gdb/ChangeLog:
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
367 {
368 struct section_addr_info *sap;
369 const struct target_section *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
464 }
465
466 /* The arguments to place_section. */
467
468 struct place_section_arg
469 {
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472 };
473
474 /* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
477 static void
478 place_section (bfd *abfd, asection *sect, void *obj)
479 {
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
484
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
494 start_addr = (arg->lowest + align - 1) & -align;
495
496 do {
497 asection *cur_sec;
498
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 break;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537 }
538
539 /* Parse the user's idea of an offset for dynamic linking, into our idea
540 of how to represent it for fast symbol reading. This is the default
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545 void
546 default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548 {
549 int i;
550
551 objfile->num_sections = bfd_count_sections (objfile->obfd);
552 objfile->section_offsets = (struct section_offsets *)
553 obstack_alloc (&objfile->objfile_obstack,
554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
555 memset (objfile->section_offsets, 0,
556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
637 offsets[cur_sec->index] = 0;
638 }
639 }
640 }
641
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645 }
646
647
648 /* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654 struct symfile_segment_data *
655 default_symfile_segments (bfd *abfd)
656 {
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710 }
711
712 /* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
715 OBJFILE is where the symbols are to be read from.
716
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
737
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
741
742 void
743 syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
747 int add_flags)
748 {
749 struct section_addr_info *local_addr = NULL;
750 struct cleanup *old_chain;
751 const int mainline = add_flags & SYMFILE_MAINLINE;
752
753 gdb_assert (! (addrs && offsets));
754
755 init_entry_point_info (objfile);
756 objfile->sf = find_sym_fns (objfile->obfd);
757
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
763 old_chain = make_cleanup_free_objfile (objfile);
764
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
770 local_addr
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
778 if (mainline)
779 {
780 /* We will modify the main symbol table, make sure that all its users
781 will be cleaned up if an error occurs during symbol reading. */
782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
789 gdb_assert (symfile_objfile == NULL);
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
796
797 (*objfile->sf->sym_new_init) (objfile);
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
802 and assume that <addr> is where that got loaded.
803
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
806 if (!mainline && addrs && addrs->other[0].name)
807 {
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
813 /* Find lowest loadable section to be used as starting point for
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
819 &lower_sect);
820 if (lower_sect == NULL)
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
826 else
827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
828
829 /* Calculate offsets for the loadable sections.
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
832
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
855 warning (_("section %s not found in %s"),
856 addrs->other[i].name,
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
870 (*objfile->sf->sym_init) (objfile);
871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
872
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
883 obstack_alloc (&objfile->objfile_obstack, size));
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
888
889 (*objfile->sf->sym_read) (objfile, mainline);
890
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
894 xfree (local_addr);
895 }
896
897 /* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
900
901 void
902 new_symfile_objfile (struct objfile *objfile, int add_flags)
903 {
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
908 if (add_flags & SYMFILE_MAINLINE)
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
916 {
917 breakpoint_re_set ();
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
922 }
923
924 /* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
929
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
936
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
939
940 static struct objfile *
941 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int flags)
947 {
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
950 char *debugfile = NULL;
951 struct section_addr_info *orig_addrs = NULL;
952 struct cleanup *my_cleanups;
953 const char *name = bfd_get_filename (abfd);
954 const int from_tty = add_flags & SYMFILE_VERBOSE;
955
956 my_cleanups = make_cleanup_bfd_close (abfd);
957
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
960
961 if ((have_full_symbols () || have_partial_symbols ())
962 && (add_flags & SYMFILE_MAINLINE)
963 && from_tty
964 && !query (_("Load new symbol table from \"%s\"? "), name))
965 error (_("Not confirmed."));
966
967 objfile = allocate_objfile (abfd, flags);
968 discard_cleanups (my_cleanups);
969
970 if (addrs)
971 {
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
974 }
975
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
980 {
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
983 else
984 {
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
988 }
989 }
990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
991 add_flags);
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
999 {
1000 if (from_tty || info_verbose)
1001 {
1002 printf_unfiltered (_("expanding to full symbols..."));
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
1007 for (psymtab = objfile->psymtabs;
1008 psymtab != NULL;
1009 psymtab = psymtab->next)
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
1020 if (debugfile)
1021 {
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
1034
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
1038
1039 xfree (debugfile);
1040 }
1041
1042 if ((from_tty || info_verbose)
1043 && !objfile_has_symbols (objfile))
1044 {
1045 wrap_here ("");
1046 printf_unfiltered (_("(no debugging symbols found)..."));
1047 wrap_here ("");
1048 }
1049
1050 if (from_tty || info_verbose)
1051 {
1052 if (deprecated_post_add_symbol_hook)
1053 deprecated_post_add_symbol_hook ();
1054 else
1055 printf_unfiltered (_("done.\n"));
1056 }
1057
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1060 time. */
1061 gdb_flush (gdb_stdout);
1062
1063 do_cleanups (my_cleanups);
1064
1065 if (objfile->sf == NULL)
1066 {
1067 observer_notify_new_objfile (objfile);
1068 return objfile; /* No symbols. */
1069 }
1070
1071 new_symfile_objfile (objfile, add_flags);
1072
1073 observer_notify_new_objfile (objfile);
1074
1075 bfd_cache_close_all ();
1076 return (objfile);
1077 }
1078
1079
1080 /* Process the symbol file ABFD, as either the main file or as a
1081 dynamically loaded file.
1082
1083 See symbol_file_add_with_addrs_or_offsets's comments for
1084 details. */
1085 struct objfile *
1086 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1087 struct section_addr_info *addrs,
1088 int flags)
1089 {
1090 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1091 flags);
1092 }
1093
1094
1095 /* Process a symbol file, as either the main file or as a dynamically
1096 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1097 for details. */
1098 struct objfile *
1099 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1100 int flags)
1101 {
1102 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1103 flags);
1104 }
1105
1106
1107 /* Call symbol_file_add() with default values and update whatever is
1108 affected by the loading of a new main().
1109 Used when the file is supplied in the gdb command line
1110 and by some targets with special loading requirements.
1111 The auxiliary function, symbol_file_add_main_1(), has the flags
1112 argument for the switches that can only be specified in the symbol_file
1113 command itself. */
1114
1115 void
1116 symbol_file_add_main (char *args, int from_tty)
1117 {
1118 symbol_file_add_main_1 (args, from_tty, 0);
1119 }
1120
1121 static void
1122 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1123 {
1124 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1125 symbol_file_add (args, add_flags, NULL, flags);
1126
1127 /* Getting new symbols may change our opinion about
1128 what is frameless. */
1129 reinit_frame_cache ();
1130
1131 set_initial_language ();
1132 }
1133
1134 void
1135 symbol_file_clear (int from_tty)
1136 {
1137 if ((have_full_symbols () || have_partial_symbols ())
1138 && from_tty
1139 && (symfile_objfile
1140 ? !query (_("Discard symbol table from `%s'? "),
1141 symfile_objfile->name)
1142 : !query (_("Discard symbol table? "))))
1143 error (_("Not confirmed."));
1144
1145 free_all_objfiles ();
1146
1147 /* solib descriptors may have handles to objfiles. Since their
1148 storage has just been released, we'd better wipe the solib
1149 descriptors as well. */
1150 no_shared_libraries (NULL, from_tty);
1151
1152 gdb_assert (symfile_objfile == NULL);
1153 if (from_tty)
1154 printf_unfiltered (_("No symbol file now.\n"));
1155 }
1156
1157 struct build_id
1158 {
1159 size_t size;
1160 gdb_byte data[1];
1161 };
1162
1163 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1164
1165 static struct build_id *
1166 build_id_bfd_get (bfd *abfd)
1167 {
1168 struct build_id *retval;
1169
1170 if (!bfd_check_format (abfd, bfd_object)
1171 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1172 || elf_tdata (abfd)->build_id == NULL)
1173 return NULL;
1174
1175 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1176 retval->size = elf_tdata (abfd)->build_id_size;
1177 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1178
1179 return retval;
1180 }
1181
1182 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1183
1184 static int
1185 build_id_verify (const char *filename, struct build_id *check)
1186 {
1187 bfd *abfd;
1188 struct build_id *found = NULL;
1189 int retval = 0;
1190
1191 /* We expect to be silent on the non-existing files. */
1192 if (remote_filename_p (filename))
1193 abfd = remote_bfd_open (filename, gnutarget);
1194 else
1195 abfd = bfd_openr (filename, gnutarget);
1196 if (abfd == NULL)
1197 return 0;
1198
1199 found = build_id_bfd_get (abfd);
1200
1201 if (found == NULL)
1202 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1203 else if (found->size != check->size
1204 || memcmp (found->data, check->data, found->size) != 0)
1205 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1206 else
1207 retval = 1;
1208
1209 if (!bfd_close (abfd))
1210 warning (_("cannot close \"%s\": %s"), filename,
1211 bfd_errmsg (bfd_get_error ()));
1212
1213 xfree (found);
1214
1215 return retval;
1216 }
1217
1218 static char *
1219 build_id_to_debug_filename (struct build_id *build_id)
1220 {
1221 char *link, *debugdir, *retval = NULL;
1222
1223 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1224 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1225 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1226
1227 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1228 cause "/.build-id/..." lookups. */
1229
1230 debugdir = debug_file_directory;
1231 do
1232 {
1233 char *s, *debugdir_end;
1234 gdb_byte *data = build_id->data;
1235 size_t size = build_id->size;
1236
1237 while (*debugdir == DIRNAME_SEPARATOR)
1238 debugdir++;
1239
1240 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1241 if (debugdir_end == NULL)
1242 debugdir_end = &debugdir[strlen (debugdir)];
1243
1244 memcpy (link, debugdir, debugdir_end - debugdir);
1245 s = &link[debugdir_end - debugdir];
1246 s += sprintf (s, "/.build-id/");
1247 if (size > 0)
1248 {
1249 size--;
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 }
1252 if (size > 0)
1253 *s++ = '/';
1254 while (size-- > 0)
1255 s += sprintf (s, "%02x", (unsigned) *data++);
1256 strcpy (s, ".debug");
1257
1258 /* lrealpath() is expensive even for the usually non-existent files. */
1259 if (access (link, F_OK) == 0)
1260 retval = lrealpath (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 if (retval != NULL)
1269 break;
1270
1271 debugdir = debugdir_end;
1272 }
1273 while (*debugdir != 0);
1274
1275 return retval;
1276 }
1277
1278 static char *
1279 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1280 {
1281 asection *sect;
1282 bfd_size_type debuglink_size;
1283 unsigned long crc32;
1284 char *contents;
1285 int crc_offset;
1286 unsigned char *p;
1287
1288 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1289
1290 if (sect == NULL)
1291 return NULL;
1292
1293 debuglink_size = bfd_section_size (objfile->obfd, sect);
1294
1295 contents = xmalloc (debuglink_size);
1296 bfd_get_section_contents (objfile->obfd, sect, contents,
1297 (file_ptr)0, (bfd_size_type)debuglink_size);
1298
1299 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1300 crc_offset = strlen (contents) + 1;
1301 crc_offset = (crc_offset + 3) & ~3;
1302
1303 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1304
1305 *crc32_out = crc32;
1306 return contents;
1307 }
1308
1309 static int
1310 separate_debug_file_exists (const char *name, unsigned long crc,
1311 struct objfile *parent_objfile)
1312 {
1313 unsigned long file_crc = 0;
1314 bfd *abfd;
1315 gdb_byte buffer[8*1024];
1316 int count;
1317 struct stat parent_stat, abfd_stat;
1318
1319 /* Find a separate debug info file as if symbols would be present in
1320 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1321 section can contain just the basename of PARENT_OBJFILE without any
1322 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1323 the separate debug infos with the same basename can exist. */
1324
1325 if (strcmp (name, parent_objfile->name) == 0)
1326 return 0;
1327
1328 if (remote_filename_p (name))
1329 abfd = remote_bfd_open (name, gnutarget);
1330 else
1331 abfd = bfd_openr (name, gnutarget);
1332
1333 if (!abfd)
1334 return 0;
1335
1336 /* Verify symlinks were not the cause of strcmp name difference above.
