cleanup fixes for inf-ptrace.c
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 bfd *symfile_bfd_open (char *);
95
96 int get_section_index (struct objfile *, char *);
97
98 static const struct sym_fns *find_sym_fns (bfd *);
99
100 static void decrement_reading_symtab (void *);
101
102 static void overlay_invalidate_all (void);
103
104 static void overlay_auto_command (char *, int);
105
106 static void overlay_manual_command (char *, int);
107
108 static void overlay_off_command (char *, int);
109
110 static void overlay_load_command (char *, int);
111
112 static void overlay_command (char *, int);
113
114 static void simple_free_overlay_table (void);
115
116 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
118
119 static int simple_read_overlay_table (void);
120
121 static int simple_overlay_update_1 (struct obj_section *);
122
123 static void add_filename_language (char *ext, enum language lang);
124
125 static void info_ext_lang_command (char *args, int from_tty);
126
127 static void init_filename_language_table (void);
128
129 static void symfile_find_segment_sections (struct objfile *objfile);
130
131 void _initialize_symfile (void);
132
133 /* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
135 prepared to read. */
136
137 typedef const struct sym_fns *sym_fns_ptr;
138 DEF_VEC_P (sym_fns_ptr);
139
140 static VEC (sym_fns_ptr) *symtab_fns = NULL;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153 \f
154
155 /* True if we are reading a symbol table. */
156
157 int currently_reading_symtab = 0;
158
159 static void
160 decrement_reading_symtab (void *dummy)
161 {
162 currently_reading_symtab--;
163 gdb_assert (currently_reading_symtab >= 0);
164 }
165
166 /* Increment currently_reading_symtab and return a cleanup that can be
167 used to decrement it. */
168
169 struct cleanup *
170 increment_reading_symtab (void)
171 {
172 ++currently_reading_symtab;
173 gdb_assert (currently_reading_symtab > 0);
174 return make_cleanup (decrement_reading_symtab, NULL);
175 }
176
177 /* Remember the lowest-addressed loadable section we've seen.
178 This function is called via bfd_map_over_sections.
179
180 In case of equal vmas, the section with the largest size becomes the
181 lowest-addressed loadable section.
182
183 If the vmas and sizes are equal, the last section is considered the
184 lowest-addressed loadable section. */
185
186 void
187 find_lowest_section (bfd *abfd, asection *sect, void *obj)
188 {
189 asection **lowest = (asection **) obj;
190
191 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
192 return;
193 if (!*lowest)
194 *lowest = sect; /* First loadable section */
195 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
196 *lowest = sect; /* A lower loadable section */
197 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
198 && (bfd_section_size (abfd, (*lowest))
199 <= bfd_section_size (abfd, sect)))
200 *lowest = sect;
201 }
202
203 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
204 new object's 'num_sections' field is set to 0; it must be updated
205 by the caller. */
206
207 struct section_addr_info *
208 alloc_section_addr_info (size_t num_sections)
209 {
210 struct section_addr_info *sap;
211 size_t size;
212
213 size = (sizeof (struct section_addr_info)
214 + sizeof (struct other_sections) * (num_sections - 1));
215 sap = (struct section_addr_info *) xmalloc (size);
216 memset (sap, 0, size);
217
218 return sap;
219 }
220
221 /* Build (allocate and populate) a section_addr_info struct from
222 an existing section table. */
223
224 extern struct section_addr_info *
225 build_section_addr_info_from_section_table (const struct target_section *start,
226 const struct target_section *end)
227 {
228 struct section_addr_info *sap;
229 const struct target_section *stp;
230 int oidx;
231
232 sap = alloc_section_addr_info (end - start);
233
234 for (stp = start, oidx = 0; stp != end; stp++)
235 {
236 if (bfd_get_section_flags (stp->bfd,
237 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
238 && oidx < end - start)
239 {
240 sap->other[oidx].addr = stp->addr;
241 sap->other[oidx].name
242 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
243 sap->other[oidx].sectindex
244 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
245 oidx++;
246 }
247 }
248
249 sap->num_sections = oidx;
250
251 return sap;
252 }
253
254 /* Create a section_addr_info from section offsets in ABFD. */
255
256 static struct section_addr_info *
257 build_section_addr_info_from_bfd (bfd *abfd)
258 {
259 struct section_addr_info *sap;
260 int i;
261 struct bfd_section *sec;
262
263 sap = alloc_section_addr_info (bfd_count_sections (abfd));
264 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
265 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
266 {
267 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
268 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
269 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
270 i++;
271 }
272
273 sap->num_sections = i;
274
275 return sap;
276 }
277
278 /* Create a section_addr_info from section offsets in OBJFILE. */
279
280 struct section_addr_info *
281 build_section_addr_info_from_objfile (const struct objfile *objfile)
282 {
283 struct section_addr_info *sap;
284 int i;
285
286 /* Before reread_symbols gets rewritten it is not safe to call:
287 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
288 */
289 sap = build_section_addr_info_from_bfd (objfile->obfd);
290 for (i = 0; i < sap->num_sections; i++)
291 {
292 int sectindex = sap->other[i].sectindex;
293
294 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
295 }
296 return sap;
297 }
298
299 /* Free all memory allocated by build_section_addr_info_from_section_table. */
300
301 extern void
302 free_section_addr_info (struct section_addr_info *sap)
303 {
304 int idx;
305
306 for (idx = 0; idx < sap->num_sections; idx++)
307 xfree (sap->other[idx].name);
308 xfree (sap);
309 }
310
311 /* Initialize OBJFILE's sect_index_* members. */
312
313 static void
314 init_objfile_sect_indices (struct objfile *objfile)
315 {
316 asection *sect;
317 int i;
318
319 sect = bfd_get_section_by_name (objfile->obfd, ".text");
320 if (sect)
321 objfile->sect_index_text = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".data");
324 if (sect)
325 objfile->sect_index_data = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
328 if (sect)
329 objfile->sect_index_bss = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
332 if (sect)
333 objfile->sect_index_rodata = sect->index;
334
335 /* This is where things get really weird... We MUST have valid
336 indices for the various sect_index_* members or gdb will abort.
337 So if for example, there is no ".text" section, we have to
338 accomodate that. First, check for a file with the standard
339 one or two segments. */
340
341 symfile_find_segment_sections (objfile);
342
343 /* Except when explicitly adding symbol files at some address,
344 section_offsets contains nothing but zeros, so it doesn't matter
345 which slot in section_offsets the individual sect_index_* members
346 index into. So if they are all zero, it is safe to just point
347 all the currently uninitialized indices to the first slot. But
348 beware: if this is the main executable, it may be relocated
349 later, e.g. by the remote qOffsets packet, and then this will
350 be wrong! That's why we try segments first. */
351
352 for (i = 0; i < objfile->num_sections; i++)
353 {
354 if (ANOFFSET (objfile->section_offsets, i) != 0)
355 {
356 break;
357 }
358 }
359 if (i == objfile->num_sections)
360 {
361 if (objfile->sect_index_text == -1)
362 objfile->sect_index_text = 0;
363 if (objfile->sect_index_data == -1)
364 objfile->sect_index_data = 0;
365 if (objfile->sect_index_bss == -1)
366 objfile->sect_index_bss = 0;
367 if (objfile->sect_index_rodata == -1)
368 objfile->sect_index_rodata = 0;
369 }
370 }
371
372 /* The arguments to place_section. */
373
374 struct place_section_arg
375 {
376 struct section_offsets *offsets;
377 CORE_ADDR lowest;
378 };
379
380 /* Find a unique offset to use for loadable section SECT if
381 the user did not provide an offset. */
382
383 static void
384 place_section (bfd *abfd, asection *sect, void *obj)
385 {
386 struct place_section_arg *arg = obj;
387 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
388 int done;
389 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
390
391 /* We are only interested in allocated sections. */
392 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
393 return;
394
395 /* If the user specified an offset, honor it. */
396 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
397 return;
398
399 /* Otherwise, let's try to find a place for the section. */
400 start_addr = (arg->lowest + align - 1) & -align;
401
402 do {
403 asection *cur_sec;
404
405 done = 1;
406
407 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
408 {
409 int indx = cur_sec->index;
410
411 /* We don't need to compare against ourself. */
412 if (cur_sec == sect)
413 continue;
414
415 /* We can only conflict with allocated sections. */
416 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
417 continue;
418
419 /* If the section offset is 0, either the section has not been placed
420 yet, or it was the lowest section placed (in which case LOWEST
421 will be past its end). */
422 if (offsets[indx] == 0)
423 continue;
424
425 /* If this section would overlap us, then we must move up. */
426 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
427 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
428 {
429 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
430 start_addr = (start_addr + align - 1) & -align;
431 done = 0;
432 break;
433 }
434
435 /* Otherwise, we appear to be OK. So far. */
436 }
437 }
438 while (!done);
439
440 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
441 arg->lowest = start_addr + bfd_get_section_size (sect);
442 }
443
444 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
445 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
446 entries. */
447
448 void
449 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
450 int num_sections,
451 const struct section_addr_info *addrs)
452 {
453 int i;
454
455 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
456
457 /* Now calculate offsets for section that were specified by the caller. */
458 for (i = 0; i < addrs->num_sections; i++)
459 {
460 const struct other_sections *osp;
461
462 osp = &addrs->other[i];
463 if (osp->sectindex == -1)
464 continue;
465
466 /* Record all sections in offsets. */
467 /* The section_offsets in the objfile are here filled in using
468 the BFD index. */
469 section_offsets->offsets[osp->sectindex] = osp->addr;
470 }
471 }
472
473 /* Transform section name S for a name comparison. prelink can split section
474 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
475 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
476 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
477 (`.sbss') section has invalid (increased) virtual address. */
478
479 static const char *
480 addr_section_name (const char *s)
481 {
482 if (strcmp (s, ".dynbss") == 0)
483 return ".bss";
484 if (strcmp (s, ".sdynbss") == 0)
485 return ".sbss";
486
487 return s;
488 }
489
490 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
491 their (name, sectindex) pair. sectindex makes the sort by name stable. */
492
493 static int
494 addrs_section_compar (const void *ap, const void *bp)
495 {
496 const struct other_sections *a = *((struct other_sections **) ap);
497 const struct other_sections *b = *((struct other_sections **) bp);
498 int retval;
499
500 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
501 if (retval)
502 return retval;
503
504 return a->sectindex - b->sectindex;
505 }
506
507 /* Provide sorted array of pointers to sections of ADDRS. The array is
508 terminated by NULL. Caller is responsible to call xfree for it. */
509
510 static struct other_sections **
511 addrs_section_sort (struct section_addr_info *addrs)
512 {
513 struct other_sections **array;
514 int i;
515
516 /* `+ 1' for the NULL terminator. */
517 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
518 for (i = 0; i < addrs->num_sections; i++)
519 array[i] = &addrs->other[i];
520 array[i] = NULL;
521
522 qsort (array, i, sizeof (*array), addrs_section_compar);
523
524 return array;
525 }
526
527 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
528 also SECTINDEXes specific to ABFD there. This function can be used to
529 rebase ADDRS to start referencing different BFD than before. */
530
531 void
532 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
533 {
534 asection *lower_sect;
535 CORE_ADDR lower_offset;
536 int i;
537 struct cleanup *my_cleanup;
538 struct section_addr_info *abfd_addrs;
539 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
540 struct other_sections **addrs_to_abfd_addrs;
541
542 /* Find lowest loadable section to be used as starting point for
543 continguous sections. */
544 lower_sect = NULL;
545 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
546 if (lower_sect == NULL)
547 {
548 warning (_("no loadable sections found in added symbol-file %s"),
549 bfd_get_filename (abfd));
550 lower_offset = 0;
551 }
552 else
553 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
554
555 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
556 in ABFD. Section names are not unique - there can be multiple sections of
557 the same name. Also the sections of the same name do not have to be
558 adjacent to each other. Some sections may be present only in one of the
559 files. Even sections present in both files do not have to be in the same
560 order.
561
562 Use stable sort by name for the sections in both files. Then linearly
563 scan both lists matching as most of the entries as possible. */
564
565 addrs_sorted = addrs_section_sort (addrs);
566 my_cleanup = make_cleanup (xfree, addrs_sorted);
567
568 abfd_addrs = build_section_addr_info_from_bfd (abfd);
569 make_cleanup_free_section_addr_info (abfd_addrs);
570 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
571 make_cleanup (xfree, abfd_addrs_sorted);
572
573 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
574 ABFD_ADDRS_SORTED. */
575
576 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
577 * addrs->num_sections);
578 make_cleanup (xfree, addrs_to_abfd_addrs);
579
580 while (*addrs_sorted)
581 {
582 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
583
584 while (*abfd_addrs_sorted
585 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
586 sect_name) < 0)
587 abfd_addrs_sorted++;
588
589 if (*abfd_addrs_sorted
590 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
591 sect_name) == 0)
592 {
593 int index_in_addrs;
594
595 /* Make the found item directly addressable from ADDRS. */
596 index_in_addrs = *addrs_sorted - addrs->other;
597 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
598 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
599
600 /* Never use the same ABFD entry twice. */
601 abfd_addrs_sorted++;
602 }
603
604 addrs_sorted++;
605 }
606
607 /* Calculate offsets for the loadable sections.
608 FIXME! Sections must be in order of increasing loadable section
609 so that contiguous sections can use the lower-offset!!!
610
611 Adjust offsets if the segments are not contiguous.
612 If the section is contiguous, its offset should be set to
613 the offset of the highest loadable section lower than it
614 (the loadable section directly below it in memory).
