Use a distinguishing name for minidebug objfile
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67 #include <algorithm>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85 int readnever_symbol_files; /* Never read full symbols. */
86
87 /* Functions this file defines. */
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void symfile_find_segment_sections (struct objfile *objfile);
106
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
109 prepared to read. */
110
111 struct registered_sym_fns
112 {
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
122 };
123
124 static std::vector<registered_sym_fns> symtab_fns;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Build (allocate and populate) a section_addr_info struct from
220 an existing section table. */
221
222 section_addr_info
223 build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
225 {
226 const struct target_section *stp;
227
228 section_addr_info sap;
229
230 for (stp = start; stp != end; stp++)
231 {
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
240 }
241
242 return sap;
243 }
244
245 /* Create a section_addr_info from section offsets in ABFD. */
246
247 static section_addr_info
248 build_section_addr_info_from_bfd (bfd *abfd)
249 {
250 struct bfd_section *sec;
251
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
258
259 return sap;
260 }
261
262 /* Create a section_addr_info from section offsets in OBJFILE. */
263
264 section_addr_info
265 build_section_addr_info_from_objfile (const struct objfile *objfile)
266 {
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
274 {
275 int sectindex = sap[i].sectindex;
276
277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
278 }
279 return sap;
280 }
281
282 /* Initialize OBJFILE's sect_index_* members. */
283
284 static void
285 init_objfile_sect_indices (struct objfile *objfile)
286 {
287 asection *sect;
288 int i;
289
290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
291 if (sect)
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
295 if (sect)
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
299 if (sect)
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
303 if (sect)
304 objfile->sect_index_rodata = sect->index;
305
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
341 }
342
343 /* The arguments to place_section. */
344
345 struct place_section_arg
346 {
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349 };
350
351 /* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
354 static void
355 place_section (bfd *abfd, asection *sect, void *obj)
356 {
357 struct place_section_arg *arg = (struct place_section_arg *) obj;
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
361
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
364 return;
365
366 /* If the user specified an offset, honor it. */
367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
371 start_addr = (arg->lowest + align - 1) & -align;
372
373 do {
374 asection *cur_sec;
375
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
403 break;
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
412 arg->lowest = start_addr + bfd_get_section_size (sect);
413 }
414
415 /* Store section_addr_info as prepared (made relative and with SECTINDEX
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
418
419 void
420 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
422 const section_addr_info &addrs)
423 {
424 int i;
425
426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
427
428 /* Now calculate offsets for section that were specified by the caller. */
429 for (i = 0; i < addrs.size (); i++)
430 {
431 const struct other_sections *osp;
432
433 osp = &addrs[i];
434 if (osp->sectindex == -1)
435 continue;
436
437 /* Record all sections in offsets. */
438 /* The section_offsets in the objfile are here filled in using
439 the BFD index. */
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442 }
443
444 /* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450 static const char *
451 addr_section_name (const char *s)
452 {
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459 }
460
461 /* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
464
465 static bool
466 addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
468 {
469 int retval;
470
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
475
476 return a->sectindex < b->sectindex;
477 }
478
479 /* Provide sorted array of pointers to sections of ADDRS. */
480
481 static std::vector<const struct other_sections *>
482 addrs_section_sort (const section_addr_info &addrs)
483 {
484 int i;
485
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
489
490 std::sort (array.begin (), array.end (), addrs_section_compar);
491
492 return array;
493 }
494
495 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
498
499 void
500 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
501 {
502 asection *lower_sect;
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
515 }
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
531
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
535
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
538
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
541
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const struct other_sections *sect : addrs_sorted)
545 {
546 const char *sect_name = addr_section_name (sect->name.c_str ());
547
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
550 sect_name) < 0)
551 abfd_sorted_iter++;
552
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
555 sect_name) == 0)
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
560 index_in_addrs = sect - addrs->data ();
561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
563
564 /* Never use the same ABFD entry twice. */
565 abfd_sorted_iter++;
566 }
567 }
568
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
579 for (i = 0; i < addrs->size (); i++)
580 {
581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
582
583 if (sect)
584 {
585 /* This is the index used by BFD. */
586 (*addrs)[i].sectindex = sect->sectindex;
587
588 if ((*addrs)[i].addr != 0)
589 {
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
592 }
593 else
594 (*addrs)[i].addr = lower_offset;
595 }
596 else
597 {
598 /* addr_section_name transformation is not used for SECT_NAME. */
599 const std::string &sect_name = (*addrs)[i].name;
600
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
614
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
618 && i > 0
619 && (*addrs)[i - 1].name == ".dynbss"
620 && addrs_to_abfd_addrs[i - 1] != NULL)
621 || (sect_name == ".sbss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".sdynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)))
625 warning (_("section %s not found in %s"), sect_name.c_str (),
626 bfd_get_filename (abfd));
627
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
630 }
631 }
632 }
633
634 /* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640 void
641 default_symfile_offsets (struct objfile *objfile,
642 const section_addr_info &addrs)
643 {
644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
650
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
713 offsets[cur_sec->index]);
714 offsets[cur_sec->index] = 0;
715 }
716 }
717 }
718
719 /* Remember the bfd indexes for the .text, .data, .bss and
720 .rodata sections. */
721 init_objfile_sect_indices (objfile);
722 }
723
724 /* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730 struct symfile_segment_data *
731 default_symfile_segments (bfd *abfd)
732 {
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
758 data = XCNEW (struct symfile_segment_data);
759 data->num_segments = 1;
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
762
763 num_sections = bfd_count_sections (abfd);
764 data->segment_info = XCNEWVEC (int, num_sections);
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786 }
787
788 /* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791 static void
792 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
793 {
794 (*objfile->sf->sym_read) (objfile, add_flags);
795 objfile->per_bfd->minsyms_read = true;
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
802 {
803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
804
805 if (abfd != NULL)
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
814 }
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818 }
819
820 /* Initialize entry point information for this objfile. */
821
822 static void
823 init_entry_point_info (struct objfile *objfile)
824 {
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
853 ei->entry_point_p = 0;
854 }
855
856 if (ei->entry_point_p)
857 {
858 struct obj_section *osect;
859 CORE_ADDR entry_point = ei->entry_point;
860 int found;
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
866 entry_point,
867 target_stack);
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
871 ei->entry_point
872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
883 ei->the_bfd_section_index
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
892 }
893 }
894
895 /* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
898 This function does not set the OBJFILE's entry-point info.
899
900 OBJFILE is where the symbols are to be read from.
901
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
911
912 ADD_FLAGS encodes verbosity level, whether this is main symbol or
913 an extra symbol file such as dynamically loaded code, and wether
914 breakpoint reset should be deferred. */
915
916 static void
917 syms_from_objfile_1 (struct objfile *objfile,
918 section_addr_info *addrs,
919 symfile_add_flags add_flags)
920 {
921 section_addr_info local_addr;
922 struct cleanup *old_chain;
923 const int mainline = add_flags & SYMFILE_MAINLINE;
924
925 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
926
927 if (objfile->sf == NULL)
928 {
929 /* No symbols to load, but we still need to make sure
930 that the section_offsets table is allocated. */
931 int num_sections = gdb_bfd_count_sections (objfile->obfd);
932 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
933
934 objfile->num_sections = num_sections;
935 objfile->section_offsets
936 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
937 size);
938 memset (objfile->section_offsets, 0, size);
939 return;
940 }
941
942 /* Make sure that partially constructed symbol tables will be cleaned up
943 if an error occurs during symbol reading. */
944 old_chain = make_cleanup (null_cleanup, NULL);
945 std::unique_ptr<struct objfile> objfile_holder (objfile);
946
947 /* If ADDRS is NULL, put together a dummy address list.
948 We now establish the convention that an addr of zero means
949 no load address was specified. */
950 if (! addrs)
951 addrs = &local_addr;
952
953 if (mainline)
954 {
955 /* We will modify the main symbol table, make sure that all its users
956 will be cleaned up if an error occurs during symbol reading. */
957 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
958
959 /* Since no error yet, throw away the old symbol table. */
960
961 if (symfile_objfile != NULL)
962 {
963 delete symfile_objfile;
964 gdb_assert (symfile_objfile == NULL);
965 }
966
967 /* Currently we keep symbols from the add-symbol-file command.
968 If the user wants to get rid of them, they should do "symbol-file"
969 without arguments first. Not sure this is the best behavior
970 (PR 2207). */
971
972 (*objfile->sf->sym_new_init) (objfile);
973 }
974
975 /* Convert addr into an offset rather than an absolute address.
976 We find the lowest address of a loaded segment in the objfile,
977 and assume that <addr> is where that got loaded.
978
979 We no longer warn if the lowest section is not a text segment (as
980 happens for the PA64 port. */
981 if (addrs->size () > 0)
982 addr_info_make_relative (addrs, objfile->obfd);
983
984 /* Initialize symbol reading routines for this objfile, allow complaints to
985 appear for this new file, and record how verbose to be, then do the
986 initial symbol reading for this file. */
987
988 (*objfile->sf->sym_init) (objfile);
989 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
990
991 (*objfile->sf->sym_offsets) (objfile, *addrs);
992
993 read_symbols (objfile, add_flags);
994
995 /* Discard cleanups as symbol reading was successful. */
996
997 objfile_holder.release ();
998 discard_cleanups (old_chain);
999 }
1000
1001 /* Same as syms_from_objfile_1, but also initializes the objfile
1002 entry-point info. */
1003
1004 static void
1005 syms_from_objfile (struct objfile *objfile,
1006 section_addr_info *addrs,
1007 symfile_add_flags add_flags)
1008 {
1009 syms_from_objfile_1 (objfile, addrs, add_flags);
1010 init_entry_point_info (objfile);
1011 }
1012
1013 /* Perform required actions after either reading in the initial
1014 symbols for a new objfile, or mapping in the symbols from a reusable
1015 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1016
1017 static void
1018 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1019 {
1020 /* If this is the main symbol file we have to clean up all users of the
1021 old main symbol file. Otherwise it is sufficient to fixup all the
1022 breakpoints that may have been redefined by this symbol file. */
1023 if (add_flags & SYMFILE_MAINLINE)
1024 {
1025 /* OK, make it the "real" symbol file. */
1026 symfile_objfile = objfile;
1027
1028 clear_symtab_users (add_flags);
1029 }
1030 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1031 {
1032 breakpoint_re_set ();
1033 }
1034
1035 /* We're done reading the symbol file; finish off complaints. */
1036 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1037 }
1038
1039 /* Process a symbol file, as either the main file or as a dynamically
1040 loaded file.
1041
1042 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1043 A new reference is acquired by this function.
1044
1045 For NAME description see the objfile constructor.
1046
1047 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1048 extra, such as dynamically loaded code, and what to do with breakpoins.
