* dwarf2read.c (dwarf2_cu): Enhance comment.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
158 library symbols are not loaded, commands like "info fun" will *not*
159 report all the functions that are actually present. */
160
161 int auto_solib_add = 1;
162 \f
163
164 /* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
166 Note that the string at PTR does not have to be null terminated, I.e. it
167 may be part of a larger string and we are only saving a substring. */
168
169 char *
170 obsavestring (const char *ptr, int size, struct obstack *obstackp)
171 {
172 char *p = (char *) obstack_alloc (obstackp, size + 1);
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
175 inline memcpy? */
176 {
177 const char *p1 = ptr;
178 char *p2 = p;
179 const char *end = ptr + size;
180
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186 }
187
188 /* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
192
193 char *
194 obconcat (struct obstack *obstackp, ...)
195 {
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
212 }
213
214 /* True if we are reading a symbol table. */
215
216 int currently_reading_symtab = 0;
217
218 static void
219 decrement_reading_symtab (void *dummy)
220 {
221 currently_reading_symtab--;
222 }
223
224 /* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226 struct cleanup *
227 increment_reading_symtab (void)
228 {
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
231 }
232
233 /* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242 void
243 find_lowest_section (bfd *abfd, asection *sect, void *obj)
244 {
245 asection **lowest = (asection **) obj;
246
247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257 }
258
259 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261 struct section_addr_info *
262 alloc_section_addr_info (size_t num_sections)
263 {
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274 }
275
276 /* Build (allocate and populate) a section_addr_info struct from
277 an existing section table. */
278
279 extern struct section_addr_info *
280 build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
282 {
283 struct section_addr_info *sap;
284 const struct target_section *stp;
285 int oidx;
286
287 sap = alloc_section_addr_info (end - start);
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
291 if (bfd_get_section_flags (stp->bfd,
292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
293 && oidx < end - start)
294 {
295 sap->other[oidx].addr = stp->addr;
296 sap->other[oidx].name
297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in ABFD. */
307
308 static struct section_addr_info *
309 build_section_addr_info_from_bfd (bfd *abfd)
310 {
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
318 {
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
324 return sap;
325 }
326
327 /* Create a section_addr_info from section offsets in OBJFILE. */
328
329 struct section_addr_info *
330 build_section_addr_info_from_objfile (const struct objfile *objfile)
331 {
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346 }
347
348 /* Free all memory allocated by build_section_addr_info_from_section_table. */
349
350 extern void
351 free_section_addr_info (struct section_addr_info *sap)
352 {
353 int idx;
354
355 for (idx = 0; idx < sap->num_sections; idx++)
356 if (sap->other[idx].name)
357 xfree (sap->other[idx].name);
358 xfree (sap);
359 }
360
361
362 /* Initialize OBJFILE's sect_index_* members. */
363 static void
364 init_objfile_sect_indices (struct objfile *objfile)
365 {
366 asection *sect;
367 int i;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
370 if (sect)
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
374 if (sect)
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
378 if (sect)
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
382 if (sect)
383 objfile->sect_index_rodata = sect->index;
384
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
420 }
421
422 /* The arguments to place_section. */
423
424 struct place_section_arg
425 {
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428 };
429
430 /* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
433 static void
434 place_section (bfd *abfd, asection *sect, void *obj)
435 {
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
440
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
450 start_addr = (arg->lowest + align - 1) & -align;
451
452 do {
453 asection *cur_sec;
454
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
482 break;
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
492 }
493
494 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
497
498 void
499 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
502 {
503 int i;
504
505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
506
507 /* Now calculate offsets for section that were specified by the caller. */
508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
509 {
510 struct other_sections *osp;
511
512 osp = &addrs->other[i];
513 if (osp->sectindex == -1)
514 continue;
515
516 /* Record all sections in offsets. */
517 /* The section_offsets in the objfile are here filled in using
518 the BFD index. */
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521 }
522
523 /* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529 static const char *
530 addr_section_name (const char *s)
531 {
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538 }
539
540 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543 static int
544 addrs_section_compar (const void *ap, const void *bp)
545 {
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
548 int retval;
549
550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
551 if (retval)
552 return retval;
553
554 return a->sectindex - b->sectindex;
555 }
556
557 /* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560 static struct other_sections **
561 addrs_section_sort (struct section_addr_info *addrs)
562 {
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575 }
576
577 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
580
581 void
582 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583 {
584 asection *lower_sect;
585 CORE_ADDR lower_offset;
586 int i;
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
591
592 /* Find lowest loadable section to be used as starting point for
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
601 }
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
633
634 while (*abfd_addrs_sorted
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
669 struct other_sections *sect = addrs_to_abfd_addrs[i];
670
671 if (sect)
672 {
673 /* This is the index used by BFD. */
674 addrs->other[i].sectindex = sect->sectindex;
675
676 if (addrs->other[i].addr != 0)
677 {
678 addrs->other[i].addr -= sect->addr;
679 lower_offset = addrs->other[i].addr;
680 }
681 else
682 addrs->other[i].addr = lower_offset;
683 }
684 else
685 {
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
704 || strcmp (sect_name, ".gnu.conflict") == 0
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717 addrs->other[i].sectindex = -1;
718 }
719 }
720
721 do_cleanups (my_cleanup);
722 }
723
724 /* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730 void
731 default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733 {
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
740
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* This is a convenience function to call sym_read for OBJFILE and
880 possibly force the partial symbols to be read. */
881
882 static void
883 read_symbols (struct objfile *objfile, int add_flags)
884 {
885 (*objfile->sf->sym_read) (objfile, add_flags);
886 if (!objfile_has_partial_symbols (objfile))
887 {
888 bfd *abfd = find_separate_debug_file_in_section (objfile);
889 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
890
891 if (abfd != NULL)
892 symbol_file_add_separate (abfd, add_flags, objfile);
893
894 do_cleanups (cleanup);
895 }
896 if ((add_flags & SYMFILE_NO_READ) == 0)
897 require_partial_symbols (objfile, 0);
898 }
899
900 /* Process a symbol file, as either the main file or as a dynamically
901 loaded file.
902
903 OBJFILE is where the symbols are to be read from.
904
905 ADDRS is the list of section load addresses. If the user has given
906 an 'add-symbol-file' command, then this is the list of offsets and
907 addresses he or she provided as arguments to the command; or, if
908 we're handling a shared library, these are the actual addresses the
909 sections are loaded at, according to the inferior's dynamic linker
910 (as gleaned by GDB's shared library code). We convert each address
911 into an offset from the section VMA's as it appears in the object
912 file, and then call the file's sym_offsets function to convert this
913 into a format-specific offset table --- a `struct section_offsets'.
914 If ADDRS is non-zero, OFFSETS must be zero.
915
916 OFFSETS is a table of section offsets already in the right
917 format-specific representation. NUM_OFFSETS is the number of
918 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
919 assume this is the proper table the call to sym_offsets described
920 above would produce. Instead of calling sym_offsets, we just dump
921 it right into objfile->section_offsets. (When we're re-reading
922 symbols from an objfile, we don't have the original load address
923 list any more; all we have is the section offset table.) If
924 OFFSETS is non-zero, ADDRS must be zero.
925
926 ADD_FLAGS encodes verbosity level, whether this is main symbol or
927 an extra symbol file such as dynamically loaded code, and wether
928 breakpoint reset should be deferred. */
929
930 void
931 syms_from_objfile (struct objfile *objfile,
932 struct section_addr_info *addrs,
933 struct section_offsets *offsets,
934 int num_offsets,
935 int add_flags)
936 {
937 struct section_addr_info *local_addr = NULL;
938 struct cleanup *old_chain;
939 const int mainline = add_flags & SYMFILE_MAINLINE;
940
941 gdb_assert (! (addrs && offsets));
942
943 init_entry_point_info (objfile);
944 objfile->sf = find_sym_fns (objfile->obfd);
945
946 if (objfile->sf == NULL)
947 return; /* No symbols. */
948
949 /* Make sure that partially constructed symbol tables will be cleaned up
950 if an error occurs during symbol reading. */
951 old_chain = make_cleanup_free_objfile (objfile);
952
953 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
954 list. We now establish the convention that an addr of zero means
955 no load address was specified. */
956 if (! addrs && ! offsets)
957 {
958 local_addr
959 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
960 make_cleanup (xfree, local_addr);
961 addrs = local_addr;
962 }
963
964 /* Now either addrs or offsets is non-zero. */
965
966 if (mainline)
967 {
968 /* We will modify the main symbol table, make sure that all its users
969 will be cleaned up if an error occurs during symbol reading. */
970 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
971
972 /* Since no error yet, throw away the old symbol table. */
973
974 if (symfile_objfile != NULL)
975 {
976 free_objfile (symfile_objfile);
977 gdb_assert (symfile_objfile == NULL);
978 }
979
980 /* Currently we keep symbols from the add-symbol-file command.
981 If the user wants to get rid of them, they should do "symbol-file"
982 without arguments first. Not sure this is the best behavior
983 (PR 2207). */
984
985 (*objfile->sf->sym_new_init) (objfile);
986 }
987
988 /* Convert addr into an offset rather than an absolute address.
989 We find the lowest address of a loaded segment in the objfile,
990 and assume that <addr> is where that got loaded.
991
992 We no longer warn if the lowest section is not a text segment (as
993 happens for the PA64 port. */
994 if (addrs && addrs->other[0].name)
995 addr_info_make_relative (addrs, objfile->obfd);
996
997 /* Initialize symbol reading routines for this objfile, allow complaints to
998 appear for this new file, and record how verbose to be, then do the
999 initial symbol reading for this file. */
1000
1001 (*objfile->sf->sym_init) (objfile);
1002 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1003
1004 if (addrs)
1005 (*objfile->sf->sym_offsets) (objfile, addrs);
1006 else
1007 {
1008 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1009
1010 /* Just copy in the offset table directly as given to us. */
1011 objfile->num_sections = num_offsets;
1012 objfile->section_offsets
1013 = ((struct section_offsets *)
1014 obstack_alloc (&objfile->objfile_obstack, size));
1015 memcpy (objfile->section_offsets, offsets, size);
1016
1017 init_objfile_sect_indices (objfile);
1018 }
1019
1020 read_symbols (objfile, add_flags);
1021
1022 /* Discard cleanups as symbol reading was successful. */
1023
1024 discard_cleanups (old_chain);
1025 xfree (local_addr);
1026 }
1027
1028 /* Perform required actions after either reading in the initial
1029 symbols for a new objfile, or mapping in the symbols from a reusable
1030 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1031
1032 void
1033 new_symfile_objfile (struct objfile *objfile, int add_flags)
1034 {
1035 /* If this is the main symbol file we have to clean up all users of the
1036 old main symbol file. Otherwise it is sufficient to fixup all the
1037 breakpoints that may have been redefined by this symbol file. */
1038 if (add_flags & SYMFILE_MAINLINE)
1039 {
1040 /* OK, make it the "real" symbol file. */
1041 symfile_objfile = objfile;
1042
1043 clear_symtab_users (add_flags);
1044 }
1045 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1046 {
1047 breakpoint_re_set ();
1048 }
1049
1050 /* We're done reading the symbol file; finish off complaints. */
1051 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1052 }
1053
1054 /* Process a symbol file, as either the main file or as a dynamically
1055 loaded file.
1056
1057 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1058 A new reference is acquired by this function.
1059
1060 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1061 extra, such as dynamically loaded code, and what to do with breakpoins.
1062
1063 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1064 syms_from_objfile, above.