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
1347 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1348 && abfd_stat.st_dev == parent_stat.st_dev
1349 && abfd_stat.st_ino == parent_stat.st_ino
1350 && abfd_stat.st_ino != 0)
1351 {
1352 bfd_close (abfd);
1353 return 0;
1354 }
1355
1356 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1357 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1358
1359 bfd_close (abfd);
1360
1361 if (crc != file_crc)
1362 {
1363 warning (_("the debug information found in \"%s\""
1364 " does not match \"%s\" (CRC mismatch).\n"),
1365 name, parent_objfile->name);
1366 return 0;
1367 }
1368
1369 return 1;
1370 }
1371
1372 char *debug_file_directory = NULL;
1373 static void
1374 show_debug_file_directory (struct ui_file *file, int from_tty,
1375 struct cmd_list_element *c, const char *value)
1376 {
1377 fprintf_filtered (file, _("\
1378 The directory where separate debug symbols are searched for is \"%s\".\n"),
1379 value);
1380 }
1381
1382 #if ! defined (DEBUG_SUBDIRECTORY)
1383 #define DEBUG_SUBDIRECTORY ".debug"
1384 #endif
1385
1386 static char *
1387 find_separate_debug_file (struct objfile *objfile)
1388 {
1389 asection *sect;
1390 char *basename, *name_copy, *debugdir;
1391 char *dir = NULL;
1392 char *debugfile = NULL;
1393 char *canon_name = NULL;
1394 bfd_size_type debuglink_size;
1395 unsigned long crc32;
1396 int i;
1397 struct build_id *build_id;
1398
1399 build_id = build_id_bfd_get (objfile->obfd);
1400 if (build_id != NULL)
1401 {
1402 char *build_id_name;
1403
1404 build_id_name = build_id_to_debug_filename (build_id);
1405 xfree (build_id);
1406 /* Prevent looping on a stripped .debug file. */
1407 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1408 {
1409 warning (_("\"%s\": separate debug info file has no debug info"),
1410 build_id_name);
1411 xfree (build_id_name);
1412 }
1413 else if (build_id_name != NULL)
1414 return build_id_name;
1415 }
1416
1417 basename = get_debug_link_info (objfile, &crc32);
1418
1419 if (basename == NULL)
1420 /* There's no separate debug info, hence there's no way we could
1421 load it => no warning. */
1422 goto cleanup_return_debugfile;
1423
1424 dir = xstrdup (objfile->name);
1425
1426 /* Strip off the final filename part, leaving the directory name,
1427 followed by a slash. Objfile names should always be absolute and
1428 tilde-expanded, so there should always be a slash in there
1429 somewhere. */
1430 for (i = strlen(dir) - 1; i >= 0; i--)
1431 {
1432 if (IS_DIR_SEPARATOR (dir[i]))
1433 break;
1434 }
1435 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1436 dir[i+1] = '\0';
1437
1438 /* Set I to max (strlen (canon_name), strlen (dir)). */
1439 canon_name = lrealpath (dir);
1440 i = strlen (dir);
1441 if (canon_name && strlen (canon_name) > i)
1442 i = strlen (canon_name);
1443
1444 debugfile = xmalloc (strlen (debug_file_directory) + 1
1445 + i
1446 + strlen (DEBUG_SUBDIRECTORY)
1447 + strlen ("/")
1448 + strlen (basename)
1449 + 1);
1450
1451 /* First try in the same directory as the original file. */
1452 strcpy (debugfile, dir);
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
1456 goto cleanup_return_debugfile;
1457
1458 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1459 strcpy (debugfile, dir);
1460 strcat (debugfile, DEBUG_SUBDIRECTORY);
1461 strcat (debugfile, "/");
1462 strcat (debugfile, basename);
1463
1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1465 goto cleanup_return_debugfile;
1466
1467 /* Then try in the global debugfile directories.
1468
1469 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1470 cause "/..." lookups. */
1471
1472 debugdir = debug_file_directory;
1473 do
1474 {
1475 char *debugdir_end;
1476
1477 while (*debugdir == DIRNAME_SEPARATOR)
1478 debugdir++;
1479
1480 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1481 if (debugdir_end == NULL)
1482 debugdir_end = &debugdir[strlen (debugdir)];
1483
1484 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1485 debugfile[debugdir_end - debugdir] = 0;
1486 strcat (debugfile, "/");
1487 strcat (debugfile, dir);
1488 strcat (debugfile, basename);
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 goto cleanup_return_debugfile;
1492
1493 /* If the file is in the sysroot, try using its base path in the
1494 global debugfile directory. */
1495 if (canon_name
1496 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1497 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1498 {
1499 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1500 debugfile[debugdir_end - debugdir] = 0;
1501 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1502 strcat (debugfile, "/");
1503 strcat (debugfile, basename);
1504
1505 if (separate_debug_file_exists (debugfile, crc32, objfile))
1506 goto cleanup_return_debugfile;
1507 }
1508
1509 debugdir = debugdir_end;
1510 }
1511 while (*debugdir != 0);
1512
1513 xfree (debugfile);
1514 debugfile = NULL;
1515
1516 cleanup_return_debugfile:
1517 xfree (canon_name);
1518 xfree (basename);
1519 xfree (dir);
1520 return debugfile;
1521 }
1522
1523
1524 /* This is the symbol-file command. Read the file, analyze its
1525 symbols, and add a struct symtab to a symtab list. The syntax of
1526 the command is rather bizarre:
1527
1528 1. The function buildargv implements various quoting conventions
1529 which are undocumented and have little or nothing in common with
1530 the way things are quoted (or not quoted) elsewhere in GDB.
1531
1532 2. Options are used, which are not generally used in GDB (perhaps
1533 "set mapped on", "set readnow on" would be better)
1534
1535 3. The order of options matters, which is contrary to GNU
1536 conventions (because it is confusing and inconvenient). */
1537
1538 void
1539 symbol_file_command (char *args, int from_tty)
1540 {
1541 dont_repeat ();
1542
1543 if (args == NULL)
1544 {
1545 symbol_file_clear (from_tty);
1546 }
1547 else
1548 {
1549 char **argv = gdb_buildargv (args);
1550 int flags = OBJF_USERLOADED;
1551 struct cleanup *cleanups;
1552 char *name = NULL;
1553
1554 cleanups = make_cleanup_freeargv (argv);
1555 while (*argv != NULL)
1556 {
1557 if (strcmp (*argv, "-readnow") == 0)
1558 flags |= OBJF_READNOW;
1559 else if (**argv == '-')
1560 error (_("unknown option `%s'"), *argv);
1561 else
1562 {
1563 symbol_file_add_main_1 (*argv, from_tty, flags);
1564 name = *argv;
1565 }
1566
1567 argv++;
1568 }
1569
1570 if (name == NULL)
1571 error (_("no symbol file name was specified"));
1572
1573 do_cleanups (cleanups);
1574 }
1575 }
1576
1577 /* Set the initial language.
1578
1579 FIXME: A better solution would be to record the language in the
1580 psymtab when reading partial symbols, and then use it (if known) to
1581 set the language. This would be a win for formats that encode the
1582 language in an easily discoverable place, such as DWARF. For
1583 stabs, we can jump through hoops looking for specially named
1584 symbols or try to intuit the language from the specific type of
1585 stabs we find, but we can't do that until later when we read in
1586 full symbols. */
1587
1588 void
1589 set_initial_language (void)
1590 {
1591 struct partial_symtab *pst;
1592 enum language lang = language_unknown;
1593
1594 pst = find_main_psymtab ();
1595 if (pst != NULL)
1596 {
1597 if (pst->filename != NULL)
1598 lang = deduce_language_from_filename (pst->filename);
1599
1600 if (lang == language_unknown)
1601 {
1602 /* Make C the default language */
1603 lang = language_c;
1604 }
1605
1606 set_language (lang);
1607 expected_language = current_language; /* Don't warn the user. */
1608 }
1609 }
1610
1611 /* Open the file specified by NAME and hand it off to BFD for
1612 preliminary analysis. Return a newly initialized bfd *, which
1613 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1614 absolute). In case of trouble, error() is called. */
1615
1616 bfd *
1617 symfile_bfd_open (char *name)
1618 {
1619 bfd *sym_bfd;
1620 int desc;
1621 char *absolute_name;
1622
1623 if (remote_filename_p (name))
1624 {
1625 name = xstrdup (name);
1626 sym_bfd = remote_bfd_open (name, gnutarget);
1627 if (!sym_bfd)
1628 {
1629 make_cleanup (xfree, name);
1630 error (_("`%s': can't open to read symbols: %s."), name,
1631 bfd_errmsg (bfd_get_error ()));
1632 }
1633
1634 if (!bfd_check_format (sym_bfd, bfd_object))
1635 {
1636 bfd_close (sym_bfd);
1637 make_cleanup (xfree, name);
1638 error (_("`%s': can't read symbols: %s."), name,
1639 bfd_errmsg (bfd_get_error ()));
1640 }
1641
1642 return sym_bfd;
1643 }
1644
1645 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1646
1647 /* Look down path for it, allocate 2nd new malloc'd copy. */
1648 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1649 O_RDONLY | O_BINARY, &absolute_name);
1650 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1651 if (desc < 0)
1652 {
1653 char *exename = alloca (strlen (name) + 5);
1654 strcat (strcpy (exename, name), ".exe");
1655 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1656 O_RDONLY | O_BINARY, &absolute_name);
1657 }
1658 #endif
1659 if (desc < 0)
1660 {
1661 make_cleanup (xfree, name);
1662 perror_with_name (name);
1663 }
1664
1665 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1666 bfd. It'll be freed in free_objfile(). */
1667 xfree (name);
1668 name = absolute_name;
1669
1670 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1671 if (!sym_bfd)
1672 {
1673 close (desc);
1674 make_cleanup (xfree, name);
1675 error (_("`%s': can't open to read symbols: %s."), name,
1676 bfd_errmsg (bfd_get_error ()));
1677 }
1678 bfd_set_cacheable (sym_bfd, 1);
1679
1680 if (!bfd_check_format (sym_bfd, bfd_object))
1681 {
1682 /* FIXME: should be checking for errors from bfd_close (for one
1683 thing, on error it does not free all the storage associated
1684 with the bfd). */
1685 bfd_close (sym_bfd); /* This also closes desc. */
1686 make_cleanup (xfree, name);
1687 error (_("`%s': can't read symbols: %s."), name,
1688 bfd_errmsg (bfd_get_error ()));
1689 }
1690
1691 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1692 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1693
1694 return sym_bfd;
1695 }
1696
1697 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1698 the section was not found. */
1699
1700 int
1701 get_section_index (struct objfile *objfile, char *section_name)
1702 {
1703 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1704
1705 if (sect)
1706 return sect->index;
1707 else
1708 return -1;
1709 }
1710
1711 /* Link SF into the global symtab_fns list. Called on startup by the
1712 _initialize routine in each object file format reader, to register
1713 information about each format the the reader is prepared to
1714 handle. */
1715
1716 void
1717 add_symtab_fns (struct sym_fns *sf)
1718 {
1719 sf->next = symtab_fns;
1720 symtab_fns = sf;
1721 }
1722
1723 /* Initialize OBJFILE to read symbols from its associated BFD. It
1724 either returns or calls error(). The result is an initialized
1725 struct sym_fns in the objfile structure, that contains cached
1726 information about the symbol file. */
1727
1728 static struct sym_fns *
1729 find_sym_fns (bfd *abfd)
1730 {
1731 struct sym_fns *sf;
1732 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1733
1734 if (our_flavour == bfd_target_srec_flavour
1735 || our_flavour == bfd_target_ihex_flavour
1736 || our_flavour == bfd_target_tekhex_flavour)
1737 return NULL; /* No symbols. */
1738
1739 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1740 if (our_flavour == sf->sym_flavour)
1741 return sf;
1742
1743 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1744 bfd_get_target (abfd));
1745 }
1746 \f
1747
1748 /* This function runs the load command of our current target. */
1749
1750 static void
1751 load_command (char *arg, int from_tty)
1752 {
1753 /* The user might be reloading because the binary has changed. Take
1754 this opportunity to check. */
1755 reopen_exec_file ();
1756 reread_symbols ();
1757
1758 if (arg == NULL)
1759 {
1760 char *parg;
1761 int count = 0;
1762
1763 parg = arg = get_exec_file (1);
1764
1765 /* Count how many \ " ' tab space there are in the name. */
1766 while ((parg = strpbrk (parg, "\\\"'\t ")))
1767 {
1768 parg++;
1769 count++;
1770 }
1771
1772 if (count)
1773 {
1774 /* We need to quote this string so buildargv can pull it apart. */
1775 char *temp = xmalloc (strlen (arg) + count + 1 );
1776 char *ptemp = temp;
1777 char *prev;
1778
1779 make_cleanup (xfree, temp);
1780
1781 prev = parg = arg;
1782 while ((parg = strpbrk (parg, "\\\"'\t ")))
1783 {
1784 strncpy (ptemp, prev, parg - prev);
1785 ptemp += parg - prev;
1786 prev = parg++;
1787 *ptemp++ = '\\';
1788 }
1789 strcpy (ptemp, prev);
1790
1791 arg = temp;
1792 }
1793 }
1794
1795 target_load (arg, from_tty);
1796
1797 /* After re-loading the executable, we don't really know which
1798 overlays are mapped any more. */
1799 overlay_cache_invalid = 1;
1800 }
1801
1802 /* This version of "load" should be usable for any target. Currently
1803 it is just used for remote targets, not inftarg.c or core files,
1804 on the theory that only in that case is it useful.