615 this_offset = lower_offset = lower_addr - lower_orig_addr */
616
617 for (i = 0; i < addrs->num_sections; i++)
618 {
619 struct other_sections *sect = addrs_to_abfd_addrs[i];
620
621 if (sect)
622 {
623 /* This is the index used by BFD. */
624 addrs->other[i].sectindex = sect->sectindex;
625
626 if (addrs->other[i].addr != 0)
627 {
628 addrs->other[i].addr -= sect->addr;
629 lower_offset = addrs->other[i].addr;
630 }
631 else
632 addrs->other[i].addr = lower_offset;
633 }
634 else
635 {
636 /* addr_section_name transformation is not used for SECT_NAME. */
637 const char *sect_name = addrs->other[i].name;
638
639 /* This section does not exist in ABFD, which is normally
640 unexpected and we want to issue a warning.
641
642 However, the ELF prelinker does create a few sections which are
643 marked in the main executable as loadable (they are loaded in
644 memory from the DYNAMIC segment) and yet are not present in
645 separate debug info files. This is fine, and should not cause
646 a warning. Shared libraries contain just the section
647 ".gnu.liblist" but it is not marked as loadable there. There is
648 no other way to identify them than by their name as the sections
649 created by prelink have no special flags.
650
651 For the sections `.bss' and `.sbss' see addr_section_name. */
652
653 if (!(strcmp (sect_name, ".gnu.liblist") == 0
654 || strcmp (sect_name, ".gnu.conflict") == 0
655 || (strcmp (sect_name, ".bss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)
659 || (strcmp (sect_name, ".sbss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)))
663 warning (_("section %s not found in %s"), sect_name,
664 bfd_get_filename (abfd));
665
666 addrs->other[i].addr = 0;
667 addrs->other[i].sectindex = -1;
668 }
669 }
670
671 do_cleanups (my_cleanup);
672 }
673
674 /* Parse the user's idea of an offset for dynamic linking, into our idea
675 of how to represent it for fast symbol reading. This is the default
676 version of the sym_fns.sym_offsets function for symbol readers that
677 don't need to do anything special. It allocates a section_offsets table
678 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
679
680 void
681 default_symfile_offsets (struct objfile *objfile,
682 const struct section_addr_info *addrs)
683 {
684 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
685 objfile->section_offsets = (struct section_offsets *)
686 obstack_alloc (&objfile->objfile_obstack,
687 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
688 relative_addr_info_to_section_offsets (objfile->section_offsets,
689 objfile->num_sections, addrs);
690
691 /* For relocatable files, all loadable sections will start at zero.
692 The zero is meaningless, so try to pick arbitrary addresses such
693 that no loadable sections overlap. This algorithm is quadratic,
694 but the number of sections in a single object file is generally
695 small. */
696 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
697 {
698 struct place_section_arg arg;
699 bfd *abfd = objfile->obfd;
700 asection *cur_sec;
701
702 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
703 /* We do not expect this to happen; just skip this step if the
704 relocatable file has a section with an assigned VMA. */
705 if (bfd_section_vma (abfd, cur_sec) != 0)
706 break;
707
708 if (cur_sec == NULL)
709 {
710 CORE_ADDR *offsets = objfile->section_offsets->offsets;
711
712 /* Pick non-overlapping offsets for sections the user did not
713 place explicitly. */
714 arg.offsets = objfile->section_offsets;
715 arg.lowest = 0;
716 bfd_map_over_sections (objfile->obfd, place_section, &arg);
717
718 /* Correctly filling in the section offsets is not quite
719 enough. Relocatable files have two properties that
720 (most) shared objects do not:
721
722 - Their debug information will contain relocations. Some
723 shared libraries do also, but many do not, so this can not
724 be assumed.
725
726 - If there are multiple code sections they will be loaded
727 at different relative addresses in memory than they are
728 in the objfile, since all sections in the file will start
729 at address zero.
730
731 Because GDB has very limited ability to map from an
732 address in debug info to the correct code section,
733 it relies on adding SECT_OFF_TEXT to things which might be
734 code. If we clear all the section offsets, and set the
735 section VMAs instead, then symfile_relocate_debug_section
736 will return meaningful debug information pointing at the
737 correct sections.
738
739 GDB has too many different data structures for section
740 addresses - a bfd, objfile, and so_list all have section
741 tables, as does exec_ops. Some of these could probably
742 be eliminated. */
743
744 for (cur_sec = abfd->sections; cur_sec != NULL;
745 cur_sec = cur_sec->next)
746 {
747 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
748 continue;
749
750 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
751 exec_set_section_address (bfd_get_filename (abfd),
752 cur_sec->index,
753 offsets[cur_sec->index]);
754 offsets[cur_sec->index] = 0;
755 }
756 }
757 }
758
759 /* Remember the bfd indexes for the .text, .data, .bss and
760 .rodata sections. */
761 init_objfile_sect_indices (objfile);
762 }
763
764 /* Divide the file into segments, which are individual relocatable units.
765 This is the default version of the sym_fns.sym_segments function for
766 symbol readers that do not have an explicit representation of segments.
767 It assumes that object files do not have segments, and fully linked
768 files have a single segment. */
769
770 struct symfile_segment_data *
771 default_symfile_segments (bfd *abfd)
772 {
773 int num_sections, i;
774 asection *sect;
775 struct symfile_segment_data *data;
776 CORE_ADDR low, high;
777
778 /* Relocatable files contain enough information to position each
779 loadable section independently; they should not be relocated
780 in segments. */
781 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
782 return NULL;
783
784 /* Make sure there is at least one loadable section in the file. */
785 for (sect = abfd->sections; sect != NULL; sect = sect->next)
786 {
787 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
788 continue;
789
790 break;
791 }
792 if (sect == NULL)
793 return NULL;
794
795 low = bfd_get_section_vma (abfd, sect);
796 high = low + bfd_get_section_size (sect);
797
798 data = XZALLOC (struct symfile_segment_data);
799 data->num_segments = 1;
800 data->segment_bases = XCALLOC (1, CORE_ADDR);
801 data->segment_sizes = XCALLOC (1, CORE_ADDR);
802
803 num_sections = bfd_count_sections (abfd);
804 data->segment_info = XCALLOC (num_sections, int);
805
806 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
807 {
808 CORE_ADDR vma;
809
810 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
811 continue;
812
813 vma = bfd_get_section_vma (abfd, sect);
814 if (vma < low)
815 low = vma;
816 if (vma + bfd_get_section_size (sect) > high)
817 high = vma + bfd_get_section_size (sect);
818
819 data->segment_info[i] = 1;
820 }
821
822 data->segment_bases[0] = low;
823 data->segment_sizes[0] = high - low;
824
825 return data;
826 }
827
828 /* This is a convenience function to call sym_read for OBJFILE and
829 possibly force the partial symbols to be read. */
830
831 static void
832 read_symbols (struct objfile *objfile, int add_flags)
833 {
834 (*objfile->sf->sym_read) (objfile, add_flags);
835
836 /* find_separate_debug_file_in_section should be called only if there is
837 single binary with no existing separate debug info file. */
838 if (!objfile_has_partial_symbols (objfile)
839 && objfile->separate_debug_objfile == NULL
840 && objfile->separate_debug_objfile_backlink == NULL)
841 {
842 bfd *abfd = find_separate_debug_file_in_section (objfile);
843 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
844
845 if (abfd != NULL)
846 symbol_file_add_separate (abfd, add_flags, objfile);
847
848 do_cleanups (cleanup);
849 }
850 if ((add_flags & SYMFILE_NO_READ) == 0)
851 require_partial_symbols (objfile, 0);
852 }
853
854 /* Initialize entry point information for this objfile. */
855
856 static void
857 init_entry_point_info (struct objfile *objfile)
858 {
859 /* Save startup file's range of PC addresses to help blockframe.c
860 decide where the bottom of the stack is. */
861
862 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
863 {
864 /* Executable file -- record its entry point so we'll recognize
865 the startup file because it contains the entry point. */
866 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
867 objfile->ei.entry_point_p = 1;
868 }
869 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
870 && bfd_get_start_address (objfile->obfd) != 0)
871 {
872 /* Some shared libraries may have entry points set and be
873 runnable. There's no clear way to indicate this, so just check
874 for values other than zero. */
875 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
876 objfile->ei.entry_point_p = 1;
877 }
878 else
879 {
880 /* Examination of non-executable.o files. Short-circuit this stuff. */
881 objfile->ei.entry_point_p = 0;
882 }
883
884 if (objfile->ei.entry_point_p)
885 {
886 CORE_ADDR entry_point = objfile->ei.entry_point;
887
888 /* Make certain that the address points at real code, and not a
889 function descriptor. */
890 entry_point
891 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
892 entry_point,
893 &current_target);
894
895 /* Remove any ISA markers, so that this matches entries in the
896 symbol table. */
897 objfile->ei.entry_point
898 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
899 }
900 }
901
902 /* Process a symbol file, as either the main file or as a dynamically
903 loaded file.
904
905 This function does not set the OBJFILE's entry-point info.
906
907 OBJFILE is where the symbols are to be read from.
908
909 ADDRS is the list of section load addresses. If the user has given
910 an 'add-symbol-file' command, then this is the list of offsets and
911 addresses he or she provided as arguments to the command; or, if
912 we're handling a shared library, these are the actual addresses the
913 sections are loaded at, according to the inferior's dynamic linker
914 (as gleaned by GDB's shared library code). We convert each address
915 into an offset from the section VMA's as it appears in the object
916 file, and then call the file's sym_offsets function to convert this
917 into a format-specific offset table --- a `struct section_offsets'.
918
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
922
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 struct section_addr_info *addrs,
926 int add_flags)
927 {
928 struct section_addr_info *local_addr = NULL;
929 struct cleanup *old_chain;
930 const int mainline = add_flags & SYMFILE_MAINLINE;
931
932 objfile->sf = find_sym_fns (objfile->obfd);
933
934 if (objfile->sf == NULL)
935 {
936 /* No symbols to load, but we still need to make sure
937 that the section_offsets table is allocated. */
938 int num_sections = gdb_bfd_count_sections (objfile->obfd);
939 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
940
941 objfile->num_sections = num_sections;
942 objfile->section_offsets
943 = obstack_alloc (&objfile->objfile_obstack, size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
947
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 old_chain = make_cleanup_free_objfile (objfile);
951
952 /* If ADDRS is NULL, put together a dummy address list.
953 We now establish the convention that an addr of zero means
954 no load address was specified. */
955 if (! addrs)
956 {
957 local_addr = alloc_section_addr_info (1);
958 make_cleanup (xfree, local_addr);
959 addrs = local_addr;
960 }
961
962 if (mainline)
963 {
964 /* We will modify the main symbol table, make sure that all its users
965 will be cleaned up if an error occurs during symbol reading. */
966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
973 gdb_assert (symfile_objfile == NULL);
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
980
981 (*objfile->sf->sym_new_init) (objfile);
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
986 and assume that <addr> is where that got loaded.
987
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
990 if (addrs->num_sections > 0)
991 addr_info_make_relative (addrs, objfile->obfd);
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
995 initial symbol reading for this file. */
996
997 (*objfile->sf->sym_init) (objfile);
998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
999
1000 (*objfile->sf->sym_offsets) (objfile, addrs);
1001
1002 read_symbols (objfile, add_flags);
1003
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
1007 xfree (local_addr);
1008 }
1009
1010 /* Same as syms_from_objfile_1, but also initializes the objfile
1011 entry-point info. */
1012
1013 static void
1014 syms_from_objfile (struct objfile *objfile,
1015 struct section_addr_info *addrs,
1016 int add_flags)
1017 {
1018 syms_from_objfile_1 (objfile, addrs, add_flags);
1019 init_entry_point_info (objfile);
1020 }
1021
1022 /* Perform required actions after either reading in the initial
1023 symbols for a new objfile, or mapping in the symbols from a reusable
1024 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1025
1026 void
1027 new_symfile_objfile (struct objfile *objfile, int add_flags)
1028 {
1029 /* If this is the main symbol file we have to clean up all users of the
1030 old main symbol file. Otherwise it is sufficient to fixup all the
1031 breakpoints that may have been redefined by this symbol file. */
1032 if (add_flags & SYMFILE_MAINLINE)
1033 {
1034 /* OK, make it the "real" symbol file. */
1035 symfile_objfile = objfile;
1036
1037 clear_symtab_users (add_flags);
1038 }
1039 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1040 {
1041 breakpoint_re_set ();
1042 }
1043
1044 /* We're done reading the symbol file; finish off complaints. */
1045 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1046 }
1047
1048 /* Process a symbol file, as either the main file or as a dynamically
1049 loaded file.
1050
1051 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1052 A new reference is acquired by this function.
1053
1054 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1055 extra, such as dynamically loaded code, and what to do with breakpoins.