1049
1050 ADDRS is as described for syms_from_objfile_1, above.
1051 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1052
1053 PARENT is the original objfile if ABFD is a separate debug info file.
1054 Otherwise PARENT is NULL.
1055
1056 Upon success, returns a pointer to the objfile that was added.
1057 Upon failure, jumps back to command level (never returns). */
1058
1059 static struct objfile *
1060 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1061 symfile_add_flags add_flags,
1062 section_addr_info *addrs,
1063 objfile_flags flags, struct objfile *parent)
1064 {
1065 struct objfile *objfile;
1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
1067 const int mainline = add_flags & SYMFILE_MAINLINE;
1068 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
1071
1072 if (readnow_symbol_files)
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
1077 else if (readnever_symbol_files
1078 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1079 {
1080 flags |= OBJF_READNEVER;
1081 add_flags |= SYMFILE_NO_READ;
1082 }
1083 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1084 flags |= OBJF_NOT_FILENAME;
1085
1086 /* Give user a chance to burp if we'd be
1087 interactively wiping out any existing symbols. */
1088
1089 if ((have_full_symbols () || have_partial_symbols ())
1090 && mainline
1091 && from_tty
1092 && !query (_("Load new symbol table from \"%s\"? "), name))
1093 error (_("Not confirmed."));
1094
1095 if (mainline)
1096 flags |= OBJF_MAINLINE;
1097 objfile = new struct objfile (abfd, name, flags);
1098
1099 if (parent)
1100 add_separate_debug_objfile (objfile, parent);
1101
1102 /* We either created a new mapped symbol table, mapped an existing
1103 symbol table file which has not had initial symbol reading
1104 performed, or need to read an unmapped symbol table. */
1105 if (should_print)
1106 {
1107 if (deprecated_pre_add_symbol_hook)
1108 deprecated_pre_add_symbol_hook (name);
1109 else
1110 {
1111 printf_unfiltered (_("Reading symbols from %s..."), name);
1112 wrap_here ("");
1113 gdb_flush (gdb_stdout);
1114 }
1115 }
1116 syms_from_objfile (objfile, addrs, add_flags);
1117
1118 /* We now have at least a partial symbol table. Check to see if the
1119 user requested that all symbols be read on initial access via either
1120 the gdb startup command line or on a per symbol file basis. Expand
1121 all partial symbol tables for this objfile if so. */
1122
1123 if ((flags & OBJF_READNOW))
1124 {
1125 if (should_print)
1126 {
1127 printf_unfiltered (_("expanding to full symbols..."));
1128 wrap_here ("");
1129 gdb_flush (gdb_stdout);
1130 }
1131
1132 if (objfile->sf)
1133 objfile->sf->qf->expand_all_symtabs (objfile);
1134 }
1135
1136 if (should_print && !objfile_has_symbols (objfile))
1137 {
1138 wrap_here ("");
1139 printf_unfiltered (_("(no debugging symbols found)..."));
1140 wrap_here ("");
1141 }
1142
1143 if (should_print)
1144 {
1145 if (deprecated_post_add_symbol_hook)
1146 deprecated_post_add_symbol_hook ();
1147 else
1148 printf_unfiltered (_("done.\n"));
1149 }
1150
1151 /* We print some messages regardless of whether 'from_tty ||
1152 info_verbose' is true, so make sure they go out at the right
1153 time. */
1154 gdb_flush (gdb_stdout);
1155
1156 if (objfile->sf == NULL)
1157 {
1158 gdb::observers::new_objfile.notify (objfile);
1159 return objfile; /* No symbols. */
1160 }
1161
1162 finish_new_objfile (objfile, add_flags);
1163
1164 gdb::observers::new_objfile.notify (objfile);
1165
1166 bfd_cache_close_all ();
1167 return (objfile);
1168 }
1169
1170 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1171 see the objfile constructor. */
1172
1173 void
1174 symbol_file_add_separate (bfd *bfd, const char *name,
1175 symfile_add_flags symfile_flags,
1176 struct objfile *objfile)
1177 {
1178 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1179 because sections of BFD may not match sections of OBJFILE and because
1180 vma may have been modified by tools such as prelink. */
1181 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1182
1183 symbol_file_add_with_addrs
1184 (bfd, name, symfile_flags, &sap,
1185 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1186 | OBJF_USERLOADED),
1187 objfile);
1188 }
1189
1190 /* Process the symbol file ABFD, as either the main file or as a
1191 dynamically loaded file.
1192 See symbol_file_add_with_addrs's comments for details. */
1193
1194 struct objfile *
1195 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1196 symfile_add_flags add_flags,
1197 section_addr_info *addrs,
1198 objfile_flags flags, struct objfile *parent)
1199 {
1200 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1201 parent);
1202 }
1203
1204 /* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs's comments for details. */
1206
1207 struct objfile *
1208 symbol_file_add (const char *name, symfile_add_flags add_flags,
1209 section_addr_info *addrs, objfile_flags flags)
1210 {
1211 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1212
1213 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1214 flags, NULL);
1215 }
1216
1217 /* Call symbol_file_add() with default values and update whatever is
1218 affected by the loading of a new main().
1219 Used when the file is supplied in the gdb command line
1220 and by some targets with special loading requirements.
1221 The auxiliary function, symbol_file_add_main_1(), has the flags
1222 argument for the switches that can only be specified in the symbol_file
1223 command itself. */
1224
1225 void
1226 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1227 {
1228 symbol_file_add_main_1 (args, add_flags, 0);
1229 }
1230
1231 static void
1232 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1233 objfile_flags flags)
1234 {
1235 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1236
1237 symbol_file_add (args, add_flags, NULL, flags);
1238
1239 /* Getting new symbols may change our opinion about
1240 what is frameless. */
1241 reinit_frame_cache ();
1242
1243 if ((add_flags & SYMFILE_NO_READ) == 0)
1244 set_initial_language ();
1245 }
1246
1247 void
1248 symbol_file_clear (int from_tty)
1249 {
1250 if ((have_full_symbols () || have_partial_symbols ())
1251 && from_tty
1252 && (symfile_objfile
1253 ? !query (_("Discard symbol table from `%s'? "),
1254 objfile_name (symfile_objfile))
1255 : !query (_("Discard symbol table? "))))
1256 error (_("Not confirmed."));
1257
1258 /* solib descriptors may have handles to objfiles. Wipe them before their
1259 objfiles get stale by free_all_objfiles. */
1260 no_shared_libraries (NULL, from_tty);
1261
1262 free_all_objfiles ();
1263
1264 gdb_assert (symfile_objfile == NULL);
1265 if (from_tty)
1266 printf_unfiltered (_("No symbol file now.\n"));
1267 }
1268
1269 /* See symfile.h. */
1270
1271 int separate_debug_file_debug = 0;
1272
1273 static int
1274 separate_debug_file_exists (const std::string &name, unsigned long crc,
1275 struct objfile *parent_objfile)
1276 {
1277 unsigned long file_crc;
1278 int file_crc_p;
1279 struct stat parent_stat, abfd_stat;
1280 int verified_as_different;
1281
1282 /* Find a separate debug info file as if symbols would be present in
1283 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1284 section can contain just the basename of PARENT_OBJFILE without any
1285 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1286 the separate debug infos with the same basename can exist. */
1287
1288 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1289 return 0;
1290
1291 if (separate_debug_file_debug)
1292 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
1293
1294 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1295
1296 if (abfd == NULL)
1297 return 0;
1298
1299 /* Verify symlinks were not the cause of filename_cmp name difference above.
1300
1301 Some operating systems, e.g. Windows, do not provide a meaningful
1302 st_ino; they always set it to zero. (Windows does provide a
1303 meaningful st_dev.) Files accessed from gdbservers that do not
1304 support the vFile:fstat packet will also have st_ino set to zero.
1305 Do not indicate a duplicate library in either case. While there
1306 is no guarantee that a system that provides meaningful inode
1307 numbers will never set st_ino to zero, this is merely an
1308 optimization, so we do not need to worry about false negatives. */
1309
1310 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1311 && abfd_stat.st_ino != 0
1312 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1313 {
1314 if (abfd_stat.st_dev == parent_stat.st_dev
1315 && abfd_stat.st_ino == parent_stat.st_ino)
1316 return 0;
1317 verified_as_different = 1;
1318 }
1319 else
1320 verified_as_different = 0;
1321
1322 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1323
1324 if (!file_crc_p)
1325 return 0;
1326
1327 if (crc != file_crc)
1328 {
1329 unsigned long parent_crc;
1330
1331 /* If the files could not be verified as different with
1332 bfd_stat then we need to calculate the parent's CRC
1333 to verify whether the files are different or not. */
1334
1335 if (!verified_as_different)
1336 {
1337 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1338 return 0;
1339 }
1340
1341 if (verified_as_different || parent_crc != file_crc)
1342 warning (_("the debug information found in \"%s\""
1343 " does not match \"%s\" (CRC mismatch).\n"),
1344 name.c_str (), objfile_name (parent_objfile));
1345
1346 return 0;
1347 }
1348
1349 return 1;
1350 }
1351
1352 char *debug_file_directory = NULL;
1353 static void
1354 show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356 {
1357 fprintf_filtered (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
1360 value);
1361 }
1362
1363 #if ! defined (DEBUG_SUBDIRECTORY)
1364 #define DEBUG_SUBDIRECTORY ".debug"
1365 #endif
1366
1367 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
1372 Returns the path of the file with separate debug info, or an empty
1373 string. */
1374
1375 static std::string
1376 find_separate_debug_file (const char *dir,
1377 const char *canon_dir,
1378 const char *debuglink,
1379 unsigned long crc32, struct objfile *objfile)
1380 {
1381 if (separate_debug_file_debug)
1382 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1383 "%s\n"), objfile_name (objfile));
1384
1385 /* First try in the same directory as the original file. */
1386 std::string debugfile = dir;
1387 debugfile += debuglink;
1388
1389 if (separate_debug_file_exists (debugfile, crc32, objfile))
1390 return debugfile;
1391
1392 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1393 debugfile = dir;
1394 debugfile += DEBUG_SUBDIRECTORY;
1395 debugfile += "/";
1396 debugfile += debuglink;
1397
1398 if (separate_debug_file_exists (debugfile, crc32, objfile))
1399 return debugfile;
1400
1401 /* Then try in the global debugfile directories.
1402
1403 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1404 cause "/..." lookups. */
1405
1406 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1407 = dirnames_to_char_ptr_vec (debug_file_directory);
1408
1409 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1410 {
1411 debugfile = debugdir.get ();
1412 debugfile += "/";
1413 debugfile += dir;
1414 debugfile += debuglink;
1415
1416 if (separate_debug_file_exists (debugfile, crc32, objfile))
1417 return debugfile;
1418
1419 /* If the file is in the sysroot, try using its base path in the
1420 global debugfile directory. */
1421 if (canon_dir != NULL
1422 && filename_ncmp (canon_dir, gdb_sysroot,
1423 strlen (gdb_sysroot)) == 0
1424 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1425 {
1426 debugfile = debugdir.get ();
1427 debugfile += (canon_dir + strlen (gdb_sysroot));
1428 debugfile += "/";
1429 debugfile += debuglink;
1430
1431 if (separate_debug_file_exists (debugfile, crc32, objfile))
1432 return debugfile;
1433 }
1434 }
1435
1436 return std::string ();
1437 }
1438
1439 /* Modify PATH to contain only "[/]directory/" part of PATH.
1440 If there were no directory separators in PATH, PATH will be empty
1441 string on return. */
1442
1443 static void
1444 terminate_after_last_dir_separator (char *path)
1445 {
1446 int i;
1447
1448 /* Strip off the final filename part, leaving the directory name,
1449 followed by a slash. The directory can be relative or absolute. */
1450 for (i = strlen(path) - 1; i >= 0; i--)
1451 if (IS_DIR_SEPARATOR (path[i]))
1452 break;
1453
1454 /* If I is -1 then no directory is present there and DIR will be "". */
1455 path[i + 1] = '\0';
1456 }
1457
1458 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1459 Returns pathname, or an empty string. */
1460
1461 std::string
1462 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1463 {
1464 unsigned long crc32;
1465
1466 gdb::unique_xmalloc_ptr<char> debuglink
1467 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1468
1469 if (debuglink == NULL)
1470 {
1471 /* There's no separate debug info, hence there's no way we could
1472 load it => no warning. */
1473 return std::string ();
1474 }
1475
1476 std::string dir = objfile_name (objfile);
1477 terminate_after_last_dir_separator (&dir[0]);
1478 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1479
1480 std::string debugfile
1481 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1482 debuglink.get (), crc32, objfile);
1483
1484 if (debugfile.empty ())
1485 {
1486 /* For PR gdb/9538, try again with realpath (if different from the
1487 original). */
1488
1489 struct stat st_buf;
1490
1491 if (lstat (objfile_name (objfile), &st_buf) == 0
1492 && S_ISLNK (st_buf.st_mode))
1493 {
1494 gdb::unique_xmalloc_ptr<char> symlink_dir
1495 (lrealpath (objfile_name (objfile)));
1496 if (symlink_dir != NULL)
1497 {
1498 terminate_after_last_dir_separator (symlink_dir.get ());
1499 if (dir != symlink_dir.get ())
1500 {
1501 /* Different directory, so try using it. */
1502 debugfile = find_separate_debug_file (symlink_dir.get (),
1503 symlink_dir.get (),
1504 debuglink.get (),
1505 crc32,
1506 objfile);
1507 }
1508 }
1509 }
1510 }
1511
1512 return debugfile;
1513 }
1514
1515 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1516 simultaneously. */
1517
1518 static void
1519 validate_readnow_readnever (objfile_flags flags)
1520 {
1521 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1522 error (_("-readnow and -readnever cannot be used simultaneously"));
1523 }
1524
1525 /* This is the symbol-file command. Read the file, analyze its
1526 symbols, and add a struct symtab to a symtab list. The syntax of
1527 the command is rather bizarre:
1528
1529 1. The function buildargv implements various quoting conventions
1530 which are undocumented and have little or nothing in common with
1531 the way things are quoted (or not quoted) elsewhere in GDB.