1805
1806 Avoiding xmodem and the like seems like a win (a) because we don't have
1807 to worry about finding it, and (b) On VMS, fork() is very slow and so
1808 we don't want to run a subprocess. On the other hand, I'm not sure how
1809 performance compares. */
1810
1811 static int validate_download = 0;
1812
1813 /* Callback service function for generic_load (bfd_map_over_sections). */
1814
1815 static void
1816 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1817 {
1818 bfd_size_type *sum = data;
1819
1820 *sum += bfd_get_section_size (asec);
1821 }
1822
1823 /* Opaque data for load_section_callback. */
1824 struct load_section_data {
1825 unsigned long load_offset;
1826 struct load_progress_data *progress_data;
1827 VEC(memory_write_request_s) *requests;
1828 };
1829
1830 /* Opaque data for load_progress. */
1831 struct load_progress_data {
1832 /* Cumulative data. */
1833 unsigned long write_count;
1834 unsigned long data_count;
1835 bfd_size_type total_size;
1836 };
1837
1838 /* Opaque data for load_progress for a single section. */
1839 struct load_progress_section_data {
1840 struct load_progress_data *cumulative;
1841
1842 /* Per-section data. */
1843 const char *section_name;
1844 ULONGEST section_sent;
1845 ULONGEST section_size;
1846 CORE_ADDR lma;
1847 gdb_byte *buffer;
1848 };
1849
1850 /* Target write callback routine for progress reporting. */
1851
1852 static void
1853 load_progress (ULONGEST bytes, void *untyped_arg)
1854 {
1855 struct load_progress_section_data *args = untyped_arg;
1856 struct load_progress_data *totals;
1857
1858 if (args == NULL)
1859 /* Writing padding data. No easy way to get at the cumulative
1860 stats, so just ignore this. */
1861 return;
1862
1863 totals = args->cumulative;
1864
1865 if (bytes == 0 && args->section_sent == 0)
1866 {
1867 /* The write is just starting. Let the user know we've started
1868 this section. */
1869 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1870 args->section_name, hex_string (args->section_size),
1871 paddress (target_gdbarch, args->lma));
1872 return;
1873 }
1874
1875 if (validate_download)
1876 {
1877 /* Broken memories and broken monitors manifest themselves here
1878 when bring new computers to life. This doubles already slow
1879 downloads. */
1880 /* NOTE: cagney/1999-10-18: A more efficient implementation
1881 might add a verify_memory() method to the target vector and
1882 then use that. remote.c could implement that method using
1883 the ``qCRC'' packet. */
1884 gdb_byte *check = xmalloc (bytes);
1885 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1886
1887 if (target_read_memory (args->lma, check, bytes) != 0)
1888 error (_("Download verify read failed at %s"),
1889 paddress (target_gdbarch, args->lma));
1890 if (memcmp (args->buffer, check, bytes) != 0)
1891 error (_("Download verify compare failed at %s"),
1892 paddress (target_gdbarch, args->lma));
1893 do_cleanups (verify_cleanups);
1894 }
1895 totals->data_count += bytes;
1896 args->lma += bytes;
1897 args->buffer += bytes;
1898 totals->write_count += 1;
1899 args->section_sent += bytes;
1900 if (quit_flag
1901 || (deprecated_ui_load_progress_hook != NULL
1902 && deprecated_ui_load_progress_hook (args->section_name,
1903 args->section_sent)))
1904 error (_("Canceled the download"));
1905
1906 if (deprecated_show_load_progress != NULL)
1907 deprecated_show_load_progress (args->section_name,
1908 args->section_sent,
1909 args->section_size,
1910 totals->data_count,
1911 totals->total_size);
1912 }
1913
1914 /* Callback service function for generic_load (bfd_map_over_sections). */
1915
1916 static void
1917 load_section_callback (bfd *abfd, asection *asec, void *data)
1918 {
1919 struct memory_write_request *new_request;
1920 struct load_section_data *args = data;
1921 struct load_progress_section_data *section_data;
1922 bfd_size_type size = bfd_get_section_size (asec);
1923 gdb_byte *buffer;
1924 const char *sect_name = bfd_get_section_name (abfd, asec);
1925
1926 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1927 return;
1928
1929 if (size == 0)
1930 return;
1931
1932 new_request = VEC_safe_push (memory_write_request_s,
1933 args->requests, NULL);
1934 memset (new_request, 0, sizeof (struct memory_write_request));
1935 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1936 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1937 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1938 new_request->data = xmalloc (size);
1939 new_request->baton = section_data;
1940
1941 buffer = new_request->data;
1942
1943 section_data->cumulative = args->progress_data;
1944 section_data->section_name = sect_name;
1945 section_data->section_size = size;
1946 section_data->lma = new_request->begin;
1947 section_data->buffer = buffer;
1948
1949 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1950 }
1951
1952 /* Clean up an entire memory request vector, including load
1953 data and progress records. */
1954
1955 static void
1956 clear_memory_write_data (void *arg)
1957 {
1958 VEC(memory_write_request_s) **vec_p = arg;
1959 VEC(memory_write_request_s) *vec = *vec_p;
1960 int i;
1961 struct memory_write_request *mr;
1962
1963 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1964 {
1965 xfree (mr->data);
1966 xfree (mr->baton);
1967 }
1968 VEC_free (memory_write_request_s, vec);
1969 }
1970
1971 void
1972 generic_load (char *args, int from_tty)
1973 {
1974 bfd *loadfile_bfd;
1975 struct timeval start_time, end_time;
1976 char *filename;
1977 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1978 struct load_section_data cbdata;
1979 struct load_progress_data total_progress;
1980
1981 CORE_ADDR entry;
1982 char **argv;
1983
1984 memset (&cbdata, 0, sizeof (cbdata));
1985 memset (&total_progress, 0, sizeof (total_progress));
1986 cbdata.progress_data = &total_progress;
1987
1988 make_cleanup (clear_memory_write_data, &cbdata.requests);
1989
1990 if (args == NULL)
1991 error_no_arg (_("file to load"));
1992
1993 argv = gdb_buildargv (args);
1994 make_cleanup_freeargv (argv);
1995
1996 filename = tilde_expand (argv[0]);
1997 make_cleanup (xfree, filename);
1998
1999 if (argv[1] != NULL)
2000 {
2001 char *endptr;
2002
2003 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2004
2005 /* If the last word was not a valid number then
2006 treat it as a file name with spaces in. */
2007 if (argv[1] == endptr)
2008 error (_("Invalid download offset:%s."), argv[1]);
2009
2010 if (argv[2] != NULL)
2011 error (_("Too many parameters."));
2012 }
2013
2014 /* Open the file for loading. */
2015 loadfile_bfd = bfd_openr (filename, gnutarget);
2016 if (loadfile_bfd == NULL)
2017 {
2018 perror_with_name (filename);
2019 return;
2020 }
2021
2022 /* FIXME: should be checking for errors from bfd_close (for one thing,
2023 on error it does not free all the storage associated with the
2024 bfd). */
2025 make_cleanup_bfd_close (loadfile_bfd);
2026
2027 if (!bfd_check_format (loadfile_bfd, bfd_object))
2028 {
2029 error (_("\"%s\" is not an object file: %s"), filename,
2030 bfd_errmsg (bfd_get_error ()));
2031 }
2032
2033 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2034 (void *) &total_progress.total_size);
2035
2036 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2037
2038 gettimeofday (&start_time, NULL);
2039
2040 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2041 load_progress) != 0)
2042 error (_("Load failed"));
2043
2044 gettimeofday (&end_time, NULL);
2045
2046 entry = bfd_get_start_address (loadfile_bfd);
2047 ui_out_text (uiout, "Start address ");
2048 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2049 ui_out_text (uiout, ", load size ");
2050 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2051 ui_out_text (uiout, "\n");
2052 /* We were doing this in remote-mips.c, I suspect it is right
2053 for other targets too. */
2054 regcache_write_pc (get_current_regcache (), entry);
2055
2056 /* FIXME: are we supposed to call symbol_file_add or not? According
2057 to a comment from remote-mips.c (where a call to symbol_file_add
2058 was commented out), making the call confuses GDB if more than one
2059 file is loaded in. Some targets do (e.g., remote-vx.c) but
2060 others don't (or didn't - perhaps they have all been deleted). */
2061
2062 print_transfer_performance (gdb_stdout, total_progress.data_count,
2063 total_progress.write_count,
2064 &start_time, &end_time);
2065
2066 do_cleanups (old_cleanups);
2067 }
2068
2069 /* Report how fast the transfer went. */
2070
2071 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2072 replaced by print_transfer_performance (with a very different
2073 function signature). */
2074
2075 void
2076 report_transfer_performance (unsigned long data_count, time_t start_time,
2077 time_t end_time)
2078 {
2079 struct timeval start, end;
2080
2081 start.tv_sec = start_time;
2082 start.tv_usec = 0;
2083 end.tv_sec = end_time;
2084 end.tv_usec = 0;
2085
2086 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2087 }
2088
2089 void
2090 print_transfer_performance (struct ui_file *stream,
2091 unsigned long data_count,
2092 unsigned long write_count,
2093 const struct timeval *start_time,
2094 const struct timeval *end_time)
2095 {
2096 ULONGEST time_count;
2097
2098 /* Compute the elapsed time in milliseconds, as a tradeoff between
2099 accuracy and overflow. */
2100 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2101 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2102
2103 ui_out_text (uiout, "Transfer rate: ");
2104 if (time_count > 0)
2105 {
2106 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2107
2108 if (ui_out_is_mi_like_p (uiout))
2109 {
2110 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2111 ui_out_text (uiout, " bits/sec");
2112 }
2113 else if (rate < 1024)
2114 {
2115 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2116 ui_out_text (uiout, " bytes/sec");
2117 }
2118 else
2119 {
2120 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2121 ui_out_text (uiout, " KB/sec");
2122 }
2123 }
2124 else
2125 {
2126 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2127 ui_out_text (uiout, " bits in <1 sec");
2128 }
2129 if (write_count > 0)
2130 {
2131 ui_out_text (uiout, ", ");
2132 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2133 ui_out_text (uiout, " bytes/write");
2134 }
2135 ui_out_text (uiout, ".\n");
2136 }
2137
2138 /* This function allows the addition of incrementally linked object files.
2139 It does not modify any state in the target, only in the debugger. */
2140 /* Note: ezannoni 2000-04-13 This function/command used to have a
2141 special case syntax for the rombug target (Rombug is the boot
2142 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2143 rombug case, the user doesn't need to supply a text address,
2144 instead a call to target_link() (in target.c) would supply the
2145 value to use. We are now discontinuing this type of ad hoc syntax. */
2146
2147 static void
2148 add_symbol_file_command (char *args, int from_tty)
2149 {
2150 struct gdbarch *gdbarch = get_current_arch ();
2151 char *filename = NULL;
2152 int flags = OBJF_USERLOADED;
2153 char *arg;
2154 int expecting_option = 0;
2155 int section_index = 0;
2156 int argcnt = 0;
2157 int sec_num = 0;
2158 int i;
2159 int expecting_sec_name = 0;
2160 int expecting_sec_addr = 0;
2161 char **argv;
2162
2163 struct sect_opt
2164 {
2165 char *name;
2166 char *value;
2167 };
2168
2169 struct section_addr_info *section_addrs;
2170 struct sect_opt *sect_opts = NULL;
2171 size_t num_sect_opts = 0;
2172 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2173
2174 num_sect_opts = 16;
2175 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2176 * sizeof (struct sect_opt));
2177
2178 dont_repeat ();
2179
2180 if (args == NULL)
2181 error (_("add-symbol-file takes a file name and an address"));
2182
2183 argv = gdb_buildargv (args);
2184 make_cleanup_freeargv (argv);
2185
2186 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2187 {
2188 /* Process the argument. */
2189 if (argcnt == 0)
2190 {
2191 /* The first argument is the file name. */
2192 filename = tilde_expand (arg);
2193 make_cleanup (xfree, filename);
2194 }
2195 else
2196 if (argcnt == 1)
2197 {
2198 /* The second argument is always the text address at which
2199 to load the program. */
2200 sect_opts[section_index].name = ".text";
2201 sect_opts[section_index].value = arg;
2202 if (++section_index >= num_sect_opts)
2203 {
2204 num_sect_opts *= 2;
2205 sect_opts = ((struct sect_opt *)
2206 xrealloc (sect_opts,
2207 num_sect_opts
2208 * sizeof (struct sect_opt)));
2209 }
2210 }
2211 else
2212 {
2213 /* It's an option (starting with '-') or it's an argument
2214 to an option */
2215
2216 if (*arg == '-')
2217 {
2218 if (strcmp (arg, "-readnow") == 0)
2219 flags |= OBJF_READNOW;
2220 else if (strcmp (arg, "-s") == 0)
2221 {
2222 expecting_sec_name = 1;
2223 expecting_sec_addr = 1;
2224 }
2225 }
2226 else
2227 {
2228 if (expecting_sec_name)
2229 {
2230 sect_opts[section_index].name = arg;
2231 expecting_sec_name = 0;
2232 }
2233 else
2234 if (expecting_sec_addr)
2235 {
2236 sect_opts[section_index].value = arg;
2237 expecting_sec_addr = 0;
2238 if (++section_index >= num_sect_opts)
2239 {
2240 num_sect_opts *= 2;
2241 sect_opts = ((struct sect_opt *)
2242 xrealloc (sect_opts,
2243 num_sect_opts
2244 * sizeof (struct sect_opt)));
2245 }
2246 }
2247 else
2248 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2249 }
2250 }
2251 }
2252
2253 /* This command takes at least two arguments. The first one is a
2254 filename, and the second is the address where this file has been
2255 loaded. Abort now if this address hasn't been provided by the
2256 user. */
2257 if (section_index < 1)
2258 error (_("The address where %s has been loaded is missing"), filename);
2259
2260 /* Print the prompt for the query below. And save the arguments into
2261 a sect_addr_info structure to be passed around to other
2262 functions. We have to split this up into separate print
2263 statements because hex_string returns a local static
2264 string. */
2265
2266 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2267 section_addrs = alloc_section_addr_info (section_index);
2268 make_cleanup (xfree, section_addrs);
2269 for (i = 0; i < section_index; i++)
2270 {
2271 CORE_ADDR addr;
2272 char *val = sect_opts[i].value;
2273 char *sec = sect_opts[i].name;
2274
2275 addr = parse_and_eval_address (val);
2276
2277 /* Here we store the section offsets in the order they were
2278 entered on the command line. */
2279 section_addrs->other[sec_num].name = sec;
2280 section_addrs->other[sec_num].addr = addr;
2281 printf_unfiltered ("\t%s_addr = %s\n", sec,
2282 paddress (gdbarch, addr));
2283 sec_num++;
2284
2285 /* The object's sections are initialized when a
2286 call is made to build_objfile_section_table (objfile).
