Make Syd Polk principal maintainer.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990-1996, 1998, 2000 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "breakpoint.h"
33 #include "language.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "inferior.h" /* for write_pc */
37 #include "gdb-stabs.h"
38 #include "obstack.h"
39
40 #include <assert.h>
41 #include <sys/types.h>
42 #include <fcntl.h>
43 #include "gdb_string.h"
44 #include "gdb_stat.h"
45 #include <ctype.h>
46 #include <time.h>
47
48 #ifndef O_BINARY
49 #define O_BINARY 0
50 #endif
51
52 #ifdef HPUXHPPA
53
54 /* Some HP-UX related globals to clear when a new "main"
55 symbol file is loaded. HP-specific. */
56
57 extern int hp_som_som_object_present;
58 extern int hp_cxx_exception_support_initialized;
59 #define RESET_HP_UX_GLOBALS() do {\
60 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
61 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
62 } while (0)
63 #endif
64
65 int (*ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*pre_add_symbol_hook) PARAMS ((char *));
72 void (*post_add_symbol_hook) PARAMS ((void));
73 void (*target_new_objfile_hook) PARAMS ((struct objfile *));
74
75 /* Global variables owned by this file */
76 int readnow_symbol_files; /* Read full symbols immediately */
77
78 struct complaint oldsyms_complaint =
79 {
80 "Replacing old symbols for `%s'", 0, 0
81 };
82
83 struct complaint empty_symtab_complaint =
84 {
85 "Empty symbol table found for `%s'", 0, 0
86 };
87
88 struct complaint unknown_option_complaint =
89 {
90 "Unknown option `%s' ignored", 0, 0
91 };
92
93 /* External variables and functions referenced. */
94
95 extern int info_verbose;
96
97 extern void report_transfer_performance PARAMS ((unsigned long,
98 time_t, time_t));
99
100 /* Functions this file defines */
101
102 #if 0
103 static int simple_read_overlay_region_table PARAMS ((void));
104 static void simple_free_overlay_region_table PARAMS ((void));
105 #endif
106
107 static void set_initial_language PARAMS ((void));
108
109 static void load_command PARAMS ((char *, int));
110
111 static void add_symbol_file_command PARAMS ((char *, int));
112
113 static void add_shared_symbol_files_command PARAMS ((char *, int));
114
115 static void cashier_psymtab PARAMS ((struct partial_symtab *));
116
117 static int compare_psymbols PARAMS ((const void *, const void *));
118
119 static int compare_symbols PARAMS ((const void *, const void *));
120
121 bfd *symfile_bfd_open PARAMS ((char *));
122
123 static void find_sym_fns PARAMS ((struct objfile *));
124
125 static void decrement_reading_symtab PARAMS ((void *));
126
127 static void overlay_invalidate_all PARAMS ((void));
128
129 static int overlay_is_mapped PARAMS ((struct obj_section *));
130
131 void list_overlays_command PARAMS ((char *, int));
132
133 void map_overlay_command PARAMS ((char *, int));
134
135 void unmap_overlay_command PARAMS ((char *, int));
136
137 static void overlay_auto_command PARAMS ((char *, int));
138
139 static void overlay_manual_command PARAMS ((char *, int));
140
141 static void overlay_off_command PARAMS ((char *, int));
142
143 static void overlay_load_command PARAMS ((char *, int));
144
145 static void overlay_command PARAMS ((char *, int));
146
147 static void simple_free_overlay_table PARAMS ((void));
148
149 static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int));
150
151 static int simple_read_overlay_table PARAMS ((void));
152
153 static int simple_overlay_update_1 PARAMS ((struct obj_section *));
154
155 static void add_filename_language PARAMS ((char *ext, enum language lang));
156
157 static void set_ext_lang_command PARAMS ((char *args, int from_tty));
158
159 static void info_ext_lang_command PARAMS ((char *args, int from_tty));
160
161 static void init_filename_language_table PARAMS ((void));
162
163 void _initialize_symfile PARAMS ((void));
164
165 /* List of all available sym_fns. On gdb startup, each object file reader
166 calls add_symtab_fns() to register information on each format it is
167 prepared to read. */
168
169 static struct sym_fns *symtab_fns = NULL;
170
171 /* Flag for whether user will be reloading symbols multiple times.
172 Defaults to ON for VxWorks, otherwise OFF. */
173
174 #ifdef SYMBOL_RELOADING_DEFAULT
175 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
176 #else
177 int symbol_reloading = 0;
178 #endif
179
180 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
181 this variable is interpreted as a threshhold. If adding a new
182 library's symbol table to those already known to the debugger would
183 exceed this threshhold, then the shlib's symbols are not added.
184
185 If non-zero on other platforms, shared library symbols will be added
186 automatically when the inferior is created, new libraries are loaded,
187 or when attaching to the inferior. This is almost always what users
188 will want to have happen; but for very large programs, the startup
189 time will be excessive, and so if this is a problem, the user can
190 clear this flag and then add the shared library symbols as needed.
191 Note that there is a potential for confusion, since if the shared
192 library symbols are not loaded, commands like "info fun" will *not*
193 report all the functions that are actually present.
194
195 Note that HP-UX interprets this variable to mean, "threshhold size
196 in megabytes, where zero means never add". Other platforms interpret
197 this variable to mean, "always add if non-zero, never add if zero."
198 */
199
200 int auto_solib_add = 1;
201 \f
202
203 /* Since this function is called from within qsort, in an ANSI environment
204 it must conform to the prototype for qsort, which specifies that the
205 comparison function takes two "void *" pointers. */
206
207 static int
208 compare_symbols (s1p, s2p)
209 const PTR s1p;
210 const PTR s2p;
211 {
212 register struct symbol **s1, **s2;
213
214 s1 = (struct symbol **) s1p;
215 s2 = (struct symbol **) s2p;
216
217 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
218 }
219
220 /*
221
222 LOCAL FUNCTION
223
224 compare_psymbols -- compare two partial symbols by name
225
226 DESCRIPTION
227
228 Given pointers to pointers to two partial symbol table entries,
229 compare them by name and return -N, 0, or +N (ala strcmp).
230 Typically used by sorting routines like qsort().
231
232 NOTES
233
234 Does direct compare of first two characters before punting
235 and passing to strcmp for longer compares. Note that the
236 original version had a bug whereby two null strings or two
237 identically named one character strings would return the
238 comparison of memory following the null byte.
239
240 */
241
242 static int
243 compare_psymbols (s1p, s2p)
244 const PTR s1p;
245 const PTR s2p;
246 {
247 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
248 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
249
250 if ((st1[0] - st2[0]) || !st1[0])
251 {
252 return (st1[0] - st2[0]);
253 }
254 else if ((st1[1] - st2[1]) || !st1[1])
255 {
256 return (st1[1] - st2[1]);
257 }
258 else
259 {
260 /* Note: I replaced the STRCMP line (commented out below)
261 * with a simpler "strcmp()" which compares the 2 strings
262 * from the beginning. (STRCMP is a macro which first compares
263 * the initial characters, then falls back on strcmp).
264 * The reason is that the STRCMP line was tickling a C compiler
265 * bug on HP-UX 10.30, which is avoided with the simpler
266 * code. The performance gain from the more complicated code
267 * is negligible, given that we have already checked the
268 * initial 2 characters above. I reported the compiler bug,
269 * and once it is fixed the original line can be put back. RT
270 */
271 /* return ( STRCMP (st1 + 2, st2 + 2)); */
272 return (strcmp (st1, st2));
273 }
274 }
275
276 void
277 sort_pst_symbols (pst)
278 struct partial_symtab *pst;
279 {
280 /* Sort the global list; don't sort the static list */
281
282 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
283 pst->n_global_syms, sizeof (struct partial_symbol *),
284 compare_psymbols);
285 }
286
287 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
288
289 void
290 sort_block_syms (b)
291 register struct block *b;
292 {
293 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
294 sizeof (struct symbol *), compare_symbols);
295 }
296
297 /* Call sort_symtab_syms to sort alphabetically
298 the symbols of each block of one symtab. */
299
300 void
301 sort_symtab_syms (s)
302 register struct symtab *s;
303 {
304 register struct blockvector *bv;
305 int nbl;
306 int i;
307 register struct block *b;
308
309 if (s == 0)
310 return;
311 bv = BLOCKVECTOR (s);
312 nbl = BLOCKVECTOR_NBLOCKS (bv);
313 for (i = 0; i < nbl; i++)
314 {
315 b = BLOCKVECTOR_BLOCK (bv, i);
316 if (BLOCK_SHOULD_SORT (b))
317 sort_block_syms (b);
318 }
319 }
320
321 /* Make a null terminated copy of the string at PTR with SIZE characters in
322 the obstack pointed to by OBSTACKP . Returns the address of the copy.
323 Note that the string at PTR does not have to be null terminated, I.E. it
324 may be part of a larger string and we are only saving a substring. */
325
326 char *
327 obsavestring (ptr, size, obstackp)
328 char *ptr;
329 int size;
330 struct obstack *obstackp;
331 {
332 register char *p = (char *) obstack_alloc (obstackp, size + 1);
333 /* Open-coded memcpy--saves function call time. These strings are usually
334 short. FIXME: Is this really still true with a compiler that can
335 inline memcpy? */
336 {
337 register char *p1 = ptr;
338 register char *p2 = p;
339 char *end = ptr + size;
340 while (p1 != end)
341 *p2++ = *p1++;
342 }
343 p[size] = 0;
344 return p;
345 }
346
347 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
348 in the obstack pointed to by OBSTACKP. */
349
350 char *
351 obconcat (obstackp, s1, s2, s3)
352 struct obstack *obstackp;
353 const char *s1, *s2, *s3;
354 {
355 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
356 register char *val = (char *) obstack_alloc (obstackp, len);
357 strcpy (val, s1);
358 strcat (val, s2);
359 strcat (val, s3);
360 return val;
361 }
362
363 /* True if we are nested inside psymtab_to_symtab. */
364
365 int currently_reading_symtab = 0;
366
367 static void
368 decrement_reading_symtab (dummy)
369 void *dummy;
370 {
371 currently_reading_symtab--;
372 }
373
374 /* Get the symbol table that corresponds to a partial_symtab.
375 This is fast after the first time you do it. In fact, there
376 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
377 case inline. */
378
379 struct symtab *
380 psymtab_to_symtab (pst)
381 register struct partial_symtab *pst;
382 {
383 /* If it's been looked up before, return it. */
384 if (pst->symtab)
385 return pst->symtab;
386
387 /* If it has not yet been read in, read it. */
388 if (!pst->readin)
389 {
390 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
391 currently_reading_symtab++;
392 (*pst->read_symtab) (pst);
393 do_cleanups (back_to);
394 }
395
396 return pst->symtab;
397 }
398
399 /* Initialize entry point information for this objfile. */
400
401 void
402 init_entry_point_info (objfile)
403 struct objfile *objfile;
404 {
405 /* Save startup file's range of PC addresses to help blockframe.c
406 decide where the bottom of the stack is. */
407
408 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
409 {
410 /* Executable file -- record its entry point so we'll recognize
411 the startup file because it contains the entry point. */
412 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
413 }
414 else
415 {
416 /* Examination of non-executable.o files. Short-circuit this stuff. */
417 objfile->ei.entry_point = INVALID_ENTRY_POINT;
418 }
419 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
420 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
421 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
422 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
423 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
424 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
425 }
426
427 /* Get current entry point address. */
428
429 CORE_ADDR
430 entry_point_address ()
431 {
432 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
433 }
434
435 /* Remember the lowest-addressed loadable section we've seen.
436 This function is called via bfd_map_over_sections.
437
438 In case of equal vmas, the section with the largest size becomes the
439 lowest-addressed loadable section.
