gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154 #ifdef SYMBOL_RELOADING_DEFAULT
155 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156 #else
157 int symbol_reloading = 0;
158 #endif
159 static void
160 show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Dynamic symbol table reloading "
164 "multiple times in one run is %s.\n"),
165 value);
166 }
167
168 /* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
177
178 int auto_solib_add = 1;
179 \f
180
181 /* Make a null terminated copy of the string at PTR with SIZE characters in
182 the obstack pointed to by OBSTACKP . Returns the address of the copy.
183 Note that the string at PTR does not have to be null terminated, I.e. it
184 may be part of a larger string and we are only saving a substring. */
185
186 char *
187 obsavestring (const char *ptr, int size, struct obstack *obstackp)
188 {
189 char *p = (char *) obstack_alloc (obstackp, size + 1);
190 /* Open-coded memcpy--saves function call time. These strings are usually
191 short. FIXME: Is this really still true with a compiler that can
192 inline memcpy? */
193 {
194 const char *p1 = ptr;
195 char *p2 = p;
196 const char *end = ptr + size;
197
198 while (p1 != end)
199 *p2++ = *p1++;
200 }
201 p[size] = 0;
202 return p;
203 }
204
205 /* Concatenate NULL terminated variable argument list of `const char *'
206 strings; return the new string. Space is found in the OBSTACKP.
207 Argument list must be terminated by a sentinel expression `(char *)
208 NULL'. */
209
210 char *
211 obconcat (struct obstack *obstackp, ...)
212 {
213 va_list ap;
214
215 va_start (ap, obstackp);
216 for (;;)
217 {
218 const char *s = va_arg (ap, const char *);
219
220 if (s == NULL)
221 break;
222
223 obstack_grow_str (obstackp, s);
224 }
225 va_end (ap);
226 obstack_1grow (obstackp, 0);
227
228 return obstack_finish (obstackp);
229 }
230
231 /* True if we are reading a symbol table. */
232
233 int currently_reading_symtab = 0;
234
235 static void
236 decrement_reading_symtab (void *dummy)
237 {
238 currently_reading_symtab--;
239 }
240
241 /* Increment currently_reading_symtab and return a cleanup that can be
242 used to decrement it. */
243 struct cleanup *
244 increment_reading_symtab (void)
245 {
246 ++currently_reading_symtab;
247 return make_cleanup (decrement_reading_symtab, NULL);
248 }
249
250 /* Remember the lowest-addressed loadable section we've seen.
251 This function is called via bfd_map_over_sections.
252
253 In case of equal vmas, the section with the largest size becomes the
254 lowest-addressed loadable section.
255
256 If the vmas and sizes are equal, the last section is considered the
257 lowest-addressed loadable section. */
258
259 void
260 find_lowest_section (bfd *abfd, asection *sect, void *obj)
261 {
262 asection **lowest = (asection **) obj;
263
264 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
265 return;
266 if (!*lowest)
267 *lowest = sect; /* First loadable section */
268 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
269 *lowest = sect; /* A lower loadable section */
270 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
271 && (bfd_section_size (abfd, (*lowest))
272 <= bfd_section_size (abfd, sect)))
273 *lowest = sect;
274 }
275
276 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
277
278 struct section_addr_info *
279 alloc_section_addr_info (size_t num_sections)
280 {
281 struct section_addr_info *sap;
282 size_t size;
283
284 size = (sizeof (struct section_addr_info)
285 + sizeof (struct other_sections) * (num_sections - 1));
286 sap = (struct section_addr_info *) xmalloc (size);
287 memset (sap, 0, size);
288 sap->num_sections = num_sections;
289
290 return sap;
291 }
292
293 /* Build (allocate and populate) a section_addr_info struct from
294 an existing section table. */
295
296 extern struct section_addr_info *
297 build_section_addr_info_from_section_table (const struct target_section *start,
298 const struct target_section *end)
299 {
300 struct section_addr_info *sap;
301 const struct target_section *stp;
302 int oidx;
303
304 sap = alloc_section_addr_info (end - start);
305
306 for (stp = start, oidx = 0; stp != end; stp++)
307 {
308 if (bfd_get_section_flags (stp->bfd,
309 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
310 && oidx < end - start)
311 {
312 sap->other[oidx].addr = stp->addr;
313 sap->other[oidx].name
314 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
315 sap->other[oidx].sectindex = stp->the_bfd_section->index;
316 oidx++;
317 }
318 }
319
320 return sap;
321 }
322
323 /* Create a section_addr_info from section offsets in ABFD. */
324
325 static struct section_addr_info *
326 build_section_addr_info_from_bfd (bfd *abfd)
327 {
328 struct section_addr_info *sap;
329 int i;
330 struct bfd_section *sec;
331
332 sap = alloc_section_addr_info (bfd_count_sections (abfd));
333 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
334 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
335 {
336 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
337 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
338 sap->other[i].sectindex = sec->index;
339 i++;
340 }
341 return sap;
342 }
343
344 /* Create a section_addr_info from section offsets in OBJFILE. */
345
346 struct section_addr_info *
347 build_section_addr_info_from_objfile (const struct objfile *objfile)
348 {
349 struct section_addr_info *sap;
350 int i;
351
352 /* Before reread_symbols gets rewritten it is not safe to call:
353 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
354 */
355 sap = build_section_addr_info_from_bfd (objfile->obfd);
356 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
357 {
358 int sectindex = sap->other[i].sectindex;
359
360 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
361 }
362 return sap;
363 }
364
365 /* Free all memory allocated by build_section_addr_info_from_section_table. */
366
367 extern void
368 free_section_addr_info (struct section_addr_info *sap)
369 {
370 int idx;
371
372 for (idx = 0; idx < sap->num_sections; idx++)
373 if (sap->other[idx].name)
374 xfree (sap->other[idx].name);
375 xfree (sap);
376 }
377
378
379 /* Initialize OBJFILE's sect_index_* members. */
380 static void
381 init_objfile_sect_indices (struct objfile *objfile)
382 {
383 asection *sect;
384 int i;
385
386 sect = bfd_get_section_by_name (objfile->obfd, ".text");
387 if (sect)
388 objfile->sect_index_text = sect->index;
389
390 sect = bfd_get_section_by_name (objfile->obfd, ".data");
391 if (sect)
392 objfile->sect_index_data = sect->index;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
395 if (sect)
396 objfile->sect_index_bss = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
399 if (sect)
400 objfile->sect_index_rodata = sect->index;
401
402 /* This is where things get really weird... We MUST have valid
403 indices for the various sect_index_* members or gdb will abort.
404 So if for example, there is no ".text" section, we have to
405 accomodate that. First, check for a file with the standard
406 one or two segments. */
407
408 symfile_find_segment_sections (objfile);
409
410 /* Except when explicitly adding symbol files at some address,
411 section_offsets contains nothing but zeros, so it doesn't matter
412 which slot in section_offsets the individual sect_index_* members
413 index into. So if they are all zero, it is safe to just point
414 all the currently uninitialized indices to the first slot. But
415 beware: if this is the main executable, it may be relocated
416 later, e.g. by the remote qOffsets packet, and then this will
417 be wrong! That's why we try segments first. */
418
419 for (i = 0; i < objfile->num_sections; i++)
420 {
421 if (ANOFFSET (objfile->section_offsets, i) != 0)
422 {
423 break;
424 }
425 }
426 if (i == objfile->num_sections)
427 {
428 if (objfile->sect_index_text == -1)
429 objfile->sect_index_text = 0;
430 if (objfile->sect_index_data == -1)
431 objfile->sect_index_data = 0;
432 if (objfile->sect_index_bss == -1)
433 objfile->sect_index_bss = 0;
434 if (objfile->sect_index_rodata == -1)
435 objfile->sect_index_rodata = 0;
436 }
437 }
438
439 /* The arguments to place_section. */
440
441 struct place_section_arg
442 {
443 struct section_offsets *offsets;
444 CORE_ADDR lowest;
445 };
446
447 /* Find a unique offset to use for loadable section SECT if
448 the user did not provide an offset. */
449
450 static void
451 place_section (bfd *abfd, asection *sect, void *obj)
452 {
453 struct place_section_arg *arg = obj;
454 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
455 int done;
456 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
457
458 /* We are only interested in allocated sections. */
459 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
460 return;
461
462 /* If the user specified an offset, honor it. */
463 if (offsets[sect->index] != 0)
464 return;
465
466 /* Otherwise, let's try to find a place for the section. */
467 start_addr = (arg->lowest + align - 1) & -align;
468
469 do {
470 asection *cur_sec;
471
472 done = 1;
473
474 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
475 {
476 int indx = cur_sec->index;
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
499 break;
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
509 }
510
511 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
514
515 void
516 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
519 {
520 int i;
521
522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
523
524 /* Now calculate offsets for section that were specified by the caller. */
525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
526 {
527 struct other_sections *osp;
528
529 osp = &addrs->other[i];
530 if (osp->sectindex == -1)
531 continue;
532
533 /* Record all sections in offsets. */
534 /* The section_offsets in the objfile are here filled in using
535 the BFD index. */
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538 }
539
540 /* Transform section name S for a name comparison. prelink can split section
541 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
542 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
543 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
544 (`.sbss') section has invalid (increased) virtual address. */
545
546 static const char *
547 addr_section_name (const char *s)
548 {
549 if (strcmp (s, ".dynbss") == 0)
550 return ".bss";
551 if (strcmp (s, ".sdynbss") == 0)
552 return ".sbss";
553
554 return s;
555 }
556
557 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
558 their (name, sectindex) pair. sectindex makes the sort by name stable. */
559
560 static int
561 addrs_section_compar (const void *ap, const void *bp)
562 {
563 const struct other_sections *a = *((struct other_sections **) ap);
564 const struct other_sections *b = *((struct other_sections **) bp);
565 int retval, a_idx, b_idx;
566
567 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
568 if (retval)
569 return retval;
570
571 return a->sectindex - b->sectindex;
572 }
573
574 /* Provide sorted array of pointers to sections of ADDRS. The array is
575 terminated by NULL. Caller is responsible to call xfree for it. */
576
577 static struct other_sections **
578 addrs_section_sort (struct section_addr_info *addrs)
579 {
580 struct other_sections **array;
581 int i;
582
583 /* `+ 1' for the NULL terminator. */
584 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
585 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
586 array[i] = &addrs->other[i];
587 array[i] = NULL;
588
589 qsort (array, i, sizeof (*array), addrs_section_compar);
590
591 return array;
592 }
593
594 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
595 also SECTINDEXes specific to ABFD there. This function can be used to
596 rebase ADDRS to start referencing different BFD than before. */
597
598 void
599 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
600 {
601 asection *lower_sect;
602 CORE_ADDR lower_offset;
603 int i;
604 struct cleanup *my_cleanup;
605 struct section_addr_info *abfd_addrs;
606 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
607 struct other_sections **addrs_to_abfd_addrs;
608
609 /* Find lowest loadable section to be used as starting point for
610 continguous sections. */
611 lower_sect = NULL;
612 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
613 if (lower_sect == NULL)
614 {
615 warning (_("no loadable sections found in added symbol-file %s"),
616 bfd_get_filename (abfd));
617 lower_offset = 0;
618 }
619 else
620 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
621
622 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
623 in ABFD. Section names are not unique - there can be multiple sections of
624 the same name. Also the sections of the same name do not have to be
625 adjacent to each other. Some sections may be present only in one of the
626 files. Even sections present in both files do not have to be in the same
627 order.
628
629 Use stable sort by name for the sections in both files. Then linearly
630 scan both lists matching as most of the entries as possible. */
631
632 addrs_sorted = addrs_section_sort (addrs);
633 my_cleanup = make_cleanup (xfree, addrs_sorted);
634
635 abfd_addrs = build_section_addr_info_from_bfd (abfd);
636 make_cleanup_free_section_addr_info (abfd_addrs);
637 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
638 make_cleanup (xfree, abfd_addrs_sorted);
639
640 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
641 ABFD_ADDRS_SORTED. */
642
643 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
644 * addrs->num_sections);
645 make_cleanup (xfree, addrs_to_abfd_addrs);
646
647 while (*addrs_sorted)
648 {
649 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
650
651 while (*abfd_addrs_sorted
652 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
653 sect_name) < 0)
654 abfd_addrs_sorted++;
655
656 if (*abfd_addrs_sorted
657 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
658 sect_name) == 0)
659 {
660 int index_in_addrs;
661
662 /* Make the found item directly addressable from ADDRS. */
663 index_in_addrs = *addrs_sorted - addrs->other;
664 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
665 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
666
667 /* Never use the same ABFD entry twice. */
668 abfd_addrs_sorted++;
669 }
670
671 addrs_sorted++;
672 }
673
674 /* Calculate offsets for the loadable sections.
675 FIXME! Sections must be in order of increasing loadable section
676 so that contiguous sections can use the lower-offset!!!
677
678 Adjust offsets if the segments are not contiguous.
679 If the section is contiguous, its offset should be set to
680 the offset of the highest loadable section lower than it
681 (the loadable section directly below it in memory).
682 this_offset = lower_offset = lower_addr - lower_orig_addr */
683
684 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
685 {
686 struct other_sections *sect = addrs_to_abfd_addrs[i];
687
688 if (sect)
689 {
690 /* This is the index used by BFD. */
691 addrs->other[i].sectindex = sect->sectindex;
692
693 if (addrs->other[i].addr != 0)
694 {
695 addrs->other[i].addr -= sect->addr;
696 lower_offset = addrs->other[i].addr;
697 }
698 else
699 addrs->other[i].addr = lower_offset;
700 }
701 else
702 {
703 /* addr_section_name transformation is not used for SECT_NAME. */
704 const char *sect_name = addrs->other[i].name;
705
706 /* This section does not exist in ABFD, which is normally
707 unexpected and we want to issue a warning.