1056
1057 ADDRS is as described for syms_from_objfile_1, above.
1058 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1059
1060 PARENT is the original objfile if ABFD is a separate debug info file.
1061 Otherwise PARENT is NULL.
1062
1063 Upon success, returns a pointer to the objfile that was added.
1064 Upon failure, jumps back to command level (never returns). */
1065
1066 static struct objfile *
1067 symbol_file_add_with_addrs (bfd *abfd, int add_flags,
1068 struct section_addr_info *addrs,
1069 int flags, struct objfile *parent)
1070 {
1071 struct objfile *objfile;
1072 const char *name = bfd_get_filename (abfd);
1073 const int from_tty = add_flags & SYMFILE_VERBOSE;
1074 const int mainline = add_flags & SYMFILE_MAINLINE;
1075 const int should_print = ((from_tty || info_verbose)
1076 && (readnow_symbol_files
1077 || (add_flags & SYMFILE_NO_READ) == 0));
1078
1079 if (readnow_symbol_files)
1080 {
1081 flags |= OBJF_READNOW;
1082 add_flags &= ~SYMFILE_NO_READ;
1083 }
1084
1085 /* Give user a chance to burp if we'd be
1086 interactively wiping out any existing symbols. */
1087
1088 if ((have_full_symbols () || have_partial_symbols ())
1089 && mainline
1090 && from_tty
1091 && !query (_("Load new symbol table from \"%s\"? "), name))
1092 error (_("Not confirmed."));
1093
1094 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1095
1096 if (parent)
1097 add_separate_debug_objfile (objfile, parent);
1098
1099 /* We either created a new mapped symbol table, mapped an existing
1100 symbol table file which has not had initial symbol reading
1101 performed, or need to read an unmapped symbol table. */
1102 if (should_print)
1103 {
1104 if (deprecated_pre_add_symbol_hook)
1105 deprecated_pre_add_symbol_hook (name);
1106 else
1107 {
1108 printf_unfiltered (_("Reading symbols from %s..."), name);
1109 wrap_here ("");
1110 gdb_flush (gdb_stdout);
1111 }
1112 }
1113 syms_from_objfile (objfile, addrs, add_flags);
1114
1115 /* We now have at least a partial symbol table. Check to see if the
1116 user requested that all symbols be read on initial access via either
1117 the gdb startup command line or on a per symbol file basis. Expand
1118 all partial symbol tables for this objfile if so. */
1119
1120 if ((flags & OBJF_READNOW))
1121 {
1122 if (should_print)
1123 {
1124 printf_unfiltered (_("expanding to full symbols..."));
1125 wrap_here ("");
1126 gdb_flush (gdb_stdout);
1127 }
1128
1129 if (objfile->sf)
1130 objfile->sf->qf->expand_all_symtabs (objfile);
1131 }
1132
1133 if (should_print && !objfile_has_symbols (objfile))
1134 {
1135 wrap_here ("");
1136 printf_unfiltered (_("(no debugging symbols found)..."));
1137 wrap_here ("");
1138 }
1139
1140 if (should_print)
1141 {
1142 if (deprecated_post_add_symbol_hook)
1143 deprecated_post_add_symbol_hook ();
1144 else
1145 printf_unfiltered (_("done.\n"));
1146 }
1147
1148 /* We print some messages regardless of whether 'from_tty ||
1149 info_verbose' is true, so make sure they go out at the right
1150 time. */
1151 gdb_flush (gdb_stdout);
1152
1153 if (objfile->sf == NULL)
1154 {
1155 observer_notify_new_objfile (objfile);
1156 return objfile; /* No symbols. */
1157 }
1158
1159 new_symfile_objfile (objfile, add_flags);
1160
1161 observer_notify_new_objfile (objfile);
1162
1163 bfd_cache_close_all ();
1164 return (objfile);
1165 }
1166
1167 /* Add BFD as a separate debug file for OBJFILE. */
1168
1169 void
1170 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1171 {
1172 struct objfile *new_objfile;
1173 struct section_addr_info *sap;
1174 struct cleanup *my_cleanup;
1175
1176 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1177 because sections of BFD may not match sections of OBJFILE and because
1178 vma may have been modified by tools such as prelink. */
1179 sap = build_section_addr_info_from_objfile (objfile);
1180 my_cleanup = make_cleanup_free_section_addr_info (sap);
1181
1182 new_objfile = symbol_file_add_with_addrs
1183 (bfd, symfile_flags, sap,
1184 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1185 | OBJF_USERLOADED),
1186 objfile);
1187
1188 do_cleanups (my_cleanup);
1189 }
1190
1191 /* Process the symbol file ABFD, as either the main file or as a
1192 dynamically loaded file.
1193 See symbol_file_add_with_addrs's comments for details. */
1194
1195 struct objfile *
1196 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1197 struct section_addr_info *addrs,
1198 int flags, struct objfile *parent)
1199 {
1200 return symbol_file_add_with_addrs (abfd, add_flags, addrs, flags, parent);
1201 }
1202
1203 /* Process a symbol file, as either the main file or as a dynamically
1204 loaded file. See symbol_file_add_with_addrs's comments for details. */
1205
1206 struct objfile *
1207 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1208 int flags)
1209 {
1210 bfd *bfd = symfile_bfd_open (name);
1211 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1212 struct objfile *objf;
1213
1214 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1215 do_cleanups (cleanup);
1216 return objf;
1217 }
1218
1219 /* Call symbol_file_add() with default values and update whatever is
1220 affected by the loading of a new main().
1221 Used when the file is supplied in the gdb command line
1222 and by some targets with special loading requirements.
1223 The auxiliary function, symbol_file_add_main_1(), has the flags
1224 argument for the switches that can only be specified in the symbol_file
1225 command itself. */
1226
1227 void
1228 symbol_file_add_main (char *args, int from_tty)
1229 {
1230 symbol_file_add_main_1 (args, from_tty, 0);
1231 }
1232
1233 static void
1234 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1235 {
1236 const int add_flags = (current_inferior ()->symfile_flags
1237 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1238
1239 symbol_file_add (args, add_flags, NULL, flags);
1240
1241 /* Getting new symbols may change our opinion about
1242 what is frameless. */
1243 reinit_frame_cache ();
1244
1245 if ((flags & SYMFILE_NO_READ) == 0)
1246 set_initial_language ();
1247 }
1248
1249 void
1250 symbol_file_clear (int from_tty)
1251 {
1252 if ((have_full_symbols () || have_partial_symbols ())
1253 && from_tty
1254 && (symfile_objfile
1255 ? !query (_("Discard symbol table from `%s'? "),
1256 symfile_objfile->name)
1257 : !query (_("Discard symbol table? "))))
1258 error (_("Not confirmed."));
1259
1260 /* solib descriptors may have handles to objfiles. Wipe them before their
1261 objfiles get stale by free_all_objfiles. */
1262 no_shared_libraries (NULL, from_tty);
1263
1264 free_all_objfiles ();
1265
1266 gdb_assert (symfile_objfile == NULL);
1267 if (from_tty)
1268 printf_unfiltered (_("No symbol file now.\n"));
1269 }
1270
1271 static int
1272 separate_debug_file_exists (const char *name, unsigned long crc,
1273 struct objfile *parent_objfile)
1274 {
1275 unsigned long file_crc;
1276 int file_crc_p;
1277 bfd *abfd;
1278 struct stat parent_stat, abfd_stat;
1279 int verified_as_different;
1280
1281 /* Find a separate debug info file as if symbols would be present in
1282 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1283 section can contain just the basename of PARENT_OBJFILE without any
1284 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1285 the separate debug infos with the same basename can exist. */
1286
1287 if (filename_cmp (name, parent_objfile->name) == 0)
1288 return 0;
1289
1290 abfd = gdb_bfd_open_maybe_remote (name);
1291
1292 if (!abfd)
1293 return 0;
1294
1295 /* Verify symlinks were not the cause of filename_cmp name difference above.
1296
1297 Some operating systems, e.g. Windows, do not provide a meaningful
1298 st_ino; they always set it to zero. (Windows does provide a
1299 meaningful st_dev.) Do not indicate a duplicate library in that
1300 case. While there is no guarantee that a system that provides
1301 meaningful inode numbers will never set st_ino to zero, this is
1302 merely an optimization, so we do not need to worry about false
1303 negatives. */
1304
1305 if (bfd_stat (abfd, &abfd_stat) == 0
1306 && abfd_stat.st_ino != 0
1307 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1308 {
1309 if (abfd_stat.st_dev == parent_stat.st_dev
1310 && abfd_stat.st_ino == parent_stat.st_ino)
1311 {
1312 gdb_bfd_unref (abfd);
1313 return 0;
1314 }
1315 verified_as_different = 1;
1316 }
1317 else
1318 verified_as_different = 0;
1319
1320 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1321
1322 gdb_bfd_unref (abfd);
1323
1324 if (!file_crc_p)
1325 return 0;
1326
1327 if (crc != file_crc)
1328 {
1329 unsigned long parent_crc;
1330
1331 /* If one (or both) the files are accessed for example the via "remote:"
1332 gdbserver way it does not support the bfd_stat operation. Verify
1333 whether those two files are not the same manually. */
1334
1335 if (!verified_as_different)
1336 {
1337 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1338 return 0;
1339 }
1340
1341 if (verified_as_different || parent_crc != file_crc)
1342 warning (_("the debug information found in \"%s\""
1343 " does not match \"%s\" (CRC mismatch).\n"),
1344 name, parent_objfile->name);
1345
1346 return 0;
1347 }
1348
1349 return 1;
1350 }
1351
1352 char *debug_file_directory = NULL;
1353 static void
1354 show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356 {
1357 fprintf_filtered (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
1360 value);
1361 }
1362
1363 #if ! defined (DEBUG_SUBDIRECTORY)
1364 #define DEBUG_SUBDIRECTORY ".debug"
1365 #endif
1366
1367 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
1372 Returns the path of the file with separate debug info, of NULL. */
1373
1374 static char *
1375 find_separate_debug_file (const char *dir,
1376 const char *canon_dir,
1377 const char *debuglink,
1378 unsigned long crc32, struct objfile *objfile)
1379 {
1380 char *debugdir;
1381 char *debugfile;
1382 int i;
1383 VEC (char_ptr) *debugdir_vec;
1384 struct cleanup *back_to;
1385 int ix;
1386
1387 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1388 i = strlen (dir);
1389 if (canon_dir != NULL && strlen (canon_dir) > i)
1390 i = strlen (canon_dir);
1391
1392 debugfile = xmalloc (strlen (debug_file_directory) + 1
1393 + i
1394 + strlen (DEBUG_SUBDIRECTORY)
1395 + strlen ("/")
1396 + strlen (debuglink)
1397 + 1);
1398
1399 /* First try in the same directory as the original file. */
1400 strcpy (debugfile, dir);
1401 strcat (debugfile, debuglink);
1402
1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1404 return debugfile;
1405
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1410 strcat (debugfile, debuglink);
1411
1412 if (separate_debug_file_exists (debugfile, crc32, objfile))
1413 return debugfile;
1414
1415 /* Then try in the global debugfile directories.
1416
1417 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1418 cause "/..." lookups. */
1419
1420 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1421 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1422
1423 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1424 {
1425 strcpy (debugfile, debugdir);
1426 strcat (debugfile, "/");
1427 strcat (debugfile, dir);
1428 strcat (debugfile, debuglink);
1429
1430 if (separate_debug_file_exists (debugfile, crc32, objfile))
1431 return debugfile;
1432
1433 /* If the file is in the sysroot, try using its base path in the
1434 global debugfile directory. */
1435 if (canon_dir != NULL
1436 && filename_ncmp (canon_dir, gdb_sysroot,
1437 strlen (gdb_sysroot)) == 0
1438 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1439 {
1440 strcpy (debugfile, debugdir);
1441 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1442 strcat (debugfile, "/");
1443 strcat (debugfile, debuglink);
1444
1445 if (separate_debug_file_exists (debugfile, crc32, objfile))
1446 return debugfile;
1447 }
1448 }
1449
1450 do_cleanups (back_to);
1451 xfree (debugfile);
1452 return NULL;
1453 }
1454
1455 /* Modify PATH to contain only "[/]directory/" part of PATH.
1456 If there were no directory separators in PATH, PATH will be empty
1457 string on return. */
1458
1459 static void
1460 terminate_after_last_dir_separator (char *path)
1461 {
1462 int i;
1463
1464 /* Strip off the final filename part, leaving the directory name,
1465 followed by a slash. The directory can be relative or absolute. */
1466 for (i = strlen(path) - 1; i >= 0; i--)
1467 if (IS_DIR_SEPARATOR (path[i]))
1468 break;
1469
1470 /* If I is -1 then no directory is present there and DIR will be "". */
1471 path[i + 1] = '\0';
1472 }
1473
1474 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1475 Returns pathname, or NULL. */
1476
1477 char *
1478 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1479 {
1480 char *debuglink;
1481 char *dir, *canon_dir;
1482 char *debugfile;
1483 unsigned long crc32;
1484 struct cleanup *cleanups;
1485
1486 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1487
1488 if (debuglink == NULL)
1489 {
1490 /* There's no separate debug info, hence there's no way we could
1491 load it => no warning. */
1492 return NULL;
1493 }
1494
1495 cleanups = make_cleanup (xfree, debuglink);
1496 dir = xstrdup (objfile->name);
1497 make_cleanup (xfree, dir);
1498 terminate_after_last_dir_separator (dir);
1499 canon_dir = lrealpath (dir);
1500
1501 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1502 crc32, objfile);
1503 xfree (canon_dir);
1504
1505 if (debugfile == NULL)
1506 {
1507 #ifdef HAVE_LSTAT
1508 /* For PR gdb/9538, try again with realpath (if different from the
1509 original). */
1510
1511 struct stat st_buf;
1512
1513 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1514 {
1515 char *symlink_dir;
1516
1517 symlink_dir = lrealpath (objfile->name);
1518 if (symlink_dir != NULL)
1519 {
1520 make_cleanup (xfree, symlink_dir);
1521 terminate_after_last_dir_separator (symlink_dir);
1522 if (strcmp (dir, symlink_dir) != 0)
1523 {
1524 /* Different directory, so try using it. */
1525 debugfile = find_separate_debug_file (symlink_dir,
1526 symlink_dir,
1527 debuglink,
1528 crc32,
1529 objfile);
1530 }
1531 }
1532 }
1533 #endif /* HAVE_LSTAT */
1534 }
1535
1536 do_cleanups (cleanups);
1537 return debugfile;
1538 }
1539
1540 /* This is the symbol-file command. Read the file, analyze its
1541 symbols, and add a struct symtab to a symtab list. The syntax of
1542 the command is rather bizarre:
1543
1544 1. The function buildargv implements various quoting conventions
1545 which are undocumented and have little or nothing in common with
1546 the way things are quoted (or not quoted) elsewhere in GDB.