1065 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1066
1067 PARENT is the original objfile if ABFD is a separate debug info file.
1068 Otherwise PARENT is NULL.
1069
1070 Upon success, returns a pointer to the objfile that was added.
1071 Upon failure, jumps back to command level (never returns). */
1072
1073 static struct objfile *
1074 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1075 int add_flags,
1076 struct section_addr_info *addrs,
1077 struct section_offsets *offsets,
1078 int num_offsets,
1079 int flags, struct objfile *parent)
1080 {
1081 struct objfile *objfile;
1082 const char *name = bfd_get_filename (abfd);
1083 const int from_tty = add_flags & SYMFILE_VERBOSE;
1084 const int mainline = add_flags & SYMFILE_MAINLINE;
1085 const int should_print = ((from_tty || info_verbose)
1086 && (readnow_symbol_files
1087 || (add_flags & SYMFILE_NO_READ) == 0));
1088
1089 if (readnow_symbol_files)
1090 {
1091 flags |= OBJF_READNOW;
1092 add_flags &= ~SYMFILE_NO_READ;
1093 }
1094
1095 /* Give user a chance to burp if we'd be
1096 interactively wiping out any existing symbols. */
1097
1098 if ((have_full_symbols () || have_partial_symbols ())
1099 && mainline
1100 && from_tty
1101 && !query (_("Load new symbol table from \"%s\"? "), name))
1102 error (_("Not confirmed."));
1103
1104 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1105
1106 if (parent)
1107 add_separate_debug_objfile (objfile, parent);
1108
1109 /* We either created a new mapped symbol table, mapped an existing
1110 symbol table file which has not had initial symbol reading
1111 performed, or need to read an unmapped symbol table. */
1112 if (should_print)
1113 {
1114 if (deprecated_pre_add_symbol_hook)
1115 deprecated_pre_add_symbol_hook (name);
1116 else
1117 {
1118 printf_unfiltered (_("Reading symbols from %s..."), name);
1119 wrap_here ("");
1120 gdb_flush (gdb_stdout);
1121 }
1122 }
1123 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1124 add_flags);
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1130
1131 if ((flags & OBJF_READNOW))
1132 {
1133 if (should_print)
1134 {
1135 printf_unfiltered (_("expanding to full symbols..."));
1136 wrap_here ("");
1137 gdb_flush (gdb_stdout);
1138 }
1139
1140 if (objfile->sf)
1141 objfile->sf->qf->expand_all_symtabs (objfile);
1142 }
1143
1144 if (should_print && !objfile_has_symbols (objfile))
1145 {
1146 wrap_here ("");
1147 printf_unfiltered (_("(no debugging symbols found)..."));
1148 wrap_here ("");
1149 }
1150
1151 if (should_print)
1152 {
1153 if (deprecated_post_add_symbol_hook)
1154 deprecated_post_add_symbol_hook ();
1155 else
1156 printf_unfiltered (_("done.\n"));
1157 }
1158
1159 /* We print some messages regardless of whether 'from_tty ||
1160 info_verbose' is true, so make sure they go out at the right
1161 time. */
1162 gdb_flush (gdb_stdout);
1163
1164 if (objfile->sf == NULL)
1165 {
1166 observer_notify_new_objfile (objfile);
1167 return objfile; /* No symbols. */
1168 }
1169
1170 new_symfile_objfile (objfile, add_flags);
1171
1172 observer_notify_new_objfile (objfile);
1173
1174 bfd_cache_close_all ();
1175 return (objfile);
1176 }
1177
1178 /* Add BFD as a separate debug file for OBJFILE. */
1179
1180 void
1181 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1182 {
1183 struct objfile *new_objfile;
1184 struct section_addr_info *sap;
1185 struct cleanup *my_cleanup;
1186
1187 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1188 because sections of BFD may not match sections of OBJFILE and because
1189 vma may have been modified by tools such as prelink. */
1190 sap = build_section_addr_info_from_objfile (objfile);
1191 my_cleanup = make_cleanup_free_section_addr_info (sap);
1192
1193 new_objfile = symbol_file_add_with_addrs_or_offsets
1194 (bfd, symfile_flags,
1195 sap, NULL, 0,
1196 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1197 | OBJF_USERLOADED),
1198 objfile);
1199
1200 do_cleanups (my_cleanup);
1201 }
1202
1203 /* Process the symbol file ABFD, as either the main file or as a
1204 dynamically loaded file.
1205
1206 See symbol_file_add_with_addrs_or_offsets's comments for
1207 details. */
1208 struct objfile *
1209 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1210 struct section_addr_info *addrs,
1211 int flags, struct objfile *parent)
1212 {
1213 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1214 flags, parent);
1215 }
1216
1217
1218 /* Process a symbol file, as either the main file or as a dynamically
1219 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1220 for details. */
1221 struct objfile *
1222 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1223 int flags)
1224 {
1225 bfd *bfd = symfile_bfd_open (name);
1226 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1227 struct objfile *objf;
1228
1229 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1230 do_cleanups (cleanup);
1231 return objf;
1232 }
1233
1234
1235 /* Call symbol_file_add() with default values and update whatever is
1236 affected by the loading of a new main().
1237 Used when the file is supplied in the gdb command line
1238 and by some targets with special loading requirements.
1239 The auxiliary function, symbol_file_add_main_1(), has the flags
1240 argument for the switches that can only be specified in the symbol_file
1241 command itself. */
1242
1243 void
1244 symbol_file_add_main (char *args, int from_tty)
1245 {
1246 symbol_file_add_main_1 (args, from_tty, 0);
1247 }
1248
1249 static void
1250 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1251 {
1252 const int add_flags = (current_inferior ()->symfile_flags
1253 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1254
1255 symbol_file_add (args, add_flags, NULL, flags);
1256
1257 /* Getting new symbols may change our opinion about
1258 what is frameless. */
1259 reinit_frame_cache ();
1260
1261 if ((flags & SYMFILE_NO_READ) == 0)
1262 set_initial_language ();
1263 }
1264
1265 void
1266 symbol_file_clear (int from_tty)
1267 {
1268 if ((have_full_symbols () || have_partial_symbols ())
1269 && from_tty
1270 && (symfile_objfile
1271 ? !query (_("Discard symbol table from `%s'? "),
1272 symfile_objfile->name)
1273 : !query (_("Discard symbol table? "))))
1274 error (_("Not confirmed."));
1275
1276 /* solib descriptors may have handles to objfiles. Wipe them before their
1277 objfiles get stale by free_all_objfiles. */
1278 no_shared_libraries (NULL, from_tty);
1279
1280 free_all_objfiles ();
1281
1282 gdb_assert (symfile_objfile == NULL);
1283 if (from_tty)
1284 printf_unfiltered (_("No symbol file now.\n"));
1285 }
1286
1287 static char *
1288 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1289 {
1290 asection *sect;
1291 bfd_size_type debuglink_size;
1292 unsigned long crc32;
1293 char *contents;
1294 int crc_offset;
1295
1296 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1297
1298 if (sect == NULL)
1299 return NULL;
1300
1301 debuglink_size = bfd_section_size (objfile->obfd, sect);
1302
1303 contents = xmalloc (debuglink_size);
1304 bfd_get_section_contents (objfile->obfd, sect, contents,
1305 (file_ptr)0, (bfd_size_type)debuglink_size);
1306
1307 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1308 crc_offset = strlen (contents) + 1;
1309 crc_offset = (crc_offset + 3) & ~3;
1310
1311 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1312
1313 *crc32_out = crc32;
1314 return contents;
1315 }
1316
1317 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1318 return 1. Otherwise print a warning and return 0. ABFD seek position is
1319 not preserved. */
1320
1321 static int
1322 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1323 {
1324 unsigned long file_crc = 0;
1325
1326 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1327 {
1328 warning (_("Problem reading \"%s\" for CRC: %s"),
1329 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1330 return 0;
1331 }
1332
1333 for (;;)
1334 {
1335 gdb_byte buffer[8 * 1024];
1336 bfd_size_type count;
1337
1338 count = bfd_bread (buffer, sizeof (buffer), abfd);
1339 if (count == (bfd_size_type) -1)
1340 {
1341 warning (_("Problem reading \"%s\" for CRC: %s"),
1342 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1343 return 0;
1344 }
1345 if (count == 0)
1346 break;
1347 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1348 }
1349
1350 *file_crc_return = file_crc;
1351 return 1;
1352 }
1353
1354 static int
1355 separate_debug_file_exists (const char *name, unsigned long crc,
1356 struct objfile *parent_objfile)
1357 {
1358 unsigned long file_crc;
1359 int file_crc_p;
1360 bfd *abfd;
1361 struct stat parent_stat, abfd_stat;
1362 int verified_as_different;
1363
1364 /* Find a separate debug info file as if symbols would be present in
1365 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1366 section can contain just the basename of PARENT_OBJFILE without any
1367 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1368 the separate debug infos with the same basename can exist. */
1369
1370 if (filename_cmp (name, parent_objfile->name) == 0)
1371 return 0;
1372
1373 abfd = gdb_bfd_open_maybe_remote (name);
1374
1375 if (!abfd)
1376 return 0;
1377
1378 /* Verify symlinks were not the cause of filename_cmp name difference above.
1379
1380 Some operating systems, e.g. Windows, do not provide a meaningful
1381 st_ino; they always set it to zero. (Windows does provide a
1382 meaningful st_dev.) Do not indicate a duplicate library in that
1383 case. While there is no guarantee that a system that provides
1384 meaningful inode numbers will never set st_ino to zero, this is
1385 merely an optimization, so we do not need to worry about false
1386 negatives. */
1387
1388 if (bfd_stat (abfd, &abfd_stat) == 0
1389 && abfd_stat.st_ino != 0
1390 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1391 {
1392 if (abfd_stat.st_dev == parent_stat.st_dev
1393 && abfd_stat.st_ino == parent_stat.st_ino)
1394 {
1395 gdb_bfd_unref (abfd);
1396 return 0;
1397 }
1398 verified_as_different = 1;
1399 }
1400 else
1401 verified_as_different = 0;
1402
1403 file_crc_p = get_file_crc (abfd, &file_crc);
1404
1405 gdb_bfd_unref (abfd);
1406
1407 if (!file_crc_p)
1408 return 0;
1409
1410 if (crc != file_crc)
1411 {
1412 /* If one (or both) the files are accessed for example the via "remote:"
1413 gdbserver way it does not support the bfd_stat operation. Verify
1414 whether those two files are not the same manually. */
1415
1416 if (!verified_as_different && !parent_objfile->crc32_p)
1417 {
1418 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1419 &parent_objfile->crc32);
1420 if (!parent_objfile->crc32_p)
1421 return 0;
1422 }
1423
1424 if (verified_as_different || parent_objfile->crc32 != file_crc)
1425 warning (_("the debug information found in \"%s\""
1426 " does not match \"%s\" (CRC mismatch).\n"),
1427 name, parent_objfile->name);
1428
1429 return 0;
1430 }
1431
1432 return 1;
1433 }
1434
1435 char *debug_file_directory = NULL;
1436 static void
1437 show_debug_file_directory (struct ui_file *file, int from_tty,
1438 struct cmd_list_element *c, const char *value)
1439 {
1440 fprintf_filtered (file,
1441 _("The directory where separate debug "
1442 "symbols are searched for is \"%s\".\n"),
1443 value);
1444 }
1445
1446 #if ! defined (DEBUG_SUBDIRECTORY)
1447 #define DEBUG_SUBDIRECTORY ".debug"
1448 #endif
1449
1450 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1451 where the original file resides (may not be the same as
1452 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1453 looking for. Returns the name of the debuginfo, of NULL. */
1454
1455 static char *
1456 find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
1460 {
1461 char *debugdir;
1462 char *debugfile;
1463 int i;
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
1467
1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1469 i = strlen (dir);
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1472
1473 debugfile = xmalloc (strlen (debug_file_directory) + 1
1474 + i
1475 + strlen (DEBUG_SUBDIRECTORY)
1476 + strlen ("/")
1477 + strlen (debuglink)
1478 + 1);
1479
1480 /* First try in the same directory as the original file. */
1481 strcpy (debugfile, dir);
1482 strcat (debugfile, debuglink);
1483
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1485 return debugfile;
1486
1487 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1488 strcpy (debugfile, dir);
1489 strcat (debugfile, DEBUG_SUBDIRECTORY);
1490 strcat (debugfile, "/");
1491 strcat (debugfile, debuglink);
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 return debugfile;
1495
1496 /* Then try in the global debugfile directories.
1497
1498 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1499 cause "/..." lookups. */
1500
1501 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1502 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1503
1504 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1505 {
1506 strcpy (debugfile, debugdir);
1507 strcat (debugfile, "/");
1508 strcat (debugfile, dir);
1509 strcat (debugfile, debuglink);
1510
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 return debugfile;
1513
1514 /* If the file is in the sysroot, try using its base path in the
1515 global debugfile directory. */
1516 if (canon_dir != NULL
1517 && filename_ncmp (canon_dir, gdb_sysroot,
1518 strlen (gdb_sysroot)) == 0
1519 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1520 {
1521 strcpy (debugfile, debugdir);
1522 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1523 strcat (debugfile, "/");
1524 strcat (debugfile, debuglink);
1525
1526 if (separate_debug_file_exists (debugfile, crc32, objfile))
1527 return debugfile;
1528 }
1529 }
1530
1531 do_cleanups (back_to);
1532 xfree (debugfile);
1533 return NULL;
1534 }
1535
1536 /* Modify PATH to contain only "directory/" part of PATH.
