiout, " bytes/write");
1656 }
1657 ui_out_text (uiout, ".\n");
1658 }
1659
1660 /* This function allows the addition of incrementally linked object files.
1661 It does not modify any state in the target, only in the debugger. */
1662 /* Note: ezannoni 2000-04-13 This function/command used to have a
1663 special case syntax for the rombug target (Rombug is the boot
1664 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1665 rombug case, the user doesn't need to supply a text address,
1666 instead a call to target_link() (in target.c) would supply the
1667 value to use. We are now discontinuing this type of ad hoc syntax. */
1668
1669 /* ARGSUSED */
1670 static void
1671 add_symbol_file_command (char *args, int from_tty)
1672 {
1673 char *filename = NULL;
1674 int flags = OBJF_USERLOADED;
1675 char *arg;
1676 int expecting_option = 0;
1677 int section_index = 0;
1678 int argcnt = 0;
1679 int sec_num = 0;
1680 int i;
1681 int expecting_sec_name = 0;
1682 int expecting_sec_addr = 0;
1683
1684 struct sect_opt
1685 {
1686 char *name;
1687 char *value;
1688 };
1689
1690 struct section_addr_info *section_addrs;
1691 struct sect_opt *sect_opts = NULL;
1692 size_t num_sect_opts = 0;
1693 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1694
1695 num_sect_opts = 16;
1696 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1697 * sizeof (struct sect_opt));
1698
1699 dont_repeat ();
1700
1701 if (args == NULL)
1702 error ("add-symbol-file takes a file name and an address");
1703
1704 /* Make a copy of the string that we can safely write into. */
1705 args = xstrdup (args);
1706
1707 while (*args != '\000')
1708 {
1709 /* Any leading spaces? */
1710 while (isspace (*args))
1711 args++;
1712
1713 /* Point arg to the beginning of the argument. */
1714 arg = args;
1715
1716 /* Move args pointer over the argument. */
1717 while ((*args != '\000') && !isspace (*args))
1718 args++;
1719
1720 /* If there are more arguments, terminate arg and
1721 proceed past it. */
1722 if (*args != '\000')
1723 *args++ = '\000';
1724
1725 /* Now process the argument. */
1726 if (argcnt == 0)
1727 {
1728 /* The first argument is the file name. */
1729 filename = tilde_expand (arg);
1730 make_cleanup (xfree, filename);
1731 }
1732 else
1733 if (argcnt == 1)
1734 {
1735 /* The second argument is always the text address at which
1736 to load the program. */
1737 sect_opts[section_index].name = ".text";
1738 sect_opts[section_index].value = arg;
1739 if (++section_index > num_sect_opts)
1740 {
1741 num_sect_opts *= 2;
1742 sect_opts = ((struct sect_opt *)
1743 xrealloc (sect_opts,
1744 num_sect_opts
1745 * sizeof (struct sect_opt)));
1746 }
1747 }
1748 else
1749 {
1750 /* It's an option (starting with '-') or it's an argument
1751 to an option */
1752
1753 if (*arg == '-')
1754 {
1755 if (strcmp (arg, "-mapped") == 0)
1756 flags |= OBJF_MAPPED;
1757 else
1758 if (strcmp (arg, "-readnow") == 0)
1759 flags |= OBJF_READNOW;
1760 else
1761 if (strcmp (arg, "-s") == 0)
1762 {
1763 expecting_sec_name = 1;
1764 expecting_sec_addr = 1;
1765 }
1766 }
1767 else
1768 {
1769 if (expecting_sec_name)
1770 {
1771 sect_opts[section_index].name = arg;
1772 expecting_sec_name = 0;
1773 }
1774 else
1775 if (expecting_sec_addr)
1776 {
1777 sect_opts[section_index].value = arg;
1778 expecting_sec_addr = 0;
1779 if (++section_index > num_sect_opts)
1780 {
1781 num_sect_opts *= 2;
1782 sect_opts = ((struct sect_opt *)
1783 xrealloc (sect_opts,
1784 num_sect_opts
1785 * sizeof (struct sect_opt)));
1786 }
1787 }
1788 else
1789 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1790 }
1791 }
1792 argcnt++;
1793 }
1794
1795 /* Print the prompt for the query below. And save the arguments into
1796 a sect_addr_info structure to be passed around to other
1797 functions. We have to split this up into separate print
1798 statements because local_hex_string returns a local static
1799 string. */
1800
1801 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1802 section_addrs = alloc_section_addr_info (section_index);
1803 make_cleanup (xfree, section_addrs);
1804 for (i = 0; i < section_index; i++)
1805 {
1806 CORE_ADDR addr;
1807 char *val = sect_opts[i].value;
1808 char *sec = sect_opts[i].name;
1809
1810 val = sect_opts[i].value;
1811 if (val[0] == '0' && val[1] == 'x')
1812 addr = strtoul (val+2, NULL, 16);
1813 else
1814 addr = strtoul (val, NULL, 10);
1815
1816 /* Here we store the section offsets in the order they were
1817 entered on the command line. */
1818 section_addrs->other[sec_num].name = sec;
1819 section_addrs->other[sec_num].addr = addr;
1820 printf_filtered ("\t%s_addr = %s\n",
1821 sec,
1822 local_hex_string ((unsigned long)addr));
1823 sec_num++;
1824
1825 /* The object's sections are initialized when a
1826 call is made to build_objfile_section_table (objfile).
1827 This happens in reread_symbols.
1828 At this point, we don't know what file type this is,
1829 so we can't determine what section names are valid. */
1830 }
1831
1832 if (from_tty && (!query ("%s", "")))
1833 error ("Not confirmed.");
1834
1835 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1836
1837 /* Getting new symbols may change our opinion about what is
1838 frameless. */
1839 reinit_frame_cache ();
1840 do_cleanups (my_cleanups);
1841 }
1842 \f
1843 static void
1844 add_shared_symbol_files_command (char *args, int from_tty)
1845 {
1846 #ifdef ADD_SHARED_SYMBOL_FILES
1847 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1848 #else
1849 error ("This command is not available in this configuration of GDB.");
1850 #endif
1851 }
1852 \f
1853 /* Re-read symbols if a symbol-file has changed. */
1854 void
1855 reread_symbols (void)
1856 {
1857 struct objfile *objfile;
1858 long new_modtime;
1859 int reread_one = 0;
1860 struct stat new_statbuf;
1861 int res;
1862
1863 /* With the addition of shared libraries, this should be modified,
1864 the load time should be saved in the partial symbol tables, since
1865 different tables may come from different source files. FIXME.