440
441 If the vmas and sizes are equal, the last section is considered the
442 lowest-addressed loadable section. */
443
444 void
445 find_lowest_section (abfd, sect, obj)
446 bfd *abfd;
447 asection *sect;
448 PTR obj;
449 {
450 asection **lowest = (asection **) obj;
451
452 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
453 return;
454 if (!*lowest)
455 *lowest = sect; /* First loadable section */
456 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
457 *lowest = sect; /* A lower loadable section */
458 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
459 && (bfd_section_size (abfd, (*lowest))
460 <= bfd_section_size (abfd, sect)))
461 *lowest = sect;
462 }
463
464
465 /* Build (allocate and populate) a section_addr_info struct from
466 an existing section table. */
467
468 extern struct section_addr_info *
469 build_section_addr_info_from_section_table (const struct section_table *start,
470 const struct section_table *end)
471 {
472 struct section_addr_info *sap;
473 const struct section_table *stp;
474 int oidx;
475
476 sap = xmalloc (sizeof (struct section_addr_info));
477 memset (sap, 0, sizeof (struct section_addr_info));
478
479 for (stp = start, oidx = 0; stp != end; stp++)
480 {
481 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
482 && oidx < MAX_SECTIONS)
483 {
484 sap->other[oidx].addr = stp->addr;
485 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
486 sap->other[oidx].sectindex = stp->the_bfd_section->index;
487 oidx++;
488 }
489 }
490
491 return sap;
492 }
493
494
495 /* Free all memory allocated by build_section_addr_info_from_section_table. */
496
497 extern void
498 free_section_addr_info (struct section_addr_info *sap)
499 {
500 int idx;
501
502 for (idx = 0; idx < MAX_SECTIONS; idx++)
503 if (sap->other[idx].name)
504 free (sap->other[idx].name);
505 free (sap);
506 }
507
508
509 /* Parse the user's idea of an offset for dynamic linking, into our idea
510 of how to represent it for fast symbol reading. This is the default
511 version of the sym_fns.sym_offsets function for symbol readers that
512 don't need to do anything special. It allocates a section_offsets table
513 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
514
515 void
516 default_symfile_offsets (objfile, addrs)
517 struct objfile *objfile;
518 struct section_addr_info *addrs;
519 {
520 int i;
521
522 objfile->num_sections = SECT_OFF_MAX;
523 objfile->section_offsets = (struct section_offsets *)
524 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
525 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
526
527 /* Now calculate offsets for other sections. */
528 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
529 {
530 struct other_sections *osp ;
531
532 osp = &addrs->other[i] ;
533 if (addrs->other[i].addr == 0)
534 continue;
535 #if 0
536 if (strcmp (".text", osp->name) == 0)
537 SECT_OFF_TEXT = osp->sectindex ;
538 else if (strcmp (".data", osp->name) == 0)
539 SECT_OFF_DATA = osp->sectindex ;
540 else if (strcmp (".bss", osp->name) == 0)
541 SECT_OFF_BSS = osp->sectindex ;
542 #endif
543 /* Record all sections in offsets */
544 ANOFFSET (objfile->section_offsets, osp->sectindex) = osp->addr;
545 }
546 }
547
548
549 /* Process a symbol file, as either the main file or as a dynamically
550 loaded file.
551
552 OBJFILE is where the symbols are to be read from.
553
554 ADDR is the address where the text segment was loaded, unless the
555 objfile is the main symbol file, in which case it is zero.
556
557 MAINLINE is nonzero if this is the main symbol file, or zero if
558 it's an extra symbol file such as dynamically loaded code.
559
560 VERBO is nonzero if the caller has printed a verbose message about
561 the symbol reading (and complaints can be more terse about it). */
562
563 void
564 syms_from_objfile (objfile, addrs, mainline, verbo)
565 struct objfile *objfile;
566 struct section_addr_info *addrs;
567 int mainline;
568 int verbo;
569 {
570 asection *lower_sect;
571 asection *sect;
572 CORE_ADDR lower_offset;
573 struct section_addr_info local_addr;
574 struct cleanup *old_chain;
575 int i;
576
577 /* If ADDRS is NULL, initialize the local section_addr_info struct and
578 point ADDRS to it. We now establish the convention that an addr of
579 zero means no load address was specified. */
580
581 if (addrs == NULL)
582 {
583 memset (&local_addr, 0, sizeof (local_addr));
584 addrs = &local_addr;
585 }
586
587 init_entry_point_info (objfile);
588 find_sym_fns (objfile);
589
590 /* Make sure that partially constructed symbol tables will be cleaned up
591 if an error occurs during symbol reading. */
592 old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile);
593
594 if (mainline)
595 {
596 /* We will modify the main symbol table, make sure that all its users
597 will be cleaned up if an error occurs during symbol reading. */
598 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
599
600 /* Since no error yet, throw away the old symbol table. */
601
602 if (symfile_objfile != NULL)
603 {
604 free_objfile (symfile_objfile);
605 symfile_objfile = NULL;
606 }
607
608 /* Currently we keep symbols from the add-symbol-file command.
609 If the user wants to get rid of them, they should do "symbol-file"
610 without arguments first. Not sure this is the best behavior
611 (PR 2207). */
612
613 (*objfile->sf->sym_new_init) (objfile);
614 }
615
616 /* Convert addr into an offset rather than an absolute address.
617 We find the lowest address of a loaded segment in the objfile,
618 and assume that <addr> is where that got loaded.
619
620 We no longer warn if the lowest section is not a text segment (as
621 happens for the PA64 port. */
622 if (!mainline)
623 {
624 /* Find lowest loadable section to be used as starting point for
625 continguous sections. FIXME!! won't work without call to find
626 .text first, but this assumes text is lowest section. */
627 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
628 if (lower_sect == NULL)
629 bfd_map_over_sections (objfile->obfd, find_lowest_section,
630 (PTR) &lower_sect);
631 if (lower_sect == NULL)
632 warning ("no loadable sections found in added symbol-file %s",
633 objfile->name);
634 else if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE)
635 == 0)
636 warning ("Lowest section in %s is %s at %s",
637 objfile->name,
638 bfd_section_name (objfile->obfd, lower_sect),
639 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
640 if (lower_sect != NULL)
641 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
642 else
643 lower_offset = 0;
644
645 /* Calculate offsets for the loadable sections.
646 FIXME! Sections must be in order of increasing loadable section
647 so that contiguous sections can use the lower-offset!!!
648
649 Adjust offsets if the segments are not contiguous.
650 If the section is contiguous, its offset should be set to
651 the offset of the highest loadable section lower than it
652 (the loadable section directly below it in memory).
653 this_offset = lower_offset = lower_addr - lower_orig_addr */
654
655 /* Calculate offsets for sections. */
656 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
657 {
658 if (addrs->other[i].addr != 0)
659 {
660 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
661 if (sect)
662 {
663 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
664 lower_offset = addrs->other[i].addr;
665 /* This is the index used by BFD. */
666 addrs->other[i].sectindex = sect->index ;
667 }
668 else
669 {
670 warning ("section %s not found in %s", addrs->other[i].name,
671 objfile->name);
672 addrs->other[i].addr = 0;
673 }
674 }
675 else
676 addrs->other[i].addr = lower_offset;
677 }
678 }
679
680 /* Initialize symbol reading routines for this objfile, allow complaints to
681 appear for this new file, and record how verbose to be, then do the
682 initial symbol reading for this file. */
683
684 (*objfile->sf->sym_init) (objfile);
685 clear_complaints (1, verbo);
686
687 (*objfile->sf->sym_offsets) (objfile, addrs);
688
689 #ifndef IBM6000_TARGET
690 /* This is a SVR4/SunOS specific hack, I think. In any event, it
691 screws RS/6000. sym_offsets should be doing this sort of thing,
692 because it knows the mapping between bfd sections and
693 section_offsets. */
694 /* This is a hack. As far as I can tell, section offsets are not
695 target dependent. They are all set to addr with a couple of
696 exceptions. The exceptions are sysvr4 shared libraries, whose
697 offsets are kept in solib structures anyway and rs6000 xcoff
698 which handles shared libraries in a completely unique way.
699
700 Section offsets are built similarly, except that they are built
701 by adding addr in all cases because there is no clear mapping
702 from section_offsets into actual sections. Note that solib.c
703 has a different algorithm for finding section offsets.
704
705 These should probably all be collapsed into some target
706 independent form of shared library support. FIXME. */
707
708 if (addrs)
709 {
710 struct obj_section *s;
711
712 /* Map section offsets in "addr" back to the object's
713 sections by comparing the section names with bfd's
714 section names. Then adjust the section address by
715 the offset. */ /* for gdb/13815 */
716
717 ALL_OBJFILE_OSECTIONS (objfile, s)
718 {
719 CORE_ADDR s_addr = 0;
720 int i;
721
722 for (i = 0;
723 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
724 i++)
725 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
726 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
727
728 s->addr -= s->offset;
729 s->addr += s_addr;
730 s->endaddr -= s->offset;
731 s->endaddr += s_addr;
732 s->offset += s_addr;
733 }
734 }
735 #endif /* not IBM6000_TARGET */
736
737 (*objfile->sf->sym_read) (objfile, mainline);
738
739 if (!have_partial_symbols () && !have_full_symbols ())
740 {
741 wrap_here ("");
742 printf_filtered ("(no debugging symbols found)...");
743 wrap_here ("");
744 }
745
746 /* Don't allow char * to have a typename (else would get caddr_t).
747 Ditto void *. FIXME: Check whether this is now done by all the
748 symbol readers themselves (many of them now do), and if so remove
749 it from here. */
750
751 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
752 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
753
754 /* Mark the objfile has having had initial symbol read attempted. Note
755 that this does not mean we found any symbols... */
756
757 objfile->flags |= OBJF_SYMS;
758
759 /* Discard cleanups as symbol reading was successful. */
760
761 discard_cleanups (old_chain);
762
763 /* Call this after reading in a new symbol table to give target
764 dependant code a crack at the new symbols. For instance, this
765 could be used to update the values of target-specific symbols GDB
766 needs to keep track of (such as _sigtramp, or whatever). */
767
768 TARGET_SYMFILE_POSTREAD (objfile);
769 }
770
771 /* Perform required actions after either reading in the initial
772 symbols for a new objfile, or mapping in the symbols from a reusable
773 objfile. */
774
775 void
776 new_symfile_objfile (objfile, mainline, verbo)
777 struct objfile *objfile;
778 int mainline;
779 int verbo;
780 {
781
782 /* If this is the main symbol file we have to clean up all users of the
783 old main symbol file. Otherwise it is sufficient to fixup all the
784 breakpoints that may have been redefined by this symbol file. */
785 if (mainline)
786 {
787 /* OK, make it the "real" symbol file. */
788 symfile_objfile = objfile;
789
790 clear_symtab_users ();
791 }
792 else
793 {
794 breakpoint_re_set ();
795 }
796
797 /* We're done reading the symbol file; finish off complaints. */
798 clear_complaints (0, verbo);
799 }
800
801 /* Process a symbol file, as either the main file or as a dynamically
802 loaded file.
803
804 NAME is the file name (which will be tilde-expanded and made
805 absolute herein) (but we don't free or modify NAME itself).
806 FROM_TTY says how verbose to be. MAINLINE specifies whether this
807 is the main symbol file, or whether it's an extra symbol file such
808 as dynamically loaded code. If !mainline, ADDR is the address
809 where the text segment was loaded.
810
811 Upon success, returns a pointer to the objfile that was added.
812 Upon failure, jumps back to command level (never returns). */
813
814 struct objfile *
815 symbol_file_add (name, from_tty, addrs, mainline, flags)
816 char *name;
817 int from_tty;
818 struct section_addr_info *addrs;
819 int mainline;
820 int flags;
821 {
822 struct objfile *objfile;
823 struct partial_symtab *psymtab;
824 bfd *abfd;
825
826 /* Open a bfd for the file, and give user a chance to burp if we'd be
827 interactively wiping out any existing symbols. */
828
829 abfd = symfile_bfd_open (name);
830
831 if ((have_full_symbols () || have_partial_symbols ())
832 && mainline
833 && from_tty
834 && !query ("Load new symbol table from \"%s\"? ", name))
835 error ("Not confirmed.");
836
837 objfile = allocate_objfile (abfd, flags);
838
839 /* If the objfile uses a mapped symbol file, and we have a psymtab for
840 it, then skip reading any symbols at this time. */
841
842 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
843 {
844 /* We mapped in an existing symbol table file that already has had
845 initial symbol reading performed, so we can skip that part. Notify
846 the user that instead of reading the symbols, they have been mapped.