708
709 However, the ELF prelinker does create a few sections which are
710 marked in the main executable as loadable (they are loaded in
711 memory from the DYNAMIC segment) and yet are not present in
712 separate debug info files. This is fine, and should not cause
713 a warning. Shared libraries contain just the section
714 ".gnu.liblist" but it is not marked as loadable there. There is
715 no other way to identify them than by their name as the sections
716 created by prelink have no special flags.
717
718 For the sections `.bss' and `.sbss' see addr_section_name. */
719
720 if (!(strcmp (sect_name, ".gnu.liblist") == 0
721 || strcmp (sect_name, ".gnu.conflict") == 0
722 || (strcmp (sect_name, ".bss") == 0
723 && i > 0
724 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
725 && addrs_to_abfd_addrs[i - 1] != NULL)
726 || (strcmp (sect_name, ".sbss") == 0
727 && i > 0
728 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
729 && addrs_to_abfd_addrs[i - 1] != NULL)))
730 warning (_("section %s not found in %s"), sect_name,
731 bfd_get_filename (abfd));
732
733 addrs->other[i].addr = 0;
734 addrs->other[i].sectindex = -1;
735 }
736 }
737
738 do_cleanups (my_cleanup);
739 }
740
741 /* Parse the user's idea of an offset for dynamic linking, into our idea
742 of how to represent it for fast symbol reading. This is the default
743 version of the sym_fns.sym_offsets function for symbol readers that
744 don't need to do anything special. It allocates a section_offsets table
745 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
746
747 void
748 default_symfile_offsets (struct objfile *objfile,
749 struct section_addr_info *addrs)
750 {
751 objfile->num_sections = bfd_count_sections (objfile->obfd);
752 objfile->section_offsets = (struct section_offsets *)
753 obstack_alloc (&objfile->objfile_obstack,
754 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
755 relative_addr_info_to_section_offsets (objfile->section_offsets,
756 objfile->num_sections, addrs);
757
758 /* For relocatable files, all loadable sections will start at zero.
759 The zero is meaningless, so try to pick arbitrary addresses such
760 that no loadable sections overlap. This algorithm is quadratic,
761 but the number of sections in a single object file is generally
762 small. */
763 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
764 {
765 struct place_section_arg arg;
766 bfd *abfd = objfile->obfd;
767 asection *cur_sec;
768
769 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
770 /* We do not expect this to happen; just skip this step if the
771 relocatable file has a section with an assigned VMA. */
772 if (bfd_section_vma (abfd, cur_sec) != 0)
773 break;
774
775 if (cur_sec == NULL)
776 {
777 CORE_ADDR *offsets = objfile->section_offsets->offsets;
778
779 /* Pick non-overlapping offsets for sections the user did not
780 place explicitly. */
781 arg.offsets = objfile->section_offsets;
782 arg.lowest = 0;
783 bfd_map_over_sections (objfile->obfd, place_section, &arg);
784
785 /* Correctly filling in the section offsets is not quite
786 enough. Relocatable files have two properties that
787 (most) shared objects do not:
788
789 - Their debug information will contain relocations. Some
790 shared libraries do also, but many do not, so this can not
791 be assumed.
792
793 - If there are multiple code sections they will be loaded
794 at different relative addresses in memory than they are
795 in the objfile, since all sections in the file will start
796 at address zero.
797
798 Because GDB has very limited ability to map from an
799 address in debug info to the correct code section,
800 it relies on adding SECT_OFF_TEXT to things which might be
801 code. If we clear all the section offsets, and set the
802 section VMAs instead, then symfile_relocate_debug_section
803 will return meaningful debug information pointing at the
804 correct sections.
805
806 GDB has too many different data structures for section
807 addresses - a bfd, objfile, and so_list all have section
808 tables, as does exec_ops. Some of these could probably
809 be eliminated. */
810
811 for (cur_sec = abfd->sections; cur_sec != NULL;
812 cur_sec = cur_sec->next)
813 {
814 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
815 continue;
816
817 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
818 exec_set_section_address (bfd_get_filename (abfd),
819 cur_sec->index,
820 offsets[cur_sec->index]);
821 offsets[cur_sec->index] = 0;
822 }
823 }
824 }
825
826 /* Remember the bfd indexes for the .text, .data, .bss and
827 .rodata sections. */
828 init_objfile_sect_indices (objfile);
829 }
830
831
832 /* Divide the file into segments, which are individual relocatable units.
833 This is the default version of the sym_fns.sym_segments function for
834 symbol readers that do not have an explicit representation of segments.
835 It assumes that object files do not have segments, and fully linked
836 files have a single segment. */
837
838 struct symfile_segment_data *
839 default_symfile_segments (bfd *abfd)
840 {
841 int num_sections, i;
842 asection *sect;
843 struct symfile_segment_data *data;
844 CORE_ADDR low, high;
845
846 /* Relocatable files contain enough information to position each
847 loadable section independently; they should not be relocated
848 in segments. */
849 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
850 return NULL;
851
852 /* Make sure there is at least one loadable section in the file. */
853 for (sect = abfd->sections; sect != NULL; sect = sect->next)
854 {
855 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
856 continue;
857
858 break;
859 }
860 if (sect == NULL)
861 return NULL;
862
863 low = bfd_get_section_vma (abfd, sect);
864 high = low + bfd_get_section_size (sect);
865
866 data = XZALLOC (struct symfile_segment_data);
867 data->num_segments = 1;
868 data->segment_bases = XCALLOC (1, CORE_ADDR);
869 data->segment_sizes = XCALLOC (1, CORE_ADDR);
870
871 num_sections = bfd_count_sections (abfd);
872 data->segment_info = XCALLOC (num_sections, int);
873
874 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
875 {
876 CORE_ADDR vma;
877
878 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
879 continue;
880
881 vma = bfd_get_section_vma (abfd, sect);
882 if (vma < low)
883 low = vma;
884 if (vma + bfd_get_section_size (sect) > high)
885 high = vma + bfd_get_section_size (sect);
886
887 data->segment_info[i] = 1;
888 }
889
890 data->segment_bases[0] = low;
891 data->segment_sizes[0] = high - low;
892
893 return data;
894 }
895
896 /* Process a symbol file, as either the main file or as a dynamically
897 loaded file.
898
899 OBJFILE is where the symbols are to be read from.
900
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
910 If ADDRS is non-zero, OFFSETS must be zero.
911
912 OFFSETS is a table of section offsets already in the right
913 format-specific representation. NUM_OFFSETS is the number of
914 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
915 assume this is the proper table the call to sym_offsets described
916 above would produce. Instead of calling sym_offsets, we just dump
917 it right into objfile->section_offsets. (When we're re-reading
918 symbols from an objfile, we don't have the original load address
919 list any more; all we have is the section offset table.) If
920 OFFSETS is non-zero, ADDRS must be zero.
921
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
925
926 void
927 syms_from_objfile (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 struct section_offsets *offsets,
930 int num_offsets,
931 int add_flags)
932 {
933 struct section_addr_info *local_addr = NULL;
934 struct cleanup *old_chain;
935 const int mainline = add_flags & SYMFILE_MAINLINE;
936
937 gdb_assert (! (addrs && offsets));
938
939 init_entry_point_info (objfile);
940 objfile->sf = find_sym_fns (objfile->obfd);
941
942 if (objfile->sf == NULL)
943 return; /* No symbols. */
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup_free_objfile (objfile);
948
949 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
950 list. We now establish the convention that an addr of zero means
951 no load address was specified. */
952 if (! addrs && ! offsets)
953 {
954 local_addr
955 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
956 make_cleanup (xfree, local_addr);
957 addrs = local_addr;
958 }
959
960 /* Now either addrs or offsets is non-zero. */
961
962 if (mainline)
963 {
964 /* We will modify the main symbol table, make sure that all its users
965 will be cleaned up if an error occurs during symbol reading. */
966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
973 gdb_assert (symfile_objfile == NULL);
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
980
981 (*objfile->sf->sym_new_init) (objfile);
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
986 and assume that <addr> is where that got loaded.
987
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
990 if (addrs && addrs->other[0].name)
991 addr_info_make_relative (addrs, objfile->obfd);
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
995 initial symbol reading for this file. */
996
997 (*objfile->sf->sym_init) (objfile);
998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
999
1000 if (addrs)
1001 (*objfile->sf->sym_offsets) (objfile, addrs);
1002 else
1003 {
1004 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1005
1006 /* Just copy in the offset table directly as given to us. */
1007 objfile->num_sections = num_offsets;
1008 objfile->section_offsets
1009 = ((struct section_offsets *)
1010 obstack_alloc (&objfile->objfile_obstack, size));
1011 memcpy (objfile->section_offsets, offsets, size);
1012
1013 init_objfile_sect_indices (objfile);
1014 }
1015
1016 (*objfile->sf->sym_read) (objfile, add_flags);
1017
1018 if ((add_flags & SYMFILE_NO_READ) == 0)
1019 require_partial_symbols (objfile, 0);
1020
1021 /* Discard cleanups as symbol reading was successful. */
1022
1023 discard_cleanups (old_chain);
1024 xfree (local_addr);
1025 }
1026
1027 /* Perform required actions after either reading in the initial
1028 symbols for a new objfile, or mapping in the symbols from a reusable
1029 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1030
1031 void
1032 new_symfile_objfile (struct objfile *objfile, int add_flags)
1033 {
1034 /* If this is the main symbol file we have to clean up all users of the
1035 old main symbol file. Otherwise it is sufficient to fixup all the
1036 breakpoints that may have been redefined by this symbol file. */
1037 if (add_flags & SYMFILE_MAINLINE)
1038 {
1039 /* OK, make it the "real" symbol file. */
1040 symfile_objfile = objfile;
1041
1042 clear_symtab_users (add_flags);
1043 }
1044 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1045 {
1046 breakpoint_re_set ();
1047 }
1048
1049 /* We're done reading the symbol file; finish off complaints. */
1050 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1051 }
1052
1053 /* Process a symbol file, as either the main file or as a dynamically
1054 loaded file.
1055
1056 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1057 This BFD will be closed on error, and is always consumed by this function.
1058
1059 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1060 extra, such as dynamically loaded code, and what to do with breakpoins.
1061
1062 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1063 syms_from_objfile, above.
1064 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1065
1066 PARENT is the original objfile if ABFD is a separate debug info file.
1067 Otherwise PARENT is NULL.
1068
1069 Upon success, returns a pointer to the objfile that was added.
1070 Upon failure, jumps back to command level (never returns). */
1071
1072 static struct objfile *
1073 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1074 int add_flags,
1075 struct section_addr_info *addrs,
1076 struct section_offsets *offsets,
1077 int num_offsets,
1078 int flags, struct objfile *parent)
1079 {
1080 struct objfile *objfile;
1081 struct cleanup *my_cleanups;
1082 const char *name = bfd_get_filename (abfd);
1083 const int from_tty = add_flags & SYMFILE_VERBOSE;
1084 const int should_print = ((from_tty || info_verbose)
1085 && (readnow_symbol_files
1086 || (add_flags & SYMFILE_NO_READ) == 0));
1087
1088 if (readnow_symbol_files)
1089 {
1090 flags |= OBJF_READNOW;
1091 add_flags &= ~SYMFILE_NO_READ;
1092 }
1093
1094 my_cleanups = make_cleanup_bfd_close (abfd);
1095
1096 /* Give user a chance to burp if we'd be
1097 interactively wiping out any existing symbols. */
1098
1099 if ((have_full_symbols () || have_partial_symbols ())
1100 && (add_flags & SYMFILE_MAINLINE)
1101 && from_tty
1102 && !query (_("Load new symbol table from \"%s\"? "), name))
1103 error (_("Not confirmed."));
1104
1105 objfile = allocate_objfile (abfd, flags);
1106 discard_cleanups (my_cleanups);
1107
1108 if (parent)
1109 add_separate_debug_objfile (objfile, parent);
1110
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (should_print)
1115 {
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
1118 else
1119 {
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124 }
1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 add_flags);
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
1133 if ((flags & OBJF_READNOW))
1134 {
1135 if (should_print)
1136 {
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1144 }
1145
1146 if (should_print && !objfile_has_symbols (objfile))
1147 {
1148 wrap_here ("");
1149 printf_unfiltered (_("(no debugging symbols found)..."));
1150 wrap_here ("");
1151 }
1152
1153 if (should_print)
1154 {
1155 if (deprecated_post_add_symbol_hook)
1156 deprecated_post_add_symbol_hook ();
1157 else
1158 printf_unfiltered (_("done.\n"));
1159 }
1160
1161 /* We print some messages regardless of whether 'from_tty ||
1162 info_verbose' is true, so make sure they go out at the right
1163 time. */
1164 gdb_flush (gdb_stdout);
1165
1166 do_cleanups (my_cleanups);
1167
1168 if (objfile->sf == NULL)
1169 {
1170 observer_notify_new_objfile (objfile);
1171 return objfile; /* No symbols. */
1172 }
1173
1174 new_symfile_objfile (objfile, add_flags);
1175
1176 observer_notify_new_objfile (objfile);
1177
1178 bfd_cache_close_all ();
1179 return (objfile);
1180 }
1181
1182 /* Add BFD as a separate debug file for OBJFILE. */
1183
1184 void
1185 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1186 {
1187 struct objfile *new_objfile;
1188 struct section_addr_info *sap;
1189 struct cleanup *my_cleanup;
1190
1191 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1192 because sections of BFD may not match sections of OBJFILE and because
1193 vma may have been modified by tools such as prelink. */
1194 sap = build_section_addr_info_from_objfile (objfile);
1195 my_cleanup = make_cleanup_free_section_addr_info (sap);
1196
1197 new_objfile = symbol_file_add_with_addrs_or_offsets
1198 (bfd, symfile_flags,
1199 sap, NULL, 0,
1200 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1201 | OBJF_USERLOADED),
1202 objfile);
1203
1204 do_cleanups (my_cleanup);
1205 }
1206
1207 /* Process the symbol file ABFD, as either the main file or as a
1208 dynamically loaded file.