1537 If there were no directory separators in PATH, PATH will be empty
1538 string on return. */
1539
1540 static void
1541 terminate_after_last_dir_separator (char *path)
1542 {
1543 int i;
1544
1545 /* Strip off the final filename part, leaving the directory name,
1546 followed by a slash. The directory can be relative or absolute. */
1547 for (i = strlen(path) - 1; i >= 0; i--)
1548 if (IS_DIR_SEPARATOR (path[i]))
1549 break;
1550
1551 /* If I is -1 then no directory is present there and DIR will be "". */
1552 path[i + 1] = '\0';
1553 }
1554
1555 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1556 Returns pathname, or NULL. */
1557
1558 char *
1559 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1560 {
1561 char *debuglink;
1562 char *dir, *canon_dir;
1563 char *debugfile;
1564 unsigned long crc32;
1565 struct cleanup *cleanups;
1566
1567 debuglink = get_debug_link_info (objfile, &crc32);
1568
1569 if (debuglink == NULL)
1570 {
1571 /* There's no separate debug info, hence there's no way we could
1572 load it => no warning. */
1573 return NULL;
1574 }
1575
1576 cleanups = make_cleanup (xfree, debuglink);
1577 dir = xstrdup (objfile->name);
1578 make_cleanup (xfree, dir);
1579 terminate_after_last_dir_separator (dir);
1580 canon_dir = lrealpath (dir);
1581
1582 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1583 crc32, objfile);
1584 xfree (canon_dir);
1585
1586 if (debugfile == NULL)
1587 {
1588 #ifdef HAVE_LSTAT
1589 /* For PR gdb/9538, try again with realpath (if different from the
1590 original). */
1591
1592 struct stat st_buf;
1593
1594 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1595 {
1596 char *symlink_dir;
1597
1598 symlink_dir = lrealpath (objfile->name);
1599 if (symlink_dir != NULL)
1600 {
1601 make_cleanup (xfree, symlink_dir);
1602 terminate_after_last_dir_separator (symlink_dir);
1603 if (strcmp (dir, symlink_dir) != 0)
1604 {
1605 /* Different directory, so try using it. */
1606 debugfile = find_separate_debug_file (symlink_dir,
1607 symlink_dir,
1608 debuglink,
1609 crc32,
1610 objfile);
1611 }
1612 }
1613 }
1614 #endif /* HAVE_LSTAT */
1615 }
1616
1617 do_cleanups (cleanups);
1618 return debugfile;
1619 }
1620
1621
1622 /* This is the symbol-file command. Read the file, analyze its
1623 symbols, and add a struct symtab to a symtab list. The syntax of
1624 the command is rather bizarre:
1625
1626 1. The function buildargv implements various quoting conventions
1627 which are undocumented and have little or nothing in common with
1628 the way things are quoted (or not quoted) elsewhere in GDB.
1629
1630 2. Options are used, which are not generally used in GDB (perhaps
1631 "set mapped on", "set readnow on" would be better)
1632
1633 3. The order of options matters, which is contrary to GNU
1634 conventions (because it is confusing and inconvenient). */
1635
1636 void
1637 symbol_file_command (char *args, int from_tty)
1638 {
1639 dont_repeat ();
1640
1641 if (args == NULL)
1642 {
1643 symbol_file_clear (from_tty);
1644 }
1645 else
1646 {
1647 char **argv = gdb_buildargv (args);
1648 int flags = OBJF_USERLOADED;
1649 struct cleanup *cleanups;
1650 char *name = NULL;
1651
1652 cleanups = make_cleanup_freeargv (argv);
1653 while (*argv != NULL)
1654 {
1655 if (strcmp (*argv, "-readnow") == 0)
1656 flags |= OBJF_READNOW;
1657 else if (**argv == '-')
1658 error (_("unknown option `%s'"), *argv);
1659 else
1660 {
1661 symbol_file_add_main_1 (*argv, from_tty, flags);
1662 name = *argv;
1663 }
1664
1665 argv++;
1666 }
1667
1668 if (name == NULL)
1669 error (_("no symbol file name was specified"));
1670
1671 do_cleanups (cleanups);
1672 }
1673 }
1674
1675 /* Set the initial language.
1676
1677 FIXME: A better solution would be to record the language in the
1678 psymtab when reading partial symbols, and then use it (if known) to
1679 set the language. This would be a win for formats that encode the
1680 language in an easily discoverable place, such as DWARF. For
1681 stabs, we can jump through hoops looking for specially named
1682 symbols or try to intuit the language from the specific type of
1683 stabs we find, but we can't do that until later when we read in
1684 full symbols. */
1685
1686 void
1687 set_initial_language (void)
1688 {
1689 enum language lang = language_unknown;
1690
1691 if (language_of_main != language_unknown)
1692 lang = language_of_main;
1693 else
1694 {
1695 const char *filename;
1696
1697 filename = find_main_filename ();
1698 if (filename != NULL)
1699 lang = deduce_language_from_filename (filename);
1700 }
1701
1702 if (lang == language_unknown)
1703 {
1704 /* Make C the default language */
1705 lang = language_c;
1706 }
1707
1708 set_language (lang);
1709 expected_language = current_language; /* Don't warn the user. */
1710 }
1711
1712 /* If NAME is a remote name open the file using remote protocol, otherwise
1713 open it normally. Returns a new reference to the BFD. On error,
1714 returns NULL with the BFD error set. */
1715
1716 bfd *
1717 gdb_bfd_open_maybe_remote (const char *name)
1718 {
1719 bfd *result;
1720
1721 if (remote_filename_p (name))
1722 result = remote_bfd_open (name, gnutarget);
1723 else
1724 result = gdb_bfd_open (name, gnutarget, -1);
1725
1726 return result;
1727 }
1728
1729
1730 /* Open the file specified by NAME and hand it off to BFD for
1731 preliminary analysis. Return a newly initialized bfd *, which
1732 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1733 absolute). In case of trouble, error() is called. */
1734
1735 bfd *
1736 symfile_bfd_open (char *name)
1737 {
1738 bfd *sym_bfd;
1739 int desc;
1740 char *absolute_name;
1741
1742 if (remote_filename_p (name))
1743 {
1744 sym_bfd = remote_bfd_open (name, gnutarget);
1745 if (!sym_bfd)
1746 error (_("`%s': can't open to read symbols: %s."), name,
1747 bfd_errmsg (bfd_get_error ()));
1748
1749 if (!bfd_check_format (sym_bfd, bfd_object))
1750 {
1751 make_cleanup_bfd_unref (sym_bfd);
1752 error (_("`%s': can't read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
1754 }
1755
1756 return sym_bfd;
1757 }
1758
1759 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1760
1761 /* Look down path for it, allocate 2nd new malloc'd copy. */
1762 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1763 O_RDONLY | O_BINARY, &absolute_name);
1764 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1765 if (desc < 0)
1766 {
1767 char *exename = alloca (strlen (name) + 5);
1768
1769 strcat (strcpy (exename, name), ".exe");
1770 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1771 O_RDONLY | O_BINARY, &absolute_name);
1772 }
1773 #endif
1774 if (desc < 0)
1775 {
1776 make_cleanup (xfree, name);
1777 perror_with_name (name);
1778 }
1779
1780 xfree (name);
1781 name = absolute_name;
1782 make_cleanup (xfree, name);
1783
1784 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1785 if (!sym_bfd)
1786 {
1787 make_cleanup (xfree, name);
1788 error (_("`%s': can't open to read symbols: %s."), name,
1789 bfd_errmsg (bfd_get_error ()));
1790 }
1791 bfd_set_cacheable (sym_bfd, 1);
1792
1793 if (!bfd_check_format (sym_bfd, bfd_object))
1794 {
1795 make_cleanup_bfd_unref (sym_bfd);
1796 error (_("`%s': can't read symbols: %s."), name,
1797 bfd_errmsg (bfd_get_error ()));
1798 }
1799
1800 return sym_bfd;
1801 }
1802
1803 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1804 the section was not found. */
1805
1806 int
1807 get_section_index (struct objfile *objfile, char *section_name)
1808 {
1809 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1810
1811 if (sect)
1812 return sect->index;
1813 else
1814 return -1;
1815 }
1816
1817 /* Link SF into the global symtab_fns list. Called on startup by the
1818 _initialize routine in each object file format reader, to register
1819 information about each format the reader is prepared to handle. */
1820
1821 void
1822 add_symtab_fns (const struct sym_fns *sf)
1823 {
1824 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1825 }
1826
1827 /* Initialize OBJFILE to read symbols from its associated BFD. It
1828 either returns or calls error(). The result is an initialized
1829 struct sym_fns in the objfile structure, that contains cached
1830 information about the symbol file. */
1831
1832 static const struct sym_fns *
1833 find_sym_fns (bfd *abfd)
1834 {
1835 const struct sym_fns *sf;
1836 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1837 int i;
1838
1839 if (our_flavour == bfd_target_srec_flavour
1840 || our_flavour == bfd_target_ihex_flavour
1841 || our_flavour == bfd_target_tekhex_flavour)
1842 return NULL; /* No symbols. */
1843
1844 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1845 if (our_flavour == sf->sym_flavour)
1846 return sf;
1847
1848 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1849 bfd_get_target (abfd));
1850 }
1851 \f
1852
1853 /* This function runs the load command of our current target. */
1854
1855 static void
1856 load_command (char *arg, int from_tty)
1857 {
1858 dont_repeat ();
1859
1860 /* The user might be reloading because the binary has changed. Take
1861 this opportunity to check. */
1862 reopen_exec_file ();
1863 reread_symbols ();
1864
1865 if (arg == NULL)
1866 {
1867 char *parg;
1868 int count = 0;
1869
1870 parg = arg = get_exec_file (1);
1871
1872 /* Count how many \ " ' tab space there are in the name. */
1873 while ((parg = strpbrk (parg, "\\\"'\t ")))
1874 {
1875 parg++;
1876 count++;
1877 }
1878
1879 if (count)
1880 {
1881 /* We need to quote this string so buildargv can pull it apart. */
1882 char *temp = xmalloc (strlen (arg) + count + 1 );
1883 char *ptemp = temp;
1884 char *prev;
1885
1886 make_cleanup (xfree, temp);
1887
1888 prev = parg = arg;
1889 while ((parg = strpbrk (parg, "\\\"'\t ")))
1890 {
1891 strncpy (ptemp, prev, parg - prev);
1892 ptemp += parg - prev;
1893 prev = parg++;
1894 *ptemp++ = '\\';
1895 }
1896 strcpy (ptemp, prev);
1897
1898 arg = temp;
1899 }
1900 }
1901
1902 target_load (arg, from_tty);
1903
1904 /* After re-loading the executable, we don't really know which
1905 overlays are mapped any more. */
1906 overlay_cache_invalid = 1;
1907 }
1908
1909 /* This version of "load" should be usable for any target. Currently
1910 it is just used for remote targets, not inftarg.c or core files,
1911 on the theory that only in that case is it useful.