847 */
848 if (from_tty || info_verbose)
849 {
850 printf_filtered ("Mapped symbols for %s...", name);
851 wrap_here ("");
852 gdb_flush (gdb_stdout);
853 }
854 init_entry_point_info (objfile);
855 find_sym_fns (objfile);
856 }
857 else
858 {
859 /* We either created a new mapped symbol table, mapped an existing
860 symbol table file which has not had initial symbol reading
861 performed, or need to read an unmapped symbol table. */
862 if (from_tty || info_verbose)
863 {
864 if (pre_add_symbol_hook)
865 pre_add_symbol_hook (name);
866 else
867 {
868 printf_filtered ("Reading symbols from %s...", name);
869 wrap_here ("");
870 gdb_flush (gdb_stdout);
871 }
872 }
873 syms_from_objfile (objfile, addrs, mainline, from_tty);
874 }
875
876 /* We now have at least a partial symbol table. Check to see if the
877 user requested that all symbols be read on initial access via either
878 the gdb startup command line or on a per symbol file basis. Expand
879 all partial symbol tables for this objfile if so. */
880
881 if ((flags & OBJF_READNOW) || readnow_symbol_files)
882 {
883 if (from_tty || info_verbose)
884 {
885 printf_filtered ("expanding to full symbols...");
886 wrap_here ("");
887 gdb_flush (gdb_stdout);
888 }
889
890 for (psymtab = objfile->psymtabs;
891 psymtab != NULL;
892 psymtab = psymtab->next)
893 {
894 psymtab_to_symtab (psymtab);
895 }
896 }
897
898 if (from_tty || info_verbose)
899 {
900 if (post_add_symbol_hook)
901 post_add_symbol_hook ();
902 else
903 {
904 printf_filtered ("done.\n");
905 gdb_flush (gdb_stdout);
906 }
907 }
908
909 new_symfile_objfile (objfile, mainline, from_tty);
910
911 if (target_new_objfile_hook)
912 target_new_objfile_hook (objfile);
913
914 return (objfile);
915 }
916
917 /* This is the symbol-file command. Read the file, analyze its
918 symbols, and add a struct symtab to a symtab list. The syntax of
919 the command is rather bizarre--(1) buildargv implements various
920 quoting conventions which are undocumented and have little or
921 nothing in common with the way things are quoted (or not quoted)
922 elsewhere in GDB, (2) options are used, which are not generally
923 used in GDB (perhaps "set mapped on", "set readnow on" would be
924 better), (3) the order of options matters, which is contrary to GNU
925 conventions (because it is confusing and inconvenient). */
926 /* Note: ezannoni 2000-04-17. This function used to have support for
927 rombug (see remote-os9k.c). It consisted of a call to target_link()
928 (target.c) to get the address of the text segment from the target,
929 and pass that to symbol_file_add(). This is no longer supported. */
930
931 void
932 symbol_file_command (args, from_tty)
933 char *args;
934 int from_tty;
935 {
936 char **argv;
937 char *name = NULL;
938 struct cleanup *cleanups;
939 int flags = OBJF_USERLOADED;
940
941 dont_repeat ();
942
943 if (args == NULL)
944 {
945 if ((have_full_symbols () || have_partial_symbols ())
946 && from_tty
947 && !query ("Discard symbol table from `%s'? ",
948 symfile_objfile->name))
949 error ("Not confirmed.");
950 free_all_objfiles ();
951
952 /* solib descriptors may have handles to objfiles. Since their
953 storage has just been released, we'd better wipe the solib
954 descriptors as well.
955 */
956 #if defined(SOLIB_RESTART)
957 SOLIB_RESTART ();
958 #endif
959
960 symfile_objfile = NULL;
961 if (from_tty)
962 printf_unfiltered ("No symbol file now.\n");
963 #ifdef HPUXHPPA
964 RESET_HP_UX_GLOBALS ();
965 #endif
966 }
967 else
968 {
969 if ((argv = buildargv (args)) == NULL)
970 {
971 nomem (0);
972 }
973 cleanups = make_cleanup_freeargv (argv);
974 while (*argv != NULL)
975 {
976 if (STREQ (*argv, "-mapped"))
977 flags |= OBJF_MAPPED;
978 else
979 if (STREQ (*argv, "-readnow"))
980 flags |= OBJF_READNOW;
981 else
982 if (**argv == '-')
983 error ("unknown option `%s'", *argv);
984 else
985 {
986 name = *argv;
987 symbol_file_add (name, from_tty, NULL, 1, flags);
988 #ifdef HPUXHPPA
989 RESET_HP_UX_GLOBALS ();
990 #endif
991 /* Getting new symbols may change our opinion about
992 what is frameless. */
993 reinit_frame_cache ();
994
995 set_initial_language ();
996 }
997 argv++;
998 }
999
1000 if (name == NULL)
1001 {
1002 error ("no symbol file name was specified");
1003 }
1004 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
1005 do_cleanups (cleanups);
1006 }
1007 }
1008
1009 /* Set the initial language.
1010
1011 A better solution would be to record the language in the psymtab when reading
1012 partial symbols, and then use it (if known) to set the language. This would
1013 be a win for formats that encode the language in an easily discoverable place,
1014 such as DWARF. For stabs, we can jump through hoops looking for specially
1015 named symbols or try to intuit the language from the specific type of stabs
1016 we find, but we can't do that until later when we read in full symbols.
1017 FIXME. */
1018
1019 static void
1020 set_initial_language ()
1021 {
1022 struct partial_symtab *pst;
1023 enum language lang = language_unknown;
1024
1025 pst = find_main_psymtab ();
1026 if (pst != NULL)
1027 {
1028 if (pst->filename != NULL)
1029 {
1030 lang = deduce_language_from_filename (pst->filename);
1031 }
1032 if (lang == language_unknown)
1033 {
1034 /* Make C the default language */
1035 lang = language_c;
1036 }
1037 set_language (lang);
1038 expected_language = current_language; /* Don't warn the user */
1039 }
1040 }
1041
1042 /* Open file specified by NAME and hand it off to BFD for preliminary
1043 analysis. Result is a newly initialized bfd *, which includes a newly
1044 malloc'd` copy of NAME (tilde-expanded and made absolute).
1045 In case of trouble, error() is called. */
1046
1047 bfd *
1048 symfile_bfd_open (name)
1049 char *name;
1050 {
1051 bfd *sym_bfd;
1052 int desc;
1053 char *absolute_name;
1054
1055
1056
1057 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1058
1059 /* Look down path for it, allocate 2nd new malloc'd copy. */
1060 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1061 #if defined(__GO32__) || defined(_WIN32)
1062 if (desc < 0)
1063 {
1064 char *exename = alloca (strlen (name) + 5);
1065 strcat (strcpy (exename, name), ".exe");
1066 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1067 0, &absolute_name);
1068 }
1069 #endif
1070 if (desc < 0)
1071 {
1072 make_cleanup (free, name);
1073 perror_with_name (name);
1074 }
1075 free (name); /* Free 1st new malloc'd copy */
1076 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1077 /* It'll be freed in free_objfile(). */
1078
1079 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1080 if (!sym_bfd)
1081 {
1082 close (desc);
1083 make_cleanup (free, name);
1084 error ("\"%s\": can't open to read symbols: %s.", name,
1085 bfd_errmsg (bfd_get_error ()));
1086 }
1087 sym_bfd->cacheable = true;
1088
1089 if (!bfd_check_format (sym_bfd, bfd_object))
1090 {
1091 /* FIXME: should be checking for errors from bfd_close (for one thing,
1092 on error it does not free all the storage associated with the
1093 bfd). */
1094 bfd_close (sym_bfd); /* This also closes desc */
1095 make_cleanup (free, name);
1096 error ("\"%s\": can't read symbols: %s.", name,
1097 bfd_errmsg (bfd_get_error ()));
1098 }
1099 return (sym_bfd);
1100 }
1101
1102 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1103 startup by the _initialize routine in each object file format reader,
1104 to register information about each format the the reader is prepared
1105 to handle. */
1106
1107 void
1108 add_symtab_fns (sf)
1109 struct sym_fns *sf;
1110 {
1111 sf->next = symtab_fns;
1112 symtab_fns = sf;
1113 }
1114
1115
1116 /* Initialize to read symbols from the symbol file sym_bfd. It either
1117 returns or calls error(). The result is an initialized struct sym_fns
1118 in the objfile structure, that contains cached information about the
1119 symbol file. */
1120
1121 static void
1122 find_sym_fns (objfile)
1123 struct objfile *objfile;
1124 {
1125 struct sym_fns *sf;
1126 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1127 char *our_target = bfd_get_target (objfile->obfd);
1128
1129 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1130 if (STREQ (our_target, "aixcoff-rs6000") ||
1131 STREQ (our_target, "xcoff-powermac"))
1132 our_flavour = (enum bfd_flavour) -1;
1133
1134 /* Special kludge for apollo. See dstread.c. */
1135 if (STREQN (our_target, "apollo", 6))
1136 our_flavour = (enum bfd_flavour) -2;
1137
1138 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1139 {
1140 if (our_flavour == sf->sym_flavour)
1141 {
1142 objfile->sf = sf;
1143 return;
1144 }
1145 }
1146 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1147 bfd_get_target (objfile->obfd));
1148 }
1149 \f
1150 /* This function runs the load command of our current target. */
1151
1152 static void
1153 load_command (arg, from_tty)
1154 char *arg;
1155 int from_tty;
1156 {
1157 if (arg == NULL)
1158 arg = get_exec_file (1);
1159 target_load (arg, from_tty);
1160 }
1161
1162 /* This version of "load" should be usable for any target. Currently
1163 it is just used for remote targets, not inftarg.c or core files,
1164 on the theory that only in that case is it useful.
1165
1166 Avoiding xmodem and the like seems like a win (a) because we don't have
1167 to worry about finding it, and (b) On VMS, fork() is very slow and so
1168 we don't want to run a subprocess. On the other hand, I'm not sure how
1169 performance compares. */
1170
1171 static int download_write_size = 512;
1172 static int validate_download = 0;
1173
1174 void
1175 generic_load (char *args, int from_tty)
1176 {
1177 asection *s;
1178 bfd *loadfile_bfd;
1179 time_t start_time, end_time; /* Start and end times of download */
1180 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1181 unsigned long write_count = 0; /* Number of writes needed. */
1182 unsigned long load_offset; /* offset to add to vma for each section */
1183 char *filename;
1184 struct cleanup *old_cleanups;
1185 char *offptr;
1186 CORE_ADDR total_size = 0;
1187 CORE_ADDR total_sent = 0;
1188
1189 /* Parse the input argument - the user can specify a load offset as
1190 a second argument. */
1191 filename = xmalloc (strlen (args) + 1);
1192 old_cleanups = make_cleanup (free, filename);
1193 strcpy (filename, args);
1194 offptr = strchr (filename, ' ');
1195 if (offptr != NULL)
1196 {
1197 char *endptr;
1198 load_offset = strtoul (offptr, &endptr, 0);
1199 if (offptr == endptr)
1200 error ("Invalid download offset:%s\n", offptr);
1201 *offptr = '\0';
1202 }
1203 else
1204 load_offset = 0;
1205
1206 /* Open the file for loading. */
1207 loadfile_bfd = bfd_openr (filename, gnutarget);
1208 if (loadfile_bfd == NULL)
1209 {
1210 perror_with_name (filename);
1211 return;
1212 }
1213
1214 /* FIXME: should be checking for errors from bfd_close (for one thing,
1215 on error it does not free all the storage associated with the
1216 bfd). */
1217 make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd);
1218
1219 if (!bfd_check_format (loadfile_bfd, bfd_object))
1220 {
1221 error ("\"%s\" is not an object file: %s", filename,
1222 bfd_errmsg (bfd_get_error ()));
1223 }
1224
1225 for (s = loadfile_bfd->sections; s; s = s->next)
1226 if (s->flags & SEC_LOAD)
1227 total_size += bfd_get_section_size_before_reloc (s);
1228
1229 start_time = time (NULL);
1230
1231 for (s = loadfile_bfd->sections; s; s = s->next)
1232 {
1233 if (s->flags & SEC_LOAD)
1234 {
1235 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1236 if (size > 0)
1237 {
1238 char *buffer;
1239 struct cleanup *old_chain;
1240 CORE_ADDR lma = s->lma + load_offset;
1241 CORE_ADDR block_size;
1242 int err;
1243 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1244 CORE_ADDR sent;
1245
1246 if (download_write_size > 0 && size > download_write_size)
1247 block_size = download_write_size;
1248 else
1249 block_size = size;
1250
1251 buffer = xmalloc (size);
1252 old_chain = make_cleanup (free, buffer);
1253
1254 /* Is this really necessary? I guess it gives the user something
1255 to look at during a long download. */
1256 #ifdef UI_OUT
1257 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1258 sect_name, paddr_nz (size), paddr_nz (lma));
1259 #else
1260 fprintf_unfiltered (gdb_stdout,
1261 "Loading section %s, size 0x%s lma 0x%s\n",
1262 sect_name, paddr_nz (size), paddr_nz (lma));
1263 #endif
1264
1265 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1266
1267 sent = 0;
1268 do
1269 {
1270 CORE_ADDR len;
1271 CORE_ADDR this_transfer = size - sent;
1272 if (this_transfer >= block_size)
1273 this_transfer = block_size;
1274 len = target_write_memory_partial (lma, buffer,
1275 this_transfer, &err);
1276 if (err)
1277 break;
1278 if (validate_download)
1279 {
1280 /* Broken memories and broken monitors manifest
1281 themselves here when bring new computers to
1282 life. This doubles already slow downloads. */
1283 /* NOTE: cagney/1999-10-18: A more efficient
1284 implementation might add a verify_memory()
1285 method to the target vector and then use
1286 that. remote.c could implement that method
1287 using the ``qCRC'' packet. */
1288 char *check = xmalloc (len);
1289 struct cleanup *verify_cleanups = make_cleanup (free, check);
1290 if (target_read_memory (lma, check, len) != 0)
1291 error ("Download verify read failed at 0x%s",
1292 paddr (lma));
1293 if (memcmp (buffer, check, len) != 0)
1294 error ("Download verify compare failed at 0x%s",
1295 paddr (lma));
1296 do_cleanups (verify_cleanups);
1297 }
1298 data_count += len;
1299 lma += len;
1300 buffer += len;
1301 write_count += 1;
1302 sent += len;
1303 total_sent += len;
1304 if (quit_flag
1305 || (ui_load_progress_hook != NULL
1306 && ui_load_progress_hook (sect_name, sent)))
1307 error ("Canceled the download");
1308
1309 if (show_load_progress != NULL)
1310 show_load_progress (sect_name, sent, size, total_sent, total_size);
1311 }
1312 while (sent < size);
1313
1314 if (err != 0)
1315 error ("Memory access error while loading section %s.", sect_name);
1316
1317 do_cleanups (old_chain);
1318 }
1319 }
1320 }
1321
1322 end_time = time (NULL);
1323 {
1324 CORE_ADDR entry;
1325 entry = bfd_get_start_address (loadfile_bfd);
1326 #ifdef UI_OUT
1327 ui_out_text (uiout, "Start address ");
1328 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1329 ui_out_text (uiout, ", load size ");
1330 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1331 ui_out_text (uiout, "\n");
1332
1333 #else
1334 fprintf_unfiltered (gdb_stdout,
1335 "Start address 0x%s , load size %ld\n",
1336 paddr_nz (entry), data_count);
1337 #endif
1338 /* We were doing this in remote-mips.c, I suspect it is right
1339 for other targets too. */
1340 write_pc (entry);
1341 }
1342
1343 /* FIXME: are we supposed to call symbol_file_add or not? According to
1344 a comment from remote-mips.c (where a call to symbol_file_add was
1345 commented out), making the call confuses GDB if more than one file is
1346 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1347 does. */
1348
1349 print_transfer_performance (gdb_stdout, data_count, write_count,
1350 end_time - start_time);
1351
1352 do_cleanups (old_cleanups);
1353 }
1354
1355 /* Report how fast the transfer went. */
1356
1357 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1358 replaced by print_transfer_performance (with a very different
1359 function signature). */
1360
1361 void
1362 report_transfer_performance (data_count, start_time, end_time)
1363 unsigned long data_count;
1364 time_t start_time, end_time;
1365 {
1366 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1367 }
1368
1369 void
1370 print_transfer_performance (struct ui_file *stream,
1371 unsigned long data_count,
1372 unsigned long write_count,
1373 unsigned long time_count)
1374 {
1375 #ifdef UI_OUT
1376 ui_out_text (uiout, "Transfer rate: ");
1377 if (time_count > 0)
1378 {
1379 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1380 (data_count * 8) / time_count);
1381 ui_out_text (uiout, " bits/sec");
1382 }
1383 else
1384 {
1385 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1386 ui_out_text (uiout, " bits in <1 sec");
1387 }
1388 if (write_count > 0)
1389 {
1390 ui_out_text (uiout, ", ");
1391 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1392 ui_out_text (uiout, " bytes/write");
1393 }
1394 ui_out_text (uiout, ".\n");
1395 #else
1396 fprintf_unfiltered (stream, "Transfer rate: ");
1397 if (time_count > 0)
1398 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1399 else
1400 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1401 if (write_count > 0)
1402 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1403 fprintf_unfiltered (stream, ".\n");
1404 #endif
1405 }
1406
1407 /* This function allows the addition of incrementally linked object files.