1866 This routine should then walk down each partial symbol table
1867 and see if the symbol table that it originates from has been changed */
1868
1869 for (objfile = object_files; objfile; objfile = objfile->next)
1870 {
1871 if (objfile->obfd)
1872 {
1873 #ifdef IBM6000_TARGET
1874 /* If this object is from a shared library, then you should
1875 stat on the library name, not member name. */
1876
1877 if (objfile->obfd->my_archive)
1878 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1879 else
1880 #endif
1881 res = stat (objfile->name, &new_statbuf);
1882 if (res != 0)
1883 {
1884 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1885 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1886 objfile->name);
1887 continue;
1888 }
1889 new_modtime = new_statbuf.st_mtime;
1890 if (new_modtime != objfile->mtime)
1891 {
1892 struct cleanup *old_cleanups;
1893 struct section_offsets *offsets;
1894 int num_offsets;
1895 char *obfd_filename;
1896
1897 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1898 objfile->name);
1899
1900 /* There are various functions like symbol_file_add,
1901 symfile_bfd_open, syms_from_objfile, etc., which might
1902 appear to do what we want. But they have various other
1903 effects which we *don't* want. So we just do stuff
1904 ourselves. We don't worry about mapped files (for one thing,
1905 any mapped file will be out of date). */
1906
1907 /* If we get an error, blow away this objfile (not sure if
1908 that is the correct response for things like shared
1909 libraries). */
1910 old_cleanups = make_cleanup_free_objfile (objfile);
1911 /* We need to do this whenever any symbols go away. */
1912 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1913
1914 /* Clean up any state BFD has sitting around. We don't need
1915 to close the descriptor but BFD lacks a way of closing the
1916 BFD without closing the descriptor. */
1917 obfd_filename = bfd_get_filename (objfile->obfd);
1918 if (!bfd_close (objfile->obfd))
1919 error ("Can't close BFD for %s: %s", objfile->name,
1920 bfd_errmsg (bfd_get_error ()));
1921 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1922 if (objfile->obfd == NULL)
1923 error ("Can't open %s to read symbols.", objfile->name);
1924 /* bfd_openr sets cacheable to true, which is what we want. */
1925 if (!bfd_check_format (objfile->obfd, bfd_object))
1926 error ("Can't read symbols from %s: %s.", objfile->name,
1927 bfd_errmsg (bfd_get_error ()));
1928
1929 /* Save the offsets, we will nuke them with the rest of the
1930 psymbol_obstack. */
1931 num_offsets = objfile->num_sections;
1932 offsets = ((struct section_offsets *)
1933 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1934 memcpy (offsets, objfile->section_offsets,
1935 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1936
1937 /* Nuke all the state that we will re-read. Much of the following
1938 code which sets things to NULL really is necessary to tell
1939 other parts of GDB that there is nothing currently there. */
1940
1941 /* FIXME: Do we have to free a whole linked list, or is this
1942 enough? */
1943 if (objfile->global_psymbols.list)
1944 xmfree (objfile->md, objfile->global_psymbols.list);
1945 memset (&objfile->global_psymbols, 0,
1946 sizeof (objfile->global_psymbols));
1947 if (objfile->static_psymbols.list)
1948 xmfree (objfile->md, objfile->static_psymbols.list);
1949 memset (&objfile->static_psymbols, 0,
1950 sizeof (objfile->static_psymbols));
1951
1952 /* Free the obstacks for non-reusable objfiles */
1953 bcache_xfree (objfile->psymbol_cache);
1954 objfile->psymbol_cache = bcache_xmalloc ();
1955 bcache_xfree (objfile->macro_cache);
1956 objfile->macro_cache = bcache_xmalloc ();
1957 if (objfile->demangled_names_hash != NULL)
1958 {
1959 htab_delete (objfile->demangled_names_hash);
1960 objfile->demangled_names_hash = NULL;
1961 }
1962 obstack_free (&objfile->psymbol_obstack, 0);
1963 obstack_free (&objfile->symbol_obstack, 0);
1964 obstack_free (&objfile->type_obstack, 0);
1965 objfile->sections = NULL;
1966 objfile->symtabs = NULL;
1967 objfile->psymtabs = NULL;
1968 objfile->free_psymtabs = NULL;
1969 objfile->msymbols = NULL;
1970 objfile->minimal_symbol_count = 0;
1971 memset (&objfile->msymbol_hash, 0,
1972 sizeof (objfile->msymbol_hash));
1973 memset (&objfile->msymbol_demangled_hash, 0,
1974 sizeof (objfile->msymbol_demangled_hash));
1975 objfile->fundamental_types = NULL;
1976 if (objfile->sf != NULL)
1977 {
1978 (*objfile->sf->sym_finish) (objfile);
1979 }
1980
1981 /* We never make this a mapped file. */
1982 objfile->md = NULL;
1983 /* obstack_specify_allocation also initializes the obstack so
1984 it is empty. */
1985 objfile->psymbol_cache = bcache_xmalloc ();
1986 objfile->macro_cache = bcache_xmalloc ();
1987 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1988 xmalloc, xfree);
1989 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1990 xmalloc, xfree);
1991 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1992 xmalloc, xfree);
1993 if (build_objfile_section_table (objfile))
1994 {
1995 error ("Can't find the file sections in `%s': %s",
1996 objfile->name, bfd_errmsg (bfd_get_error ()));
1997 }
1998 terminate_minimal_symbol_table (objfile);
1999
2000 /* We use the same section offsets as from last time. I'm not
2001 sure whether that is always correct for shared libraries. */
2002 objfile->section_offsets = (struct section_offsets *)
2003 obstack_alloc (&objfile->psymbol_obstack,
2004 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2005 memcpy (objfile->section_offsets, offsets,
2006 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2007 objfile->num_sections = num_offsets;
2008
2009 /* What the hell is sym_new_init for, anyway? The concept of
2010 distinguishing between the main file and additional files
2011 in this way seems rather dubious. */
2012 if (objfile == symfile_objfile)
2013 {
2014 (*objfile->sf->sym_new_init) (objfile);
2015 #ifdef HPUXHPPA
2016 RESET_HP_UX_GLOBALS ();
2017 #endif
2018 }
2019
2020 (*objfile->sf->sym_init) (objfile);
2021 clear_complaints (&symfile_complaints, 1, 1);
2022 /* The "mainline" parameter is a hideous hack; I think leaving it
2023 zero is OK since dbxread.c also does what it needs to do if
2024 objfile->global_psymbols.size is 0. */
2025 (*objfile->sf->sym_read) (objfile, 0);
2026 if (!have_partial_symbols () && !have_full_symbols ())
2027 {
2028 wrap_here ("");
2029 printf_filtered ("(no debugging symbols found)\n");
2030 wrap_here ("");
2031 }
2032 objfile->flags |= OBJF_SYMS;
2033
2034 /* We're done reading the symbol file; finish off complaints. */
2035 clear_complaints (&symfile_complaints, 0, 1);
2036
2037 /* Getting new symbols may change our opinion about what is
2038 frameless. */
2039
2040 reinit_frame_cache ();
2041
2042 /* Discard cleanups as symbol reading was successful. */
2043 discard_cleanups (old_cleanups);
2044
2045 /* If the mtime has changed between the time we set new_modtime
2046 and now, we *want* this to be out of date, so don't call stat
2047 again now. */
2048 objfile->mtime = new_modtime;
2049 reread_one = 1;
2050 reread_separate_symbols (objfile);
2051 }
2052 }
2053 }
2054
2055 if (reread_one)
2056 clear_symtab_users ();
2057 }
2058
2059
2060 /* Handle separate debug info for OBJFILE, which has just been
2061 re-read:
2062 - If we had separate debug info before, but now we don't, get rid
2063 of the separated objfile.
2064 - If we didn't have separated debug info before, but now we do,
2065 read in the new separated debug info file.
2066 - If the debug link points to a different file, toss the old one
2067 and read the new one.
2068 This function does *not* handle the case where objfile is still
2069 using the same separate debug info file, but that file's timestamp
2070 has changed. That case should be handled by the loop in
2071 reread_symbols already. */
2072 static void
2073 reread_separate_symbols (struct objfile *objfile)
2074 {
2075 char *debug_file;
2076 unsigned long crc32;
2077
2078 /* Does the updated objfile's debug info live in a
2079 separate file? */
2080 debug_file = find_separate_debug_file (objfile);
2081
2082 if (objfile->separate_debug_objfile)
2083 {
2084 /* There are two cases where we need to get rid of
2085 the old separated debug info objfile:
2086 - if the new primary objfile doesn't have
2087 separated debug info, or
2088 - if the new primary objfile has separate debug
2089 info, but it's under a different filename.
2090
2091 If the old and new objfiles both have separate
2092 debug info, under the same filename, then we're
2093 okay --- if the separated file's contents have
2094 changed, we will have caught that when we
2095 visited it in this function's outermost
2096 loop. */
2097 if (! debug_file
2098 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2099 free_objfile (objfile->separate_debug_objfile);
2100 }
2101
2102 /* If the new objfile has separate debug info, and we
2103 haven't loaded it already, do so now. */
2104 if (debug_file
2105 && ! objfile->separate_debug_objfile)
2106 {
2107 /* Use the same section offset table as objfile itself.
2108 Preserve the flags from objfile that make sense. */
2109 objfile->separate_debug_objfile
2110 = (symbol_file_add_with_addrs_or_offsets
2111 (debug_file,
2112 info_verbose, /* from_tty: Don't override the default. */
2113 0, /* No addr table. */
2114 objfile->section_offsets, objfile->num_sections,
2115 0, /* Not mainline. See comments about this above. */
2116 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2117 | OBJF_SHARED | OBJF_READNOW
2118 | OBJF_USERLOADED)));
2119 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2120 = objfile;
2121 }
2122 }
2123
2124
2125 \f
2126
2127
2128 typedef struct
2129 {
2130 char *ext;
2131 enum language lang;
2132 }
2133 filename_language;
2134
2135 static filename_language *filename_language_table;
2136 static int fl_table_size, fl_table_next;
2137
2138 static void
2139 add_filename_language (char *ext, enum language lang)
2140 {
2141 if (fl_table_next >= fl_table_size)
2142 {
2143 fl_table_size += 10;
2144 filename_language_table =
2145 xrealloc (filename_language_table,
2146 fl_table_size * sizeof (*filename_language_table));
2147 }
2148
2149 filename_language_table[fl_table_next].ext = xstrdup (ext);
2150 filename_language_table[fl_table_next].lang = lang;
2151 fl_table_next++;
2152 }
2153
2154 static char *ext_args;
2155
2156 static void
2157 set_ext_lang_command (char *args, int from_tty)
2158 {
2159 int i;
2160 char *cp = ext_args;
2161 enum language lang;
2162
2163 /* First arg is filename extension, starting with '.' */
2164 if (*cp != '.')