1912
1913 Avoiding xmodem and the like seems like a win (a) because we don't have
1914 to worry about finding it, and (b) On VMS, fork() is very slow and so
1915 we don't want to run a subprocess. On the other hand, I'm not sure how
1916 performance compares. */
1917
1918 static int validate_download = 0;
1919
1920 /* Callback service function for generic_load (bfd_map_over_sections). */
1921
1922 static void
1923 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1924 {
1925 bfd_size_type *sum = data;
1926
1927 *sum += bfd_get_section_size (asec);
1928 }
1929
1930 /* Opaque data for load_section_callback. */
1931 struct load_section_data {
1932 unsigned long load_offset;
1933 struct load_progress_data *progress_data;
1934 VEC(memory_write_request_s) *requests;
1935 };
1936
1937 /* Opaque data for load_progress. */
1938 struct load_progress_data {
1939 /* Cumulative data. */
1940 unsigned long write_count;
1941 unsigned long data_count;
1942 bfd_size_type total_size;
1943 };
1944
1945 /* Opaque data for load_progress for a single section. */
1946 struct load_progress_section_data {
1947 struct load_progress_data *cumulative;
1948
1949 /* Per-section data. */
1950 const char *section_name;
1951 ULONGEST section_sent;
1952 ULONGEST section_size;
1953 CORE_ADDR lma;
1954 gdb_byte *buffer;
1955 };
1956
1957 /* Target write callback routine for progress reporting. */
1958
1959 static void
1960 load_progress (ULONGEST bytes, void *untyped_arg)
1961 {
1962 struct load_progress_section_data *args = untyped_arg;
1963 struct load_progress_data *totals;
1964
1965 if (args == NULL)
1966 /* Writing padding data. No easy way to get at the cumulative
1967 stats, so just ignore this. */
1968 return;
1969
1970 totals = args->cumulative;
1971
1972 if (bytes == 0 && args->section_sent == 0)
1973 {
1974 /* The write is just starting. Let the user know we've started
1975 this section. */
1976 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1977 args->section_name, hex_string (args->section_size),
1978 paddress (target_gdbarch (), args->lma));
1979 return;
1980 }
1981
1982 if (validate_download)
1983 {
1984 /* Broken memories and broken monitors manifest themselves here
1985 when bring new computers to life. This doubles already slow
1986 downloads. */
1987 /* NOTE: cagney/1999-10-18: A more efficient implementation
1988 might add a verify_memory() method to the target vector and
1989 then use that. remote.c could implement that method using
1990 the ``qCRC'' packet. */
1991 gdb_byte *check = xmalloc (bytes);
1992 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1993
1994 if (target_read_memory (args->lma, check, bytes) != 0)
1995 error (_("Download verify read failed at %s"),
1996 paddress (target_gdbarch (), args->lma));
1997 if (memcmp (args->buffer, check, bytes) != 0)
1998 error (_("Download verify compare failed at %s"),
1999 paddress (target_gdbarch (), args->lma));
2000 do_cleanups (verify_cleanups);
2001 }
2002 totals->data_count += bytes;
2003 args->lma += bytes;
2004 args->buffer += bytes;
2005 totals->write_count += 1;
2006 args->section_sent += bytes;
2007 if (check_quit_flag ()
2008 || (deprecated_ui_load_progress_hook != NULL
2009 && deprecated_ui_load_progress_hook (args->section_name,
2010 args->section_sent)))
2011 error (_("Canceled the download"));
2012
2013 if (deprecated_show_load_progress != NULL)
2014 deprecated_show_load_progress (args->section_name,
2015 args->section_sent,
2016 args->section_size,
2017 totals->data_count,
2018 totals->total_size);
2019 }
2020
2021 /* Callback service function for generic_load (bfd_map_over_sections). */
2022
2023 static void
2024 load_section_callback (bfd *abfd, asection *asec, void *data)
2025 {
2026 struct memory_write_request *new_request;
2027 struct load_section_data *args = data;
2028 struct load_progress_section_data *section_data;
2029 bfd_size_type size = bfd_get_section_size (asec);
2030 gdb_byte *buffer;
2031 const char *sect_name = bfd_get_section_name (abfd, asec);
2032
2033 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2034 return;
2035
2036 if (size == 0)
2037 return;
2038
2039 new_request = VEC_safe_push (memory_write_request_s,
2040 args->requests, NULL);
2041 memset (new_request, 0, sizeof (struct memory_write_request));
2042 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2043 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2044 new_request->end = new_request->begin + size; /* FIXME Should size
2045 be in instead? */
2046 new_request->data = xmalloc (size);
2047 new_request->baton = section_data;
2048
2049 buffer = new_request->data;
2050
2051 section_data->cumulative = args->progress_data;
2052 section_data->section_name = sect_name;
2053 section_data->section_size = size;
2054 section_data->lma = new_request->begin;
2055 section_data->buffer = buffer;
2056
2057 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2058 }
2059
2060 /* Clean up an entire memory request vector, including load
2061 data and progress records. */
2062
2063 static void
2064 clear_memory_write_data (void *arg)
2065 {
2066 VEC(memory_write_request_s) **vec_p = arg;
2067 VEC(memory_write_request_s) *vec = *vec_p;
2068 int i;
2069 struct memory_write_request *mr;
2070
2071 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2072 {
2073 xfree (mr->data);
2074 xfree (mr->baton);
2075 }
2076 VEC_free (memory_write_request_s, vec);
2077 }
2078
2079 void
2080 generic_load (char *args, int from_tty)
2081 {
2082 bfd *loadfile_bfd;
2083 struct timeval start_time, end_time;
2084 char *filename;
2085 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2086 struct load_section_data cbdata;
2087 struct load_progress_data total_progress;
2088 struct ui_out *uiout = current_uiout;
2089
2090 CORE_ADDR entry;
2091 char **argv;
2092
2093 memset (&cbdata, 0, sizeof (cbdata));
2094 memset (&total_progress, 0, sizeof (total_progress));
2095 cbdata.progress_data = &total_progress;
2096
2097 make_cleanup (clear_memory_write_data, &cbdata.requests);
2098
2099 if (args == NULL)
2100 error_no_arg (_("file to load"));
2101
2102 argv = gdb_buildargv (args);
2103 make_cleanup_freeargv (argv);
2104
2105 filename = tilde_expand (argv[0]);
2106 make_cleanup (xfree, filename);
2107
2108 if (argv[1] != NULL)
2109 {
2110 char *endptr;
2111
2112 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2113
2114 /* If the last word was not a valid number then
2115 treat it as a file name with spaces in. */
2116 if (argv[1] == endptr)
2117 error (_("Invalid download offset:%s."), argv[1]);
2118
2119 if (argv[2] != NULL)
2120 error (_("Too many parameters."));
2121 }
2122
2123 /* Open the file for loading. */
2124 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2125 if (loadfile_bfd == NULL)
2126 {
2127 perror_with_name (filename);
2128 return;
2129 }
2130
2131 make_cleanup_bfd_unref (loadfile_bfd);
2132
2133 if (!bfd_check_format (loadfile_bfd, bfd_object))
2134 {
2135 error (_("\"%s\" is not an object file: %s"), filename,
2136 bfd_errmsg (bfd_get_error ()));
2137 }
2138
2139 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2140 (void *) &total_progress.total_size);
2141
2142 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2143
2144 gettimeofday (&start_time, NULL);
2145
2146 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2147 load_progress) != 0)
2148 error (_("Load failed"));
2149
2150 gettimeofday (&end_time, NULL);
2151
2152 entry = bfd_get_start_address (loadfile_bfd);
2153 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2154 ui_out_text (uiout, "Start address ");
2155 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2156 ui_out_text (uiout, ", load size ");
2157 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2158 ui_out_text (uiout, "\n");
2159 /* We were doing this in remote-mips.c, I suspect it is right
2160 for other targets too. */
2161 regcache_write_pc (get_current_regcache (), entry);
2162
2163 /* Reset breakpoints, now that we have changed the load image. For
2164 instance, breakpoints may have been set (or reset, by
2165 post_create_inferior) while connected to the target but before we
2166 loaded the program. In that case, the prologue analyzer could
2167 have read instructions from the target to find the right
2168 breakpoint locations. Loading has changed the contents of that
2169 memory. */
2170
2171 breakpoint_re_set ();
2172
2173 /* FIXME: are we supposed to call symbol_file_add or not? According
2174 to a comment from remote-mips.c (where a call to symbol_file_add
2175 was commented out), making the call confuses GDB if more than one
2176 file is loaded in. Some targets do (e.g., remote-vx.c) but
2177 others don't (or didn't - perhaps they have all been deleted). */
2178
2179 print_transfer_performance (gdb_stdout, total_progress.data_count,
2180 total_progress.write_count,
2181 &start_time, &end_time);
2182
2183 do_cleanups (old_cleanups);
2184 }
2185
2186 /* Report how fast the transfer went. */
2187
2188 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2189 replaced by print_transfer_performance (with a very different
2190 function signature). */
2191
2192 void
2193 report_transfer_performance (unsigned long data_count, time_t start_time,
2194 time_t end_time)
2195 {
2196 struct timeval start, end;
2197
2198 start.tv_sec = start_time;
2199 start.tv_usec = 0;
2200 end.tv_sec = end_time;
2201 end.tv_usec = 0;
2202
2203 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2204 }
2205
2206 void
2207 print_transfer_performance (struct ui_file *stream,
2208 unsigned long data_count,
2209 unsigned long write_count,
2210 const struct timeval *start_time,
2211 const struct timeval *end_time)
2212 {
2213 ULONGEST time_count;
2214 struct ui_out *uiout = current_uiout;
2215
2216 /* Compute the elapsed time in milliseconds, as a tradeoff between
2217 accuracy and overflow. */
2218 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2219 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2220
2221 ui_out_text (uiout, "Transfer rate: ");
2222 if (time_count > 0)
2223 {
2224 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2225
2226 if (ui_out_is_mi_like_p (uiout))
2227 {
2228 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2229 ui_out_text (uiout, " bits/sec");
2230 }
2231 else if (rate < 1024)
2232 {
2233 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2234 ui_out_text (uiout, " bytes/sec");
2235 }
2236 else
2237 {
2238 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2239 ui_out_text (uiout, " KB/sec");
2240 }
2241 }
2242 else
2243 {
2244 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2245 ui_out_text (uiout, " bits in <1 sec");
2246 }
2247 if (write_count > 0)
2248 {
2249 ui_out_text (uiout, ", ");
2250 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2251 ui_out_text (uiout, " bytes/write");
2252 }
2253 ui_out_text (uiout, ".\n");
2254 }
2255
2256 /* This function allows the addition of incrementally linked object files.
2257 It does not modify any state in the target, only in the debugger. */
2258 /* Note: ezannoni 2000-04-13 This function/command used to have a
2259 special case syntax for the rombug target (Rombug is the boot
2260 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2261 rombug case, the user doesn't need to supply a text address,
2262 instead a call to target_link() (in target.c) would supply the
2263 value to use. We are now discontinuing this type of ad hoc syntax. */
2264
2265 static void
2266 add_symbol_file_command (char *args, int from_tty)
2267 {
2268 struct gdbarch *gdbarch = get_current_arch ();
2269 char *filename = NULL;
2270 int flags = OBJF_USERLOADED;
2271 char *arg;
2272 int section_index = 0;
2273 int argcnt = 0;
2274 int sec_num = 0;
2275 int i;
2276 int expecting_sec_name = 0;
2277 int expecting_sec_addr = 0;
2278 char **argv;
2279
2280 struct sect_opt
2281 {
2282 char *name;
2283 char *value;
2284 };
2285
2286 struct section_addr_info *section_addrs;
2287 struct sect_opt *sect_opts = NULL;
2288 size_t num_sect_opts = 0;
2289 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2290
2291 num_sect_opts = 16;
2292 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2293 * sizeof (struct sect_opt));
2294
2295 dont_repeat ();
2296
2297 if (args == NULL)
2298 error (_("add-symbol-file takes a file name and an address"));
2299
2300 argv = gdb_buildargv (args);
2301 make_cleanup_freeargv (argv);
2302
2303 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2304 {
2305 /* Process the argument. */
2306 if (argcnt == 0)
2307 {
2308 /* The first argument is the file name. */
2309 filename = tilde_expand (arg);
2310 make_cleanup (xfree, filename);
2311 }
2312 else
2313 if (argcnt == 1)
2314 {
2315 /* The second argument is always the text address at which
2316 to load the program. */
2317 sect_opts[section_index].name = ".text";
2318 sect_opts[section_index].value = arg;
2319 if (++section_index >= num_sect_opts)
2320 {
2321 num_sect_opts *= 2;
2322 sect_opts = ((struct sect_opt *)
2323 xrealloc (sect_opts,
2324 num_sect_opts
2325 * sizeof (struct sect_opt)));
2326 }
2327 }
2328 else
2329 {
2330 /* It's an option (starting with '-') or it's an argument
2331 to an option. */
2332
2333 if (*arg == '-')
2334 {
2335 if (strcmp (arg, "-readnow") == 0)
2336 flags |= OBJF_READNOW;
2337 else if (strcmp (arg, "-s") == 0)
2338 {
2339 expecting_sec_name = 1;
2340 expecting_sec_addr = 1;
2341 }
2342 }
2343 else
2344 {
2345 if (expecting_sec_name)
2346 {
2347 sect_opts[section_index].name = arg;
2348 expecting_sec_name = 0;
2349 }
2350 else
2351 if (expecting_sec_addr)
2352 {
2353 sect_opts[section_index].value = arg;
2354 expecting_sec_addr = 0;
2355 if (++section_index >= num_sect_opts)
2356 {
2357 num_sect_opts *= 2;
2358 sect_opts = ((struct sect_opt *)
2359 xrealloc (sect_opts,
2360 num_sect_opts
2361 * sizeof (struct sect_opt)));
2362 }
2363 }
2364 else
2365 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2366 " [-readnow] [-s <secname> <addr>]*"));
2367 }
2368 }
2369 }
2370
2371 /* This command takes at least two arguments. The first one is a
2372 filename, and the second is the address where this file has been
2373 loaded. Abort now if this address hasn't been provided by the
2374 user. */
2375 if (section_index < 1)
2376 error (_("The address where %s has been loaded is missing"), filename);
2377
2378 /* Print the prompt for the query below. And save the arguments into
2379 a sect_addr_info structure to be passed around to other
2380 functions. We have to split this up into separate print
2381 statements because hex_string returns a local static
2382 string. */
2383
2384 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2385 section_addrs = alloc_section_addr_info (section_index);
2386 make_cleanup (xfree, section_addrs);
2387 for (i = 0; i < section_index; i++)
2388 {
2389 CORE_ADDR addr;
2390 char *val = sect_opts[i].value;
2391 char *sec = sect_opts[i].name;
2392
2393 addr = parse_and_eval_address (val);
2394
2395 /* Here we store the section offsets in the order they were
2396 entered on the command line. */
2397 section_addrs->other[sec_num].name = sec;
2398 section_addrs->other[sec_num].addr = addr;
2399 printf_unfiltered ("\t%s_addr = %s\n", sec,
2400 paddress (gdbarch, addr));
2401 sec_num++;
2402
2403 /* The object's sections are initialized when a
2404 call is made to build_objfile_section_table (objfile).