1547
1548 2. Options are used, which are not generally used in GDB (perhaps
1549 "set mapped on", "set readnow on" would be better)
1550
1551 3. The order of options matters, which is contrary to GNU
1552 conventions (because it is confusing and inconvenient). */
1553
1554 void
1555 symbol_file_command (char *args, int from_tty)
1556 {
1557 dont_repeat ();
1558
1559 if (args == NULL)
1560 {
1561 symbol_file_clear (from_tty);
1562 }
1563 else
1564 {
1565 char **argv = gdb_buildargv (args);
1566 int flags = OBJF_USERLOADED;
1567 struct cleanup *cleanups;
1568 char *name = NULL;
1569
1570 cleanups = make_cleanup_freeargv (argv);
1571 while (*argv != NULL)
1572 {
1573 if (strcmp (*argv, "-readnow") == 0)
1574 flags |= OBJF_READNOW;
1575 else if (**argv == '-')
1576 error (_("unknown option `%s'"), *argv);
1577 else
1578 {
1579 symbol_file_add_main_1 (*argv, from_tty, flags);
1580 name = *argv;
1581 }
1582
1583 argv++;
1584 }
1585
1586 if (name == NULL)
1587 error (_("no symbol file name was specified"));
1588
1589 do_cleanups (cleanups);
1590 }
1591 }
1592
1593 /* Set the initial language.
1594
1595 FIXME: A better solution would be to record the language in the
1596 psymtab when reading partial symbols, and then use it (if known) to
1597 set the language. This would be a win for formats that encode the
1598 language in an easily discoverable place, such as DWARF. For
1599 stabs, we can jump through hoops looking for specially named
1600 symbols or try to intuit the language from the specific type of
1601 stabs we find, but we can't do that until later when we read in
1602 full symbols. */
1603
1604 void
1605 set_initial_language (void)
1606 {
1607 enum language lang = language_unknown;
1608
1609 if (language_of_main != language_unknown)
1610 lang = language_of_main;
1611 else
1612 {
1613 const char *filename;
1614
1615 filename = find_main_filename ();
1616 if (filename != NULL)
1617 lang = deduce_language_from_filename (filename);
1618 }
1619
1620 if (lang == language_unknown)
1621 {
1622 /* Make C the default language */
1623 lang = language_c;
1624 }
1625
1626 set_language (lang);
1627 expected_language = current_language; /* Don't warn the user. */
1628 }
1629
1630 /* If NAME is a remote name open the file using remote protocol, otherwise
1631 open it normally. Returns a new reference to the BFD. On error,
1632 returns NULL with the BFD error set. */
1633
1634 bfd *
1635 gdb_bfd_open_maybe_remote (const char *name)
1636 {
1637 bfd *result;
1638
1639 if (remote_filename_p (name))
1640 result = remote_bfd_open (name, gnutarget);
1641 else
1642 result = gdb_bfd_open (name, gnutarget, -1);
1643
1644 return result;
1645 }
1646
1647 /* Open the file specified by NAME and hand it off to BFD for
1648 preliminary analysis. Return a newly initialized bfd *, which
1649 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1650 absolute). In case of trouble, error() is called. */
1651
1652 bfd *
1653 symfile_bfd_open (char *name)
1654 {
1655 bfd *sym_bfd;
1656 int desc;
1657 char *absolute_name;
1658 struct cleanup *back_to;
1659
1660 if (remote_filename_p (name))
1661 {
1662 sym_bfd = remote_bfd_open (name, gnutarget);
1663 if (!sym_bfd)
1664 error (_("`%s': can't open to read symbols: %s."), name,
1665 bfd_errmsg (bfd_get_error ()));
1666
1667 if (!bfd_check_format (sym_bfd, bfd_object))
1668 {
1669 make_cleanup_bfd_unref (sym_bfd);
1670 error (_("`%s': can't read symbols: %s."), name,
1671 bfd_errmsg (bfd_get_error ()));
1672 }
1673
1674 return sym_bfd;
1675 }
1676
1677 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1678
1679 /* Look down path for it, allocate 2nd new malloc'd copy. */
1680 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1681 O_RDONLY | O_BINARY, &absolute_name);
1682 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1683 if (desc < 0)
1684 {
1685 char *exename = alloca (strlen (name) + 5);
1686
1687 strcat (strcpy (exename, name), ".exe");
1688 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1689 O_RDONLY | O_BINARY, &absolute_name);
1690 }
1691 #endif
1692 if (desc < 0)
1693 {
1694 make_cleanup (xfree, name);
1695 perror_with_name (name);
1696 }
1697
1698 xfree (name);
1699 name = absolute_name;
1700 back_to = make_cleanup (xfree, name);
1701
1702 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1703 if (!sym_bfd)
1704 error (_("`%s': can't open to read symbols: %s."), name,
1705 bfd_errmsg (bfd_get_error ()));
1706 bfd_set_cacheable (sym_bfd, 1);
1707
1708 if (!bfd_check_format (sym_bfd, bfd_object))
1709 {
1710 make_cleanup_bfd_unref (sym_bfd);
1711 error (_("`%s': can't read symbols: %s."), name,
1712 bfd_errmsg (bfd_get_error ()));
1713 }
1714
1715 do_cleanups (back_to);
1716
1717 return sym_bfd;
1718 }
1719
1720 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1721 the section was not found. */
1722
1723 int
1724 get_section_index (struct objfile *objfile, char *section_name)
1725 {
1726 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1727
1728 if (sect)
1729 return sect->index;
1730 else
1731 return -1;
1732 }
1733
1734 /* Link SF into the global symtab_fns list. Called on startup by the
1735 _initialize routine in each object file format reader, to register
1736 information about each format the reader is prepared to handle. */
1737
1738 void
1739 add_symtab_fns (const struct sym_fns *sf)
1740 {
1741 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1742 }
1743
1744 /* Initialize OBJFILE to read symbols from its associated BFD. It
1745 either returns or calls error(). The result is an initialized
1746 struct sym_fns in the objfile structure, that contains cached
1747 information about the symbol file. */
1748
1749 static const struct sym_fns *
1750 find_sym_fns (bfd *abfd)
1751 {
1752 const struct sym_fns *sf;
1753 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1754 int i;
1755
1756 if (our_flavour == bfd_target_srec_flavour
1757 || our_flavour == bfd_target_ihex_flavour
1758 || our_flavour == bfd_target_tekhex_flavour)
1759 return NULL; /* No symbols. */
1760
1761 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1762 if (our_flavour == sf->sym_flavour)
1763 return sf;
1764
1765 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1766 bfd_get_target (abfd));
1767 }
1768 \f
1769
1770 /* This function runs the load command of our current target. */
1771
1772 static void
1773 load_command (char *arg, int from_tty)
1774 {
1775 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1776
1777 dont_repeat ();
1778
1779 /* The user might be reloading because the binary has changed. Take
1780 this opportunity to check. */
1781 reopen_exec_file ();
1782 reread_symbols ();
1783
1784 if (arg == NULL)
1785 {
1786 char *parg;
1787 int count = 0;
1788
1789 parg = arg = get_exec_file (1);
1790
1791 /* Count how many \ " ' tab space there are in the name. */
1792 while ((parg = strpbrk (parg, "\\\"'\t ")))
1793 {
1794 parg++;
1795 count++;
1796 }
1797
1798 if (count)
1799 {
1800 /* We need to quote this string so buildargv can pull it apart. */
1801 char *temp = xmalloc (strlen (arg) + count + 1 );
1802 char *ptemp = temp;
1803 char *prev;
1804
1805 make_cleanup (xfree, temp);
1806
1807 prev = parg = arg;
1808 while ((parg = strpbrk (parg, "\\\"'\t ")))
1809 {
1810 strncpy (ptemp, prev, parg - prev);
1811 ptemp += parg - prev;
1812 prev = parg++;
1813 *ptemp++ = '\\';
1814 }
1815 strcpy (ptemp, prev);
1816
1817 arg = temp;
1818 }
1819 }
1820
1821 target_load (arg, from_tty);
1822
1823 /* After re-loading the executable, we don't really know which
1824 overlays are mapped any more. */
1825 overlay_cache_invalid = 1;
1826
1827 do_cleanups (cleanup);
1828 }
1829
1830 /* This version of "load" should be usable for any target. Currently
1831 it is just used for remote targets, not inftarg.c or core files,
1832 on the theory that only in that case is it useful.
1833
1834 Avoiding xmodem and the like seems like a win (a) because we don't have
1835 to worry about finding it, and (b) On VMS, fork() is very slow and so
1836 we don't want to run a subprocess. On the other hand, I'm not sure how
1837 performance compares. */
1838
1839 static int validate_download = 0;
1840
1841 /* Callback service function for generic_load (bfd_map_over_sections). */
1842
1843 static void
1844 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1845 {
1846 bfd_size_type *sum = data;
1847
1848 *sum += bfd_get_section_size (asec);
1849 }
1850
1851 /* Opaque data for load_section_callback. */
1852 struct load_section_data {
1853 CORE_ADDR load_offset;
1854 struct load_progress_data *progress_data;
1855 VEC(memory_write_request_s) *requests;
1856 };
1857
1858 /* Opaque data for load_progress. */
1859 struct load_progress_data {
1860 /* Cumulative data. */
1861 unsigned long write_count;
1862 unsigned long data_count;
1863 bfd_size_type total_size;
1864 };
1865
1866 /* Opaque data for load_progress for a single section. */
1867 struct load_progress_section_data {
1868 struct load_progress_data *cumulative;
1869
1870 /* Per-section data. */
1871 const char *section_name;
1872 ULONGEST section_sent;
1873 ULONGEST section_size;
1874 CORE_ADDR lma;
1875 gdb_byte *buffer;
1876 };
1877
1878 /* Target write callback routine for progress reporting. */
1879
1880 static void
1881 load_progress (ULONGEST bytes, void *untyped_arg)
1882 {
1883 struct load_progress_section_data *args = untyped_arg;
1884 struct load_progress_data *totals;
1885
1886 if (args == NULL)
1887 /* Writing padding data. No easy way to get at the cumulative
1888 stats, so just ignore this. */
1889 return;
1890
1891 totals = args->cumulative;
1892
1893 if (bytes == 0 && args->section_sent == 0)
1894 {
1895 /* The write is just starting. Let the user know we've started
1896 this section. */
1897 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1898 args->section_name, hex_string (args->section_size),
1899 paddress (target_gdbarch (), args->lma));
1900 return;
1901 }
1902
1903 if (validate_download)
1904 {
1905 /* Broken memories and broken monitors manifest themselves here
1906 when bring new computers to life. This doubles already slow
1907 downloads. */
1908 /* NOTE: cagney/1999-10-18: A more efficient implementation
1909 might add a verify_memory() method to the target vector and
1910 then use that. remote.c could implement that method using
1911 the ``qCRC'' packet. */
1912 gdb_byte *check = xmalloc (bytes);
1913 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1914
1915 if (target_read_memory (args->lma, check, bytes) != 0)
1916 error (_("Download verify read failed at %s"),
1917 paddress (target_gdbarch (), args->lma));
1918 if (memcmp (args->buffer, check, bytes) != 0)
1919 error (_("Download verify compare failed at %s"),
1920 paddress (target_gdbarch (), args->lma));
1921 do_cleanups (verify_cleanups);
1922 }
1923 totals->data_count += bytes;
1924 args->lma += bytes;
1925 args->buffer += bytes;
1926 totals->write_count += 1;
1927 args->section_sent += bytes;
1928 if (check_quit_flag ()
1929 || (deprecated_ui_load_progress_hook != NULL
1930 && deprecated_ui_load_progress_hook (args->section_name,
1931 args->section_sent)))
1932 error (_("Canceled the download"));
1933
1934 if (deprecated_show_load_progress != NULL)
1935 deprecated_show_load_progress (args->section_name,
1936 args->section_sent,
1937 args->section_size,
1938 totals->data_count,
1939 totals->total_size);
1940 }
1941
1942 /* Callback service function for generic_load (bfd_map_over_sections). */
1943
1944 static void
1945 load_section_callback (bfd *abfd, asection *asec, void *data)
1946 {
1947 struct memory_write_request *new_request;
1948 struct load_section_data *args = data;
1949 struct load_progress_section_data *section_data;
1950 bfd_size_type size = bfd_get_section_size (asec);
1951 gdb_byte *buffer;
1952 const char *sect_name = bfd_get_section_name (abfd, asec);
1953
1954 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1955 return;
1956
1957 if (size == 0)
1958 return;
1959
1960 new_request = VEC_safe_push (memory_write_request_s,
1961 args->requests, NULL);
1962 memset (new_request, 0, sizeof (struct memory_write_request));
1963 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1964 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1965 new_request->end = new_request->begin + size; /* FIXME Should size
1966 be in instead? */
1967 new_request->data = xmalloc (size);
1968 new_request->baton = section_data;
1969
1970 buffer = new_request->data;
1971
1972 section_data->cumulative = args->progress_data;
1973 section_data->section_name = sect_name;
1974 section_data->section_size = size;
1975 section_data->lma = new_request->begin;
1976 section_data->buffer = buffer;
1977
1978 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1979 }
1980
1981 /* Clean up an entire memory request vector, including load
1982 data and progress records. */
1983
1984 static void
1985 clear_memory_write_data (void *arg)
1986 {
1987 VEC(memory_write_request_s) **vec_p = arg;
1988 VEC(memory_write_request_s) *vec = *vec_p;
1989 int i;
1990 struct memory_write_request *mr;
1991
1992 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1993 {
1994 xfree (mr->data);
1995 xfree (mr->baton);
1996 }
1997 VEC_free (memory_write_request_s, vec);
1998 }
1999
2000 void
2001 generic_load (char *args, int from_tty)
2002 {
2003 bfd *loadfile_bfd;
2004 struct timeval start_time, end_time;
