prevent the "load" command from repeating
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 static void load_command (char *, int);
91
92 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
94 static void add_symbol_file_command (char *, int);
95
96 bfd *symfile_bfd_open (char *);
97
98 int get_section_index (struct objfile *, char *);
99
100 static const struct sym_fns *find_sym_fns (bfd *);
101
102 static void decrement_reading_symtab (void *);
103
104 static void overlay_invalidate_all (void);
105
106 void list_overlays_command (char *, int);
107
108 void map_overlay_command (char *, int);
109
110 void unmap_overlay_command (char *, int);
111
112 static void overlay_auto_command (char *, int);
113
114 static void overlay_manual_command (char *, int);
115
116 static void overlay_off_command (char *, int);
117
118 static void overlay_load_command (char *, int);
119
120 static void overlay_command (char *, int);
121
122 static void simple_free_overlay_table (void);
123
124 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 enum bfd_endian);
126
127 static int simple_read_overlay_table (void);
128
129 static int simple_overlay_update_1 (struct obj_section *);
130
131 static void add_filename_language (char *ext, enum language lang);
132
133 static void info_ext_lang_command (char *args, int from_tty);
134
135 static void init_filename_language_table (void);
136
137 static void symfile_find_segment_sections (struct objfile *objfile);
138
139 void _initialize_symfile (void);
140
141 /* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
143 prepared to read. */
144
145 typedef const struct sym_fns *sym_fns_ptr;
146 DEF_VEC_P (sym_fns_ptr);
147
148 static VEC (sym_fns_ptr) *symtab_fns = NULL;
149
150 /* Flag for whether user will be reloading symbols multiple times.
151 Defaults to ON for VxWorks, otherwise OFF. */
152
153 #ifdef SYMBOL_RELOADING_DEFAULT
154 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
155 #else
156 int symbol_reloading = 0;
157 #endif
158 static void
159 show_symbol_reloading (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("\
163 Dynamic symbol table reloading multiple times in one run is %s.\n"),
164 value);
165 }
166
167 /* If non-zero, shared library symbols will be added automatically
168 when the inferior is created, new libraries are loaded, or when
169 attaching to the inferior. This is almost always what users will
170 want to have happen; but for very large programs, the startup time
171 will be excessive, and so if this is a problem, the user can clear
172 this flag and then add the shared library symbols as needed. Note
173 that there is a potential for confusion, since if the shared
174 library symbols are not loaded, commands like "info fun" will *not*
175 report all the functions that are actually present. */
176
177 int auto_solib_add = 1;
178
179 /* For systems that support it, a threshold size in megabytes. If
180 automatically adding a new library's symbol table to those already
181 known to the debugger would cause the total shared library symbol
182 size to exceed this threshhold, then the shlib's symbols are not
183 added. The threshold is ignored if the user explicitly asks for a
184 shlib to be added, such as when using the "sharedlibrary"
185 command. */
186
187 int auto_solib_limit;
188 \f
189
190 /* Make a null terminated copy of the string at PTR with SIZE characters in
191 the obstack pointed to by OBSTACKP . Returns the address of the copy.
192 Note that the string at PTR does not have to be null terminated, I.E. it
193 may be part of a larger string and we are only saving a substring. */
194
195 char *
196 obsavestring (const char *ptr, int size, struct obstack *obstackp)
197 {
198 char *p = (char *) obstack_alloc (obstackp, size + 1);
199 /* Open-coded memcpy--saves function call time. These strings are usually
200 short. FIXME: Is this really still true with a compiler that can
201 inline memcpy? */
202 {
203 const char *p1 = ptr;
204 char *p2 = p;
205 const char *end = ptr + size;
206
207 while (p1 != end)
208 *p2++ = *p1++;
209 }
210 p[size] = 0;
211 return p;
212 }
213
214 /* Concatenate NULL terminated variable argument list of `const char *' strings;
215 return the new string. Space is found in the OBSTACKP. Argument list must
216 be terminated by a sentinel expression `(char *) NULL'. */
217
218 char *
219 obconcat (struct obstack *obstackp, ...)
220 {
221 va_list ap;
222
223 va_start (ap, obstackp);
224 for (;;)
225 {
226 const char *s = va_arg (ap, const char *);
227
228 if (s == NULL)
229 break;
230
231 obstack_grow_str (obstackp, s);
232 }
233 va_end (ap);
234 obstack_1grow (obstackp, 0);
235
236 return obstack_finish (obstackp);
237 }
238
239 /* True if we are reading a symbol table. */
240
241 int currently_reading_symtab = 0;
242
243 static void
244 decrement_reading_symtab (void *dummy)
245 {
246 currently_reading_symtab--;
247 }
248
249 /* Increment currently_reading_symtab and return a cleanup that can be
250 used to decrement it. */
251 struct cleanup *
252 increment_reading_symtab (void)
253 {
254 ++currently_reading_symtab;
255 return make_cleanup (decrement_reading_symtab, NULL);
256 }
257
258 /* Remember the lowest-addressed loadable section we've seen.
259 This function is called via bfd_map_over_sections.
260
261 In case of equal vmas, the section with the largest size becomes the
262 lowest-addressed loadable section.
263
264 If the vmas and sizes are equal, the last section is considered the
265 lowest-addressed loadable section. */
266
267 void
268 find_lowest_section (bfd *abfd, asection *sect, void *obj)
269 {
270 asection **lowest = (asection **) obj;
271
272 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
273 return;
274 if (!*lowest)
275 *lowest = sect; /* First loadable section */
276 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
277 *lowest = sect; /* A lower loadable section */
278 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
279 && (bfd_section_size (abfd, (*lowest))
280 <= bfd_section_size (abfd, sect)))
281 *lowest = sect;
282 }
283
284 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
285
286 struct section_addr_info *
287 alloc_section_addr_info (size_t num_sections)
288 {
289 struct section_addr_info *sap;
290 size_t size;
291
292 size = (sizeof (struct section_addr_info)
293 + sizeof (struct other_sections) * (num_sections - 1));
294 sap = (struct section_addr_info *) xmalloc (size);
295 memset (sap, 0, size);
296 sap->num_sections = num_sections;
297
298 return sap;
299 }
300
301 /* Build (allocate and populate) a section_addr_info struct from
302 an existing section table. */
303
304 extern struct section_addr_info *
305 build_section_addr_info_from_section_table (const struct target_section *start,
306 const struct target_section *end)
307 {
308 struct section_addr_info *sap;
309 const struct target_section *stp;
310 int oidx;
311
312 sap = alloc_section_addr_info (end - start);
313
314 for (stp = start, oidx = 0; stp != end; stp++)
315 {
316 if (bfd_get_section_flags (stp->bfd,
317 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
318 && oidx < end - start)
319 {
320 sap->other[oidx].addr = stp->addr;
321 sap->other[oidx].name
322 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
323 sap->other[oidx].sectindex = stp->the_bfd_section->index;
324 oidx++;
325 }
326 }
327
328 return sap;
329 }
330
331 /* Create a section_addr_info from section offsets in ABFD. */
332
333 static struct section_addr_info *
334 build_section_addr_info_from_bfd (bfd *abfd)
335 {
336 struct section_addr_info *sap;
337 int i;
338 struct bfd_section *sec;
339
340 sap = alloc_section_addr_info (bfd_count_sections (abfd));
341 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
342 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
343 {
344 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
345 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
346 sap->other[i].sectindex = sec->index;
347 i++;
348 }
349 return sap;
350 }
351
352 /* Create a section_addr_info from section offsets in OBJFILE. */
353
354 struct section_addr_info *
355 build_section_addr_info_from_objfile (const struct objfile *objfile)
356 {
357 struct section_addr_info *sap;
358 int i;
359
360 /* Before reread_symbols gets rewritten it is not safe to call:
361 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
362 */
363 sap = build_section_addr_info_from_bfd (objfile->obfd);
364 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
365 {
366 int sectindex = sap->other[i].sectindex;
367
368 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
369 }
370 return sap;
371 }
372
373 /* Free all memory allocated by build_section_addr_info_from_section_table. */
374
375 extern void
376 free_section_addr_info (struct section_addr_info *sap)
377 {
378 int idx;
379
380 for (idx = 0; idx < sap->num_sections; idx++)
381 if (sap->other[idx].name)
382 xfree (sap->other[idx].name);
383 xfree (sap);
384 }
385
386
387 /* Initialize OBJFILE's sect_index_* members. */
388 static void
389 init_objfile_sect_indices (struct objfile *objfile)
390 {
391 asection *sect;
392 int i;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".text");
395 if (sect)
396 objfile->sect_index_text = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".data");
399 if (sect)
400 objfile->sect_index_data = sect->index;
401
402 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
403 if (sect)
404 objfile->sect_index_bss = sect->index;
405
406 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
407 if (sect)
408 objfile->sect_index_rodata = sect->index;
409
410 /* This is where things get really weird... We MUST have valid
411 indices for the various sect_index_* members or gdb will abort.
412 So if for example, there is no ".text" section, we have to
413 accomodate that. First, check for a file with the standard
414 one or two segments. */
415
416 symfile_find_segment_sections (objfile);
417
418 /* Except when explicitly adding symbol files at some address,
419 section_offsets contains nothing but zeros, so it doesn't matter
420 which slot in section_offsets the individual sect_index_* members
421 index into. So if they are all zero, it is safe to just point
422 all the currently uninitialized indices to the first slot. But
423 beware: if this is the main executable, it may be relocated
424 later, e.g. by the remote qOffsets packet, and then this will
425 be wrong! That's why we try segments first. */
426
427 for (i = 0; i < objfile->num_sections; i++)
428 {
429 if (ANOFFSET (objfile->section_offsets, i) != 0)
430 {
431 break;
432 }
433 }
434 if (i == objfile->num_sections)
435 {
436 if (objfile->sect_index_text == -1)
437 objfile->sect_index_text = 0;
438 if (objfile->sect_index_data == -1)
439 objfile->sect_index_data = 0;
440 if (objfile->sect_index_bss == -1)
441 objfile->sect_index_bss = 0;
442 if (objfile->sect_index_rodata == -1)
443 objfile->sect_index_rodata = 0;
444 }
445 }
446
447 /* The arguments to place_section. */
448
449 struct place_section_arg
450 {
451 struct section_offsets *offsets;
452 CORE_ADDR lowest;
453 };
454
455 /* Find a unique offset to use for loadable section SECT if
456 the user did not provide an offset. */
457
458 static void
459 place_section (bfd *abfd, asection *sect, void *obj)
460 {
461 struct place_section_arg *arg = obj;
462 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
463 int done;
464 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
465
466 /* We are only interested in allocated sections. */
467 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
468 return;
469
470 /* If the user specified an offset, honor it. */
471 if (offsets[sect->index] != 0)
472 return;
473
474 /* Otherwise, let's try to find a place for the section. */
475 start_addr = (arg->lowest + align - 1) & -align;
476
477 do {
478 asection *cur_sec;
479
480 done = 1;
481
482 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
483 {
484 int indx = cur_sec->index;
485
486 /* We don't need to compare against ourself. */
487 if (cur_sec == sect)
488 continue;
489
490 /* We can only conflict with allocated sections. */
491 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
492 continue;
493
494 /* If the section offset is 0, either the section has not been placed
495 yet, or it was the lowest section placed (in which case LOWEST
496 will be past its end). */
497 if (offsets[indx] == 0)
498 continue;
499
500 /* If this section would overlap us, then we must move up. */
501 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
502 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
503 {
504 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
505 start_addr = (start_addr + align - 1) & -align;
506 done = 0;
507 break;
508 }
509
510 /* Otherwise, we appear to be OK. So far. */
511 }
512 }
513 while (!done);
514
515 offsets[sect->index] = start_addr;
516 arg->lowest = start_addr + bfd_get_section_size (sect);
517 }
518
519 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
520 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
521 entries. */
522
523 void
524 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
525 int num_sections,
526 struct section_addr_info *addrs)
527 {
528 int i;
529
530 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
531
532 /* Now calculate offsets for section that were specified by the caller. */
533 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
534 {
535 struct other_sections *osp;
536
537 osp = &addrs->other[i];
538 if (osp->addr == 0)
539 continue;
540
541 /* Record all sections in offsets */
542 /* The section_offsets in the objfile are here filled in using
543 the BFD index. */
544 section_offsets->offsets[osp->sectindex] = osp->addr;
545 }
546 }
547
548 /* Transform section name S for a name comparison. prelink can split section
549 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
550 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
551 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
552 (`.sbss') section has invalid (increased) virtual address. */
553
554 static const char *
555 addr_section_name (const char *s)
556 {
557 if (strcmp (s, ".dynbss") == 0)
558 return ".bss";
559 if (strcmp (s, ".sdynbss") == 0)
560 return ".sbss";
561
562 return s;
563 }
564
565 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
566 their (name, sectindex) pair. sectindex makes the sort by name stable. */
567
568 static int
569 addrs_section_compar (const void *ap, const void *bp)
570 {
571 const struct other_sections *a = *((struct other_sections **) ap);
572 const struct other_sections *b = *((struct other_sections **) bp);
573 int retval, a_idx, b_idx;
574
575 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
576 if (retval)
577 return retval;
578
579 /* SECTINDEX is undefined iff ADDR is zero. */
580 a_idx = a->addr == 0 ? 0 : a->sectindex;
581 b_idx = b->addr == 0 ? 0 : b->sectindex;
582 return a_idx - b_idx;
583 }
584
585 /* Provide sorted array of pointers to sections of ADDRS. The array is
586 terminated by NULL. Caller is responsible to call xfree for it. */
587
588 static struct other_sections **
589 addrs_section_sort (struct section_addr_info *addrs)
590 {
591 struct other_sections **array;
592 int i;
593
594 /* `+ 1' for the NULL terminator. */
595 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
596 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
597 array[i] = &addrs->other[i];
598 array[i] = NULL;
599
600 qsort (array, i, sizeof (*array), addrs_section_compar);
601
602 return array;
603 }
604
605 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
606 also SECTINDEXes specific to ABFD there. This function can be used to
607 rebase ADDRS to start referencing different BFD than before. */
608
609 void
610 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
611 {
612 asection *lower_sect;
613 CORE_ADDR lower_offset;
614 int i;
615 struct cleanup *my_cleanup;
616 struct section_addr_info *abfd_addrs;
617 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
618 struct other_sections **addrs_to_abfd_addrs;
619
620 /* Find lowest loadable section to be used as starting point for
621 continguous sections. */
622 lower_sect = NULL;
623 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
624 if (lower_sect == NULL)
625 {
626 warning (_("no loadable sections found in added symbol-file %s"),
627 bfd_get_filename (abfd));
628 lower_offset = 0;
629 }
630 else
631 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
632
633 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
634 in ABFD. Section names are not unique - there can be multiple sections of
635 the same name. Also the sections of the same name do not have to be
636 adjacent to each other. Some sections may be present only in one of the
637 files. Even sections present in both files do not have to be in the same
638 order.