1408 It does not modify any state in the target, only in the debugger. */
1409 /* Note: ezannoni 2000-04-13 This function/command used to have a
1410 special case syntax for the rombug target (Rombug is the boot
1411 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1412 rombug case, the user doesn't need to supply a text address,
1413 instead a call to target_link() (in target.c) would supply the
1414 value to use. We are now discontinuing this type of ad hoc syntax. */
1415
1416 /* ARGSUSED */
1417 static void
1418 add_symbol_file_command (args, from_tty)
1419 char *args;
1420 int from_tty;
1421 {
1422 char *filename = NULL;
1423 int flags = OBJF_USERLOADED;
1424 char *arg;
1425 int expecting_option = 0;
1426 int section_index = 0;
1427 int argcnt = 0;
1428 int sec_num = 0;
1429 int i;
1430 int expecting_sec_name = 0;
1431 int expecting_sec_addr = 0;
1432
1433 struct
1434 {
1435 char *name;
1436 char *value;
1437 } sect_opts[SECT_OFF_MAX];
1438
1439 struct section_addr_info section_addrs;
1440 struct cleanup *my_cleanups;
1441
1442 dont_repeat ();
1443
1444 if (args == NULL)
1445 error ("add-symbol-file takes a file name and an address");
1446
1447 /* Make a copy of the string that we can safely write into. */
1448 args = xstrdup (args);
1449
1450 /* Ensure section_addrs is initialized */
1451 memset (&section_addrs, 0, sizeof (section_addrs));
1452
1453 while (*args != '\000')
1454 {
1455 /* Any leading spaces? */
1456 while (isspace (*args))
1457 args++;
1458
1459 /* Point arg to the beginning of the argument. */
1460 arg = args;
1461
1462 /* Move args pointer over the argument. */
1463 while ((*args != '\000') && !isspace (*args))
1464 args++;
1465
1466 /* If there are more arguments, terminate arg and
1467 proceed past it. */
1468 if (*args != '\000')
1469 *args++ = '\000';
1470
1471 /* Now process the argument. */
1472 if (argcnt == 0)
1473 {
1474 /* The first argument is the file name. */
1475 filename = tilde_expand (arg);
1476 my_cleanups = make_cleanup (free, filename);
1477 }
1478 else
1479 if (argcnt == 1)
1480 {
1481 /* The second argument is always the text address at which
1482 to load the program. */
1483 sect_opts[section_index].name = ".text";
1484 sect_opts[section_index].value = arg;
1485 section_index++;
1486 }
1487 else
1488 {
1489 /* It's an option (starting with '-') or it's an argument
1490 to an option */
1491
1492 if (*arg == '-')
1493 {
1494 if (strcmp (arg, "-mapped") == 0)
1495 flags |= OBJF_MAPPED;
1496 else
1497 if (strcmp (arg, "-readnow") == 0)
1498 flags |= OBJF_READNOW;
1499 else
1500 if (strcmp (arg, "-s") == 0)
1501 {
1502 if (section_index >= SECT_OFF_MAX)
1503 error ("Too many sections specified.");
1504 expecting_sec_name = 1;
1505 expecting_sec_addr = 1;
1506 }
1507 }
1508 else
1509 {
1510 if (expecting_sec_name)
1511 {
1512 sect_opts[section_index].name = arg;
1513 expecting_sec_name = 0;
1514 }
1515 else
1516 if (expecting_sec_addr)
1517 {
1518 sect_opts[section_index].value = arg;
1519 expecting_sec_addr = 0;
1520 section_index++;
1521 }
1522 else
1523 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1524 }
1525 }
1526 argcnt++;
1527 }
1528
1529 /* Print the prompt for the query below. And save the arguments into
1530 a sect_addr_info structure to be passed around to other
1531 functions. We have to split this up into separate print
1532 statements because local_hex_string returns a local static
1533 string. */
1534
1535 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1536 for (i = 0; i < section_index; i++)
1537 {
1538 CORE_ADDR addr;
1539 char *val = sect_opts[i].value;
1540 char *sec = sect_opts[i].name;
1541
1542 val = sect_opts[i].value;
1543 if (val[0] == '0' && val[1] == 'x')
1544 addr = strtoul (val+2, NULL, 16);
1545 else
1546 addr = strtoul (val, NULL, 10);
1547
1548 /* Here we store the section offsets in the order they were
1549 entered on the command line. */
1550 section_addrs.other[sec_num].name = sec;
1551 section_addrs.other[sec_num].addr = addr;
1552 printf_filtered ("\t%s_addr = %s\n",
1553 sec,
1554 local_hex_string ((unsigned long)addr));
1555 sec_num++;
1556
1557 /* The object's sections are initialized when a
1558 call is made to build_objfile_section_table (objfile).
1559 This happens in reread_symbols.
1560 At this point, we don't know what file type this is,
1561 so we can't determine what section names are valid. */
1562 }
1563
1564 if (from_tty && (!query ("%s", "")))
1565 error ("Not confirmed.");
1566
1567 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1568
1569 /* Getting new symbols may change our opinion about what is
1570 frameless. */
1571 reinit_frame_cache ();
1572 do_cleanups (my_cleanups);
1573 }
1574 \f
1575 static void
1576 add_shared_symbol_files_command (args, from_tty)
1577 char *args;
1578 int from_tty;
1579 {
1580 #ifdef ADD_SHARED_SYMBOL_FILES
1581 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1582 #else
1583 error ("This command is not available in this configuration of GDB.");
1584 #endif
1585 }
1586 \f
1587 /* Re-read symbols if a symbol-file has changed. */
1588 void
1589 reread_symbols ()
1590 {
1591 struct objfile *objfile;
1592 long new_modtime;
1593 int reread_one = 0;
1594 struct stat new_statbuf;
1595 int res;
1596
1597 /* With the addition of shared libraries, this should be modified,
1598 the load time should be saved in the partial symbol tables, since
1599 different tables may come from different source files. FIXME.
1600 This routine should then walk down each partial symbol table
1601 and see if the symbol table that it originates from has been changed */
1602
1603 for (objfile = object_files; objfile; objfile = objfile->next)
1604 {
1605 if (objfile->obfd)
1606 {
1607 #ifdef IBM6000_TARGET
1608 /* If this object is from a shared library, then you should
1609 stat on the library name, not member name. */
1610
1611 if (objfile->obfd->my_archive)
1612 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1613 else
1614 #endif
1615 res = stat (objfile->name, &new_statbuf);
1616 if (res != 0)
1617 {
1618 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1619 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1620 objfile->name);
1621 continue;
1622 }
1623 new_modtime = new_statbuf.st_mtime;
1624 if (new_modtime != objfile->mtime)
1625 {
1626 struct cleanup *old_cleanups;
1627 struct section_offsets *offsets;
1628 int num_offsets;
1629 char *obfd_filename;
1630
1631 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1632 objfile->name);
1633
1634 /* There are various functions like symbol_file_add,
1635 symfile_bfd_open, syms_from_objfile, etc., which might
1636 appear to do what we want. But they have various other
1637 effects which we *don't* want. So we just do stuff
1638 ourselves. We don't worry about mapped files (for one thing,
1639 any mapped file will be out of date). */
1640
1641 /* If we get an error, blow away this objfile (not sure if
1642 that is the correct response for things like shared
1643 libraries). */
1644 old_cleanups = make_cleanup ((make_cleanup_func) free_objfile,
1645 objfile);
1646 /* We need to do this whenever any symbols go away. */
1647 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
1648
1649 /* Clean up any state BFD has sitting around. We don't need
1650 to close the descriptor but BFD lacks a way of closing the
1651 BFD without closing the descriptor. */
1652 obfd_filename = bfd_get_filename (objfile->obfd);
1653 if (!bfd_close (objfile->obfd))
1654 error ("Can't close BFD for %s: %s", objfile->name,
1655 bfd_errmsg (bfd_get_error ()));
1656 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1657 if (objfile->obfd == NULL)
1658 error ("Can't open %s to read symbols.", objfile->name);
1659 /* bfd_openr sets cacheable to true, which is what we want. */
1660 if (!bfd_check_format (objfile->obfd, bfd_object))
1661 error ("Can't read symbols from %s: %s.", objfile->name,
1662 bfd_errmsg (bfd_get_error ()));
1663
1664 /* Save the offsets, we will nuke them with the rest of the
1665 psymbol_obstack. */
1666 num_offsets = objfile->num_sections;
1667 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1668 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1669
1670 /* Nuke all the state that we will re-read. Much of the following
1671 code which sets things to NULL really is necessary to tell
1672 other parts of GDB that there is nothing currently there. */
1673
1674 /* FIXME: Do we have to free a whole linked list, or is this
1675 enough? */
1676 if (objfile->global_psymbols.list)
1677 mfree (objfile->md, objfile->global_psymbols.list);
1678 memset (&objfile->global_psymbols, 0,
1679 sizeof (objfile->global_psymbols));
1680 if (objfile->static_psymbols.list)
1681 mfree (objfile->md, objfile->static_psymbols.list);
1682 memset (&objfile->static_psymbols, 0,
1683 sizeof (objfile->static_psymbols));
1684
1685 /* Free the obstacks for non-reusable objfiles */
1686 free_bcache (&objfile->psymbol_cache);
1687 obstack_free (&objfile->psymbol_obstack, 0);
1688 obstack_free (&objfile->symbol_obstack, 0);
1689 obstack_free (&objfile->type_obstack, 0);
1690 objfile->sections = NULL;
1691 objfile->symtabs = NULL;
1692 objfile->psymtabs = NULL;
1693 objfile->free_psymtabs = NULL;
1694 objfile->msymbols = NULL;
1695 objfile->minimal_symbol_count = 0;
1696 memset (&objfile->msymbol_hash, 0,
1697 sizeof (objfile->msymbol_hash));
1698 memset (&objfile->msymbol_demangled_hash, 0,
1699 sizeof (objfile->msymbol_demangled_hash));
1700 objfile->fundamental_types = NULL;
1701 if (objfile->sf != NULL)
1702 {
1703 (*objfile->sf->sym_finish) (objfile);
1704 }
1705
1706 /* We never make this a mapped file. */
1707 objfile->md = NULL;
1708 /* obstack_specify_allocation also initializes the obstack so
1709 it is empty. */
1710 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1711 xmalloc, free);
1712 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1713 xmalloc, free);
1714 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1715 xmalloc, free);
1716 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1717 xmalloc, free);
1718 if (build_objfile_section_table (objfile))
1719 {
1720 error ("Can't find the file sections in `%s': %s",
1721 objfile->name, bfd_errmsg (bfd_get_error ()));
1722 }
1723
1724 /* We use the same section offsets as from last time. I'm not
1725 sure whether that is always correct for shared libraries. */
1726 objfile->section_offsets = (struct section_offsets *)
1727 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1728 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1729 objfile->num_sections = num_offsets;
1730
1731 /* What the hell is sym_new_init for, anyway? The concept of
1732 distinguishing between the main file and additional files
1733 in this way seems rather dubious. */
1734 if (objfile == symfile_objfile)
1735 {
1736 (*objfile->sf->sym_new_init) (objfile);
1737 #ifdef HPUXHPPA
1738 RESET_HP_UX_GLOBALS ();
1739 #endif
1740 }
1741
1742 (*objfile->sf->sym_init) (objfile);
1743 clear_complaints (1, 1);
1744 /* The "mainline" parameter is a hideous hack; I think leaving it
1745 zero is OK since dbxread.c also does what it needs to do if
1746 objfile->global_psymbols.size is 0. */
1747 (*objfile->sf->sym_read) (objfile, 0);
1748 if (!have_partial_symbols () && !have_full_symbols ())
1749 {
1750 wrap_here ("");
1751 printf_filtered ("(no debugging symbols found)\n");
1752 wrap_here ("");
1753 }
1754 objfile->flags |= OBJF_SYMS;
1755
1756 /* We're done reading the symbol file; finish off complaints. */
1757 clear_complaints (0, 1);
1758
1759 /* Getting new symbols may change our opinion about what is
1760 frameless. */
1761
1762 reinit_frame_cache ();
1763
1764 /* Discard cleanups as symbol reading was successful. */
1765 discard_cleanups (old_cleanups);
1766
1767 /* If the mtime has changed between the time we set new_modtime
1768 and now, we *want* this to be out of date, so don't call stat
1769 again now. */
1770 objfile->mtime = new_modtime;
1771 reread_one = 1;
1772
1773 /* Call this after reading in a new symbol table to give target
1774 dependant code a crack at the new symbols. For instance, this
1775 could be used to update the values of target-specific symbols GDB
1776 needs to keep track of (such as _sigtramp, or whatever). */
1777
1778 TARGET_SYMFILE_POSTREAD (objfile);
1779 }
1780 }
1781 }
1782
1783 if (reread_one)
1784 clear_symtab_users ();
1785 }
1786 \f
1787
1788
1789 typedef struct
1790 {
1791 char *ext;
1792 enum language lang;
1793 }
1794 filename_language;
1795
1796 static filename_language *filename_language_table;
1797 static int fl_table_size, fl_table_next;
1798
1799 static void
1800 add_filename_language (ext, lang)
1801 char *ext;
1802 enum language lang;
1803 {
1804 if (fl_table_next >= fl_table_size)
1805 {
1806 fl_table_size += 10;
1807 filename_language_table = realloc (filename_language_table,
1808 fl_table_size);
1809 }
1810
1811 filename_language_table[fl_table_next].ext = strsave (ext);
1812 filename_language_table[fl_table_next].lang = lang;
1813 fl_table_next++;
1814 }
1815
1816 static char *ext_args;
1817
1818 static void
1819 set_ext_lang_command (args, from_tty)
1820 char *args;
1821 int from_tty;
1822 {
1823 int i;
1824 char *cp = ext_args;
1825 enum language lang;
1826
1827 /* First arg is filename extension, starting with '.' */
1828 if (*cp != '.')