2165 error ("'%s': Filename extension must begin with '.'", ext_args);
2166
2167 /* Find end of first arg. */
2168 while (*cp && !isspace (*cp))
2169 cp++;
2170
2171 if (*cp == '\0')
2172 error ("'%s': two arguments required -- filename extension and language",
2173 ext_args);
2174
2175 /* Null-terminate first arg */
2176 *cp++ = '\0';
2177
2178 /* Find beginning of second arg, which should be a source language. */
2179 while (*cp && isspace (*cp))
2180 cp++;
2181
2182 if (*cp == '\0')
2183 error ("'%s': two arguments required -- filename extension and language",
2184 ext_args);
2185
2186 /* Lookup the language from among those we know. */
2187 lang = language_enum (cp);
2188
2189 /* Now lookup the filename extension: do we already know it? */
2190 for (i = 0; i < fl_table_next; i++)
2191 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2192 break;
2193
2194 if (i >= fl_table_next)
2195 {
2196 /* new file extension */
2197 add_filename_language (ext_args, lang);
2198 }
2199 else
2200 {
2201 /* redefining a previously known filename extension */
2202
2203 /* if (from_tty) */
2204 /* query ("Really make files of type %s '%s'?", */
2205 /* ext_args, language_str (lang)); */
2206
2207 xfree (filename_language_table[i].ext);
2208 filename_language_table[i].ext = xstrdup (ext_args);
2209 filename_language_table[i].lang = lang;
2210 }
2211 }
2212
2213 static void
2214 info_ext_lang_command (char *args, int from_tty)
2215 {
2216 int i;
2217
2218 printf_filtered ("Filename extensions and the languages they represent:");
2219 printf_filtered ("\n\n");
2220 for (i = 0; i < fl_table_next; i++)
2221 printf_filtered ("\t%s\t- %s\n",
2222 filename_language_table[i].ext,
2223 language_str (filename_language_table[i].lang));
2224 }
2225
2226 static void
2227 init_filename_language_table (void)
2228 {
2229 if (fl_table_size == 0) /* protect against repetition */
2230 {
2231 fl_table_size = 20;
2232 fl_table_next = 0;
2233 filename_language_table =
2234 xmalloc (fl_table_size * sizeof (*filename_language_table));
2235 add_filename_language (".c", language_c);
2236 add_filename_language (".C", language_cplus);
2237 add_filename_language (".cc", language_cplus);
2238 add_filename_language (".cp", language_cplus);
2239 add_filename_language (".cpp", language_cplus);
2240 add_filename_language (".cxx", language_cplus);
2241 add_filename_language (".c++", language_cplus);
2242 add_filename_language (".java", language_java);
2243 add_filename_language (".class", language_java);
2244 add_filename_language (".m", language_objc);
2245 add_filename_language (".f", language_fortran);
2246 add_filename_language (".F", language_fortran);
2247 add_filename_language (".s", language_asm);
2248 add_filename_language (".S", language_asm);
2249 add_filename_language (".pas", language_pascal);
2250 add_filename_language (".p", language_pascal);
2251 add_filename_language (".pp", language_pascal);
2252 }
2253 }
2254
2255 enum language
2256 deduce_language_from_filename (char *filename)
2257 {
2258 int i;
2259 char *cp;
2260
2261 if (filename != NULL)
2262 if ((cp = strrchr (filename, '.')) != NULL)
2263 for (i = 0; i < fl_table_next; i++)
2264 if (strcmp (cp, filename_language_table[i].ext) == 0)
2265 return filename_language_table[i].lang;
2266
2267 return language_unknown;
2268 }
2269 \f
2270 /* allocate_symtab:
2271
2272 Allocate and partly initialize a new symbol table. Return a pointer
2273 to it. error() if no space.
2274
2275 Caller must set these fields:
2276 LINETABLE(symtab)
2277 symtab->blockvector
2278 symtab->dirname
2279 symtab->free_code
2280 symtab->free_ptr
2281 possibly free_named_symtabs (symtab->filename);
2282 */
2283
2284 struct symtab *
2285 allocate_symtab (char *filename, struct objfile *objfile)
2286 {
2287 register struct symtab *symtab;
2288
2289 symtab = (struct symtab *)
2290 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2291 memset (symtab, 0, sizeof (*symtab));
2292 symtab->filename = obsavestring (filename, strlen (filename),
2293 &objfile->symbol_obstack);
2294 symtab->fullname = NULL;
2295 symtab->language = deduce_language_from_filename (filename);
2296 symtab->debugformat = obsavestring ("unknown", 7,
2297 &objfile->symbol_obstack);
2298
2299 /* Hook it to the objfile it comes from */
2300
2301 symtab->objfile = objfile;
2302 symtab->next = objfile->symtabs;
2303 objfile->symtabs = symtab;
2304
2305 /* FIXME: This should go away. It is only defined for the Z8000,
2306 and the Z8000 definition of this macro doesn't have anything to
2307 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2308 here for convenience. */
2309 #ifdef INIT_EXTRA_SYMTAB_INFO
2310 INIT_EXTRA_SYMTAB_INFO (symtab);
2311 #endif
2312
2313 return (symtab);
2314 }
2315
2316 struct partial_symtab *
2317 allocate_psymtab (char *filename, struct objfile *objfile)
2318 {
2319 struct partial_symtab *psymtab;
2320
2321 if (objfile->free_psymtabs)
2322 {
2323 psymtab = objfile->free_psymtabs;
2324 objfile->free_psymtabs = psymtab->next;
2325 }
2326 else
2327 psymtab = (struct partial_symtab *)
2328 obstack_alloc (&objfile->psymbol_obstack,
2329 sizeof (struct partial_symtab));
2330
2331 memset (psymtab, 0, sizeof (struct partial_symtab));
2332 psymtab->filename = obsavestring (filename, strlen (filename),
2333 &objfile->psymbol_obstack);
2334 psymtab->symtab = NULL;
2335
2336 /* Prepend it to the psymtab list for the objfile it belongs to.
2337 Psymtabs are searched in most recent inserted -> least recent
2338 inserted order. */
2339
2340 psymtab->objfile = objfile;
2341 psymtab->next = objfile->psymtabs;
2342 objfile->psymtabs = psymtab;
2343 #if 0
2344 {
2345 struct partial_symtab **prev_pst;
2346 psymtab->objfile = objfile;
2347 psymtab->next = NULL;
2348 prev_pst = &(objfile->psymtabs);
2349 while ((*prev_pst) != NULL)
2350 prev_pst = &((*prev_pst)->next);
2351 (*prev_pst) = psymtab;
2352 }
2353 #endif
2354
2355 return (psymtab);
2356 }
2357
2358 void
2359 discard_psymtab (struct partial_symtab *pst)
2360 {
2361 struct partial_symtab **prev_pst;
2362
2363 /* From dbxread.c:
2364 Empty psymtabs happen as a result of header files which don't
2365 have any symbols in them. There can be a lot of them. But this
2366 check is wrong, in that a psymtab with N_SLINE entries but
2367 nothing else is not empty, but we don't realize that. Fixing
2368 that without slowing things down might be tricky. */
2369
2370 /* First, snip it out of the psymtab chain */
2371
2372 prev_pst = &(pst->objfile->psymtabs);
2373 while ((*prev_pst) != pst)
2374 prev_pst = &((*prev_pst)->next);
2375 (*prev_pst) = pst->next;
2376
2377 /* Next, put it on a free list for recycling */
2378
2379 pst->next = pst->objfile->free_psymtabs;
2380 pst->objfile->free_psymtabs = pst;
2381 }
2382 \f
2383
2384 /* Reset all data structures in gdb which may contain references to symbol
2385 table data. */
2386
2387 void
2388 clear_symtab_users (void)
2389 {
2390 /* Someday, we should do better than this, by only blowing away
2391 the things that really need to be blown. */
2392 clear_value_history ();
2393 clear_displays ();
2394 clear_internalvars ();
2395 breakpoint_re_set ();
2396 set_default_breakpoint (0, 0, 0, 0);
2397 clear_current_source_symtab_and_line ();
2398 clear_pc_function_cache ();
2399 if (target_new_objfile_hook)
2400 target_new_objfile_hook (NULL);
2401 }
2402
2403 static void
2404 clear_symtab_users_cleanup (void *ignore)
2405 {
2406 clear_symtab_users ();
2407 }
2408
2409 /* clear_symtab_users_once:
2410
2411 This function is run after symbol reading, or from a cleanup.
2412 If an old symbol table was obsoleted, the old symbol table
2413 has been blown away, but the other GDB data structures that may
2414 reference it have not yet been cleared or re-directed. (The old
2415 symtab was zapped, and the cleanup queued, in free_named_symtab()
2416 below.)