639
640 Use stable sort by name for the sections in both files. Then linearly
641 scan both lists matching as most of the entries as possible. */
642
643 addrs_sorted = addrs_section_sort (addrs);
644 my_cleanup = make_cleanup (xfree, addrs_sorted);
645
646 abfd_addrs = build_section_addr_info_from_bfd (abfd);
647 make_cleanup_free_section_addr_info (abfd_addrs);
648 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
649 make_cleanup (xfree, abfd_addrs_sorted);
650
651 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
652
653 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
654 * addrs->num_sections);
655 make_cleanup (xfree, addrs_to_abfd_addrs);
656
657 while (*addrs_sorted)
658 {
659 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
660
661 while (*abfd_addrs_sorted
662 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
663 sect_name) < 0)
664 abfd_addrs_sorted++;
665
666 if (*abfd_addrs_sorted
667 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
668 sect_name) == 0)
669 {
670 int index_in_addrs;
671
672 /* Make the found item directly addressable from ADDRS. */
673 index_in_addrs = *addrs_sorted - addrs->other;
674 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
675 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
676
677 /* Never use the same ABFD entry twice. */
678 abfd_addrs_sorted++;
679 }
680
681 addrs_sorted++;
682 }
683
684 /* Calculate offsets for the loadable sections.
685 FIXME! Sections must be in order of increasing loadable section
686 so that contiguous sections can use the lower-offset!!!
687
688 Adjust offsets if the segments are not contiguous.
689 If the section is contiguous, its offset should be set to
690 the offset of the highest loadable section lower than it
691 (the loadable section directly below it in memory).
692 this_offset = lower_offset = lower_addr - lower_orig_addr */
693
694 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
695 {
696 struct other_sections *sect = addrs_to_abfd_addrs[i];
697
698 if (sect)
699 {
700 /* This is the index used by BFD. */
701 addrs->other[i].sectindex = sect->sectindex;
702
703 if (addrs->other[i].addr != 0)
704 {
705 addrs->other[i].addr -= sect->addr;
706 lower_offset = addrs->other[i].addr;
707 }
708 else
709 addrs->other[i].addr = lower_offset;
710 }
711 else
712 {
713 /* addr_section_name transformation is not used for SECT_NAME. */
714 const char *sect_name = addrs->other[i].name;
715
716 /* This section does not exist in ABFD, which is normally
717 unexpected and we want to issue a warning.
718
719 However, the ELF prelinker does create a few sections which are
720 marked in the main executable as loadable (they are loaded in
721 memory from the DYNAMIC segment) and yet are not present in
722 separate debug info files. This is fine, and should not cause
723 a warning. Shared libraries contain just the section
724 ".gnu.liblist" but it is not marked as loadable there. There is
725 no other way to identify them than by their name as the sections
726 created by prelink have no special flags.
727
728 For the sections `.bss' and `.sbss' see addr_section_name. */
729
730 if (!(strcmp (sect_name, ".gnu.liblist") == 0
731 || strcmp (sect_name, ".gnu.conflict") == 0
732 || (strcmp (sect_name, ".bss") == 0
733 && i > 0
734 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
735 && addrs_to_abfd_addrs[i - 1] != NULL)
736 || (strcmp (sect_name, ".sbss") == 0
737 && i > 0
738 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
739 && addrs_to_abfd_addrs[i - 1] != NULL)))
740 warning (_("section %s not found in %s"), sect_name,
741 bfd_get_filename (abfd));
742
743 addrs->other[i].addr = 0;
744
745 /* SECTINDEX is invalid if ADDR is zero. */
746 }
747 }
748
749 do_cleanups (my_cleanup);
750 }
751
752 /* Parse the user's idea of an offset for dynamic linking, into our idea
753 of how to represent it for fast symbol reading. This is the default
754 version of the sym_fns.sym_offsets function for symbol readers that
755 don't need to do anything special. It allocates a section_offsets table
756 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
757
758 void
759 default_symfile_offsets (struct objfile *objfile,
760 struct section_addr_info *addrs)
761 {
762 objfile->num_sections = bfd_count_sections (objfile->obfd);
763 objfile->section_offsets = (struct section_offsets *)
764 obstack_alloc (&objfile->objfile_obstack,
765 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
766 relative_addr_info_to_section_offsets (objfile->section_offsets,
767 objfile->num_sections, addrs);
768
769 /* For relocatable files, all loadable sections will start at zero.
770 The zero is meaningless, so try to pick arbitrary addresses such
771 that no loadable sections overlap. This algorithm is quadratic,
772 but the number of sections in a single object file is generally
773 small. */
774 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
775 {
776 struct place_section_arg arg;
777 bfd *abfd = objfile->obfd;
778 asection *cur_sec;
779
780 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
781 /* We do not expect this to happen; just skip this step if the
782 relocatable file has a section with an assigned VMA. */
783 if (bfd_section_vma (abfd, cur_sec) != 0)
784 break;
785
786 if (cur_sec == NULL)
787 {
788 CORE_ADDR *offsets = objfile->section_offsets->offsets;
789
790 /* Pick non-overlapping offsets for sections the user did not
791 place explicitly. */
792 arg.offsets = objfile->section_offsets;
793 arg.lowest = 0;
794 bfd_map_over_sections (objfile->obfd, place_section, &arg);
795
796 /* Correctly filling in the section offsets is not quite
797 enough. Relocatable files have two properties that
798 (most) shared objects do not:
799
800 - Their debug information will contain relocations. Some
801 shared libraries do also, but many do not, so this can not
802 be assumed.
803
804 - If there are multiple code sections they will be loaded
805 at different relative addresses in memory than they are
806 in the objfile, since all sections in the file will start
807 at address zero.
808
809 Because GDB has very limited ability to map from an
810 address in debug info to the correct code section,
811 it relies on adding SECT_OFF_TEXT to things which might be
812 code. If we clear all the section offsets, and set the
813 section VMAs instead, then symfile_relocate_debug_section
814 will return meaningful debug information pointing at the
815 correct sections.
816
817 GDB has too many different data structures for section
818 addresses - a bfd, objfile, and so_list all have section
819 tables, as does exec_ops. Some of these could probably
820 be eliminated. */
821
822 for (cur_sec = abfd->sections; cur_sec != NULL;
823 cur_sec = cur_sec->next)
824 {
825 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
826 continue;
827
828 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
829 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
830 offsets[cur_sec->index]);
831 offsets[cur_sec->index] = 0;
832 }
833 }
834 }
835
836 /* Remember the bfd indexes for the .text, .data, .bss and
837 .rodata sections. */
838 init_objfile_sect_indices (objfile);
839 }
840
841
842 /* Divide the file into segments, which are individual relocatable units.
843 This is the default version of the sym_fns.sym_segments function for
844 symbol readers that do not have an explicit representation of segments.
845 It assumes that object files do not have segments, and fully linked
846 files have a single segment. */
847
848 struct symfile_segment_data *
849 default_symfile_segments (bfd *abfd)
850 {
851 int num_sections, i;
852 asection *sect;
853 struct symfile_segment_data *data;
854 CORE_ADDR low, high;
855
856 /* Relocatable files contain enough information to position each
857 loadable section independently; they should not be relocated
858 in segments. */
859 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
860 return NULL;
861
862 /* Make sure there is at least one loadable section in the file. */
863 for (sect = abfd->sections; sect != NULL; sect = sect->next)
864 {
865 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
866 continue;
867
868 break;
869 }
870 if (sect == NULL)
871 return NULL;
872
873 low = bfd_get_section_vma (abfd, sect);
874 high = low + bfd_get_section_size (sect);
875
876 data = XZALLOC (struct symfile_segment_data);
877 data->num_segments = 1;
878 data->segment_bases = XCALLOC (1, CORE_ADDR);
879 data->segment_sizes = XCALLOC (1, CORE_ADDR);
880
881 num_sections = bfd_count_sections (abfd);
882 data->segment_info = XCALLOC (num_sections, int);
883
884 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
885 {
886 CORE_ADDR vma;
887
888 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
889 continue;
890
891 vma = bfd_get_section_vma (abfd, sect);
892 if (vma < low)
893 low = vma;
894 if (vma + bfd_get_section_size (sect) > high)
895 high = vma + bfd_get_section_size (sect);
896
897 data->segment_info[i] = 1;
898 }
899
900 data->segment_bases[0] = low;
901 data->segment_sizes[0] = high - low;
902
903 return data;
904 }
905
906 /* Process a symbol file, as either the main file or as a dynamically
907 loaded file.
908
909 OBJFILE is where the symbols are to be read from.
910
911 ADDRS is the list of section load addresses. If the user has given
912 an 'add-symbol-file' command, then this is the list of offsets and
913 addresses he or she provided as arguments to the command; or, if
914 we're handling a shared library, these are the actual addresses the
915 sections are loaded at, according to the inferior's dynamic linker
916 (as gleaned by GDB's shared library code). We convert each address
917 into an offset from the section VMA's as it appears in the object
918 file, and then call the file's sym_offsets function to convert this
919 into a format-specific offset table --- a `struct section_offsets'.
920 If ADDRS is non-zero, OFFSETS must be zero.
921
922 OFFSETS is a table of section offsets already in the right
923 format-specific representation. NUM_OFFSETS is the number of
924 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
925 assume this is the proper table the call to sym_offsets described
926 above would produce. Instead of calling sym_offsets, we just dump
927 it right into objfile->section_offsets. (When we're re-reading
928 symbols from an objfile, we don't have the original load address
929 list any more; all we have is the section offset table.) If
930 OFFSETS is non-zero, ADDRS must be zero.
931
932 ADD_FLAGS encodes verbosity level, whether this is main symbol or
933 an extra symbol file such as dynamically loaded code, and wether
934 breakpoint reset should be deferred. */
935
936 void
937 syms_from_objfile (struct objfile *objfile,
938 struct section_addr_info *addrs,
939 struct section_offsets *offsets,
940 int num_offsets,
941 int add_flags)
942 {
943 struct section_addr_info *local_addr = NULL;
944 struct cleanup *old_chain;
945 const int mainline = add_flags & SYMFILE_MAINLINE;
946
947 gdb_assert (! (addrs && offsets));
948
949 init_entry_point_info (objfile);
950 objfile->sf = find_sym_fns (objfile->obfd);
951
952 if (objfile->sf == NULL)
953 return; /* No symbols. */
954
955 /* Make sure that partially constructed symbol tables will be cleaned up
956 if an error occurs during symbol reading. */
957 old_chain = make_cleanup_free_objfile (objfile);
958
959 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
960 list. We now establish the convention that an addr of zero means
961 no load address was specified. */
962 if (! addrs && ! offsets)
963 {
964 local_addr
965 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
966 make_cleanup (xfree, local_addr);
967 addrs = local_addr;
968 }
969
970 /* Now either addrs or offsets is non-zero. */
971
972 if (mainline)
973 {
974 /* We will modify the main symbol table, make sure that all its users
975 will be cleaned up if an error occurs during symbol reading. */
976 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
977
978 /* Since no error yet, throw away the old symbol table. */
979
980 if (symfile_objfile != NULL)
981 {
982 free_objfile (symfile_objfile);
983 gdb_assert (symfile_objfile == NULL);
984 }
985
986 /* Currently we keep symbols from the add-symbol-file command.
987 If the user wants to get rid of them, they should do "symbol-file"
988 without arguments first. Not sure this is the best behavior
989 (PR 2207). */
990
991 (*objfile->sf->sym_new_init) (objfile);
992 }
993
994 /* Convert addr into an offset rather than an absolute address.
995 We find the lowest address of a loaded segment in the objfile,
996 and assume that <addr> is where that got loaded.
997
998 We no longer warn if the lowest section is not a text segment (as
999 happens for the PA64 port. */
1000 if (addrs && addrs->other[0].name)
1001 addr_info_make_relative (addrs, objfile->obfd);
1002
1003 /* Initialize symbol reading routines for this objfile, allow complaints to
1004 appear for this new file, and record how verbose to be, then do the
1005 initial symbol reading for this file. */
1006
1007 (*objfile->sf->sym_init) (objfile);
1008 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1009
1010 if (addrs)
1011 (*objfile->sf->sym_offsets) (objfile, addrs);
1012 else
1013 {
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1015
1016 /* Just copy in the offset table directly as given to us. */
1017 objfile->num_sections = num_offsets;
1018 objfile->section_offsets
1019 = ((struct section_offsets *)
1020 obstack_alloc (&objfile->objfile_obstack, size));
1021 memcpy (objfile->section_offsets, offsets, size);
1022
1023 init_objfile_sect_indices (objfile);
1024 }
1025
1026 (*objfile->sf->sym_read) (objfile, add_flags);
1027
1028 /* Discard cleanups as symbol reading was successful. */
1029
1030 discard_cleanups (old_chain);
1031 xfree (local_addr);
1032 }
1033
1034 /* Perform required actions after either reading in the initial
1035 symbols for a new objfile, or mapping in the symbols from a reusable
1036 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1037
1038 void
1039 new_symfile_objfile (struct objfile *objfile, int add_flags)
1040 {
1041 /* If this is the main symbol file we have to clean up all users of the
1042 old main symbol file. Otherwise it is sufficient to fixup all the
1043 breakpoints that may have been redefined by this symbol file. */
1044 if (add_flags & SYMFILE_MAINLINE)
1045 {
1046 /* OK, make it the "real" symbol file. */
1047 symfile_objfile = objfile;
1048
1049 clear_symtab_users (add_flags);
1050 }
1051 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1052 {
1053 breakpoint_re_set ();
1054 }
1055
1056 /* We're done reading the symbol file; finish off complaints. */
1057 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1058 }
1059
1060 /* Process a symbol file, as either the main file or as a dynamically
1061 loaded file.