2005 char *filename;
2006 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2007 struct load_section_data cbdata;
2008 struct load_progress_data total_progress;
2009 struct ui_out *uiout = current_uiout;
2010
2011 CORE_ADDR entry;
2012 char **argv;
2013
2014 memset (&cbdata, 0, sizeof (cbdata));
2015 memset (&total_progress, 0, sizeof (total_progress));
2016 cbdata.progress_data = &total_progress;
2017
2018 make_cleanup (clear_memory_write_data, &cbdata.requests);
2019
2020 if (args == NULL)
2021 error_no_arg (_("file to load"));
2022
2023 argv = gdb_buildargv (args);
2024 make_cleanup_freeargv (argv);
2025
2026 filename = tilde_expand (argv[0]);
2027 make_cleanup (xfree, filename);
2028
2029 if (argv[1] != NULL)
2030 {
2031 const char *endptr;
2032
2033 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2034
2035 /* If the last word was not a valid number then
2036 treat it as a file name with spaces in. */
2037 if (argv[1] == endptr)
2038 error (_("Invalid download offset:%s."), argv[1]);
2039
2040 if (argv[2] != NULL)
2041 error (_("Too many parameters."));
2042 }
2043
2044 /* Open the file for loading. */
2045 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2046 if (loadfile_bfd == NULL)
2047 {
2048 perror_with_name (filename);
2049 return;
2050 }
2051
2052 make_cleanup_bfd_unref (loadfile_bfd);
2053
2054 if (!bfd_check_format (loadfile_bfd, bfd_object))
2055 {
2056 error (_("\"%s\" is not an object file: %s"), filename,
2057 bfd_errmsg (bfd_get_error ()));
2058 }
2059
2060 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2061 (void *) &total_progress.total_size);
2062
2063 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2064
2065 gettimeofday (&start_time, NULL);
2066
2067 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2068 load_progress) != 0)
2069 error (_("Load failed"));
2070
2071 gettimeofday (&end_time, NULL);
2072
2073 entry = bfd_get_start_address (loadfile_bfd);
2074 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2075 ui_out_text (uiout, "Start address ");
2076 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2077 ui_out_text (uiout, ", load size ");
2078 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2079 ui_out_text (uiout, "\n");
2080 /* We were doing this in remote-mips.c, I suspect it is right
2081 for other targets too. */
2082 regcache_write_pc (get_current_regcache (), entry);
2083
2084 /* Reset breakpoints, now that we have changed the load image. For
2085 instance, breakpoints may have been set (or reset, by
2086 post_create_inferior) while connected to the target but before we
2087 loaded the program. In that case, the prologue analyzer could
2088 have read instructions from the target to find the right
2089 breakpoint locations. Loading has changed the contents of that
2090 memory. */
2091
2092 breakpoint_re_set ();
2093
2094 /* FIXME: are we supposed to call symbol_file_add or not? According
2095 to a comment from remote-mips.c (where a call to symbol_file_add
2096 was commented out), making the call confuses GDB if more than one
2097 file is loaded in. Some targets do (e.g., remote-vx.c) but
2098 others don't (or didn't - perhaps they have all been deleted). */
2099
2100 print_transfer_performance (gdb_stdout, total_progress.data_count,
2101 total_progress.write_count,
2102 &start_time, &end_time);
2103
2104 do_cleanups (old_cleanups);
2105 }
2106
2107 /* Report how fast the transfer went. */
2108
2109 void
2110 print_transfer_performance (struct ui_file *stream,
2111 unsigned long data_count,
2112 unsigned long write_count,
2113 const struct timeval *start_time,
2114 const struct timeval *end_time)
2115 {
2116 ULONGEST time_count;
2117 struct ui_out *uiout = current_uiout;
2118
2119 /* Compute the elapsed time in milliseconds, as a tradeoff between
2120 accuracy and overflow. */
2121 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2122 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2123
2124 ui_out_text (uiout, "Transfer rate: ");
2125 if (time_count > 0)
2126 {
2127 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2128
2129 if (ui_out_is_mi_like_p (uiout))
2130 {
2131 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2132 ui_out_text (uiout, " bits/sec");
2133 }
2134 else if (rate < 1024)
2135 {
2136 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2137 ui_out_text (uiout, " bytes/sec");
2138 }
2139 else
2140 {
2141 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2142 ui_out_text (uiout, " KB/sec");
2143 }
2144 }
2145 else
2146 {
2147 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2148 ui_out_text (uiout, " bits in <1 sec");
2149 }
2150 if (write_count > 0)
2151 {
2152 ui_out_text (uiout, ", ");
2153 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2154 ui_out_text (uiout, " bytes/write");
2155 }
2156 ui_out_text (uiout, ".\n");
2157 }
2158
2159 /* This function allows the addition of incrementally linked object files.
2160 It does not modify any state in the target, only in the debugger. */
2161 /* Note: ezannoni 2000-04-13 This function/command used to have a
2162 special case syntax for the rombug target (Rombug is the boot
2163 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2164 rombug case, the user doesn't need to supply a text address,
2165 instead a call to target_link() (in target.c) would supply the
2166 value to use. We are now discontinuing this type of ad hoc syntax. */
2167
2168 static void
2169 add_symbol_file_command (char *args, int from_tty)
2170 {
2171 struct gdbarch *gdbarch = get_current_arch ();
2172 char *filename = NULL;
2173 int flags = OBJF_USERLOADED;
2174 char *arg;
2175 int section_index = 0;
2176 int argcnt = 0;
2177 int sec_num = 0;
2178 int i;
2179 int expecting_sec_name = 0;
2180 int expecting_sec_addr = 0;
2181 char **argv;
2182
2183 struct sect_opt
2184 {
2185 char *name;
2186 char *value;
2187 };
2188
2189 struct section_addr_info *section_addrs;
2190 struct sect_opt *sect_opts = NULL;
2191 size_t num_sect_opts = 0;
2192 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2193
2194 num_sect_opts = 16;
2195 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2196 * sizeof (struct sect_opt));
2197
2198 dont_repeat ();
2199
2200 if (args == NULL)
2201 error (_("add-symbol-file takes a file name and an address"));
2202
2203 argv = gdb_buildargv (args);
2204 make_cleanup_freeargv (argv);
2205
2206 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2207 {
2208 /* Process the argument. */
2209 if (argcnt == 0)
2210 {
2211 /* The first argument is the file name. */
2212 filename = tilde_expand (arg);
2213 make_cleanup (xfree, filename);
2214 }
2215 else
2216 if (argcnt == 1)
2217 {
2218 /* The second argument is always the text address at which
2219 to load the program. */
2220 sect_opts[section_index].name = ".text";
2221 sect_opts[section_index].value = arg;
2222 if (++section_index >= num_sect_opts)
2223 {
2224 num_sect_opts *= 2;
2225 sect_opts = ((struct sect_opt *)
2226 xrealloc (sect_opts,
2227 num_sect_opts
2228 * sizeof (struct sect_opt)));
2229 }
2230 }
2231 else
2232 {
2233 /* It's an option (starting with '-') or it's an argument
2234 to an option. */
2235
2236 if (*arg == '-')
2237 {
2238 if (strcmp (arg, "-readnow") == 0)
2239 flags |= OBJF_READNOW;
2240 else if (strcmp (arg, "-s") == 0)
2241 {
2242 expecting_sec_name = 1;
2243 expecting_sec_addr = 1;
2244 }
2245 }
2246 else
2247 {
2248 if (expecting_sec_name)
2249 {
2250 sect_opts[section_index].name = arg;
2251 expecting_sec_name = 0;
2252 }
2253 else
2254 if (expecting_sec_addr)
2255 {
2256 sect_opts[section_index].value = arg;
2257 expecting_sec_addr = 0;
2258 if (++section_index >= num_sect_opts)
2259 {
2260 num_sect_opts *= 2;
2261 sect_opts = ((struct sect_opt *)
2262 xrealloc (sect_opts,
2263 num_sect_opts
2264 * sizeof (struct sect_opt)));
2265 }
2266 }
2267 else
2268 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2269 " [-readnow] [-s <secname> <addr>]*"));
2270 }
2271 }
2272 }
2273
2274 /* This command takes at least two arguments. The first one is a
2275 filename, and the second is the address where this file has been
2276 loaded. Abort now if this address hasn't been provided by the
2277 user. */
2278 if (section_index < 1)
2279 error (_("The address where %s has been loaded is missing"), filename);
2280
2281 /* Print the prompt for the query below. And save the arguments into
2282 a sect_addr_info structure to be passed around to other
2283 functions. We have to split this up into separate print
2284 statements because hex_string returns a local static
2285 string. */
2286
2287 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2288 section_addrs = alloc_section_addr_info (section_index);
2289 make_cleanup (xfree, section_addrs);
2290 for (i = 0; i < section_index; i++)
2291 {
2292 CORE_ADDR addr;
2293 char *val = sect_opts[i].value;
2294 char *sec = sect_opts[i].name;
2295
2296 addr = parse_and_eval_address (val);
2297
2298 /* Here we store the section offsets in the order they were
2299 entered on the command line. */
2300 section_addrs->other[sec_num].name = sec;
2301 section_addrs->other[sec_num].addr = addr;
2302 printf_unfiltered ("\t%s_addr = %s\n", sec,
2303 paddress (gdbarch, addr));
2304 sec_num++;
2305
2306 /* The object's sections are initialized when a
2307 call is made to build_objfile_section_table (objfile).
2308 This happens in reread_symbols.
2309 At this point, we don't know what file type this is,
2310 so we can't determine what section names are valid. */
2311 }
2312 section_addrs->num_sections = sec_num;
2313
2314 if (from_tty && (!query ("%s", "")))
2315 error (_("Not confirmed."));
2316
2317 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2318 section_addrs, flags);
2319
2320 /* Getting new symbols may change our opinion about what is
2321 frameless. */
2322 reinit_frame_cache ();
2323 do_cleanups (my_cleanups);
2324 }
2325 \f
2326
2327 typedef struct objfile *objfilep;
2328
2329 DEF_VEC_P (objfilep);
2330
2331 /* Re-read symbols if a symbol-file has changed. */
2332
2333 void
2334 reread_symbols (void)
2335 {
2336 struct objfile *objfile;
2337 long new_modtime;
2338 struct stat new_statbuf;
2339 int res;
2340 VEC (objfilep) *new_objfiles = NULL;
2341 struct cleanup *all_cleanups;
2342
2343 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2344
2345 /* With the addition of shared libraries, this should be modified,
2346 the load time should be saved in the partial symbol tables, since
2347 different tables may come from different source files. FIXME.
2348 This routine should then walk down each partial symbol table
2349 and see if the symbol table that it originates from has been changed. */
2350
2351 for (objfile = object_files; objfile; objfile = objfile->next)
2352 {
2353 /* solib-sunos.c creates one objfile with obfd. */
2354 if (objfile->obfd == NULL)
2355 continue;
2356
2357 /* Separate debug objfiles are handled in the main objfile. */
2358 if (objfile->separate_debug_objfile_backlink)
2359 continue;
2360
2361 /* If this object is from an archive (what you usually create with
2362 `ar', often called a `static library' on most systems, though
2363 a `shared library' on AIX is also an archive), then you should
2364 stat on the archive name, not member name. */
2365 if (objfile->obfd->my_archive)
2366 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2367 else
2368 res = stat (objfile->name, &new_statbuf);
2369 if (res != 0)
2370 {
2371 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2372 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2373 objfile->name);
2374 continue;
2375 }
2376 new_modtime = new_statbuf.st_mtime;
2377 if (new_modtime != objfile->mtime)
2378 {
2379 struct cleanup *old_cleanups;
2380 struct section_offsets *offsets;
2381 int num_offsets;
2382 char *obfd_filename;
2383
2384 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2385 objfile->name);
2386
2387 /* There are various functions like symbol_file_add,
2388 symfile_bfd_open, syms_from_objfile, etc., which might
2389 appear to do what we want. But they have various other
2390 effects which we *don't* want. So we just do stuff
2391 ourselves. We don't worry about mapped files (for one thing,
2392 any mapped file will be out of date). */
2393
2394 /* If we get an error, blow away this objfile (not sure if
2395 that is the correct response for things like shared
2396 libraries). */
2397 old_cleanups = make_cleanup_free_objfile (objfile);
2398 /* We need to do this whenever any symbols go away. */
2399 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2400
2401 if (exec_bfd != NULL
2402 && filename_cmp (bfd_get_filename (objfile->obfd),
2403 bfd_get_filename (exec_bfd)) == 0)
2404 {
2405 /* Reload EXEC_BFD without asking anything. */
2406
2407 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2408 }
2409
2410 /* Keep the calls order approx. the same as in free_objfile. */
2411
2412 /* Free the separate debug objfiles. It will be
2413 automatically recreated by sym_read. */
2414 free_objfile_separate_debug (objfile);
2415
2416 /* Remove any references to this objfile in the global
2417 value lists. */
2418 preserve_values (objfile);
2419
2420 /* Nuke all the state that we will re-read. Much of the following
2421 code which sets things to NULL really is necessary to tell
2422 other parts of GDB that there is nothing currently there.