2287 This happens in reread_symbols.
2288 At this point, we don't know what file type this is,
2289 so we can't determine what section names are valid. */
2290 }
2291
2292 if (from_tty && (!query ("%s", "")))
2293 error (_("Not confirmed."));
2294
2295 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2296 section_addrs, flags);
2297
2298 /* Getting new symbols may change our opinion about what is
2299 frameless. */
2300 reinit_frame_cache ();
2301 do_cleanups (my_cleanups);
2302 }
2303 \f
2304
2305 /* Re-read symbols if a symbol-file has changed. */
2306 void
2307 reread_symbols (void)
2308 {
2309 struct objfile *objfile;
2310 long new_modtime;
2311 int reread_one = 0;
2312 struct stat new_statbuf;
2313 int res;
2314
2315 /* With the addition of shared libraries, this should be modified,
2316 the load time should be saved in the partial symbol tables, since
2317 different tables may come from different source files. FIXME.
2318 This routine should then walk down each partial symbol table
2319 and see if the symbol table that it originates from has been changed */
2320
2321 for (objfile = object_files; objfile; objfile = objfile->next)
2322 {
2323 if (objfile->obfd)
2324 {
2325 #ifdef DEPRECATED_IBM6000_TARGET
2326 /* If this object is from a shared library, then you should
2327 stat on the library name, not member name. */
2328
2329 if (objfile->obfd->my_archive)
2330 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2331 else
2332 #endif
2333 res = stat (objfile->name, &new_statbuf);
2334 if (res != 0)
2335 {
2336 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2337 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2338 objfile->name);
2339 continue;
2340 }
2341 new_modtime = new_statbuf.st_mtime;
2342 if (new_modtime != objfile->mtime)
2343 {
2344 struct cleanup *old_cleanups;
2345 struct section_offsets *offsets;
2346 int num_offsets;
2347 char *obfd_filename;
2348
2349 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2350 objfile->name);
2351
2352 /* There are various functions like symbol_file_add,
2353 symfile_bfd_open, syms_from_objfile, etc., which might
2354 appear to do what we want. But they have various other
2355 effects which we *don't* want. So we just do stuff
2356 ourselves. We don't worry about mapped files (for one thing,
2357 any mapped file will be out of date). */
2358
2359 /* If we get an error, blow away this objfile (not sure if
2360 that is the correct response for things like shared
2361 libraries). */
2362 old_cleanups = make_cleanup_free_objfile (objfile);
2363 /* We need to do this whenever any symbols go away. */
2364 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2365
2366 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2367 bfd_get_filename (exec_bfd)) == 0)
2368 {
2369 /* Reload EXEC_BFD without asking anything. */
2370
2371 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2372 }
2373
2374 /* Clean up any state BFD has sitting around. We don't need
2375 to close the descriptor but BFD lacks a way of closing the
2376 BFD without closing the descriptor. */
2377 obfd_filename = bfd_get_filename (objfile->obfd);
2378 if (!bfd_close (objfile->obfd))
2379 error (_("Can't close BFD for %s: %s"), objfile->name,
2380 bfd_errmsg (bfd_get_error ()));
2381 if (remote_filename_p (obfd_filename))
2382 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2383 else
2384 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2385 if (objfile->obfd == NULL)
2386 error (_("Can't open %s to read symbols."), objfile->name);
2387 else
2388 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2389 /* bfd_openr sets cacheable to true, which is what we want. */
2390 if (!bfd_check_format (objfile->obfd, bfd_object))
2391 error (_("Can't read symbols from %s: %s."), objfile->name,
2392 bfd_errmsg (bfd_get_error ()));
2393
2394 /* Save the offsets, we will nuke them with the rest of the
2395 objfile_obstack. */
2396 num_offsets = objfile->num_sections;
2397 offsets = ((struct section_offsets *)
2398 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2399 memcpy (offsets, objfile->section_offsets,
2400 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2401
2402 /* Remove any references to this objfile in the global
2403 value lists. */
2404 preserve_values (objfile);
2405
2406 /* Nuke all the state that we will re-read. Much of the following
2407 code which sets things to NULL really is necessary to tell
2408 other parts of GDB that there is nothing currently there.
2409
2410 Try to keep the freeing order compatible with free_objfile. */
2411
2412 if (objfile->sf != NULL)
2413 {
2414 (*objfile->sf->sym_finish) (objfile);
2415 }
2416
2417 clear_objfile_data (objfile);
2418
2419 /* FIXME: Do we have to free a whole linked list, or is this
2420 enough? */
2421 if (objfile->global_psymbols.list)
2422 xfree (objfile->global_psymbols.list);
2423 memset (&objfile->global_psymbols, 0,
2424 sizeof (objfile->global_psymbols));
2425 if (objfile->static_psymbols.list)
2426 xfree (objfile->static_psymbols.list);
2427 memset (&objfile->static_psymbols, 0,
2428 sizeof (objfile->static_psymbols));
2429
2430 /* Free the obstacks for non-reusable objfiles */
2431 bcache_xfree (objfile->psymbol_cache);
2432 objfile->psymbol_cache = bcache_xmalloc ();
2433 bcache_xfree (objfile->macro_cache);
2434 objfile->macro_cache = bcache_xmalloc ();
2435 bcache_xfree (objfile->filename_cache);
2436 objfile->filename_cache = bcache_xmalloc ();
2437 if (objfile->demangled_names_hash != NULL)
2438 {
2439 htab_delete (objfile->demangled_names_hash);
2440 objfile->demangled_names_hash = NULL;
2441 }
2442 obstack_free (&objfile->objfile_obstack, 0);
2443 objfile->sections = NULL;
2444 objfile->symtabs = NULL;
2445 objfile->psymtabs = NULL;
2446 objfile->psymtabs_addrmap = NULL;
2447 objfile->free_psymtabs = NULL;
2448 objfile->cp_namespace_symtab = NULL;
2449 objfile->msymbols = NULL;
2450 objfile->deprecated_sym_private = NULL;
2451 objfile->minimal_symbol_count = 0;
2452 memset (&objfile->msymbol_hash, 0,
2453 sizeof (objfile->msymbol_hash));
2454 memset (&objfile->msymbol_demangled_hash, 0,
2455 sizeof (objfile->msymbol_demangled_hash));
2456
2457 objfile->psymbol_cache = bcache_xmalloc ();
2458 objfile->macro_cache = bcache_xmalloc ();
2459 objfile->filename_cache = bcache_xmalloc ();
2460 /* obstack_init also initializes the obstack so it is
2461 empty. We could use obstack_specify_allocation but
2462 gdb_obstack.h specifies the alloc/dealloc
2463 functions. */
2464 obstack_init (&objfile->objfile_obstack);
2465 if (build_objfile_section_table (objfile))
2466 {
2467 error (_("Can't find the file sections in `%s': %s"),
2468 objfile->name, bfd_errmsg (bfd_get_error ()));
2469 }
2470 terminate_minimal_symbol_table (objfile);
2471
2472 /* We use the same section offsets as from last time. I'm not
2473 sure whether that is always correct for shared libraries. */
2474 objfile->section_offsets = (struct section_offsets *)
2475 obstack_alloc (&objfile->objfile_obstack,
2476 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2477 memcpy (objfile->section_offsets, offsets,
2478 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2479 objfile->num_sections = num_offsets;
2480
2481 /* What the hell is sym_new_init for, anyway? The concept of
2482 distinguishing between the main file and additional files
2483 in this way seems rather dubious. */
2484 if (objfile == symfile_objfile)
2485 {
2486 (*objfile->sf->sym_new_init) (objfile);
2487 }
2488
2489 (*objfile->sf->sym_init) (objfile);
2490 clear_complaints (&symfile_complaints, 1, 1);
2491 /* The "mainline" parameter is a hideous hack; I think leaving it
2492 zero is OK since dbxread.c also does what it needs to do if
2493 objfile->global_psymbols.size is 0. */
2494 (*objfile->sf->sym_read) (objfile, 0);
2495 if (!objfile_has_symbols (objfile))
2496 {
2497 wrap_here ("");
2498 printf_unfiltered (_("(no debugging symbols found)\n"));
2499 wrap_here ("");
2500 }
2501
2502 /* We're done reading the symbol file; finish off complaints. */
2503 clear_complaints (&symfile_complaints, 0, 1);
2504
2505 /* Getting new symbols may change our opinion about what is
2506 frameless. */
2507
2508 reinit_frame_cache ();
2509
2510 /* Discard cleanups as symbol reading was successful. */
2511 discard_cleanups (old_cleanups);
2512
2513 /* If the mtime has changed between the time we set new_modtime
2514 and now, we *want* this to be out of date, so don't call stat
2515 again now. */
2516 objfile->mtime = new_modtime;
2517 reread_one = 1;
2518 reread_separate_symbols (objfile);
2519 init_entry_point_info (objfile);
2520 }
2521 }
2522 }
2523
2524 if (reread_one)
2525 {
2526 /* Notify objfiles that we've modified objfile sections. */
2527 objfiles_changed ();
2528
2529 clear_symtab_users ();
2530 /* At least one objfile has changed, so we can consider that
2531 the executable we're debugging has changed too. */
2532 observer_notify_executable_changed ();
2533 }
2534 }
2535
2536
2537 /* Handle separate debug info for OBJFILE, which has just been
2538 re-read:
2539 - If we had separate debug info before, but now we don't, get rid
2540 of the separated objfile.
2541 - If we didn't have separated debug info before, but now we do,
2542 read in the new separated debug info file.
2543 - If the debug link points to a different file, toss the old one
2544 and read the new one.
2545 This function does *not* handle the case where objfile is still
2546 using the same separate debug info file, but that file's timestamp
2547 has changed. That case should be handled by the loop in
2548 reread_symbols already. */
2549 static void
2550 reread_separate_symbols (struct objfile *objfile)
2551 {
2552 char *debug_file;
2553 unsigned long crc32;
2554
2555 /* Does the updated objfile's debug info live in a
2556 separate file? */
2557 debug_file = find_separate_debug_file (objfile);
2558
2559 if (objfile->separate_debug_objfile)
2560 {
2561 /* There are two cases where we need to get rid of
2562 the old separated debug info objfile:
2563 - if the new primary objfile doesn't have
2564 separated debug info, or
2565 - if the new primary objfile has separate debug
2566 info, but it's under a different filename.
2567
2568 If the old and new objfiles both have separate
2569 debug info, under the same filename, then we're
2570 okay --- if the separated file's contents have
2571 changed, we will have caught that when we
2572 visited it in this function's outermost
2573 loop. */
2574 if (! debug_file
2575 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2576 free_objfile (objfile->separate_debug_objfile);
2577 }
2578
2579 /* If the new objfile has separate debug info, and we
2580 haven't loaded it already, do so now. */
2581 if (debug_file
2582 && ! objfile->separate_debug_objfile)
2583 {
2584 /* Use the same section offset table as objfile itself.
2585 Preserve the flags from objfile that make sense. */
2586 objfile->separate_debug_objfile
2587 = (symbol_file_add_with_addrs_or_offsets
2588 (symfile_bfd_open (debug_file),
2589 info_verbose ? SYMFILE_VERBOSE : 0,
2590 0, /* No addr table. */
2591 objfile->section_offsets, objfile->num_sections,
2592 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2593 | OBJF_USERLOADED)));
2594 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2595 = objfile;
2596 }
2597 if (debug_file)
2598 xfree (debug_file);
2599 }
2600
2601
2602 \f
2603
2604
2605 typedef struct
2606 {
2607 char *ext;
2608 enum language lang;
2609 }
2610 filename_language;
2611
2612 static filename_language *filename_language_table;
2613 static int fl_table_size, fl_table_next;
2614
2615 static void
2616 add_filename_language (char *ext, enum language lang)
2617 {
2618 if (fl_table_next >= fl_table_size)
2619 {
2620 fl_table_size += 10;
2621 filename_language_table =
2622 xrealloc (filename_language_table,
2623 fl_table_size * sizeof (*filename_language_table));
2624 }
2625
2626 filename_language_table[fl_table_next].ext = xstrdup (ext);
2627 filename_language_table[fl_table_next].lang = lang;
2628 fl_table_next++;
2629 }
2630
2631 static char *ext_args;
2632 static void
2633 show_ext_args (struct ui_file *file, int from_tty,
2634 struct cmd_list_element *c, const char *value)
2635 {
2636 fprintf_filtered (file, _("\
2637 Mapping between filename extension and source language is \"%s\".\n"),
2638 value);
2639 }
2640
2641 static void
2642 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2643 {
2644 int i;
2645 char *cp = ext_args;
2646 enum language lang;
2647
2648 /* First arg is filename extension, starting with '.' */
2649 if (*cp != '.')