1829 error ("'%s': Filename extension must begin with '.'", ext_args);
1830
1831 /* Find end of first arg. */
1832 while (*cp && !isspace (*cp))
1833 cp++;
1834
1835 if (*cp == '\0')
1836 error ("'%s': two arguments required -- filename extension and language",
1837 ext_args);
1838
1839 /* Null-terminate first arg */
1840 *cp++ = '\0';
1841
1842 /* Find beginning of second arg, which should be a source language. */
1843 while (*cp && isspace (*cp))
1844 cp++;
1845
1846 if (*cp == '\0')
1847 error ("'%s': two arguments required -- filename extension and language",
1848 ext_args);
1849
1850 /* Lookup the language from among those we know. */
1851 lang = language_enum (cp);
1852
1853 /* Now lookup the filename extension: do we already know it? */
1854 for (i = 0; i < fl_table_next; i++)
1855 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1856 break;
1857
1858 if (i >= fl_table_next)
1859 {
1860 /* new file extension */
1861 add_filename_language (ext_args, lang);
1862 }
1863 else
1864 {
1865 /* redefining a previously known filename extension */
1866
1867 /* if (from_tty) */
1868 /* query ("Really make files of type %s '%s'?", */
1869 /* ext_args, language_str (lang)); */
1870
1871 free (filename_language_table[i].ext);
1872 filename_language_table[i].ext = strsave (ext_args);
1873 filename_language_table[i].lang = lang;
1874 }
1875 }
1876
1877 static void
1878 info_ext_lang_command (args, from_tty)
1879 char *args;
1880 int from_tty;
1881 {
1882 int i;
1883
1884 printf_filtered ("Filename extensions and the languages they represent:");
1885 printf_filtered ("\n\n");
1886 for (i = 0; i < fl_table_next; i++)
1887 printf_filtered ("\t%s\t- %s\n",
1888 filename_language_table[i].ext,
1889 language_str (filename_language_table[i].lang));
1890 }
1891
1892 static void
1893 init_filename_language_table ()
1894 {
1895 if (fl_table_size == 0) /* protect against repetition */
1896 {
1897 fl_table_size = 20;
1898 fl_table_next = 0;
1899 filename_language_table =
1900 xmalloc (fl_table_size * sizeof (*filename_language_table));
1901 add_filename_language (".c", language_c);
1902 add_filename_language (".C", language_cplus);
1903 add_filename_language (".cc", language_cplus);
1904 add_filename_language (".cp", language_cplus);
1905 add_filename_language (".cpp", language_cplus);
1906 add_filename_language (".cxx", language_cplus);
1907 add_filename_language (".c++", language_cplus);
1908 add_filename_language (".java", language_java);
1909 add_filename_language (".class", language_java);
1910 add_filename_language (".ch", language_chill);
1911 add_filename_language (".c186", language_chill);
1912 add_filename_language (".c286", language_chill);
1913 add_filename_language (".f", language_fortran);
1914 add_filename_language (".F", language_fortran);
1915 add_filename_language (".s", language_asm);
1916 add_filename_language (".S", language_asm);
1917 }
1918 }
1919
1920 enum language
1921 deduce_language_from_filename (filename)
1922 char *filename;
1923 {
1924 int i;
1925 char *cp;
1926
1927 if (filename != NULL)
1928 if ((cp = strrchr (filename, '.')) != NULL)
1929 for (i = 0; i < fl_table_next; i++)
1930 if (strcmp (cp, filename_language_table[i].ext) == 0)
1931 return filename_language_table[i].lang;
1932
1933 return language_unknown;
1934 }
1935 \f
1936 /* allocate_symtab:
1937
1938 Allocate and partly initialize a new symbol table. Return a pointer
1939 to it. error() if no space.
1940
1941 Caller must set these fields:
1942 LINETABLE(symtab)
1943 symtab->blockvector
1944 symtab->dirname
1945 symtab->free_code
1946 symtab->free_ptr
1947 possibly free_named_symtabs (symtab->filename);
1948 */
1949
1950 struct symtab *
1951 allocate_symtab (filename, objfile)
1952 char *filename;
1953 struct objfile *objfile;
1954 {
1955 register struct symtab *symtab;
1956
1957 symtab = (struct symtab *)
1958 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1959 memset (symtab, 0, sizeof (*symtab));
1960 symtab->filename = obsavestring (filename, strlen (filename),
1961 &objfile->symbol_obstack);
1962 symtab->fullname = NULL;
1963 symtab->language = deduce_language_from_filename (filename);
1964 symtab->debugformat = obsavestring ("unknown", 7,
1965 &objfile->symbol_obstack);
1966
1967 /* Hook it to the objfile it comes from */
1968
1969 symtab->objfile = objfile;
1970 symtab->next = objfile->symtabs;
1971 objfile->symtabs = symtab;
1972
1973 /* FIXME: This should go away. It is only defined for the Z8000,
1974 and the Z8000 definition of this macro doesn't have anything to
1975 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1976 here for convenience. */
1977 #ifdef INIT_EXTRA_SYMTAB_INFO
1978 INIT_EXTRA_SYMTAB_INFO (symtab);
1979 #endif
1980
1981 return (symtab);
1982 }
1983
1984 struct partial_symtab *
1985 allocate_psymtab (filename, objfile)
1986 char *filename;
1987 struct objfile *objfile;
1988 {
1989 struct partial_symtab *psymtab;
1990
1991 if (objfile->free_psymtabs)
1992 {
1993 psymtab = objfile->free_psymtabs;
1994 objfile->free_psymtabs = psymtab->next;
1995 }
1996 else
1997 psymtab = (struct partial_symtab *)
1998 obstack_alloc (&objfile->psymbol_obstack,
1999 sizeof (struct partial_symtab));
2000
2001 memset (psymtab, 0, sizeof (struct partial_symtab));
2002 psymtab->filename = obsavestring (filename, strlen (filename),
2003 &objfile->psymbol_obstack);
2004 psymtab->symtab = NULL;
2005
2006 /* Prepend it to the psymtab list for the objfile it belongs to.
2007 Psymtabs are searched in most recent inserted -> least recent
2008 inserted order. */
2009
2010 psymtab->objfile = objfile;
2011 psymtab->next = objfile->psymtabs;
2012 objfile->psymtabs = psymtab;
2013 #if 0
2014 {
2015 struct partial_symtab **prev_pst;
2016 psymtab->objfile = objfile;
2017 psymtab->next = NULL;
2018 prev_pst = &(objfile->psymtabs);
2019 while ((*prev_pst) != NULL)
2020 prev_pst = &((*prev_pst)->next);
2021 (*prev_pst) = psymtab;
2022 }
2023 #endif
2024
2025 return (psymtab);
2026 }
2027
2028 void
2029 discard_psymtab (pst)
2030 struct partial_symtab *pst;
2031 {
2032 struct partial_symtab **prev_pst;
2033
2034 /* From dbxread.c:
2035 Empty psymtabs happen as a result of header files which don't
2036 have any symbols in them. There can be a lot of them. But this
2037 check is wrong, in that a psymtab with N_SLINE entries but
2038 nothing else is not empty, but we don't realize that. Fixing
2039 that without slowing things down might be tricky. */
2040
2041 /* First, snip it out of the psymtab chain */
2042
2043 prev_pst = &(pst->objfile->psymtabs);
2044 while ((*prev_pst) != pst)
2045 prev_pst = &((*prev_pst)->next);
2046 (*prev_pst) = pst->next;
2047
2048 /* Next, put it on a free list for recycling */
2049
2050 pst->next = pst->objfile->free_psymtabs;
2051 pst->objfile->free_psymtabs = pst;
2052 }
2053 \f
2054
2055 /* Reset all data structures in gdb which may contain references to symbol
2056 table data. */
2057
2058 void
2059 clear_symtab_users ()
2060 {
2061 /* Someday, we should do better than this, by only blowing away
2062 the things that really need to be blown. */
2063 clear_value_history ();
2064 clear_displays ();
2065 clear_internalvars ();
2066 breakpoint_re_set ();
2067 set_default_breakpoint (0, 0, 0, 0);
2068 current_source_symtab = 0;
2069 current_source_line = 0;
2070 clear_pc_function_cache ();
2071 if (target_new_objfile_hook)
2072 target_new_objfile_hook (NULL);
2073 }
2074
2075 /* clear_symtab_users_once:
2076
2077 This function is run after symbol reading, or from a cleanup.
2078 If an old symbol table was obsoleted, the old symbol table
2079 has been blown away, but the other GDB data structures that may
2080 reference it have not yet been cleared or re-directed. (The old
2081 symtab was zapped, and the cleanup queued, in free_named_symtab()
2082 below.)
2083
2084 This function can be queued N times as a cleanup, or called
2085 directly; it will do all the work the first time, and then will be a
2086 no-op until the next time it is queued. This works by bumping a
2087 counter at queueing time. Much later when the cleanup is run, or at
2088 the end of symbol processing (in case the cleanup is discarded), if
2089 the queued count is greater than the "done-count", we do the work
2090 and set the done-count to the queued count. If the queued count is
2091 less than or equal to the done-count, we just ignore the call. This
2092 is needed because reading a single .o file will often replace many
2093 symtabs (one per .h file, for example), and we don't want to reset
2094 the breakpoints N times in the user's face.