2423
2424 Try to keep the freeing order compatible with free_objfile. */
2425
2426 if (objfile->sf != NULL)
2427 {
2428 (*objfile->sf->sym_finish) (objfile);
2429 }
2430
2431 clear_objfile_data (objfile);
2432
2433 /* Clean up any state BFD has sitting around. */
2434 {
2435 struct bfd *obfd = objfile->obfd;
2436
2437 obfd_filename = bfd_get_filename (objfile->obfd);
2438 /* Open the new BFD before freeing the old one, so that
2439 the filename remains live. */
2440 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2441 if (objfile->obfd == NULL)
2442 {
2443 /* We have to make a cleanup and error here, rather
2444 than erroring later, because once we unref OBFD,
2445 OBFD_FILENAME will be freed. */
2446 make_cleanup_bfd_unref (obfd);
2447 error (_("Can't open %s to read symbols."), obfd_filename);
2448 }
2449 gdb_bfd_unref (obfd);
2450 }
2451
2452 objfile->name = bfd_get_filename (objfile->obfd);
2453 /* bfd_openr sets cacheable to true, which is what we want. */
2454 if (!bfd_check_format (objfile->obfd, bfd_object))
2455 error (_("Can't read symbols from %s: %s."), objfile->name,
2456 bfd_errmsg (bfd_get_error ()));
2457
2458 /* Save the offsets, we will nuke them with the rest of the
2459 objfile_obstack. */
2460 num_offsets = objfile->num_sections;
2461 offsets = ((struct section_offsets *)
2462 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2463 memcpy (offsets, objfile->section_offsets,
2464 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2465
2466 /* FIXME: Do we have to free a whole linked list, or is this
2467 enough? */
2468 if (objfile->global_psymbols.list)
2469 xfree (objfile->global_psymbols.list);
2470 memset (&objfile->global_psymbols, 0,
2471 sizeof (objfile->global_psymbols));
2472 if (objfile->static_psymbols.list)
2473 xfree (objfile->static_psymbols.list);
2474 memset (&objfile->static_psymbols, 0,
2475 sizeof (objfile->static_psymbols));
2476
2477 /* Free the obstacks for non-reusable objfiles. */
2478 psymbol_bcache_free (objfile->psymbol_cache);
2479 objfile->psymbol_cache = psymbol_bcache_init ();
2480 if (objfile->demangled_names_hash != NULL)
2481 {
2482 htab_delete (objfile->demangled_names_hash);
2483 objfile->demangled_names_hash = NULL;
2484 }
2485 obstack_free (&objfile->objfile_obstack, 0);
2486 objfile->sections = NULL;
2487 objfile->symtabs = NULL;
2488 objfile->psymtabs = NULL;
2489 objfile->psymtabs_addrmap = NULL;
2490 objfile->free_psymtabs = NULL;
2491 objfile->template_symbols = NULL;
2492 objfile->msymbols = NULL;
2493 objfile->minimal_symbol_count = 0;
2494 memset (&objfile->msymbol_hash, 0,
2495 sizeof (objfile->msymbol_hash));
2496 memset (&objfile->msymbol_demangled_hash, 0,
2497 sizeof (objfile->msymbol_demangled_hash));
2498
2499 set_objfile_per_bfd (objfile);
2500
2501 /* obstack_init also initializes the obstack so it is
2502 empty. We could use obstack_specify_allocation but
2503 gdb_obstack.h specifies the alloc/dealloc functions. */
2504 obstack_init (&objfile->objfile_obstack);
2505 build_objfile_section_table (objfile);
2506 terminate_minimal_symbol_table (objfile);
2507
2508 /* We use the same section offsets as from last time. I'm not
2509 sure whether that is always correct for shared libraries. */
2510 objfile->section_offsets = (struct section_offsets *)
2511 obstack_alloc (&objfile->objfile_obstack,
2512 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2513 memcpy (objfile->section_offsets, offsets,
2514 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2515 objfile->num_sections = num_offsets;
2516
2517 /* What the hell is sym_new_init for, anyway? The concept of
2518 distinguishing between the main file and additional files
2519 in this way seems rather dubious. */
2520 if (objfile == symfile_objfile)
2521 {
2522 (*objfile->sf->sym_new_init) (objfile);
2523 }
2524
2525 (*objfile->sf->sym_init) (objfile);
2526 clear_complaints (&symfile_complaints, 1, 1);
2527
2528 objfile->flags &= ~OBJF_PSYMTABS_READ;
2529 read_symbols (objfile, 0);
2530
2531 if (!objfile_has_symbols (objfile))
2532 {
2533 wrap_here ("");
2534 printf_unfiltered (_("(no debugging symbols found)\n"));
2535 wrap_here ("");
2536 }
2537
2538 /* We're done reading the symbol file; finish off complaints. */
2539 clear_complaints (&symfile_complaints, 0, 1);
2540
2541 /* Getting new symbols may change our opinion about what is
2542 frameless. */
2543
2544 reinit_frame_cache ();
2545
2546 /* Discard cleanups as symbol reading was successful. */
2547 discard_cleanups (old_cleanups);
2548
2549 /* If the mtime has changed between the time we set new_modtime
2550 and now, we *want* this to be out of date, so don't call stat
2551 again now. */
2552 objfile->mtime = new_modtime;
2553 init_entry_point_info (objfile);
2554
2555 VEC_safe_push (objfilep, new_objfiles, objfile);
2556 }
2557 }
2558
2559 if (new_objfiles)
2560 {
2561 int ix;
2562
2563 /* Notify objfiles that we've modified objfile sections. */
2564 objfiles_changed ();
2565
2566 clear_symtab_users (0);
2567
2568 /* clear_objfile_data for each objfile was called before freeing it and
2569 observer_notify_new_objfile (NULL) has been called by
2570 clear_symtab_users above. Notify the new files now. */
2571 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2572 observer_notify_new_objfile (objfile);
2573
2574 /* At least one objfile has changed, so we can consider that
2575 the executable we're debugging has changed too. */
2576 observer_notify_executable_changed ();
2577 }
2578
2579 do_cleanups (all_cleanups);
2580 }
2581 \f
2582
2583 typedef struct
2584 {
2585 char *ext;
2586 enum language lang;
2587 }
2588 filename_language;
2589
2590 static filename_language *filename_language_table;
2591 static int fl_table_size, fl_table_next;
2592
2593 static void
2594 add_filename_language (char *ext, enum language lang)
2595 {
2596 if (fl_table_next >= fl_table_size)
2597 {
2598 fl_table_size += 10;
2599 filename_language_table =
2600 xrealloc (filename_language_table,
2601 fl_table_size * sizeof (*filename_language_table));
2602 }
2603
2604 filename_language_table[fl_table_next].ext = xstrdup (ext);
2605 filename_language_table[fl_table_next].lang = lang;
2606 fl_table_next++;
2607 }
2608
2609 static char *ext_args;
2610 static void
2611 show_ext_args (struct ui_file *file, int from_tty,
2612 struct cmd_list_element *c, const char *value)
2613 {
2614 fprintf_filtered (file,
2615 _("Mapping between filename extension "
2616 "and source language is \"%s\".\n"),
2617 value);
2618 }
2619
2620 static void
2621 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2622 {
2623 int i;
2624 char *cp = ext_args;
2625 enum language lang;
2626
2627 /* First arg is filename extension, starting with '.' */
2628 if (*cp != '.')
2629 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2630
2631 /* Find end of first arg. */
2632 while (*cp && !isspace (*cp))
2633 cp++;
2634
2635 if (*cp == '\0')
2636 error (_("'%s': two arguments required -- "
2637 "filename extension and language"),
2638 ext_args);
2639
2640 /* Null-terminate first arg. */
2641 *cp++ = '\0';
2642
2643 /* Find beginning of second arg, which should be a source language. */
2644 cp = skip_spaces (cp);
2645
2646 if (*cp == '\0')
2647 error (_("'%s': two arguments required -- "
2648 "filename extension and language"),
2649 ext_args);
2650
2651 /* Lookup the language from among those we know. */
2652 lang = language_enum (cp);
2653
2654 /* Now lookup the filename extension: do we already know it? */
2655 for (i = 0; i < fl_table_next; i++)
2656 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2657 break;
2658
2659 if (i >= fl_table_next)
2660 {
2661 /* New file extension. */
2662 add_filename_language (ext_args, lang);
2663 }
2664 else
2665 {
2666 /* Redefining a previously known filename extension. */
2667
2668 /* if (from_tty) */
2669 /* query ("Really make files of type %s '%s'?", */
2670 /* ext_args, language_str (lang)); */
2671
2672 xfree (filename_language_table[i].ext);
2673 filename_language_table[i].ext = xstrdup (ext_args);
2674 filename_language_table[i].lang = lang;
2675 }
2676 }
2677
2678 static void
2679 info_ext_lang_command (char *args, int from_tty)
2680 {
2681 int i;
2682
2683 printf_filtered (_("Filename extensions and the languages they represent:"));
2684 printf_filtered ("\n\n");
2685 for (i = 0; i < fl_table_next; i++)
2686 printf_filtered ("\t%s\t- %s\n",
2687 filename_language_table[i].ext,
2688 language_str (filename_language_table[i].lang));
2689 }
2690
2691 static void
2692 init_filename_language_table (void)
2693 {
2694 if (fl_table_size == 0) /* Protect against repetition. */
2695 {
2696 fl_table_size = 20;
2697 fl_table_next = 0;
2698 filename_language_table =
2699 xmalloc (fl_table_size * sizeof (*filename_language_table));
2700 add_filename_language (".c", language_c);
2701 add_filename_language (".d", language_d);
2702 add_filename_language (".C", language_cplus);
2703 add_filename_language (".cc", language_cplus);
2704 add_filename_language (".cp", language_cplus);
2705 add_filename_language (".cpp", language_cplus);
2706 add_filename_language (".cxx", language_cplus);
2707 add_filename_language (".c++", language_cplus);
2708 add_filename_language (".java", language_java);
2709 add_filename_language (".class", language_java);
2710 add_filename_language (".m", language_objc);
2711 add_filename_language (".f", language_fortran);
2712 add_filename_language (".F", language_fortran);
2713 add_filename_language (".for", language_fortran);
2714 add_filename_language (".FOR", language_fortran);
2715 add_filename_language (".ftn", language_fortran);
2716 add_filename_language (".FTN", language_fortran);
2717 add_filename_language (".fpp", language_fortran);
2718 add_filename_language (".FPP", language_fortran);
2719 add_filename_language (".f90", language_fortran);
2720 add_filename_language (".F90", language_fortran);
2721 add_filename_language (".f95", language_fortran);
2722 add_filename_language (".F95", language_fortran);
2723 add_filename_language (".f03", language_fortran);
2724 add_filename_language (".F03", language_fortran);
2725 add_filename_language (".f08", language_fortran);
2726 add_filename_language (".F08", language_fortran);
2727 add_filename_language (".s", language_asm);
2728 add_filename_language (".sx", language_asm);
2729 add_filename_language (".S", language_asm);
2730 add_filename_language (".pas", language_pascal);
2731 add_filename_language (".p", language_pascal);
2732 add_filename_language (".pp", language_pascal);
2733 add_filename_language (".adb", language_ada);
2734 add_filename_language (".ads", language_ada);
2735 add_filename_language (".a", language_ada);
2736 add_filename_language (".ada", language_ada);
2737 add_filename_language (".dg", language_ada);
2738 }
2739 }
2740
2741 enum language
2742 deduce_language_from_filename (const char *filename)
2743 {
2744 int i;
2745 char *cp;
2746
2747 if (filename != NULL)
2748 if ((cp = strrchr (filename, '.')) != NULL)
2749 for (i = 0; i < fl_table_next; i++)
2750 if (strcmp (cp, filename_language_table[i].ext) == 0)
2751 return filename_language_table[i].lang;
2752
2753 return language_unknown;
2754 }
2755 \f
2756 /* allocate_symtab:
2757
2758 Allocate and partly initialize a new symbol table. Return a pointer
2759 to it. error() if no space.
2760
2761 Caller must set these fields:
2762 LINETABLE(symtab)
2763 symtab->blockvector
2764 symtab->dirname
2765 symtab->free_code
2766 symtab->free_ptr
2767 */
2768
2769 struct symtab *
2770 allocate_symtab (const char *filename, struct objfile *objfile)
2771 {
2772 struct symtab *symtab;
2773
2774 symtab = (struct symtab *)
2775 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2776 memset (symtab, 0, sizeof (*symtab));
2777 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2778 objfile->per_bfd->filename_cache);
2779 symtab->fullname = NULL;
2780 symtab->language = deduce_language_from_filename (filename);
2781 symtab->debugformat = "unknown";
2782
2783 /* Hook it to the objfile it comes from. */
2784
2785 symtab->objfile = objfile;
2786 symtab->next = objfile->symtabs;
2787 objfile->symtabs = symtab;
2788
2789 if (symtab_create_debug)
2790 {
2791 /* Be a bit clever with debugging messages, and don't print objfile
2792 every time, only when it changes. */
2793 static char *last_objfile_name = NULL;
2794
2795 if (last_objfile_name == NULL
2796 || strcmp (last_objfile_name, objfile->name) != 0)
2797 {
2798 xfree (last_objfile_name);
2799 last_objfile_name = xstrdup (objfile->name);
2800 fprintf_unfiltered (gdb_stdlog,
2801 "Creating one or more symtabs for objfile %s ...\n",
2802 last_objfile_name);
2803 }
2804 fprintf_unfiltered (gdb_stdlog,
2805 "Created symtab %s for module %s.\n",
2806 host_address_to_string (symtab), filename);
2807 }
2808
2809 return (symtab);
2810 }
2811 \f
2812
2813 /* Reset all data structures in gdb which may contain references to symbol
2814 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2815
2816 void
2817 clear_symtab_users (int add_flags)
2818 {
2819 /* Someday, we should do better than this, by only blowing away
2820 the things that really need to be blown. */
2821
2822 /* Clear the "current" symtab first, because it is no longer valid.