1209
1210 See symbol_file_add_with_addrs_or_offsets's comments for
1211 details. */
1212 struct objfile *
1213 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1214 struct section_addr_info *addrs,
1215 int flags, struct objfile *parent)
1216 {
1217 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1218 flags, parent);
1219 }
1220
1221
1222 /* Process a symbol file, as either the main file or as a dynamically
1223 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1224 for details. */
1225 struct objfile *
1226 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1227 int flags)
1228 {
1229 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1230 flags, NULL);
1231 }
1232
1233
1234 /* Call symbol_file_add() with default values and update whatever is
1235 affected by the loading of a new main().
1236 Used when the file is supplied in the gdb command line
1237 and by some targets with special loading requirements.
1238 The auxiliary function, symbol_file_add_main_1(), has the flags
1239 argument for the switches that can only be specified in the symbol_file
1240 command itself. */
1241
1242 void
1243 symbol_file_add_main (char *args, int from_tty)
1244 {
1245 symbol_file_add_main_1 (args, from_tty, 0);
1246 }
1247
1248 static void
1249 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1250 {
1251 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1252 symbol_file_add (args, add_flags, NULL, flags);
1253
1254 /* Getting new symbols may change our opinion about
1255 what is frameless. */
1256 reinit_frame_cache ();
1257
1258 set_initial_language ();
1259 }
1260
1261 void
1262 symbol_file_clear (int from_tty)
1263 {
1264 if ((have_full_symbols () || have_partial_symbols ())
1265 && from_tty
1266 && (symfile_objfile
1267 ? !query (_("Discard symbol table from `%s'? "),
1268 symfile_objfile->name)
1269 : !query (_("Discard symbol table? "))))
1270 error (_("Not confirmed."));
1271
1272 /* solib descriptors may have handles to objfiles. Wipe them before their
1273 objfiles get stale by free_all_objfiles. */
1274 no_shared_libraries (NULL, from_tty);
1275
1276 free_all_objfiles ();
1277
1278 gdb_assert (symfile_objfile == NULL);
1279 if (from_tty)
1280 printf_unfiltered (_("No symbol file now.\n"));
1281 }
1282
1283 static char *
1284 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1285 {
1286 asection *sect;
1287 bfd_size_type debuglink_size;
1288 unsigned long crc32;
1289 char *contents;
1290 int crc_offset;
1291
1292 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1293
1294 if (sect == NULL)
1295 return NULL;
1296
1297 debuglink_size = bfd_section_size (objfile->obfd, sect);
1298
1299 contents = xmalloc (debuglink_size);
1300 bfd_get_section_contents (objfile->obfd, sect, contents,
1301 (file_ptr)0, (bfd_size_type)debuglink_size);
1302
1303 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1304 crc_offset = strlen (contents) + 1;
1305 crc_offset = (crc_offset + 3) & ~3;
1306
1307 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1308
1309 *crc32_out = crc32;
1310 return contents;
1311 }
1312
1313 static int
1314 separate_debug_file_exists (const char *name, unsigned long crc,
1315 struct objfile *parent_objfile)
1316 {
1317 unsigned long file_crc = 0;
1318 bfd *abfd;
1319 gdb_byte buffer[8*1024];
1320 int count;
1321 struct stat parent_stat, abfd_stat;
1322
1323 /* Find a separate debug info file as if symbols would be present in
1324 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1325 section can contain just the basename of PARENT_OBJFILE without any
1326 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1327 the separate debug infos with the same basename can exist. */
1328
1329 if (filename_cmp (name, parent_objfile->name) == 0)
1330 return 0;
1331
1332 abfd = bfd_open_maybe_remote (name);
1333
1334 if (!abfd)
1335 return 0;
1336
1337 /* Verify symlinks were not the cause of filename_cmp name difference above.
1338
1339 Some operating systems, e.g. Windows, do not provide a meaningful
1340 st_ino; they always set it to zero. (Windows does provide a
1341 meaningful st_dev.) Do not indicate a duplicate library in that
1342 case. While there is no guarantee that a system that provides
1343 meaningful inode numbers will never set st_ino to zero, this is
1344 merely an optimization, so we do not need to worry about false
1345 negatives. */
1346
1347 if (bfd_stat (abfd, &abfd_stat) == 0
1348 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1349 && abfd_stat.st_dev == parent_stat.st_dev
1350 && abfd_stat.st_ino == parent_stat.st_ino
1351 && abfd_stat.st_ino != 0)
1352 {
1353 bfd_close (abfd);
1354 return 0;
1355 }
1356
1357 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1358 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1359
1360 bfd_close (abfd);
1361
1362 if (crc != file_crc)
1363 {
1364 warning (_("the debug information found in \"%s\""
1365 " does not match \"%s\" (CRC mismatch).\n"),
1366 name, parent_objfile->name);
1367 return 0;
1368 }
1369
1370 return 1;
1371 }
1372
1373 char *debug_file_directory = NULL;
1374 static void
1375 show_debug_file_directory (struct ui_file *file, int from_tty,
1376 struct cmd_list_element *c, const char *value)
1377 {
1378 fprintf_filtered (file,
1379 _("The directory where separate debug "
1380 "symbols are searched for is \"%s\".\n"),
1381 value);
1382 }
1383
1384 #if ! defined (DEBUG_SUBDIRECTORY)
1385 #define DEBUG_SUBDIRECTORY ".debug"
1386 #endif
1387
1388 char *
1389 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1390 {
1391 char *basename, *debugdir;
1392 char *dir = NULL;
1393 char *debugfile = NULL;
1394 char *canon_name = NULL;
1395 unsigned long crc32;
1396 int i;
1397
1398 basename = get_debug_link_info (objfile, &crc32);
1399
1400 if (basename == NULL)
1401 /* There's no separate debug info, hence there's no way we could
1402 load it => no warning. */
1403 goto cleanup_return_debugfile;
1404
1405 dir = xstrdup (objfile->name);
1406
1407 /* Strip off the final filename part, leaving the directory name,
1408 followed by a slash. The directory can be relative or absolute. */
1409 for (i = strlen(dir) - 1; i >= 0; i--)
1410 {
1411 if (IS_DIR_SEPARATOR (dir[i]))
1412 break;
1413 }
1414 /* If I is -1 then no directory is present there and DIR will be "". */
1415 dir[i+1] = '\0';
1416
1417 /* Set I to max (strlen (canon_name), strlen (dir)). */
1418 canon_name = lrealpath (dir);
1419 i = strlen (dir);
1420 if (canon_name && strlen (canon_name) > i)
1421 i = strlen (canon_name);
1422
1423 debugfile = xmalloc (strlen (debug_file_directory) + 1
1424 + i
1425 + strlen (DEBUG_SUBDIRECTORY)
1426 + strlen ("/")
1427 + strlen (basename)
1428 + 1);
1429
1430 /* First try in the same directory as the original file. */
1431 strcpy (debugfile, dir);
1432 strcat (debugfile, basename);
1433
1434 if (separate_debug_file_exists (debugfile, crc32, objfile))
1435 goto cleanup_return_debugfile;
1436
1437 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1438 strcpy (debugfile, dir);
1439 strcat (debugfile, DEBUG_SUBDIRECTORY);
1440 strcat (debugfile, "/");
1441 strcat (debugfile, basename);
1442
1443 if (separate_debug_file_exists (debugfile, crc32, objfile))
1444 goto cleanup_return_debugfile;
1445
1446 /* Then try in the global debugfile directories.
1447
1448 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1449 cause "/..." lookups. */
1450
1451 debugdir = debug_file_directory;
1452 do
1453 {
1454 char *debugdir_end;
1455
1456 while (*debugdir == DIRNAME_SEPARATOR)
1457 debugdir++;
1458
1459 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1460 if (debugdir_end == NULL)
1461 debugdir_end = &debugdir[strlen (debugdir)];
1462
1463 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1464 debugfile[debugdir_end - debugdir] = 0;
1465 strcat (debugfile, "/");
1466 strcat (debugfile, dir);
1467 strcat (debugfile, basename);
1468
1469 if (separate_debug_file_exists (debugfile, crc32, objfile))
1470 goto cleanup_return_debugfile;
1471
1472 /* If the file is in the sysroot, try using its base path in the
1473 global debugfile directory. */
1474 if (canon_name
1475 && filename_ncmp (canon_name, gdb_sysroot,
1476 strlen (gdb_sysroot)) == 0
1477 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1478 {
1479 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1480 debugfile[debugdir_end - debugdir] = 0;
1481 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1482 strcat (debugfile, "/");
1483 strcat (debugfile, basename);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 goto cleanup_return_debugfile;
1487 }
1488
1489 debugdir = debugdir_end;
1490 }
1491 while (*debugdir != 0);
1492
1493 xfree (debugfile);
1494 debugfile = NULL;
1495
1496 cleanup_return_debugfile:
1497 xfree (canon_name);
1498 xfree (basename);
1499 xfree (dir);
1500 return debugfile;
1501 }
1502
1503
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1517
1518 void
1519 symbol_file_command (char *args, int from_tty)
1520 {
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1525 symbol_file_clear (from_tty);
1526 }
1527 else
1528 {
1529 char **argv = gdb_buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 cleanups = make_cleanup_freeargv (argv);
1535 while (*argv != NULL)
1536 {
1537 if (strcmp (*argv, "-readnow") == 0)
1538 flags |= OBJF_READNOW;
1539 else if (**argv == '-')
1540 error (_("unknown option `%s'"), *argv);
1541 else
1542 {
1543 symbol_file_add_main_1 (*argv, from_tty, flags);
1544 name = *argv;
1545 }
1546
1547 argv++;
1548 }
1549
1550 if (name == NULL)
1551 error (_("no symbol file name was specified"));
1552
1553 do_cleanups (cleanups);
1554 }
1555 }
1556
1557 /* Set the initial language.