2095
2096 The reason we both queue a cleanup, and call it directly after symbol
2097 reading, is because the cleanup protects us in case of errors, but is
2098 discarded if symbol reading is successful. */
2099
2100 #if 0
2101 /* FIXME: As free_named_symtabs is currently a big noop this function
2102 is no longer needed. */
2103 static void
2104 clear_symtab_users_once PARAMS ((void));
2105
2106 static int clear_symtab_users_queued;
2107 static int clear_symtab_users_done;
2108
2109 static void
2110 clear_symtab_users_once ()
2111 {
2112 /* Enforce once-per-`do_cleanups'-semantics */
2113 if (clear_symtab_users_queued <= clear_symtab_users_done)
2114 return;
2115 clear_symtab_users_done = clear_symtab_users_queued;
2116
2117 clear_symtab_users ();
2118 }
2119 #endif
2120
2121 /* Delete the specified psymtab, and any others that reference it. */
2122
2123 static void
2124 cashier_psymtab (pst)
2125 struct partial_symtab *pst;
2126 {
2127 struct partial_symtab *ps, *pprev = NULL;
2128 int i;
2129
2130 /* Find its previous psymtab in the chain */
2131 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2132 {
2133 if (ps == pst)
2134 break;
2135 pprev = ps;
2136 }
2137
2138 if (ps)
2139 {
2140 /* Unhook it from the chain. */
2141 if (ps == pst->objfile->psymtabs)
2142 pst->objfile->psymtabs = ps->next;
2143 else
2144 pprev->next = ps->next;
2145
2146 /* FIXME, we can't conveniently deallocate the entries in the
2147 partial_symbol lists (global_psymbols/static_psymbols) that
2148 this psymtab points to. These just take up space until all
2149 the psymtabs are reclaimed. Ditto the dependencies list and
2150 filename, which are all in the psymbol_obstack. */
2151
2152 /* We need to cashier any psymtab that has this one as a dependency... */
2153 again:
2154 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2155 {
2156 for (i = 0; i < ps->number_of_dependencies; i++)
2157 {
2158 if (ps->dependencies[i] == pst)
2159 {
2160 cashier_psymtab (ps);
2161 goto again; /* Must restart, chain has been munged. */
2162 }
2163 }
2164 }
2165 }
2166 }
2167
2168 /* If a symtab or psymtab for filename NAME is found, free it along
2169 with any dependent breakpoints, displays, etc.
2170 Used when loading new versions of object modules with the "add-file"
2171 command. This is only called on the top-level symtab or psymtab's name;
2172 it is not called for subsidiary files such as .h files.
2173
2174 Return value is 1 if we blew away the environment, 0 if not.
2175 FIXME. The return valu appears to never be used.
2176
2177 FIXME. I think this is not the best way to do this. We should
2178 work on being gentler to the environment while still cleaning up
2179 all stray pointers into the freed symtab. */
2180
2181 int
2182 free_named_symtabs (name)
2183 char *name;
2184 {
2185 #if 0
2186 /* FIXME: With the new method of each objfile having it's own
2187 psymtab list, this function needs serious rethinking. In particular,
2188 why was it ever necessary to toss psymtabs with specific compilation
2189 unit filenames, as opposed to all psymtabs from a particular symbol
2190 file? -- fnf
2191 Well, the answer is that some systems permit reloading of particular
2192 compilation units. We want to blow away any old info about these
2193 compilation units, regardless of which objfiles they arrived in. --gnu. */
2194
2195 register struct symtab *s;
2196 register struct symtab *prev;
2197 register struct partial_symtab *ps;
2198 struct blockvector *bv;
2199 int blewit = 0;
2200
2201 /* We only wack things if the symbol-reload switch is set. */
2202 if (!symbol_reloading)
2203 return 0;
2204
2205 /* Some symbol formats have trouble providing file names... */
2206 if (name == 0 || *name == '\0')
2207 return 0;
2208
2209 /* Look for a psymtab with the specified name. */
2210
2211 again2:
2212 for (ps = partial_symtab_list; ps; ps = ps->next)
2213 {
2214 if (STREQ (name, ps->filename))
2215 {
2216 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2217 goto again2; /* Must restart, chain has been munged */
2218 }
2219 }
2220
2221 /* Look for a symtab with the specified name. */
2222
2223 for (s = symtab_list; s; s = s->next)
2224 {
2225 if (STREQ (name, s->filename))
2226 break;
2227 prev = s;
2228 }
2229
2230 if (s)
2231 {
2232 if (s == symtab_list)
2233 symtab_list = s->next;
2234 else
2235 prev->next = s->next;
2236
2237 /* For now, queue a delete for all breakpoints, displays, etc., whether
2238 or not they depend on the symtab being freed. This should be
2239 changed so that only those data structures affected are deleted. */
2240
2241 /* But don't delete anything if the symtab is empty.
2242 This test is necessary due to a bug in "dbxread.c" that
2243 causes empty symtabs to be created for N_SO symbols that
2244 contain the pathname of the object file. (This problem
2245 has been fixed in GDB 3.9x). */
2246
2247 bv = BLOCKVECTOR (s);
2248 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2249 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2250 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2251 {
2252 complain (&oldsyms_complaint, name);
2253
2254 clear_symtab_users_queued++;
2255 make_cleanup (clear_symtab_users_once, 0);
2256 blewit = 1;
2257 }
2258 else
2259 {
2260 complain (&empty_symtab_complaint, name);
2261 }
2262
2263 free_symtab (s);
2264 }
2265 else
2266 {
2267 /* It is still possible that some breakpoints will be affected
2268 even though no symtab was found, since the file might have
2269 been compiled without debugging, and hence not be associated
2270 with a symtab. In order to handle this correctly, we would need
2271 to keep a list of text address ranges for undebuggable files.
2272 For now, we do nothing, since this is a fairly obscure case. */
2273 ;
2274 }
2275
2276 /* FIXME, what about the minimal symbol table? */
2277 return blewit;
2278 #else
2279 return (0);
2280 #endif
2281 }
2282 \f
2283 /* Allocate and partially fill a partial symtab. It will be
2284 completely filled at the end of the symbol list.
2285
2286 FILENAME is the name of the symbol-file we are reading from. */
2287
2288 struct partial_symtab *
2289 start_psymtab_common (objfile, section_offsets,
2290 filename, textlow, global_syms, static_syms)
2291 struct objfile *objfile;
2292 struct section_offsets *section_offsets;
2293 char *filename;
2294 CORE_ADDR textlow;
2295 struct partial_symbol **global_syms;
2296 struct partial_symbol **static_syms;
2297 {
2298 struct partial_symtab *psymtab;
2299
2300 psymtab = allocate_psymtab (filename, objfile);
2301 psymtab->section_offsets = section_offsets;
2302 psymtab->textlow = textlow;
2303 psymtab->texthigh = psymtab->textlow; /* default */
2304 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2305 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2306 return (psymtab);
2307 }
2308 \f
2309 /* Add a symbol with a long value to a psymtab.
2310 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2311
2312 void
2313 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2314 language, objfile)
2315 char *name;
2316 int namelength;
2317 namespace_enum namespace;
2318 enum address_class class;
2319 struct psymbol_allocation_list *list;
2320 long val; /* Value as a long */
2321 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2322 enum language language;
2323 struct objfile *objfile;
2324 {
2325 register struct partial_symbol *psym;
2326 char *buf = alloca (namelength + 1);
2327 /* psymbol is static so that there will be no uninitialized gaps in the
2328 structure which might contain random data, causing cache misses in
2329 bcache. */
2330 static struct partial_symbol psymbol;
2331
2332 /* Create local copy of the partial symbol */
2333 memcpy (buf, name, namelength);
2334 buf[namelength] = '\0';
2335 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2336 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2337 if (val != 0)
2338 {
2339 SYMBOL_VALUE (&psymbol) = val;
2340 }
2341 else
2342 {
2343 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2344 }
2345 SYMBOL_SECTION (&psymbol) = 0;
2346 SYMBOL_LANGUAGE (&psymbol) = language;
2347 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2348 PSYMBOL_CLASS (&psymbol) = class;
2349 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2350
2351 /* Stash the partial symbol away in the cache */
2352 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2353
2354 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2355 if (list->next >= list->list + list->size)
2356 {
2357 extend_psymbol_list (list, objfile);
2358 }
2359 *list->next++ = psym;
2360 OBJSTAT (objfile, n_psyms++);
2361 }
2362
2363 /* Add a symbol with a long value to a psymtab. This differs from
2364 * add_psymbol_to_list above in taking both a mangled and a demangled
2365 * name. */
2366
2367 void
2368 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2369 namespace, class, list, val, coreaddr, language, objfile)
2370 char *name;
2371 int namelength;
2372 char *dem_name;
2373 int dem_namelength;
2374 namespace_enum namespace;
2375 enum address_class class;
2376 struct psymbol_allocation_list *list;
2377 long val; /* Value as a long */
2378 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2379 enum language language;
2380 struct objfile *objfile;
2381 {
2382 register struct partial_symbol *psym;
2383 char *buf = alloca (namelength + 1);
2384 /* psymbol is static so that there will be no uninitialized gaps in the
2385 structure which might contain random data, causing cache misses in
2386 bcache. */
2387 static struct partial_symbol psymbol;
2388
2389 /* Create local copy of the partial symbol */
2390
2391 memcpy (buf, name, namelength);
2392 buf[namelength] = '\0';
2393 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2394
2395 buf = alloca (dem_namelength + 1);
2396 memcpy (buf, dem_name, dem_namelength);
2397 buf[dem_namelength] = '\0';
2398
2399 switch (language)
2400 {
2401 case language_c:
2402 case language_cplus:
2403 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2404 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2405 break;
2406 case language_chill:
2407 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2408 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2409
2410 /* FIXME What should be done for the default case? Ignoring for now. */
2411 }
2412
2413 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2414 if (val != 0)
2415 {
2416 SYMBOL_VALUE (&psymbol) = val;
2417 }
2418 else
2419 {
2420 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2421 }
2422 SYMBOL_SECTION (&psymbol) = 0;
2423 SYMBOL_LANGUAGE (&psymbol) = language;
2424 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2425 PSYMBOL_CLASS (&psymbol) = class;
2426 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2427
2428 /* Stash the partial symbol away in the cache */
2429 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2430
2431 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2432 if (list->next >= list->list + list->size)
2433 {
2434 extend_psymbol_list (list, objfile);
2435 }
2436 *list->next++ = psym;
2437 OBJSTAT (objfile, n_psyms++);
2438 }
2439
2440 /* Initialize storage for partial symbols. */
2441
2442 void
2443 init_psymbol_list (objfile, total_symbols)
2444 struct objfile *objfile;
2445 int total_symbols;
2446 {
2447 /* Free any previously allocated psymbol lists. */
2448
2449 if (objfile->global_psymbols.list)
2450 {
2451 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2452 }
2453 if (objfile->static_psymbols.list)
2454 {
2455 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2456 }
2457
2458 /* Current best guess is that approximately a twentieth
2459 of the total symbols (in a debugging file) are global or static
2460 oriented symbols */
2461
2462 objfile->global_psymbols.size = total_symbols / 10;
2463 objfile->static_psymbols.size = total_symbols / 10;
2464
2465 if (objfile->global_psymbols.size > 0)
2466 {
2467 objfile->global_psymbols.next =
2468 objfile->global_psymbols.list = (struct partial_symbol **)
2469 xmmalloc (objfile->md, (objfile->global_psymbols.size
2470 * sizeof (struct partial_symbol *)));
2471 }
2472 if (objfile->static_psymbols.size > 0)
2473 {
2474 objfile->static_psymbols.next =
2475 objfile->static_psymbols.list = (struct partial_symbol **)
2476 xmmalloc (objfile->md, (objfile->static_psymbols.size
2477 * sizeof (struct partial_symbol *)));
2478 }
2479 }
2480
2481 /* OVERLAYS:
2482 The following code implements an abstraction for debugging overlay sections.
2483
2484 The target model is as follows:
2485 1) The gnu linker will permit multiple sections to be mapped into the
2486 same VMA, each with its own unique LMA (or load address).
2487 2) It is assumed that some runtime mechanism exists for mapping the
2488 sections, one by one, from the load address into the VMA address.
2489 3) This code provides a mechanism for gdb to keep track of which
2490 sections should be considered to be mapped from the VMA to the LMA.
2491 This information is used for symbol lookup, and memory read/write.
2492 For instance, if a section has been mapped then its contents
2493 should be read from the VMA, otherwise from the LMA.
2494
2495 Two levels of debugger support for overlays are available. One is
2496 "manual", in which the debugger relies on the user to tell it which
2497 overlays are currently mapped. This level of support is
2498 implemented entirely in the core debugger, and the information about
2499 whether a section is mapped is kept in the objfile->obj_section table.
2500
2501 The second level of support is "automatic", and is only available if
2502 the target-specific code provides functionality to read the target's
2503 overlay mapping table, and translate its contents for the debugger
2504 (by updating the mapped state information in the obj_section tables).