1062
1063 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1064 This BFD will be closed on error, and is always consumed by this function.
1065
1066 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1067 extra, such as dynamically loaded code, and what to do with breakpoins.
1068
1069 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1070 syms_from_objfile, above.
1071 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1072
1073 Upon success, returns a pointer to the objfile that was added.
1074 Upon failure, jumps back to command level (never returns). */
1075
1076 static struct objfile *
1077 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1078 int add_flags,
1079 struct section_addr_info *addrs,
1080 struct section_offsets *offsets,
1081 int num_offsets,
1082 int flags)
1083 {
1084 struct objfile *objfile;
1085 struct cleanup *my_cleanups;
1086 const char *name = bfd_get_filename (abfd);
1087 const int from_tty = add_flags & SYMFILE_VERBOSE;
1088
1089 if (readnow_symbol_files)
1090 flags |= OBJF_READNOW;
1091
1092 my_cleanups = make_cleanup_bfd_close (abfd);
1093
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
1098 && (add_flags & SYMFILE_MAINLINE)
1099 && from_tty
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1102
1103 objfile = allocate_objfile (abfd, flags);
1104 discard_cleanups (my_cleanups);
1105
1106 /* We either created a new mapped symbol table, mapped an existing
1107 symbol table file which has not had initial symbol reading
1108 performed, or need to read an unmapped symbol table. */
1109 if (from_tty || info_verbose)
1110 {
1111 if (deprecated_pre_add_symbol_hook)
1112 deprecated_pre_add_symbol_hook (name);
1113 else
1114 {
1115 printf_unfiltered (_("Reading symbols from %s..."), name);
1116 wrap_here ("");
1117 gdb_flush (gdb_stdout);
1118 }
1119 }
1120 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1121 add_flags);
1122
1123 /* We now have at least a partial symbol table. Check to see if the
1124 user requested that all symbols be read on initial access via either
1125 the gdb startup command line or on a per symbol file basis. Expand
1126 all partial symbol tables for this objfile if so. */
1127
1128 if ((flags & OBJF_READNOW))
1129 {
1130 if (from_tty || info_verbose)
1131 {
1132 printf_unfiltered (_("expanding to full symbols..."));
1133 wrap_here ("");
1134 gdb_flush (gdb_stdout);
1135 }
1136
1137 if (objfile->sf)
1138 objfile->sf->qf->expand_all_symtabs (objfile);
1139 }
1140
1141 if ((from_tty || info_verbose)
1142 && !objfile_has_symbols (objfile))
1143 {
1144 wrap_here ("");
1145 printf_unfiltered (_("(no debugging symbols found)..."));
1146 wrap_here ("");
1147 }
1148
1149 if (from_tty || info_verbose)
1150 {
1151 if (deprecated_post_add_symbol_hook)
1152 deprecated_post_add_symbol_hook ();
1153 else
1154 printf_unfiltered (_("done.\n"));
1155 }
1156
1157 /* We print some messages regardless of whether 'from_tty ||
1158 info_verbose' is true, so make sure they go out at the right
1159 time. */
1160 gdb_flush (gdb_stdout);
1161
1162 do_cleanups (my_cleanups);
1163
1164 if (objfile->sf == NULL)
1165 {
1166 observer_notify_new_objfile (objfile);
1167 return objfile; /* No symbols. */
1168 }
1169
1170 new_symfile_objfile (objfile, add_flags);
1171
1172 observer_notify_new_objfile (objfile);
1173
1174 bfd_cache_close_all ();
1175 return (objfile);
1176 }
1177
1178 /* Add BFD as a separate debug file for OBJFILE. */
1179
1180 void
1181 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1182 {
1183 struct objfile *new_objfile;
1184 struct section_addr_info *sap;
1185 struct cleanup *my_cleanup;
1186
1187 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1188 because sections of BFD may not match sections of OBJFILE and because
1189 vma may have been modified by tools such as prelink. */
1190 sap = build_section_addr_info_from_objfile (objfile);
1191 my_cleanup = make_cleanup_free_section_addr_info (sap);
1192
1193 new_objfile = symbol_file_add_with_addrs_or_offsets
1194 (bfd, symfile_flags,
1195 sap, NULL, 0,
1196 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1197 | OBJF_USERLOADED));
1198
1199 do_cleanups (my_cleanup);
1200
1201 add_separate_debug_objfile (new_objfile, objfile);
1202 }
1203
1204 /* Process the symbol file ABFD, as either the main file or as a
1205 dynamically loaded file.
1206
1207 See symbol_file_add_with_addrs_or_offsets's comments for
1208 details. */
1209 struct objfile *
1210 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1211 struct section_addr_info *addrs,
1212 int flags)
1213 {
1214 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1215 flags);
1216 }
1217
1218
1219 /* Process a symbol file, as either the main file or as a dynamically
1220 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1221 for details. */
1222 struct objfile *
1223 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1224 int flags)
1225 {
1226 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1227 flags);
1228 }
1229
1230
1231 /* Call symbol_file_add() with default values and update whatever is
1232 affected by the loading of a new main().
1233 Used when the file is supplied in the gdb command line
1234 and by some targets with special loading requirements.
1235 The auxiliary function, symbol_file_add_main_1(), has the flags
1236 argument for the switches that can only be specified in the symbol_file
1237 command itself. */
1238
1239 void
1240 symbol_file_add_main (char *args, int from_tty)
1241 {
1242 symbol_file_add_main_1 (args, from_tty, 0);
1243 }
1244
1245 static void
1246 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1247 {
1248 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1249 symbol_file_add (args, add_flags, NULL, flags);
1250
1251 /* Getting new symbols may change our opinion about
1252 what is frameless. */
1253 reinit_frame_cache ();
1254
1255 set_initial_language ();
1256 }
1257
1258 void
1259 symbol_file_clear (int from_tty)
1260 {
1261 if ((have_full_symbols () || have_partial_symbols ())
1262 && from_tty
1263 && (symfile_objfile
1264 ? !query (_("Discard symbol table from `%s'? "),
1265 symfile_objfile->name)
1266 : !query (_("Discard symbol table? "))))
1267 error (_("Not confirmed."));
1268
1269 /* solib descriptors may have handles to objfiles. Wipe them before their
1270 objfiles get stale by free_all_objfiles. */
1271 no_shared_libraries (NULL, from_tty);
1272
1273 free_all_objfiles ();
1274
1275 gdb_assert (symfile_objfile == NULL);
1276 if (from_tty)
1277 printf_unfiltered (_("No symbol file now.\n"));
1278 }
1279
1280 static char *
1281 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1282 {
1283 asection *sect;
1284 bfd_size_type debuglink_size;
1285 unsigned long crc32;
1286 char *contents;
1287 int crc_offset;
1288
1289 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1290
1291 if (sect == NULL)
1292 return NULL;
1293
1294 debuglink_size = bfd_section_size (objfile->obfd, sect);
1295
1296 contents = xmalloc (debuglink_size);
1297 bfd_get_section_contents (objfile->obfd, sect, contents,
1298 (file_ptr)0, (bfd_size_type)debuglink_size);
1299
1300 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1301 crc_offset = strlen (contents) + 1;
1302 crc_offset = (crc_offset + 3) & ~3;
1303
1304 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1305
1306 *crc32_out = crc32;
1307 return contents;
1308 }
1309
1310 static int
1311 separate_debug_file_exists (const char *name, unsigned long crc,
1312 struct objfile *parent_objfile)
1313 {
1314 unsigned long file_crc = 0;
1315 bfd *abfd;
1316 gdb_byte buffer[8*1024];
1317 int count;
1318 struct stat parent_stat, abfd_stat;
1319
1320 /* Find a separate debug info file as if symbols would be present in
1321 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1322 section can contain just the basename of PARENT_OBJFILE without any
1323 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1324 the separate debug infos with the same basename can exist. */
1325
1326 if (strcmp (name, parent_objfile->name) == 0)
1327 return 0;
1328
1329 abfd = bfd_open_maybe_remote (name);
1330
1331 if (!abfd)
1332 return 0;
1333
1334 /* Verify symlinks were not the cause of strcmp name difference above.
1335
1336 Some operating systems, e.g. Windows, do not provide a meaningful
1337 st_ino; they always set it to zero. (Windows does provide a
1338 meaningful st_dev.) Do not indicate a duplicate library in that
1339 case. While there is no guarantee that a system that provides
1340 meaningful inode numbers will never set st_ino to zero, this is
1341 merely an optimization, so we do not need to worry about false
1342 negatives. */
1343
1344 if (bfd_stat (abfd, &abfd_stat) == 0
1345 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1346 && abfd_stat.st_dev == parent_stat.st_dev
1347 && abfd_stat.st_ino == parent_stat.st_ino
1348 && abfd_stat.st_ino != 0)
1349 {
1350 bfd_close (abfd);
1351 return 0;
1352 }
1353
1354 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1355 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1356
1357 bfd_close (abfd);
1358
1359 if (crc != file_crc)
1360 {
1361 warning (_("the debug information found in \"%s\""
1362 " does not match \"%s\" (CRC mismatch).\n"),
1363 name, parent_objfile->name);
1364 return 0;
1365 }
1366
1367 return 1;
1368 }
1369
1370 char *debug_file_directory = NULL;
1371 static void
1372 show_debug_file_directory (struct ui_file *file, int from_tty,
1373 struct cmd_list_element *c, const char *value)
1374 {
1375 fprintf_filtered (file, _("\
1376 The directory where separate debug symbols are searched for is \"%s\".\n"),
1377 value);
1378 }
1379
1380 #if ! defined (DEBUG_SUBDIRECTORY)
1381 #define DEBUG_SUBDIRECTORY ".debug"
1382 #endif
1383
1384 char *
1385 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1386 {
1387 char *basename, *debugdir;
1388 char *dir = NULL;
1389 char *debugfile = NULL;
1390 char *canon_name = NULL;
1391 unsigned long crc32;
1392 int i;
1393
1394 basename = get_debug_link_info (objfile, &crc32);
1395
1396 if (basename == NULL)
1397 /* There's no separate debug info, hence there's no way we could
1398 load it => no warning. */
1399 goto cleanup_return_debugfile;
1400
1401 dir = xstrdup (objfile->name);
1402
1403 /* Strip off the final filename part, leaving the directory name,
1404 followed by a slash. The directory can be relative or absolute. */
1405 for (i = strlen(dir) - 1; i >= 0; i--)
1406 {
1407 if (IS_DIR_SEPARATOR (dir[i]))
1408 break;
1409 }
1410 /* If I is -1 then no directory is present there and DIR will be "". */
1411 dir[i+1] = '\0';
1412
1413 /* Set I to max (strlen (canon_name), strlen (dir)). */
1414 canon_name = lrealpath (dir);
1415 i = strlen (dir);
1416 if (canon_name && strlen (canon_name) > i)
1417 i = strlen (canon_name);
1418
1419 debugfile = xmalloc (strlen (debug_file_directory) + 1
1420 + i
1421 + strlen (DEBUG_SUBDIRECTORY)
1422 + strlen ("/")
1423 + strlen (basename)
1424 + 1);
1425
1426 /* First try in the same directory as the original file. */
1427 strcpy (debugfile, dir);
1428 strcat (debugfile, basename);
1429
1430 if (separate_debug_file_exists (debugfile, crc32, objfile))
1431 goto cleanup_return_debugfile;
1432
1433 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1434 strcpy (debugfile, dir);
1435 strcat (debugfile, DEBUG_SUBDIRECTORY);
1436 strcat (debugfile, "/");
1437 strcat (debugfile, basename);
1438
1439 if (separate_debug_file_exists (debugfile, crc32, objfile))
1440 goto cleanup_return_debugfile;
1441
1442 /* Then try in the global debugfile directories.
1443
1444 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1445 cause "/..." lookups. */
1446
1447 debugdir = debug_file_directory;
1448 do
1449 {
1450 char *debugdir_end;
1451
1452 while (*debugdir == DIRNAME_SEPARATOR)
1453 debugdir++;
1454
1455 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1456 if (debugdir_end == NULL)
1457 debugdir_end = &debugdir[strlen (debugdir)];
1458
1459 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1460 debugfile[debugdir_end - debugdir] = 0;
1461 strcat (debugfile, "/");
1462 strcat (debugfile, dir);
1463 strcat (debugfile, basename);
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 goto cleanup_return_debugfile;
1467
1468 /* If the file is in the sysroot, try using its base path in the
1469 global debugfile directory. */
1470 if (canon_name
1471 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1472 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1473 {
1474 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1475 debugfile[debugdir_end - debugdir] = 0;
1476 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1477 strcat (debugfile, "/");
1478 strcat (debugfile, basename);
1479
1480 if (separate_debug_file_exists (debugfile, crc32, objfile))
1481 goto cleanup_return_debugfile;
1482 }
1483
1484 debugdir = debugdir_end;
1485 }
1486 while (*debugdir != 0);
1487
1488 xfree (debugfile);
1489 debugfile = NULL;
1490
1491 cleanup_return_debugfile:
1492 xfree (canon_name);
1493 xfree (basename);
1494 xfree (dir);
1495 return debugfile;
1496 }
1497
1498
1499 /* This is the symbol-file command. Read the file, analyze its
1500 symbols, and add a struct symtab to a symtab list. The syntax of
1501 the command is rather bizarre:
1502
1503 1. The function buildargv implements various quoting conventions
1504 which are undocumented and have little or nothing in common with
1505 the way things are quoted (or not quoted) elsewhere in GDB.
1506
1507 2. Options are used, which are not generally used in GDB (perhaps
1508 "set mapped on", "set readnow on" would be better)
1509
1510 3. The order of options matters, which is contrary to GNU
1511 conventions (because it is confusing and inconvenient). */
1512
1513 void
1514 symbol_file_command (char *args, int from_tty)
1515 {
1516 dont_repeat ();
1517
1518 if (args == NULL)
1519 {
1520 symbol_file_clear (from_tty);
1521 }
1522 else
1523 {
1524 char **argv = gdb_buildargv (args);
1525 int flags = OBJF_USERLOADED;
1526 struct cleanup *cleanups;
1527 char *name = NULL;
1528
1529 cleanups = make_cleanup_freeargv (argv);
1530 while (*argv != NULL)
1531 {
1532 if (strcmp (*argv, "-readnow") == 0)
1533 flags |= OBJF_READNOW;
1534 else if (**argv == '-')
1535 error (_("unknown option `%s'"), *argv);
1536 else
1537 {
1538 symbol_file_add_main_1 (*argv, from_tty, flags);
1539 name = *argv;
1540 }
1541
1542 argv++;
1543 }
1544
1545 if (name == NULL)
1546 error (_("no symbol file name was specified"));
1547
1548 do_cleanups (cleanups);
1549 }
1550 }
1551
1552 /* Set the initial language.