2417
2418 This function can be queued N times as a cleanup, or called
2419 directly; it will do all the work the first time, and then will be a
2420 no-op until the next time it is queued. This works by bumping a
2421 counter at queueing time. Much later when the cleanup is run, or at
2422 the end of symbol processing (in case the cleanup is discarded), if
2423 the queued count is greater than the "done-count", we do the work
2424 and set the done-count to the queued count. If the queued count is
2425 less than or equal to the done-count, we just ignore the call. This
2426 is needed because reading a single .o file will often replace many
2427 symtabs (one per .h file, for example), and we don't want to reset
2428 the breakpoints N times in the user's face.
2429
2430 The reason we both queue a cleanup, and call it directly after symbol
2431 reading, is because the cleanup protects us in case of errors, but is
2432 discarded if symbol reading is successful. */
2433
2434 #if 0
2435 /* FIXME: As free_named_symtabs is currently a big noop this function
2436 is no longer needed. */
2437 static void clear_symtab_users_once (void);
2438
2439 static int clear_symtab_users_queued;
2440 static int clear_symtab_users_done;
2441
2442 static void
2443 clear_symtab_users_once (void)
2444 {
2445 /* Enforce once-per-`do_cleanups'-semantics */
2446 if (clear_symtab_users_queued <= clear_symtab_users_done)
2447 return;
2448 clear_symtab_users_done = clear_symtab_users_queued;
2449
2450 clear_symtab_users ();
2451 }
2452 #endif
2453
2454 /* Delete the specified psymtab, and any others that reference it. */
2455
2456 static void
2457 cashier_psymtab (struct partial_symtab *pst)
2458 {
2459 struct partial_symtab *ps, *pprev = NULL;
2460 int i;
2461
2462 /* Find its previous psymtab in the chain */
2463 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2464 {
2465 if (ps == pst)
2466 break;
2467 pprev = ps;
2468 }
2469
2470 if (ps)
2471 {
2472 /* Unhook it from the chain. */
2473 if (ps == pst->objfile->psymtabs)
2474 pst->objfile->psymtabs = ps->next;
2475 else
2476 pprev->next = ps->next;
2477
2478 /* FIXME, we can't conveniently deallocate the entries in the
2479 partial_symbol lists (global_psymbols/static_psymbols) that
2480 this psymtab points to. These just take up space until all
2481 the psymtabs are reclaimed. Ditto the dependencies list and
2482 filename, which are all in the psymbol_obstack. */
2483
2484 /* We need to cashier any psymtab that has this one as a dependency... */
2485 again:
2486 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2487 {
2488 for (i = 0; i < ps->number_of_dependencies; i++)
2489 {
2490 if (ps->dependencies[i] == pst)
2491 {
2492 cashier_psymtab (ps);
2493 goto again; /* Must restart, chain has been munged. */
2494 }
2495 }
2496 }
2497 }
2498 }
2499
2500 /* If a symtab or psymtab for filename NAME is found, free it along
2501 with any dependent breakpoints, displays, etc.
2502 Used when loading new versions of object modules with the "add-file"
2503 command. This is only called on the top-level symtab or psymtab's name;
2504 it is not called for subsidiary files such as .h files.
2505
2506 Return value is 1 if we blew away the environment, 0 if not.
2507 FIXME. The return value appears to never be used.
2508
2509 FIXME. I think this is not the best way to do this. We should
2510 work on being gentler to the environment while still cleaning up
2511 all stray pointers into the freed symtab. */
2512
2513 int
2514 free_named_symtabs (char *name)
2515 {
2516 #if 0
2517 /* FIXME: With the new method of each objfile having it's own
2518 psymtab list, this function needs serious rethinking. In particular,
2519 why was it ever necessary to toss psymtabs with specific compilation
2520 unit filenames, as opposed to all psymtabs from a particular symbol
2521 file? -- fnf
2522 Well, the answer is that some systems permit reloading of particular
2523 compilation units. We want to blow away any old info about these
2524 compilation units, regardless of which objfiles they arrived in. --gnu. */
2525
2526 register struct symtab *s;
2527 register struct symtab *prev;
2528 register struct partial_symtab *ps;
2529 struct blockvector *bv;
2530 int blewit = 0;
2531
2532 /* We only wack things if the symbol-reload switch is set. */
2533 if (!symbol_reloading)
2534 return 0;
2535
2536 /* Some symbol formats have trouble providing file names... */
2537 if (name == 0 || *name == '\0')
2538 return 0;
2539
2540 /* Look for a psymtab with the specified name. */
2541
2542 again2:
2543 for (ps = partial_symtab_list; ps; ps = ps->next)
2544 {
2545 if (STREQ (name, ps->filename))
2546 {
2547 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2548 goto again2; /* Must restart, chain has been munged */
2549 }
2550 }
2551
2552 /* Look for a symtab with the specified name. */
2553
2554 for (s = symtab_list; s; s = s->next)
2555 {
2556 if (STREQ (name, s->filename))
2557 break;
2558 prev = s;
2559 }
2560
2561 if (s)
2562 {
2563 if (s == symtab_list)
2564 symtab_list = s->next;
2565 else
2566 prev->next = s->next;
2567
2568 /* For now, queue a delete for all breakpoints, displays, etc., whether
2569 or not they depend on the symtab being freed. This should be
2570 changed so that only those data structures affected are deleted. */
2571
2572 /* But don't delete anything if the symtab is empty.
2573 This test is necessary due to a bug in "dbxread.c" that
2574 causes empty symtabs to be created for N_SO symbols that
2575 contain the pathname of the object file. (This problem
2576 has been fixed in GDB 3.9x). */
2577
2578 bv = BLOCKVECTOR (s);
2579 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2580 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2581 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2582 {
2583 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2584 name);
2585 clear_symtab_users_queued++;
2586 make_cleanup (clear_symtab_users_once, 0);
2587 blewit = 1;
2588 }
2589 else
2590 {
2591 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2592 name);
2593 }
2594
2595 free_symtab (s);
2596 }
2597 else
2598 {
2599 /* It is still possible that some breakpoints will be affected
2600 even though no symtab was found, since the file might have
2601 been compiled without debugging, and hence not be associated
2602 with a symtab. In order to handle this correctly, we would need
2603 to keep a list of text address ranges for undebuggable files.
2604 For now, we do nothing, since this is a fairly obscure case. */
2605 ;
2606 }
2607
2608 /* FIXME, what about the minimal symbol table? */
2609 return blewit;
2610 #else
2611 return (0);
2612 #endif
2613 }
2614 \f
2615 /* Allocate and partially fill a partial symtab. It will be
2616 completely filled at the end of the symbol list.
2617
2618 FILENAME is the name of the symbol-file we are reading from. */
2619
2620 struct partial_symtab *
2621 start_psymtab_common (struct objfile *objfile,
2622 struct section_offsets *section_offsets, char *filename,
2623 CORE_ADDR textlow, struct partial_symbol **global_syms,
2624 struct partial_symbol **static_syms)
2625 {
2626 struct partial_symtab *psymtab;
2627
2628 psymtab = allocate_psymtab (filename, objfile);
2629 psymtab->section_offsets = section_offsets;
2630 psymtab->textlow = textlow;
2631 psymtab->texthigh = psymtab->textlow; /* default */
2632 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2633 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2634 return (psymtab);
2635 }
2636 \f
2637 /* Add a symbol with a long value to a psymtab.