1532
1533 2. Options are used, which are not generally used in GDB (perhaps
1534 "set mapped on", "set readnow on" would be better)
1535
1536 3. The order of options matters, which is contrary to GNU
1537 conventions (because it is confusing and inconvenient). */
1538
1539 void
1540 symbol_file_command (const char *args, int from_tty)
1541 {
1542 dont_repeat ();
1543
1544 if (args == NULL)
1545 {
1546 symbol_file_clear (from_tty);
1547 }
1548 else
1549 {
1550 objfile_flags flags = OBJF_USERLOADED;
1551 symfile_add_flags add_flags = 0;
1552 char *name = NULL;
1553 bool stop_processing_options = false;
1554 int idx;
1555 char *arg;
1556
1557 if (from_tty)
1558 add_flags |= SYMFILE_VERBOSE;
1559
1560 gdb_argv built_argv (args);
1561 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1562 {
1563 if (stop_processing_options || *arg != '-')
1564 {
1565 if (name == NULL)
1566 name = arg;
1567 else
1568 error (_("Unrecognized argument \"%s\""), arg);
1569 }
1570 else if (strcmp (arg, "-readnow") == 0)
1571 flags |= OBJF_READNOW;
1572 else if (strcmp (arg, "-readnever") == 0)
1573 flags |= OBJF_READNEVER;
1574 else if (strcmp (arg, "--") == 0)
1575 stop_processing_options = true;
1576 else
1577 error (_("Unrecognized argument \"%s\""), arg);
1578 }
1579
1580 if (name == NULL)
1581 error (_("no symbol file name was specified"));
1582
1583 validate_readnow_readnever (flags);
1584
1585 symbol_file_add_main_1 (name, add_flags, flags);
1586 }
1587 }
1588
1589 /* Set the initial language.
1590
1591 FIXME: A better solution would be to record the language in the
1592 psymtab when reading partial symbols, and then use it (if known) to
1593 set the language. This would be a win for formats that encode the
1594 language in an easily discoverable place, such as DWARF. For
1595 stabs, we can jump through hoops looking for specially named
1596 symbols or try to intuit the language from the specific type of
1597 stabs we find, but we can't do that until later when we read in
1598 full symbols. */
1599
1600 void
1601 set_initial_language (void)
1602 {
1603 enum language lang = main_language ();
1604
1605 if (lang == language_unknown)
1606 {
1607 char *name = main_name ();
1608 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1609
1610 if (sym != NULL)
1611 lang = SYMBOL_LANGUAGE (sym);
1612 }
1613
1614 if (lang == language_unknown)
1615 {
1616 /* Make C the default language */
1617 lang = language_c;
1618 }
1619
1620 set_language (lang);
1621 expected_language = current_language; /* Don't warn the user. */
1622 }
1623
1624 /* Open the file specified by NAME and hand it off to BFD for
1625 preliminary analysis. Return a newly initialized bfd *, which
1626 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1627 absolute). In case of trouble, error() is called. */
1628
1629 gdb_bfd_ref_ptr
1630 symfile_bfd_open (const char *name)
1631 {
1632 int desc = -1;
1633
1634 gdb::unique_xmalloc_ptr<char> absolute_name;
1635 if (!is_target_filename (name))
1636 {
1637 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1638
1639 /* Look down path for it, allocate 2nd new malloc'd copy. */
1640 desc = openp (getenv ("PATH"),
1641 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1642 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1643 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1644 if (desc < 0)
1645 {
1646 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1647
1648 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1649 desc = openp (getenv ("PATH"),
1650 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1651 exename, O_RDONLY | O_BINARY, &absolute_name);
1652 }
1653 #endif
1654 if (desc < 0)
1655 perror_with_name (expanded_name.get ());
1656
1657 name = absolute_name.get ();
1658 }
1659
1660 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1661 if (sym_bfd == NULL)
1662 error (_("`%s': can't open to read symbols: %s."), name,
1663 bfd_errmsg (bfd_get_error ()));
1664
1665 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1666 bfd_set_cacheable (sym_bfd.get (), 1);
1667
1668 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1669 error (_("`%s': can't read symbols: %s."), name,
1670 bfd_errmsg (bfd_get_error ()));
1671
1672 return sym_bfd;
1673 }
1674
1675 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1676 the section was not found. */
1677
1678 int
1679 get_section_index (struct objfile *objfile, const char *section_name)
1680 {
1681 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1682
1683 if (sect)
1684 return sect->index;
1685 else
1686 return -1;
1687 }
1688
1689 /* Link SF into the global symtab_fns list.
1690 FLAVOUR is the file format that SF handles.
1691 Called on startup by the _initialize routine in each object file format
1692 reader, to register information about each format the reader is prepared
1693 to handle. */
1694
1695 void
1696 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1697 {
1698 symtab_fns.emplace_back (flavour, sf);
1699 }
1700
1701 /* Initialize OBJFILE to read symbols from its associated BFD. It
1702 either returns or calls error(). The result is an initialized
1703 struct sym_fns in the objfile structure, that contains cached
1704 information about the symbol file. */
1705
1706 static const struct sym_fns *
1707 find_sym_fns (bfd *abfd)
1708 {
1709 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1710
1711 if (our_flavour == bfd_target_srec_flavour
1712 || our_flavour == bfd_target_ihex_flavour
1713 || our_flavour == bfd_target_tekhex_flavour)
1714 return NULL; /* No symbols. */
1715
1716 for (const registered_sym_fns &rsf : symtab_fns)
1717 if (our_flavour == rsf.sym_flavour)
1718 return rsf.sym_fns;
1719
1720 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1721 bfd_get_target (abfd));
1722 }
1723 \f
1724
1725 /* This function runs the load command of our current target. */
1726
1727 static void
1728 load_command (const char *arg, int from_tty)
1729 {
1730 dont_repeat ();
1731
1732 /* The user might be reloading because the binary has changed. Take
1733 this opportunity to check. */
1734 reopen_exec_file ();
1735 reread_symbols ();
1736
1737 std::string temp;
1738 if (arg == NULL)
1739 {
1740 const char *parg, *prev;
1741
1742 arg = get_exec_file (1);
1743
1744 /* We may need to quote this string so buildargv can pull it
1745 apart. */
1746 prev = parg = arg;
1747 while ((parg = strpbrk (parg, "\\\"'\t ")))
1748 {
1749 temp.append (prev, parg - prev);
1750 prev = parg++;
1751 temp.push_back ('\\');
1752 }
1753 /* If we have not copied anything yet, then we didn't see a
1754 character to quote, and we can just leave ARG unchanged. */
1755 if (!temp.empty ())
1756 {
1757 temp.append (prev);
1758 arg = temp.c_str ();
1759 }
1760 }
1761
1762 target_load (arg, from_tty);
1763
1764 /* After re-loading the executable, we don't really know which
1765 overlays are mapped any more. */
1766 overlay_cache_invalid = 1;
1767 }
1768
1769 /* This version of "load" should be usable for any target. Currently
1770 it is just used for remote targets, not inftarg.c or core files,
1771 on the theory that only in that case is it useful.
1772
1773 Avoiding xmodem and the like seems like a win (a) because we don't have
1774 to worry about finding it, and (b) On VMS, fork() is very slow and so
1775 we don't want to run a subprocess. On the other hand, I'm not sure how
1776 performance compares. */
1777
1778 static int validate_download = 0;
1779
1780 /* Callback service function for generic_load (bfd_map_over_sections). */
1781
1782 static void
1783 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1784 {
1785 bfd_size_type *sum = (bfd_size_type *) data;
1786
1787 *sum += bfd_get_section_size (asec);
1788 }
1789
1790 /* Opaque data for load_progress. */
1791 struct load_progress_data
1792 {
1793 /* Cumulative data. */
1794 unsigned long write_count = 0;
1795 unsigned long data_count = 0;
1796 bfd_size_type total_size = 0;
1797 };
1798
1799 /* Opaque data for load_progress for a single section. */
1800 struct load_progress_section_data
1801 {
1802 load_progress_section_data (load_progress_data *cumulative_,
1803 const char *section_name_, ULONGEST section_size_,
1804 CORE_ADDR lma_, gdb_byte *buffer_)
1805 : cumulative (cumulative_), section_name (section_name_),
1806 section_size (section_size_), lma (lma_), buffer (buffer_)
1807 {}
1808
1809 struct load_progress_data *cumulative;
1810
1811 /* Per-section data. */
1812 const char *section_name;
1813 ULONGEST section_sent = 0;
1814 ULONGEST section_size;
1815 CORE_ADDR lma;
1816 gdb_byte *buffer;
1817 };
1818
1819 /* Opaque data for load_section_callback. */
1820 struct load_section_data
1821 {
1822 load_section_data (load_progress_data *progress_data_)
1823 : progress_data (progress_data_)
1824 {}
1825
1826 ~load_section_data ()
1827 {
1828 for (auto &&request : requests)
1829 {
1830 xfree (request.data);
1831 delete ((load_progress_section_data *) request.baton);
1832 }
1833 }
1834
1835 CORE_ADDR load_offset = 0;
1836 struct load_progress_data *progress_data;
1837 std::vector<struct memory_write_request> requests;
1838 };
1839
1840 /* Target write callback routine for progress reporting. */
1841
1842 static void
1843 load_progress (ULONGEST bytes, void *untyped_arg)
1844 {
1845 struct load_progress_section_data *args
1846 = (struct load_progress_section_data *) untyped_arg;
1847 struct load_progress_data *totals;
1848
1849 if (args == NULL)
1850 /* Writing padding data. No easy way to get at the cumulative
1851 stats, so just ignore this. */
1852 return;
1853
1854 totals = args->cumulative;
1855
1856 if (bytes == 0 && args->section_sent == 0)
1857 {
1858 /* The write is just starting. Let the user know we've started
1859 this section. */
1860 current_uiout->message ("Loading section %s, size %s lma %s\n",
1861 args->section_name,
1862 hex_string (args->section_size),
1863 paddress (target_gdbarch (), args->lma));
1864 return;
1865 }
1866
1867 if (validate_download)
1868 {
1869 /* Broken memories and broken monitors manifest themselves here
1870 when bring new computers to life. This doubles already slow
1871 downloads. */
1872 /* NOTE: cagney/1999-10-18: A more efficient implementation
1873 might add a verify_memory() method to the target vector and
1874 then use that. remote.c could implement that method using
1875 the ``qCRC'' packet. */
1876 gdb::byte_vector check (bytes);
1877
1878 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1879 error (_("Download verify read failed at %s"),
1880 paddress (target_gdbarch (), args->lma));
1881 if (memcmp (args->buffer, check.data (), bytes) != 0)
1882 error (_("Download verify compare failed at %s"),
1883 paddress (target_gdbarch (), args->lma));
1884 }
1885 totals->data_count += bytes;
1886 args->lma += bytes;
1887 args->buffer += bytes;
1888 totals->write_count += 1;
1889 args->section_sent += bytes;
1890 if (check_quit_flag ()
1891 || (deprecated_ui_load_progress_hook != NULL
1892 && deprecated_ui_load_progress_hook (args->section_name,
1893 args->section_sent)))
1894 error (_("Canceled the download"));
1895
1896 if (deprecated_show_load_progress != NULL)
1897 deprecated_show_load_progress (args->section_name,
1898 args->section_sent,
1899 args->section_size,
1900 totals->data_count,
1901 totals->total_size);
1902 }
1903
1904 /* Callback service function for generic_load (bfd_map_over_sections). */
1905
1906 static void
1907 load_section_callback (bfd *abfd, asection *asec, void *data)
1908 {
1909 struct load_section_data *args = (struct load_section_data *) data;
1910 bfd_size_type size = bfd_get_section_size (asec);
1911 const char *sect_name = bfd_get_section_name (abfd, asec);
1912
1913 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1914 return;
1915
1916 if (size == 0)
1917 return;
1918
1919 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1920 ULONGEST end = begin + size;
1921 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1922 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1923
1924 load_progress_section_data *section_data
1925 = new load_progress_section_data (args->progress_data, sect_name, size,
1926 begin, buffer);
1927
1928 args->requests.emplace_back (begin, end, buffer, section_data);
1929 }
1930
1931 static void print_transfer_performance (struct ui_file *stream,
1932 unsigned long data_count,
1933 unsigned long write_count,
1934 std::chrono::steady_clock::duration d);
1935
1936 void
1937 generic_load (const char *args, int from_tty)
1938 {
1939 struct load_progress_data total_progress;
1940 struct load_section_data cbdata (&total_progress);
1941 struct ui_out *uiout = current_uiout;
1942
1943 if (args == NULL)
1944 error_no_arg (_("file to load"));
1945
1946 gdb_argv argv (args);
1947
1948 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1949
1950 if (argv[1] != NULL)
1951 {
1952 const char *endptr;
1953
1954 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1955
1956 /* If the last word was not a valid number then
1957 treat it as a file name with spaces in. */
1958 if (argv[1] == endptr)
1959 error (_("Invalid download offset:%s."), argv[1]);
1960
1961 if (argv[2] != NULL)
1962 error (_("Too many parameters."));
1963 }
1964
1965 /* Open the file for loading. */
1966 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
1967 if (loadfile_bfd == NULL)
1968 perror_with_name (filename.get ());
1969
1970 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
1971 {
1972 error (_("\"%s\" is not an object file: %s"), filename.get (),
1973 bfd_errmsg (bfd_get_error ()));
1974 }
1975
1976 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
1977 (void *) &total_progress.total_size);
1978
1979 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
1980
1981 using namespace std::chrono;
1982
1983 steady_clock::time_point start_time = steady_clock::now ();
1984
1985 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1986 load_progress) != 0)
1987 error (_("Load failed"));
1988
1989 steady_clock::time_point end_time = steady_clock::now ();
1990
1991 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
1992 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
1993 uiout->text ("Start address ");
1994 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
1995 uiout->text (", load size ");
1996 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
1997 uiout->text ("\n");
1998 regcache_write_pc (get_current_regcache (), entry);
1999
2000 /* Reset breakpoints, now that we have changed the load image. For
2001 instance, breakpoints may have been set (or reset, by
2002 post_create_inferior) while connected to the target but before we
2003 loaded the program. In that case, the prologue analyzer could
2004 have read instructions from the target to find the right
2005 breakpoint locations. Loading has changed the contents of that
2006 memory. */
2007
2008 breakpoint_re_set ();
2009
2010 print_transfer_performance (gdb_stdout, total_progress.data_count,
2011 total_progress.write_count,
2012 end_time - start_time);
2013 }
2014
2015 /* Report on STREAM the performance of a memory transfer operation,
2016 such as 'load'. DATA_COUNT is the number of bytes transferred.