1553
1554 FIXME: A better solution would be to record the language in the
1555 psymtab when reading partial symbols, and then use it (if known) to
1556 set the language. This would be a win for formats that encode the
1557 language in an easily discoverable place, such as DWARF. For
1558 stabs, we can jump through hoops looking for specially named
1559 symbols or try to intuit the language from the specific type of
1560 stabs we find, but we can't do that until later when we read in
1561 full symbols. */
1562
1563 void
1564 set_initial_language (void)
1565 {
1566 enum language lang = language_unknown;
1567
1568 if (language_of_main != language_unknown)
1569 lang = language_of_main;
1570 else
1571 {
1572 const char *filename;
1573
1574 filename = find_main_filename ();
1575 if (filename != NULL)
1576 lang = deduce_language_from_filename (filename);
1577 }
1578
1579 if (lang == language_unknown)
1580 {
1581 /* Make C the default language */
1582 lang = language_c;
1583 }
1584
1585 set_language (lang);
1586 expected_language = current_language; /* Don't warn the user. */
1587 }
1588
1589 /* If NAME is a remote name open the file using remote protocol, otherwise
1590 open it normally. */
1591
1592 bfd *
1593 bfd_open_maybe_remote (const char *name)
1594 {
1595 if (remote_filename_p (name))
1596 return remote_bfd_open (name, gnutarget);
1597 else
1598 return bfd_openr (name, gnutarget);
1599 }
1600
1601
1602 /* Open the file specified by NAME and hand it off to BFD for
1603 preliminary analysis. Return a newly initialized bfd *, which
1604 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1605 absolute). In case of trouble, error() is called. */
1606
1607 bfd *
1608 symfile_bfd_open (char *name)
1609 {
1610 bfd *sym_bfd;
1611 int desc;
1612 char *absolute_name;
1613
1614 if (remote_filename_p (name))
1615 {
1616 name = xstrdup (name);
1617 sym_bfd = remote_bfd_open (name, gnutarget);
1618 if (!sym_bfd)
1619 {
1620 make_cleanup (xfree, name);
1621 error (_("`%s': can't open to read symbols: %s."), name,
1622 bfd_errmsg (bfd_get_error ()));
1623 }
1624
1625 if (!bfd_check_format (sym_bfd, bfd_object))
1626 {
1627 bfd_close (sym_bfd);
1628 make_cleanup (xfree, name);
1629 error (_("`%s': can't read symbols: %s."), name,
1630 bfd_errmsg (bfd_get_error ()));
1631 }
1632
1633 return sym_bfd;
1634 }
1635
1636 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1637
1638 /* Look down path for it, allocate 2nd new malloc'd copy. */
1639 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1640 O_RDONLY | O_BINARY, &absolute_name);
1641 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1642 if (desc < 0)
1643 {
1644 char *exename = alloca (strlen (name) + 5);
1645
1646 strcat (strcpy (exename, name), ".exe");
1647 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1648 O_RDONLY | O_BINARY, &absolute_name);
1649 }
1650 #endif
1651 if (desc < 0)
1652 {
1653 make_cleanup (xfree, name);
1654 perror_with_name (name);
1655 }
1656
1657 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1658 bfd. It'll be freed in free_objfile(). */
1659 xfree (name);
1660 name = absolute_name;
1661
1662 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1663 if (!sym_bfd)
1664 {
1665 close (desc);
1666 make_cleanup (xfree, name);
1667 error (_("`%s': can't open to read symbols: %s."), name,
1668 bfd_errmsg (bfd_get_error ()));
1669 }
1670 bfd_set_cacheable (sym_bfd, 1);
1671
1672 if (!bfd_check_format (sym_bfd, bfd_object))
1673 {
1674 /* FIXME: should be checking for errors from bfd_close (for one
1675 thing, on error it does not free all the storage associated
1676 with the bfd). */
1677 bfd_close (sym_bfd); /* This also closes desc. */
1678 make_cleanup (xfree, name);
1679 error (_("`%s': can't read symbols: %s."), name,
1680 bfd_errmsg (bfd_get_error ()));
1681 }
1682
1683 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1684 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1685
1686 return sym_bfd;
1687 }
1688
1689 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1690 the section was not found. */
1691
1692 int
1693 get_section_index (struct objfile *objfile, char *section_name)
1694 {
1695 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1696
1697 if (sect)
1698 return sect->index;
1699 else
1700 return -1;
1701 }
1702
1703 /* Link SF into the global symtab_fns list. Called on startup by the
1704 _initialize routine in each object file format reader, to register
1705 information about each format the the reader is prepared to
1706 handle. */
1707
1708 void
1709 add_symtab_fns (const struct sym_fns *sf)
1710 {
1711 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1712 }
1713
1714 /* Initialize OBJFILE to read symbols from its associated BFD. It
1715 either returns or calls error(). The result is an initialized
1716 struct sym_fns in the objfile structure, that contains cached
1717 information about the symbol file. */
1718
1719 static const struct sym_fns *
1720 find_sym_fns (bfd *abfd)
1721 {
1722 const struct sym_fns *sf;
1723 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1724 int i;
1725
1726 if (our_flavour == bfd_target_srec_flavour
1727 || our_flavour == bfd_target_ihex_flavour
1728 || our_flavour == bfd_target_tekhex_flavour)
1729 return NULL; /* No symbols. */
1730
1731 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1732 if (our_flavour == sf->sym_flavour)
1733 return sf;
1734
1735 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1736 bfd_get_target (abfd));
1737 }
1738 \f
1739
1740 /* This function runs the load command of our current target. */
1741
1742 static void
1743 load_command (char *arg, int from_tty)
1744 {
1745 dont_repeat ();
1746
1747 /* The user might be reloading because the binary has changed. Take
1748 this opportunity to check. */
1749 reopen_exec_file ();
1750 reread_symbols ();
1751
1752 if (arg == NULL)
1753 {
1754 char *parg;
1755 int count = 0;
1756
1757 parg = arg = get_exec_file (1);
1758
1759 /* Count how many \ " ' tab space there are in the name. */
1760 while ((parg = strpbrk (parg, "\\\"'\t ")))
1761 {
1762 parg++;
1763 count++;
1764 }
1765
1766 if (count)
1767 {
1768 /* We need to quote this string so buildargv can pull it apart. */
1769 char *temp = xmalloc (strlen (arg) + count + 1 );
1770 char *ptemp = temp;
1771 char *prev;
1772
1773 make_cleanup (xfree, temp);
1774
1775 prev = parg = arg;
1776 while ((parg = strpbrk (parg, "\\\"'\t ")))
1777 {
1778 strncpy (ptemp, prev, parg - prev);
1779 ptemp += parg - prev;
1780 prev = parg++;
1781 *ptemp++ = '\\';
1782 }
1783 strcpy (ptemp, prev);
1784
1785 arg = temp;
1786 }
1787 }
1788
1789 target_load (arg, from_tty);
1790
1791 /* After re-loading the executable, we don't really know which
1792 overlays are mapped any more. */
1793 overlay_cache_invalid = 1;
1794 }
1795
1796 /* This version of "load" should be usable for any target. Currently
1797 it is just used for remote targets, not inftarg.c or core files,
1798 on the theory that only in that case is it useful.
1799
1800 Avoiding xmodem and the like seems like a win (a) because we don't have
1801 to worry about finding it, and (b) On VMS, fork() is very slow and so
1802 we don't want to run a subprocess. On the other hand, I'm not sure how
1803 performance compares. */
1804
1805 static int validate_download = 0;
1806
1807 /* Callback service function for generic_load (bfd_map_over_sections). */
1808
1809 static void
1810 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1811 {
1812 bfd_size_type *sum = data;
1813
1814 *sum += bfd_get_section_size (asec);
1815 }
1816
1817 /* Opaque data for load_section_callback. */
1818 struct load_section_data {
1819 unsigned long load_offset;
1820 struct load_progress_data *progress_data;
1821 VEC(memory_write_request_s) *requests;
1822 };
1823
1824 /* Opaque data for load_progress. */
1825 struct load_progress_data {
1826 /* Cumulative data. */
1827 unsigned long write_count;
1828 unsigned long data_count;
1829 bfd_size_type total_size;
1830 };
1831
1832 /* Opaque data for load_progress for a single section. */
1833 struct load_progress_section_data {
1834 struct load_progress_data *cumulative;
1835
1836 /* Per-section data. */
1837 const char *section_name;
1838 ULONGEST section_sent;
1839 ULONGEST section_size;
1840 CORE_ADDR lma;
1841 gdb_byte *buffer;
1842 };
1843
1844 /* Target write callback routine for progress reporting. */
1845
1846 static void
1847 load_progress (ULONGEST bytes, void *untyped_arg)
1848 {
1849 struct load_progress_section_data *args = untyped_arg;
1850 struct load_progress_data *totals;
1851
1852 if (args == NULL)
1853 /* Writing padding data. No easy way to get at the cumulative
1854 stats, so just ignore this. */
1855 return;
1856
1857 totals = args->cumulative;
1858
1859 if (bytes == 0 && args->section_sent == 0)
1860 {
1861 /* The write is just starting. Let the user know we've started
1862 this section. */
1863 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1864 args->section_name, hex_string (args->section_size),
1865 paddress (target_gdbarch, args->lma));
1866 return;
1867 }
1868
1869 if (validate_download)
1870 {
1871 /* Broken memories and broken monitors manifest themselves here
1872 when bring new computers to life. This doubles already slow
1873 downloads. */
1874 /* NOTE: cagney/1999-10-18: A more efficient implementation
1875 might add a verify_memory() method to the target vector and
1876 then use that. remote.c could implement that method using
1877 the ``qCRC'' packet. */
1878 gdb_byte *check = xmalloc (bytes);
1879 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1880
1881 if (target_read_memory (args->lma, check, bytes) != 0)
1882 error (_("Download verify read failed at %s"),
1883 paddress (target_gdbarch, args->lma));
1884 if (memcmp (args->buffer, check, bytes) != 0)
1885 error (_("Download verify compare failed at %s"),
1886 paddress (target_gdbarch, args->lma));
1887 do_cleanups (verify_cleanups);
1888 }
1889 totals->data_count += bytes;
1890 args->lma += bytes;
1891 args->buffer += bytes;
1892 totals->write_count += 1;
1893 args->section_sent += bytes;
1894 if (quit_flag
1895 || (deprecated_ui_load_progress_hook != NULL
1896 && deprecated_ui_load_progress_hook (args->section_name,
1897 args->section_sent)))
1898 error (_("Canceled the download"));
1899
1900 if (deprecated_show_load_progress != NULL)
1901 deprecated_show_load_progress (args->section_name,
1902 args->section_sent,
1903 args->section_size,
1904 totals->data_count,
1905 totals->total_size);
1906 }
1907
1908 /* Callback service function for generic_load (bfd_map_over_sections). */
1909
1910 static void
1911 load_section_callback (bfd *abfd, asection *asec, void *data)
1912 {
1913 struct memory_write_request *new_request;
1914 struct load_section_data *args = data;
1915 struct load_progress_section_data *section_data;
1916 bfd_size_type size = bfd_get_section_size (asec);
1917 gdb_byte *buffer;
1918 const char *sect_name = bfd_get_section_name (abfd, asec);
1919
1920 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1921 return;
1922
1923 if (size == 0)
1924 return;
1925
1926 new_request = VEC_safe_push (memory_write_request_s,
1927 args->requests, NULL);
1928 memset (new_request, 0, sizeof (struct memory_write_request));
1929 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1930 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1931 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1932 new_request->data = xmalloc (size);
1933 new_request->baton = section_data;
1934
1935 buffer = new_request->data;
1936
1937 section_data->cumulative = args->progress_data;
1938 section_data->section_name = sect_name;
1939 section_data->section_size = size;
1940 section_data->lma = new_request->begin;
1941 section_data->buffer = buffer;
1942
1943 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1944 }
1945
1946 /* Clean up an entire memory request vector, including load
1947 data and progress records. */
1948
1949 static void
1950 clear_memory_write_data (void *arg)
1951 {
1952 VEC(memory_write_request_s) **vec_p = arg;
1953 VEC(memory_write_request_s) *vec = *vec_p;
1954 int i;
1955 struct memory_write_request *mr;
1956
1957 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1958 {
1959 xfree (mr->data);
1960 xfree (mr->baton);
1961 }
1962 VEC_free (memory_write_request_s, vec);
1963 }
1964
1965 void
1966 generic_load (char *args, int from_tty)
1967 {
1968 bfd *loadfile_bfd;
1969 struct timeval start_time, end_time;
1970 char *filename;
1971 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1972 struct load_section_data cbdata;
1973 struct load_progress_data total_progress;
1974
1975 CORE_ADDR entry;
1976 char **argv;
1977
1978 memset (&cbdata, 0, sizeof (cbdata));
1979 memset (&total_progress, 0, sizeof (total_progress));
1980 cbdata.progress_data = &total_progress;
1981
1982 make_cleanup (clear_memory_write_data, &cbdata.requests);
1983
1984 if (args == NULL)
1985 error_no_arg (_("file to load"));
1986
1987 argv = gdb_buildargv (args);
1988 make_cleanup_freeargv (argv);
1989
1990 filename = tilde_expand (argv[0]);
1991 make_cleanup (xfree, filename);
1992
1993 if (argv[1] != NULL)
1994 {
1995 char *endptr;
1996
1997 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1998
1999 /* If the last word was not a valid number then
2000 treat it as a file name with spaces in. */
2001 if (argv[1] == endptr)
2002 error (_("Invalid download offset:%s."), argv[1]);
2003
2004 if (argv[2] != NULL)
2005 error (_("Too many parameters."));
2006 }
2007
2008 /* Open the file for loading. */
2009 loadfile_bfd = bfd_openr (filename, gnutarget);
2010 if (loadfile_bfd == NULL)
2011 {
2012 perror_with_name (filename);
2013 return;
2014 }
2015
2016 /* FIXME: should be checking for errors from bfd_close (for one thing,
2017 on error it does not free all the storage associated with the
2018 bfd). */
2019 make_cleanup_bfd_close (loadfile_bfd);
2020
2021 if (!bfd_check_format (loadfile_bfd, bfd_object))
2022 {
2023 error (_("\"%s\" is not an object file: %s"), filename,
2024 bfd_errmsg (bfd_get_error ()));
2025 }
2026
2027 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2028 (void *) &total_progress.total_size);
2029
2030 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2031
2032 gettimeofday (&start_time, NULL);
2033
2034 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2035 load_progress) != 0)
2036 error (_("Load failed"));
2037
2038 gettimeofday (&end_time, NULL);
2039
2040 entry = bfd_get_start_address (loadfile_bfd);
2041 ui_out_text (uiout, "Start address ");
2042 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2043 ui_out_text (uiout, ", load size ");
2044 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2045 ui_out_text (uiout, "\n");
2046 /* We were doing this in remote-mips.c, I suspect it is right
2047 for other targets too. */
2048 regcache_write_pc (get_current_regcache (), entry);
2049
2050 /* Reset breakpoints, now that we have changed the load image. For
2051 instance, breakpoints may have been set (or reset, by
2052 post_create_inferior) while connected to the target but before we
2053 loaded the program. In that case, the prologue analyzer could
2054 have read instructions from the target to find the right
2055 breakpoint locations. Loading has changed the contents of that
2056 memory. */
2057
2058 breakpoint_re_set ();
2059
2060 /* FIXME: are we supposed to call symbol_file_add or not? According
2061 to a comment from remote-mips.c (where a call to symbol_file_add
2062 was commented out), making the call confuses GDB if more than one
2063 file is loaded in. Some targets do (e.g., remote-vx.c) but
2064 others don't (or didn't - perhaps they have all been deleted). */
2065
2066 print_transfer_performance (gdb_stdout, total_progress.data_count,
2067 total_progress.write_count,
2068 &start_time, &end_time);
2069
2070 do_cleanups (old_cleanups);
2071 }
2072
2073 /* Report how fast the transfer went. */
2074
2075 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2076 replaced by print_transfer_performance (with a very different
2077 function signature). */
2078
2079 void
2080 report_transfer_performance (unsigned long data_count, time_t start_time,
2081 time_t end_time)
2082 {
2083 struct timeval start, end;
2084
2085 start.tv_sec = start_time;
2086 start.tv_usec = 0;
2087 end.tv_sec = end_time;
2088 end.tv_usec = 0;
2089
2090 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2091 }
2092
2093 void
2094 print_transfer_performance (struct ui_file *stream,
2095 unsigned long data_count,
2096 unsigned long write_count,
2097 const struct timeval *start_time,
2098 const struct timeval *end_time)
2099 {
2100 ULONGEST time_count;
2101
2102 /* Compute the elapsed time in milliseconds, as a tradeoff between
2103 accuracy and overflow. */
2104 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2105 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2106
2107 ui_out_text (uiout, "Transfer rate: ");
2108 if (time_count > 0)
2109 {
2110 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2111
2112 if (ui_out_is_mi_like_p (uiout))
2113 {
2114 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2115 ui_out_text (uiout, " bits/sec");
2116 }
2117 else if (rate < 1024)
2118 {
2119 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2120 ui_out_text (uiout, " bytes/sec");
2121 }
2122 else
2123 {
2124 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2125 ui_out_text (uiout, " KB/sec");
2126 }
2127 }
2128 else
2129 {
2130 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2131 ui_out_text (uiout, " bits in <1 sec");
2132 }
2133 if (write_count > 0)
2134 {
2135 ui_out_text (uiout, ", ");
2136 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2137 ui_out_text (uiout, " bytes/write");
2138 }
2139 ui_out_text (uiout, ".\n");
2140 }
2141
2142 /* This function allows the addition of incrementally linked object files.