2405 This happens in reread_symbols.
2406 At this point, we don't know what file type this is,
2407 so we can't determine what section names are valid. */
2408 }
2409
2410 if (from_tty && (!query ("%s", "")))
2411 error (_("Not confirmed."));
2412
2413 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2414 section_addrs, flags);
2415
2416 /* Getting new symbols may change our opinion about what is
2417 frameless. */
2418 reinit_frame_cache ();
2419 do_cleanups (my_cleanups);
2420 }
2421 \f
2422
2423 typedef struct objfile *objfilep;
2424
2425 DEF_VEC_P (objfilep);
2426
2427 /* Re-read symbols if a symbol-file has changed. */
2428 void
2429 reread_symbols (void)
2430 {
2431 struct objfile *objfile;
2432 long new_modtime;
2433 struct stat new_statbuf;
2434 int res;
2435 VEC (objfilep) *new_objfiles = NULL;
2436 struct cleanup *all_cleanups;
2437
2438 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2439
2440 /* With the addition of shared libraries, this should be modified,
2441 the load time should be saved in the partial symbol tables, since
2442 different tables may come from different source files. FIXME.
2443 This routine should then walk down each partial symbol table
2444 and see if the symbol table that it originates from has been changed. */
2445
2446 for (objfile = object_files; objfile; objfile = objfile->next)
2447 {
2448 /* solib-sunos.c creates one objfile with obfd. */
2449 if (objfile->obfd == NULL)
2450 continue;
2451
2452 /* Separate debug objfiles are handled in the main objfile. */
2453 if (objfile->separate_debug_objfile_backlink)
2454 continue;
2455
2456 /* If this object is from an archive (what you usually create with
2457 `ar', often called a `static library' on most systems, though
2458 a `shared library' on AIX is also an archive), then you should
2459 stat on the archive name, not member name. */
2460 if (objfile->obfd->my_archive)
2461 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2462 else
2463 res = stat (objfile->name, &new_statbuf);
2464 if (res != 0)
2465 {
2466 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2467 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2468 objfile->name);
2469 continue;
2470 }
2471 new_modtime = new_statbuf.st_mtime;
2472 if (new_modtime != objfile->mtime)
2473 {
2474 struct cleanup *old_cleanups;
2475 struct section_offsets *offsets;
2476 int num_offsets;
2477 char *obfd_filename;
2478
2479 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2480 objfile->name);
2481
2482 /* There are various functions like symbol_file_add,
2483 symfile_bfd_open, syms_from_objfile, etc., which might
2484 appear to do what we want. But they have various other
2485 effects which we *don't* want. So we just do stuff
2486 ourselves. We don't worry about mapped files (for one thing,
2487 any mapped file will be out of date). */
2488
2489 /* If we get an error, blow away this objfile (not sure if
2490 that is the correct response for things like shared
2491 libraries). */
2492 old_cleanups = make_cleanup_free_objfile (objfile);
2493 /* We need to do this whenever any symbols go away. */
2494 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2495
2496 if (exec_bfd != NULL
2497 && filename_cmp (bfd_get_filename (objfile->obfd),
2498 bfd_get_filename (exec_bfd)) == 0)
2499 {
2500 /* Reload EXEC_BFD without asking anything. */
2501
2502 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2503 }
2504
2505 /* Keep the calls order approx. the same as in free_objfile. */
2506
2507 /* Free the separate debug objfiles. It will be
2508 automatically recreated by sym_read. */
2509 free_objfile_separate_debug (objfile);
2510
2511 /* Remove any references to this objfile in the global
2512 value lists. */
2513 preserve_values (objfile);
2514
2515 /* Nuke all the state that we will re-read. Much of the following
2516 code which sets things to NULL really is necessary to tell
2517 other parts of GDB that there is nothing currently there.
2518
2519 Try to keep the freeing order compatible with free_objfile. */
2520
2521 if (objfile->sf != NULL)
2522 {
2523 (*objfile->sf->sym_finish) (objfile);
2524 }
2525
2526 clear_objfile_data (objfile);
2527
2528 /* Clean up any state BFD has sitting around. */
2529 {
2530 struct bfd *obfd = objfile->obfd;
2531
2532 obfd_filename = bfd_get_filename (objfile->obfd);
2533 /* Open the new BFD before freeing the old one, so that
2534 the filename remains live. */
2535 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2536 if (objfile->obfd == NULL)
2537 {
2538 /* We have to make a cleanup and error here, rather
2539 than erroring later, because once we unref OBFD,
2540 OBFD_FILENAME will be freed. */
2541 make_cleanup_bfd_unref (obfd);
2542 error (_("Can't open %s to read symbols."), obfd_filename);
2543 }
2544 gdb_bfd_unref (obfd);
2545 }
2546
2547 objfile->name = bfd_get_filename (objfile->obfd);
2548 /* bfd_openr sets cacheable to true, which is what we want. */
2549 if (!bfd_check_format (objfile->obfd, bfd_object))
2550 error (_("Can't read symbols from %s: %s."), objfile->name,
2551 bfd_errmsg (bfd_get_error ()));
2552
2553 /* Save the offsets, we will nuke them with the rest of the
2554 objfile_obstack. */
2555 num_offsets = objfile->num_sections;
2556 offsets = ((struct section_offsets *)
2557 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2558 memcpy (offsets, objfile->section_offsets,
2559 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2560
2561 /* FIXME: Do we have to free a whole linked list, or is this
2562 enough? */
2563 if (objfile->global_psymbols.list)
2564 xfree (objfile->global_psymbols.list);
2565 memset (&objfile->global_psymbols, 0,
2566 sizeof (objfile->global_psymbols));
2567 if (objfile->static_psymbols.list)
2568 xfree (objfile->static_psymbols.list);
2569 memset (&objfile->static_psymbols, 0,
2570 sizeof (objfile->static_psymbols));
2571
2572 /* Free the obstacks for non-reusable objfiles. */
2573 psymbol_bcache_free (objfile->psymbol_cache);
2574 objfile->psymbol_cache = psymbol_bcache_init ();
2575 if (objfile->demangled_names_hash != NULL)
2576 {
2577 htab_delete (objfile->demangled_names_hash);
2578 objfile->demangled_names_hash = NULL;
2579 }
2580 obstack_free (&objfile->objfile_obstack, 0);
2581 objfile->sections = NULL;
2582 objfile->symtabs = NULL;
2583 objfile->psymtabs = NULL;
2584 objfile->psymtabs_addrmap = NULL;
2585 objfile->free_psymtabs = NULL;
2586 objfile->template_symbols = NULL;
2587 objfile->msymbols = NULL;
2588 objfile->deprecated_sym_private = NULL;
2589 objfile->minimal_symbol_count = 0;
2590 memset (&objfile->msymbol_hash, 0,
2591 sizeof (objfile->msymbol_hash));
2592 memset (&objfile->msymbol_demangled_hash, 0,
2593 sizeof (objfile->msymbol_demangled_hash));
2594
2595 set_objfile_per_bfd (objfile);
2596
2597 /* obstack_init also initializes the obstack so it is
2598 empty. We could use obstack_specify_allocation but
2599 gdb_obstack.h specifies the alloc/dealloc functions. */
2600 obstack_init (&objfile->objfile_obstack);
2601 build_objfile_section_table (objfile);
2602 terminate_minimal_symbol_table (objfile);
2603
2604 /* We use the same section offsets as from last time. I'm not
2605 sure whether that is always correct for shared libraries. */
2606 objfile->section_offsets = (struct section_offsets *)
2607 obstack_alloc (&objfile->objfile_obstack,
2608 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2609 memcpy (objfile->section_offsets, offsets,
2610 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2611 objfile->num_sections = num_offsets;
2612
2613 /* What the hell is sym_new_init for, anyway? The concept of
2614 distinguishing between the main file and additional files
2615 in this way seems rather dubious. */
2616 if (objfile == symfile_objfile)
2617 {
2618 (*objfile->sf->sym_new_init) (objfile);
2619 }
2620
2621 (*objfile->sf->sym_init) (objfile);
2622 clear_complaints (&symfile_complaints, 1, 1);
2623
2624 objfile->flags &= ~OBJF_PSYMTABS_READ;
2625 read_symbols (objfile, 0);
2626
2627 if (!objfile_has_symbols (objfile))
2628 {
2629 wrap_here ("");
2630 printf_unfiltered (_("(no debugging symbols found)\n"));
2631 wrap_here ("");
2632 }
2633
2634 /* We're done reading the symbol file; finish off complaints. */
2635 clear_complaints (&symfile_complaints, 0, 1);
2636
2637 /* Getting new symbols may change our opinion about what is
2638 frameless. */
2639
2640 reinit_frame_cache ();
2641
2642 /* Discard cleanups as symbol reading was successful. */
2643 discard_cleanups (old_cleanups);
2644
2645 /* If the mtime has changed between the time we set new_modtime
2646 and now, we *want* this to be out of date, so don't call stat
2647 again now. */
2648 objfile->mtime = new_modtime;
2649 init_entry_point_info (objfile);
2650
2651 VEC_safe_push (objfilep, new_objfiles, objfile);
2652 }
2653 }
2654
2655 if (new_objfiles)
2656 {
2657 int ix;
2658
2659 /* Notify objfiles that we've modified objfile sections. */
2660 objfiles_changed ();
2661
2662 clear_symtab_users (0);
2663
2664 /* clear_objfile_data for each objfile was called before freeing it and
2665 observer_notify_new_objfile (NULL) has been called by
2666 clear_symtab_users above. Notify the new files now. */
2667 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2668 observer_notify_new_objfile (objfile);
2669
2670 /* At least one objfile has changed, so we can consider that
2671 the executable we're debugging has changed too. */
2672 observer_notify_executable_changed ();
2673 }
2674
2675 do_cleanups (all_cleanups);
2676 }
2677 \f
2678
2679
2680 typedef struct
2681 {
2682 char *ext;
2683 enum language lang;
2684 }
2685 filename_language;
2686
2687 static filename_language *filename_language_table;
2688 static int fl_table_size, fl_table_next;
2689
2690 static void
2691 add_filename_language (char *ext, enum language lang)
2692 {
2693 if (fl_table_next >= fl_table_size)
2694 {
2695 fl_table_size += 10;
2696 filename_language_table =
2697 xrealloc (filename_language_table,
2698 fl_table_size * sizeof (*filename_language_table));
2699 }
2700
2701 filename_language_table[fl_table_next].ext = xstrdup (ext);
2702 filename_language_table[fl_table_next].lang = lang;
2703 fl_table_next++;
2704 }
2705
2706 static char *ext_args;
2707 static void
2708 show_ext_args (struct ui_file *file, int from_tty,
2709 struct cmd_list_element *c, const char *value)
2710 {
2711 fprintf_filtered (file,
2712 _("Mapping between filename extension "
2713 "and source language is \"%s\".\n"),
2714 value);
2715 }
2716
2717 static void
2718 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2719 {
2720 int i;
2721 char *cp = ext_args;
2722 enum language lang;
2723
2724 /* First arg is filename extension, starting with '.' */
2725 if (*cp != '.')