1558
1559 FIXME: A better solution would be to record the language in the
1560 psymtab when reading partial symbols, and then use it (if known) to
1561 set the language. This would be a win for formats that encode the
1562 language in an easily discoverable place, such as DWARF. For
1563 stabs, we can jump through hoops looking for specially named
1564 symbols or try to intuit the language from the specific type of
1565 stabs we find, but we can't do that until later when we read in
1566 full symbols. */
1567
1568 void
1569 set_initial_language (void)
1570 {
1571 enum language lang = language_unknown;
1572
1573 if (language_of_main != language_unknown)
1574 lang = language_of_main;
1575 else
1576 {
1577 const char *filename;
1578
1579 filename = find_main_filename ();
1580 if (filename != NULL)
1581 lang = deduce_language_from_filename (filename);
1582 }
1583
1584 if (lang == language_unknown)
1585 {
1586 /* Make C the default language */
1587 lang = language_c;
1588 }
1589
1590 set_language (lang);
1591 expected_language = current_language; /* Don't warn the user. */
1592 }
1593
1594 /* If NAME is a remote name open the file using remote protocol, otherwise
1595 open it normally. */
1596
1597 bfd *
1598 bfd_open_maybe_remote (const char *name)
1599 {
1600 if (remote_filename_p (name))
1601 return remote_bfd_open (name, gnutarget);
1602 else
1603 return bfd_openr (name, gnutarget);
1604 }
1605
1606
1607 /* Open the file specified by NAME and hand it off to BFD for
1608 preliminary analysis. Return a newly initialized bfd *, which
1609 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1610 absolute). In case of trouble, error() is called. */
1611
1612 bfd *
1613 symfile_bfd_open (char *name)
1614 {
1615 bfd *sym_bfd;
1616 int desc;
1617 char *absolute_name;
1618
1619 if (remote_filename_p (name))
1620 {
1621 name = xstrdup (name);
1622 sym_bfd = remote_bfd_open (name, gnutarget);
1623 if (!sym_bfd)
1624 {
1625 make_cleanup (xfree, name);
1626 error (_("`%s': can't open to read symbols: %s."), name,
1627 bfd_errmsg (bfd_get_error ()));
1628 }
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
1632 bfd_close (sym_bfd);
1633 make_cleanup (xfree, name);
1634 error (_("`%s': can't read symbols: %s."), name,
1635 bfd_errmsg (bfd_get_error ()));
1636 }
1637
1638 return sym_bfd;
1639 }
1640
1641 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1642
1643 /* Look down path for it, allocate 2nd new malloc'd copy. */
1644 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1645 O_RDONLY | O_BINARY, &absolute_name);
1646 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1647 if (desc < 0)
1648 {
1649 char *exename = alloca (strlen (name) + 5);
1650
1651 strcat (strcpy (exename, name), ".exe");
1652 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1653 O_RDONLY | O_BINARY, &absolute_name);
1654 }
1655 #endif
1656 if (desc < 0)
1657 {
1658 make_cleanup (xfree, name);
1659 perror_with_name (name);
1660 }
1661
1662 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1663 bfd. It'll be freed in free_objfile(). */
1664 xfree (name);
1665 name = absolute_name;
1666
1667 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1668 if (!sym_bfd)
1669 {
1670 close (desc);
1671 make_cleanup (xfree, name);
1672 error (_("`%s': can't open to read symbols: %s."), name,
1673 bfd_errmsg (bfd_get_error ()));
1674 }
1675 bfd_set_cacheable (sym_bfd, 1);
1676
1677 if (!bfd_check_format (sym_bfd, bfd_object))
1678 {
1679 /* FIXME: should be checking for errors from bfd_close (for one
1680 thing, on error it does not free all the storage associated
1681 with the bfd). */
1682 bfd_close (sym_bfd); /* This also closes desc. */
1683 make_cleanup (xfree, name);
1684 error (_("`%s': can't read symbols: %s."), name,
1685 bfd_errmsg (bfd_get_error ()));
1686 }
1687
1688 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1689 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1690
1691 return sym_bfd;
1692 }
1693
1694 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1695 the section was not found. */
1696
1697 int
1698 get_section_index (struct objfile *objfile, char *section_name)
1699 {
1700 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1701
1702 if (sect)
1703 return sect->index;
1704 else
1705 return -1;
1706 }
1707
1708 /* Link SF into the global symtab_fns list. Called on startup by the
1709 _initialize routine in each object file format reader, to register
1710 information about each format the reader is prepared to handle. */
1711
1712 void
1713 add_symtab_fns (const struct sym_fns *sf)
1714 {
1715 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1716 }
1717
1718 /* Initialize OBJFILE to read symbols from its associated BFD. It
1719 either returns or calls error(). The result is an initialized
1720 struct sym_fns in the objfile structure, that contains cached
1721 information about the symbol file. */
1722
1723 static const struct sym_fns *
1724 find_sym_fns (bfd *abfd)
1725 {
1726 const struct sym_fns *sf;
1727 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1728 int i;
1729
1730 if (our_flavour == bfd_target_srec_flavour
1731 || our_flavour == bfd_target_ihex_flavour
1732 || our_flavour == bfd_target_tekhex_flavour)
1733 return NULL; /* No symbols. */
1734
1735 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1736 if (our_flavour == sf->sym_flavour)
1737 return sf;
1738
1739 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1740 bfd_get_target (abfd));
1741 }
1742 \f
1743
1744 /* This function runs the load command of our current target. */
1745
1746 static void
1747 load_command (char *arg, int from_tty)
1748 {
1749 dont_repeat ();
1750
1751 /* The user might be reloading because the binary has changed. Take
1752 this opportunity to check. */
1753 reopen_exec_file ();
1754 reread_symbols ();
1755
1756 if (arg == NULL)
1757 {
1758 char *parg;
1759 int count = 0;
1760
1761 parg = arg = get_exec_file (1);
1762
1763 /* Count how many \ " ' tab space there are in the name. */
1764 while ((parg = strpbrk (parg, "\\\"'\t ")))
1765 {
1766 parg++;
1767 count++;
1768 }
1769
1770 if (count)
1771 {
1772 /* We need to quote this string so buildargv can pull it apart. */
1773 char *temp = xmalloc (strlen (arg) + count + 1 );
1774 char *ptemp = temp;
1775 char *prev;
1776
1777 make_cleanup (xfree, temp);
1778
1779 prev = parg = arg;
1780 while ((parg = strpbrk (parg, "\\\"'\t ")))
1781 {
1782 strncpy (ptemp, prev, parg - prev);
1783 ptemp += parg - prev;
1784 prev = parg++;
1785 *ptemp++ = '\\';
1786 }
1787 strcpy (ptemp, prev);
1788
1789 arg = temp;
1790 }
1791 }
1792
1793 target_load (arg, from_tty);
1794
1795 /* After re-loading the executable, we don't really know which
1796 overlays are mapped any more. */
1797 overlay_cache_invalid = 1;
1798 }
1799
1800 /* This version of "load" should be usable for any target. Currently
1801 it is just used for remote targets, not inftarg.c or core files,
1802 on the theory that only in that case is it useful.
1803
1804 Avoiding xmodem and the like seems like a win (a) because we don't have
1805 to worry about finding it, and (b) On VMS, fork() is very slow and so
1806 we don't want to run a subprocess. On the other hand, I'm not sure how
1807 performance compares. */
1808
1809 static int validate_download = 0;
1810
1811 /* Callback service function for generic_load (bfd_map_over_sections). */
1812
1813 static void
1814 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1815 {
1816 bfd_size_type *sum = data;
1817
1818 *sum += bfd_get_section_size (asec);
1819 }
1820
1821 /* Opaque data for load_section_callback. */
1822 struct load_section_data {
1823 unsigned long load_offset;
1824 struct load_progress_data *progress_data;
1825 VEC(memory_write_request_s) *requests;
1826 };
1827
1828 /* Opaque data for load_progress. */
1829 struct load_progress_data {
1830 /* Cumulative data. */
1831 unsigned long write_count;
1832 unsigned long data_count;
1833 bfd_size_type total_size;
1834 };
1835
1836 /* Opaque data for load_progress for a single section. */
1837 struct load_progress_section_data {
1838 struct load_progress_data *cumulative;
1839
1840 /* Per-section data. */
1841 const char *section_name;
1842 ULONGEST section_sent;
1843 ULONGEST section_size;
1844 CORE_ADDR lma;
1845 gdb_byte *buffer;
1846 };
1847
1848 /* Target write callback routine for progress reporting. */
1849
1850 static void
1851 load_progress (ULONGEST bytes, void *untyped_arg)
1852 {
1853 struct load_progress_section_data *args = untyped_arg;
1854 struct load_progress_data *totals;
1855
1856 if (args == NULL)
1857 /* Writing padding data. No easy way to get at the cumulative
1858 stats, so just ignore this. */
1859 return;
1860
1861 totals = args->cumulative;
1862
1863 if (bytes == 0 && args->section_sent == 0)
1864 {
1865 /* The write is just starting. Let the user know we've started
1866 this section. */
1867 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1868 args->section_name, hex_string (args->section_size),
1869 paddress (target_gdbarch, args->lma));
1870 return;
1871 }
1872
1873 if (validate_download)
1874 {
1875 /* Broken memories and broken monitors manifest themselves here
1876 when bring new computers to life. This doubles already slow
1877 downloads. */
1878 /* NOTE: cagney/1999-10-18: A more efficient implementation
1879 might add a verify_memory() method to the target vector and
1880 then use that. remote.c could implement that method using
1881 the ``qCRC'' packet. */
1882 gdb_byte *check = xmalloc (bytes);
1883 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1884
1885 if (target_read_memory (args->lma, check, bytes) != 0)
1886 error (_("Download verify read failed at %s"),
1887 paddress (target_gdbarch, args->lma));
1888 if (memcmp (args->buffer, check, bytes) != 0)
1889 error (_("Download verify compare failed at %s"),
1890 paddress (target_gdbarch, args->lma));
1891 do_cleanups (verify_cleanups);
1892 }
1893 totals->data_count += bytes;
1894 args->lma += bytes;
1895 args->buffer += bytes;
1896 totals->write_count += 1;
1897 args->section_sent += bytes;
1898 if (quit_flag
1899 || (deprecated_ui_load_progress_hook != NULL
1900 && deprecated_ui_load_progress_hook (args->section_name,
1901 args->section_sent)))
1902 error (_("Canceled the download"));
1903
1904 if (deprecated_show_load_progress != NULL)
1905 deprecated_show_load_progress (args->section_name,
1906 args->section_sent,
1907 args->section_size,
1908 totals->data_count,
1909 totals->total_size);
1910 }
1911
1912 /* Callback service function for generic_load (bfd_map_over_sections). */
1913
1914 static void
1915 load_section_callback (bfd *abfd, asection *asec, void *data)
1916 {
1917 struct memory_write_request *new_request;
1918 struct load_section_data *args = data;
1919 struct load_progress_section_data *section_data;
1920 bfd_size_type size = bfd_get_section_size (asec);
1921 gdb_byte *buffer;
1922 const char *sect_name = bfd_get_section_name (abfd, asec);
1923
1924 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1925 return;
1926
1927 if (size == 0)
1928 return;
1929
1930 new_request = VEC_safe_push (memory_write_request_s,
1931 args->requests, NULL);
1932 memset (new_request, 0, sizeof (struct memory_write_request));
1933 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1934 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1935 new_request->end = new_request->begin + size; /* FIXME Should size
1936 be in instead? */
1937 new_request->data = xmalloc (size);
1938 new_request->baton = section_data;
1939
1940 buffer = new_request->data;
1941
1942 section_data->cumulative = args->progress_data;
1943 section_data->section_name = sect_name;
1944 section_data->section_size = size;
1945 section_data->lma = new_request->begin;
1946 section_data->buffer = buffer;
1947
1948 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1949 }
1950
1951 /* Clean up an entire memory request vector, including load
1952 data and progress records. */
1953
1954 static void
1955 clear_memory_write_data (void *arg)
1956 {
1957 VEC(memory_write_request_s) **vec_p = arg;
1958 VEC(memory_write_request_s) *vec = *vec_p;
1959 int i;
1960 struct memory_write_request *mr;
1961
1962 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1963 {
1964 xfree (mr->data);
1965 xfree (mr->baton);
1966 }
1967 VEC_free (memory_write_request_s, vec);
1968 }
1969
1970 void
1971 generic_load (char *args, int from_tty)
1972 {
1973 bfd *loadfile_bfd;
1974 struct timeval start_time, end_time;
1975 char *filename;
1976 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1977 struct load_section_data cbdata;
1978 struct load_progress_data total_progress;
1979 struct ui_out *uiout = current_uiout;
1980
1981 CORE_ADDR entry;
1982 char **argv;
1983
1984 memset (&cbdata, 0, sizeof (cbdata));
1985 memset (&total_progress, 0, sizeof (total_progress));
1986 cbdata.progress_data = &total_progress;
1987
1988 make_cleanup (clear_memory_write_data, &cbdata.requests);
1989
1990 if (args == NULL)
1991 error_no_arg (_("file to load"));
1992
1993 argv = gdb_buildargv (args);
1994 make_cleanup_freeargv (argv);
1995
1996 filename = tilde_expand (argv[0]);
1997 make_cleanup (xfree, filename);
1998
1999 if (argv[1] != NULL)
2000 {
2001 char *endptr;
2002
2003 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2004
2005 /* If the last word was not a valid number then
2006 treat it as a file name with spaces in. */
2007 if (argv[1] == endptr)
2008 error (_("Invalid download offset:%s."), argv[1]);
2009
2010 if (argv[2] != NULL)
2011 error (_("Too many parameters."));
2012 }
2013
2014 /* Open the file for loading. */
2015 loadfile_bfd = bfd_openr (filename, gnutarget);
2016 if (loadfile_bfd == NULL)
2017 {
2018 perror_with_name (filename);
2019 return;
2020 }
2021
2022 /* FIXME: should be checking for errors from bfd_close (for one thing,
2023 on error it does not free all the storage associated with the
2024 bfd). */
2025 make_cleanup_bfd_close (loadfile_bfd);
2026
2027 if (!bfd_check_format (loadfile_bfd, bfd_object))
2028 {
2029 error (_("\"%s\" is not an object file: %s"), filename,
2030 bfd_errmsg (bfd_get_error ()));
2031 }
2032
2033 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2034 (void *) &total_progress.total_size);
2035
2036 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2037
2038 gettimeofday (&start_time, NULL);
2039
2040 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2041 load_progress) != 0)
2042 error (_("Load failed"));
2043
2044 gettimeofday (&end_time, NULL);
2045
2046 entry = bfd_get_start_address (loadfile_bfd);
2047 ui_out_text (uiout, "Start address ");
2048 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2049 ui_out_text (uiout, ", load size ");
2050 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2051 ui_out_text (uiout, "\n");
2052 /* We were doing this in remote-mips.c, I suspect it is right
2053 for other targets too. */
2054 regcache_write_pc (get_current_regcache (), entry);
2055
2056 /* Reset breakpoints, now that we have changed the load image. For
2057 instance, breakpoints may have been set (or reset, by
2058 post_create_inferior) while connected to the target but before we
2059 loaded the program. In that case, the prologue analyzer could
2060 have read instructions from the target to find the right
2061 breakpoint locations. Loading has changed the contents of that
2062 memory. */
2063
2064 breakpoint_re_set ();
2065
2066 /* FIXME: are we supposed to call symbol_file_add or not? According
2067 to a comment from remote-mips.c (where a call to symbol_file_add
2068 was commented out), making the call confuses GDB if more than one
2069 file is loaded in. Some targets do (e.g., remote-vx.c) but
2070 others don't (or didn't - perhaps they have all been deleted). */
2071
2072 print_transfer_performance (gdb_stdout, total_progress.data_count,
2073 total_progress.write_count,
2074 &start_time, &end_time);
2075
2076 do_cleanups (old_cleanups);
2077 }
2078
2079 /* Report how fast the transfer went. */
2080
2081 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2082 replaced by print_transfer_performance (with a very different
2083 function signature). */
2084
2085 void
2086 report_transfer_performance (unsigned long data_count, time_t start_time,
2087 time_t end_time)
2088 {
2089 struct timeval start, end;
2090
2091 start.tv_sec = start_time;
2092 start.tv_usec = 0;
2093 end.tv_sec = end_time;
2094 end.tv_usec = 0;
2095
2096 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2097 }
2098
2099 void
2100 print_transfer_performance (struct ui_file *stream,
2101 unsigned long data_count,
2102 unsigned long write_count,
2103 const struct timeval *start_time,
2104 const struct timeval *end_time)
2105 {
2106 ULONGEST time_count;
2107 struct ui_out *uiout = current_uiout;
2108
2109 /* Compute the elapsed time in milliseconds, as a tradeoff between
2110 accuracy and overflow. */
2111 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2112 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2113
2114 ui_out_text (uiout, "Transfer rate: ");
2115 if (time_count > 0)
2116 {
2117 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2118
2119 if (ui_out_is_mi_like_p (uiout))
2120 {
2121 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2122 ui_out_text (uiout, " bits/sec");
2123 }
2124 else if (rate < 1024)
2125 {
2126 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2127 ui_out_text (uiout, " bytes/sec");
2128 }
2129 else
2130 {
2131 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2132 ui_out_text (uiout, " KB/sec");
2133 }
2134 }
2135 else
2136 {
2137 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2138 ui_out_text (uiout, " bits in <1 sec");
2139 }
2140 if (write_count > 0)
2141 {
2142 ui_out_text (uiout, ", ");
2143 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2144 ui_out_text (uiout, " bytes/write");
2145 }
2146 ui_out_text (uiout, ".\n");
2147 }
2148
2149 /* This function allows the addition of incrementally linked object files.