2505
2506 The interface is as follows:
2507 User commands:
2508 overlay map <name> -- tell gdb to consider this section mapped
2509 overlay unmap <name> -- tell gdb to consider this section unmapped
2510 overlay list -- list the sections that GDB thinks are mapped
2511 overlay read-target -- get the target's state of what's mapped
2512 overlay off/manual/auto -- set overlay debugging state
2513 Functional interface:
2514 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2515 section, return that section.
2516 find_pc_overlay(pc): find any overlay section that contains
2517 the pc, either in its VMA or its LMA
2518 overlay_is_mapped(sect): true if overlay is marked as mapped
2519 section_is_overlay(sect): true if section's VMA != LMA
2520 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2521 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2522 overlay_mapped_address(...): map an address from section's LMA to VMA
2523 overlay_unmapped_address(...): map an address from section's VMA to LMA
2524 symbol_overlayed_address(...): Return a "current" address for symbol:
2525 either in VMA or LMA depending on whether
2526 the symbol's section is currently mapped
2527 */
2528
2529 /* Overlay debugging state: */
2530
2531 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2532 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2533
2534 /* Target vector for refreshing overlay mapped state */
2535 static void simple_overlay_update PARAMS ((struct obj_section *));
2536 void (*target_overlay_update) PARAMS ((struct obj_section *))
2537 = simple_overlay_update;
2538
2539 /* Function: section_is_overlay (SECTION)
2540 Returns true if SECTION has VMA not equal to LMA, ie.
2541 SECTION is loaded at an address different from where it will "run". */
2542
2543 int
2544 section_is_overlay (section)
2545 asection *section;
2546 {
2547 if (overlay_debugging)
2548 if (section && section->lma != 0 &&
2549 section->vma != section->lma)
2550 return 1;
2551
2552 return 0;
2553 }
2554
2555 /* Function: overlay_invalidate_all (void)
2556 Invalidate the mapped state of all overlay sections (mark it as stale). */
2557
2558 static void
2559 overlay_invalidate_all ()
2560 {
2561 struct objfile *objfile;
2562 struct obj_section *sect;
2563
2564 ALL_OBJSECTIONS (objfile, sect)
2565 if (section_is_overlay (sect->the_bfd_section))
2566 sect->ovly_mapped = -1;
2567 }
2568
2569 /* Function: overlay_is_mapped (SECTION)
2570 Returns true if section is an overlay, and is currently mapped.
2571 Private: public access is thru function section_is_mapped.
2572
2573 Access to the ovly_mapped flag is restricted to this function, so
2574 that we can do automatic update. If the global flag
2575 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2576 overlay_invalidate_all. If the mapped state of the particular
2577 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2578
2579 static int
2580 overlay_is_mapped (osect)
2581 struct obj_section *osect;
2582 {
2583 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2584 return 0;
2585
2586 switch (overlay_debugging)
2587 {
2588 default:
2589 case 0:
2590 return 0; /* overlay debugging off */
2591 case -1: /* overlay debugging automatic */
2592 /* Unles there is a target_overlay_update function,
2593 there's really nothing useful to do here (can't really go auto) */
2594 if (target_overlay_update)
2595 {
2596 if (overlay_cache_invalid)
2597 {
2598 overlay_invalidate_all ();
2599 overlay_cache_invalid = 0;
2600 }
2601 if (osect->ovly_mapped == -1)
2602 (*target_overlay_update) (osect);
2603 }
2604 /* fall thru to manual case */
2605 case 1: /* overlay debugging manual */
2606 return osect->ovly_mapped == 1;
2607 }
2608 }
2609
2610 /* Function: section_is_mapped
2611 Returns true if section is an overlay, and is currently mapped. */
2612
2613 int
2614 section_is_mapped (section)
2615 asection *section;
2616 {
2617 struct objfile *objfile;
2618 struct obj_section *osect;
2619
2620 if (overlay_debugging)
2621 if (section && section_is_overlay (section))
2622 ALL_OBJSECTIONS (objfile, osect)
2623 if (osect->the_bfd_section == section)
2624 return overlay_is_mapped (osect);
2625
2626 return 0;
2627 }
2628
2629 /* Function: pc_in_unmapped_range
2630 If PC falls into the lma range of SECTION, return true, else false. */
2631
2632 CORE_ADDR
2633 pc_in_unmapped_range (pc, section)
2634 CORE_ADDR pc;
2635 asection *section;
2636 {
2637 int size;
2638
2639 if (overlay_debugging)
2640 if (section && section_is_overlay (section))
2641 {
2642 size = bfd_get_section_size_before_reloc (section);
2643 if (section->lma <= pc && pc < section->lma + size)
2644 return 1;
2645 }
2646 return 0;
2647 }
2648
2649 /* Function: pc_in_mapped_range
2650 If PC falls into the vma range of SECTION, return true, else false. */
2651
2652 CORE_ADDR
2653 pc_in_mapped_range (pc, section)
2654 CORE_ADDR pc;
2655 asection *section;
2656 {
2657 int size;
2658
2659 if (overlay_debugging)
2660 if (section && section_is_overlay (section))
2661 {
2662 size = bfd_get_section_size_before_reloc (section);
2663 if (section->vma <= pc && pc < section->vma + size)
2664 return 1;
2665 }
2666 return 0;
2667 }
2668
2669 /* Function: overlay_unmapped_address (PC, SECTION)
2670 Returns the address corresponding to PC in the unmapped (load) range.
2671 May be the same as PC. */
2672
2673 CORE_ADDR
2674 overlay_unmapped_address (pc, section)
2675 CORE_ADDR pc;
2676 asection *section;
2677 {
2678 if (overlay_debugging)
2679 if (section && section_is_overlay (section) &&
2680 pc_in_mapped_range (pc, section))
2681 return pc + section->lma - section->vma;
2682
2683 return pc;
2684 }
2685
2686 /* Function: overlay_mapped_address (PC, SECTION)
2687 Returns the address corresponding to PC in the mapped (runtime) range.
2688 May be the same as PC. */
2689
2690 CORE_ADDR
2691 overlay_mapped_address (pc, section)
2692 CORE_ADDR pc;
2693 asection *section;
2694 {
2695 if (overlay_debugging)
2696 if (section && section_is_overlay (section) &&
2697 pc_in_unmapped_range (pc, section))
2698 return pc + section->vma - section->lma;
2699
2700 return pc;
2701 }
2702
2703
2704 /* Function: symbol_overlayed_address
2705 Return one of two addresses (relative to the VMA or to the LMA),
2706 depending on whether the section is mapped or not. */
2707
2708 CORE_ADDR
2709 symbol_overlayed_address (address, section)
2710 CORE_ADDR address;
2711 asection *section;
2712 {
2713 if (overlay_debugging)
2714 {
2715 /* If the symbol has no section, just return its regular address. */
2716 if (section == 0)
2717 return address;
2718 /* If the symbol's section is not an overlay, just return its address */
2719 if (!section_is_overlay (section))
2720 return address;
2721 /* If the symbol's section is mapped, just return its address */
2722 if (section_is_mapped (section))
2723 return address;
2724 /*
2725 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2726 * then return its LOADED address rather than its vma address!!
2727 */
2728 return overlay_unmapped_address (address, section);
2729 }
2730 return address;
2731 }
2732
2733 /* Function: find_pc_overlay (PC)
2734 Return the best-match overlay section for PC:
2735 If PC matches a mapped overlay section's VMA, return that section.
2736 Else if PC matches an unmapped section's VMA, return that section.
2737 Else if PC matches an unmapped section's LMA, return that section. */
2738
2739 asection *
2740 find_pc_overlay (pc)
2741 CORE_ADDR pc;
2742 {
2743 struct objfile *objfile;
2744 struct obj_section *osect, *best_match = NULL;
2745
2746 if (overlay_debugging)
2747 ALL_OBJSECTIONS (objfile, osect)
2748 if (section_is_overlay (osect->the_bfd_section))
2749 {
2750 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2751 {
2752 if (overlay_is_mapped (osect))
2753 return osect->the_bfd_section;
2754 else
2755 best_match = osect;
2756 }
2757 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2758 best_match = osect;
2759 }
2760 return best_match ? best_match->the_bfd_section : NULL;
2761 }
2762
2763 /* Function: find_pc_mapped_section (PC)
2764 If PC falls into the VMA address range of an overlay section that is
2765 currently marked as MAPPED, return that section. Else return NULL. */
2766
2767 asection *
2768 find_pc_mapped_section (pc)
2769 CORE_ADDR pc;
2770 {
2771 struct objfile *objfile;
2772 struct obj_section *osect;
2773
2774 if (overlay_debugging)
2775 ALL_OBJSECTIONS (objfile, osect)
2776 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2777 overlay_is_mapped (osect))
2778 return osect->the_bfd_section;
2779
2780 return NULL;
2781 }
2782
2783 /* Function: list_overlays_command
2784 Print a list of mapped sections and their PC ranges */
2785
2786 void
2787 list_overlays_command (args, from_tty)
2788 char *args;
2789 int from_tty;
2790 {
2791 int nmapped = 0;
2792 struct objfile *objfile;
2793 struct obj_section *osect;
2794
2795 if (overlay_debugging)
2796 ALL_OBJSECTIONS (objfile, osect)
2797 if (overlay_is_mapped (osect))
2798 {
2799 const char *name;
2800 bfd_vma lma, vma;
2801 int size;
2802
2803 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2804 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2805 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2806 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2807
2808 printf_filtered ("Section %s, loaded at ", name);
2809 print_address_numeric (lma, 1, gdb_stdout);
2810 puts_filtered (" - ");
2811 print_address_numeric (lma + size, 1, gdb_stdout);
2812 printf_filtered (", mapped at ");
2813 print_address_numeric (vma, 1, gdb_stdout);
2814 puts_filtered (" - ");
2815 print_address_numeric (vma + size, 1, gdb_stdout);
2816 puts_filtered ("\n");
2817
2818 nmapped++;
2819 }
2820 if (nmapped == 0)
2821 printf_filtered ("No sections are mapped.\n");
2822 }
2823
2824 /* Function: map_overlay_command
2825 Mark the named section as mapped (ie. residing at its VMA address). */
2826
2827 void
2828 map_overlay_command (args, from_tty)
2829 char *args;
2830 int from_tty;
2831 {
2832 struct objfile *objfile, *objfile2;
2833 struct obj_section *sec, *sec2;
2834 asection *bfdsec;
2835
2836 if (!overlay_debugging)
2837 error ("\
2838 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2839 the 'overlay manual' command.");
2840
2841 if (args == 0 || *args == 0)
2842 error ("Argument required: name of an overlay section");
2843
2844 /* First, find a section matching the user supplied argument */
2845 ALL_OBJSECTIONS (objfile, sec)
2846 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2847 {
2848 /* Now, check to see if the section is an overlay. */
2849 bfdsec = sec->the_bfd_section;
2850 if (!section_is_overlay (bfdsec))
2851 continue; /* not an overlay section */
2852
2853 /* Mark the overlay as "mapped" */
2854 sec->ovly_mapped = 1;
2855
2856 /* Next, make a pass and unmap any sections that are
2857 overlapped by this new section: */
2858 ALL_OBJSECTIONS (objfile2, sec2)
2859 if (sec2->ovly_mapped &&
2860 sec != sec2 &&
2861 sec->the_bfd_section != sec2->the_bfd_section &&
2862 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2863 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2864 {
2865 if (info_verbose)
2866 printf_filtered ("Note: section %s unmapped by overlap\n",
2867 bfd_section_name (objfile->obfd,
2868 sec2->the_bfd_section));
2869 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2870 }
2871 return;
2872 }
2873 error ("No overlay section called %s", args);
2874 }
2875
2876 /* Function: unmap_overlay_command
2877 Mark the overlay section as unmapped
2878 (ie. resident in its LMA address range, rather than the VMA range). */
2879
2880 void
2881 unmap_overlay_command (args, from_tty)
2882 char *args;
2883 int from_tty;
2884 {
2885 struct objfile *objfile;
2886 struct obj_section *sec;
2887
2888 if (!overlay_debugging)
2889 error ("\
2890 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2891 the 'overlay manual' command.");
2892
2893 if (args == 0 || *args == 0)
2894 error ("Argument required: name of an overlay section");
2895
2896 /* First, find a section matching the user supplied argument */
2897 ALL_OBJSECTIONS (objfile, sec)
2898 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2899 {
2900 if (!sec->ovly_mapped)
2901 error ("Section %s is not mapped", args);
2902 sec->ovly_mapped = 0;
2903 return;
2904 }
2905 error ("No overlay section called %s", args);
2906 }
2907
2908 /* Function: overlay_auto_command
2909 A utility command to turn on overlay debugging.
2910 Possibly this should be done via a set/show command. */
2911
2912 static void
2913 overlay_auto_command (args, from_tty)
2914 char *args;
2915 int from_tty;
2916 {
2917 overlay_debugging = -1;
2918 if (info_verbose)
2919 printf_filtered ("Automatic overlay debugging enabled.");