2638 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2639
2640 void
2641 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2642 enum address_class class,
2643 struct psymbol_allocation_list *list, long val, /* Value as a long */
2644 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2645 enum language language, struct objfile *objfile)
2646 {
2647 register struct partial_symbol *psym;
2648 char *buf = alloca (namelength + 1);
2649 /* psymbol is static so that there will be no uninitialized gaps in the
2650 structure which might contain random data, causing cache misses in
2651 bcache. */
2652 static struct partial_symbol psymbol;
2653
2654 /* Create local copy of the partial symbol */
2655 memcpy (buf, name, namelength);
2656 buf[namelength] = '\0';
2657 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2658 if (val != 0)
2659 {
2660 SYMBOL_VALUE (&psymbol) = val;
2661 }
2662 else
2663 {
2664 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2665 }
2666 SYMBOL_SECTION (&psymbol) = 0;
2667 SYMBOL_LANGUAGE (&psymbol) = language;
2668 PSYMBOL_DOMAIN (&psymbol) = domain;
2669 PSYMBOL_CLASS (&psymbol) = class;
2670
2671 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2672
2673 /* Stash the partial symbol away in the cache */
2674 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2675
2676 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2677 if (list->next >= list->list + list->size)
2678 {
2679 extend_psymbol_list (list, objfile);
2680 }
2681 *list->next++ = psym;
2682 OBJSTAT (objfile, n_psyms++);
2683 }
2684
2685 /* Add a symbol with a long value to a psymtab. This differs from
2686 * add_psymbol_to_list above in taking both a mangled and a demangled
2687 * name. */
2688
2689 void
2690 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2691 int dem_namelength, domain_enum domain,
2692 enum address_class class,
2693 struct psymbol_allocation_list *list, long val, /* Value as a long */
2694 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2695 enum language language,
2696 struct objfile *objfile)
2697 {
2698 register struct partial_symbol *psym;
2699 char *buf = alloca (namelength + 1);
2700 /* psymbol is static so that there will be no uninitialized gaps in the
2701 structure which might contain random data, causing cache misses in
2702 bcache. */
2703 static struct partial_symbol psymbol;
2704
2705 /* Create local copy of the partial symbol */
2706
2707 memcpy (buf, name, namelength);
2708 buf[namelength] = '\0';
2709 DEPRECATED_SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2710
2711 buf = alloca (dem_namelength + 1);
2712 memcpy (buf, dem_name, dem_namelength);
2713 buf[dem_namelength] = '\0';
2714
2715 switch (language)
2716 {
2717 case language_c:
2718 case language_cplus:
2719 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2720 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2721 break;
2722 /* FIXME What should be done for the default case? Ignoring for now. */
2723 }
2724
2725 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2726 if (val != 0)
2727 {
2728 SYMBOL_VALUE (&psymbol) = val;
2729 }
2730 else
2731 {
2732 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2733 }
2734 SYMBOL_SECTION (&psymbol) = 0;
2735 SYMBOL_LANGUAGE (&psymbol) = language;
2736 PSYMBOL_DOMAIN (&psymbol) = domain;
2737 PSYMBOL_CLASS (&psymbol) = class;
2738 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2739
2740 /* Stash the partial symbol away in the cache */
2741 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2742
2743 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2744 if (list->next >= list->list + list->size)
2745 {
2746 extend_psymbol_list (list, objfile);
2747 }
2748 *list->next++ = psym;
2749 OBJSTAT (objfile, n_psyms++);
2750 }
2751
2752 /* Initialize storage for partial symbols. */
2753
2754 void
2755 init_psymbol_list (struct objfile *objfile, int total_symbols)
2756 {
2757 /* Free any previously allocated psymbol lists. */
2758
2759 if (objfile->global_psymbols.list)
2760 {
2761 xmfree (objfile->md, objfile->global_psymbols.list);
2762 }
2763 if (objfile->static_psymbols.list)
2764 {
2765 xmfree (objfile->md, objfile->static_psymbols.list);
2766 }
2767
2768 /* Current best guess is that approximately a twentieth
2769 of the total symbols (in a debugging file) are global or static
2770 oriented symbols */
2771
2772 objfile->global_psymbols.size = total_symbols / 10;
2773 objfile->static_psymbols.size = total_symbols / 10;
2774
2775 if (objfile->global_psymbols.size > 0)
2776 {
2777 objfile->global_psymbols.next =
2778 objfile->global_psymbols.list = (struct partial_symbol **)
2779 xmmalloc (objfile->md, (objfile->global_psymbols.size
2780 * sizeof (struct partial_symbol *)));
2781 }
2782 if (objfile->static_psymbols.size > 0)
2783 {
2784 objfile->static_psymbols.next =
2785 objfile->static_psymbols.list = (struct partial_symbol **)
2786 xmmalloc (objfile->md, (objfile->static_psymbols.size
2787 * sizeof (struct partial_symbol *)));
2788 }
2789 }
2790
2791 /* OVERLAYS:
2792 The following code implements an abstraction for debugging overlay sections.
2793
2794 The target model is as follows:
2795 1) The gnu linker will permit multiple sections to be mapped into the
2796 same VMA, each with its own unique LMA (or load address).
2797 2) It is assumed that some runtime mechanism exists for mapping the
2798 sections, one by one, from the load address into the VMA address.
2799 3) This code provides a mechanism for gdb to keep track of which
2800 sections should be considered to be mapped from the VMA to the LMA.
2801 This information is used for symbol lookup, and memory read/write.
2802 For instance, if a section has been mapped then its contents
2803 should be read from the VMA, otherwise from the LMA.
2804
2805 Two levels of debugger support for overlays are available. One is
2806 "manual", in which the debugger relies on the user to tell it which
2807 overlays are currently mapped. This level of support is
2808 implemented entirely in the core debugger, and the information about
2809 whether a section is mapped is kept in the objfile->obj_section table.
2810
2811 The second level of support is "automatic", and is only available if
2812 the target-specific code provides functionality to read the target's
2813 overlay mapping table, and translate its contents for the debugger
2814 (by updating the mapped state information in the obj_section tables).
2815
2816 The interface is as follows:
2817 User commands:
2818 overlay map <name> -- tell gdb to consider this section mapped
2819 overlay unmap <name> -- tell gdb to consider this section unmapped
2820 overlay list -- list the sections that GDB thinks are mapped
2821 overlay read-target -- get the target's state of what's mapped
2822 overlay off/manual/auto -- set overlay debugging state
2823 Functional interface:
2824 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2825 section, return that section.
2826 find_pc_overlay(pc): find any overlay section that contains
2827 the pc, either in its VMA or its LMA
2828 overlay_is_mapped(sect): true if overlay is marked as mapped
2829 section_is_overlay(sect): true if section's VMA != LMA
2830 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2831 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2832 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2833 overlay_mapped_address(...): map an address from section's LMA to VMA
2834 overlay_unmapped_address(...): map an address from section's VMA to LMA
2835 symbol_overlayed_address(...): Return a "current" address for symbol:
2836 either in VMA or LMA depending on whether
2837 the symbol's section is currently mapped
2838 */
2839
2840 /* Overlay debugging state: */
2841
2842 enum overlay_debugging_state overlay_debugging = ovly_off;
2843 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2844
2845 /* Target vector for refreshing overlay mapped state */
2846 static void simple_overlay_update (struct obj_section *);
2847 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2848
2849 /* Function: section_is_overlay (SECTION)
2850 Returns true if SECTION has VMA not equal to LMA, ie.
2851 SECTION is loaded at an address different from where it will "run". */
2852
2853 int
2854 section_is_overlay (asection *section)
2855 {
2856 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2857
2858 if (overlay_debugging)
2859 if (section && section->lma != 0 &&
2860 section->vma != section->lma)
2861 return 1;
2862
2863 return 0;
2864 }
2865
2866 /* Function: overlay_invalidate_all (void)
2867 Invalidate the mapped state of all overlay sections (mark it as stale). */
2868
2869 static void
2870 overlay_invalidate_all (void)
2871 {
2872 struct objfile *objfile;
2873 struct obj_section *sect;
2874
2875 ALL_OBJSECTIONS (objfile, sect)
2876 if (section_is_overlay (sect->the_bfd_section))
2877 sect->ovly_mapped = -1;
2878 }
2879
2880 /* Function: overlay_is_mapped (SECTION)