2150 It does not modify any state in the target, only in the debugger. */
2151 /* Note: ezannoni 2000-04-13 This function/command used to have a
2152 special case syntax for the rombug target (Rombug is the boot
2153 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2154 rombug case, the user doesn't need to supply a text address,
2155 instead a call to target_link() (in target.c) would supply the
2156 value to use. We are now discontinuing this type of ad hoc syntax. */
2157
2158 static void
2159 add_symbol_file_command (char *args, int from_tty)
2160 {
2161 struct gdbarch *gdbarch = get_current_arch ();
2162 char *filename = NULL;
2163 int flags = OBJF_USERLOADED;
2164 char *arg;
2165 int section_index = 0;
2166 int argcnt = 0;
2167 int sec_num = 0;
2168 int i;
2169 int expecting_sec_name = 0;
2170 int expecting_sec_addr = 0;
2171 char **argv;
2172
2173 struct sect_opt
2174 {
2175 char *name;
2176 char *value;
2177 };
2178
2179 struct section_addr_info *section_addrs;
2180 struct sect_opt *sect_opts = NULL;
2181 size_t num_sect_opts = 0;
2182 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2183
2184 num_sect_opts = 16;
2185 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2186 * sizeof (struct sect_opt));
2187
2188 dont_repeat ();
2189
2190 if (args == NULL)
2191 error (_("add-symbol-file takes a file name and an address"));
2192
2193 argv = gdb_buildargv (args);
2194 make_cleanup_freeargv (argv);
2195
2196 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2197 {
2198 /* Process the argument. */
2199 if (argcnt == 0)
2200 {
2201 /* The first argument is the file name. */
2202 filename = tilde_expand (arg);
2203 make_cleanup (xfree, filename);
2204 }
2205 else
2206 if (argcnt == 1)
2207 {
2208 /* The second argument is always the text address at which
2209 to load the program. */
2210 sect_opts[section_index].name = ".text";
2211 sect_opts[section_index].value = arg;
2212 if (++section_index >= num_sect_opts)
2213 {
2214 num_sect_opts *= 2;
2215 sect_opts = ((struct sect_opt *)
2216 xrealloc (sect_opts,
2217 num_sect_opts
2218 * sizeof (struct sect_opt)));
2219 }
2220 }
2221 else
2222 {
2223 /* It's an option (starting with '-') or it's an argument
2224 to an option. */
2225
2226 if (*arg == '-')
2227 {
2228 if (strcmp (arg, "-readnow") == 0)
2229 flags |= OBJF_READNOW;
2230 else if (strcmp (arg, "-s") == 0)
2231 {
2232 expecting_sec_name = 1;
2233 expecting_sec_addr = 1;
2234 }
2235 }
2236 else
2237 {
2238 if (expecting_sec_name)
2239 {
2240 sect_opts[section_index].name = arg;
2241 expecting_sec_name = 0;
2242 }
2243 else
2244 if (expecting_sec_addr)
2245 {
2246 sect_opts[section_index].value = arg;
2247 expecting_sec_addr = 0;
2248 if (++section_index >= num_sect_opts)
2249 {
2250 num_sect_opts *= 2;
2251 sect_opts = ((struct sect_opt *)
2252 xrealloc (sect_opts,
2253 num_sect_opts
2254 * sizeof (struct sect_opt)));
2255 }
2256 }
2257 else
2258 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2259 " [-readnow] [-s <secname> <addr>]*"));
2260 }
2261 }
2262 }
2263
2264 /* This command takes at least two arguments. The first one is a
2265 filename, and the second is the address where this file has been
2266 loaded. Abort now if this address hasn't been provided by the
2267 user. */
2268 if (section_index < 1)
2269 error (_("The address where %s has been loaded is missing"), filename);
2270
2271 /* Print the prompt for the query below. And save the arguments into
2272 a sect_addr_info structure to be passed around to other
2273 functions. We have to split this up into separate print
2274 statements because hex_string returns a local static
2275 string. */
2276
2277 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2278 section_addrs = alloc_section_addr_info (section_index);
2279 make_cleanup (xfree, section_addrs);
2280 for (i = 0; i < section_index; i++)
2281 {
2282 CORE_ADDR addr;
2283 char *val = sect_opts[i].value;
2284 char *sec = sect_opts[i].name;
2285
2286 addr = parse_and_eval_address (val);
2287
2288 /* Here we store the section offsets in the order they were
2289 entered on the command line. */
2290 section_addrs->other[sec_num].name = sec;
2291 section_addrs->other[sec_num].addr = addr;
2292 printf_unfiltered ("\t%s_addr = %s\n", sec,
2293 paddress (gdbarch, addr));
2294 sec_num++;
2295
2296 /* The object's sections are initialized when a
2297 call is made to build_objfile_section_table (objfile).
2298 This happens in reread_symbols.
2299 At this point, we don't know what file type this is,
2300 so we can't determine what section names are valid. */
2301 }
2302
2303 if (from_tty && (!query ("%s", "")))
2304 error (_("Not confirmed."));
2305
2306 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2307 section_addrs, flags);
2308
2309 /* Getting new symbols may change our opinion about what is
2310 frameless. */
2311 reinit_frame_cache ();
2312 do_cleanups (my_cleanups);
2313 }
2314 \f
2315
2316 /* Re-read symbols if a symbol-file has changed. */
2317 void
2318 reread_symbols (void)
2319 {
2320 struct objfile *objfile;
2321 long new_modtime;
2322 int reread_one = 0;
2323 struct stat new_statbuf;
2324 int res;
2325
2326 /* With the addition of shared libraries, this should be modified,
2327 the load time should be saved in the partial symbol tables, since
2328 different tables may come from different source files. FIXME.
2329 This routine should then walk down each partial symbol table
2330 and see if the symbol table that it originates from has been changed. */
2331
2332 for (objfile = object_files; objfile; objfile = objfile->next)
2333 {
2334 /* solib-sunos.c creates one objfile with obfd. */
2335 if (objfile->obfd == NULL)
2336 continue;
2337
2338 /* Separate debug objfiles are handled in the main objfile. */
2339 if (objfile->separate_debug_objfile_backlink)
2340 continue;
2341
2342 /* If this object is from an archive (what you usually create with
2343 `ar', often called a `static library' on most systems, though
2344 a `shared library' on AIX is also an archive), then you should
2345 stat on the archive name, not member name. */
2346 if (objfile->obfd->my_archive)
2347 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2348 else
2349 res = stat (objfile->name, &new_statbuf);
2350 if (res != 0)
2351 {
2352 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2353 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2354 objfile->name);
2355 continue;
2356 }
2357 new_modtime = new_statbuf.st_mtime;
2358 if (new_modtime != objfile->mtime)
2359 {
2360 struct cleanup *old_cleanups;
2361 struct section_offsets *offsets;
2362 int num_offsets;
2363 char *obfd_filename;
2364
2365 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2366 objfile->name);
2367
2368 /* There are various functions like symbol_file_add,
2369 symfile_bfd_open, syms_from_objfile, etc., which might
2370 appear to do what we want. But they have various other
2371 effects which we *don't* want. So we just do stuff
2372 ourselves. We don't worry about mapped files (for one thing,
2373 any mapped file will be out of date). */
2374
2375 /* If we get an error, blow away this objfile (not sure if
2376 that is the correct response for things like shared
2377 libraries). */
2378 old_cleanups = make_cleanup_free_objfile (objfile);
2379 /* We need to do this whenever any symbols go away. */
2380 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2381
2382 if (exec_bfd != NULL
2383 && filename_cmp (bfd_get_filename (objfile->obfd),
2384 bfd_get_filename (exec_bfd)) == 0)
2385 {
2386 /* Reload EXEC_BFD without asking anything. */
2387
2388 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2389 }
2390
2391 /* Clean up any state BFD has sitting around. We don't need
2392 to close the descriptor but BFD lacks a way of closing the
2393 BFD without closing the descriptor. */
2394 obfd_filename = bfd_get_filename (objfile->obfd);
2395 if (!bfd_close (objfile->obfd))
2396 error (_("Can't close BFD for %s: %s"), objfile->name,
2397 bfd_errmsg (bfd_get_error ()));
2398 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2399 if (objfile->obfd == NULL)
2400 error (_("Can't open %s to read symbols."), objfile->name);
2401 else
2402 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2403 /* bfd_openr sets cacheable to true, which is what we want. */
2404 if (!bfd_check_format (objfile->obfd, bfd_object))
2405 error (_("Can't read symbols from %s: %s."), objfile->name,
2406 bfd_errmsg (bfd_get_error ()));
2407
2408 /* Save the offsets, we will nuke them with the rest of the
2409 objfile_obstack. */
2410 num_offsets = objfile->num_sections;
2411 offsets = ((struct section_offsets *)
2412 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2413 memcpy (offsets, objfile->section_offsets,
2414 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2415
2416 /* Remove any references to this objfile in the global
2417 value lists. */
2418 preserve_values (objfile);
2419
2420 /* Nuke all the state that we will re-read. Much of the following
2421 code which sets things to NULL really is necessary to tell
2422 other parts of GDB that there is nothing currently there.
2423
2424 Try to keep the freeing order compatible with free_objfile. */
2425
2426 if (objfile->sf != NULL)
2427 {
2428 (*objfile->sf->sym_finish) (objfile);
2429 }
2430
2431 clear_objfile_data (objfile);
2432
2433 /* Free the separate debug objfiles. It will be
2434 automatically recreated by sym_read. */
2435 free_objfile_separate_debug (objfile);
2436
2437 /* FIXME: Do we have to free a whole linked list, or is this
2438 enough? */
2439 if (objfile->global_psymbols.list)
2440 xfree (objfile->global_psymbols.list);
2441 memset (&objfile->global_psymbols, 0,
2442 sizeof (objfile->global_psymbols));
2443 if (objfile->static_psymbols.list)
2444 xfree (objfile->static_psymbols.list);
2445 memset (&objfile->static_psymbols, 0,
2446 sizeof (objfile->static_psymbols));
2447
2448 /* Free the obstacks for non-reusable objfiles. */
2449 psymbol_bcache_free (objfile->psymbol_cache);
2450 objfile->psymbol_cache = psymbol_bcache_init ();
2451 bcache_xfree (objfile->macro_cache);
2452 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2453 bcache_xfree (objfile->filename_cache);
2454 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2455 if (objfile->demangled_names_hash != NULL)
2456 {
2457 htab_delete (objfile->demangled_names_hash);
2458 objfile->demangled_names_hash = NULL;
2459 }
2460 obstack_free (&objfile->objfile_obstack, 0);
2461 objfile->sections = NULL;
2462 objfile->symtabs = NULL;
2463 objfile->psymtabs = NULL;
2464 objfile->psymtabs_addrmap = NULL;
2465 objfile->free_psymtabs = NULL;
2466 objfile->template_symbols = NULL;
2467 objfile->msymbols = NULL;
2468 objfile->deprecated_sym_private = NULL;
2469 objfile->minimal_symbol_count = 0;
2470 memset (&objfile->msymbol_hash, 0,
2471 sizeof (objfile->msymbol_hash));
2472 memset (&objfile->msymbol_demangled_hash, 0,
2473 sizeof (objfile->msymbol_demangled_hash));
2474
2475 /* obstack_init also initializes the obstack so it is
2476 empty. We could use obstack_specify_allocation but
2477 gdb_obstack.h specifies the alloc/dealloc
2478 functions. */
2479 obstack_init (&objfile->objfile_obstack);
2480 if (build_objfile_section_table (objfile))
2481 {
2482 error (_("Can't find the file sections in `%s': %s"),
2483 objfile->name, bfd_errmsg (bfd_get_error ()));
2484 }
2485 terminate_minimal_symbol_table (objfile);
2486
2487 /* We use the same section offsets as from last time. I'm not
2488 sure whether that is always correct for shared libraries. */
2489 objfile->section_offsets = (struct section_offsets *)
2490 obstack_alloc (&objfile->objfile_obstack,
2491 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2492 memcpy (objfile->section_offsets, offsets,
2493 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2494 objfile->num_sections = num_offsets;
2495
2496 /* What the hell is sym_new_init for, anyway? The concept of
2497 distinguishing between the main file and additional files
2498 in this way seems rather dubious. */
2499 if (objfile == symfile_objfile)
2500 {
2501 (*objfile->sf->sym_new_init) (objfile);
2502 }
2503
2504 (*objfile->sf->sym_init) (objfile);
2505 clear_complaints (&symfile_complaints, 1, 1);
2506 /* Do not set flags as this is safe and we don't want to be
2507 verbose. */
2508 (*objfile->sf->sym_read) (objfile, 0);
2509 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2510 {
2511 objfile->flags &= ~OBJF_PSYMTABS_READ;
2512 require_partial_symbols (objfile, 0);
2513 }
2514
2515 if (!objfile_has_symbols (objfile))
2516 {
2517 wrap_here ("");
2518 printf_unfiltered (_("(no debugging symbols found)\n"));
2519 wrap_here ("");
2520 }
2521
2522 /* We're done reading the symbol file; finish off complaints. */
2523 clear_complaints (&symfile_complaints, 0, 1);
2524
2525 /* Getting new symbols may change our opinion about what is
2526 frameless. */
2527
2528 reinit_frame_cache ();
2529
2530 /* Discard cleanups as symbol reading was successful. */
2531 discard_cleanups (old_cleanups);
2532
2533 /* If the mtime has changed between the time we set new_modtime
2534 and now, we *want* this to be out of date, so don't call stat
2535 again now. */
2536 objfile->mtime = new_modtime;
2537 reread_one = 1;
2538 init_entry_point_info (objfile);
2539 }
2540 }
2541
2542 if (reread_one)
2543 {
2544 /* Notify objfiles that we've modified objfile sections. */
2545 objfiles_changed ();
2546
2547 clear_symtab_users (0);
2548 /* At least one objfile has changed, so we can consider that
2549 the executable we're debugging has changed too. */
2550 observer_notify_executable_changed ();
2551 }
2552 }
2553 \f
2554
2555
2556 typedef struct
2557 {
2558 char *ext;
2559 enum language lang;
2560 }
2561 filename_language;
2562
2563 static filename_language *filename_language_table;
2564 static int fl_table_size, fl_table_next;
2565
2566 static void
2567 add_filename_language (char *ext, enum language lang)
2568 {
2569 if (fl_table_next >= fl_table_size)
2570 {
2571 fl_table_size += 10;
2572 filename_language_table =
2573 xrealloc (filename_language_table,
2574 fl_table_size * sizeof (*filename_language_table));
2575 }
2576
2577 filename_language_table[fl_table_next].ext = xstrdup (ext);
2578 filename_language_table[fl_table_next].lang = lang;
2579 fl_table_next++;
2580 }
2581
2582 static char *ext_args;
2583 static void
2584 show_ext_args (struct ui_file *file, int from_tty,
2585 struct cmd_list_element *c, const char *value)
2586 {
2587 fprintf_filtered (file,
2588 _("Mapping between filename extension "
2589 "and source language is \"%s\".\n"),
2590 value);
2591 }
2592
2593 static void
2594 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2595 {
2596 int i;
2597 char *cp = ext_args;
2598 enum language lang;
2599
2600 /* First arg is filename extension, starting with '.' */
2601 if (*cp != '.')