2650 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2651
2652 /* Find end of first arg. */
2653 while (*cp && !isspace (*cp))
2654 cp++;
2655
2656 if (*cp == '\0')
2657 error (_("'%s': two arguments required -- filename extension and language"),
2658 ext_args);
2659
2660 /* Null-terminate first arg */
2661 *cp++ = '\0';
2662
2663 /* Find beginning of second arg, which should be a source language. */
2664 while (*cp && isspace (*cp))
2665 cp++;
2666
2667 if (*cp == '\0')
2668 error (_("'%s': two arguments required -- filename extension and language"),
2669 ext_args);
2670
2671 /* Lookup the language from among those we know. */
2672 lang = language_enum (cp);
2673
2674 /* Now lookup the filename extension: do we already know it? */
2675 for (i = 0; i < fl_table_next; i++)
2676 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2677 break;
2678
2679 if (i >= fl_table_next)
2680 {
2681 /* new file extension */
2682 add_filename_language (ext_args, lang);
2683 }
2684 else
2685 {
2686 /* redefining a previously known filename extension */
2687
2688 /* if (from_tty) */
2689 /* query ("Really make files of type %s '%s'?", */
2690 /* ext_args, language_str (lang)); */
2691
2692 xfree (filename_language_table[i].ext);
2693 filename_language_table[i].ext = xstrdup (ext_args);
2694 filename_language_table[i].lang = lang;
2695 }
2696 }
2697
2698 static void
2699 info_ext_lang_command (char *args, int from_tty)
2700 {
2701 int i;
2702
2703 printf_filtered (_("Filename extensions and the languages they represent:"));
2704 printf_filtered ("\n\n");
2705 for (i = 0; i < fl_table_next; i++)
2706 printf_filtered ("\t%s\t- %s\n",
2707 filename_language_table[i].ext,
2708 language_str (filename_language_table[i].lang));
2709 }
2710
2711 static void
2712 init_filename_language_table (void)
2713 {
2714 if (fl_table_size == 0) /* protect against repetition */
2715 {
2716 fl_table_size = 20;
2717 fl_table_next = 0;
2718 filename_language_table =
2719 xmalloc (fl_table_size * sizeof (*filename_language_table));
2720 add_filename_language (".c", language_c);
2721 add_filename_language (".C", language_cplus);
2722 add_filename_language (".cc", language_cplus);
2723 add_filename_language (".cp", language_cplus);
2724 add_filename_language (".cpp", language_cplus);
2725 add_filename_language (".cxx", language_cplus);
2726 add_filename_language (".c++", language_cplus);
2727 add_filename_language (".java", language_java);
2728 add_filename_language (".class", language_java);
2729 add_filename_language (".m", language_objc);
2730 add_filename_language (".f", language_fortran);
2731 add_filename_language (".F", language_fortran);
2732 add_filename_language (".s", language_asm);
2733 add_filename_language (".sx", language_asm);
2734 add_filename_language (".S", language_asm);
2735 add_filename_language (".pas", language_pascal);
2736 add_filename_language (".p", language_pascal);
2737 add_filename_language (".pp", language_pascal);
2738 add_filename_language (".adb", language_ada);
2739 add_filename_language (".ads", language_ada);
2740 add_filename_language (".a", language_ada);
2741 add_filename_language (".ada", language_ada);
2742 }
2743 }
2744
2745 enum language
2746 deduce_language_from_filename (char *filename)
2747 {
2748 int i;
2749 char *cp;
2750
2751 if (filename != NULL)
2752 if ((cp = strrchr (filename, '.')) != NULL)
2753 for (i = 0; i < fl_table_next; i++)
2754 if (strcmp (cp, filename_language_table[i].ext) == 0)
2755 return filename_language_table[i].lang;
2756
2757 return language_unknown;
2758 }
2759 \f
2760 /* allocate_symtab:
2761
2762 Allocate and partly initialize a new symbol table. Return a pointer
2763 to it. error() if no space.
2764
2765 Caller must set these fields:
2766 LINETABLE(symtab)
2767 symtab->blockvector
2768 symtab->dirname
2769 symtab->free_code
2770 symtab->free_ptr
2771 possibly free_named_symtabs (symtab->filename);
2772 */
2773
2774 struct symtab *
2775 allocate_symtab (char *filename, struct objfile *objfile)
2776 {
2777 struct symtab *symtab;
2778
2779 symtab = (struct symtab *)
2780 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2781 memset (symtab, 0, sizeof (*symtab));
2782 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2783 objfile->filename_cache);
2784 symtab->fullname = NULL;
2785 symtab->language = deduce_language_from_filename (filename);
2786 symtab->debugformat = "unknown";
2787
2788 /* Hook it to the objfile it comes from */
2789
2790 symtab->objfile = objfile;
2791 symtab->next = objfile->symtabs;
2792 objfile->symtabs = symtab;
2793
2794 return (symtab);
2795 }
2796
2797 struct partial_symtab *
2798 allocate_psymtab (const char *filename, struct objfile *objfile)
2799 {
2800 struct partial_symtab *psymtab;
2801
2802 if (objfile->free_psymtabs)
2803 {
2804 psymtab = objfile->free_psymtabs;
2805 objfile->free_psymtabs = psymtab->next;
2806 }
2807 else
2808 psymtab = (struct partial_symtab *)
2809 obstack_alloc (&objfile->objfile_obstack,
2810 sizeof (struct partial_symtab));
2811
2812 memset (psymtab, 0, sizeof (struct partial_symtab));
2813 psymtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2814 objfile->filename_cache);
2815 psymtab->symtab = NULL;
2816
2817 /* Prepend it to the psymtab list for the objfile it belongs to.
2818 Psymtabs are searched in most recent inserted -> least recent
2819 inserted order. */
2820
2821 psymtab->objfile = objfile;
2822 psymtab->next = objfile->psymtabs;
2823 objfile->psymtabs = psymtab;
2824 #if 0
2825 {
2826 struct partial_symtab **prev_pst;
2827 psymtab->objfile = objfile;
2828 psymtab->next = NULL;
2829 prev_pst = &(objfile->psymtabs);
2830 while ((*prev_pst) != NULL)
2831 prev_pst = &((*prev_pst)->next);
2832 (*prev_pst) = psymtab;
2833 }
2834 #endif
2835
2836 return (psymtab);
2837 }
2838
2839 void
2840 discard_psymtab (struct partial_symtab *pst)
2841 {
2842 struct partial_symtab **prev_pst;
2843
2844 /* From dbxread.c:
2845 Empty psymtabs happen as a result of header files which don't
2846 have any symbols in them. There can be a lot of them. But this
2847 check is wrong, in that a psymtab with N_SLINE entries but
2848 nothing else is not empty, but we don't realize that. Fixing
2849 that without slowing things down might be tricky. */
2850
2851 /* First, snip it out of the psymtab chain */
2852
2853 prev_pst = &(pst->objfile->psymtabs);
2854 while ((*prev_pst) != pst)
2855 prev_pst = &((*prev_pst)->next);
2856 (*prev_pst) = pst->next;
2857
2858 /* Next, put it on a free list for recycling */
2859
2860 pst->next = pst->objfile->free_psymtabs;
2861 pst->objfile->free_psymtabs = pst;
2862 }
2863 \f
2864
2865 /* Reset all data structures in gdb which may contain references to symbol
2866 table data. */
2867
2868 void
2869 clear_symtab_users (void)
2870 {
2871 /* Someday, we should do better than this, by only blowing away
2872 the things that really need to be blown. */
2873
2874 /* Clear the "current" symtab first, because it is no longer valid.
2875 breakpoint_re_set may try to access the current symtab. */
2876 clear_current_source_symtab_and_line ();
2877
2878 clear_displays ();
2879 breakpoint_re_set ();
2880 set_default_breakpoint (0, NULL, 0, 0, 0);
2881 clear_pc_function_cache ();
2882 observer_notify_new_objfile (NULL);
2883
2884 /* Clear globals which might have pointed into a removed objfile.
2885 FIXME: It's not clear which of these are supposed to persist
2886 between expressions and which ought to be reset each time. */
2887 expression_context_block = NULL;
2888 innermost_block = NULL;
2889
2890 /* Varobj may refer to old symbols, perform a cleanup. */
2891 varobj_invalidate ();
2892
2893 }
2894
2895 static void
2896 clear_symtab_users_cleanup (void *ignore)
2897 {
2898 clear_symtab_users ();
2899 }
2900
2901 /* clear_symtab_users_once:
2902
2903 This function is run after symbol reading, or from a cleanup.
2904 If an old symbol table was obsoleted, the old symbol table
2905 has been blown away, but the other GDB data structures that may
2906 reference it have not yet been cleared or re-directed. (The old
2907 symtab was zapped, and the cleanup queued, in free_named_symtab()
2908 below.)
2909
2910 This function can be queued N times as a cleanup, or called
2911 directly; it will do all the work the first time, and then will be a
2912 no-op until the next time it is queued. This works by bumping a
2913 counter at queueing time. Much later when the cleanup is run, or at
2914 the end of symbol processing (in case the cleanup is discarded), if
2915 the queued count is greater than the "done-count", we do the work
2916 and set the done-count to the queued count. If the queued count is
2917 less than or equal to the done-count, we just ignore the call. This
2918 is needed because reading a single .o file will often replace many
2919 symtabs (one per .h file, for example), and we don't want to reset
2920 the breakpoints N times in the user's face.
2921
2922 The reason we both queue a cleanup, and call it directly after symbol
2923 reading, is because the cleanup protects us in case of errors, but is
2924 discarded if symbol reading is successful. */
2925
2926 #if 0
2927 /* FIXME: As free_named_symtabs is currently a big noop this function
2928 is no longer needed. */
2929 static void clear_symtab_users_once (void);
2930
2931 static int clear_symtab_users_queued;
2932 static int clear_symtab_users_done;
2933
2934 static void
2935 clear_symtab_users_once (void)
2936 {
2937 /* Enforce once-per-`do_cleanups'-semantics */
2938 if (clear_symtab_users_queued <= clear_symtab_users_done)
2939 return;
2940 clear_symtab_users_done = clear_symtab_users_queued;
2941
2942 clear_symtab_users ();
2943 }
2944 #endif
2945
2946 /* Delete the specified psymtab, and any others that reference it. */
2947
2948 static void
2949 cashier_psymtab (struct partial_symtab *pst)
2950 {
2951 struct partial_symtab *ps, *pprev = NULL;
2952 int i;
2953
2954 /* Find its previous psymtab in the chain */
2955 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2956 {
2957 if (ps == pst)
2958 break;
2959 pprev = ps;
2960 }
2961
2962 if (ps)
2963 {
2964 /* Unhook it from the chain. */
2965 if (ps == pst->objfile->psymtabs)
2966 pst->objfile->psymtabs = ps->next;
2967 else
2968 pprev->next = ps->next;
2969
2970 /* FIXME, we can't conveniently deallocate the entries in the
2971 partial_symbol lists (global_psymbols/static_psymbols) that
2972 this psymtab points to. These just take up space until all
2973 the psymtabs are reclaimed. Ditto the dependencies list and
2974 filename, which are all in the objfile_obstack. */
2975
2976 /* We need to cashier any psymtab that has this one as a dependency... */
2977 again:
2978 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2979 {
2980 for (i = 0; i < ps->number_of_dependencies; i++)
2981 {
2982 if (ps->dependencies[i] == pst)
2983 {
2984 cashier_psymtab (ps);
2985 goto again; /* Must restart, chain has been munged. */
2986 }
2987 }
2988 }
2989 }
2990 }
2991
2992 /* If a symtab or psymtab for filename NAME is found, free it along
2993 with any dependent breakpoints, displays, etc.
2994 Used when loading new versions of object modules with the "add-file"
2995 command. This is only called on the top-level symtab or psymtab's name;
2996 it is not called for subsidiary files such as .h files.
2997
2998 Return value is 1 if we blew away the environment, 0 if not.
2999 FIXME. The return value appears to never be used.
3000
3001 FIXME. I think this is not the best way to do this. We should
3002 work on being gentler to the environment while still cleaning up
3003 all stray pointers into the freed symtab. */
3004
3005 int
3006 free_named_symtabs (char *name)
3007 {
3008 #if 0
3009 /* FIXME: With the new method of each objfile having it's own
3010 psymtab list, this function needs serious rethinking. In particular,
3011 why was it ever necessary to toss psymtabs with specific compilation
3012 unit filenames, as opposed to all psymtabs from a particular symbol
3013 file? -- fnf
3014 Well, the answer is that some systems permit reloading of particular
3015 compilation units. We want to blow away any old info about these
3016 compilation units, regardless of which objfiles they arrived in. --gnu. */
3017
3018 struct symtab *s;
3019 struct symtab *prev;
3020 struct partial_symtab *ps;
3021 struct blockvector *bv;
3022 int blewit = 0;
3023
3024 /* We only wack things if the symbol-reload switch is set. */
3025 if (!symbol_reloading)
3026 return 0;
3027
3028 /* Some symbol formats have trouble providing file names... */
3029 if (name == 0 || *name == '\0')
3030 return 0;
3031
3032 /* Look for a psymtab with the specified name. */
3033
3034 again2:
3035 for (ps = partial_symtab_list; ps; ps = ps->next)
3036 {
3037 if (strcmp (name, ps->filename) == 0)
3038 {
3039 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
3040 goto again2; /* Must restart, chain has been munged */
3041 }
3042 }
3043
3044 /* Look for a symtab with the specified name. */
3045
3046 for (s = symtab_list; s; s = s->next)
3047 {
3048 if (strcmp (name, s->filename) == 0)
3049 break;
3050 prev = s;
3051 }
3052
3053 if (s)
3054 {
3055 if (s == symtab_list)
3056 symtab_list = s->next;
3057 else
3058 prev->next = s->next;
3059
3060 /* For now, queue a delete for all breakpoints, displays, etc., whether
3061 or not they depend on the symtab being freed. This should be
3062 changed so that only those data structures affected are deleted. */
3063
3064 /* But don't delete anything if the symtab is empty.