2881 Returns true if section is an overlay, and is currently mapped.
2882 Private: public access is thru function section_is_mapped.
2883
2884 Access to the ovly_mapped flag is restricted to this function, so
2885 that we can do automatic update. If the global flag
2886 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2887 overlay_invalidate_all. If the mapped state of the particular
2888 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2889
2890 static int
2891 overlay_is_mapped (struct obj_section *osect)
2892 {
2893 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2894 return 0;
2895
2896 switch (overlay_debugging)
2897 {
2898 default:
2899 case ovly_off:
2900 return 0; /* overlay debugging off */
2901 case ovly_auto: /* overlay debugging automatic */
2902 /* Unles there is a target_overlay_update function,
2903 there's really nothing useful to do here (can't really go auto) */
2904 if (target_overlay_update)
2905 {
2906 if (overlay_cache_invalid)
2907 {
2908 overlay_invalidate_all ();
2909 overlay_cache_invalid = 0;
2910 }
2911 if (osect->ovly_mapped == -1)
2912 (*target_overlay_update) (osect);
2913 }
2914 /* fall thru to manual case */
2915 case ovly_on: /* overlay debugging manual */
2916 return osect->ovly_mapped == 1;
2917 }
2918 }
2919
2920 /* Function: section_is_mapped
2921 Returns true if section is an overlay, and is currently mapped. */
2922
2923 int
2924 section_is_mapped (asection *section)
2925 {
2926 struct objfile *objfile;
2927 struct obj_section *osect;
2928
2929 if (overlay_debugging)
2930 if (section && section_is_overlay (section))
2931 ALL_OBJSECTIONS (objfile, osect)
2932 if (osect->the_bfd_section == section)
2933 return overlay_is_mapped (osect);
2934
2935 return 0;
2936 }
2937
2938 /* Function: pc_in_unmapped_range
2939 If PC falls into the lma range of SECTION, return true, else false. */
2940
2941 CORE_ADDR
2942 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2943 {
2944 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2945
2946 int size;
2947
2948 if (overlay_debugging)
2949 if (section && section_is_overlay (section))
2950 {
2951 size = bfd_get_section_size_before_reloc (section);
2952 if (section->lma <= pc && pc < section->lma + size)
2953 return 1;
2954 }
2955 return 0;
2956 }
2957
2958 /* Function: pc_in_mapped_range
2959 If PC falls into the vma range of SECTION, return true, else false. */
2960
2961 CORE_ADDR
2962 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2963 {
2964 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2965
2966 int size;
2967
2968 if (overlay_debugging)
2969 if (section && section_is_overlay (section))
2970 {
2971 size = bfd_get_section_size_before_reloc (section);
2972 if (section->vma <= pc && pc < section->vma + size)
2973 return 1;
2974 }
2975 return 0;
2976 }
2977
2978
2979 /* Return true if the mapped ranges of sections A and B overlap, false
2980 otherwise. */
2981 static int
2982 sections_overlap (asection *a, asection *b)
2983 {
2984 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2985
2986 CORE_ADDR a_start = a->vma;
2987 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2988 CORE_ADDR b_start = b->vma;
2989 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2990
2991 return (a_start < b_end && b_start < a_end);
2992 }
2993
2994 /* Function: overlay_unmapped_address (PC, SECTION)
2995 Returns the address corresponding to PC in the unmapped (load) range.
2996 May be the same as PC. */
2997
2998 CORE_ADDR
2999 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3000 {
3001 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3002
3003 if (overlay_debugging)
3004 if (section && section_is_overlay (section) &&
3005 pc_in_mapped_range (pc, section))
3006 return pc + section->lma - section->vma;
3007
3008 return pc;
3009 }
3010
3011 /* Function: overlay_mapped_address (PC, SECTION)
3012 Returns the address corresponding to PC in the mapped (runtime) range.
3013 May be the same as PC. */
3014
3015 CORE_ADDR
3016 overlay_mapped_address (CORE_ADDR pc, asection *section)
3017 {
3018 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3019
3020 if (overlay_debugging)
3021 if (section && section_is_overlay (section) &&
3022 pc_in_unmapped_range (pc, section))
3023 return pc + section->vma - section->lma;
3024
3025 return pc;
3026 }
3027
3028
3029 /* Function: symbol_overlayed_address
3030 Return one of two addresses (relative to the VMA or to the LMA),
3031 depending on whether the section is mapped or not. */
3032
3033 CORE_ADDR
3034 symbol_overlayed_address (CORE_ADDR address, asection *section)
3035 {
3036 if (overlay_debugging)
3037 {
3038 /* If the symbol has no section, just return its regular address. */
3039 if (section == 0)
3040 return address;
3041 /* If the symbol's section is not an overlay, just return its address */
3042 if (!section_is_overlay (section))
3043 return address;
3044 /* If the symbol's section is mapped, just return its address */
3045 if (section_is_mapped (section))
3046 return address;
3047 /*
3048 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3049 * then return its LOADED address rather than its vma address!!
3050 */
3051 return overlay_unmapped_address (address, section);
3052 }
3053 return address;
3054 }
3055
3056 /* Function: find_pc_overlay (PC)
3057 Return the best-match overlay section for PC:
3058 If PC matches a mapped overlay section's VMA, return that section.
3059 Else if PC matches an unmapped section's VMA, return that section.
3060 Else if PC matches an unmapped section's LMA, return that section. */
3061
3062 asection *
3063 find_pc_overlay (CORE_ADDR pc)
3064 {
3065 struct objfile *objfile;
3066 struct obj_section *osect, *best_match = NULL;
3067
3068 if (overlay_debugging)
3069 ALL_OBJSECTIONS (objfile, osect)
3070 if (section_is_overlay (osect->the_bfd_section))
3071 {
3072 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3073 {
3074 if (overlay_is_mapped (osect))
3075 return osect->the_bfd_section;
3076 else
3077 best_match = osect;
3078 }
3079 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3080 best_match = osect;
3081 }
3082 return best_match ? best_match->the_bfd_section : NULL;
3083 }
3084
3085 /* Function: find_pc_mapped_section (PC)
3086 If PC falls into the VMA address range of an overlay section that is
3087 currently marked as MAPPED, return that section. Else return NULL. */
3088
3089 asection *
3090 find_pc_mapped_section (CORE_ADDR pc)
3091 {
3092 struct objfile *objfile;
3093 struct obj_section *osect;
3094
3095 if (overlay_debugging)
3096 ALL_OBJSECTIONS (objfile, osect)
3097 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3098 overlay_is_mapped (osect))
3099 return osect->the_bfd_section;
3100
3101 return NULL;
3102 }
3103
3104 /* Function: list_overlays_command
3105 Print a list of mapped sections and their PC ranges */
3106
3107 void
3108 list_overlays_command (char *args, int from_tty)
3109 {
3110 int nmapped = 0;
3111 struct objfile *objfile;
3112 struct obj_section *osect;
3113
3114 if (overlay_debugging)
3115 ALL_OBJSECTIONS (objfile, osect)
3116 if (overlay_is_mapped (osect))
3117 {
3118 const char *name;
3119 bfd_vma lma, vma;
3120 int size;
3121
3122 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3123 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3124 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3125 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3126
3127 printf_filtered ("Section %s, loaded at ", name);
3128 print_address_numeric (lma, 1, gdb_stdout);
3129 puts_filtered (" - ");
3130 print_address_numeric (lma + size, 1, gdb_stdout);
3131 printf_filtered (", mapped at ");
3132 print_address_numeric (vma, 1, gdb_stdout);
3133 puts_filtered (" - ");
3134 print_address_numeric (vma + size, 1, gdb_stdout);
3135 puts_filtered ("\n");
3136
3137 nmapped++;
3138 }
3139 if (nmapped == 0)
3140 printf_filtered ("No sections are mapped.\n");
3141 }
3142
3143 /* Function: map_overlay_command
3144 Mark the named section as mapped (ie. residing at its VMA address). */
3145
3146 void
3147 map_overlay_command (char *args, int from_tty)
3148 {
3149 struct objfile *objfile, *objfile2;
3150 struct obj_section *sec, *sec2;
3151 asection *bfdsec;
3152
3153 if (!overlay_debugging)
3154 error ("\
3155 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3156 the 'overlay manual' command.");
3157
3158 if (args == 0 || *args == 0)
3159 error ("Argument required: name of an overlay section");
3160
3161 /* First, find a section matching the user supplied argument */
3162 ALL_OBJSECTIONS (objfile, sec)
3163 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3164 {
3165 /* Now, check to see if the section is an overlay. */
3166 bfdsec = sec->the_bfd_section;
3167 if (!section_is_overlay (bfdsec))
3168 continue; /* not an overlay section */
3169
3170 /* Mark the overlay as "mapped" */
3171 sec->ovly_mapped = 1;
3172
3173 /* Next, make a pass and unmap any sections that are
3174 overlapped by this new section: */
3175 ALL_OBJSECTIONS (objfile2, sec2)
3176 if (sec2->ovly_mapped
3177 && sec != sec2
3178 && sec->the_bfd_section != sec2->the_bfd_section
3179 && sections_overlap (sec->the_bfd_section,
3180 sec2->the_bfd_section))
3181 {
3182 if (info_verbose)
3183 printf_filtered ("Note: section %s unmapped by overlap\n",
3184 bfd_section_name (objfile->obfd,
3185 sec2->the_bfd_section));
3186 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3187 }
3188 return;
3189 }
3190 error ("No overlay section called %s", args);
3191 }
3192
3193 /* Function: unmap_overlay_command
3194 Mark the overlay section as unmapped
3195 (ie. resident in its LMA address range, rather than the VMA range). */
3196
3197 void
3198 unmap_overlay_command (char *args, int from_tty)
3199 {
3200 struct objfile *objfile;
3201 struct obj_section *sec;
3202
3203 if (!overlay_debugging)
3204 error ("\
3205 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3206 the 'overlay manual' command.");
3207
3208 if (args == 0 || *args == 0)
3209 error ("Argument required: name of an overlay section");
3210
3211 /* First, find a section matching the user supplied argument */
3212 ALL_OBJSECTIONS (objfile, sec)
3213 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3214 {
3215 if (!sec->ovly_mapped)
3216 error ("Section %s is not mapped", args);
3217 sec->ovly_mapped = 0;
3218 return;
3219 }
3220 error ("No overlay section called %s", args);