2602 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2603
2604 /* Find end of first arg. */
2605 while (*cp && !isspace (*cp))
2606 cp++;
2607
2608 if (*cp == '\0')
2609 error (_("'%s': two arguments required -- "
2610 "filename extension and language"),
2611 ext_args);
2612
2613 /* Null-terminate first arg. */
2614 *cp++ = '\0';
2615
2616 /* Find beginning of second arg, which should be a source language. */
2617 while (*cp && isspace (*cp))
2618 cp++;
2619
2620 if (*cp == '\0')
2621 error (_("'%s': two arguments required -- "
2622 "filename extension and language"),
2623 ext_args);
2624
2625 /* Lookup the language from among those we know. */
2626 lang = language_enum (cp);
2627
2628 /* Now lookup the filename extension: do we already know it? */
2629 for (i = 0; i < fl_table_next; i++)
2630 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2631 break;
2632
2633 if (i >= fl_table_next)
2634 {
2635 /* New file extension. */
2636 add_filename_language (ext_args, lang);
2637 }
2638 else
2639 {
2640 /* Redefining a previously known filename extension. */
2641
2642 /* if (from_tty) */
2643 /* query ("Really make files of type %s '%s'?", */
2644 /* ext_args, language_str (lang)); */
2645
2646 xfree (filename_language_table[i].ext);
2647 filename_language_table[i].ext = xstrdup (ext_args);
2648 filename_language_table[i].lang = lang;
2649 }
2650 }
2651
2652 static void
2653 info_ext_lang_command (char *args, int from_tty)
2654 {
2655 int i;
2656
2657 printf_filtered (_("Filename extensions and the languages they represent:"));
2658 printf_filtered ("\n\n");
2659 for (i = 0; i < fl_table_next; i++)
2660 printf_filtered ("\t%s\t- %s\n",
2661 filename_language_table[i].ext,
2662 language_str (filename_language_table[i].lang));
2663 }
2664
2665 static void
2666 init_filename_language_table (void)
2667 {
2668 if (fl_table_size == 0) /* Protect against repetition. */
2669 {
2670 fl_table_size = 20;
2671 fl_table_next = 0;
2672 filename_language_table =
2673 xmalloc (fl_table_size * sizeof (*filename_language_table));
2674 add_filename_language (".c", language_c);
2675 add_filename_language (".d", language_d);
2676 add_filename_language (".C", language_cplus);
2677 add_filename_language (".cc", language_cplus);
2678 add_filename_language (".cp", language_cplus);
2679 add_filename_language (".cpp", language_cplus);
2680 add_filename_language (".cxx", language_cplus);
2681 add_filename_language (".c++", language_cplus);
2682 add_filename_language (".java", language_java);
2683 add_filename_language (".class", language_java);
2684 add_filename_language (".m", language_objc);
2685 add_filename_language (".f", language_fortran);
2686 add_filename_language (".F", language_fortran);
2687 add_filename_language (".for", language_fortran);
2688 add_filename_language (".FOR", language_fortran);
2689 add_filename_language (".ftn", language_fortran);
2690 add_filename_language (".FTN", language_fortran);
2691 add_filename_language (".fpp", language_fortran);
2692 add_filename_language (".FPP", language_fortran);
2693 add_filename_language (".f90", language_fortran);
2694 add_filename_language (".F90", language_fortran);
2695 add_filename_language (".f95", language_fortran);
2696 add_filename_language (".F95", language_fortran);
2697 add_filename_language (".f03", language_fortran);
2698 add_filename_language (".F03", language_fortran);
2699 add_filename_language (".f08", language_fortran);
2700 add_filename_language (".F08", language_fortran);
2701 add_filename_language (".s", language_asm);
2702 add_filename_language (".sx", language_asm);
2703 add_filename_language (".S", language_asm);
2704 add_filename_language (".pas", language_pascal);
2705 add_filename_language (".p", language_pascal);
2706 add_filename_language (".pp", language_pascal);
2707 add_filename_language (".adb", language_ada);
2708 add_filename_language (".ads", language_ada);
2709 add_filename_language (".a", language_ada);
2710 add_filename_language (".ada", language_ada);
2711 add_filename_language (".dg", language_ada);
2712 }
2713 }
2714
2715 enum language
2716 deduce_language_from_filename (const char *filename)
2717 {
2718 int i;
2719 char *cp;
2720
2721 if (filename != NULL)
2722 if ((cp = strrchr (filename, '.')) != NULL)
2723 for (i = 0; i < fl_table_next; i++)
2724 if (strcmp (cp, filename_language_table[i].ext) == 0)
2725 return filename_language_table[i].lang;
2726
2727 return language_unknown;
2728 }
2729 \f
2730 /* allocate_symtab:
2731
2732 Allocate and partly initialize a new symbol table. Return a pointer
2733 to it. error() if no space.
2734
2735 Caller must set these fields:
2736 LINETABLE(symtab)
2737 symtab->blockvector
2738 symtab->dirname
2739 symtab->free_code
2740 symtab->free_ptr
2741 */
2742
2743 struct symtab *
2744 allocate_symtab (const char *filename, struct objfile *objfile)
2745 {
2746 struct symtab *symtab;
2747
2748 symtab = (struct symtab *)
2749 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2750 memset (symtab, 0, sizeof (*symtab));
2751 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2752 objfile->filename_cache);
2753 symtab->fullname = NULL;
2754 symtab->language = deduce_language_from_filename (filename);
2755 symtab->debugformat = "unknown";
2756
2757 /* Hook it to the objfile it comes from. */
2758
2759 symtab->objfile = objfile;
2760 symtab->next = objfile->symtabs;
2761 objfile->symtabs = symtab;
2762
2763 return (symtab);
2764 }
2765 \f
2766
2767 /* Reset all data structures in gdb which may contain references to symbol
2768 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2769
2770 void
2771 clear_symtab_users (int add_flags)
2772 {
2773 /* Someday, we should do better than this, by only blowing away
2774 the things that really need to be blown. */
2775
2776 /* Clear the "current" symtab first, because it is no longer valid.
2777 breakpoint_re_set may try to access the current symtab. */
2778 clear_current_source_symtab_and_line ();
2779
2780 clear_displays ();
2781 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2782 breakpoint_re_set ();
2783 set_default_breakpoint (0, NULL, 0, 0, 0);
2784 clear_pc_function_cache ();
2785 observer_notify_new_objfile (NULL);
2786
2787 /* Clear globals which might have pointed into a removed objfile.
2788 FIXME: It's not clear which of these are supposed to persist
2789 between expressions and which ought to be reset each time. */
2790 expression_context_block = NULL;
2791 innermost_block = NULL;
2792
2793 /* Varobj may refer to old symbols, perform a cleanup. */
2794 varobj_invalidate ();
2795
2796 }
2797
2798 static void
2799 clear_symtab_users_cleanup (void *ignore)
2800 {
2801 clear_symtab_users (0);
2802 }
2803 \f
2804 /* OVERLAYS:
2805 The following code implements an abstraction for debugging overlay sections.
2806
2807 The target model is as follows:
2808 1) The gnu linker will permit multiple sections to be mapped into the
2809 same VMA, each with its own unique LMA (or load address).
2810 2) It is assumed that some runtime mechanism exists for mapping the
2811 sections, one by one, from the load address into the VMA address.
2812 3) This code provides a mechanism for gdb to keep track of which
2813 sections should be considered to be mapped from the VMA to the LMA.
2814 This information is used for symbol lookup, and memory read/write.
2815 For instance, if a section has been mapped then its contents
2816 should be read from the VMA, otherwise from the LMA.
2817
2818 Two levels of debugger support for overlays are available. One is
2819 "manual", in which the debugger relies on the user to tell it which
2820 overlays are currently mapped. This level of support is
2821 implemented entirely in the core debugger, and the information about
2822 whether a section is mapped is kept in the objfile->obj_section table.
2823
2824 The second level of support is "automatic", and is only available if
2825 the target-specific code provides functionality to read the target's
2826 overlay mapping table, and translate its contents for the debugger
2827 (by updating the mapped state information in the obj_section tables).
2828
2829 The interface is as follows:
2830 User commands:
2831 overlay map <name> -- tell gdb to consider this section mapped
2832 overlay unmap <name> -- tell gdb to consider this section unmapped
2833 overlay list -- list the sections that GDB thinks are mapped
2834 overlay read-target -- get the target's state of what's mapped
2835 overlay off/manual/auto -- set overlay debugging state
2836 Functional interface:
2837 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2838 section, return that section.
2839 find_pc_overlay(pc): find any overlay section that contains
2840 the pc, either in its VMA or its LMA
2841 section_is_mapped(sect): true if overlay is marked as mapped
2842 section_is_overlay(sect): true if section's VMA != LMA
2843 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2844 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2845 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2846 overlay_mapped_address(...): map an address from section's LMA to VMA
2847 overlay_unmapped_address(...): map an address from section's VMA to LMA
2848 symbol_overlayed_address(...): Return a "current" address for symbol:
2849 either in VMA or LMA depending on whether
2850 the symbol's section is currently mapped. */
2851
2852 /* Overlay debugging state: */
2853
2854 enum overlay_debugging_state overlay_debugging = ovly_off;
2855 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2856
2857 /* Function: section_is_overlay (SECTION)
2858 Returns true if SECTION has VMA not equal to LMA, ie.
2859 SECTION is loaded at an address different from where it will "run". */
2860
2861 int
2862 section_is_overlay (struct obj_section *section)
2863 {
2864 if (overlay_debugging && section)
2865 {
2866 bfd *abfd = section->objfile->obfd;
2867 asection *bfd_section = section->the_bfd_section;
2868
2869 if (bfd_section_lma (abfd, bfd_section) != 0
2870 && bfd_section_lma (abfd, bfd_section)
2871 != bfd_section_vma (abfd, bfd_section))
2872 return 1;
2873 }
2874
2875 return 0;
2876 }
2877
2878 /* Function: overlay_invalidate_all (void)
2879 Invalidate the mapped state of all overlay sections (mark it as stale). */
2880
2881 static void
2882 overlay_invalidate_all (void)
2883 {
2884 struct objfile *objfile;
2885 struct obj_section *sect;
2886
2887 ALL_OBJSECTIONS (objfile, sect)
2888 if (section_is_overlay (sect))
2889 sect->ovly_mapped = -1;
2890 }
2891
2892 /* Function: section_is_mapped (SECTION)