2143 It does not modify any state in the target, only in the debugger. */
2144 /* Note: ezannoni 2000-04-13 This function/command used to have a
2145 special case syntax for the rombug target (Rombug is the boot
2146 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2147 rombug case, the user doesn't need to supply a text address,
2148 instead a call to target_link() (in target.c) would supply the
2149 value to use. We are now discontinuing this type of ad hoc syntax. */
2150
2151 static void
2152 add_symbol_file_command (char *args, int from_tty)
2153 {
2154 struct gdbarch *gdbarch = get_current_arch ();
2155 char *filename = NULL;
2156 int flags = OBJF_USERLOADED;
2157 char *arg;
2158 int section_index = 0;
2159 int argcnt = 0;
2160 int sec_num = 0;
2161 int i;
2162 int expecting_sec_name = 0;
2163 int expecting_sec_addr = 0;
2164 char **argv;
2165
2166 struct sect_opt
2167 {
2168 char *name;
2169 char *value;
2170 };
2171
2172 struct section_addr_info *section_addrs;
2173 struct sect_opt *sect_opts = NULL;
2174 size_t num_sect_opts = 0;
2175 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2176
2177 num_sect_opts = 16;
2178 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2179 * sizeof (struct sect_opt));
2180
2181 dont_repeat ();
2182
2183 if (args == NULL)
2184 error (_("add-symbol-file takes a file name and an address"));
2185
2186 argv = gdb_buildargv (args);
2187 make_cleanup_freeargv (argv);
2188
2189 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2190 {
2191 /* Process the argument. */
2192 if (argcnt == 0)
2193 {
2194 /* The first argument is the file name. */
2195 filename = tilde_expand (arg);
2196 make_cleanup (xfree, filename);
2197 }
2198 else
2199 if (argcnt == 1)
2200 {
2201 /* The second argument is always the text address at which
2202 to load the program. */
2203 sect_opts[section_index].name = ".text";
2204 sect_opts[section_index].value = arg;
2205 if (++section_index >= num_sect_opts)
2206 {
2207 num_sect_opts *= 2;
2208 sect_opts = ((struct sect_opt *)
2209 xrealloc (sect_opts,
2210 num_sect_opts
2211 * sizeof (struct sect_opt)));
2212 }
2213 }
2214 else
2215 {
2216 /* It's an option (starting with '-') or it's an argument
2217 to an option */
2218
2219 if (*arg == '-')
2220 {
2221 if (strcmp (arg, "-readnow") == 0)
2222 flags |= OBJF_READNOW;
2223 else if (strcmp (arg, "-s") == 0)
2224 {
2225 expecting_sec_name = 1;
2226 expecting_sec_addr = 1;
2227 }
2228 }
2229 else
2230 {
2231 if (expecting_sec_name)
2232 {
2233 sect_opts[section_index].name = arg;
2234 expecting_sec_name = 0;
2235 }
2236 else
2237 if (expecting_sec_addr)
2238 {
2239 sect_opts[section_index].value = arg;
2240 expecting_sec_addr = 0;
2241 if (++section_index >= num_sect_opts)
2242 {
2243 num_sect_opts *= 2;
2244 sect_opts = ((struct sect_opt *)
2245 xrealloc (sect_opts,
2246 num_sect_opts
2247 * sizeof (struct sect_opt)));
2248 }
2249 }
2250 else
2251 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2252 }
2253 }
2254 }
2255
2256 /* This command takes at least two arguments. The first one is a
2257 filename, and the second is the address where this file has been
2258 loaded. Abort now if this address hasn't been provided by the
2259 user. */
2260 if (section_index < 1)
2261 error (_("The address where %s has been loaded is missing"), filename);
2262
2263 /* Print the prompt for the query below. And save the arguments into
2264 a sect_addr_info structure to be passed around to other
2265 functions. We have to split this up into separate print
2266 statements because hex_string returns a local static
2267 string. */
2268
2269 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2270 section_addrs = alloc_section_addr_info (section_index);
2271 make_cleanup (xfree, section_addrs);
2272 for (i = 0; i < section_index; i++)
2273 {
2274 CORE_ADDR addr;
2275 char *val = sect_opts[i].value;
2276 char *sec = sect_opts[i].name;
2277
2278 addr = parse_and_eval_address (val);
2279
2280 /* Here we store the section offsets in the order they were
2281 entered on the command line. */
2282 section_addrs->other[sec_num].name = sec;
2283 section_addrs->other[sec_num].addr = addr;
2284 printf_unfiltered ("\t%s_addr = %s\n", sec,
2285 paddress (gdbarch, addr));
2286 sec_num++;
2287
2288 /* The object's sections are initialized when a
2289 call is made to build_objfile_section_table (objfile).
2290 This happens in reread_symbols.
2291 At this point, we don't know what file type this is,
2292 so we can't determine what section names are valid. */
2293 }
2294
2295 if (from_tty && (!query ("%s", "")))
2296 error (_("Not confirmed."));
2297
2298 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2299 section_addrs, flags);
2300
2301 /* Getting new symbols may change our opinion about what is
2302 frameless. */
2303 reinit_frame_cache ();
2304 do_cleanups (my_cleanups);
2305 }
2306 \f
2307
2308 /* Re-read symbols if a symbol-file has changed. */
2309 void
2310 reread_symbols (void)
2311 {
2312 struct objfile *objfile;
2313 long new_modtime;
2314 int reread_one = 0;
2315 struct stat new_statbuf;
2316 int res;
2317
2318 /* With the addition of shared libraries, this should be modified,
2319 the load time should be saved in the partial symbol tables, since
2320 different tables may come from different source files. FIXME.
2321 This routine should then walk down each partial symbol table
2322 and see if the symbol table that it originates from has been changed */
2323
2324 for (objfile = object_files; objfile; objfile = objfile->next)
2325 {
2326 /* solib-sunos.c creates one objfile with obfd. */
2327 if (objfile->obfd == NULL)
2328 continue;
2329
2330 /* Separate debug objfiles are handled in the main objfile. */
2331 if (objfile->separate_debug_objfile_backlink)
2332 continue;
2333
2334 /* If this object is from an archive (what you usually create with
2335 `ar', often called a `static library' on most systems, though
2336 a `shared library' on AIX is also an archive), then you should
2337 stat on the archive name, not member name. */
2338 if (objfile->obfd->my_archive)
2339 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2340 else
2341 res = stat (objfile->name, &new_statbuf);
2342 if (res != 0)
2343 {
2344 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2345 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2346 objfile->name);
2347 continue;
2348 }
2349 new_modtime = new_statbuf.st_mtime;
2350 if (new_modtime != objfile->mtime)
2351 {
2352 struct cleanup *old_cleanups;
2353 struct section_offsets *offsets;
2354 int num_offsets;
2355 char *obfd_filename;
2356
2357 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2358 objfile->name);
2359
2360 /* There are various functions like symbol_file_add,
2361 symfile_bfd_open, syms_from_objfile, etc., which might
2362 appear to do what we want. But they have various other
2363 effects which we *don't* want. So we just do stuff
2364 ourselves. We don't worry about mapped files (for one thing,
2365 any mapped file will be out of date). */
2366
2367 /* If we get an error, blow away this objfile (not sure if
2368 that is the correct response for things like shared
2369 libraries). */
2370 old_cleanups = make_cleanup_free_objfile (objfile);
2371 /* We need to do this whenever any symbols go away. */
2372 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2373
2374 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2375 bfd_get_filename (exec_bfd)) == 0)
2376 {
2377 /* Reload EXEC_BFD without asking anything. */
2378
2379 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2380 }
2381
2382 /* Clean up any state BFD has sitting around. We don't need
2383 to close the descriptor but BFD lacks a way of closing the
2384 BFD without closing the descriptor. */
2385 obfd_filename = bfd_get_filename (objfile->obfd);
2386 if (!bfd_close (objfile->obfd))
2387 error (_("Can't close BFD for %s: %s"), objfile->name,
2388 bfd_errmsg (bfd_get_error ()));
2389 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2390 if (objfile->obfd == NULL)
2391 error (_("Can't open %s to read symbols."), objfile->name);
2392 else
2393 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2394 /* bfd_openr sets cacheable to true, which is what we want. */
2395 if (!bfd_check_format (objfile->obfd, bfd_object))
2396 error (_("Can't read symbols from %s: %s."), objfile->name,
2397 bfd_errmsg (bfd_get_error ()));
2398
2399 /* Save the offsets, we will nuke them with the rest of the
2400 objfile_obstack. */
2401 num_offsets = objfile->num_sections;
2402 offsets = ((struct section_offsets *)
2403 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2404 memcpy (offsets, objfile->section_offsets,
2405 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2406
2407 /* Remove any references to this objfile in the global
2408 value lists. */
2409 preserve_values (objfile);
2410
2411 /* Nuke all the state that we will re-read. Much of the following
2412 code which sets things to NULL really is necessary to tell
2413 other parts of GDB that there is nothing currently there.