2017 WRITE_COUNT is the number of separate write operations, or 0, if
2018 that information is not available. TIME is how long the operation
2019 lasted. */
2020
2021 static void
2022 print_transfer_performance (struct ui_file *stream,
2023 unsigned long data_count,
2024 unsigned long write_count,
2025 std::chrono::steady_clock::duration time)
2026 {
2027 using namespace std::chrono;
2028 struct ui_out *uiout = current_uiout;
2029
2030 milliseconds ms = duration_cast<milliseconds> (time);
2031
2032 uiout->text ("Transfer rate: ");
2033 if (ms.count () > 0)
2034 {
2035 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2036
2037 if (uiout->is_mi_like_p ())
2038 {
2039 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2040 uiout->text (" bits/sec");
2041 }
2042 else if (rate < 1024)
2043 {
2044 uiout->field_fmt ("transfer-rate", "%lu", rate);
2045 uiout->text (" bytes/sec");
2046 }
2047 else
2048 {
2049 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2050 uiout->text (" KB/sec");
2051 }
2052 }
2053 else
2054 {
2055 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2056 uiout->text (" bits in <1 sec");
2057 }
2058 if (write_count > 0)
2059 {
2060 uiout->text (", ");
2061 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2062 uiout->text (" bytes/write");
2063 }
2064 uiout->text (".\n");
2065 }
2066
2067 /* This function allows the addition of incrementally linked object files.
2068 It does not modify any state in the target, only in the debugger. */
2069 /* Note: ezannoni 2000-04-13 This function/command used to have a
2070 special case syntax for the rombug target (Rombug is the boot
2071 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2072 rombug case, the user doesn't need to supply a text address,
2073 instead a call to target_link() (in target.c) would supply the
2074 value to use. We are now discontinuing this type of ad hoc syntax. */
2075
2076 static void
2077 add_symbol_file_command (const char *args, int from_tty)
2078 {
2079 struct gdbarch *gdbarch = get_current_arch ();
2080 gdb::unique_xmalloc_ptr<char> filename;
2081 char *arg;
2082 int argcnt = 0;
2083 struct objfile *objf;
2084 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2085 symfile_add_flags add_flags = 0;
2086
2087 if (from_tty)
2088 add_flags |= SYMFILE_VERBOSE;
2089
2090 struct sect_opt
2091 {
2092 const char *name;
2093 const char *value;
2094 };
2095
2096 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2097 bool stop_processing_options = false;
2098
2099 dont_repeat ();
2100
2101 if (args == NULL)
2102 error (_("add-symbol-file takes a file name and an address"));
2103
2104 bool seen_addr = false;
2105 gdb_argv argv (args);
2106
2107 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2108 {
2109 if (stop_processing_options || *arg != '-')
2110 {
2111 if (filename == NULL)
2112 {
2113 /* First non-option argument is always the filename. */
2114 filename.reset (tilde_expand (arg));
2115 }
2116 else if (!seen_addr)
2117 {
2118 /* The second non-option argument is always the text
2119 address at which to load the program. */
2120 sect_opts[0].value = arg;
2121 seen_addr = true;
2122 }
2123 else
2124 error (_("Unrecognized argument \"%s\""), arg);
2125 }
2126 else if (strcmp (arg, "-readnow") == 0)
2127 flags |= OBJF_READNOW;
2128 else if (strcmp (arg, "-readnever") == 0)
2129 flags |= OBJF_READNEVER;
2130 else if (strcmp (arg, "-s") == 0)
2131 {
2132 if (argv[argcnt + 1] == NULL)
2133 error (_("Missing section name after \"-s\""));
2134 else if (argv[argcnt + 2] == NULL)
2135 error (_("Missing section address after \"-s\""));
2136
2137 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2138
2139 sect_opts.push_back (sect);
2140 argcnt += 2;
2141 }
2142 else if (strcmp (arg, "--") == 0)
2143 stop_processing_options = true;
2144 else
2145 error (_("Unrecognized argument \"%s\""), arg);
2146 }
2147
2148 if (filename == NULL)
2149 error (_("You must provide a filename to be loaded."));
2150
2151 validate_readnow_readnever (flags);
2152
2153 /* This command takes at least two arguments. The first one is a
2154 filename, and the second is the address where this file has been
2155 loaded. Abort now if this address hasn't been provided by the
2156 user. */
2157 if (!seen_addr)
2158 error (_("The address where %s has been loaded is missing"),
2159 filename.get ());
2160
2161 /* Print the prompt for the query below. And save the arguments into
2162 a sect_addr_info structure to be passed around to other
2163 functions. We have to split this up into separate print
2164 statements because hex_string returns a local static
2165 string. */
2166
2167 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2168 filename.get ());
2169 section_addr_info section_addrs;
2170 for (sect_opt &sect : sect_opts)
2171 {
2172 CORE_ADDR addr;
2173 const char *val = sect.value;
2174 const char *sec = sect.name;
2175
2176 addr = parse_and_eval_address (val);
2177
2178 /* Here we store the section offsets in the order they were
2179 entered on the command line. */
2180 section_addrs.emplace_back (addr, sec, 0);
2181 printf_unfiltered ("\t%s_addr = %s\n", sec,
2182 paddress (gdbarch, addr));
2183
2184 /* The object's sections are initialized when a
2185 call is made to build_objfile_section_table (objfile).
2186 This happens in reread_symbols.
2187 At this point, we don't know what file type this is,
2188 so we can't determine what section names are valid. */
2189 }
2190
2191 if (from_tty && (!query ("%s", "")))
2192 error (_("Not confirmed."));
2193
2194 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2195 flags);
2196
2197 add_target_sections_of_objfile (objf);
2198
2199 /* Getting new symbols may change our opinion about what is
2200 frameless. */
2201 reinit_frame_cache ();
2202 }
2203 \f
2204
2205 /* This function removes a symbol file that was added via add-symbol-file. */
2206
2207 static void
2208 remove_symbol_file_command (const char *args, int from_tty)
2209 {
2210 struct objfile *objf = NULL;
2211 struct program_space *pspace = current_program_space;
2212
2213 dont_repeat ();
2214
2215 if (args == NULL)
2216 error (_("remove-symbol-file: no symbol file provided"));
2217
2218 gdb_argv argv (args);
2219
2220 if (strcmp (argv[0], "-a") == 0)
2221 {
2222 /* Interpret the next argument as an address. */
2223 CORE_ADDR addr;
2224
2225 if (argv[1] == NULL)
2226 error (_("Missing address argument"));
2227
2228 if (argv[2] != NULL)
2229 error (_("Junk after %s"), argv[1]);
2230
2231 addr = parse_and_eval_address (argv[1]);
2232
2233 ALL_OBJFILES (objf)
2234 {
2235 if ((objf->flags & OBJF_USERLOADED) != 0
2236 && (objf->flags & OBJF_SHARED) != 0
2237 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2238 break;
2239 }
2240 }
2241 else if (argv[0] != NULL)
2242 {
2243 /* Interpret the current argument as a file name. */
2244
2245 if (argv[1] != NULL)
2246 error (_("Junk after %s"), argv[0]);
2247
2248 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2249
2250 ALL_OBJFILES (objf)
2251 {
2252 if ((objf->flags & OBJF_USERLOADED) != 0
2253 && (objf->flags & OBJF_SHARED) != 0
2254 && objf->pspace == pspace
2255 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2256 break;
2257 }
2258 }
2259
2260 if (objf == NULL)
2261 error (_("No symbol file found"));
2262
2263 if (from_tty
2264 && !query (_("Remove symbol table from file \"%s\"? "),
2265 objfile_name (objf)))
2266 error (_("Not confirmed."));
2267
2268 delete objf;
2269 clear_symtab_users (0);
2270 }
2271
2272 /* Re-read symbols if a symbol-file has changed. */
2273
2274 void
2275 reread_symbols (void)
2276 {
2277 struct objfile *objfile;
2278 long new_modtime;
2279 struct stat new_statbuf;
2280 int res;
2281 std::vector<struct objfile *> new_objfiles;
2282
2283 /* With the addition of shared libraries, this should be modified,
2284 the load time should be saved in the partial symbol tables, since
2285 different tables may come from different source files. FIXME.
2286 This routine should then walk down each partial symbol table
2287 and see if the symbol table that it originates from has been changed. */
2288
2289 for (objfile = object_files; objfile; objfile = objfile->next)
2290 {
2291 if (objfile->obfd == NULL)
2292 continue;
2293
2294 /* Separate debug objfiles are handled in the main objfile. */
2295 if (objfile->separate_debug_objfile_backlink)
2296 continue;
2297
2298 /* If this object is from an archive (what you usually create with
2299 `ar', often called a `static library' on most systems, though
2300 a `shared library' on AIX is also an archive), then you should
2301 stat on the archive name, not member name. */
2302 if (objfile->obfd->my_archive)
2303 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2304 else
2305 res = stat (objfile_name (objfile), &new_statbuf);
2306 if (res != 0)
2307 {
2308 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2309 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2310 objfile_name (objfile));
2311 continue;
2312 }
2313 new_modtime = new_statbuf.st_mtime;
2314 if (new_modtime != objfile->mtime)
2315 {
2316 struct cleanup *old_cleanups;
2317 struct section_offsets *offsets;
2318 int num_offsets;
2319 char *original_name;
2320
2321 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2322 objfile_name (objfile));
2323
2324 /* There are various functions like symbol_file_add,
2325 symfile_bfd_open, syms_from_objfile, etc., which might
2326 appear to do what we want. But they have various other
2327 effects which we *don't* want. So we just do stuff
2328 ourselves. We don't worry about mapped files (for one thing,
2329 any mapped file will be out of date). */
2330
2331 /* If we get an error, blow away this objfile (not sure if
2332 that is the correct response for things like shared
2333 libraries). */
2334 std::unique_ptr<struct objfile> objfile_holder (objfile);
2335
2336 /* We need to do this whenever any symbols go away. */
2337 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2338
2339 if (exec_bfd != NULL
2340 && filename_cmp (bfd_get_filename (objfile->obfd),
2341 bfd_get_filename (exec_bfd)) == 0)
2342 {
2343 /* Reload EXEC_BFD without asking anything. */
2344
2345 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2346 }
2347
2348 /* Keep the calls order approx. the same as in free_objfile. */
2349
2350 /* Free the separate debug objfiles. It will be
2351 automatically recreated by sym_read. */
2352 free_objfile_separate_debug (objfile);
2353
2354 /* Remove any references to this objfile in the global
2355 value lists. */
2356 preserve_values (objfile);
2357
2358 /* Nuke all the state that we will re-read. Much of the following
2359 code which sets things to NULL really is necessary to tell
2360 other parts of GDB that there is nothing currently there.