3065 This test is necessary due to a bug in "dbxread.c" that
3066 causes empty symtabs to be created for N_SO symbols that
3067 contain the pathname of the object file. (This problem
3068 has been fixed in GDB 3.9x). */
3069
3070 bv = BLOCKVECTOR (s);
3071 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3072 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3073 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3074 {
3075 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3076 name);
3077 clear_symtab_users_queued++;
3078 make_cleanup (clear_symtab_users_once, 0);
3079 blewit = 1;
3080 }
3081 else
3082 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3083 name);
3084
3085 free_symtab (s);
3086 }
3087 else
3088 {
3089 /* It is still possible that some breakpoints will be affected
3090 even though no symtab was found, since the file might have
3091 been compiled without debugging, and hence not be associated
3092 with a symtab. In order to handle this correctly, we would need
3093 to keep a list of text address ranges for undebuggable files.
3094 For now, we do nothing, since this is a fairly obscure case. */
3095 ;
3096 }
3097
3098 /* FIXME, what about the minimal symbol table? */
3099 return blewit;
3100 #else
3101 return (0);
3102 #endif
3103 }
3104 \f
3105 /* Allocate and partially fill a partial symtab. It will be
3106 completely filled at the end of the symbol list.
3107
3108 FILENAME is the name of the symbol-file we are reading from. */
3109
3110 struct partial_symtab *
3111 start_psymtab_common (struct objfile *objfile,
3112 struct section_offsets *section_offsets,
3113 const char *filename,
3114 CORE_ADDR textlow, struct partial_symbol **global_syms,
3115 struct partial_symbol **static_syms)
3116 {
3117 struct partial_symtab *psymtab;
3118
3119 psymtab = allocate_psymtab (filename, objfile);
3120 psymtab->section_offsets = section_offsets;
3121 psymtab->textlow = textlow;
3122 psymtab->texthigh = psymtab->textlow; /* default */
3123 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3124 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3125 return (psymtab);
3126 }
3127 \f
3128 /* Helper function, initialises partial symbol structure and stashes
3129 it into objfile's bcache. Note that our caching mechanism will
3130 use all fields of struct partial_symbol to determine hash value of the
3131 structure. In other words, having two symbols with the same name but
3132 different domain (or address) is possible and correct. */
3133
3134 static const struct partial_symbol *
3135 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3136 enum address_class class,
3137 long val, /* Value as a long */
3138 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3139 enum language language, struct objfile *objfile,
3140 int *added)
3141 {
3142 /* psymbol is static so that there will be no uninitialized gaps in the
3143 structure which might contain random data, causing cache misses in
3144 bcache. */
3145 static struct partial_symbol psymbol;
3146
3147 /* However, we must ensure that the entire 'value' field has been
3148 zeroed before assigning to it, because an assignment may not
3149 write the entire field. */
3150 memset (&psymbol.ginfo.value, 0, sizeof (psymbol.ginfo.value));
3151 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3152 if (val != 0)
3153 {
3154 SYMBOL_VALUE (&psymbol) = val;
3155 }
3156 else
3157 {
3158 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3159 }
3160 SYMBOL_SECTION (&psymbol) = 0;
3161 SYMBOL_LANGUAGE (&psymbol) = language;
3162 PSYMBOL_DOMAIN (&psymbol) = domain;
3163 PSYMBOL_CLASS (&psymbol) = class;
3164
3165 SYMBOL_SET_NAMES (&psymbol, name, namelength, objfile);
3166
3167 /* Stash the partial symbol away in the cache */
3168 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3169 objfile->psymbol_cache, added);
3170 }
3171
3172 /* Helper function, adds partial symbol to the given partial symbol
3173 list. */
3174
3175 static void
3176 append_psymbol_to_list (struct psymbol_allocation_list *list,
3177 const struct partial_symbol *psym,
3178 struct objfile *objfile)
3179 {
3180 if (list->next >= list->list + list->size)
3181 extend_psymbol_list (list, objfile);
3182 *list->next++ = (struct partial_symbol *) psym;
3183 OBJSTAT (objfile, n_psyms++);
3184 }
3185
3186 /* Add a symbol with a long value to a psymtab.
3187 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3188 Return the partial symbol that has been added. */
3189
3190 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3191 symbol is so that callers can get access to the symbol's demangled
3192 name, which they don't have any cheap way to determine otherwise.
3193 (Currenly, dwarf2read.c is the only file who uses that information,
3194 though it's possible that other readers might in the future.)
3195 Elena wasn't thrilled about that, and I don't blame her, but we
3196 couldn't come up with a better way to get that information. If
3197 it's needed in other situations, we could consider breaking up
3198 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3199 cache. */
3200
3201 const struct partial_symbol *
3202 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3203 enum address_class class,
3204 struct psymbol_allocation_list *list,
3205 long val, /* Value as a long */
3206 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3207 enum language language, struct objfile *objfile)
3208 {
3209 const struct partial_symbol *psym;
3210
3211 int added;
3212
3213 /* Stash the partial symbol away in the cache */
3214 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3215 val, coreaddr, language, objfile, &added);
3216
3217 /* Do not duplicate global partial symbols. */
3218 if (list == &objfile->global_psymbols
3219 && !added)
3220 return psym;
3221
3222 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3223 append_psymbol_to_list (list, psym, objfile);
3224 return psym;
3225 }
3226
3227 /* Initialize storage for partial symbols. */
3228
3229 void
3230 init_psymbol_list (struct objfile *objfile, int total_symbols)
3231 {
3232 /* Free any previously allocated psymbol lists. */
3233
3234 if (objfile->global_psymbols.list)
3235 {
3236 xfree (objfile->global_psymbols.list);
3237 }
3238 if (objfile->static_psymbols.list)
3239 {
3240 xfree (objfile->static_psymbols.list);
3241 }
3242
3243 /* Current best guess is that approximately a twentieth
3244 of the total symbols (in a debugging file) are global or static
3245 oriented symbols */
3246
3247 objfile->global_psymbols.size = total_symbols / 10;
3248 objfile->static_psymbols.size = total_symbols / 10;
3249
3250 if (objfile->global_psymbols.size > 0)
3251 {
3252 objfile->global_psymbols.next =
3253 objfile->global_psymbols.list = (struct partial_symbol **)
3254 xmalloc ((objfile->global_psymbols.size
3255 * sizeof (struct partial_symbol *)));
3256 }
3257 if (objfile->static_psymbols.size > 0)
3258 {
3259 objfile->static_psymbols.next =
3260 objfile->static_psymbols.list = (struct partial_symbol **)
3261 xmalloc ((objfile->static_psymbols.size
3262 * sizeof (struct partial_symbol *)));
3263 }
3264 }
3265
3266 /* OVERLAYS:
3267 The following code implements an abstraction for debugging overlay sections.
3268
3269 The target model is as follows:
3270 1) The gnu linker will permit multiple sections to be mapped into the
3271 same VMA, each with its own unique LMA (or load address).
3272 2) It is assumed that some runtime mechanism exists for mapping the
3273 sections, one by one, from the load address into the VMA address.
3274 3) This code provides a mechanism for gdb to keep track of which
3275 sections should be considered to be mapped from the VMA to the LMA.
3276 This information is used for symbol lookup, and memory read/write.
3277 For instance, if a section has been mapped then its contents
3278 should be read from the VMA, otherwise from the LMA.
3279
3280 Two levels of debugger support for overlays are available. One is
3281 "manual", in which the debugger relies on the user to tell it which
3282 overlays are currently mapped. This level of support is
3283 implemented entirely in the core debugger, and the information about
3284 whether a section is mapped is kept in the objfile->obj_section table.
3285
3286 The second level of support is "automatic", and is only available if
3287 the target-specific code provides functionality to read the target's
3288 overlay mapping table, and translate its contents for the debugger
3289 (by updating the mapped state information in the obj_section tables).
3290
3291 The interface is as follows:
3292 User commands:
3293 overlay map <name> -- tell gdb to consider this section mapped
3294 overlay unmap <name> -- tell gdb to consider this section unmapped
3295 overlay list -- list the sections that GDB thinks are mapped
3296 overlay read-target -- get the target's state of what's mapped
3297 overlay off/manual/auto -- set overlay debugging state
3298 Functional interface:
3299 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3300 section, return that section.
3301 find_pc_overlay(pc): find any overlay section that contains
3302 the pc, either in its VMA or its LMA
3303 section_is_mapped(sect): true if overlay is marked as mapped
3304 section_is_overlay(sect): true if section's VMA != LMA
3305 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3306 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3307 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3308 overlay_mapped_address(...): map an address from section's LMA to VMA
3309 overlay_unmapped_address(...): map an address from section's VMA to LMA
3310 symbol_overlayed_address(...): Return a "current" address for symbol:
3311 either in VMA or LMA depending on whether
3312 the symbol's section is currently mapped
3313 */
3314
3315 /* Overlay debugging state: */
3316
3317 enum overlay_debugging_state overlay_debugging = ovly_off;
3318 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3319
3320 /* Function: section_is_overlay (SECTION)
3321 Returns true if SECTION has VMA not equal to LMA, ie.
3322 SECTION is loaded at an address different from where it will "run". */
3323
3324 int
3325 section_is_overlay (struct obj_section *section)
3326 {
3327 if (overlay_debugging && section)
3328 {
3329 bfd *abfd = section->objfile->obfd;
3330 asection *bfd_section = section->the_bfd_section;
3331
3332 if (bfd_section_lma (abfd, bfd_section) != 0
3333 && bfd_section_lma (abfd, bfd_section)
3334 != bfd_section_vma (abfd, bfd_section))
3335 return 1;
3336 }
3337
3338 return 0;
3339 }
3340
3341 /* Function: overlay_invalidate_all (void)
3342 Invalidate the mapped state of all overlay sections (mark it as stale). */
3343
3344 static void
3345 overlay_invalidate_all (void)
3346 {
3347 struct objfile *objfile;
3348 struct obj_section *sect;
3349
3350 ALL_OBJSECTIONS (objfile, sect)
3351 if (section_is_overlay (sect))
3352 sect->ovly_mapped = -1;
3353 }
3354
3355 /* Function: section_is_mapped (SECTION)
3356 Returns true if section is an overlay, and is currently mapped.
3357
3358 Access to the ovly_mapped flag is restricted to this function, so
3359 that we can do automatic update. If the global flag
3360 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3361 overlay_invalidate_all. If the mapped state of the particular
3362 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3363
3364 int
3365 section_is_mapped (struct obj_section *osect)
3366 {
3367 struct gdbarch *gdbarch;
3368
3369 if (osect == 0 || !section_is_overlay (osect))
3370 return 0;
3371
3372 switch (overlay_debugging)
3373 {
3374 default:
3375 case ovly_off:
3376 return 0; /* overlay debugging off */
3377 case ovly_auto: /* overlay debugging automatic */
3378 /* Unles there is a gdbarch_overlay_update function,
3379 there's really nothing useful to do here (can't really go auto) */
3380 gdbarch = get_objfile_arch (osect->objfile);
3381 if (gdbarch_overlay_update_p (gdbarch))
3382 {
3383 if (overlay_cache_invalid)
3384 {
3385 overlay_invalidate_all ();
3386 overlay_cache_invalid = 0;
3387 }
3388 if (osect->ovly_mapped == -1)
3389 gdbarch_overlay_update (gdbarch, osect);
3390 }
3391 /* fall thru to manual case */
3392 case ovly_on: /* overlay debugging manual */
3393 return osect->ovly_mapped == 1;
3394 }
3395 }
3396
3397 /* Function: pc_in_unmapped_range
3398 If PC falls into the lma range of SECTION, return true, else false. */
3399
3400 CORE_ADDR
3401 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3402 {
3403 if (section_is_overlay (section))
3404 {
3405 bfd *abfd = section->objfile->obfd;
3406 asection *bfd_section = section->the_bfd_section;
3407
3408 /* We assume the LMA is relocated by the same offset as the VMA. */
3409 bfd_vma size = bfd_get_section_size (bfd_section);
3410 CORE_ADDR offset = obj_section_offset (section);
3411
3412 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3413 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3414 return 1;
3415 }
3416
3417 return 0;
3418 }
3419
3420 /* Function: pc_in_mapped_range
3421 If PC falls into the vma range of SECTION, return true, else false. */
3422
3423 CORE_ADDR
3424 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3425 {
3426 if (section_is_overlay (section))
3427 {
3428 if (obj_section_addr (section) <= pc
3429 && pc < obj_section_endaddr (section))
3430 return 1;
3431 }
3432
3433 return 0;
3434 }
3435
3436
3437 /* Return true if the mapped ranges of sections A and B overlap, false
3438 otherwise. */
3439 static int
3440 sections_overlap (struct obj_section *a, struct obj_section *b)
3441 {
3442 CORE_ADDR a_start = obj_section_addr (a);
3443 CORE_ADDR a_end = obj_section_endaddr (a);
3444 CORE_ADDR b_start = obj_section_addr (b);
3445 CORE_ADDR b_end = obj_section_endaddr (b);
3446
3447 return (a_start < b_end && b_start < a_end);
3448 }
3449
3450 /* Function: overlay_unmapped_address (PC, SECTION)