2414
2415 Try to keep the freeing order compatible with free_objfile. */
2416
2417 if (objfile->sf != NULL)
2418 {
2419 (*objfile->sf->sym_finish) (objfile);
2420 }
2421
2422 clear_objfile_data (objfile);
2423
2424 /* Free the separate debug objfiles. It will be
2425 automatically recreated by sym_read. */
2426 free_objfile_separate_debug (objfile);
2427
2428 /* FIXME: Do we have to free a whole linked list, or is this
2429 enough? */
2430 if (objfile->global_psymbols.list)
2431 xfree (objfile->global_psymbols.list);
2432 memset (&objfile->global_psymbols, 0,
2433 sizeof (objfile->global_psymbols));
2434 if (objfile->static_psymbols.list)
2435 xfree (objfile->static_psymbols.list);
2436 memset (&objfile->static_psymbols, 0,
2437 sizeof (objfile->static_psymbols));
2438
2439 /* Free the obstacks for non-reusable objfiles */
2440 psymbol_bcache_free (objfile->psymbol_cache);
2441 objfile->psymbol_cache = psymbol_bcache_init ();
2442 bcache_xfree (objfile->macro_cache);
2443 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2444 bcache_xfree (objfile->filename_cache);
2445 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2446 if (objfile->demangled_names_hash != NULL)
2447 {
2448 htab_delete (objfile->demangled_names_hash);
2449 objfile->demangled_names_hash = NULL;
2450 }
2451 obstack_free (&objfile->objfile_obstack, 0);
2452 objfile->sections = NULL;
2453 objfile->symtabs = NULL;
2454 objfile->psymtabs = NULL;
2455 objfile->psymtabs_addrmap = NULL;
2456 objfile->free_psymtabs = NULL;
2457 objfile->cp_namespace_symtab = NULL;
2458 objfile->template_symbols = NULL;
2459 objfile->msymbols = NULL;
2460 objfile->deprecated_sym_private = NULL;
2461 objfile->minimal_symbol_count = 0;
2462 memset (&objfile->msymbol_hash, 0,
2463 sizeof (objfile->msymbol_hash));
2464 memset (&objfile->msymbol_demangled_hash, 0,
2465 sizeof (objfile->msymbol_demangled_hash));
2466
2467 objfile->psymbol_cache = psymbol_bcache_init ();
2468 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2469 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2470 /* obstack_init also initializes the obstack so it is
2471 empty. We could use obstack_specify_allocation but
2472 gdb_obstack.h specifies the alloc/dealloc
2473 functions. */
2474 obstack_init (&objfile->objfile_obstack);
2475 if (build_objfile_section_table (objfile))
2476 {
2477 error (_("Can't find the file sections in `%s': %s"),
2478 objfile->name, bfd_errmsg (bfd_get_error ()));
2479 }
2480 terminate_minimal_symbol_table (objfile);
2481
2482 /* We use the same section offsets as from last time. I'm not
2483 sure whether that is always correct for shared libraries. */
2484 objfile->section_offsets = (struct section_offsets *)
2485 obstack_alloc (&objfile->objfile_obstack,
2486 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2487 memcpy (objfile->section_offsets, offsets,
2488 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2489 objfile->num_sections = num_offsets;
2490
2491 /* What the hell is sym_new_init for, anyway? The concept of
2492 distinguishing between the main file and additional files
2493 in this way seems rather dubious. */
2494 if (objfile == symfile_objfile)
2495 {
2496 (*objfile->sf->sym_new_init) (objfile);
2497 }
2498
2499 (*objfile->sf->sym_init) (objfile);
2500 clear_complaints (&symfile_complaints, 1, 1);
2501 /* Do not set flags as this is safe and we don't want to be
2502 verbose. */
2503 (*objfile->sf->sym_read) (objfile, 0);
2504 if (!objfile_has_symbols (objfile))
2505 {
2506 wrap_here ("");
2507 printf_unfiltered (_("(no debugging symbols found)\n"));
2508 wrap_here ("");
2509 }
2510
2511 /* We're done reading the symbol file; finish off complaints. */
2512 clear_complaints (&symfile_complaints, 0, 1);
2513
2514 /* Getting new symbols may change our opinion about what is
2515 frameless. */
2516
2517 reinit_frame_cache ();
2518
2519 /* Discard cleanups as symbol reading was successful. */
2520 discard_cleanups (old_cleanups);
2521
2522 /* If the mtime has changed between the time we set new_modtime
2523 and now, we *want* this to be out of date, so don't call stat
2524 again now. */
2525 objfile->mtime = new_modtime;
2526 reread_one = 1;
2527 init_entry_point_info (objfile);
2528 }
2529 }
2530
2531 if (reread_one)
2532 {
2533 /* Notify objfiles that we've modified objfile sections. */
2534 objfiles_changed ();
2535
2536 clear_symtab_users (0);
2537 /* At least one objfile has changed, so we can consider that
2538 the executable we're debugging has changed too. */
2539 observer_notify_executable_changed ();
2540 }
2541 }
2542 \f
2543
2544
2545 typedef struct
2546 {
2547 char *ext;
2548 enum language lang;
2549 }
2550 filename_language;
2551
2552 static filename_language *filename_language_table;
2553 static int fl_table_size, fl_table_next;
2554
2555 static void
2556 add_filename_language (char *ext, enum language lang)
2557 {
2558 if (fl_table_next >= fl_table_size)
2559 {
2560 fl_table_size += 10;
2561 filename_language_table =
2562 xrealloc (filename_language_table,
2563 fl_table_size * sizeof (*filename_language_table));
2564 }
2565
2566 filename_language_table[fl_table_next].ext = xstrdup (ext);
2567 filename_language_table[fl_table_next].lang = lang;
2568 fl_table_next++;
2569 }
2570
2571 static char *ext_args;
2572 static void
2573 show_ext_args (struct ui_file *file, int from_tty,
2574 struct cmd_list_element *c, const char *value)
2575 {
2576 fprintf_filtered (file, _("\
2577 Mapping between filename extension and source language is \"%s\".\n"),
2578 value);
2579 }
2580
2581 static void
2582 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2583 {
2584 int i;
2585 char *cp = ext_args;
2586 enum language lang;
2587
2588 /* First arg is filename extension, starting with '.' */
2589 if (*cp != '.')
2590 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2591
2592 /* Find end of first arg. */
2593 while (*cp && !isspace (*cp))
2594 cp++;
2595
2596 if (*cp == '\0')
2597 error (_("'%s': two arguments required -- filename extension and language"),
2598 ext_args);
2599
2600 /* Null-terminate first arg */
2601 *cp++ = '\0';
2602
2603 /* Find beginning of second arg, which should be a source language. */
2604 while (*cp && isspace (*cp))
2605 cp++;
2606
2607 if (*cp == '\0')
2608 error (_("'%s': two arguments required -- filename extension and language"),
2609 ext_args);
2610
2611 /* Lookup the language from among those we know. */
2612 lang = language_enum (cp);
2613
2614 /* Now lookup the filename extension: do we already know it? */
2615 for (i = 0; i < fl_table_next; i++)
2616 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2617 break;
2618
2619 if (i >= fl_table_next)
2620 {
2621 /* new file extension */
2622 add_filename_language (ext_args, lang);
2623 }
2624 else
2625 {
2626 /* redefining a previously known filename extension */
2627
2628 /* if (from_tty) */
2629 /* query ("Really make files of type %s '%s'?", */
2630 /* ext_args, language_str (lang)); */
2631
2632 xfree (filename_language_table[i].ext);
2633 filename_language_table[i].ext = xstrdup (ext_args);
2634 filename_language_table[i].lang = lang;
2635 }
2636 }
2637
2638 static void
2639 info_ext_lang_command (char *args, int from_tty)
2640 {
2641 int i;
2642
2643 printf_filtered (_("Filename extensions and the languages they represent:"));
2644 printf_filtered ("\n\n");
2645 for (i = 0; i < fl_table_next; i++)
2646 printf_filtered ("\t%s\t- %s\n",
2647 filename_language_table[i].ext,
2648 language_str (filename_language_table[i].lang));
2649 }
2650
2651 static void
2652 init_filename_language_table (void)
2653 {
2654 if (fl_table_size == 0) /* protect against repetition */
2655 {
2656 fl_table_size = 20;
2657 fl_table_next = 0;
2658 filename_language_table =
2659 xmalloc (fl_table_size * sizeof (*filename_language_table));
2660 add_filename_language (".c", language_c);
2661 add_filename_language (".d", language_d);
2662 add_filename_language (".C", language_cplus);
2663 add_filename_language (".cc", language_cplus);
2664 add_filename_language (".cp", language_cplus);
2665 add_filename_language (".cpp", language_cplus);
2666 add_filename_language (".cxx", language_cplus);
2667 add_filename_language (".c++", language_cplus);
2668 add_filename_language (".java", language_java);
2669 add_filename_language (".class", language_java);
2670 add_filename_language (".m", language_objc);
2671 add_filename_language (".f", language_fortran);
2672 add_filename_language (".F", language_fortran);
2673 add_filename_language (".for", language_fortran);
2674 add_filename_language (".FOR", language_fortran);
2675 add_filename_language (".ftn", language_fortran);
2676 add_filename_language (".FTN", language_fortran);
2677 add_filename_language (".fpp", language_fortran);
2678 add_filename_language (".FPP", language_fortran);
2679 add_filename_language (".f90", language_fortran);
2680 add_filename_language (".F90", language_fortran);
2681 add_filename_language (".f95", language_fortran);
2682 add_filename_language (".F95", language_fortran);
2683 add_filename_language (".f03", language_fortran);
2684 add_filename_language (".F03", language_fortran);
2685 add_filename_language (".f08", language_fortran);
2686 add_filename_language (".F08", language_fortran);
2687 add_filename_language (".s", language_asm);
2688 add_filename_language (".sx", language_asm);
2689 add_filename_language (".S", language_asm);
2690 add_filename_language (".pas", language_pascal);
2691 add_filename_language (".p", language_pascal);
2692 add_filename_language (".pp", language_pascal);
2693 add_filename_language (".adb", language_ada);
2694 add_filename_language (".ads", language_ada);
2695 add_filename_language (".a", language_ada);
2696 add_filename_language (".ada", language_ada);
2697 add_filename_language (".dg", language_ada);
2698 }
2699 }
2700
2701 enum language
2702 deduce_language_from_filename (const char *filename)
2703 {
2704 int i;
2705 char *cp;
2706
2707 if (filename != NULL)
2708 if ((cp = strrchr (filename, '.')) != NULL)
2709 for (i = 0; i < fl_table_next; i++)
2710 if (strcmp (cp, filename_language_table[i].ext) == 0)
2711 return filename_language_table[i].lang;
2712
2713 return language_unknown;
2714 }
2715 \f
2716 /* allocate_symtab:
2717
2718 Allocate and partly initialize a new symbol table. Return a pointer
2719 to it. error() if no space.
2720
2721 Caller must set these fields:
2722 LINETABLE(symtab)
2723 symtab->blockvector
2724 symtab->dirname
2725 symtab->free_code
2726 symtab->free_ptr
2727 */
2728
2729 struct symtab *
2730 allocate_symtab (const char *filename, struct objfile *objfile)
2731 {
2732 struct symtab *symtab;
2733
2734 symtab = (struct symtab *)
2735 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2736 memset (symtab, 0, sizeof (*symtab));
2737 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2738 objfile->filename_cache);
2739 symtab->fullname = NULL;
2740 symtab->language = deduce_language_from_filename (filename);
2741 symtab->debugformat = "unknown";
2742
2743 /* Hook it to the objfile it comes from */
2744
2745 symtab->objfile = objfile;
2746 symtab->next = objfile->symtabs;
2747 objfile->symtabs = symtab;
2748
2749 return (symtab);
2750 }
2751 \f
2752
2753 /* Reset all data structures in gdb which may contain references to symbol
2754 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2755
2756 void
2757 clear_symtab_users (int add_flags)
2758 {
2759 /* Someday, we should do better than this, by only blowing away
2760 the things that really need to be blown. */
2761
2762 /* Clear the "current" symtab first, because it is no longer valid.
2763 breakpoint_re_set may try to access the current symtab. */
2764 clear_current_source_symtab_and_line ();
2765
2766 clear_displays ();
2767 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2768 breakpoint_re_set ();
2769 set_default_breakpoint (0, NULL, 0, 0, 0);
2770 clear_pc_function_cache ();
2771 observer_notify_new_objfile (NULL);
2772
2773 /* Clear globals which might have pointed into a removed objfile.
2774 FIXME: It's not clear which of these are supposed to persist
2775 between expressions and which ought to be reset each time. */
2776 expression_context_block = NULL;
2777 innermost_block = NULL;
2778
2779 /* Varobj may refer to old symbols, perform a cleanup. */
2780 varobj_invalidate ();
2781
2782 }
2783
2784 static void
2785 clear_symtab_users_cleanup (void *ignore)
2786 {
2787 clear_symtab_users (0);
2788 }
2789 \f
2790 /* OVERLAYS:
2791 The following code implements an abstraction for debugging overlay sections.
2792
2793 The target model is as follows:
2794 1) The gnu linker will permit multiple sections to be mapped into the
2795 same VMA, each with its own unique LMA (or load address).
2796 2) It is assumed that some runtime mechanism exists for mapping the
2797 sections, one by one, from the load address into the VMA address.
2798 3) This code provides a mechanism for gdb to keep track of which
2799 sections should be considered to be mapped from the VMA to the LMA.
2800 This information is used for symbol lookup, and memory read/write.
2801 For instance, if a section has been mapped then its contents
2802 should be read from the VMA, otherwise from the LMA.
2803
2804 Two levels of debugger support for overlays are available. One is
2805 "manual", in which the debugger relies on the user to tell it which
2806 overlays are currently mapped. This level of support is
2807 implemented entirely in the core debugger, and the information about
2808 whether a section is mapped is kept in the objfile->obj_section table.
2809
2810 The second level of support is "automatic", and is only available if
2811 the target-specific code provides functionality to read the target's
2812 overlay mapping table, and translate its contents for the debugger
2813 (by updating the mapped state information in the obj_section tables).
2814
2815 The interface is as follows:
2816 User commands:
2817 overlay map <name> -- tell gdb to consider this section mapped
2818 overlay unmap <name> -- tell gdb to consider this section unmapped
2819 overlay list -- list the sections that GDB thinks are mapped
2820 overlay read-target -- get the target's state of what's mapped
2821 overlay off/manual/auto -- set overlay debugging state
2822 Functional interface:
2823 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2824 section, return that section.