2361
2362 Try to keep the freeing order compatible with free_objfile. */
2363
2364 if (objfile->sf != NULL)
2365 {
2366 (*objfile->sf->sym_finish) (objfile);
2367 }
2368
2369 clear_objfile_data (objfile);
2370
2371 /* Clean up any state BFD has sitting around. */
2372 {
2373 gdb_bfd_ref_ptr obfd (objfile->obfd);
2374 char *obfd_filename;
2375
2376 obfd_filename = bfd_get_filename (objfile->obfd);
2377 /* Open the new BFD before freeing the old one, so that
2378 the filename remains live. */
2379 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2380 objfile->obfd = temp.release ();
2381 if (objfile->obfd == NULL)
2382 error (_("Can't open %s to read symbols."), obfd_filename);
2383 }
2384
2385 original_name = xstrdup (objfile->original_name);
2386 make_cleanup (xfree, original_name);
2387
2388 /* bfd_openr sets cacheable to true, which is what we want. */
2389 if (!bfd_check_format (objfile->obfd, bfd_object))
2390 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2391 bfd_errmsg (bfd_get_error ()));
2392
2393 /* Save the offsets, we will nuke them with the rest of the
2394 objfile_obstack. */
2395 num_offsets = objfile->num_sections;
2396 offsets = ((struct section_offsets *)
2397 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2398 memcpy (offsets, objfile->section_offsets,
2399 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2400
2401 /* FIXME: Do we have to free a whole linked list, or is this
2402 enough? */
2403 objfile->global_psymbols.clear ();
2404 objfile->static_psymbols.clear ();
2405
2406 /* Free the obstacks for non-reusable objfiles. */
2407 psymbol_bcache_free (objfile->psymbol_cache);
2408 objfile->psymbol_cache = psymbol_bcache_init ();
2409
2410 /* NB: after this call to obstack_free, objfiles_changed
2411 will need to be called (see discussion below). */
2412 obstack_free (&objfile->objfile_obstack, 0);
2413 objfile->sections = NULL;
2414 objfile->compunit_symtabs = NULL;
2415 objfile->psymtabs = NULL;
2416 objfile->psymtabs_addrmap = NULL;
2417 objfile->free_psymtabs = NULL;
2418 objfile->template_symbols = NULL;
2419
2420 /* obstack_init also initializes the obstack so it is
2421 empty. We could use obstack_specify_allocation but
2422 gdb_obstack.h specifies the alloc/dealloc functions. */
2423 obstack_init (&objfile->objfile_obstack);
2424
2425 /* set_objfile_per_bfd potentially allocates the per-bfd
2426 data on the objfile's obstack (if sharing data across
2427 multiple users is not possible), so it's important to
2428 do it *after* the obstack has been initialized. */
2429 set_objfile_per_bfd (objfile);
2430
2431 objfile->original_name
2432 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2433 strlen (original_name));
2434
2435 /* Reset the sym_fns pointer. The ELF reader can change it
2436 based on whether .gdb_index is present, and we need it to
2437 start over. PR symtab/15885 */
2438 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2439
2440 build_objfile_section_table (objfile);
2441 terminate_minimal_symbol_table (objfile);
2442
2443 /* We use the same section offsets as from last time. I'm not
2444 sure whether that is always correct for shared libraries. */
2445 objfile->section_offsets = (struct section_offsets *)
2446 obstack_alloc (&objfile->objfile_obstack,
2447 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2448 memcpy (objfile->section_offsets, offsets,
2449 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2450 objfile->num_sections = num_offsets;
2451
2452 /* What the hell is sym_new_init for, anyway? The concept of
2453 distinguishing between the main file and additional files
2454 in this way seems rather dubious. */
2455 if (objfile == symfile_objfile)
2456 {
2457 (*objfile->sf->sym_new_init) (objfile);
2458 }
2459
2460 (*objfile->sf->sym_init) (objfile);
2461 clear_complaints (&symfile_complaints, 1, 1);
2462
2463 objfile->flags &= ~OBJF_PSYMTABS_READ;
2464
2465 /* We are about to read new symbols and potentially also
2466 DWARF information. Some targets may want to pass addresses
2467 read from DWARF DIE's through an adjustment function before
2468 saving them, like MIPS, which may call into
2469 "find_pc_section". When called, that function will make
2470 use of per-objfile program space data.
2471
2472 Since we discarded our section information above, we have
2473 dangling pointers in the per-objfile program space data
2474 structure. Force GDB to update the section mapping
2475 information by letting it know the objfile has changed,
2476 making the dangling pointers point to correct data
2477 again. */
2478
2479 objfiles_changed ();
2480
2481 read_symbols (objfile, 0);
2482
2483 if (!objfile_has_symbols (objfile))
2484 {
2485 wrap_here ("");
2486 printf_unfiltered (_("(no debugging symbols found)\n"));
2487 wrap_here ("");
2488 }
2489
2490 /* We're done reading the symbol file; finish off complaints. */
2491 clear_complaints (&symfile_complaints, 0, 1);
2492
2493 /* Getting new symbols may change our opinion about what is
2494 frameless. */
2495
2496 reinit_frame_cache ();
2497
2498 /* Discard cleanups as symbol reading was successful. */
2499 objfile_holder.release ();
2500 discard_cleanups (old_cleanups);
2501
2502 /* If the mtime has changed between the time we set new_modtime
2503 and now, we *want* this to be out of date, so don't call stat
2504 again now. */
2505 objfile->mtime = new_modtime;
2506 init_entry_point_info (objfile);
2507
2508 new_objfiles.push_back (objfile);
2509 }
2510 }
2511
2512 if (!new_objfiles.empty ())
2513 {
2514 clear_symtab_users (0);
2515
2516 /* clear_objfile_data for each objfile was called before freeing it and
2517 gdb::observers::new_objfile.notify (NULL) has been called by
2518 clear_symtab_users above. Notify the new files now. */
2519 for (auto iter : new_objfiles)
2520 gdb::observers::new_objfile.notify (objfile);
2521
2522 /* At least one objfile has changed, so we can consider that
2523 the executable we're debugging has changed too. */
2524 gdb::observers::executable_changed.notify ();
2525 }
2526 }
2527 \f
2528
2529 struct filename_language
2530 {
2531 filename_language (const std::string &ext_, enum language lang_)
2532 : ext (ext_), lang (lang_)
2533 {}
2534
2535 std::string ext;
2536 enum language lang;
2537 };
2538
2539 static std::vector<filename_language> filename_language_table;
2540
2541 /* See symfile.h. */
2542
2543 void
2544 add_filename_language (const char *ext, enum language lang)
2545 {
2546 filename_language_table.emplace_back (ext, lang);
2547 }
2548
2549 static char *ext_args;
2550 static void
2551 show_ext_args (struct ui_file *file, int from_tty,
2552 struct cmd_list_element *c, const char *value)
2553 {
2554 fprintf_filtered (file,
2555 _("Mapping between filename extension "
2556 "and source language is \"%s\".\n"),
2557 value);
2558 }
2559
2560 static void
2561 set_ext_lang_command (const char *args,
2562 int from_tty, struct cmd_list_element *e)
2563 {
2564 char *cp = ext_args;
2565 enum language lang;
2566
2567 /* First arg is filename extension, starting with '.' */
2568 if (*cp != '.')
2569 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2570
2571 /* Find end of first arg. */
2572 while (*cp && !isspace (*cp))
2573 cp++;
2574
2575 if (*cp == '\0')
2576 error (_("'%s': two arguments required -- "
2577 "filename extension and language"),
2578 ext_args);
2579
2580 /* Null-terminate first arg. */
2581 *cp++ = '\0';
2582
2583 /* Find beginning of second arg, which should be a source language. */
2584 cp = skip_spaces (cp);
2585
2586 if (*cp == '\0')
2587 error (_("'%s': two arguments required -- "
2588 "filename extension and language"),
2589 ext_args);
2590
2591 /* Lookup the language from among those we know. */
2592 lang = language_enum (cp);
2593
2594 auto it = filename_language_table.begin ();
2595 /* Now lookup the filename extension: do we already know it? */
2596 for (; it != filename_language_table.end (); it++)
2597 {
2598 if (it->ext == ext_args)
2599 break;
2600 }
2601
2602 if (it == filename_language_table.end ())
2603 {
2604 /* New file extension. */
2605 add_filename_language (ext_args, lang);
2606 }
2607 else
2608 {
2609 /* Redefining a previously known filename extension. */
2610
2611 /* if (from_tty) */
2612 /* query ("Really make files of type %s '%s'?", */
2613 /* ext_args, language_str (lang)); */
2614
2615 it->lang = lang;
2616 }
2617 }
2618
2619 static void
2620 info_ext_lang_command (const char *args, int from_tty)
2621 {
2622 printf_filtered (_("Filename extensions and the languages they represent:"));
2623 printf_filtered ("\n\n");
2624 for (const filename_language &entry : filename_language_table)
2625 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2626 language_str (entry.lang));
2627 }
2628
2629 enum language
2630 deduce_language_from_filename (const char *filename)
2631 {
2632 const char *cp;
2633
2634 if (filename != NULL)
2635 if ((cp = strrchr (filename, '.')) != NULL)
2636 {
2637 for (const filename_language &entry : filename_language_table)
2638 if (entry.ext == cp)
2639 return entry.lang;
2640 }
2641
2642 return language_unknown;
2643 }
2644 \f
2645 /* Allocate and initialize a new symbol table.
2646 CUST is from the result of allocate_compunit_symtab. */
2647
2648 struct symtab *
2649 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2650 {
2651 struct objfile *objfile = cust->objfile;
2652 struct symtab *symtab
2653 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2654
2655 symtab->filename
2656 = (const char *) bcache (filename, strlen (filename) + 1,
2657 objfile->per_bfd->filename_cache);
2658 symtab->fullname = NULL;
2659 symtab->language = deduce_language_from_filename (filename);
2660
2661 /* This can be very verbose with lots of headers.
2662 Only print at higher debug levels. */
2663 if (symtab_create_debug >= 2)
2664 {
2665 /* Be a bit clever with debugging messages, and don't print objfile
2666 every time, only when it changes. */
2667 static char *last_objfile_name = NULL;
2668
2669 if (last_objfile_name == NULL
2670 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2671 {
2672 xfree (last_objfile_name);
2673 last_objfile_name = xstrdup (objfile_name (objfile));
2674 fprintf_unfiltered (gdb_stdlog,
2675 "Creating one or more symtabs for objfile %s ...\n",
2676 last_objfile_name);
2677 }
2678 fprintf_unfiltered (gdb_stdlog,
2679 "Created symtab %s for module %s.\n",
2680 host_address_to_string (symtab), filename);
2681 }
2682
2683 /* Add it to CUST's list of symtabs. */
2684 if (cust->filetabs == NULL)
2685 {
2686 cust->filetabs = symtab;
2687 cust->last_filetab = symtab;
2688 }
2689 else
2690 {
2691 cust->last_filetab->next = symtab;
2692 cust->last_filetab = symtab;
2693 }
2694
2695 /* Backlink to the containing compunit symtab. */
2696 symtab->compunit_symtab = cust;
2697
2698 return symtab;
2699 }
2700
2701 /* Allocate and initialize a new compunit.
2702 NAME is the name of the main source file, if there is one, or some
2703 descriptive text if there are no source files. */
2704
2705 struct compunit_symtab *
2706 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2707 {
2708 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2709 struct compunit_symtab);
2710 const char *saved_name;
2711
2712 cu->objfile = objfile;
2713
2714 /* The name we record here is only for display/debugging purposes.
2715 Just save the basename to avoid path issues (too long for display,
2716 relative vs absolute, etc.). */
2717 saved_name = lbasename (name);
2718 cu->name
2719 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2720 strlen (saved_name));
2721
2722 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2723
2724 if (symtab_create_debug)
2725 {
2726 fprintf_unfiltered (gdb_stdlog,
2727 "Created compunit symtab %s for %s.\n",
2728 host_address_to_string (cu),
2729 cu->name);
2730 }
2731
2732 return cu;
2733 }
2734
2735 /* Hook CU to the objfile it comes from. */
2736
2737 void
2738 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2739 {
2740 cu->next = cu->objfile->compunit_symtabs;
2741 cu->objfile->compunit_symtabs = cu;
2742 }
2743 \f
2744
2745 /* Reset all data structures in gdb which may contain references to
2746 symbol table data. */
2747
2748 void
2749 clear_symtab_users (symfile_add_flags add_flags)
2750 {
2751 /* Someday, we should do better than this, by only blowing away
2752 the things that really need to be blown. */
2753
2754 /* Clear the "current" symtab first, because it is no longer valid.