2823 breakpoint_re_set may try to access the current symtab. */
2824 clear_current_source_symtab_and_line ();
2825
2826 clear_displays ();
2827 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2828 breakpoint_re_set ();
2829 clear_last_displayed_sal ();
2830 clear_pc_function_cache ();
2831 observer_notify_new_objfile (NULL);
2832
2833 /* Clear globals which might have pointed into a removed objfile.
2834 FIXME: It's not clear which of these are supposed to persist
2835 between expressions and which ought to be reset each time. */
2836 expression_context_block = NULL;
2837 innermost_block = NULL;
2838
2839 /* Varobj may refer to old symbols, perform a cleanup. */
2840 varobj_invalidate ();
2841
2842 }
2843
2844 static void
2845 clear_symtab_users_cleanup (void *ignore)
2846 {
2847 clear_symtab_users (0);
2848 }
2849 \f
2850 /* OVERLAYS:
2851 The following code implements an abstraction for debugging overlay sections.
2852
2853 The target model is as follows:
2854 1) The gnu linker will permit multiple sections to be mapped into the
2855 same VMA, each with its own unique LMA (or load address).
2856 2) It is assumed that some runtime mechanism exists for mapping the
2857 sections, one by one, from the load address into the VMA address.
2858 3) This code provides a mechanism for gdb to keep track of which
2859 sections should be considered to be mapped from the VMA to the LMA.
2860 This information is used for symbol lookup, and memory read/write.
2861 For instance, if a section has been mapped then its contents
2862 should be read from the VMA, otherwise from the LMA.
2863
2864 Two levels of debugger support for overlays are available. One is
2865 "manual", in which the debugger relies on the user to tell it which
2866 overlays are currently mapped. This level of support is
2867 implemented entirely in the core debugger, and the information about
2868 whether a section is mapped is kept in the objfile->obj_section table.
2869
2870 The second level of support is "automatic", and is only available if
2871 the target-specific code provides functionality to read the target's
2872 overlay mapping table, and translate its contents for the debugger
2873 (by updating the mapped state information in the obj_section tables).
2874
2875 The interface is as follows:
2876 User commands:
2877 overlay map <name> -- tell gdb to consider this section mapped
2878 overlay unmap <name> -- tell gdb to consider this section unmapped
2879 overlay list -- list the sections that GDB thinks are mapped
2880 overlay read-target -- get the target's state of what's mapped
2881 overlay off/manual/auto -- set overlay debugging state
2882 Functional interface:
2883 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2884 section, return that section.
2885 find_pc_overlay(pc): find any overlay section that contains
2886 the pc, either in its VMA or its LMA
2887 section_is_mapped(sect): true if overlay is marked as mapped
2888 section_is_overlay(sect): true if section's VMA != LMA
2889 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2890 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2891 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2892 overlay_mapped_address(...): map an address from section's LMA to VMA
2893 overlay_unmapped_address(...): map an address from section's VMA to LMA
2894 symbol_overlayed_address(...): Return a "current" address for symbol:
2895 either in VMA or LMA depending on whether
2896 the symbol's section is currently mapped. */
2897
2898 /* Overlay debugging state: */
2899
2900 enum overlay_debugging_state overlay_debugging = ovly_off;
2901 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2902
2903 /* Function: section_is_overlay (SECTION)
2904 Returns true if SECTION has VMA not equal to LMA, ie.
2905 SECTION is loaded at an address different from where it will "run". */
2906
2907 int
2908 section_is_overlay (struct obj_section *section)
2909 {
2910 if (overlay_debugging && section)
2911 {
2912 bfd *abfd = section->objfile->obfd;
2913 asection *bfd_section = section->the_bfd_section;
2914
2915 if (bfd_section_lma (abfd, bfd_section) != 0
2916 && bfd_section_lma (abfd, bfd_section)
2917 != bfd_section_vma (abfd, bfd_section))
2918 return 1;
2919 }
2920
2921 return 0;
2922 }
2923
2924 /* Function: overlay_invalidate_all (void)
2925 Invalidate the mapped state of all overlay sections (mark it as stale). */
2926
2927 static void
2928 overlay_invalidate_all (void)
2929 {
2930 struct objfile *objfile;
2931 struct obj_section *sect;
2932
2933 ALL_OBJSECTIONS (objfile, sect)
2934 if (section_is_overlay (sect))
2935 sect->ovly_mapped = -1;
2936 }
2937
2938 /* Function: section_is_mapped (SECTION)
2939 Returns true if section is an overlay, and is currently mapped.
2940
2941 Access to the ovly_mapped flag is restricted to this function, so
2942 that we can do automatic update. If the global flag
2943 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2944 overlay_invalidate_all. If the mapped state of the particular
2945 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2946
2947 int
2948 section_is_mapped (struct obj_section *osect)
2949 {
2950 struct gdbarch *gdbarch;
2951
2952 if (osect == 0 || !section_is_overlay (osect))
2953 return 0;
2954
2955 switch (overlay_debugging)
2956 {
2957 default:
2958 case ovly_off:
2959 return 0; /* overlay debugging off */
2960 case ovly_auto: /* overlay debugging automatic */
2961 /* Unles there is a gdbarch_overlay_update function,
2962 there's really nothing useful to do here (can't really go auto). */
2963 gdbarch = get_objfile_arch (osect->objfile);
2964 if (gdbarch_overlay_update_p (gdbarch))
2965 {
2966 if (overlay_cache_invalid)
2967 {
2968 overlay_invalidate_all ();
2969 overlay_cache_invalid = 0;
2970 }
2971 if (osect->ovly_mapped == -1)
2972 gdbarch_overlay_update (gdbarch, osect);
2973 }
2974 /* fall thru to manual case */
2975 case ovly_on: /* overlay debugging manual */
2976 return osect->ovly_mapped == 1;
2977 }
2978 }
2979
2980 /* Function: pc_in_unmapped_range
2981 If PC falls into the lma range of SECTION, return true, else false. */
2982
2983 CORE_ADDR
2984 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2985 {
2986 if (section_is_overlay (section))
2987 {
2988 bfd *abfd = section->objfile->obfd;
2989 asection *bfd_section = section->the_bfd_section;
2990
2991 /* We assume the LMA is relocated by the same offset as the VMA. */
2992 bfd_vma size = bfd_get_section_size (bfd_section);
2993 CORE_ADDR offset = obj_section_offset (section);
2994
2995 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2996 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2997 return 1;
2998 }
2999
3000 return 0;
3001 }
3002
3003 /* Function: pc_in_mapped_range
3004 If PC falls into the vma range of SECTION, return true, else false. */
3005
3006 CORE_ADDR
3007 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3008 {
3009 if (section_is_overlay (section))
3010 {
3011 if (obj_section_addr (section) <= pc
3012 && pc < obj_section_endaddr (section))
3013 return 1;
3014 }
3015
3016 return 0;
3017 }
3018
3019 /* Return true if the mapped ranges of sections A and B overlap, false
3020 otherwise. */
3021
3022 static int
3023 sections_overlap (struct obj_section *a, struct obj_section *b)
3024 {
3025 CORE_ADDR a_start = obj_section_addr (a);
3026 CORE_ADDR a_end = obj_section_endaddr (a);
3027 CORE_ADDR b_start = obj_section_addr (b);
3028 CORE_ADDR b_end = obj_section_endaddr (b);
3029
3030 return (a_start < b_end && b_start < a_end);
3031 }
3032
3033 /* Function: overlay_unmapped_address (PC, SECTION)
3034 Returns the address corresponding to PC in the unmapped (load) range.
3035 May be the same as PC. */
3036
3037 CORE_ADDR
3038 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3039 {
3040 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3041 {
3042 bfd *abfd = section->objfile->obfd;
3043 asection *bfd_section = section->the_bfd_section;
3044
3045 return pc + bfd_section_lma (abfd, bfd_section)
3046 - bfd_section_vma (abfd, bfd_section);
3047 }
3048
3049 return pc;
3050 }
3051
3052 /* Function: overlay_mapped_address (PC, SECTION)
3053 Returns the address corresponding to PC in the mapped (runtime) range.
3054 May be the same as PC. */
3055
3056 CORE_ADDR
3057 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3058 {
3059 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3060 {
3061 bfd *abfd = section->objfile->obfd;
3062 asection *bfd_section = section->the_bfd_section;
3063
3064 return pc + bfd_section_vma (abfd, bfd_section)
3065 - bfd_section_lma (abfd, bfd_section);
3066 }
3067
3068 return pc;
3069 }
3070
3071 /* Function: symbol_overlayed_address
3072 Return one of two addresses (relative to the VMA or to the LMA),
3073 depending on whether the section is mapped or not. */
3074
3075 CORE_ADDR
3076 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3077 {
3078 if (overlay_debugging)
3079 {
3080 /* If the symbol has no section, just return its regular address. */
3081 if (section == 0)
3082 return address;
3083 /* If the symbol's section is not an overlay, just return its
3084 address. */
3085 if (!section_is_overlay (section))
3086 return address;
3087 /* If the symbol's section is mapped, just return its address. */
3088 if (section_is_mapped (section))
3089 return address;
3090 /*
3091 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3092 * then return its LOADED address rather than its vma address!!
3093 */
3094 return overlay_unmapped_address (address, section);
3095 }
3096 return address;
3097 }
3098
3099 /* Function: find_pc_overlay (PC)
3100 Return the best-match overlay section for PC:
3101 If PC matches a mapped overlay section's VMA, return that section.
3102 Else if PC matches an unmapped section's VMA, return that section.
3103 Else if PC matches an unmapped section's LMA, return that section. */
3104
3105 struct obj_section *
3106 find_pc_overlay (CORE_ADDR pc)
3107 {
3108 struct objfile *objfile;
3109 struct obj_section *osect, *best_match = NULL;
3110
3111 if (overlay_debugging)
3112 ALL_OBJSECTIONS (objfile, osect)
3113 if (section_is_overlay (osect))
3114 {
3115 if (pc_in_mapped_range (pc, osect))
3116 {
3117 if (section_is_mapped (osect))
3118 return osect;
3119 else
3120 best_match = osect;
3121 }
3122 else if (pc_in_unmapped_range (pc, osect))
3123 best_match = osect;
3124 }
3125 return best_match;
3126 }
3127
3128 /* Function: find_pc_mapped_section (PC)
3129 If PC falls into the VMA address range of an overlay section that is
3130 currently marked as MAPPED, return that section. Else return NULL. */
3131
3132 struct obj_section *
3133 find_pc_mapped_section (CORE_ADDR pc)
3134 {
3135 struct objfile *objfile;
3136 struct obj_section *osect;
3137
3138 if (overlay_debugging)
3139 ALL_OBJSECTIONS (objfile, osect)
3140 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3141 return osect;
3142
3143 return NULL;
3144 }
3145
3146 /* Function: list_overlays_command
3147 Print a list of mapped sections and their PC ranges. */
3148
3149 static void
3150 list_overlays_command (char *args, int from_tty)
3151 {
3152 int nmapped = 0;
3153 struct objfile *objfile;
3154 struct obj_section *osect;
3155
3156 if (overlay_debugging)
3157 ALL_OBJSECTIONS (objfile, osect)
3158 if (section_is_mapped (osect))
3159 {
3160 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3161 const char *name;
3162 bfd_vma lma, vma;
3163 int size;
3164
3165 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3166 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3167 size = bfd_get_section_size (osect->the_bfd_section);
3168 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3169
3170 printf_filtered ("Section %s, loaded at ", name);
3171 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3172 puts_filtered (" - ");
3173 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3174 printf_filtered (", mapped at ");
3175 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3176 puts_filtered (" - ");
3177 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3178 puts_filtered ("\n");
3179
3180 nmapped++;
3181 }
3182 if (nmapped == 0)
3183 printf_filtered (_("No sections are mapped.\n"));
3184 }
3185
3186 /* Function: map_overlay_command
3187 Mark the named section as mapped (ie. residing at its VMA address). */
3188
3189 static void
3190 map_overlay_command (char *args, int from_tty)
3191 {
3192 struct objfile *objfile, *objfile2;
3193 struct obj_section *sec, *sec2;
3194
3195 if (!overlay_debugging)
3196 error (_("Overlay debugging not enabled. Use "
3197 "either the 'overlay auto' or\n"
3198 "the 'overlay manual' command."));
3199
3200 if (args == 0 || *args == 0)
3201 error (_("Argument required: name of an overlay section"));
3202
3203 /* First, find a section matching the user supplied argument. */
3204 ALL_OBJSECTIONS (objfile, sec)
3205 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3206 {
3207 /* Now, check to see if the section is an overlay. */
3208 if (!section_is_overlay (sec))
3209 continue; /* not an overlay section */
3210
3211 /* Mark the overlay as "mapped". */
3212 sec->ovly_mapped = 1;
3213
3214 /* Next, make a pass and unmap any sections that are
3215 overlapped by this new section: */
3216 ALL_OBJSECTIONS (objfile2, sec2)
3217 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3218 {
3219 if (info_verbose)
3220 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3221 bfd_section_name (objfile->obfd,
3222 sec2->the_bfd_section));
3223 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3224 }
3225 return;
3226 }
3227 error (_("No overlay section called %s"), args);
3228 }
3229
3230 /* Function: unmap_overlay_command
3231 Mark the overlay section as unmapped
3232 (ie. resident in its LMA address range, rather than the VMA range). */
3233
3234 static void
3235 unmap_overlay_command (char *args, int from_tty)
3236 {
3237 struct objfile *objfile;
3238 struct obj_section *sec;
3239
3240 if (!overlay_debugging)
3241 error (_("Overlay debugging not enabled. "
3242 "Use either the 'overlay auto' or\n"
3243 "the 'overlay manual' command."));
3244
3245 if (args == 0 || *args == 0)
3246 error (_("Argument required: name of an overlay section"));
3247
3248 /* First, find a section matching the user supplied argument. */
3249 ALL_OBJSECTIONS (objfile, sec)
3250 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3251 {
3252 if (!sec->ovly_mapped)
3253 error (_("Section %s is not mapped"), args);
3254 sec->ovly_mapped = 0;
3255 return;
3256 }
3257 error (_("No overlay section called %s"), args);