2825 find_pc_overlay(pc): find any overlay section that contains
2826 the pc, either in its VMA or its LMA
2827 section_is_mapped(sect): true if overlay is marked as mapped
2828 section_is_overlay(sect): true if section's VMA != LMA
2829 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2830 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2831 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2832 overlay_mapped_address(...): map an address from section's LMA to VMA
2833 overlay_unmapped_address(...): map an address from section's VMA to LMA
2834 symbol_overlayed_address(...): Return a "current" address for symbol:
2835 either in VMA or LMA depending on whether
2836 the symbol's section is currently mapped
2837 */
2838
2839 /* Overlay debugging state: */
2840
2841 enum overlay_debugging_state overlay_debugging = ovly_off;
2842 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2843
2844 /* Function: section_is_overlay (SECTION)
2845 Returns true if SECTION has VMA not equal to LMA, ie.
2846 SECTION is loaded at an address different from where it will "run". */
2847
2848 int
2849 section_is_overlay (struct obj_section *section)
2850 {
2851 if (overlay_debugging && section)
2852 {
2853 bfd *abfd = section->objfile->obfd;
2854 asection *bfd_section = section->the_bfd_section;
2855
2856 if (bfd_section_lma (abfd, bfd_section) != 0
2857 && bfd_section_lma (abfd, bfd_section)
2858 != bfd_section_vma (abfd, bfd_section))
2859 return 1;
2860 }
2861
2862 return 0;
2863 }
2864
2865 /* Function: overlay_invalidate_all (void)
2866 Invalidate the mapped state of all overlay sections (mark it as stale). */
2867
2868 static void
2869 overlay_invalidate_all (void)
2870 {
2871 struct objfile *objfile;
2872 struct obj_section *sect;
2873
2874 ALL_OBJSECTIONS (objfile, sect)
2875 if (section_is_overlay (sect))
2876 sect->ovly_mapped = -1;
2877 }
2878
2879 /* Function: section_is_mapped (SECTION)
2880 Returns true if section is an overlay, and is currently mapped.
2881
2882 Access to the ovly_mapped flag is restricted to this function, so
2883 that we can do automatic update. If the global flag
2884 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2885 overlay_invalidate_all. If the mapped state of the particular
2886 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2887
2888 int
2889 section_is_mapped (struct obj_section *osect)
2890 {
2891 struct gdbarch *gdbarch;
2892
2893 if (osect == 0 || !section_is_overlay (osect))
2894 return 0;
2895
2896 switch (overlay_debugging)
2897 {
2898 default:
2899 case ovly_off:
2900 return 0; /* overlay debugging off */
2901 case ovly_auto: /* overlay debugging automatic */
2902 /* Unles there is a gdbarch_overlay_update function,
2903 there's really nothing useful to do here (can't really go auto) */
2904 gdbarch = get_objfile_arch (osect->objfile);
2905 if (gdbarch_overlay_update_p (gdbarch))
2906 {
2907 if (overlay_cache_invalid)
2908 {
2909 overlay_invalidate_all ();
2910 overlay_cache_invalid = 0;
2911 }
2912 if (osect->ovly_mapped == -1)
2913 gdbarch_overlay_update (gdbarch, osect);
2914 }
2915 /* fall thru to manual case */
2916 case ovly_on: /* overlay debugging manual */
2917 return osect->ovly_mapped == 1;
2918 }
2919 }
2920
2921 /* Function: pc_in_unmapped_range
2922 If PC falls into the lma range of SECTION, return true, else false. */
2923
2924 CORE_ADDR
2925 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2926 {
2927 if (section_is_overlay (section))
2928 {
2929 bfd *abfd = section->objfile->obfd;
2930 asection *bfd_section = section->the_bfd_section;
2931
2932 /* We assume the LMA is relocated by the same offset as the VMA. */
2933 bfd_vma size = bfd_get_section_size (bfd_section);
2934 CORE_ADDR offset = obj_section_offset (section);
2935
2936 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2937 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2938 return 1;
2939 }
2940
2941 return 0;
2942 }
2943
2944 /* Function: pc_in_mapped_range
2945 If PC falls into the vma range of SECTION, return true, else false. */
2946
2947 CORE_ADDR
2948 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2949 {
2950 if (section_is_overlay (section))
2951 {
2952 if (obj_section_addr (section) <= pc
2953 && pc < obj_section_endaddr (section))
2954 return 1;
2955 }
2956
2957 return 0;
2958 }
2959
2960
2961 /* Return true if the mapped ranges of sections A and B overlap, false
2962 otherwise. */
2963 static int
2964 sections_overlap (struct obj_section *a, struct obj_section *b)
2965 {
2966 CORE_ADDR a_start = obj_section_addr (a);
2967 CORE_ADDR a_end = obj_section_endaddr (a);
2968 CORE_ADDR b_start = obj_section_addr (b);
2969 CORE_ADDR b_end = obj_section_endaddr (b);
2970
2971 return (a_start < b_end && b_start < a_end);
2972 }
2973
2974 /* Function: overlay_unmapped_address (PC, SECTION)
2975 Returns the address corresponding to PC in the unmapped (load) range.
2976 May be the same as PC. */
2977
2978 CORE_ADDR
2979 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2980 {
2981 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2982 {
2983 bfd *abfd = section->objfile->obfd;
2984 asection *bfd_section = section->the_bfd_section;
2985
2986 return pc + bfd_section_lma (abfd, bfd_section)
2987 - bfd_section_vma (abfd, bfd_section);
2988 }
2989
2990 return pc;
2991 }
2992
2993 /* Function: overlay_mapped_address (PC, SECTION)
2994 Returns the address corresponding to PC in the mapped (runtime) range.
2995 May be the same as PC. */
2996
2997 CORE_ADDR
2998 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2999 {
3000 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3001 {
3002 bfd *abfd = section->objfile->obfd;
3003 asection *bfd_section = section->the_bfd_section;
3004
3005 return pc + bfd_section_vma (abfd, bfd_section)
3006 - bfd_section_lma (abfd, bfd_section);
3007 }
3008
3009 return pc;
3010 }
3011
3012
3013 /* Function: symbol_overlayed_address
3014 Return one of two addresses (relative to the VMA or to the LMA),
3015 depending on whether the section is mapped or not. */
3016
3017 CORE_ADDR
3018 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3019 {
3020 if (overlay_debugging)
3021 {
3022 /* If the symbol has no section, just return its regular address. */
3023 if (section == 0)
3024 return address;
3025 /* If the symbol's section is not an overlay, just return its address */
3026 if (!section_is_overlay (section))
3027 return address;
3028 /* If the symbol's section is mapped, just return its address */
3029 if (section_is_mapped (section))
3030 return address;
3031 /*
3032 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3033 * then return its LOADED address rather than its vma address!!
3034 */
3035 return overlay_unmapped_address (address, section);
3036 }
3037 return address;
3038 }
3039
3040 /* Function: find_pc_overlay (PC)
3041 Return the best-match overlay section for PC:
3042 If PC matches a mapped overlay section's VMA, return that section.
3043 Else if PC matches an unmapped section's VMA, return that section.
3044 Else if PC matches an unmapped section's LMA, return that section. */
3045
3046 struct obj_section *
3047 find_pc_overlay (CORE_ADDR pc)
3048 {
3049 struct objfile *objfile;
3050 struct obj_section *osect, *best_match = NULL;
3051
3052 if (overlay_debugging)
3053 ALL_OBJSECTIONS (objfile, osect)
3054 if (section_is_overlay (osect))
3055 {
3056 if (pc_in_mapped_range (pc, osect))
3057 {
3058 if (section_is_mapped (osect))
3059 return osect;
3060 else
3061 best_match = osect;
3062 }
3063 else if (pc_in_unmapped_range (pc, osect))
3064 best_match = osect;
3065 }
3066 return best_match;
3067 }
3068
3069 /* Function: find_pc_mapped_section (PC)
3070 If PC falls into the VMA address range of an overlay section that is
3071 currently marked as MAPPED, return that section. Else return NULL. */
3072
3073 struct obj_section *
3074 find_pc_mapped_section (CORE_ADDR pc)
3075 {
3076 struct objfile *objfile;
3077 struct obj_section *osect;
3078
3079 if (overlay_debugging)
3080 ALL_OBJSECTIONS (objfile, osect)
3081 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3082 return osect;
3083
3084 return NULL;
3085 }
3086
3087 /* Function: list_overlays_command
3088 Print a list of mapped sections and their PC ranges */
3089
3090 void
3091 list_overlays_command (char *args, int from_tty)
3092 {
3093 int nmapped = 0;
3094 struct objfile *objfile;
3095 struct obj_section *osect;
3096
3097 if (overlay_debugging)
3098 ALL_OBJSECTIONS (objfile, osect)
3099 if (section_is_mapped (osect))
3100 {
3101 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3102 const char *name;
3103 bfd_vma lma, vma;
3104 int size;
3105
3106 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3107 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3108 size = bfd_get_section_size (osect->the_bfd_section);
3109 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3110
3111 printf_filtered ("Section %s, loaded at ", name);
3112 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3113 puts_filtered (" - ");
3114 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3115 printf_filtered (", mapped at ");
3116 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3117 puts_filtered (" - ");
3118 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3119 puts_filtered ("\n");
3120
3121 nmapped++;
3122 }
3123 if (nmapped == 0)
3124 printf_filtered (_("No sections are mapped.\n"));
3125 }
3126
3127 /* Function: map_overlay_command
3128 Mark the named section as mapped (ie. residing at its VMA address). */
3129
3130 void
3131 map_overlay_command (char *args, int from_tty)
3132 {
3133 struct objfile *objfile, *objfile2;
3134 struct obj_section *sec, *sec2;
3135
3136 if (!overlay_debugging)
3137 error (_("\
3138 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3139 the 'overlay manual' command."));
3140
3141 if (args == 0 || *args == 0)
3142 error (_("Argument required: name of an overlay section"));
3143
3144 /* First, find a section matching the user supplied argument */
3145 ALL_OBJSECTIONS (objfile, sec)
3146 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3147 {
3148 /* Now, check to see if the section is an overlay. */
3149 if (!section_is_overlay (sec))
3150 continue; /* not an overlay section */
3151
3152 /* Mark the overlay as "mapped" */
3153 sec->ovly_mapped = 1;
3154
3155 /* Next, make a pass and unmap any sections that are
3156 overlapped by this new section: */
3157 ALL_OBJSECTIONS (objfile2, sec2)
3158 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3159 {
3160 if (info_verbose)
3161 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3162 bfd_section_name (objfile->obfd,
3163 sec2->the_bfd_section));
3164 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3165 }
3166 return;
3167 }
3168 error (_("No overlay section called %s"), args);
3169 }
3170
3171 /* Function: unmap_overlay_command
3172 Mark the overlay section as unmapped
3173 (ie. resident in its LMA address range, rather than the VMA range). */
3174
3175 void
3176 unmap_overlay_command (char *args, int from_tty)
3177 {
3178 struct objfile *objfile;
3179 struct obj_section *sec;
3180
3181 if (!overlay_debugging)
3182 error (_("\
3183 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3184 the 'overlay manual' command."));
3185
3186 if (args == 0 || *args == 0)
3187 error (_("Argument required: name of an overlay section"));
3188
3189 /* First, find a section matching the user supplied argument */
3190 ALL_OBJSECTIONS (objfile, sec)
3191 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3192 {
3193 if (!sec->ovly_mapped)
3194 error (_("Section %s is not mapped"), args);
3195 sec->ovly_mapped = 0;
3196 return;
3197 }
3198 error (_("No overlay section called %s"), args);
3199 }
3200
3201 /* Function: overlay_auto_command
3202 A utility command to turn on overlay debugging.
3203 Possibly this should be done via a set/show command. */
3204
3205 static void
3206 overlay_auto_command (char *args, int from_tty)
3207 {
3208 overlay_debugging = ovly_auto;
3209 enable_overlay_breakpoints ();
3210 if (info_verbose)
3211 printf_unfiltered (_("Automatic overlay debugging enabled."));
3212 }
3213
3214 /* Function: overlay_manual_command
3215 A utility command to turn on overlay debugging.
3216 Possibly this should be done via a set/show command. */
3217
3218 static void
3219 overlay_manual_command (char *args, int from_tty)
3220 {
3221 overlay_debugging = ovly_on;
3222 disable_overlay_breakpoints ();
3223 if (info_verbose)
3224 printf_unfiltered (_("Overlay debugging enabled."));
3225 }
3226
3227 /* Function: overlay_off_command
3228 A utility command to turn on overlay debugging.
3229 Possibly this should be done via a set/show command. */
3230
3231 static void
3232 overlay_off_command (char *args, int from_tty)
3233 {
3234 overlay_debugging = ovly_off;
3235 disable_overlay_breakpoints ();
3236 if (info_verbose)
3237 printf_unfiltered (_("Overlay debugging disabled."));
3238 }
3239
3240 static void
3241 overlay_load_command (char *args, int from_tty)
3242 {
3243 struct gdbarch *gdbarch = get_current_arch ();
3244
3245 if (gdbarch_overlay_update_p (gdbarch))
3246 gdbarch_overlay_update (gdbarch, NULL);
3247 else
3248 error (_("This target does not know how to read its overlay state."));
3249 }
3250
3251 /* Function: overlay_command
3252 A place-holder for a mis-typed command */
3253
3254 /* Command list chain containing all defined "overlay" subcommands. */
3255 struct cmd_list_element *overlaylist;
3256
3257 static void
3258 overlay_command (char *args, int from_tty)
3259 {
3260 printf_unfiltered
3261 ("\"overlay\" must be followed by the name of an overlay command.\n");
3262 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3263 }
3264
3265
3266 /* Target Overlays for the "Simplest" overlay manager:
3267
3268 This is GDB's default target overlay layer. It works with the
3269 minimal overlay manager supplied as an example by Cygnus. The
3270 entry point is via a function pointer "gdbarch_overlay_update",
3271 so targets that use a different runtime overlay manager can
3272 substitute their own overlay_update function and take over the
3273 function pointer.
3274
3275 The overlay_update function pokes around in the target's data structures
3276 to see what overlays are mapped, and updates GDB's overlay mapping with
3277 this information.
3278
3279 In this simple implementation, the target data structures are as follows:
3280 unsigned _novlys; /# number of overlay sections #/
3281 unsigned _ovly_table[_novlys][4] = {
3282 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3283 {..., ..., ..., ...},
3284 }
3285 unsigned _novly_regions; /# number of overlay regions #/
3286 unsigned _ovly_region_table[_novly_regions][3] = {
3287 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3288 {..., ..., ...},
3289 }
3290 These functions will attempt to update GDB's mappedness state in the
3291 symbol section table, based on the target's mappedness state.
3292
3293 To do this, we keep a cached copy of the target's _ovly_table, and
3294 attempt to detect when the cached copy is invalidated. The main
3295 entry point is "simple_overlay_update(SECT), which looks up SECT in
3296 the cached table and re-reads only the entry for that section from
3297 the target (whenever possible).