2755 breakpoint_re_set may try to access the current symtab. */
2756 clear_current_source_symtab_and_line ();
2757
2758 clear_displays ();
2759 clear_last_displayed_sal ();
2760 clear_pc_function_cache ();
2761 gdb::observers::new_objfile.notify (NULL);
2762
2763 /* Clear globals which might have pointed into a removed objfile.
2764 FIXME: It's not clear which of these are supposed to persist
2765 between expressions and which ought to be reset each time. */
2766 expression_context_block = NULL;
2767 innermost_block.reset ();
2768
2769 /* Varobj may refer to old symbols, perform a cleanup. */
2770 varobj_invalidate ();
2771
2772 /* Now that the various caches have been cleared, we can re_set
2773 our breakpoints without risking it using stale data. */
2774 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2775 breakpoint_re_set ();
2776 }
2777
2778 static void
2779 clear_symtab_users_cleanup (void *ignore)
2780 {
2781 clear_symtab_users (0);
2782 }
2783 \f
2784 /* OVERLAYS:
2785 The following code implements an abstraction for debugging overlay sections.
2786
2787 The target model is as follows:
2788 1) The gnu linker will permit multiple sections to be mapped into the
2789 same VMA, each with its own unique LMA (or load address).
2790 2) It is assumed that some runtime mechanism exists for mapping the
2791 sections, one by one, from the load address into the VMA address.
2792 3) This code provides a mechanism for gdb to keep track of which
2793 sections should be considered to be mapped from the VMA to the LMA.
2794 This information is used for symbol lookup, and memory read/write.
2795 For instance, if a section has been mapped then its contents
2796 should be read from the VMA, otherwise from the LMA.
2797
2798 Two levels of debugger support for overlays are available. One is
2799 "manual", in which the debugger relies on the user to tell it which
2800 overlays are currently mapped. This level of support is
2801 implemented entirely in the core debugger, and the information about
2802 whether a section is mapped is kept in the objfile->obj_section table.
2803
2804 The second level of support is "automatic", and is only available if
2805 the target-specific code provides functionality to read the target's
2806 overlay mapping table, and translate its contents for the debugger
2807 (by updating the mapped state information in the obj_section tables).
2808
2809 The interface is as follows:
2810 User commands:
2811 overlay map <name> -- tell gdb to consider this section mapped
2812 overlay unmap <name> -- tell gdb to consider this section unmapped
2813 overlay list -- list the sections that GDB thinks are mapped
2814 overlay read-target -- get the target's state of what's mapped
2815 overlay off/manual/auto -- set overlay debugging state
2816 Functional interface:
2817 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2818 section, return that section.
2819 find_pc_overlay(pc): find any overlay section that contains
2820 the pc, either in its VMA or its LMA
2821 section_is_mapped(sect): true if overlay is marked as mapped
2822 section_is_overlay(sect): true if section's VMA != LMA
2823 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2824 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2825 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2826 overlay_mapped_address(...): map an address from section's LMA to VMA
2827 overlay_unmapped_address(...): map an address from section's VMA to LMA
2828 symbol_overlayed_address(...): Return a "current" address for symbol:
2829 either in VMA or LMA depending on whether
2830 the symbol's section is currently mapped. */
2831
2832 /* Overlay debugging state: */
2833
2834 enum overlay_debugging_state overlay_debugging = ovly_off;
2835 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2836
2837 /* Function: section_is_overlay (SECTION)
2838 Returns true if SECTION has VMA not equal to LMA, ie.
2839 SECTION is loaded at an address different from where it will "run". */
2840
2841 int
2842 section_is_overlay (struct obj_section *section)
2843 {
2844 if (overlay_debugging && section)
2845 {
2846 asection *bfd_section = section->the_bfd_section;
2847
2848 if (bfd_section_lma (abfd, bfd_section) != 0
2849 && bfd_section_lma (abfd, bfd_section)
2850 != bfd_section_vma (abfd, bfd_section))
2851 return 1;
2852 }
2853
2854 return 0;
2855 }
2856
2857 /* Function: overlay_invalidate_all (void)
2858 Invalidate the mapped state of all overlay sections (mark it as stale). */
2859
2860 static void
2861 overlay_invalidate_all (void)
2862 {
2863 struct objfile *objfile;
2864 struct obj_section *sect;
2865
2866 ALL_OBJSECTIONS (objfile, sect)
2867 if (section_is_overlay (sect))
2868 sect->ovly_mapped = -1;
2869 }
2870
2871 /* Function: section_is_mapped (SECTION)
2872 Returns true if section is an overlay, and is currently mapped.
2873
2874 Access to the ovly_mapped flag is restricted to this function, so
2875 that we can do automatic update. If the global flag
2876 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2877 overlay_invalidate_all. If the mapped state of the particular
2878 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2879
2880 int
2881 section_is_mapped (struct obj_section *osect)
2882 {
2883 struct gdbarch *gdbarch;
2884
2885 if (osect == 0 || !section_is_overlay (osect))
2886 return 0;
2887
2888 switch (overlay_debugging)
2889 {
2890 default:
2891 case ovly_off:
2892 return 0; /* overlay debugging off */
2893 case ovly_auto: /* overlay debugging automatic */
2894 /* Unles there is a gdbarch_overlay_update function,
2895 there's really nothing useful to do here (can't really go auto). */
2896 gdbarch = get_objfile_arch (osect->objfile);
2897 if (gdbarch_overlay_update_p (gdbarch))
2898 {
2899 if (overlay_cache_invalid)
2900 {
2901 overlay_invalidate_all ();
2902 overlay_cache_invalid = 0;
2903 }
2904 if (osect->ovly_mapped == -1)
2905 gdbarch_overlay_update (gdbarch, osect);
2906 }
2907 /* fall thru */
2908 case ovly_on: /* overlay debugging manual */
2909 return osect->ovly_mapped == 1;
2910 }
2911 }
2912
2913 /* Function: pc_in_unmapped_range
2914 If PC falls into the lma range of SECTION, return true, else false. */
2915
2916 CORE_ADDR
2917 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2918 {
2919 if (section_is_overlay (section))
2920 {
2921 bfd *abfd = section->objfile->obfd;
2922 asection *bfd_section = section->the_bfd_section;
2923
2924 /* We assume the LMA is relocated by the same offset as the VMA. */
2925 bfd_vma size = bfd_get_section_size (bfd_section);
2926 CORE_ADDR offset = obj_section_offset (section);
2927
2928 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2929 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2930 return 1;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* Function: pc_in_mapped_range
2937 If PC falls into the vma range of SECTION, return true, else false. */
2938
2939 CORE_ADDR
2940 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2941 {
2942 if (section_is_overlay (section))
2943 {
2944 if (obj_section_addr (section) <= pc
2945 && pc < obj_section_endaddr (section))
2946 return 1;
2947 }
2948
2949 return 0;
2950 }
2951
2952 /* Return true if the mapped ranges of sections A and B overlap, false
2953 otherwise. */
2954
2955 static int
2956 sections_overlap (struct obj_section *a, struct obj_section *b)
2957 {
2958 CORE_ADDR a_start = obj_section_addr (a);
2959 CORE_ADDR a_end = obj_section_endaddr (a);
2960 CORE_ADDR b_start = obj_section_addr (b);
2961 CORE_ADDR b_end = obj_section_endaddr (b);
2962
2963 return (a_start < b_end && b_start < a_end);
2964 }
2965
2966 /* Function: overlay_unmapped_address (PC, SECTION)
2967 Returns the address corresponding to PC in the unmapped (load) range.
2968 May be the same as PC. */
2969
2970 CORE_ADDR
2971 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2972 {
2973 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2974 {
2975 asection *bfd_section = section->the_bfd_section;
2976
2977 return pc + bfd_section_lma (abfd, bfd_section)
2978 - bfd_section_vma (abfd, bfd_section);
2979 }
2980
2981 return pc;
2982 }
2983
2984 /* Function: overlay_mapped_address (PC, SECTION)
2985 Returns the address corresponding to PC in the mapped (runtime) range.
2986 May be the same as PC. */
2987
2988 CORE_ADDR
2989 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2990 {
2991 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2992 {
2993 asection *bfd_section = section->the_bfd_section;
2994
2995 return pc + bfd_section_vma (abfd, bfd_section)
2996 - bfd_section_lma (abfd, bfd_section);
2997 }
2998
2999 return pc;
3000 }
3001
3002 /* Function: symbol_overlayed_address
3003 Return one of two addresses (relative to the VMA or to the LMA),
3004 depending on whether the section is mapped or not. */
3005
3006 CORE_ADDR
3007 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3008 {
3009 if (overlay_debugging)
3010 {
3011 /* If the symbol has no section, just return its regular address. */
3012 if (section == 0)
3013 return address;
3014 /* If the symbol's section is not an overlay, just return its
3015 address. */
3016 if (!section_is_overlay (section))
3017 return address;
3018 /* If the symbol's section is mapped, just return its address. */
3019 if (section_is_mapped (section))
3020 return address;
3021 /*
3022 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3023 * then return its LOADED address rather than its vma address!!
3024 */
3025 return overlay_unmapped_address (address, section);
3026 }
3027 return address;
3028 }
3029
3030 /* Function: find_pc_overlay (PC)
3031 Return the best-match overlay section for PC:
3032 If PC matches a mapped overlay section's VMA, return that section.
3033 Else if PC matches an unmapped section's VMA, return that section.
3034 Else if PC matches an unmapped section's LMA, return that section. */
3035
3036 struct obj_section *
3037 find_pc_overlay (CORE_ADDR pc)
3038 {
3039 struct objfile *objfile;
3040 struct obj_section *osect, *best_match = NULL;
3041
3042 if (overlay_debugging)
3043 {
3044 ALL_OBJSECTIONS (objfile, osect)
3045 if (section_is_overlay (osect))
3046 {
3047 if (pc_in_mapped_range (pc, osect))
3048 {
3049 if (section_is_mapped (osect))
3050 return osect;
3051 else
3052 best_match = osect;
3053 }
3054 else if (pc_in_unmapped_range (pc, osect))
3055 best_match = osect;
3056 }
3057 }
3058 return best_match;
3059 }
3060
3061 /* Function: find_pc_mapped_section (PC)
3062 If PC falls into the VMA address range of an overlay section that is
3063 currently marked as MAPPED, return that section. Else return NULL. */
3064
3065 struct obj_section *
3066 find_pc_mapped_section (CORE_ADDR pc)
3067 {
3068 struct objfile *objfile;
3069 struct obj_section *osect;
3070
3071 if (overlay_debugging)
3072 {
3073 ALL_OBJSECTIONS (objfile, osect)
3074 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3075 return osect;
3076 }
3077
3078 return NULL;
3079 }
3080
3081 /* Function: list_overlays_command
3082 Print a list of mapped sections and their PC ranges. */
3083
3084 static void
3085 list_overlays_command (const char *args, int from_tty)
3086 {
3087 int nmapped = 0;
3088 struct objfile *objfile;
3089 struct obj_section *osect;
3090
3091 if (overlay_debugging)
3092 {
3093 ALL_OBJSECTIONS (objfile, osect)
3094 if (section_is_mapped (osect))
3095 {
3096 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3097 const char *name;
3098 bfd_vma lma, vma;
3099 int size;
3100
3101 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3102 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3103 size = bfd_get_section_size (osect->the_bfd_section);
3104 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3105
3106 printf_filtered ("Section %s, loaded at ", name);
3107 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3108 puts_filtered (" - ");
3109 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3110 printf_filtered (", mapped at ");
3111 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3112 puts_filtered (" - ");
3113 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3114 puts_filtered ("\n");
3115
3116 nmapped++;
3117 }
3118 }
3119 if (nmapped == 0)
3120 printf_filtered (_("No sections are mapped.\n"));
3121 }
3122
3123 /* Function: map_overlay_command
3124 Mark the named section as mapped (ie. residing at its VMA address). */
3125
3126 static void
3127 map_overlay_command (const char *args, int from_tty)
3128 {
3129 struct objfile *objfile, *objfile2;
3130 struct obj_section *sec, *sec2;
3131
3132 if (!overlay_debugging)
3133 error (_("Overlay debugging not enabled. Use "
3134 "either the 'overlay auto' or\n"
3135 "the 'overlay manual' command."));
3136
3137 if (args == 0 || *args == 0)
3138 error (_("Argument required: name of an overlay section"));
3139
3140 /* First, find a section matching the user supplied argument. */
3141 ALL_OBJSECTIONS (objfile, sec)
3142 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3143 {
3144 /* Now, check to see if the section is an overlay. */
3145 if (!section_is_overlay (sec))
3146 continue; /* not an overlay section */
3147
3148 /* Mark the overlay as "mapped". */
3149 sec->ovly_mapped = 1;
3150
3151 /* Next, make a pass and unmap any sections that are
3152 overlapped by this new section: */
3153 ALL_OBJSECTIONS (objfile2, sec2)
3154 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3155 {
3156 if (info_verbose)
3157 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3158 bfd_section_name (objfile->obfd,
3159 sec2->the_bfd_section));
3160 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3161 }
3162 return;
3163 }
3164 error (_("No overlay section called %s"), args);
3165 }
3166
3167 /* Function: unmap_overlay_command
3168 Mark the overlay section as unmapped
3169 (ie. resident in its LMA address range, rather than the VMA range). */
3170
3171 static void
3172 unmap_overlay_command (const char *args, int from_tty)
3173 {
3174 struct objfile *objfile;
3175 struct obj_section *sec = NULL;
3176
3177 if (!overlay_debugging)
3178 error (_("Overlay debugging not enabled. "
3179 "Use either the 'overlay auto' or\n"
3180 "the 'overlay manual' command."));
3181
3182 if (args == 0 || *args == 0)
3183 error (_("Argument required: name of an overlay section"));
3184
3185 /* First, find a section matching the user supplied argument. */
3186 ALL_OBJSECTIONS (objfile, sec)
3187 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3188 {
3189 if (!sec->ovly_mapped)
3190 error (_("Section %s is not mapped"), args);
3191 sec->ovly_mapped = 0;
3192 return;
3193 }
3194 error (_("No overlay section called %s"), args);