2726 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2727
2728 /* Find end of first arg. */
2729 while (*cp && !isspace (*cp))
2730 cp++;
2731
2732 if (*cp == '\0')
2733 error (_("'%s': two arguments required -- "
2734 "filename extension and language"),
2735 ext_args);
2736
2737 /* Null-terminate first arg. */
2738 *cp++ = '\0';
2739
2740 /* Find beginning of second arg, which should be a source language. */
2741 while (*cp && isspace (*cp))
2742 cp++;
2743
2744 if (*cp == '\0')
2745 error (_("'%s': two arguments required -- "
2746 "filename extension and language"),
2747 ext_args);
2748
2749 /* Lookup the language from among those we know. */
2750 lang = language_enum (cp);
2751
2752 /* Now lookup the filename extension: do we already know it? */
2753 for (i = 0; i < fl_table_next; i++)
2754 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2755 break;
2756
2757 if (i >= fl_table_next)
2758 {
2759 /* New file extension. */
2760 add_filename_language (ext_args, lang);
2761 }
2762 else
2763 {
2764 /* Redefining a previously known filename extension. */
2765
2766 /* if (from_tty) */
2767 /* query ("Really make files of type %s '%s'?", */
2768 /* ext_args, language_str (lang)); */
2769
2770 xfree (filename_language_table[i].ext);
2771 filename_language_table[i].ext = xstrdup (ext_args);
2772 filename_language_table[i].lang = lang;
2773 }
2774 }
2775
2776 static void
2777 info_ext_lang_command (char *args, int from_tty)
2778 {
2779 int i;
2780
2781 printf_filtered (_("Filename extensions and the languages they represent:"));
2782 printf_filtered ("\n\n");
2783 for (i = 0; i < fl_table_next; i++)
2784 printf_filtered ("\t%s\t- %s\n",
2785 filename_language_table[i].ext,
2786 language_str (filename_language_table[i].lang));
2787 }
2788
2789 static void
2790 init_filename_language_table (void)
2791 {
2792 if (fl_table_size == 0) /* Protect against repetition. */
2793 {
2794 fl_table_size = 20;
2795 fl_table_next = 0;
2796 filename_language_table =
2797 xmalloc (fl_table_size * sizeof (*filename_language_table));
2798 add_filename_language (".c", language_c);
2799 add_filename_language (".d", language_d);
2800 add_filename_language (".C", language_cplus);
2801 add_filename_language (".cc", language_cplus);
2802 add_filename_language (".cp", language_cplus);
2803 add_filename_language (".cpp", language_cplus);
2804 add_filename_language (".cxx", language_cplus);
2805 add_filename_language (".c++", language_cplus);
2806 add_filename_language (".java", language_java);
2807 add_filename_language (".class", language_java);
2808 add_filename_language (".m", language_objc);
2809 add_filename_language (".f", language_fortran);
2810 add_filename_language (".F", language_fortran);
2811 add_filename_language (".for", language_fortran);
2812 add_filename_language (".FOR", language_fortran);
2813 add_filename_language (".ftn", language_fortran);
2814 add_filename_language (".FTN", language_fortran);
2815 add_filename_language (".fpp", language_fortran);
2816 add_filename_language (".FPP", language_fortran);
2817 add_filename_language (".f90", language_fortran);
2818 add_filename_language (".F90", language_fortran);
2819 add_filename_language (".f95", language_fortran);
2820 add_filename_language (".F95", language_fortran);
2821 add_filename_language (".f03", language_fortran);
2822 add_filename_language (".F03", language_fortran);
2823 add_filename_language (".f08", language_fortran);
2824 add_filename_language (".F08", language_fortran);
2825 add_filename_language (".s", language_asm);
2826 add_filename_language (".sx", language_asm);
2827 add_filename_language (".S", language_asm);
2828 add_filename_language (".pas", language_pascal);
2829 add_filename_language (".p", language_pascal);
2830 add_filename_language (".pp", language_pascal);
2831 add_filename_language (".adb", language_ada);
2832 add_filename_language (".ads", language_ada);
2833 add_filename_language (".a", language_ada);
2834 add_filename_language (".ada", language_ada);
2835 add_filename_language (".dg", language_ada);
2836 }
2837 }
2838
2839 enum language
2840 deduce_language_from_filename (const char *filename)
2841 {
2842 int i;
2843 char *cp;
2844
2845 if (filename != NULL)
2846 if ((cp = strrchr (filename, '.')) != NULL)
2847 for (i = 0; i < fl_table_next; i++)
2848 if (strcmp (cp, filename_language_table[i].ext) == 0)
2849 return filename_language_table[i].lang;
2850
2851 return language_unknown;
2852 }
2853 \f
2854 /* allocate_symtab:
2855
2856 Allocate and partly initialize a new symbol table. Return a pointer
2857 to it. error() if no space.
2858
2859 Caller must set these fields:
2860 LINETABLE(symtab)
2861 symtab->blockvector
2862 symtab->dirname
2863 symtab->free_code
2864 symtab->free_ptr
2865 */
2866
2867 struct symtab *
2868 allocate_symtab (const char *filename, struct objfile *objfile)
2869 {
2870 struct symtab *symtab;
2871
2872 symtab = (struct symtab *)
2873 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2874 memset (symtab, 0, sizeof (*symtab));
2875 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2876 objfile->per_bfd->filename_cache);
2877 symtab->fullname = NULL;
2878 symtab->language = deduce_language_from_filename (filename);
2879 symtab->debugformat = "unknown";
2880
2881 /* Hook it to the objfile it comes from. */
2882
2883 symtab->objfile = objfile;
2884 symtab->next = objfile->symtabs;
2885 objfile->symtabs = symtab;
2886
2887 if (symtab_create_debug)
2888 {
2889 /* Be a bit clever with debugging messages, and don't print objfile
2890 every time, only when it changes. */
2891 static char *last_objfile_name = NULL;
2892
2893 if (last_objfile_name == NULL
2894 || strcmp (last_objfile_name, objfile->name) != 0)
2895 {
2896 xfree (last_objfile_name);
2897 last_objfile_name = xstrdup (objfile->name);
2898 fprintf_unfiltered (gdb_stdlog,
2899 "Creating one or more symtabs for objfile %s ...\n",
2900 last_objfile_name);
2901 }
2902 fprintf_unfiltered (gdb_stdlog,
2903 "Created symtab %s for module %s.\n",
2904 host_address_to_string (symtab), filename);
2905 }
2906
2907 return (symtab);
2908 }
2909 \f
2910
2911 /* Reset all data structures in gdb which may contain references to symbol
2912 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2913
2914 void
2915 clear_symtab_users (int add_flags)
2916 {
2917 /* Someday, we should do better than this, by only blowing away
2918 the things that really need to be blown. */
2919
2920 /* Clear the "current" symtab first, because it is no longer valid.
2921 breakpoint_re_set may try to access the current symtab. */
2922 clear_current_source_symtab_and_line ();
2923
2924 clear_displays ();
2925 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2926 breakpoint_re_set ();
2927 clear_last_displayed_sal ();
2928 clear_pc_function_cache ();
2929 observer_notify_new_objfile (NULL);
2930
2931 /* Clear globals which might have pointed into a removed objfile.
2932 FIXME: It's not clear which of these are supposed to persist
2933 between expressions and which ought to be reset each time. */
2934 expression_context_block = NULL;
2935 innermost_block = NULL;
2936
2937 /* Varobj may refer to old symbols, perform a cleanup. */
2938 varobj_invalidate ();
2939
2940 }
2941
2942 static void
2943 clear_symtab_users_cleanup (void *ignore)
2944 {
2945 clear_symtab_users (0);
2946 }
2947 \f
2948 /* OVERLAYS:
2949 The following code implements an abstraction for debugging overlay sections.
2950
2951 The target model is as follows:
2952 1) The gnu linker will permit multiple sections to be mapped into the
2953 same VMA, each with its own unique LMA (or load address).
2954 2) It is assumed that some runtime mechanism exists for mapping the
2955 sections, one by one, from the load address into the VMA address.
2956 3) This code provides a mechanism for gdb to keep track of which
2957 sections should be considered to be mapped from the VMA to the LMA.
2958 This information is used for symbol lookup, and memory read/write.
2959 For instance, if a section has been mapped then its contents
2960 should be read from the VMA, otherwise from the LMA.
2961
2962 Two levels of debugger support for overlays are available. One is
2963 "manual", in which the debugger relies on the user to tell it which
2964 overlays are currently mapped. This level of support is
2965 implemented entirely in the core debugger, and the information about
2966 whether a section is mapped is kept in the objfile->obj_section table.
2967
2968 The second level of support is "automatic", and is only available if
2969 the target-specific code provides functionality to read the target's
2970 overlay mapping table, and translate its contents for the debugger
2971 (by updating the mapped state information in the obj_section tables).
2972
2973 The interface is as follows:
2974 User commands:
2975 overlay map <name> -- tell gdb to consider this section mapped
2976 overlay unmap <name> -- tell gdb to consider this section unmapped
2977 overlay list -- list the sections that GDB thinks are mapped
2978 overlay read-target -- get the target's state of what's mapped
2979 overlay off/manual/auto -- set overlay debugging state
2980 Functional interface:
2981 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2982 section, return that section.
2983 find_pc_overlay(pc): find any overlay section that contains
2984 the pc, either in its VMA or its LMA
2985 section_is_mapped(sect): true if overlay is marked as mapped
2986 section_is_overlay(sect): true if section's VMA != LMA
2987 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2988 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2989 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2990 overlay_mapped_address(...): map an address from section's LMA to VMA
2991 overlay_unmapped_address(...): map an address from section's VMA to LMA
2992 symbol_overlayed_address(...): Return a "current" address for symbol:
2993 either in VMA or LMA depending on whether
2994 the symbol's section is currently mapped. */
2995
2996 /* Overlay debugging state: */
2997
2998 enum overlay_debugging_state overlay_debugging = ovly_off;
2999 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3000
3001 /* Function: section_is_overlay (SECTION)
3002 Returns true if SECTION has VMA not equal to LMA, ie.
3003 SECTION is loaded at an address different from where it will "run". */
3004
3005 int
3006 section_is_overlay (struct obj_section *section)
3007 {
3008 if (overlay_debugging && section)
3009 {
3010 bfd *abfd = section->objfile->obfd;
3011 asection *bfd_section = section->the_bfd_section;
3012
3013 if (bfd_section_lma (abfd, bfd_section) != 0
3014 && bfd_section_lma (abfd, bfd_section)
3015 != bfd_section_vma (abfd, bfd_section))
3016 return 1;
3017 }
3018
3019 return 0;
3020 }
3021
3022 /* Function: overlay_invalidate_all (void)
3023 Invalidate the mapped state of all overlay sections (mark it as stale). */
3024
3025 static void
3026 overlay_invalidate_all (void)
3027 {
3028 struct objfile *objfile;
3029 struct obj_section *sect;
3030
3031 ALL_OBJSECTIONS (objfile, sect)
3032 if (section_is_overlay (sect))
3033 sect->ovly_mapped = -1;
3034 }
3035
3036 /* Function: section_is_mapped (SECTION)
3037 Returns true if section is an overlay, and is currently mapped.
3038
3039 Access to the ovly_mapped flag is restricted to this function, so
3040 that we can do automatic update. If the global flag
3041 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3042 overlay_invalidate_all. If the mapped state of the particular
3043 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3044
3045 int
3046 section_is_mapped (struct obj_section *osect)
3047 {
3048 struct gdbarch *gdbarch;
3049
3050 if (osect == 0 || !section_is_overlay (osect))
3051 return 0;
3052
3053 switch (overlay_debugging)
3054 {
3055 default:
3056 case ovly_off:
3057 return 0; /* overlay debugging off */
3058 case ovly_auto: /* overlay debugging automatic */
3059 /* Unles there is a gdbarch_overlay_update function,
3060 there's really nothing useful to do here (can't really go auto). */
3061 gdbarch = get_objfile_arch (osect->objfile);
3062 if (gdbarch_overlay_update_p (gdbarch))
3063 {
3064 if (overlay_cache_invalid)
3065 {
3066 overlay_invalidate_all ();
3067 overlay_cache_invalid = 0;
3068 }
3069 if (osect->ovly_mapped == -1)
3070 gdbarch_overlay_update (gdbarch, osect);
3071 }
3072 /* fall thru to manual case */
3073 case ovly_on: /* overlay debugging manual */
3074 return osect->ovly_mapped == 1;
3075 }
3076 }
3077
3078 /* Function: pc_in_unmapped_range
3079 If PC falls into the lma range of SECTION, return true, else false. */
3080
3081 CORE_ADDR
3082 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3083 {
3084 if (section_is_overlay (section))
3085 {
3086 bfd *abfd = section->objfile->obfd;
3087 asection *bfd_section = section->the_bfd_section;
3088
3089 /* We assume the LMA is relocated by the same offset as the VMA. */
3090 bfd_vma size = bfd_get_section_size (bfd_section);
3091 CORE_ADDR offset = obj_section_offset (section);
3092
3093 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3094 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3095 return 1;
3096 }
3097
3098 return 0;
3099 }
3100
3101 /* Function: pc_in_mapped_range
3102 If PC falls into the vma range of SECTION, return true, else false. */
3103
3104 CORE_ADDR
3105 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3106 {
3107 if (section_is_overlay (section))
3108 {
3109 if (obj_section_addr (section) <= pc
3110 && pc < obj_section_endaddr (section))
3111 return 1;
3112 }
3113
3114 return 0;
3115 }
3116
3117
3118 /* Return true if the mapped ranges of sections A and B overlap, false
3119 otherwise. */
3120 static int
3121 sections_overlap (struct obj_section *a, struct obj_section *b)
3122 {
3123 CORE_ADDR a_start = obj_section_addr (a);
3124 CORE_ADDR a_end = obj_section_endaddr (a);
3125 CORE_ADDR b_start = obj_section_addr (b);
3126 CORE_ADDR b_end = obj_section_endaddr (b);
3127
3128 return (a_start < b_end && b_start < a_end);
3129 }
3130
3131 /* Function: overlay_unmapped_address (PC, SECTION)