2893 Returns true if section is an overlay, and is currently mapped.
2894
2895 Access to the ovly_mapped flag is restricted to this function, so
2896 that we can do automatic update. If the global flag
2897 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2898 overlay_invalidate_all. If the mapped state of the particular
2899 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2900
2901 int
2902 section_is_mapped (struct obj_section *osect)
2903 {
2904 struct gdbarch *gdbarch;
2905
2906 if (osect == 0 || !section_is_overlay (osect))
2907 return 0;
2908
2909 switch (overlay_debugging)
2910 {
2911 default:
2912 case ovly_off:
2913 return 0; /* overlay debugging off */
2914 case ovly_auto: /* overlay debugging automatic */
2915 /* Unles there is a gdbarch_overlay_update function,
2916 there's really nothing useful to do here (can't really go auto). */
2917 gdbarch = get_objfile_arch (osect->objfile);
2918 if (gdbarch_overlay_update_p (gdbarch))
2919 {
2920 if (overlay_cache_invalid)
2921 {
2922 overlay_invalidate_all ();
2923 overlay_cache_invalid = 0;
2924 }
2925 if (osect->ovly_mapped == -1)
2926 gdbarch_overlay_update (gdbarch, osect);
2927 }
2928 /* fall thru to manual case */
2929 case ovly_on: /* overlay debugging manual */
2930 return osect->ovly_mapped == 1;
2931 }
2932 }
2933
2934 /* Function: pc_in_unmapped_range
2935 If PC falls into the lma range of SECTION, return true, else false. */
2936
2937 CORE_ADDR
2938 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2939 {
2940 if (section_is_overlay (section))
2941 {
2942 bfd *abfd = section->objfile->obfd;
2943 asection *bfd_section = section->the_bfd_section;
2944
2945 /* We assume the LMA is relocated by the same offset as the VMA. */
2946 bfd_vma size = bfd_get_section_size (bfd_section);
2947 CORE_ADDR offset = obj_section_offset (section);
2948
2949 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2950 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2951 return 1;
2952 }
2953
2954 return 0;
2955 }
2956
2957 /* Function: pc_in_mapped_range
2958 If PC falls into the vma range of SECTION, return true, else false. */
2959
2960 CORE_ADDR
2961 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2962 {
2963 if (section_is_overlay (section))
2964 {
2965 if (obj_section_addr (section) <= pc
2966 && pc < obj_section_endaddr (section))
2967 return 1;
2968 }
2969
2970 return 0;
2971 }
2972
2973
2974 /* Return true if the mapped ranges of sections A and B overlap, false
2975 otherwise. */
2976 static int
2977 sections_overlap (struct obj_section *a, struct obj_section *b)
2978 {
2979 CORE_ADDR a_start = obj_section_addr (a);
2980 CORE_ADDR a_end = obj_section_endaddr (a);
2981 CORE_ADDR b_start = obj_section_addr (b);
2982 CORE_ADDR b_end = obj_section_endaddr (b);
2983
2984 return (a_start < b_end && b_start < a_end);
2985 }
2986
2987 /* Function: overlay_unmapped_address (PC, SECTION)
2988 Returns the address corresponding to PC in the unmapped (load) range.
2989 May be the same as PC. */
2990
2991 CORE_ADDR
2992 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2993 {
2994 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2995 {
2996 bfd *abfd = section->objfile->obfd;
2997 asection *bfd_section = section->the_bfd_section;
2998
2999 return pc + bfd_section_lma (abfd, bfd_section)
3000 - bfd_section_vma (abfd, bfd_section);
3001 }
3002
3003 return pc;
3004 }
3005
3006 /* Function: overlay_mapped_address (PC, SECTION)
3007 Returns the address corresponding to PC in the mapped (runtime) range.
3008 May be the same as PC. */
3009
3010 CORE_ADDR
3011 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3012 {
3013 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3014 {
3015 bfd *abfd = section->objfile->obfd;
3016 asection *bfd_section = section->the_bfd_section;
3017
3018 return pc + bfd_section_vma (abfd, bfd_section)
3019 - bfd_section_lma (abfd, bfd_section);
3020 }
3021
3022 return pc;
3023 }
3024
3025
3026 /* Function: symbol_overlayed_address
3027 Return one of two addresses (relative to the VMA or to the LMA),
3028 depending on whether the section is mapped or not. */
3029
3030 CORE_ADDR
3031 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3032 {
3033 if (overlay_debugging)
3034 {
3035 /* If the symbol has no section, just return its regular address. */
3036 if (section == 0)
3037 return address;
3038 /* If the symbol's section is not an overlay, just return its
3039 address. */
3040 if (!section_is_overlay (section))
3041 return address;
3042 /* If the symbol's section is mapped, just return its address. */
3043 if (section_is_mapped (section))
3044 return address;
3045 /*
3046 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3047 * then return its LOADED address rather than its vma address!!
3048 */
3049 return overlay_unmapped_address (address, section);
3050 }
3051 return address;
3052 }
3053
3054 /* Function: find_pc_overlay (PC)
3055 Return the best-match overlay section for PC:
3056 If PC matches a mapped overlay section's VMA, return that section.
3057 Else if PC matches an unmapped section's VMA, return that section.
3058 Else if PC matches an unmapped section's LMA, return that section. */
3059
3060 struct obj_section *
3061 find_pc_overlay (CORE_ADDR pc)
3062 {
3063 struct objfile *objfile;
3064 struct obj_section *osect, *best_match = NULL;
3065
3066 if (overlay_debugging)
3067 ALL_OBJSECTIONS (objfile, osect)
3068 if (section_is_overlay (osect))
3069 {
3070 if (pc_in_mapped_range (pc, osect))
3071 {
3072 if (section_is_mapped (osect))
3073 return osect;
3074 else
3075 best_match = osect;
3076 }
3077 else if (pc_in_unmapped_range (pc, osect))
3078 best_match = osect;
3079 }
3080 return best_match;
3081 }
3082
3083 /* Function: find_pc_mapped_section (PC)
3084 If PC falls into the VMA address range of an overlay section that is
3085 currently marked as MAPPED, return that section. Else return NULL. */
3086
3087 struct obj_section *
3088 find_pc_mapped_section (CORE_ADDR pc)
3089 {
3090 struct objfile *objfile;
3091 struct obj_section *osect;
3092
3093 if (overlay_debugging)
3094 ALL_OBJSECTIONS (objfile, osect)
3095 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3096 return osect;
3097
3098 return NULL;
3099 }
3100
3101 /* Function: list_overlays_command
3102 Print a list of mapped sections and their PC ranges. */
3103
3104 void
3105 list_overlays_command (char *args, int from_tty)
3106 {
3107 int nmapped = 0;
3108 struct objfile *objfile;
3109 struct obj_section *osect;
3110
3111 if (overlay_debugging)
3112 ALL_OBJSECTIONS (objfile, osect)
3113 if (section_is_mapped (osect))
3114 {
3115 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3116 const char *name;
3117 bfd_vma lma, vma;
3118 int size;
3119
3120 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3121 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3122 size = bfd_get_section_size (osect->the_bfd_section);
3123 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3124
3125 printf_filtered ("Section %s, loaded at ", name);
3126 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3127 puts_filtered (" - ");
3128 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3129 printf_filtered (", mapped at ");
3130 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3131 puts_filtered (" - ");
3132 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3133 puts_filtered ("\n");
3134
3135 nmapped++;
3136 }
3137 if (nmapped == 0)
3138 printf_filtered (_("No sections are mapped.\n"));
3139 }
3140
3141 /* Function: map_overlay_command
3142 Mark the named section as mapped (ie. residing at its VMA address). */
3143
3144 void
3145 map_overlay_command (char *args, int from_tty)
3146 {
3147 struct objfile *objfile, *objfile2;
3148 struct obj_section *sec, *sec2;
3149
3150 if (!overlay_debugging)
3151 error (_("Overlay debugging not enabled. Use "
3152 "either the 'overlay auto' or\n"
3153 "the 'overlay manual' command."));
3154
3155 if (args == 0 || *args == 0)
3156 error (_("Argument required: name of an overlay section"));
3157
3158 /* First, find a section matching the user supplied argument. */
3159 ALL_OBJSECTIONS (objfile, sec)
3160 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3161 {
3162 /* Now, check to see if the section is an overlay. */
3163 if (!section_is_overlay (sec))
3164 continue; /* not an overlay section */
3165
3166 /* Mark the overlay as "mapped". */
3167 sec->ovly_mapped = 1;
3168
3169 /* Next, make a pass and unmap any sections that are
3170 overlapped by this new section: */
3171 ALL_OBJSECTIONS (objfile2, sec2)
3172 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3173 {
3174 if (info_verbose)
3175 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3176 bfd_section_name (objfile->obfd,
3177 sec2->the_bfd_section));
3178 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3179 }
3180 return;
3181 }
3182 error (_("No overlay section called %s"), args);
3183 }
3184
3185 /* Function: unmap_overlay_command
3186 Mark the overlay section as unmapped
3187 (ie. resident in its LMA address range, rather than the VMA range). */
3188
3189 void
3190 unmap_overlay_command (char *args, int from_tty)
3191 {
3192 struct objfile *objfile;
3193 struct obj_section *sec;
3194
3195 if (!overlay_debugging)
3196 error (_("Overlay debugging not enabled. "
3197 "Use either the 'overlay auto' or\n"
3198 "the 'overlay manual' command."));
3199
3200 if (args == 0 || *args == 0)
3201 error (_("Argument required: name of an overlay section"));
3202
3203 /* First, find a section matching the user supplied argument. */
3204 ALL_OBJSECTIONS (objfile, sec)
3205 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3206 {
3207 if (!sec->ovly_mapped)
3208 error (_("Section %s is not mapped"), args);
3209 sec->ovly_mapped = 0;
3210 return;
3211 }
3212 error (_("No overlay section called %s"), args);
3213 }
3214
3215 /* Function: overlay_auto_command
3216 A utility command to turn on overlay debugging.
3217 Possibly this should be done via a set/show command. */
3218
3219 static void
3220 overlay_auto_command (char *args, int from_tty)
3221 {
3222 overlay_debugging = ovly_auto;
3223 enable_overlay_breakpoints ();
3224 if (info_verbose)
3225 printf_unfiltered (_("Automatic overlay debugging enabled."));
3226 }
3227
3228 /* Function: overlay_manual_command
3229 A utility command to turn on overlay debugging.
3230 Possibly this should be done via a set/show command. */
3231
3232 static void
3233 overlay_manual_command (char *args, int from_tty)
3234 {
3235 overlay_debugging = ovly_on;
3236 disable_overlay_breakpoints ();
3237 if (info_verbose)
3238 printf_unfiltered (_("Overlay debugging enabled."));
3239 }
3240
3241 /* Function: overlay_off_command
3242 A utility command to turn on overlay debugging.
3243 Possibly this should be done via a set/show command. */
3244
3245 static void
3246 overlay_off_command (char *args, int from_tty)
3247 {
3248 overlay_debugging = ovly_off;
3249 disable_overlay_breakpoints ();
3250 if (info_verbose)
3251 printf_unfiltered (_("Overlay debugging disabled."));
3252 }
3253
3254 static void
3255 overlay_load_command (char *args, int from_tty)
3256 {
3257 struct gdbarch *gdbarch = get_current_arch ();
3258
3259 if (gdbarch_overlay_update_p (gdbarch))
3260 gdbarch_overlay_update (gdbarch, NULL);
3261 else
3262 error (_("This target does not know how to read its overlay state."));
3263 }
3264
3265 /* Function: overlay_command
3266 A place-holder for a mis-typed command. */
3267
3268 /* Command list chain containing all defined "overlay" subcommands. */
3269 struct cmd_list_element *overlaylist;
3270
3271 static void
3272 overlay_command (char *args, int from_tty)
3273 {
3274 printf_unfiltered
3275 ("\"overlay\" must be followed by the name of an overlay command.\n");
3276 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3277 }
3278
3279
3280 /* Target Overlays for the "Simplest" overlay manager:
3281
3282 This is GDB's default target overlay layer. It works with the
3283 minimal overlay manager supplied as an example by Cygnus. The
3284 entry point is via a function pointer "gdbarch_overlay_update",
3285 so targets that use a different runtime overlay manager can
3286 substitute their own overlay_update function and take over the
3287 function pointer.
3288
3289 The overlay_update function pokes around in the target's data structures
3290 to see what overlays are mapped, and updates GDB's overlay mapping with
3291 this information.
3292
3293 In this simple implementation, the target data structures are as follows:
3294 unsigned _novlys; /# number of overlay sections #/
3295 unsigned _ovly_table[_novlys][4] = {
3296 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3297 {..., ..., ..., ...},
3298 }
3299 unsigned _novly_regions; /# number of overlay regions #/
3300 unsigned _ovly_region_table[_novly_regions][3] = {
3301 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3302 {..., ..., ...},
3303 }
3304 These functions will attempt to update GDB's mappedness state in the
3305 symbol section table, based on the target's mappedness state.
3306
3307 To do this, we keep a cached copy of the target's _ovly_table, and
3308 attempt to detect when the cached copy is invalidated. The main
3309 entry point is "simple_overlay_update(SECT), which looks up SECT in
3310 the cached table and re-reads only the entry for that section from
3311 the target (whenever possible). */
3312
3313 /* Cached, dynamically allocated copies of the target data structures: */
3314 static unsigned (*cache_ovly_table)[4] = 0;
3315 static unsigned cache_novlys = 0;
3316 static CORE_ADDR cache_ovly_table_base = 0;
3317 enum ovly_index
3318 {
3319 VMA, SIZE, LMA, MAPPED
3320 };
3321
3322 /* Throw away the cached copy of _ovly_table. */
3323 static void
3324 simple_free_overlay_table (void)
3325 {
3326 if (cache_ovly_table)
3327 xfree (cache_ovly_table);
3328 cache_novlys = 0;
3329 cache_ovly_table = NULL;
3330 cache_ovly_table_base = 0;
3331 }
3332
3333 /* Read an array of ints of size SIZE from the target into a local buffer.