3195 }
3196
3197 /* Function: overlay_auto_command
3198 A utility command to turn on overlay debugging.
3199 Possibly this should be done via a set/show command. */
3200
3201 static void
3202 overlay_auto_command (const char *args, int from_tty)
3203 {
3204 overlay_debugging = ovly_auto;
3205 enable_overlay_breakpoints ();
3206 if (info_verbose)
3207 printf_unfiltered (_("Automatic overlay debugging enabled."));
3208 }
3209
3210 /* Function: overlay_manual_command
3211 A utility command to turn on overlay debugging.
3212 Possibly this should be done via a set/show command. */
3213
3214 static void
3215 overlay_manual_command (const char *args, int from_tty)
3216 {
3217 overlay_debugging = ovly_on;
3218 disable_overlay_breakpoints ();
3219 if (info_verbose)
3220 printf_unfiltered (_("Overlay debugging enabled."));
3221 }
3222
3223 /* Function: overlay_off_command
3224 A utility command to turn on overlay debugging.
3225 Possibly this should be done via a set/show command. */
3226
3227 static void
3228 overlay_off_command (const char *args, int from_tty)
3229 {
3230 overlay_debugging = ovly_off;
3231 disable_overlay_breakpoints ();
3232 if (info_verbose)
3233 printf_unfiltered (_("Overlay debugging disabled."));
3234 }
3235
3236 static void
3237 overlay_load_command (const char *args, int from_tty)
3238 {
3239 struct gdbarch *gdbarch = get_current_arch ();
3240
3241 if (gdbarch_overlay_update_p (gdbarch))
3242 gdbarch_overlay_update (gdbarch, NULL);
3243 else
3244 error (_("This target does not know how to read its overlay state."));
3245 }
3246
3247 /* Function: overlay_command
3248 A place-holder for a mis-typed command. */
3249
3250 /* Command list chain containing all defined "overlay" subcommands. */
3251 static struct cmd_list_element *overlaylist;
3252
3253 static void
3254 overlay_command (const char *args, int from_tty)
3255 {
3256 printf_unfiltered
3257 ("\"overlay\" must be followed by the name of an overlay command.\n");
3258 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3259 }
3260
3261 /* Target Overlays for the "Simplest" overlay manager:
3262
3263 This is GDB's default target overlay layer. It works with the
3264 minimal overlay manager supplied as an example by Cygnus. The
3265 entry point is via a function pointer "gdbarch_overlay_update",
3266 so targets that use a different runtime overlay manager can
3267 substitute their own overlay_update function and take over the
3268 function pointer.
3269
3270 The overlay_update function pokes around in the target's data structures
3271 to see what overlays are mapped, and updates GDB's overlay mapping with
3272 this information.
3273
3274 In this simple implementation, the target data structures are as follows:
3275 unsigned _novlys; /# number of overlay sections #/
3276 unsigned _ovly_table[_novlys][4] = {
3277 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3278 {..., ..., ..., ...},
3279 }
3280 unsigned _novly_regions; /# number of overlay regions #/
3281 unsigned _ovly_region_table[_novly_regions][3] = {
3282 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3283 {..., ..., ...},
3284 }
3285 These functions will attempt to update GDB's mappedness state in the
3286 symbol section table, based on the target's mappedness state.
3287
3288 To do this, we keep a cached copy of the target's _ovly_table, and
3289 attempt to detect when the cached copy is invalidated. The main
3290 entry point is "simple_overlay_update(SECT), which looks up SECT in
3291 the cached table and re-reads only the entry for that section from
3292 the target (whenever possible). */
3293
3294 /* Cached, dynamically allocated copies of the target data structures: */
3295 static unsigned (*cache_ovly_table)[4] = 0;
3296 static unsigned cache_novlys = 0;
3297 static CORE_ADDR cache_ovly_table_base = 0;
3298 enum ovly_index
3299 {
3300 VMA, OSIZE, LMA, MAPPED
3301 };
3302
3303 /* Throw away the cached copy of _ovly_table. */
3304
3305 static void
3306 simple_free_overlay_table (void)
3307 {
3308 if (cache_ovly_table)
3309 xfree (cache_ovly_table);
3310 cache_novlys = 0;
3311 cache_ovly_table = NULL;
3312 cache_ovly_table_base = 0;
3313 }
3314
3315 /* Read an array of ints of size SIZE from the target into a local buffer.
3316 Convert to host order. int LEN is number of ints. */
3317
3318 static void
3319 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3320 int len, int size, enum bfd_endian byte_order)
3321 {
3322 /* FIXME (alloca): Not safe if array is very large. */
3323 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3324 int i;
3325
3326 read_memory (memaddr, buf, len * size);
3327 for (i = 0; i < len; i++)
3328 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3329 }
3330
3331 /* Find and grab a copy of the target _ovly_table
3332 (and _novlys, which is needed for the table's size). */
3333
3334 static int
3335 simple_read_overlay_table (void)
3336 {
3337 struct bound_minimal_symbol novlys_msym;
3338 struct bound_minimal_symbol ovly_table_msym;
3339 struct gdbarch *gdbarch;
3340 int word_size;
3341 enum bfd_endian byte_order;
3342
3343 simple_free_overlay_table ();
3344 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3345 if (! novlys_msym.minsym)
3346 {
3347 error (_("Error reading inferior's overlay table: "
3348 "couldn't find `_novlys' variable\n"
3349 "in inferior. Use `overlay manual' mode."));
3350 return 0;
3351 }
3352
3353 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3354 if (! ovly_table_msym.minsym)
3355 {
3356 error (_("Error reading inferior's overlay table: couldn't find "
3357 "`_ovly_table' array\n"
3358 "in inferior. Use `overlay manual' mode."));
3359 return 0;
3360 }
3361
3362 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3363 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3364 byte_order = gdbarch_byte_order (gdbarch);
3365
3366 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3367 4, byte_order);
3368 cache_ovly_table
3369 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3370 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3371 read_target_long_array (cache_ovly_table_base,
3372 (unsigned int *) cache_ovly_table,
3373 cache_novlys * 4, word_size, byte_order);
3374
3375 return 1; /* SUCCESS */
3376 }
3377
3378 /* Function: simple_overlay_update_1
3379 A helper function for simple_overlay_update. Assuming a cached copy
3380 of _ovly_table exists, look through it to find an entry whose vma,
3381 lma and size match those of OSECT. Re-read the entry and make sure
3382 it still matches OSECT (else the table may no longer be valid).
3383 Set OSECT's mapped state to match the entry. Return: 1 for
3384 success, 0 for failure. */
3385
3386 static int
3387 simple_overlay_update_1 (struct obj_section *osect)
3388 {
3389 int i;
3390 asection *bsect = osect->the_bfd_section;
3391 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3392 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3393 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3394
3395 for (i = 0; i < cache_novlys; i++)
3396 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3397 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3398 {
3399 read_target_long_array (cache_ovly_table_base + i * word_size,
3400 (unsigned int *) cache_ovly_table[i],
3401 4, word_size, byte_order);
3402 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3403 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3404 {
3405 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3406 return 1;
3407 }
3408 else /* Warning! Warning! Target's ovly table has changed! */
3409 return 0;
3410 }
3411 return 0;
3412 }
3413
3414 /* Function: simple_overlay_update
3415 If OSECT is NULL, then update all sections' mapped state
3416 (after re-reading the entire target _ovly_table).
3417 If OSECT is non-NULL, then try to find a matching entry in the
3418 cached ovly_table and update only OSECT's mapped state.
3419 If a cached entry can't be found or the cache isn't valid, then
3420 re-read the entire cache, and go ahead and update all sections. */
3421
3422 void
3423 simple_overlay_update (struct obj_section *osect)
3424 {
3425 struct objfile *objfile;
3426
3427 /* Were we given an osect to look up? NULL means do all of them. */
3428 if (osect)
3429 /* Have we got a cached copy of the target's overlay table? */
3430 if (cache_ovly_table != NULL)
3431 {
3432 /* Does its cached location match what's currently in the
3433 symtab? */
3434 struct bound_minimal_symbol minsym
3435 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3436
3437 if (minsym.minsym == NULL)
3438 error (_("Error reading inferior's overlay table: couldn't "
3439 "find `_ovly_table' array\n"
3440 "in inferior. Use `overlay manual' mode."));
3441
3442 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3443 /* Then go ahead and try to look up this single section in
3444 the cache. */
3445 if (simple_overlay_update_1 (osect))
3446 /* Found it! We're done. */
3447 return;
3448 }
3449
3450 /* Cached table no good: need to read the entire table anew.
3451 Or else we want all the sections, in which case it's actually
3452 more efficient to read the whole table in one block anyway. */
3453
3454 if (! simple_read_overlay_table ())
3455 return;
3456
3457 /* Now may as well update all sections, even if only one was requested. */
3458 ALL_OBJSECTIONS (objfile, osect)
3459 if (section_is_overlay (osect))
3460 {
3461 int i;
3462 asection *bsect = osect->the_bfd_section;
3463
3464 for (i = 0; i < cache_novlys; i++)
3465 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3466 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3467 { /* obj_section matches i'th entry in ovly_table. */
3468 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3469 break; /* finished with inner for loop: break out. */
3470 }
3471 }
3472 }
3473
3474 /* Set the output sections and output offsets for section SECTP in
3475 ABFD. The relocation code in BFD will read these offsets, so we
3476 need to be sure they're initialized. We map each section to itself,
3477 with no offset; this means that SECTP->vma will be honored. */
3478
3479 static void
3480 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3481 {
3482 sectp->output_section = sectp;
3483 sectp->output_offset = 0;
3484 }
3485
3486 /* Default implementation for sym_relocate. */
3487
3488 bfd_byte *
3489 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3490 bfd_byte *buf)
3491 {
3492 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3493 DWO file. */
3494 bfd *abfd = sectp->owner;
3495
3496 /* We're only interested in sections with relocation
3497 information. */
3498 if ((sectp->flags & SEC_RELOC) == 0)
3499 return NULL;
3500
3501 /* We will handle section offsets properly elsewhere, so relocate as if
3502 all sections begin at 0. */
3503 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3504
3505 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3506 }
3507
3508 /* Relocate the contents of a debug section SECTP in ABFD. The
3509 contents are stored in BUF if it is non-NULL, or returned in a
3510 malloc'd buffer otherwise.
3511
3512 For some platforms and debug info formats, shared libraries contain
3513 relocations against the debug sections (particularly for DWARF-2;
3514 one affected platform is PowerPC GNU/Linux, although it depends on
3515 the version of the linker in use). Also, ELF object files naturally
3516 have unresolved relocations for their debug sections. We need to apply
3517 the relocations in order to get the locations of symbols correct.