3132 Returns the address corresponding to PC in the unmapped (load) range.
3133 May be the same as PC. */
3134
3135 CORE_ADDR
3136 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3137 {
3138 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3139 {
3140 bfd *abfd = section->objfile->obfd;
3141 asection *bfd_section = section->the_bfd_section;
3142
3143 return pc + bfd_section_lma (abfd, bfd_section)
3144 - bfd_section_vma (abfd, bfd_section);
3145 }
3146
3147 return pc;
3148 }
3149
3150 /* Function: overlay_mapped_address (PC, SECTION)
3151 Returns the address corresponding to PC in the mapped (runtime) range.
3152 May be the same as PC. */
3153
3154 CORE_ADDR
3155 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3156 {
3157 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3158 {
3159 bfd *abfd = section->objfile->obfd;
3160 asection *bfd_section = section->the_bfd_section;
3161
3162 return pc + bfd_section_vma (abfd, bfd_section)
3163 - bfd_section_lma (abfd, bfd_section);
3164 }
3165
3166 return pc;
3167 }
3168
3169
3170 /* Function: symbol_overlayed_address
3171 Return one of two addresses (relative to the VMA or to the LMA),
3172 depending on whether the section is mapped or not. */
3173
3174 CORE_ADDR
3175 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3176 {
3177 if (overlay_debugging)
3178 {
3179 /* If the symbol has no section, just return its regular address. */
3180 if (section == 0)
3181 return address;
3182 /* If the symbol's section is not an overlay, just return its
3183 address. */
3184 if (!section_is_overlay (section))
3185 return address;
3186 /* If the symbol's section is mapped, just return its address. */
3187 if (section_is_mapped (section))
3188 return address;
3189 /*
3190 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3191 * then return its LOADED address rather than its vma address!!
3192 */
3193 return overlay_unmapped_address (address, section);
3194 }
3195 return address;
3196 }
3197
3198 /* Function: find_pc_overlay (PC)
3199 Return the best-match overlay section for PC:
3200 If PC matches a mapped overlay section's VMA, return that section.
3201 Else if PC matches an unmapped section's VMA, return that section.
3202 Else if PC matches an unmapped section's LMA, return that section. */
3203
3204 struct obj_section *
3205 find_pc_overlay (CORE_ADDR pc)
3206 {
3207 struct objfile *objfile;
3208 struct obj_section *osect, *best_match = NULL;
3209
3210 if (overlay_debugging)
3211 ALL_OBJSECTIONS (objfile, osect)
3212 if (section_is_overlay (osect))
3213 {
3214 if (pc_in_mapped_range (pc, osect))
3215 {
3216 if (section_is_mapped (osect))
3217 return osect;
3218 else
3219 best_match = osect;
3220 }
3221 else if (pc_in_unmapped_range (pc, osect))
3222 best_match = osect;
3223 }
3224 return best_match;
3225 }
3226
3227 /* Function: find_pc_mapped_section (PC)
3228 If PC falls into the VMA address range of an overlay section that is
3229 currently marked as MAPPED, return that section. Else return NULL. */
3230
3231 struct obj_section *
3232 find_pc_mapped_section (CORE_ADDR pc)
3233 {
3234 struct objfile *objfile;
3235 struct obj_section *osect;
3236
3237 if (overlay_debugging)
3238 ALL_OBJSECTIONS (objfile, osect)
3239 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3240 return osect;
3241
3242 return NULL;
3243 }
3244
3245 /* Function: list_overlays_command
3246 Print a list of mapped sections and their PC ranges. */
3247
3248 void
3249 list_overlays_command (char *args, int from_tty)
3250 {
3251 int nmapped = 0;
3252 struct objfile *objfile;
3253 struct obj_section *osect;
3254
3255 if (overlay_debugging)
3256 ALL_OBJSECTIONS (objfile, osect)
3257 if (section_is_mapped (osect))
3258 {
3259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3260 const char *name;
3261 bfd_vma lma, vma;
3262 int size;
3263
3264 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3265 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3266 size = bfd_get_section_size (osect->the_bfd_section);
3267 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3268
3269 printf_filtered ("Section %s, loaded at ", name);
3270 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3271 puts_filtered (" - ");
3272 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3273 printf_filtered (", mapped at ");
3274 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3275 puts_filtered (" - ");
3276 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3277 puts_filtered ("\n");
3278
3279 nmapped++;
3280 }
3281 if (nmapped == 0)
3282 printf_filtered (_("No sections are mapped.\n"));
3283 }
3284
3285 /* Function: map_overlay_command
3286 Mark the named section as mapped (ie. residing at its VMA address). */
3287
3288 void
3289 map_overlay_command (char *args, int from_tty)
3290 {
3291 struct objfile *objfile, *objfile2;
3292 struct obj_section *sec, *sec2;
3293
3294 if (!overlay_debugging)
3295 error (_("Overlay debugging not enabled. Use "
3296 "either the 'overlay auto' or\n"
3297 "the 'overlay manual' command."));
3298
3299 if (args == 0 || *args == 0)
3300 error (_("Argument required: name of an overlay section"));
3301
3302 /* First, find a section matching the user supplied argument. */
3303 ALL_OBJSECTIONS (objfile, sec)
3304 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3305 {
3306 /* Now, check to see if the section is an overlay. */
3307 if (!section_is_overlay (sec))
3308 continue; /* not an overlay section */
3309
3310 /* Mark the overlay as "mapped". */
3311 sec->ovly_mapped = 1;
3312
3313 /* Next, make a pass and unmap any sections that are
3314 overlapped by this new section: */
3315 ALL_OBJSECTIONS (objfile2, sec2)
3316 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3317 {
3318 if (info_verbose)
3319 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3320 bfd_section_name (objfile->obfd,
3321 sec2->the_bfd_section));
3322 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3323 }
3324 return;
3325 }
3326 error (_("No overlay section called %s"), args);
3327 }
3328
3329 /* Function: unmap_overlay_command
3330 Mark the overlay section as unmapped
3331 (ie. resident in its LMA address range, rather than the VMA range). */
3332
3333 void
3334 unmap_overlay_command (char *args, int from_tty)
3335 {
3336 struct objfile *objfile;
3337 struct obj_section *sec;
3338
3339 if (!overlay_debugging)
3340 error (_("Overlay debugging not enabled. "
3341 "Use either the 'overlay auto' or\n"
3342 "the 'overlay manual' command."));
3343
3344 if (args == 0 || *args == 0)
3345 error (_("Argument required: name of an overlay section"));
3346
3347 /* First, find a section matching the user supplied argument. */
3348 ALL_OBJSECTIONS (objfile, sec)
3349 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3350 {
3351 if (!sec->ovly_mapped)
3352 error (_("Section %s is not mapped"), args);
3353 sec->ovly_mapped = 0;
3354 return;
3355 }
3356 error (_("No overlay section called %s"), args);
3357 }
3358
3359 /* Function: overlay_auto_command
3360 A utility command to turn on overlay debugging.
3361 Possibly this should be done via a set/show command. */
3362
3363 static void
3364 overlay_auto_command (char *args, int from_tty)
3365 {
3366 overlay_debugging = ovly_auto;
3367 enable_overlay_breakpoints ();
3368 if (info_verbose)
3369 printf_unfiltered (_("Automatic overlay debugging enabled."));
3370 }
3371
3372 /* Function: overlay_manual_command
3373 A utility command to turn on overlay debugging.
3374 Possibly this should be done via a set/show command. */
3375
3376 static void
3377 overlay_manual_command (char *args, int from_tty)
3378 {
3379 overlay_debugging = ovly_on;
3380 disable_overlay_breakpoints ();
3381 if (info_verbose)
3382 printf_unfiltered (_("Overlay debugging enabled."));
3383 }
3384
3385 /* Function: overlay_off_command
3386 A utility command to turn on overlay debugging.
3387 Possibly this should be done via a set/show command. */
3388
3389 static void
3390 overlay_off_command (char *args, int from_tty)
3391 {
3392 overlay_debugging = ovly_off;
3393 disable_overlay_breakpoints ();
3394 if (info_verbose)
3395 printf_unfiltered (_("Overlay debugging disabled."));
3396 }
3397
3398 static void
3399 overlay_load_command (char *args, int from_tty)
3400 {
3401 struct gdbarch *gdbarch = get_current_arch ();
3402
3403 if (gdbarch_overlay_update_p (gdbarch))
3404 gdbarch_overlay_update (gdbarch, NULL);
3405 else
3406 error (_("This target does not know how to read its overlay state."));
3407 }
3408
3409 /* Function: overlay_command
3410 A place-holder for a mis-typed command. */
3411
3412 /* Command list chain containing all defined "overlay" subcommands. */
3413 static struct cmd_list_element *overlaylist;
3414
3415 static void
3416 overlay_command (char *args, int from_tty)
3417 {
3418 printf_unfiltered
3419 ("\"overlay\" must be followed by the name of an overlay command.\n");
3420 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3421 }
3422
3423
3424 /* Target Overlays for the "Simplest" overlay manager:
3425
3426 This is GDB's default target overlay layer. It works with the
3427 minimal overlay manager supplied as an example by Cygnus. The
3428 entry point is via a function pointer "gdbarch_overlay_update",
3429 so targets that use a different runtime overlay manager can
3430 substitute their own overlay_update function and take over the
3431 function pointer.
3432
3433 The overlay_update function pokes around in the target's data structures
3434 to see what overlays are mapped, and updates GDB's overlay mapping with
3435 this information.
3436
3437 In this simple implementation, the target data structures are as follows:
3438 unsigned _novlys; /# number of overlay sections #/
3439 unsigned _ovly_table[_novlys][4] = {
3440 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3441 {..., ..., ..., ...},
3442 }
3443 unsigned _novly_regions; /# number of overlay regions #/
3444 unsigned _ovly_region_table[_novly_regions][3] = {
3445 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3446 {..., ..., ...},
3447 }
3448 These functions will attempt to update GDB's mappedness state in the
3449 symbol section table, based on the target's mappedness state.
3450
3451 To do this, we keep a cached copy of the target's _ovly_table, and
3452 attempt to detect when the cached copy is invalidated. The main
3453 entry point is "simple_overlay_update(SECT), which looks up SECT in
3454 the cached table and re-reads only the entry for that section from
3455 the target (whenever possible). */
3456
3457 /* Cached, dynamically allocated copies of the target data structures: */
3458 static unsigned (*cache_ovly_table)[4] = 0;
3459 static unsigned cache_novlys = 0;
3460 static CORE_ADDR cache_ovly_table_base = 0;
3461 enum ovly_index
3462 {
3463 VMA, SIZE, LMA, MAPPED
3464 };
3465
3466 /* Throw away the cached copy of _ovly_table. */
3467 static void
3468 simple_free_overlay_table (void)
3469 {
3470 if (cache_ovly_table)
3471 xfree (cache_ovly_table);
3472 cache_novlys = 0;
3473 cache_ovly_table = NULL;
3474 cache_ovly_table_base = 0;
3475 }
3476
3477 /* Read an array of ints of size SIZE from the target into a local buffer.
3478 Convert to host order. int LEN is number of ints. */
3479 static void
3480 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3481 int len, int size, enum bfd_endian byte_order)
3482 {
3483 /* FIXME (alloca): Not safe if array is very large. */
3484 gdb_byte *buf = alloca (len * size);
3485 int i;
3486
3487 read_memory (memaddr, buf, len * size);
3488 for (i = 0; i < len; i++)
3489 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3490 }
3491
3492 /* Find and grab a copy of the target _ovly_table
3493 (and _novlys, which is needed for the table's size). */
3494 static int
3495 simple_read_overlay_table (void)
3496 {
3497 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3498 struct gdbarch *gdbarch;
3499 int word_size;
3500 enum bfd_endian byte_order;
3501
3502 simple_free_overlay_table ();
3503 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3504 if (! novlys_msym)
3505 {
3506 error (_("Error reading inferior's overlay table: "
3507 "couldn't find `_novlys' variable\n"
3508 "in inferior. Use `overlay manual' mode."));
3509 return 0;
3510 }
3511
3512 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3513 if (! ovly_table_msym)
3514 {
3515 error (_("Error reading inferior's overlay table: couldn't find "
3516 "`_ovly_table' array\n"
3517 "in inferior. Use `overlay manual' mode."));
3518 return 0;
3519 }
3520
3521 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3522 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3523 byte_order = gdbarch_byte_order (gdbarch);
3524
3525 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3526 4, byte_order);
3527 cache_ovly_table
3528 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3529 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3530 read_target_long_array (cache_ovly_table_base,
3531 (unsigned int *) cache_ovly_table,
3532 cache_novlys * 4, word_size, byte_order);
3533
3534 return 1; /* SUCCESS */
3535 }
3536
3537 /* Function: simple_overlay_update_1
3538 A helper function for simple_overlay_update. Assuming a cached copy
3539 of _ovly_table exists, look through it to find an entry whose vma,
3540 lma and size match those of OSECT. Re-read the entry and make sure
3541 it still matches OSECT (else the table may no longer be valid).