3221 }
3222
3223 /* Function: overlay_auto_command
3224 A utility command to turn on overlay debugging.
3225 Possibly this should be done via a set/show command. */
3226
3227 static void
3228 overlay_auto_command (char *args, int from_tty)
3229 {
3230 overlay_debugging = ovly_auto;
3231 enable_overlay_breakpoints ();
3232 if (info_verbose)
3233 printf_filtered ("Automatic overlay debugging enabled.");
3234 }
3235
3236 /* Function: overlay_manual_command
3237 A utility command to turn on overlay debugging.
3238 Possibly this should be done via a set/show command. */
3239
3240 static void
3241 overlay_manual_command (char *args, int from_tty)
3242 {
3243 overlay_debugging = ovly_on;
3244 disable_overlay_breakpoints ();
3245 if (info_verbose)
3246 printf_filtered ("Overlay debugging enabled.");
3247 }
3248
3249 /* Function: overlay_off_command
3250 A utility command to turn on overlay debugging.
3251 Possibly this should be done via a set/show command. */
3252
3253 static void
3254 overlay_off_command (char *args, int from_tty)
3255 {
3256 overlay_debugging = ovly_off;
3257 disable_overlay_breakpoints ();
3258 if (info_verbose)
3259 printf_filtered ("Overlay debugging disabled.");
3260 }
3261
3262 static void
3263 overlay_load_command (char *args, int from_tty)
3264 {
3265 if (target_overlay_update)
3266 (*target_overlay_update) (NULL);
3267 else
3268 error ("This target does not know how to read its overlay state.");
3269 }
3270
3271 /* Function: overlay_command
3272 A place-holder for a mis-typed command */
3273
3274 /* Command list chain containing all defined "overlay" subcommands. */
3275 struct cmd_list_element *overlaylist;
3276
3277 static void
3278 overlay_command (char *args, int from_tty)
3279 {
3280 printf_unfiltered
3281 ("\"overlay\" must be followed by the name of an overlay command.\n");
3282 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3283 }
3284
3285
3286 /* Target Overlays for the "Simplest" overlay manager:
3287
3288 This is GDB's default target overlay layer. It works with the
3289 minimal overlay manager supplied as an example by Cygnus. The
3290 entry point is via a function pointer "target_overlay_update",
3291 so targets that use a different runtime overlay manager can
3292 substitute their own overlay_update function and take over the
3293 function pointer.
3294
3295 The overlay_update function pokes around in the target's data structures
3296 to see what overlays are mapped, and updates GDB's overlay mapping with
3297 this information.
3298
3299 In this simple implementation, the target data structures are as follows:
3300 unsigned _novlys; /# number of overlay sections #/
3301 unsigned _ovly_table[_novlys][4] = {
3302 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3303 {..., ..., ..., ...},
3304 }
3305 unsigned _novly_regions; /# number of overlay regions #/
3306 unsigned _ovly_region_table[_novly_regions][3] = {
3307 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3308 {..., ..., ...},
3309 }
3310 These functions will attempt to update GDB's mappedness state in the
3311 symbol section table, based on the target's mappedness state.
3312
3313 To do this, we keep a cached copy of the target's _ovly_table, and
3314 attempt to detect when the cached copy is invalidated. The main
3315 entry point is "simple_overlay_update(SECT), which looks up SECT in
3316 the cached table and re-reads only the entry for that section from
3317 the target (whenever possible).
3318 */
3319
3320 /* Cached, dynamically allocated copies of the target data structures: */
3321 static unsigned (*cache_ovly_table)[4] = 0;
3322 #if 0
3323 static unsigned (*cache_ovly_region_table)[3] = 0;
3324 #endif
3325 static unsigned cache_novlys = 0;
3326 #if 0
3327 static unsigned cache_novly_regions = 0;
3328 #endif
3329 static CORE_ADDR cache_ovly_table_base = 0;
3330 #if 0
3331 static CORE_ADDR cache_ovly_region_table_base = 0;
3332 #endif
3333 enum ovly_index
3334 {
3335 VMA, SIZE, LMA, MAPPED
3336 };
3337 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3338
3339 /* Throw away the cached copy of _ovly_table */
3340 static void
3341 simple_free_overlay_table (void)
3342 {
3343 if (cache_ovly_table)
3344 xfree (cache_ovly_table);
3345 cache_novlys = 0;
3346 cache_ovly_table = NULL;
3347 cache_ovly_table_base = 0;
3348 }
3349
3350 #if 0
3351 /* Throw away the cached copy of _ovly_region_table */
3352 static void
3353 simple_free_overlay_region_table (void)
3354 {
3355 if (cache_ovly_region_table)
3356 xfree (cache_ovly_region_table);
3357 cache_novly_regions = 0;
3358 cache_ovly_region_table = NULL;
3359 cache_ovly_region_table_base = 0;
3360 }
3361 #endif
3362
3363 /* Read an array of ints from the target into a local buffer.
3364 Convert to host order. int LEN is number of ints */
3365 static void
3366 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3367 {
3368 /* FIXME (alloca): Not safe if array is very large. */
3369 char *buf = alloca (len * TARGET_LONG_BYTES);
3370 int i;
3371
3372 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3373 for (i = 0; i < len; i++)
3374 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3375 TARGET_LONG_BYTES);
3376 }
3377
3378 /* Find and grab a copy of the target _ovly_table
3379 (and _novlys, which is needed for the table's size) */
3380 static int
3381 simple_read_overlay_table (void)
3382 {
3383 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3384
3385 simple_free_overlay_table ();
3386 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3387 if (! novlys_msym)
3388 {
3389 error ("Error reading inferior's overlay table: "
3390 "couldn't find `_novlys' variable\n"
3391 "in inferior. Use `overlay manual' mode.");
3392 return 0;
3393 }
3394
3395 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3396 if (! ovly_table_msym)
3397 {
3398 error ("Error reading inferior's overlay table: couldn't find "
3399 "`_ovly_table' array\n"
3400 "in inferior. Use `overlay manual' mode.");
3401 return 0;
3402 }
3403
3404 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3405 cache_ovly_table
3406 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3407 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3408 read_target_long_array (cache_ovly_table_base,
3409 (int *) cache_ovly_table,
3410 cache_novlys * 4);
3411
3412 return 1; /* SUCCESS */
3413 }
3414
3415 #if 0
3416 /* Find and grab a copy of the target _ovly_region_table
3417 (and _novly_regions, which is needed for the table's size) */
3418 static int
3419 simple_read_overlay_region_table (void)
3420 {
3421 struct minimal_symbol *msym;
3422
3423 simple_free_overlay_region_table ();
3424 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3425 if (msym != NULL)
3426 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3427 else
3428 return 0; /* failure */
3429 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3430 if (cache_ovly_region_table != NULL)
3431 {
3432 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3433 if (msym != NULL)
3434 {
3435 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3436 read_target_long_array (cache_ovly_region_table_base,
3437 (int *) cache_ovly_region_table,
3438 cache_novly_regions * 3);
3439 }
3440 else
3441 return 0; /* failure */
3442 }
3443 else
3444 return 0; /* failure */
3445 return 1; /* SUCCESS */
3446 }
3447 #endif
3448
3449 /* Function: simple_overlay_update_1
3450 A helper function for simple_overlay_update. Assuming a cached copy
3451 of _ovly_table exists, look through it to find an entry whose vma,
3452 lma and size match those of OSECT. Re-read the entry and make sure
3453 it still matches OSECT (else the table may no longer be valid).