3298 */
3299
3300 /* Cached, dynamically allocated copies of the target data structures: */
3301 static unsigned (*cache_ovly_table)[4] = 0;
3302 static unsigned cache_novlys = 0;
3303 static CORE_ADDR cache_ovly_table_base = 0;
3304 enum ovly_index
3305 {
3306 VMA, SIZE, LMA, MAPPED
3307 };
3308
3309 /* Throw away the cached copy of _ovly_table */
3310 static void
3311 simple_free_overlay_table (void)
3312 {
3313 if (cache_ovly_table)
3314 xfree (cache_ovly_table);
3315 cache_novlys = 0;
3316 cache_ovly_table = NULL;
3317 cache_ovly_table_base = 0;
3318 }
3319
3320 /* Read an array of ints of size SIZE from the target into a local buffer.
3321 Convert to host order. int LEN is number of ints */
3322 static void
3323 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3324 int len, int size, enum bfd_endian byte_order)
3325 {
3326 /* FIXME (alloca): Not safe if array is very large. */
3327 gdb_byte *buf = alloca (len * size);
3328 int i;
3329
3330 read_memory (memaddr, buf, len * size);
3331 for (i = 0; i < len; i++)
3332 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3333 }
3334
3335 /* Find and grab a copy of the target _ovly_table
3336 (and _novlys, which is needed for the table's size) */
3337 static int
3338 simple_read_overlay_table (void)
3339 {
3340 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3341 struct gdbarch *gdbarch;
3342 int word_size;
3343 enum bfd_endian byte_order;
3344
3345 simple_free_overlay_table ();
3346 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3347 if (! novlys_msym)
3348 {
3349 error (_("Error reading inferior's overlay table: "
3350 "couldn't find `_novlys' variable\n"
3351 "in inferior. Use `overlay manual' mode."));
3352 return 0;
3353 }
3354
3355 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3356 if (! ovly_table_msym)
3357 {
3358 error (_("Error reading inferior's overlay table: couldn't find "
3359 "`_ovly_table' array\n"
3360 "in inferior. Use `overlay manual' mode."));
3361 return 0;
3362 }
3363
3364 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3365 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3366 byte_order = gdbarch_byte_order (gdbarch);
3367
3368 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3369 4, byte_order);
3370 cache_ovly_table
3371 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3372 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3373 read_target_long_array (cache_ovly_table_base,
3374 (unsigned int *) cache_ovly_table,
3375 cache_novlys * 4, word_size, byte_order);
3376
3377 return 1; /* SUCCESS */
3378 }
3379
3380 /* Function: simple_overlay_update_1
3381 A helper function for simple_overlay_update. Assuming a cached copy
3382 of _ovly_table exists, look through it to find an entry whose vma,
3383 lma and size match those of OSECT. Re-read the entry and make sure
3384 it still matches OSECT (else the table may no longer be valid).
3385 Set OSECT's mapped state to match the entry. Return: 1 for
3386 success, 0 for failure. */
3387
3388 static int
3389 simple_overlay_update_1 (struct obj_section *osect)
3390 {
3391 int i, size;
3392 bfd *obfd = osect->objfile->obfd;
3393 asection *bsect = osect->the_bfd_section;
3394 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3395 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3396 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3397
3398 size = bfd_get_section_size (osect->the_bfd_section);
3399 for (i = 0; i < cache_novlys; i++)
3400 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3401 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3402 /* && cache_ovly_table[i][SIZE] == size */ )
3403 {
3404 read_target_long_array (cache_ovly_table_base + i * word_size,
3405 (unsigned int *) cache_ovly_table[i],
3406 4, word_size, byte_order);
3407 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3408 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3409 /* && cache_ovly_table[i][SIZE] == size */ )
3410 {
3411 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3412 return 1;
3413 }
3414 else /* Warning! Warning! Target's ovly table has changed! */
3415 return 0;
3416 }
3417 return 0;
3418 }
3419
3420 /* Function: simple_overlay_update
3421 If OSECT is NULL, then update all sections' mapped state
3422 (after re-reading the entire target _ovly_table).
3423 If OSECT is non-NULL, then try to find a matching entry in the
3424 cached ovly_table and update only OSECT's mapped state.
3425 If a cached entry can't be found or the cache isn't valid, then
3426 re-read the entire cache, and go ahead and update all sections. */
3427
3428 void
3429 simple_overlay_update (struct obj_section *osect)
3430 {
3431 struct objfile *objfile;
3432
3433 /* Were we given an osect to look up? NULL means do all of them. */
3434 if (osect)
3435 /* Have we got a cached copy of the target's overlay table? */
3436 if (cache_ovly_table != NULL)
3437 /* Does its cached location match what's currently in the symtab? */
3438 if (cache_ovly_table_base ==
3439 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3440 /* Then go ahead and try to look up this single section in the cache */
3441 if (simple_overlay_update_1 (osect))
3442 /* Found it! We're done. */
3443 return;
3444
3445 /* Cached table no good: need to read the entire table anew.
3446 Or else we want all the sections, in which case it's actually
3447 more efficient to read the whole table in one block anyway. */
3448
3449 if (! simple_read_overlay_table ())
3450 return;
3451
3452 /* Now may as well update all sections, even if only one was requested. */
3453 ALL_OBJSECTIONS (objfile, osect)
3454 if (section_is_overlay (osect))
3455 {
3456 int i, size;
3457 bfd *obfd = osect->objfile->obfd;
3458 asection *bsect = osect->the_bfd_section;
3459
3460 size = bfd_get_section_size (bsect);
3461 for (i = 0; i < cache_novlys; i++)
3462 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3463 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3464 /* && cache_ovly_table[i][SIZE] == size */ )
3465 { /* obj_section matches i'th entry in ovly_table */
3466 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3467 break; /* finished with inner for loop: break out */
3468 }
3469 }
3470 }
3471
3472 /* Set the output sections and output offsets for section SECTP in
3473 ABFD. The relocation code in BFD will read these offsets, so we
3474 need to be sure they're initialized. We map each section to itself,
3475 with no offset; this means that SECTP->vma will be honored. */
3476
3477 static void
3478 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3479 {
3480 sectp->output_section = sectp;
3481 sectp->output_offset = 0;
3482 }
3483
3484 /* Default implementation for sym_relocate. */
3485
3486
3487 bfd_byte *
3488 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3489 bfd_byte *buf)
3490 {
3491 bfd *abfd = objfile->obfd;
3492
3493 /* We're only interested in sections with relocation
3494 information. */
3495 if ((sectp->flags & SEC_RELOC) == 0)
3496 return NULL;
3497
3498 /* We will handle section offsets properly elsewhere, so relocate as if
3499 all sections begin at 0. */
3500 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3501
3502 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3503 }
3504
3505 /* Relocate the contents of a debug section SECTP in ABFD. The
3506 contents are stored in BUF if it is non-NULL, or returned in a
3507 malloc'd buffer otherwise.
3508
3509 For some platforms and debug info formats, shared libraries contain
3510 relocations against the debug sections (particularly for DWARF-2;
3511 one affected platform is PowerPC GNU/Linux, although it depends on
3512 the version of the linker in use). Also, ELF object files naturally
3513 have unresolved relocations for their debug sections. We need to apply
3514 the relocations in order to get the locations of symbols correct.
3515 Another example that may require relocation processing, is the
3516 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3517 debug section. */
3518
3519 bfd_byte *
3520 symfile_relocate_debug_section (struct objfile *objfile,
3521 asection *sectp, bfd_byte *buf)
3522 {
3523 gdb_assert (objfile->sf->sym_relocate);
3524
3525 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3526 }
3527
3528 struct symfile_segment_data *
3529 get_symfile_segment_data (bfd *abfd)
3530 {
3531 const struct sym_fns *sf = find_sym_fns (abfd);
3532
3533 if (sf == NULL)
3534 return NULL;
3535
3536 return sf->sym_segments (abfd);
3537 }
3538
3539 void
3540 free_symfile_segment_data (struct symfile_segment_data *data)
3541 {
3542 xfree (data->segment_bases);
3543 xfree (data->segment_sizes);
3544 xfree (data->segment_info);
3545 xfree (data);
3546 }
3547
3548
3549 /* Given:
3550 - DATA, containing segment addresses from the object file ABFD, and
3551 the mapping from ABFD's sections onto the segments that own them,
3552 and
3553 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3554 segment addresses reported by the target,
3555 store the appropriate offsets for each section in OFFSETS.
3556
3557 If there are fewer entries in SEGMENT_BASES than there are segments
3558 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3559
3560 If there are more entries, then ignore the extra. The target may
3561 not be able to distinguish between an empty data segment and a
3562 missing data segment; a missing text segment is less plausible. */
3563 int
3564 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3565 struct section_offsets *offsets,
3566 int num_segment_bases,
3567 const CORE_ADDR *segment_bases)
3568 {
3569 int i;
3570 asection *sect;
3571
3572 /* It doesn't make sense to call this function unless you have some
3573 segment base addresses. */
3574 gdb_assert (num_segment_bases > 0);
3575
3576 /* If we do not have segment mappings for the object file, we
3577 can not relocate it by segments. */
3578 gdb_assert (data != NULL);
3579 gdb_assert (data->num_segments > 0);
3580
3581 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3582 {
3583 int which = data->segment_info[i];
3584
3585 gdb_assert (0 <= which && which <= data->num_segments);
3586
3587 /* Don't bother computing offsets for sections that aren't
3588 loaded as part of any segment. */
3589 if (! which)
3590 continue;
3591
3592 /* Use the last SEGMENT_BASES entry as the address of any extra
3593 segments mentioned in DATA->segment_info. */
3594 if (which > num_segment_bases)
3595 which = num_segment_bases;
3596
3597 offsets->offsets[i] = (segment_bases[which - 1]
3598 - data->segment_bases[which - 1]);
3599 }
3600
3601 return 1;
3602 }
3603
3604 static void
3605 symfile_find_segment_sections (struct objfile *objfile)
3606 {
3607 bfd *abfd = objfile->obfd;
3608 int i;
3609 asection *sect;
3610 struct symfile_segment_data *data;
3611
3612 data = get_symfile_segment_data (objfile->obfd);
3613 if (data == NULL)
3614 return;
3615
3616 if (data->num_segments != 1 && data->num_segments != 2)
3617 {
3618 free_symfile_segment_data (data);
3619 return;
3620 }
3621
3622 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3623 {
3624 int which = data->segment_info[i];
3625
3626 if (which == 1)
3627 {
3628 if (objfile->sect_index_text == -1)
3629 objfile->sect_index_text = sect->index;
3630
3631 if (objfile->sect_index_rodata == -1)
3632 objfile->sect_index_rodata = sect->index;
3633 }
3634 else if (which == 2)
3635 {
3636 if (objfile->sect_index_data == -1)
3637 objfile->sect_index_data = sect->index;
3638
3639 if (objfile->sect_index_bss == -1)
3640 objfile->sect_index_bss = sect->index;
3641 }
3642 }
3643
3644 free_symfile_segment_data (data);
3645 }
3646
3647 void
3648 _initialize_symfile (void)
3649 {
3650 struct cmd_list_element *c;
3651
3652 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3653 Load symbol table from executable file FILE.\n\
3654 The `file' command can also load symbol tables, as well as setting the file\n\
3655 to execute."), &cmdlist);
3656 set_cmd_completer (c, filename_completer);
3657
3658 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3659 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3660 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3661 ADDR is the starting address of the file's text.\n\
3662 The optional arguments are section-name section-address pairs and\n\
3663 should be specified if the data and bss segments are not contiguous\n\
3664 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3665 &cmdlist);
3666 set_cmd_completer (c, filename_completer);
3667
3668 c = add_cmd ("load", class_files, load_command, _("\
3669 Dynamically load FILE into the running program, and record its symbols\n\
3670 for access from GDB.\n\
3671 A load OFFSET may also be given."), &cmdlist);
3672 set_cmd_completer (c, filename_completer);
3673
3674 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3675 &symbol_reloading, _("\
3676 Set dynamic symbol table reloading multiple times in one run."), _("\
3677 Show dynamic symbol table reloading multiple times in one run."), NULL,
3678 NULL,
3679 show_symbol_reloading,
3680 &setlist, &showlist);
3681
3682 add_prefix_cmd ("overlay", class_support, overlay_command,
3683 _("Commands for debugging overlays."), &overlaylist,
3684 "overlay ", 0, &cmdlist);
3685
3686 add_com_alias ("ovly", "overlay", class_alias, 1);
3687 add_com_alias ("ov", "overlay", class_alias, 1);
3688
3689 add_cmd ("map-overlay", class_support, map_overlay_command,
3690 _("Assert that an overlay section is mapped."), &overlaylist);
3691
3692 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3693 _("Assert that an overlay section is unmapped."), &overlaylist);
3694
3695 add_cmd ("list-overlays", class_support, list_overlays_command,
3696 _("List mappings of overlay sections."), &overlaylist);
3697
3698 add_cmd ("manual", class_support, overlay_manual_command,
3699 _("Enable overlay debugging."), &overlaylist);
3700 add_cmd ("off", class_support, overlay_off_command,
3701 _("Disable overlay debugging."), &overlaylist);
3702 add_cmd ("auto", class_support, overlay_auto_command,
3703 _("Enable automatic overlay debugging."), &overlaylist);
3704 add_cmd ("load-target", class_support, overlay_load_command,
3705 _("Read the overlay mapping state from the target."), &overlaylist);
3706
3707 /* Filename extension to source language lookup table: */
3708 init_filename_language_table ();
3709 add_setshow_string_noescape_cmd ("extension-language", class_files,
3710 &ext_args, _("\
3711 Set mapping between filename extension and source language."), _("\
3712 Show mapping between filename extension and source language."), _("\
3713 Usage: set extension-language .foo bar"),
3714 set_ext_lang_command,
3715 show_ext_args,
3716 &setlist, &showlist);
3717
3718 add_info ("extensions", info_ext_lang_command,
3719 _("All filename extensions associated with a source language."));
3720
3721 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3722 &debug_file_directory, _("\
3723 Set the directories where separate debug symbols are searched for."), _("\
3724 Show the directories where separate debug symbols are searched for."), _("\
3725 Separate debug symbols are first searched for in the same\n\
3726 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3727 and lastly at the path of the directory of the binary with\n\
3728 each global debug-file-directory component prepended."),
3729 NULL,
3730 show_debug_file_directory,
3731 &setlist, &showlist);
3732 }
This page took 0.19768 seconds and 4 git commands to generate.