3334 Convert to host order. int LEN is number of ints. */
3335 static void
3336 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3337 int len, int size, enum bfd_endian byte_order)
3338 {
3339 /* FIXME (alloca): Not safe if array is very large. */
3340 gdb_byte *buf = alloca (len * size);
3341 int i;
3342
3343 read_memory (memaddr, buf, len * size);
3344 for (i = 0; i < len; i++)
3345 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3346 }
3347
3348 /* Find and grab a copy of the target _ovly_table
3349 (and _novlys, which is needed for the table's size). */
3350 static int
3351 simple_read_overlay_table (void)
3352 {
3353 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3354 struct gdbarch *gdbarch;
3355 int word_size;
3356 enum bfd_endian byte_order;
3357
3358 simple_free_overlay_table ();
3359 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3360 if (! novlys_msym)
3361 {
3362 error (_("Error reading inferior's overlay table: "
3363 "couldn't find `_novlys' variable\n"
3364 "in inferior. Use `overlay manual' mode."));
3365 return 0;
3366 }
3367
3368 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3369 if (! ovly_table_msym)
3370 {
3371 error (_("Error reading inferior's overlay table: couldn't find "
3372 "`_ovly_table' array\n"
3373 "in inferior. Use `overlay manual' mode."));
3374 return 0;
3375 }
3376
3377 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3378 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3379 byte_order = gdbarch_byte_order (gdbarch);
3380
3381 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3382 4, byte_order);
3383 cache_ovly_table
3384 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3385 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3386 read_target_long_array (cache_ovly_table_base,
3387 (unsigned int *) cache_ovly_table,
3388 cache_novlys * 4, word_size, byte_order);
3389
3390 return 1; /* SUCCESS */
3391 }
3392
3393 /* Function: simple_overlay_update_1
3394 A helper function for simple_overlay_update. Assuming a cached copy
3395 of _ovly_table exists, look through it to find an entry whose vma,
3396 lma and size match those of OSECT. Re-read the entry and make sure
3397 it still matches OSECT (else the table may no longer be valid).
3398 Set OSECT's mapped state to match the entry. Return: 1 for
3399 success, 0 for failure. */
3400
3401 static int
3402 simple_overlay_update_1 (struct obj_section *osect)
3403 {
3404 int i, size;
3405 bfd *obfd = osect->objfile->obfd;
3406 asection *bsect = osect->the_bfd_section;
3407 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3408 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3410
3411 size = bfd_get_section_size (osect->the_bfd_section);
3412 for (i = 0; i < cache_novlys; i++)
3413 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3414 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3415 /* && cache_ovly_table[i][SIZE] == size */ )
3416 {
3417 read_target_long_array (cache_ovly_table_base + i * word_size,
3418 (unsigned int *) cache_ovly_table[i],
3419 4, word_size, byte_order);
3420 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3421 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3422 /* && cache_ovly_table[i][SIZE] == size */ )
3423 {
3424 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3425 return 1;
3426 }
3427 else /* Warning! Warning! Target's ovly table has changed! */
3428 return 0;
3429 }
3430 return 0;
3431 }
3432
3433 /* Function: simple_overlay_update
3434 If OSECT is NULL, then update all sections' mapped state
3435 (after re-reading the entire target _ovly_table).
3436 If OSECT is non-NULL, then try to find a matching entry in the
3437 cached ovly_table and update only OSECT's mapped state.
3438 If a cached entry can't be found or the cache isn't valid, then
3439 re-read the entire cache, and go ahead and update all sections. */
3440
3441 void
3442 simple_overlay_update (struct obj_section *osect)
3443 {
3444 struct objfile *objfile;
3445
3446 /* Were we given an osect to look up? NULL means do all of them. */
3447 if (osect)
3448 /* Have we got a cached copy of the target's overlay table? */
3449 if (cache_ovly_table != NULL)
3450 {
3451 /* Does its cached location match what's currently in the
3452 symtab? */
3453 struct minimal_symbol *minsym
3454 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3455
3456 if (minsym == NULL)
3457 error (_("Error reading inferior's overlay table: couldn't "
3458 "find `_ovly_table' array\n"
3459 "in inferior. Use `overlay manual' mode."));
3460
3461 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3462 /* Then go ahead and try to look up this single section in
3463 the cache. */
3464 if (simple_overlay_update_1 (osect))
3465 /* Found it! We're done. */
3466 return;
3467 }
3468
3469 /* Cached table no good: need to read the entire table anew.
3470 Or else we want all the sections, in which case it's actually
3471 more efficient to read the whole table in one block anyway. */
3472
3473 if (! simple_read_overlay_table ())
3474 return;
3475
3476 /* Now may as well update all sections, even if only one was requested. */
3477 ALL_OBJSECTIONS (objfile, osect)
3478 if (section_is_overlay (osect))
3479 {
3480 int i, size;
3481 bfd *obfd = osect->objfile->obfd;
3482 asection *bsect = osect->the_bfd_section;
3483
3484 size = bfd_get_section_size (bsect);
3485 for (i = 0; i < cache_novlys; i++)
3486 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3487 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3488 /* && cache_ovly_table[i][SIZE] == size */ )
3489 { /* obj_section matches i'th entry in ovly_table. */
3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3491 break; /* finished with inner for loop: break out. */
3492 }
3493 }
3494 }
3495
3496 /* Set the output sections and output offsets for section SECTP in
3497 ABFD. The relocation code in BFD will read these offsets, so we
3498 need to be sure they're initialized. We map each section to itself,
3499 with no offset; this means that SECTP->vma will be honored. */
3500
3501 static void
3502 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3503 {
3504 sectp->output_section = sectp;
3505 sectp->output_offset = 0;
3506 }
3507
3508 /* Default implementation for sym_relocate. */
3509
3510
3511 bfd_byte *
3512 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3513 bfd_byte *buf)
3514 {
3515 bfd *abfd = objfile->obfd;
3516
3517 /* We're only interested in sections with relocation
3518 information. */
3519 if ((sectp->flags & SEC_RELOC) == 0)
3520 return NULL;
3521
3522 /* We will handle section offsets properly elsewhere, so relocate as if
3523 all sections begin at 0. */
3524 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3525
3526 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3527 }
3528
3529 /* Relocate the contents of a debug section SECTP in ABFD. The
3530 contents are stored in BUF if it is non-NULL, or returned in a
3531 malloc'd buffer otherwise.
3532
3533 For some platforms and debug info formats, shared libraries contain
3534 relocations against the debug sections (particularly for DWARF-2;
3535 one affected platform is PowerPC GNU/Linux, although it depends on
3536 the version of the linker in use). Also, ELF object files naturally
3537 have unresolved relocations for their debug sections. We need to apply
3538 the relocations in order to get the locations of symbols correct.
3539 Another example that may require relocation processing, is the
3540 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3541 debug section. */
3542
3543 bfd_byte *
3544 symfile_relocate_debug_section (struct objfile *objfile,
3545 asection *sectp, bfd_byte *buf)
3546 {
3547 gdb_assert (objfile->sf->sym_relocate);
3548
3549 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3550 }
3551
3552 struct symfile_segment_data *
3553 get_symfile_segment_data (bfd *abfd)
3554 {
3555 const struct sym_fns *sf = find_sym_fns (abfd);
3556
3557 if (sf == NULL)
3558 return NULL;
3559
3560 return sf->sym_segments (abfd);
3561 }
3562
3563 void
3564 free_symfile_segment_data (struct symfile_segment_data *data)
3565 {
3566 xfree (data->segment_bases);
3567 xfree (data->segment_sizes);
3568 xfree (data->segment_info);
3569 xfree (data);
3570 }
3571
3572
3573 /* Given:
3574 - DATA, containing segment addresses from the object file ABFD, and
3575 the mapping from ABFD's sections onto the segments that own them,
3576 and
3577 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3578 segment addresses reported by the target,
3579 store the appropriate offsets for each section in OFFSETS.
3580
3581 If there are fewer entries in SEGMENT_BASES than there are segments
3582 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3583
3584 If there are more entries, then ignore the extra. The target may
3585 not be able to distinguish between an empty data segment and a
3586 missing data segment; a missing text segment is less plausible. */
3587 int
3588 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3589 struct section_offsets *offsets,
3590 int num_segment_bases,
3591 const CORE_ADDR *segment_bases)
3592 {
3593 int i;
3594 asection *sect;
3595
3596 /* It doesn't make sense to call this function unless you have some
3597 segment base addresses. */
3598 gdb_assert (num_segment_bases > 0);
3599
3600 /* If we do not have segment mappings for the object file, we
3601 can not relocate it by segments. */
3602 gdb_assert (data != NULL);
3603 gdb_assert (data->num_segments > 0);
3604
3605 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3606 {
3607 int which = data->segment_info[i];
3608
3609 gdb_assert (0 <= which && which <= data->num_segments);
3610
3611 /* Don't bother computing offsets for sections that aren't
3612 loaded as part of any segment. */
3613 if (! which)
3614 continue;
3615
3616 /* Use the last SEGMENT_BASES entry as the address of any extra
3617 segments mentioned in DATA->segment_info. */
3618 if (which > num_segment_bases)
3619 which = num_segment_bases;
3620
3621 offsets->offsets[i] = (segment_bases[which - 1]
3622 - data->segment_bases[which - 1]);
3623 }
3624
3625 return 1;
3626 }
3627
3628 static void
3629 symfile_find_segment_sections (struct objfile *objfile)
3630 {
3631 bfd *abfd = objfile->obfd;
3632 int i;
3633 asection *sect;
3634 struct symfile_segment_data *data;
3635
3636 data = get_symfile_segment_data (objfile->obfd);
3637 if (data == NULL)
3638 return;
3639
3640 if (data->num_segments != 1 && data->num_segments != 2)
3641 {
3642 free_symfile_segment_data (data);
3643 return;
3644 }
3645
3646 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3647 {
3648 int which = data->segment_info[i];
3649
3650 if (which == 1)
3651 {
3652 if (objfile->sect_index_text == -1)
3653 objfile->sect_index_text = sect->index;
3654
3655 if (objfile->sect_index_rodata == -1)
3656 objfile->sect_index_rodata = sect->index;
3657 }
3658 else if (which == 2)
3659 {
3660 if (objfile->sect_index_data == -1)
3661 objfile->sect_index_data = sect->index;
3662
3663 if (objfile->sect_index_bss == -1)
3664 objfile->sect_index_bss = sect->index;
3665 }
3666 }
3667
3668 free_symfile_segment_data (data);
3669 }
3670
3671 void
3672 _initialize_symfile (void)
3673 {
3674 struct cmd_list_element *c;
3675
3676 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3677 Load symbol table from executable file FILE.\n\
3678 The `file' command can also load symbol tables, as well as setting the file\n\
3679 to execute."), &cmdlist);
3680 set_cmd_completer (c, filename_completer);
3681
3682 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3683 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3684 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3685 ...]\nADDR is the starting address of the file's text.\n\
3686 The optional arguments are section-name section-address pairs and\n\
3687 should be specified if the data and bss segments are not contiguous\n\
3688 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3689 &cmdlist);
3690 set_cmd_completer (c, filename_completer);
3691
3692 c = add_cmd ("load", class_files, load_command, _("\
3693 Dynamically load FILE into the running program, and record its symbols\n\
3694 for access from GDB.\n\
3695 A load OFFSET may also be given."), &cmdlist);
3696 set_cmd_completer (c, filename_completer);
3697
3698 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3699 &symbol_reloading, _("\
3700 Set dynamic symbol table reloading multiple times in one run."), _("\
3701 Show dynamic symbol table reloading multiple times in one run."), NULL,
3702 NULL,
3703 show_symbol_reloading,
3704 &setlist, &showlist);
3705
3706 add_prefix_cmd ("overlay", class_support, overlay_command,
3707 _("Commands for debugging overlays."), &overlaylist,
3708 "overlay ", 0, &cmdlist);
3709
3710 add_com_alias ("ovly", "overlay", class_alias, 1);
3711 add_com_alias ("ov", "overlay", class_alias, 1);
3712
3713 add_cmd ("map-overlay", class_support, map_overlay_command,
3714 _("Assert that an overlay section is mapped."), &overlaylist);
3715
3716 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3717 _("Assert that an overlay section is unmapped."), &overlaylist);
3718
3719 add_cmd ("list-overlays", class_support, list_overlays_command,
3720 _("List mappings of overlay sections."), &overlaylist);
3721
3722 add_cmd ("manual", class_support, overlay_manual_command,
3723 _("Enable overlay debugging."), &overlaylist);
3724 add_cmd ("off", class_support, overlay_off_command,
3725 _("Disable overlay debugging."), &overlaylist);
3726 add_cmd ("auto", class_support, overlay_auto_command,
3727 _("Enable automatic overlay debugging."), &overlaylist);
3728 add_cmd ("load-target", class_support, overlay_load_command,
3729 _("Read the overlay mapping state from the target."), &overlaylist);
3730
3731 /* Filename extension to source language lookup table: */
3732 init_filename_language_table ();
3733 add_setshow_string_noescape_cmd ("extension-language", class_files,
3734 &ext_args, _("\
3735 Set mapping between filename extension and source language."), _("\
3736 Show mapping between filename extension and source language."), _("\
3737 Usage: set extension-language .foo bar"),
3738 set_ext_lang_command,
3739 show_ext_args,
3740 &setlist, &showlist);
3741
3742 add_info ("extensions", info_ext_lang_command,
3743 _("All filename extensions associated with a source language."));
3744
3745 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3746 &debug_file_directory, _("\
3747 Set the directories where separate debug symbols are searched for."), _("\
3748 Show the directories where separate debug symbols are searched for."), _("\
3749 Separate debug symbols are first searched for in the same\n\
3750 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3751 and lastly at the path of the directory of the binary with\n\
3752 each global debug-file-directory component prepended."),
3753 NULL,
3754 show_debug_file_directory,
3755 &setlist, &showlist);
3756 }
This page took 0.118967 seconds and 4 git commands to generate.