3451 Returns the address corresponding to PC in the unmapped (load) range.
3452 May be the same as PC. */
3453
3454 CORE_ADDR
3455 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3456 {
3457 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3458 {
3459 bfd *abfd = section->objfile->obfd;
3460 asection *bfd_section = section->the_bfd_section;
3461
3462 return pc + bfd_section_lma (abfd, bfd_section)
3463 - bfd_section_vma (abfd, bfd_section);
3464 }
3465
3466 return pc;
3467 }
3468
3469 /* Function: overlay_mapped_address (PC, SECTION)
3470 Returns the address corresponding to PC in the mapped (runtime) range.
3471 May be the same as PC. */
3472
3473 CORE_ADDR
3474 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3475 {
3476 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3477 {
3478 bfd *abfd = section->objfile->obfd;
3479 asection *bfd_section = section->the_bfd_section;
3480
3481 return pc + bfd_section_vma (abfd, bfd_section)
3482 - bfd_section_lma (abfd, bfd_section);
3483 }
3484
3485 return pc;
3486 }
3487
3488
3489 /* Function: symbol_overlayed_address
3490 Return one of two addresses (relative to the VMA or to the LMA),
3491 depending on whether the section is mapped or not. */
3492
3493 CORE_ADDR
3494 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3495 {
3496 if (overlay_debugging)
3497 {
3498 /* If the symbol has no section, just return its regular address. */
3499 if (section == 0)
3500 return address;
3501 /* If the symbol's section is not an overlay, just return its address */
3502 if (!section_is_overlay (section))
3503 return address;
3504 /* If the symbol's section is mapped, just return its address */
3505 if (section_is_mapped (section))
3506 return address;
3507 /*
3508 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3509 * then return its LOADED address rather than its vma address!!
3510 */
3511 return overlay_unmapped_address (address, section);
3512 }
3513 return address;
3514 }
3515
3516 /* Function: find_pc_overlay (PC)
3517 Return the best-match overlay section for PC:
3518 If PC matches a mapped overlay section's VMA, return that section.
3519 Else if PC matches an unmapped section's VMA, return that section.
3520 Else if PC matches an unmapped section's LMA, return that section. */
3521
3522 struct obj_section *
3523 find_pc_overlay (CORE_ADDR pc)
3524 {
3525 struct objfile *objfile;
3526 struct obj_section *osect, *best_match = NULL;
3527
3528 if (overlay_debugging)
3529 ALL_OBJSECTIONS (objfile, osect)
3530 if (section_is_overlay (osect))
3531 {
3532 if (pc_in_mapped_range (pc, osect))
3533 {
3534 if (section_is_mapped (osect))
3535 return osect;
3536 else
3537 best_match = osect;
3538 }
3539 else if (pc_in_unmapped_range (pc, osect))
3540 best_match = osect;
3541 }
3542 return best_match;
3543 }
3544
3545 /* Function: find_pc_mapped_section (PC)
3546 If PC falls into the VMA address range of an overlay section that is
3547 currently marked as MAPPED, return that section. Else return NULL. */
3548
3549 struct obj_section *
3550 find_pc_mapped_section (CORE_ADDR pc)
3551 {
3552 struct objfile *objfile;
3553 struct obj_section *osect;
3554
3555 if (overlay_debugging)
3556 ALL_OBJSECTIONS (objfile, osect)
3557 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3558 return osect;
3559
3560 return NULL;
3561 }
3562
3563 /* Function: list_overlays_command
3564 Print a list of mapped sections and their PC ranges */
3565
3566 void
3567 list_overlays_command (char *args, int from_tty)
3568 {
3569 int nmapped = 0;
3570 struct objfile *objfile;
3571 struct obj_section *osect;
3572
3573 if (overlay_debugging)
3574 ALL_OBJSECTIONS (objfile, osect)
3575 if (section_is_mapped (osect))
3576 {
3577 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3578 const char *name;
3579 bfd_vma lma, vma;
3580 int size;
3581
3582 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3583 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3584 size = bfd_get_section_size (osect->the_bfd_section);
3585 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3586
3587 printf_filtered ("Section %s, loaded at ", name);
3588 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3589 puts_filtered (" - ");
3590 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3591 printf_filtered (", mapped at ");
3592 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3593 puts_filtered (" - ");
3594 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3595 puts_filtered ("\n");
3596
3597 nmapped++;
3598 }
3599 if (nmapped == 0)
3600 printf_filtered (_("No sections are mapped.\n"));
3601 }
3602
3603 /* Function: map_overlay_command
3604 Mark the named section as mapped (ie. residing at its VMA address). */
3605
3606 void
3607 map_overlay_command (char *args, int from_tty)
3608 {
3609 struct objfile *objfile, *objfile2;
3610 struct obj_section *sec, *sec2;
3611
3612 if (!overlay_debugging)
3613 error (_("\
3614 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3615 the 'overlay manual' command."));
3616
3617 if (args == 0 || *args == 0)
3618 error (_("Argument required: name of an overlay section"));
3619
3620 /* First, find a section matching the user supplied argument */
3621 ALL_OBJSECTIONS (objfile, sec)
3622 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3623 {
3624 /* Now, check to see if the section is an overlay. */
3625 if (!section_is_overlay (sec))
3626 continue; /* not an overlay section */
3627
3628 /* Mark the overlay as "mapped" */
3629 sec->ovly_mapped = 1;
3630
3631 /* Next, make a pass and unmap any sections that are
3632 overlapped by this new section: */
3633 ALL_OBJSECTIONS (objfile2, sec2)
3634 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3635 {
3636 if (info_verbose)
3637 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3638 bfd_section_name (objfile->obfd,
3639 sec2->the_bfd_section));
3640 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3641 }
3642 return;
3643 }
3644 error (_("No overlay section called %s"), args);
3645 }
3646
3647 /* Function: unmap_overlay_command
3648 Mark the overlay section as unmapped
3649 (ie. resident in its LMA address range, rather than the VMA range). */
3650
3651 void
3652 unmap_overlay_command (char *args, int from_tty)
3653 {
3654 struct objfile *objfile;
3655 struct obj_section *sec;
3656
3657 if (!overlay_debugging)
3658 error (_("\
3659 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3660 the 'overlay manual' command."));
3661
3662 if (args == 0 || *args == 0)
3663 error (_("Argument required: name of an overlay section"));
3664
3665 /* First, find a section matching the user supplied argument */
3666 ALL_OBJSECTIONS (objfile, sec)
3667 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3668 {
3669 if (!sec->ovly_mapped)
3670 error (_("Section %s is not mapped"), args);
3671 sec->ovly_mapped = 0;
3672 return;
3673 }
3674 error (_("No overlay section called %s"), args);
3675 }
3676
3677 /* Function: overlay_auto_command
3678 A utility command to turn on overlay debugging.
3679 Possibly this should be done via a set/show command. */
3680
3681 static void
3682 overlay_auto_command (char *args, int from_tty)
3683 {
3684 overlay_debugging = ovly_auto;
3685 enable_overlay_breakpoints ();
3686 if (info_verbose)
3687 printf_unfiltered (_("Automatic overlay debugging enabled."));
3688 }
3689
3690 /* Function: overlay_manual_command
3691 A utility command to turn on overlay debugging.
3692 Possibly this should be done via a set/show command. */
3693
3694 static void
3695 overlay_manual_command (char *args, int from_tty)
3696 {
3697 overlay_debugging = ovly_on;
3698 disable_overlay_breakpoints ();
3699 if (info_verbose)
3700 printf_unfiltered (_("Overlay debugging enabled."));
3701 }
3702
3703 /* Function: overlay_off_command
3704 A utility command to turn on overlay debugging.
3705 Possibly this should be done via a set/show command. */
3706
3707 static void
3708 overlay_off_command (char *args, int from_tty)
3709 {
3710 overlay_debugging = ovly_off;
3711 disable_overlay_breakpoints ();
3712 if (info_verbose)
3713 printf_unfiltered (_("Overlay debugging disabled."));
3714 }
3715
3716 static void
3717 overlay_load_command (char *args, int from_tty)
3718 {
3719 struct gdbarch *gdbarch = get_current_arch ();
3720
3721 if (gdbarch_overlay_update_p (gdbarch))
3722 gdbarch_overlay_update (gdbarch, NULL);
3723 else
3724 error (_("This target does not know how to read its overlay state."));
3725 }
3726
3727 /* Function: overlay_command
3728 A place-holder for a mis-typed command */
3729
3730 /* Command list chain containing all defined "overlay" subcommands. */
3731 struct cmd_list_element *overlaylist;
3732
3733 static void
3734 overlay_command (char *args, int from_tty)
3735 {
3736 printf_unfiltered
3737 ("\"overlay\" must be followed by the name of an overlay command.\n");
3738 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3739 }
3740
3741
3742 /* Target Overlays for the "Simplest" overlay manager:
3743
3744 This is GDB's default target overlay layer. It works with the
3745 minimal overlay manager supplied as an example by Cygnus. The
3746 entry point is via a function pointer "gdbarch_overlay_update",
3747 so targets that use a different runtime overlay manager can
3748 substitute their own overlay_update function and take over the
3749 function pointer.
3750
3751 The overlay_update function pokes around in the target's data structures
3752 to see what overlays are mapped, and updates GDB's overlay mapping with
3753 this information.
3754
3755 In this simple implementation, the target data structures are as follows:
3756 unsigned _novlys; /# number of overlay sections #/
3757 unsigned _ovly_table[_novlys][4] = {
3758 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3759 {..., ..., ..., ...},
3760 }
3761 unsigned _novly_regions; /# number of overlay regions #/
3762 unsigned _ovly_region_table[_novly_regions][3] = {
3763 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3764 {..., ..., ...},
3765 }
3766 These functions will attempt to update GDB's mappedness state in the
3767 symbol section table, based on the target's mappedness state.
3768
3769 To do this, we keep a cached copy of the target's _ovly_table, and
3770 attempt to detect when the cached copy is invalidated. The main
3771 entry point is "simple_overlay_update(SECT), which looks up SECT in
3772 the cached table and re-reads only the entry for that section from
3773 the target (whenever possible).
3774 */
3775
3776 /* Cached, dynamically allocated copies of the target data structures: */
3777 static unsigned (*cache_ovly_table)[4] = 0;
3778 #if 0
3779 static unsigned (*cache_ovly_region_table)[3] = 0;
3780 #endif
3781 static unsigned cache_novlys = 0;
3782 #if 0
3783 static unsigned cache_novly_regions = 0;
3784 #endif
3785 static CORE_ADDR cache_ovly_table_base = 0;
3786 #if 0
3787 static CORE_ADDR cache_ovly_region_table_base = 0;
3788 #endif
3789 enum ovly_index
3790 {
3791 VMA, SIZE, LMA, MAPPED
3792 };
3793
3794 /* Throw away the cached copy of _ovly_table */
3795 static void
3796 simple_free_overlay_table (void)
3797 {
3798 if (cache_ovly_table)
3799 xfree (cache_ovly_table);
3800 cache_novlys = 0;
3801 cache_ovly_table = NULL;
3802 cache_ovly_table_base = 0;
3803 }
3804
3805 #if 0
3806 /* Throw away the cached copy of _ovly_region_table */
3807 static void
3808 simple_free_overlay_region_table (void)
3809 {
3810 if (cache_ovly_region_table)
3811 xfree (cache_ovly_region_table);
3812 cache_novly_regions = 0;
3813 cache_ovly_region_table = NULL;
3814 cache_ovly_region_table_base = 0;
3815 }
3816 #endif
3817
3818 /* Read an array of ints of size SIZE from the target into a local buffer.