2920 }
2921
2922 /* Function: overlay_manual_command
2923 A utility command to turn on overlay debugging.
2924 Possibly this should be done via a set/show command. */
2925
2926 static void
2927 overlay_manual_command (args, from_tty)
2928 char *args;
2929 int from_tty;
2930 {
2931 overlay_debugging = 1;
2932 if (info_verbose)
2933 printf_filtered ("Overlay debugging enabled.");
2934 }
2935
2936 /* Function: overlay_off_command
2937 A utility command to turn on overlay debugging.
2938 Possibly this should be done via a set/show command. */
2939
2940 static void
2941 overlay_off_command (args, from_tty)
2942 char *args;
2943 int from_tty;
2944 {
2945 overlay_debugging = 0;
2946 if (info_verbose)
2947 printf_filtered ("Overlay debugging disabled.");
2948 }
2949
2950 static void
2951 overlay_load_command (args, from_tty)
2952 char *args;
2953 int from_tty;
2954 {
2955 if (target_overlay_update)
2956 (*target_overlay_update) (NULL);
2957 else
2958 error ("This target does not know how to read its overlay state.");
2959 }
2960
2961 /* Function: overlay_command
2962 A place-holder for a mis-typed command */
2963
2964 /* Command list chain containing all defined "overlay" subcommands. */
2965 struct cmd_list_element *overlaylist;
2966
2967 static void
2968 overlay_command (args, from_tty)
2969 char *args;
2970 int from_tty;
2971 {
2972 printf_unfiltered
2973 ("\"overlay\" must be followed by the name of an overlay command.\n");
2974 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2975 }
2976
2977
2978 /* Target Overlays for the "Simplest" overlay manager:
2979
2980 This is GDB's default target overlay layer. It works with the
2981 minimal overlay manager supplied as an example by Cygnus. The
2982 entry point is via a function pointer "target_overlay_update",
2983 so targets that use a different runtime overlay manager can
2984 substitute their own overlay_update function and take over the
2985 function pointer.
2986
2987 The overlay_update function pokes around in the target's data structures
2988 to see what overlays are mapped, and updates GDB's overlay mapping with
2989 this information.
2990
2991 In this simple implementation, the target data structures are as follows:
2992 unsigned _novlys; /# number of overlay sections #/
2993 unsigned _ovly_table[_novlys][4] = {
2994 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2995 {..., ..., ..., ...},
2996 }
2997 unsigned _novly_regions; /# number of overlay regions #/
2998 unsigned _ovly_region_table[_novly_regions][3] = {
2999 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3000 {..., ..., ...},
3001 }
3002 These functions will attempt to update GDB's mappedness state in the
3003 symbol section table, based on the target's mappedness state.
3004
3005 To do this, we keep a cached copy of the target's _ovly_table, and
3006 attempt to detect when the cached copy is invalidated. The main
3007 entry point is "simple_overlay_update(SECT), which looks up SECT in
3008 the cached table and re-reads only the entry for that section from
3009 the target (whenever possible).
3010 */
3011
3012 /* Cached, dynamically allocated copies of the target data structures: */
3013 static unsigned (*cache_ovly_table)[4] = 0;
3014 #if 0
3015 static unsigned (*cache_ovly_region_table)[3] = 0;
3016 #endif
3017 static unsigned cache_novlys = 0;
3018 #if 0
3019 static unsigned cache_novly_regions = 0;
3020 #endif
3021 static CORE_ADDR cache_ovly_table_base = 0;
3022 #if 0
3023 static CORE_ADDR cache_ovly_region_table_base = 0;
3024 #endif
3025 enum ovly_index
3026 {
3027 VMA, SIZE, LMA, MAPPED
3028 };
3029 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3030
3031 /* Throw away the cached copy of _ovly_table */
3032 static void
3033 simple_free_overlay_table ()
3034 {
3035 if (cache_ovly_table)
3036 free (cache_ovly_table);
3037 cache_novlys = 0;
3038 cache_ovly_table = NULL;
3039 cache_ovly_table_base = 0;
3040 }
3041
3042 #if 0
3043 /* Throw away the cached copy of _ovly_region_table */
3044 static void
3045 simple_free_overlay_region_table ()
3046 {
3047 if (cache_ovly_region_table)
3048 free (cache_ovly_region_table);
3049 cache_novly_regions = 0;
3050 cache_ovly_region_table = NULL;
3051 cache_ovly_region_table_base = 0;
3052 }
3053 #endif
3054
3055 /* Read an array of ints from the target into a local buffer.
3056 Convert to host order. int LEN is number of ints */
3057 static void
3058 read_target_long_array (memaddr, myaddr, len)
3059 CORE_ADDR memaddr;
3060 unsigned int *myaddr;
3061 int len;
3062 {
3063 char *buf = alloca (len * TARGET_LONG_BYTES);
3064 int i;
3065
3066 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3067 for (i = 0; i < len; i++)
3068 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3069 TARGET_LONG_BYTES);
3070 }
3071
3072 /* Find and grab a copy of the target _ovly_table
3073 (and _novlys, which is needed for the table's size) */
3074 static int
3075 simple_read_overlay_table ()
3076 {
3077 struct minimal_symbol *msym;
3078
3079 simple_free_overlay_table ();
3080 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3081 if (msym != NULL)
3082 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3083 else
3084 return 0; /* failure */
3085 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3086 if (cache_ovly_table != NULL)
3087 {
3088 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3089 if (msym != NULL)
3090 {
3091 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3092 read_target_long_array (cache_ovly_table_base,
3093 (int *) cache_ovly_table,
3094 cache_novlys * 4);
3095 }
3096 else
3097 return 0; /* failure */
3098 }
3099 else
3100 return 0; /* failure */
3101 return 1; /* SUCCESS */
3102 }
3103
3104 #if 0
3105 /* Find and grab a copy of the target _ovly_region_table
3106 (and _novly_regions, which is needed for the table's size) */
3107 static int
3108 simple_read_overlay_region_table ()
3109 {
3110 struct minimal_symbol *msym;
3111
3112 simple_free_overlay_region_table ();
3113 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3114 if (msym != NULL)
3115 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3116 else
3117 return 0; /* failure */
3118 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3119 if (cache_ovly_region_table != NULL)
3120 {
3121 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3122 if (msym != NULL)
3123 {
3124 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3125 read_target_long_array (cache_ovly_region_table_base,
3126 (int *) cache_ovly_region_table,
3127 cache_novly_regions * 3);
3128 }
3129 else
3130 return 0; /* failure */
3131 }
3132 else
3133 return 0; /* failure */
3134 return 1; /* SUCCESS */
3135 }
3136 #endif
3137
3138 /* Function: simple_overlay_update_1
3139 A helper function for simple_overlay_update. Assuming a cached copy
3140 of _ovly_table exists, look through it to find an entry whose vma,
3141 lma and size match those of OSECT. Re-read the entry and make sure
3142 it still matches OSECT (else the table may no longer be valid).
3143 Set OSECT's mapped state to match the entry. Return: 1 for
3144 success, 0 for failure. */
3145
3146 static int
3147 simple_overlay_update_1 (osect)
3148 struct obj_section *osect;
3149 {
3150 int i, size;
3151
3152 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3153 for (i = 0; i < cache_novlys; i++)
3154 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3155 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3156 cache_ovly_table[i][SIZE] == size */ )
3157 {
3158 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3159 (int *) cache_ovly_table[i], 4);
3160 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3161 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3162 cache_ovly_table[i][SIZE] == size */ )
3163 {
3164 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3165 return 1;
3166 }
3167 else /* Warning! Warning! Target's ovly table has changed! */
3168 return 0;
3169 }
3170 return 0;
3171 }
3172
3173 /* Function: simple_overlay_update
3174 If OSECT is NULL, then update all sections' mapped state
3175 (after re-reading the entire target _ovly_table).
3176 If OSECT is non-NULL, then try to find a matching entry in the
3177 cached ovly_table and update only OSECT's mapped state.
3178 If a cached entry can't be found or the cache isn't valid, then
3179 re-read the entire cache, and go ahead and update all sections. */
3180
3181 static void
3182 simple_overlay_update (osect)
3183 struct obj_section *osect;
3184 {
3185 struct objfile *objfile;
3186
3187 /* Were we given an osect to look up? NULL means do all of them. */
3188 if (osect)
3189 /* Have we got a cached copy of the target's overlay table? */
3190 if (cache_ovly_table != NULL)
3191 /* Does its cached location match what's currently in the symtab? */
3192 if (cache_ovly_table_base ==
3193 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3194 /* Then go ahead and try to look up this single section in the cache */
3195 if (simple_overlay_update_1 (osect))
3196 /* Found it! We're done. */
3197 return;
3198
3199 /* Cached table no good: need to read the entire table anew.
3200 Or else we want all the sections, in which case it's actually
3201 more efficient to read the whole table in one block anyway. */
3202
3203 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3204 {
3205 warning ("Failed to read the target overlay mapping table.");
3206 return;
3207 }
3208 /* Now may as well update all sections, even if only one was requested. */
3209 ALL_OBJSECTIONS (objfile, osect)
3210 if (section_is_overlay (osect->the_bfd_section))
3211 {
3212 int i, size;
3213
3214 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3215 for (i = 0; i < cache_novlys; i++)
3216 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3217 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3218 cache_ovly_table[i][SIZE] == size */ )
3219 { /* obj_section matches i'th entry in ovly_table */
3220 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3221 break; /* finished with inner for loop: break out */
3222 }
3223 }
3224 }
3225
3226
3227 void
3228 _initialize_symfile ()
3229 {
3230 struct cmd_list_element *c;
3231
3232 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3233 "Load symbol table from executable file FILE.\n\
3234 The `file' command can also load symbol tables, as well as setting the file\n\
3235 to execute.", &cmdlist);
3236 c->completer = filename_completer;
3237
3238 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3239 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3240 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3241 ADDR is the starting address of the file's text.\n\
3242 The optional arguments are section-name section-address pairs and\n\
3243 should be specified if the data and bss segments are not contiguous\n\
3244 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3245 &cmdlist);
3246 c->completer = filename_completer;
3247
3248 c = add_cmd ("add-shared-symbol-files", class_files,
3249 add_shared_symbol_files_command,
3250 "Load the symbols from shared objects in the dynamic linker's link map.",
3251 &cmdlist);
3252 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3253 &cmdlist);
3254
3255 c = add_cmd ("load", class_files, load_command,
3256 "Dynamically load FILE into the running program, and record its symbols\n\
3257 for access from GDB.", &cmdlist);
3258 c->completer = filename_completer;
3259
3260 add_show_from_set
3261 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3262 (char *) &symbol_reloading,
3263 "Set dynamic symbol table reloading multiple times in one run.",
3264 &setlist),
3265 &showlist);
3266
3267 add_prefix_cmd ("overlay", class_support, overlay_command,
3268 "Commands for debugging overlays.", &overlaylist,
3269 "overlay ", 0, &cmdlist);
3270
3271 add_com_alias ("ovly", "overlay", class_alias, 1);
3272 add_com_alias ("ov", "overlay", class_alias, 1);
3273
3274 add_cmd ("map-overlay", class_support, map_overlay_command,
3275 "Assert that an overlay section is mapped.", &overlaylist);
3276
3277 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3278 "Assert that an overlay section is unmapped.", &overlaylist);
3279
3280 add_cmd ("list-overlays", class_support, list_overlays_command,
3281 "List mappings of overlay sections.", &overlaylist);
3282
3283 add_cmd ("manual", class_support, overlay_manual_command,
3284 "Enable overlay debugging.", &overlaylist);
3285 add_cmd ("off", class_support, overlay_off_command,
3286 "Disable overlay debugging.", &overlaylist);
3287 add_cmd ("auto", class_support, overlay_auto_command,
3288 "Enable automatic overlay debugging.", &overlaylist);
3289 add_cmd ("load-target", class_support, overlay_load_command,
3290 "Read the overlay mapping state from the target.", &overlaylist);
3291
3292 /* Filename extension to source language lookup table: */
3293 init_filename_language_table ();
3294 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3295 (char *) &ext_args,
3296 "Set mapping between filename extension and source language.\n\
3297 Usage: set extension-language .foo bar",
3298 &setlist);
3299 c->function.cfunc = set_ext_lang_command;
3300
3301 add_info ("extensions", info_ext_lang_command,
3302 "All filename extensions associated with a source language.");
3303
3304 add_show_from_set
3305 (add_set_cmd ("download-write-size", class_obscure,
3306 var_integer, (char *) &download_write_size,
3307 "Set the write size used when downloading a program.\n"
3308 "Only used when downloading a program onto a remote\n"
3309 "target. Specify zero, or a negative value, to disable\n"
3310 "blocked writes. The actual size of each transfer is also\n"
3311 "limited by the size of the target packet and the memory\n"
3312 "cache.\n",
3313 &setlist),
3314 &showlist);
3315 }
This page took 0.09604 seconds and 4 git commands to generate.