3454 Set OSECT's mapped state to match the entry. Return: 1 for
3455 success, 0 for failure. */
3456
3457 static int
3458 simple_overlay_update_1 (struct obj_section *osect)
3459 {
3460 int i, size;
3461 bfd *obfd = osect->objfile->obfd;
3462 asection *bsect = osect->the_bfd_section;
3463
3464 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3465 for (i = 0; i < cache_novlys; i++)
3466 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3467 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3468 /* && cache_ovly_table[i][SIZE] == size */ )
3469 {
3470 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3471 (int *) cache_ovly_table[i], 4);
3472 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3473 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3474 /* && cache_ovly_table[i][SIZE] == size */ )
3475 {
3476 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3477 return 1;
3478 }
3479 else /* Warning! Warning! Target's ovly table has changed! */
3480 return 0;
3481 }
3482 return 0;
3483 }
3484
3485 /* Function: simple_overlay_update
3486 If OSECT is NULL, then update all sections' mapped state
3487 (after re-reading the entire target _ovly_table).
3488 If OSECT is non-NULL, then try to find a matching entry in the
3489 cached ovly_table and update only OSECT's mapped state.
3490 If a cached entry can't be found or the cache isn't valid, then
3491 re-read the entire cache, and go ahead and update all sections. */
3492
3493 static void
3494 simple_overlay_update (struct obj_section *osect)
3495 {
3496 struct objfile *objfile;
3497
3498 /* Were we given an osect to look up? NULL means do all of them. */
3499 if (osect)
3500 /* Have we got a cached copy of the target's overlay table? */
3501 if (cache_ovly_table != NULL)
3502 /* Does its cached location match what's currently in the symtab? */
3503 if (cache_ovly_table_base ==
3504 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3505 /* Then go ahead and try to look up this single section in the cache */
3506 if (simple_overlay_update_1 (osect))
3507 /* Found it! We're done. */
3508 return;
3509
3510 /* Cached table no good: need to read the entire table anew.
3511 Or else we want all the sections, in which case it's actually
3512 more efficient to read the whole table in one block anyway. */
3513
3514 if (! simple_read_overlay_table ())
3515 return;
3516
3517 /* Now may as well update all sections, even if only one was requested. */
3518 ALL_OBJSECTIONS (objfile, osect)
3519 if (section_is_overlay (osect->the_bfd_section))
3520 {
3521 int i, size;
3522 bfd *obfd = osect->objfile->obfd;
3523 asection *bsect = osect->the_bfd_section;
3524
3525 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3526 for (i = 0; i < cache_novlys; i++)
3527 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3528 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3529 /* && cache_ovly_table[i][SIZE] == size */ )
3530 { /* obj_section matches i'th entry in ovly_table */
3531 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3532 break; /* finished with inner for loop: break out */
3533 }
3534 }
3535 }
3536
3537 /* Set the output sections and output offsets for section SECTP in
3538 ABFD. The relocation code in BFD will read these offsets, so we
3539 need to be sure they're initialized. We map each section to itself,
3540 with no offset; this means that SECTP->vma will be honored. */
3541
3542 static void
3543 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3544 {
3545 sectp->output_section = sectp;
3546 sectp->output_offset = 0;
3547 }
3548
3549 /* Relocate the contents of a debug section SECTP in ABFD. The
3550 contents are stored in BUF if it is non-NULL, or returned in a
3551 malloc'd buffer otherwise.
3552
3553 For some platforms and debug info formats, shared libraries contain
3554 relocations against the debug sections (particularly for DWARF-2;
3555 one affected platform is PowerPC GNU/Linux, although it depends on
3556 the version of the linker in use). Also, ELF object files naturally
3557 have unresolved relocations for their debug sections. We need to apply
3558 the relocations in order to get the locations of symbols correct. */
3559
3560 bfd_byte *
3561 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3562 {
3563 /* We're only interested in debugging sections with relocation
3564 information. */
3565 if ((sectp->flags & SEC_RELOC) == 0)
3566 return NULL;
3567 if ((sectp->flags & SEC_DEBUGGING) == 0)
3568 return NULL;
3569
3570 /* We will handle section offsets properly elsewhere, so relocate as if
3571 all sections begin at 0. */
3572 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3573
3574 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3575 }
3576
3577 void
3578 _initialize_symfile (void)
3579 {
3580 struct cmd_list_element *c;
3581
3582 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3583 "Load symbol table from executable file FILE.\n\
3584 The `file' command can also load symbol tables, as well as setting the file\n\
3585 to execute.", &cmdlist);
3586 set_cmd_completer (c, filename_completer);
3587
3588 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3589 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3590 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3591 ADDR is the starting address of the file's text.\n\
3592 The optional arguments are section-name section-address pairs and\n\
3593 should be specified if the data and bss segments are not contiguous\n\
3594 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3595 &cmdlist);
3596 set_cmd_completer (c, filename_completer);
3597
3598 c = add_cmd ("add-shared-symbol-files", class_files,
3599 add_shared_symbol_files_command,
3600 "Load the symbols from shared objects in the dynamic linker's link map.",
3601 &cmdlist);
3602 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3603 &cmdlist);
3604
3605 c = add_cmd ("load", class_files, load_command,
3606 "Dynamically load FILE into the running program, and record its symbols\n\
3607 for access from GDB.", &cmdlist);
3608 set_cmd_completer (c, filename_completer);
3609
3610 add_show_from_set
3611 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3612 (char *) &symbol_reloading,
3613 "Set dynamic symbol table reloading multiple times in one run.",
3614 &setlist),
3615 &showlist);
3616
3617 add_prefix_cmd ("overlay", class_support, overlay_command,
3618 "Commands for debugging overlays.", &overlaylist,
3619 "overlay ", 0, &cmdlist);
3620
3621 add_com_alias ("ovly", "overlay", class_alias, 1);
3622 add_com_alias ("ov", "overlay", class_alias, 1);
3623
3624 add_cmd ("map-overlay", class_support, map_overlay_command,
3625 "Assert that an overlay section is mapped.", &overlaylist);
3626
3627 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3628 "Assert that an overlay section is unmapped.", &overlaylist);
3629
3630 add_cmd ("list-overlays", class_support, list_overlays_command,
3631 "List mappings of overlay sections.", &overlaylist);
3632
3633 add_cmd ("manual", class_support, overlay_manual_command,
3634 "Enable overlay debugging.", &overlaylist);
3635 add_cmd ("off", class_support, overlay_off_command,
3636 "Disable overlay debugging.", &overlaylist);
3637 add_cmd ("auto", class_support, overlay_auto_command,
3638 "Enable automatic overlay debugging.", &overlaylist);
3639 add_cmd ("load-target", class_support, overlay_load_command,
3640 "Read the overlay mapping state from the target.", &overlaylist);
3641
3642 /* Filename extension to source language lookup table: */
3643 init_filename_language_table ();
3644 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3645 (char *) &ext_args,
3646 "Set mapping between filename extension and source language.\n\
3647 Usage: set extension-language .foo bar",
3648 &setlist);
3649 set_cmd_cfunc (c, set_ext_lang_command);
3650
3651 add_info ("extensions", info_ext_lang_command,
3652 "All filename extensions associated with a source language.");
3653
3654 add_show_from_set
3655 (add_set_cmd ("download-write-size", class_obscure,
3656 var_integer, (char *) &download_write_size,
3657 "Set the write size used when downloading a program.\n"
3658 "Only used when downloading a program onto a remote\n"
3659 "target. Specify zero, or a negative value, to disable\n"
3660 "blocked writes. The actual size of each transfer is also\n"
3661 "limited by the size of the target packet and the memory\n"
3662 "cache.\n",
3663 &setlist),
3664 &showlist);
3665
3666 debug_file_directory = xstrdup (DEBUGDIR);
3667 c = (add_set_cmd
3668 ("debug-file-directory", class_support, var_string,
3669 (char *) &debug_file_directory,
3670 "Set the directory where separate debug symbols are searched for.\n"
3671 "Separate debug symbols are first searched for in the same\n"
3672 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3673 "' subdirectory,\n"
3674 "and lastly at the path of the directory of the binary with\n"
3675 "the global debug-file directory prepended\n",
3676 &setlist));
3677 add_show_from_set (c, &showlist);
3678 set_cmd_completer (c, filename_completer);
3679 }
This page took 0.110351 seconds and 4 git commands to generate.