3819 Convert to host order. int LEN is number of ints */
3820 static void
3821 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3822 int len, int size, enum bfd_endian byte_order)
3823 {
3824 /* FIXME (alloca): Not safe if array is very large. */
3825 gdb_byte *buf = alloca (len * size);
3826 int i;
3827
3828 read_memory (memaddr, buf, len * size);
3829 for (i = 0; i < len; i++)
3830 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3831 }
3832
3833 /* Find and grab a copy of the target _ovly_table
3834 (and _novlys, which is needed for the table's size) */
3835 static int
3836 simple_read_overlay_table (void)
3837 {
3838 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3839 struct gdbarch *gdbarch;
3840 int word_size;
3841 enum bfd_endian byte_order;
3842
3843 simple_free_overlay_table ();
3844 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3845 if (! novlys_msym)
3846 {
3847 error (_("Error reading inferior's overlay table: "
3848 "couldn't find `_novlys' variable\n"
3849 "in inferior. Use `overlay manual' mode."));
3850 return 0;
3851 }
3852
3853 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3854 if (! ovly_table_msym)
3855 {
3856 error (_("Error reading inferior's overlay table: couldn't find "
3857 "`_ovly_table' array\n"
3858 "in inferior. Use `overlay manual' mode."));
3859 return 0;
3860 }
3861
3862 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3863 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3864 byte_order = gdbarch_byte_order (gdbarch);
3865
3866 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3867 4, byte_order);
3868 cache_ovly_table
3869 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3870 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3871 read_target_long_array (cache_ovly_table_base,
3872 (unsigned int *) cache_ovly_table,
3873 cache_novlys * 4, word_size, byte_order);
3874
3875 return 1; /* SUCCESS */
3876 }
3877
3878 #if 0
3879 /* Find and grab a copy of the target _ovly_region_table
3880 (and _novly_regions, which is needed for the table's size) */
3881 static int
3882 simple_read_overlay_region_table (void)
3883 {
3884 struct minimal_symbol *msym;
3885 struct gdbarch *gdbarch;
3886 int word_size;
3887 enum bfd_endian byte_order;
3888
3889 simple_free_overlay_region_table ();
3890 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3891 if (msym == NULL)
3892 return 0; /* failure */
3893
3894 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3895 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3896 byte_order = gdbarch_byte_order (gdbarch);
3897
3898 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3899 4, byte_order);
3900
3901 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3902 if (cache_ovly_region_table != NULL)
3903 {
3904 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3905 if (msym != NULL)
3906 {
3907 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3908 read_target_long_array (cache_ovly_region_table_base,
3909 (unsigned int *) cache_ovly_region_table,
3910 cache_novly_regions * 3,
3911 word_size, byte_order);
3912 }
3913 else
3914 return 0; /* failure */
3915 }
3916 else
3917 return 0; /* failure */
3918 return 1; /* SUCCESS */
3919 }
3920 #endif
3921
3922 /* Function: simple_overlay_update_1
3923 A helper function for simple_overlay_update. Assuming a cached copy
3924 of _ovly_table exists, look through it to find an entry whose vma,
3925 lma and size match those of OSECT. Re-read the entry and make sure
3926 it still matches OSECT (else the table may no longer be valid).
3927 Set OSECT's mapped state to match the entry. Return: 1 for
3928 success, 0 for failure. */
3929
3930 static int
3931 simple_overlay_update_1 (struct obj_section *osect)
3932 {
3933 int i, size;
3934 bfd *obfd = osect->objfile->obfd;
3935 asection *bsect = osect->the_bfd_section;
3936 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3937 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3938 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3939
3940 size = bfd_get_section_size (osect->the_bfd_section);
3941 for (i = 0; i < cache_novlys; i++)
3942 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3943 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3944 /* && cache_ovly_table[i][SIZE] == size */ )
3945 {
3946 read_target_long_array (cache_ovly_table_base + i * word_size,
3947 (unsigned int *) cache_ovly_table[i],
3948 4, word_size, byte_order);
3949 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3950 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3951 /* && cache_ovly_table[i][SIZE] == size */ )
3952 {
3953 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3954 return 1;
3955 }
3956 else /* Warning! Warning! Target's ovly table has changed! */
3957 return 0;
3958 }
3959 return 0;
3960 }
3961
3962 /* Function: simple_overlay_update
3963 If OSECT is NULL, then update all sections' mapped state
3964 (after re-reading the entire target _ovly_table).
3965 If OSECT is non-NULL, then try to find a matching entry in the
3966 cached ovly_table and update only OSECT's mapped state.
3967 If a cached entry can't be found or the cache isn't valid, then
3968 re-read the entire cache, and go ahead and update all sections. */
3969
3970 void
3971 simple_overlay_update (struct obj_section *osect)
3972 {
3973 struct objfile *objfile;
3974
3975 /* Were we given an osect to look up? NULL means do all of them. */
3976 if (osect)
3977 /* Have we got a cached copy of the target's overlay table? */
3978 if (cache_ovly_table != NULL)
3979 /* Does its cached location match what's currently in the symtab? */
3980 if (cache_ovly_table_base ==
3981 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3982 /* Then go ahead and try to look up this single section in the cache */
3983 if (simple_overlay_update_1 (osect))
3984 /* Found it! We're done. */
3985 return;
3986
3987 /* Cached table no good: need to read the entire table anew.
3988 Or else we want all the sections, in which case it's actually
3989 more efficient to read the whole table in one block anyway. */
3990
3991 if (! simple_read_overlay_table ())
3992 return;
3993
3994 /* Now may as well update all sections, even if only one was requested. */
3995 ALL_OBJSECTIONS (objfile, osect)
3996 if (section_is_overlay (osect))
3997 {
3998 int i, size;
3999 bfd *obfd = osect->objfile->obfd;
4000 asection *bsect = osect->the_bfd_section;
4001
4002 size = bfd_get_section_size (bsect);
4003 for (i = 0; i < cache_novlys; i++)
4004 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
4005 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
4006 /* && cache_ovly_table[i][SIZE] == size */ )
4007 { /* obj_section matches i'th entry in ovly_table */
4008 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
4009 break; /* finished with inner for loop: break out */
4010 }
4011 }
4012 }
4013
4014 /* Set the output sections and output offsets for section SECTP in
4015 ABFD. The relocation code in BFD will read these offsets, so we
4016 need to be sure they're initialized. We map each section to itself,
4017 with no offset; this means that SECTP->vma will be honored. */
4018
4019 static void
4020 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
4021 {
4022 sectp->output_section = sectp;
4023 sectp->output_offset = 0;
4024 }
4025
4026 /* Relocate the contents of a debug section SECTP in ABFD. The
4027 contents are stored in BUF if it is non-NULL, or returned in a
4028 malloc'd buffer otherwise.
4029
4030 For some platforms and debug info formats, shared libraries contain
4031 relocations against the debug sections (particularly for DWARF-2;
4032 one affected platform is PowerPC GNU/Linux, although it depends on
4033 the version of the linker in use). Also, ELF object files naturally
4034 have unresolved relocations for their debug sections. We need to apply
4035 the relocations in order to get the locations of symbols correct.
4036 Another example that may require relocation processing, is the
4037 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
4038 debug section. */
4039
4040 bfd_byte *
4041 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
4042 {
4043 /* We're only interested in sections with relocation
4044 information. */
4045 if ((sectp->flags & SEC_RELOC) == 0)
4046 return NULL;
4047
4048 /* We will handle section offsets properly elsewhere, so relocate as if
4049 all sections begin at 0. */
4050 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
4051
4052 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
4053 }
4054
4055 struct symfile_segment_data *
4056 get_symfile_segment_data (bfd *abfd)
4057 {
4058 struct sym_fns *sf = find_sym_fns (abfd);
4059
4060 if (sf == NULL)
4061 return NULL;
4062
4063 return sf->sym_segments (abfd);
4064 }
4065
4066 void
4067 free_symfile_segment_data (struct symfile_segment_data *data)
4068 {
4069 xfree (data->segment_bases);
4070 xfree (data->segment_sizes);
4071 xfree (data->segment_info);
4072 xfree (data);
4073 }
4074
4075
4076 /* Given:
4077 - DATA, containing segment addresses from the object file ABFD, and
4078 the mapping from ABFD's sections onto the segments that own them,
4079 and
4080 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4081 segment addresses reported by the target,
4082 store the appropriate offsets for each section in OFFSETS.
4083
4084 If there are fewer entries in SEGMENT_BASES than there are segments
4085 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4086
4087 If there are more entries, then ignore the extra. The target may
4088 not be able to distinguish between an empty data segment and a
4089 missing data segment; a missing text segment is less plausible. */
4090 int
4091 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4092 struct section_offsets *offsets,
4093 int num_segment_bases,
4094 const CORE_ADDR *segment_bases)
4095 {
4096 int i;
4097 asection *sect;
4098
4099 /* It doesn't make sense to call this function unless you have some
4100 segment base addresses. */
4101 gdb_assert (segment_bases > 0);
4102
4103 /* If we do not have segment mappings for the object file, we
4104 can not relocate it by segments. */
4105 gdb_assert (data != NULL);
4106 gdb_assert (data->num_segments > 0);
4107
4108 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4109 {
4110 int which = data->segment_info[i];
4111
4112 gdb_assert (0 <= which && which <= data->num_segments);
4113
4114 /* Don't bother computing offsets for sections that aren't
4115 loaded as part of any segment. */
4116 if (! which)
4117 continue;
4118
4119 /* Use the last SEGMENT_BASES entry as the address of any extra
4120 segments mentioned in DATA->segment_info. */
4121 if (which > num_segment_bases)
4122 which = num_segment_bases;
4123
4124 offsets->offsets[i] = (segment_bases[which - 1]
4125 - data->segment_bases[which - 1]);
4126 }
4127
4128 return 1;
4129 }
4130
4131 static void
4132 symfile_find_segment_sections (struct objfile *objfile)
4133 {
4134 bfd *abfd = objfile->obfd;
4135 int i;
4136 asection *sect;
4137 struct symfile_segment_data *data;
4138
4139 data = get_symfile_segment_data (objfile->obfd);
4140 if (data == NULL)
4141 return;
4142
4143 if (data->num_segments != 1 && data->num_segments != 2)
4144 {
4145 free_symfile_segment_data (data);
4146 return;
4147 }
4148
4149 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4150 {
4151 CORE_ADDR vma;
4152 int which = data->segment_info[i];
4153
4154 if (which == 1)
4155 {
4156 if (objfile->sect_index_text == -1)
4157 objfile->sect_index_text = sect->index;
4158
4159 if (objfile->sect_index_rodata == -1)
4160 objfile->sect_index_rodata = sect->index;
4161 }
4162 else if (which == 2)
4163 {
4164 if (objfile->sect_index_data == -1)
4165 objfile->sect_index_data = sect->index;
4166
4167 if (objfile->sect_index_bss == -1)
4168 objfile->sect_index_bss = sect->index;
4169 }
4170 }
4171
4172 free_symfile_segment_data (data);
4173 }
4174
4175 void
4176 _initialize_symfile (void)
4177 {
4178 struct cmd_list_element *c;
4179
4180 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4181 Load symbol table from executable file FILE.\n\
4182 The `file' command can also load symbol tables, as well as setting the file\n\
4183 to execute."), &cmdlist);
4184 set_cmd_completer (c, filename_completer);
4185
4186 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4187 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4188 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4189 ADDR is the starting address of the file's text.\n\
4190 The optional arguments are section-name section-address pairs and\n\
4191 should be specified if the data and bss segments are not contiguous\n\
4192 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4193 &cmdlist);
4194 set_cmd_completer (c, filename_completer);
4195
4196 c = add_cmd ("load", class_files, load_command, _("\
4197 Dynamically load FILE into the running program, and record its symbols\n\
4198 for access from GDB.\n\
4199 A load OFFSET may also be given."), &cmdlist);
4200 set_cmd_completer (c, filename_completer);
4201
4202 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4203 &symbol_reloading, _("\
4204 Set dynamic symbol table reloading multiple times in one run."), _("\
4205 Show dynamic symbol table reloading multiple times in one run."), NULL,
4206 NULL,
4207 show_symbol_reloading,
4208 &setlist, &showlist);
4209
4210 add_prefix_cmd ("overlay", class_support, overlay_command,
4211 _("Commands for debugging overlays."), &overlaylist,
4212 "overlay ", 0, &cmdlist);
4213
4214 add_com_alias ("ovly", "overlay", class_alias, 1);
4215 add_com_alias ("ov", "overlay", class_alias, 1);
4216
4217 add_cmd ("map-overlay", class_support, map_overlay_command,
4218 _("Assert that an overlay section is mapped."), &overlaylist);
4219
4220 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4221 _("Assert that an overlay section is unmapped."), &overlaylist);
4222
4223 add_cmd ("list-overlays", class_support, list_overlays_command,
4224 _("List mappings of overlay sections."), &overlaylist);
4225
4226 add_cmd ("manual", class_support, overlay_manual_command,
4227 _("Enable overlay debugging."), &overlaylist);
4228 add_cmd ("off", class_support, overlay_off_command,
4229 _("Disable overlay debugging."), &overlaylist);
4230 add_cmd ("auto", class_support, overlay_auto_command,
4231 _("Enable automatic overlay debugging."), &overlaylist);
4232 add_cmd ("load-target", class_support, overlay_load_command,
4233 _("Read the overlay mapping state from the target."), &overlaylist);
4234
4235 /* Filename extension to source language lookup table: */
4236 init_filename_language_table ();
4237 add_setshow_string_noescape_cmd ("extension-language", class_files,
4238 &ext_args, _("\
4239 Set mapping between filename extension and source language."), _("\
4240 Show mapping between filename extension and source language."), _("\
4241 Usage: set extension-language .foo bar"),
4242 set_ext_lang_command,
4243 show_ext_args,
4244 &setlist, &showlist);
4245
4246 add_info ("extensions", info_ext_lang_command,
4247 _("All filename extensions associated with a source language."));
4248
4249 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4250 &debug_file_directory, _("\
4251 Set the directories where separate debug symbols are searched for."), _("\
4252 Show the directories where separate debug symbols are searched for."), _("\
4253 Separate debug symbols are first searched for in the same\n\
4254 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4255 and lastly at the path of the directory of the binary with\n\
4256 each global debug-file-directory component prepended."),
4257 NULL,
4258 show_debug_file_directory,
4259 &setlist, &showlist);
4260 }
This page took 0.303542 seconds and 4 git commands to generate.