3518 Another example that may require relocation processing, is the
3519 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3520 debug section. */
3521
3522 bfd_byte *
3523 symfile_relocate_debug_section (struct objfile *objfile,
3524 asection *sectp, bfd_byte *buf)
3525 {
3526 gdb_assert (objfile->sf->sym_relocate);
3527
3528 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3529 }
3530
3531 struct symfile_segment_data *
3532 get_symfile_segment_data (bfd *abfd)
3533 {
3534 const struct sym_fns *sf = find_sym_fns (abfd);
3535
3536 if (sf == NULL)
3537 return NULL;
3538
3539 return sf->sym_segments (abfd);
3540 }
3541
3542 void
3543 free_symfile_segment_data (struct symfile_segment_data *data)
3544 {
3545 xfree (data->segment_bases);
3546 xfree (data->segment_sizes);
3547 xfree (data->segment_info);
3548 xfree (data);
3549 }
3550
3551 /* Given:
3552 - DATA, containing segment addresses from the object file ABFD, and
3553 the mapping from ABFD's sections onto the segments that own them,
3554 and
3555 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3556 segment addresses reported by the target,
3557 store the appropriate offsets for each section in OFFSETS.
3558
3559 If there are fewer entries in SEGMENT_BASES than there are segments
3560 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3561
3562 If there are more entries, then ignore the extra. The target may
3563 not be able to distinguish between an empty data segment and a
3564 missing data segment; a missing text segment is less plausible. */
3565
3566 int
3567 symfile_map_offsets_to_segments (bfd *abfd,
3568 const struct symfile_segment_data *data,
3569 struct section_offsets *offsets,
3570 int num_segment_bases,
3571 const CORE_ADDR *segment_bases)
3572 {
3573 int i;
3574 asection *sect;
3575
3576 /* It doesn't make sense to call this function unless you have some
3577 segment base addresses. */
3578 gdb_assert (num_segment_bases > 0);
3579
3580 /* If we do not have segment mappings for the object file, we
3581 can not relocate it by segments. */
3582 gdb_assert (data != NULL);
3583 gdb_assert (data->num_segments > 0);
3584
3585 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3586 {
3587 int which = data->segment_info[i];
3588
3589 gdb_assert (0 <= which && which <= data->num_segments);
3590
3591 /* Don't bother computing offsets for sections that aren't
3592 loaded as part of any segment. */
3593 if (! which)
3594 continue;
3595
3596 /* Use the last SEGMENT_BASES entry as the address of any extra
3597 segments mentioned in DATA->segment_info. */
3598 if (which > num_segment_bases)
3599 which = num_segment_bases;
3600
3601 offsets->offsets[i] = (segment_bases[which - 1]
3602 - data->segment_bases[which - 1]);
3603 }
3604
3605 return 1;
3606 }
3607
3608 static void
3609 symfile_find_segment_sections (struct objfile *objfile)
3610 {
3611 bfd *abfd = objfile->obfd;
3612 int i;
3613 asection *sect;
3614 struct symfile_segment_data *data;
3615
3616 data = get_symfile_segment_data (objfile->obfd);
3617 if (data == NULL)
3618 return;
3619
3620 if (data->num_segments != 1 && data->num_segments != 2)
3621 {
3622 free_symfile_segment_data (data);
3623 return;
3624 }
3625
3626 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3627 {
3628 int which = data->segment_info[i];
3629
3630 if (which == 1)
3631 {
3632 if (objfile->sect_index_text == -1)
3633 objfile->sect_index_text = sect->index;
3634
3635 if (objfile->sect_index_rodata == -1)
3636 objfile->sect_index_rodata = sect->index;
3637 }
3638 else if (which == 2)
3639 {
3640 if (objfile->sect_index_data == -1)
3641 objfile->sect_index_data = sect->index;
3642
3643 if (objfile->sect_index_bss == -1)
3644 objfile->sect_index_bss = sect->index;
3645 }
3646 }
3647
3648 free_symfile_segment_data (data);
3649 }
3650
3651 /* Listen for free_objfile events. */
3652
3653 static void
3654 symfile_free_objfile (struct objfile *objfile)
3655 {
3656 /* Remove the target sections owned by this objfile. */
3657 if (objfile != NULL)
3658 remove_target_sections ((void *) objfile);
3659 }
3660
3661 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3662 Expand all symtabs that match the specified criteria.
3663 See quick_symbol_functions.expand_symtabs_matching for details. */
3664
3665 void
3666 expand_symtabs_matching
3667 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3668 const lookup_name_info &lookup_name,
3669 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3670 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3671 enum search_domain kind)
3672 {
3673 struct objfile *objfile;
3674
3675 ALL_OBJFILES (objfile)
3676 {
3677 if (objfile->sf)
3678 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3679 lookup_name,
3680 symbol_matcher,
3681 expansion_notify, kind);
3682 }
3683 }
3684
3685 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3686 Map function FUN over every file.
3687 See quick_symbol_functions.map_symbol_filenames for details. */
3688
3689 void
3690 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3691 int need_fullname)
3692 {
3693 struct objfile *objfile;
3694
3695 ALL_OBJFILES (objfile)
3696 {
3697 if (objfile->sf)
3698 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3699 need_fullname);
3700 }
3701 }
3702
3703 #if GDB_SELF_TEST
3704
3705 namespace selftests {
3706 namespace filename_language {
3707
3708 static void test_filename_language ()
3709 {
3710 /* This test messes up the filename_language_table global. */
3711 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3712
3713 /* Test deducing an unknown extension. */
3714 language lang = deduce_language_from_filename ("myfile.blah");
3715 SELF_CHECK (lang == language_unknown);
3716
3717 /* Test deducing a known extension. */
3718 lang = deduce_language_from_filename ("myfile.c");
3719 SELF_CHECK (lang == language_c);
3720
3721 /* Test adding a new extension using the internal API. */
3722 add_filename_language (".blah", language_pascal);
3723 lang = deduce_language_from_filename ("myfile.blah");
3724 SELF_CHECK (lang == language_pascal);
3725 }
3726
3727 static void
3728 test_set_ext_lang_command ()
3729 {
3730 /* This test messes up the filename_language_table global. */
3731 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3732
3733 /* Confirm that the .hello extension is not known. */
3734 language lang = deduce_language_from_filename ("cake.hello");
3735 SELF_CHECK (lang == language_unknown);
3736
3737 /* Test adding a new extension using the CLI command. */
3738 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3739 ext_args = args_holder.get ();
3740 set_ext_lang_command (NULL, 1, NULL);
3741
3742 lang = deduce_language_from_filename ("cake.hello");
3743 SELF_CHECK (lang == language_rust);
3744
3745 /* Test overriding an existing extension using the CLI command. */
3746 int size_before = filename_language_table.size ();
3747 args_holder.reset (xstrdup (".hello pascal"));
3748 ext_args = args_holder.get ();
3749 set_ext_lang_command (NULL, 1, NULL);
3750 int size_after = filename_language_table.size ();
3751
3752 lang = deduce_language_from_filename ("cake.hello");
3753 SELF_CHECK (lang == language_pascal);
3754 SELF_CHECK (size_before == size_after);
3755 }
3756
3757 } /* namespace filename_language */
3758 } /* namespace selftests */
3759
3760 #endif /* GDB_SELF_TEST */
3761
3762 void
3763 _initialize_symfile (void)
3764 {
3765 struct cmd_list_element *c;
3766
3767 gdb::observers::free_objfile.attach (symfile_free_objfile);
3768
3769 #define READNOW_READNEVER_HELP \
3770 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3771 immediately. This makes the command slower, but may make future operations\n\
3772 faster.\n\
3773 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3774 symbolic debug information."
3775
3776 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3777 Load symbol table from executable file FILE.\n\
3778 Usage: symbol-file [-readnow | -readnever] FILE\n\
3779 The `file' command can also load symbol tables, as well as setting the file\n\
3780 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3781 set_cmd_completer (c, filename_completer);
3782
3783 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3784 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3785 Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3786 -s SECT-NAME SECT-ADDR]...\n\
3787 ADDR is the starting address of the file's text.\n\
3788 Each '-s' argument provides a section name and address, and\n\
3789 should be specified if the data and bss segments are not contiguous\n\
3790 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3791 READNOW_READNEVER_HELP),
3792 &cmdlist);
3793 set_cmd_completer (c, filename_completer);
3794
3795 c = add_cmd ("remove-symbol-file", class_files,
3796 remove_symbol_file_command, _("\
3797 Remove a symbol file added via the add-symbol-file command.\n\
3798 Usage: remove-symbol-file FILENAME\n\
3799 remove-symbol-file -a ADDRESS\n\
3800 The file to remove can be identified by its filename or by an address\n\
3801 that lies within the boundaries of this symbol file in memory."),
3802 &cmdlist);
3803
3804 c = add_cmd ("load", class_files, load_command, _("\
3805 Dynamically load FILE into the running program, and record its symbols\n\
3806 for access from GDB.\n\
3807 Usage: load [FILE] [OFFSET]\n\
3808 An optional load OFFSET may also be given as a literal address.\n\
3809 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3810 on its own."), &cmdlist);
3811 set_cmd_completer (c, filename_completer);
3812
3813 add_prefix_cmd ("overlay", class_support, overlay_command,
3814 _("Commands for debugging overlays."), &overlaylist,
3815 "overlay ", 0, &cmdlist);
3816
3817 add_com_alias ("ovly", "overlay", class_alias, 1);
3818 add_com_alias ("ov", "overlay", class_alias, 1);
3819
3820 add_cmd ("map-overlay", class_support, map_overlay_command,
3821 _("Assert that an overlay section is mapped."), &overlaylist);
3822
3823 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3824 _("Assert that an overlay section is unmapped."), &overlaylist);
3825
3826 add_cmd ("list-overlays", class_support, list_overlays_command,
3827 _("List mappings of overlay sections."), &overlaylist);
3828
3829 add_cmd ("manual", class_support, overlay_manual_command,
3830 _("Enable overlay debugging."), &overlaylist);
3831 add_cmd ("off", class_support, overlay_off_command,
3832 _("Disable overlay debugging."), &overlaylist);
3833 add_cmd ("auto", class_support, overlay_auto_command,
3834 _("Enable automatic overlay debugging."), &overlaylist);
3835 add_cmd ("load-target", class_support, overlay_load_command,
3836 _("Read the overlay mapping state from the target."), &overlaylist);
3837
3838 /* Filename extension to source language lookup table: */
3839 add_setshow_string_noescape_cmd ("extension-language", class_files,
3840 &ext_args, _("\
3841 Set mapping between filename extension and source language."), _("\
3842 Show mapping between filename extension and source language."), _("\
3843 Usage: set extension-language .foo bar"),
3844 set_ext_lang_command,
3845 show_ext_args,
3846 &setlist, &showlist);
3847
3848 add_info ("extensions", info_ext_lang_command,
3849 _("All filename extensions associated with a source language."));
3850
3851 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3852 &debug_file_directory, _("\
3853 Set the directories where separate debug symbols are searched for."), _("\
3854 Show the directories where separate debug symbols are searched for."), _("\
3855 Separate debug symbols are first searched for in the same\n\
3856 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3857 and lastly at the path of the directory of the binary with\n\
3858 each global debug-file-directory component prepended."),
3859 NULL,
3860 show_debug_file_directory,
3861 &setlist, &showlist);
3862
3863 add_setshow_enum_cmd ("symbol-loading", no_class,
3864 print_symbol_loading_enums, &print_symbol_loading,
3865 _("\
3866 Set printing of symbol loading messages."), _("\
3867 Show printing of symbol loading messages."), _("\
3868 off == turn all messages off\n\
3869 brief == print messages for the executable,\n\
3870 and brief messages for shared libraries\n\
3871 full == print messages for the executable,\n\
3872 and messages for each shared library."),
3873 NULL,
3874 NULL,
3875 &setprintlist, &showprintlist);
3876
3877 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3878 &separate_debug_file_debug, _("\
3879 Set printing of separate debug info file search debug."), _("\
3880 Show printing of separate debug info file search debug."), _("\
3881 When on, GDB prints the searched locations while looking for separate debug \
3882 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3883
3884 #if GDB_SELF_TEST
3885 selftests::register_test
3886 ("filename_language", selftests::filename_language::test_filename_language);
3887 selftests::register_test
3888 ("set_ext_lang_command",
3889 selftests::filename_language::test_set_ext_lang_command);
3890 #endif
3891 }
This page took 0.109378 seconds and 4 git commands to generate.