3542 Set OSECT's mapped state to match the entry. Return: 1 for
3543 success, 0 for failure. */
3544
3545 static int
3546 simple_overlay_update_1 (struct obj_section *osect)
3547 {
3548 int i, size;
3549 bfd *obfd = osect->objfile->obfd;
3550 asection *bsect = osect->the_bfd_section;
3551 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3552 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3554
3555 size = bfd_get_section_size (osect->the_bfd_section);
3556 for (i = 0; i < cache_novlys; i++)
3557 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3558 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3559 /* && cache_ovly_table[i][SIZE] == size */ )
3560 {
3561 read_target_long_array (cache_ovly_table_base + i * word_size,
3562 (unsigned int *) cache_ovly_table[i],
3563 4, word_size, byte_order);
3564 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3565 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3566 /* && cache_ovly_table[i][SIZE] == size */ )
3567 {
3568 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3569 return 1;
3570 }
3571 else /* Warning! Warning! Target's ovly table has changed! */
3572 return 0;
3573 }
3574 return 0;
3575 }
3576
3577 /* Function: simple_overlay_update
3578 If OSECT is NULL, then update all sections' mapped state
3579 (after re-reading the entire target _ovly_table).
3580 If OSECT is non-NULL, then try to find a matching entry in the
3581 cached ovly_table and update only OSECT's mapped state.
3582 If a cached entry can't be found or the cache isn't valid, then
3583 re-read the entire cache, and go ahead and update all sections. */
3584
3585 void
3586 simple_overlay_update (struct obj_section *osect)
3587 {
3588 struct objfile *objfile;
3589
3590 /* Were we given an osect to look up? NULL means do all of them. */
3591 if (osect)
3592 /* Have we got a cached copy of the target's overlay table? */
3593 if (cache_ovly_table != NULL)
3594 {
3595 /* Does its cached location match what's currently in the
3596 symtab? */
3597 struct minimal_symbol *minsym
3598 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3599
3600 if (minsym == NULL)
3601 error (_("Error reading inferior's overlay table: couldn't "
3602 "find `_ovly_table' array\n"
3603 "in inferior. Use `overlay manual' mode."));
3604
3605 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3606 /* Then go ahead and try to look up this single section in
3607 the cache. */
3608 if (simple_overlay_update_1 (osect))
3609 /* Found it! We're done. */
3610 return;
3611 }
3612
3613 /* Cached table no good: need to read the entire table anew.
3614 Or else we want all the sections, in which case it's actually
3615 more efficient to read the whole table in one block anyway. */
3616
3617 if (! simple_read_overlay_table ())
3618 return;
3619
3620 /* Now may as well update all sections, even if only one was requested. */
3621 ALL_OBJSECTIONS (objfile, osect)
3622 if (section_is_overlay (osect))
3623 {
3624 int i, size;
3625 bfd *obfd = osect->objfile->obfd;
3626 asection *bsect = osect->the_bfd_section;
3627
3628 size = bfd_get_section_size (bsect);
3629 for (i = 0; i < cache_novlys; i++)
3630 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3631 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3632 /* && cache_ovly_table[i][SIZE] == size */ )
3633 { /* obj_section matches i'th entry in ovly_table. */
3634 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3635 break; /* finished with inner for loop: break out. */
3636 }
3637 }
3638 }
3639
3640 /* Set the output sections and output offsets for section SECTP in
3641 ABFD. The relocation code in BFD will read these offsets, so we
3642 need to be sure they're initialized. We map each section to itself,
3643 with no offset; this means that SECTP->vma will be honored. */
3644
3645 static void
3646 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3647 {
3648 sectp->output_section = sectp;
3649 sectp->output_offset = 0;
3650 }
3651
3652 /* Default implementation for sym_relocate. */
3653
3654
3655 bfd_byte *
3656 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3657 bfd_byte *buf)
3658 {
3659 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3660 DWO file. */
3661 bfd *abfd = sectp->owner;
3662
3663 /* We're only interested in sections with relocation
3664 information. */
3665 if ((sectp->flags & SEC_RELOC) == 0)
3666 return NULL;
3667
3668 /* We will handle section offsets properly elsewhere, so relocate as if
3669 all sections begin at 0. */
3670 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3671
3672 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3673 }
3674
3675 /* Relocate the contents of a debug section SECTP in ABFD. The
3676 contents are stored in BUF if it is non-NULL, or returned in a
3677 malloc'd buffer otherwise.
3678
3679 For some platforms and debug info formats, shared libraries contain
3680 relocations against the debug sections (particularly for DWARF-2;
3681 one affected platform is PowerPC GNU/Linux, although it depends on
3682 the version of the linker in use). Also, ELF object files naturally
3683 have unresolved relocations for their debug sections. We need to apply
3684 the relocations in order to get the locations of symbols correct.
3685 Another example that may require relocation processing, is the
3686 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3687 debug section. */
3688
3689 bfd_byte *
3690 symfile_relocate_debug_section (struct objfile *objfile,
3691 asection *sectp, bfd_byte *buf)
3692 {
3693 gdb_assert (objfile->sf->sym_relocate);
3694
3695 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3696 }
3697
3698 struct symfile_segment_data *
3699 get_symfile_segment_data (bfd *abfd)
3700 {
3701 const struct sym_fns *sf = find_sym_fns (abfd);
3702
3703 if (sf == NULL)
3704 return NULL;
3705
3706 return sf->sym_segments (abfd);
3707 }
3708
3709 void
3710 free_symfile_segment_data (struct symfile_segment_data *data)
3711 {
3712 xfree (data->segment_bases);
3713 xfree (data->segment_sizes);
3714 xfree (data->segment_info);
3715 xfree (data);
3716 }
3717
3718
3719 /* Given:
3720 - DATA, containing segment addresses from the object file ABFD, and
3721 the mapping from ABFD's sections onto the segments that own them,
3722 and
3723 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3724 segment addresses reported by the target,
3725 store the appropriate offsets for each section in OFFSETS.
3726
3727 If there are fewer entries in SEGMENT_BASES than there are segments
3728 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3729
3730 If there are more entries, then ignore the extra. The target may
3731 not be able to distinguish between an empty data segment and a
3732 missing data segment; a missing text segment is less plausible. */
3733 int
3734 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3735 struct section_offsets *offsets,
3736 int num_segment_bases,
3737 const CORE_ADDR *segment_bases)
3738 {
3739 int i;
3740 asection *sect;
3741
3742 /* It doesn't make sense to call this function unless you have some
3743 segment base addresses. */
3744 gdb_assert (num_segment_bases > 0);
3745
3746 /* If we do not have segment mappings for the object file, we
3747 can not relocate it by segments. */
3748 gdb_assert (data != NULL);
3749 gdb_assert (data->num_segments > 0);
3750
3751 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3752 {
3753 int which = data->segment_info[i];
3754
3755 gdb_assert (0 <= which && which <= data->num_segments);
3756
3757 /* Don't bother computing offsets for sections that aren't
3758 loaded as part of any segment. */
3759 if (! which)
3760 continue;
3761
3762 /* Use the last SEGMENT_BASES entry as the address of any extra
3763 segments mentioned in DATA->segment_info. */
3764 if (which > num_segment_bases)
3765 which = num_segment_bases;
3766
3767 offsets->offsets[i] = (segment_bases[which - 1]
3768 - data->segment_bases[which - 1]);
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
3775 symfile_find_segment_sections (struct objfile *objfile)
3776 {
3777 bfd *abfd = objfile->obfd;
3778 int i;
3779 asection *sect;
3780 struct symfile_segment_data *data;
3781
3782 data = get_symfile_segment_data (objfile->obfd);
3783 if (data == NULL)
3784 return;
3785
3786 if (data->num_segments != 1 && data->num_segments != 2)
3787 {
3788 free_symfile_segment_data (data);
3789 return;
3790 }
3791
3792 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3793 {
3794 int which = data->segment_info[i];
3795
3796 if (which == 1)
3797 {
3798 if (objfile->sect_index_text == -1)
3799 objfile->sect_index_text = sect->index;
3800
3801 if (objfile->sect_index_rodata == -1)
3802 objfile->sect_index_rodata = sect->index;
3803 }
3804 else if (which == 2)
3805 {
3806 if (objfile->sect_index_data == -1)
3807 objfile->sect_index_data = sect->index;
3808
3809 if (objfile->sect_index_bss == -1)
3810 objfile->sect_index_bss = sect->index;
3811 }
3812 }
3813
3814 free_symfile_segment_data (data);
3815 }
3816
3817 void
3818 _initialize_symfile (void)
3819 {
3820 struct cmd_list_element *c;
3821
3822 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3823 Load symbol table from executable file FILE.\n\
3824 The `file' command can also load symbol tables, as well as setting the file\n\
3825 to execute."), &cmdlist);
3826 set_cmd_completer (c, filename_completer);
3827
3828 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3829 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3830 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3831 ...]\nADDR is the starting address of the file's text.\n\
3832 The optional arguments are section-name section-address pairs and\n\
3833 should be specified if the data and bss segments are not contiguous\n\
3834 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3835 &cmdlist);
3836 set_cmd_completer (c, filename_completer);
3837
3838 c = add_cmd ("load", class_files, load_command, _("\
3839 Dynamically load FILE into the running program, and record its symbols\n\
3840 for access from GDB.\n\
3841 A load OFFSET may also be given."), &cmdlist);
3842 set_cmd_completer (c, filename_completer);
3843
3844 add_prefix_cmd ("overlay", class_support, overlay_command,
3845 _("Commands for debugging overlays."), &overlaylist,
3846 "overlay ", 0, &cmdlist);
3847
3848 add_com_alias ("ovly", "overlay", class_alias, 1);
3849 add_com_alias ("ov", "overlay", class_alias, 1);
3850
3851 add_cmd ("map-overlay", class_support, map_overlay_command,
3852 _("Assert that an overlay section is mapped."), &overlaylist);
3853
3854 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3855 _("Assert that an overlay section is unmapped."), &overlaylist);
3856
3857 add_cmd ("list-overlays", class_support, list_overlays_command,
3858 _("List mappings of overlay sections."), &overlaylist);
3859
3860 add_cmd ("manual", class_support, overlay_manual_command,
3861 _("Enable overlay debugging."), &overlaylist);
3862 add_cmd ("off", class_support, overlay_off_command,
3863 _("Disable overlay debugging."), &overlaylist);
3864 add_cmd ("auto", class_support, overlay_auto_command,
3865 _("Enable automatic overlay debugging."), &overlaylist);
3866 add_cmd ("load-target", class_support, overlay_load_command,
3867 _("Read the overlay mapping state from the target."), &overlaylist);
3868
3869 /* Filename extension to source language lookup table: */
3870 init_filename_language_table ();
3871 add_setshow_string_noescape_cmd ("extension-language", class_files,
3872 &ext_args, _("\
3873 Set mapping between filename extension and source language."), _("\
3874 Show mapping between filename extension and source language."), _("\
3875 Usage: set extension-language .foo bar"),
3876 set_ext_lang_command,
3877 show_ext_args,
3878 &setlist, &showlist);
3879
3880 add_info ("extensions", info_ext_lang_command,
3881 _("All filename extensions associated with a source language."));
3882
3883 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3884 &debug_file_directory, _("\
3885 Set the directories where separate debug symbols are searched for."), _("\
3886 Show the directories where separate debug symbols are searched for."), _("\
3887 Separate debug symbols are first searched for in the same\n\
3888 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3889 and lastly at the path of the directory of the binary with\n\
3890 each global debug-file-directory component prepended."),
3891 NULL,
3892 show_debug_file_directory,
3893 &setlist, &showlist);
3894 }
This page took 0.106371 seconds and 4 git commands to generate.