3258 }
3259
3260 /* Function: overlay_auto_command
3261 A utility command to turn on overlay debugging.
3262 Possibly this should be done via a set/show command. */
3263
3264 static void
3265 overlay_auto_command (char *args, int from_tty)
3266 {
3267 overlay_debugging = ovly_auto;
3268 enable_overlay_breakpoints ();
3269 if (info_verbose)
3270 printf_unfiltered (_("Automatic overlay debugging enabled."));
3271 }
3272
3273 /* Function: overlay_manual_command
3274 A utility command to turn on overlay debugging.
3275 Possibly this should be done via a set/show command. */
3276
3277 static void
3278 overlay_manual_command (char *args, int from_tty)
3279 {
3280 overlay_debugging = ovly_on;
3281 disable_overlay_breakpoints ();
3282 if (info_verbose)
3283 printf_unfiltered (_("Overlay debugging enabled."));
3284 }
3285
3286 /* Function: overlay_off_command
3287 A utility command to turn on overlay debugging.
3288 Possibly this should be done via a set/show command. */
3289
3290 static void
3291 overlay_off_command (char *args, int from_tty)
3292 {
3293 overlay_debugging = ovly_off;
3294 disable_overlay_breakpoints ();
3295 if (info_verbose)
3296 printf_unfiltered (_("Overlay debugging disabled."));
3297 }
3298
3299 static void
3300 overlay_load_command (char *args, int from_tty)
3301 {
3302 struct gdbarch *gdbarch = get_current_arch ();
3303
3304 if (gdbarch_overlay_update_p (gdbarch))
3305 gdbarch_overlay_update (gdbarch, NULL);
3306 else
3307 error (_("This target does not know how to read its overlay state."));
3308 }
3309
3310 /* Function: overlay_command
3311 A place-holder for a mis-typed command. */
3312
3313 /* Command list chain containing all defined "overlay" subcommands. */
3314 static struct cmd_list_element *overlaylist;
3315
3316 static void
3317 overlay_command (char *args, int from_tty)
3318 {
3319 printf_unfiltered
3320 ("\"overlay\" must be followed by the name of an overlay command.\n");
3321 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3322 }
3323
3324 /* Target Overlays for the "Simplest" overlay manager:
3325
3326 This is GDB's default target overlay layer. It works with the
3327 minimal overlay manager supplied as an example by Cygnus. The
3328 entry point is via a function pointer "gdbarch_overlay_update",
3329 so targets that use a different runtime overlay manager can
3330 substitute their own overlay_update function and take over the
3331 function pointer.
3332
3333 The overlay_update function pokes around in the target's data structures
3334 to see what overlays are mapped, and updates GDB's overlay mapping with
3335 this information.
3336
3337 In this simple implementation, the target data structures are as follows:
3338 unsigned _novlys; /# number of overlay sections #/
3339 unsigned _ovly_table[_novlys][4] = {
3340 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3341 {..., ..., ..., ...},
3342 }
3343 unsigned _novly_regions; /# number of overlay regions #/
3344 unsigned _ovly_region_table[_novly_regions][3] = {
3345 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3346 {..., ..., ...},
3347 }
3348 These functions will attempt to update GDB's mappedness state in the
3349 symbol section table, based on the target's mappedness state.
3350
3351 To do this, we keep a cached copy of the target's _ovly_table, and
3352 attempt to detect when the cached copy is invalidated. The main
3353 entry point is "simple_overlay_update(SECT), which looks up SECT in
3354 the cached table and re-reads only the entry for that section from
3355 the target (whenever possible). */
3356
3357 /* Cached, dynamically allocated copies of the target data structures: */
3358 static unsigned (*cache_ovly_table)[4] = 0;
3359 static unsigned cache_novlys = 0;
3360 static CORE_ADDR cache_ovly_table_base = 0;
3361 enum ovly_index
3362 {
3363 VMA, SIZE, LMA, MAPPED
3364 };
3365
3366 /* Throw away the cached copy of _ovly_table. */
3367
3368 static void
3369 simple_free_overlay_table (void)
3370 {
3371 if (cache_ovly_table)
3372 xfree (cache_ovly_table);
3373 cache_novlys = 0;
3374 cache_ovly_table = NULL;
3375 cache_ovly_table_base = 0;
3376 }
3377
3378 /* Read an array of ints of size SIZE from the target into a local buffer.
3379 Convert to host order. int LEN is number of ints. */
3380
3381 static void
3382 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3383 int len, int size, enum bfd_endian byte_order)
3384 {
3385 /* FIXME (alloca): Not safe if array is very large. */
3386 gdb_byte *buf = alloca (len * size);
3387 int i;
3388
3389 read_memory (memaddr, buf, len * size);
3390 for (i = 0; i < len; i++)
3391 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3392 }
3393
3394 /* Find and grab a copy of the target _ovly_table
3395 (and _novlys, which is needed for the table's size). */
3396
3397 static int
3398 simple_read_overlay_table (void)
3399 {
3400 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3401 struct gdbarch *gdbarch;
3402 int word_size;
3403 enum bfd_endian byte_order;
3404
3405 simple_free_overlay_table ();
3406 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3407 if (! novlys_msym)
3408 {
3409 error (_("Error reading inferior's overlay table: "
3410 "couldn't find `_novlys' variable\n"
3411 "in inferior. Use `overlay manual' mode."));
3412 return 0;
3413 }
3414
3415 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3416 if (! ovly_table_msym)
3417 {
3418 error (_("Error reading inferior's overlay table: couldn't find "
3419 "`_ovly_table' array\n"
3420 "in inferior. Use `overlay manual' mode."));
3421 return 0;
3422 }
3423
3424 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3425 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3426 byte_order = gdbarch_byte_order (gdbarch);
3427
3428 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3429 4, byte_order);
3430 cache_ovly_table
3431 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3432 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3433 read_target_long_array (cache_ovly_table_base,
3434 (unsigned int *) cache_ovly_table,
3435 cache_novlys * 4, word_size, byte_order);
3436
3437 return 1; /* SUCCESS */
3438 }
3439
3440 /* Function: simple_overlay_update_1
3441 A helper function for simple_overlay_update. Assuming a cached copy
3442 of _ovly_table exists, look through it to find an entry whose vma,
3443 lma and size match those of OSECT. Re-read the entry and make sure
3444 it still matches OSECT (else the table may no longer be valid).
3445 Set OSECT's mapped state to match the entry. Return: 1 for
3446 success, 0 for failure. */
3447
3448 static int
3449 simple_overlay_update_1 (struct obj_section *osect)
3450 {
3451 int i, size;
3452 bfd *obfd = osect->objfile->obfd;
3453 asection *bsect = osect->the_bfd_section;
3454 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3455 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3457
3458 size = bfd_get_section_size (osect->the_bfd_section);
3459 for (i = 0; i < cache_novlys; i++)
3460 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3461 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3462 /* && cache_ovly_table[i][SIZE] == size */ )
3463 {
3464 read_target_long_array (cache_ovly_table_base + i * word_size,
3465 (unsigned int *) cache_ovly_table[i],
3466 4, word_size, byte_order);
3467 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3468 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3469 /* && cache_ovly_table[i][SIZE] == size */ )
3470 {
3471 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3472 return 1;
3473 }
3474 else /* Warning! Warning! Target's ovly table has changed! */
3475 return 0;
3476 }
3477 return 0;
3478 }
3479
3480 /* Function: simple_overlay_update
3481 If OSECT is NULL, then update all sections' mapped state
3482 (after re-reading the entire target _ovly_table).
3483 If OSECT is non-NULL, then try to find a matching entry in the
3484 cached ovly_table and update only OSECT's mapped state.
3485 If a cached entry can't be found or the cache isn't valid, then
3486 re-read the entire cache, and go ahead and update all sections. */
3487
3488 void
3489 simple_overlay_update (struct obj_section *osect)
3490 {
3491 struct objfile *objfile;
3492
3493 /* Were we given an osect to look up? NULL means do all of them. */
3494 if (osect)
3495 /* Have we got a cached copy of the target's overlay table? */
3496 if (cache_ovly_table != NULL)
3497 {
3498 /* Does its cached location match what's currently in the
3499 symtab? */
3500 struct minimal_symbol *minsym
3501 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3502
3503 if (minsym == NULL)
3504 error (_("Error reading inferior's overlay table: couldn't "
3505 "find `_ovly_table' array\n"
3506 "in inferior. Use `overlay manual' mode."));
3507
3508 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3509 /* Then go ahead and try to look up this single section in
3510 the cache. */
3511 if (simple_overlay_update_1 (osect))
3512 /* Found it! We're done. */
3513 return;
3514 }
3515
3516 /* Cached table no good: need to read the entire table anew.
3517 Or else we want all the sections, in which case it's actually
3518 more efficient to read the whole table in one block anyway. */
3519
3520 if (! simple_read_overlay_table ())
3521 return;
3522
3523 /* Now may as well update all sections, even if only one was requested. */
3524 ALL_OBJSECTIONS (objfile, osect)
3525 if (section_is_overlay (osect))
3526 {
3527 int i, size;
3528 bfd *obfd = osect->objfile->obfd;
3529 asection *bsect = osect->the_bfd_section;
3530
3531 size = bfd_get_section_size (bsect);
3532 for (i = 0; i < cache_novlys; i++)
3533 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3534 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3535 /* && cache_ovly_table[i][SIZE] == size */ )
3536 { /* obj_section matches i'th entry in ovly_table. */
3537 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3538 break; /* finished with inner for loop: break out. */
3539 }
3540 }
3541 }
3542
3543 /* Set the output sections and output offsets for section SECTP in
3544 ABFD. The relocation code in BFD will read these offsets, so we
3545 need to be sure they're initialized. We map each section to itself,
3546 with no offset; this means that SECTP->vma will be honored. */
3547
3548 static void
3549 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3550 {
3551 sectp->output_section = sectp;
3552 sectp->output_offset = 0;
3553 }
3554
3555 /* Default implementation for sym_relocate. */
3556
3557 bfd_byte *
3558 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3559 bfd_byte *buf)
3560 {
3561 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3562 DWO file. */
3563 bfd *abfd = sectp->owner;
3564
3565 /* We're only interested in sections with relocation
3566 information. */
3567 if ((sectp->flags & SEC_RELOC) == 0)
3568 return NULL;
3569
3570 /* We will handle section offsets properly elsewhere, so relocate as if
3571 all sections begin at 0. */
3572 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3573
3574 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3575 }
3576
3577 /* Relocate the contents of a debug section SECTP in ABFD. The
3578 contents are stored in BUF if it is non-NULL, or returned in a
3579 malloc'd buffer otherwise.
3580
3581 For some platforms and debug info formats, shared libraries contain
3582 relocations against the debug sections (particularly for DWARF-2;
3583 one affected platform is PowerPC GNU/Linux, although it depends on
3584 the version of the linker in use). Also, ELF object files naturally
3585 have unresolved relocations for their debug sections. We need to apply
3586 the relocations in order to get the locations of symbols correct.
3587 Another example that may require relocation processing, is the
3588 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3589 debug section. */
3590
3591 bfd_byte *
3592 symfile_relocate_debug_section (struct objfile *objfile,
3593 asection *sectp, bfd_byte *buf)
3594 {
3595 gdb_assert (objfile->sf->sym_relocate);
3596
3597 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3598 }
3599
3600 struct symfile_segment_data *
3601 get_symfile_segment_data (bfd *abfd)
3602 {
3603 const struct sym_fns *sf = find_sym_fns (abfd);
3604
3605 if (sf == NULL)
3606 return NULL;
3607
3608 return sf->sym_segments (abfd);
3609 }
3610
3611 void
3612 free_symfile_segment_data (struct symfile_segment_data *data)
3613 {
3614 xfree (data->segment_bases);
3615 xfree (data->segment_sizes);
3616 xfree (data->segment_info);
3617 xfree (data);
3618 }
3619
3620 /* Given:
3621 - DATA, containing segment addresses from the object file ABFD, and
3622 the mapping from ABFD's sections onto the segments that own them,
3623 and
3624 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3625 segment addresses reported by the target,
3626 store the appropriate offsets for each section in OFFSETS.
3627
3628 If there are fewer entries in SEGMENT_BASES than there are segments
3629 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3630
3631 If there are more entries, then ignore the extra. The target may
3632 not be able to distinguish between an empty data segment and a
3633 missing data segment; a missing text segment is less plausible. */
3634
3635 int
3636 symfile_map_offsets_to_segments (bfd *abfd,
3637 const struct symfile_segment_data *data,
3638 struct section_offsets *offsets,
3639 int num_segment_bases,
3640 const CORE_ADDR *segment_bases)
3641 {
3642 int i;
3643 asection *sect;
3644
3645 /* It doesn't make sense to call this function unless you have some
3646 segment base addresses. */
3647 gdb_assert (num_segment_bases > 0);
3648
3649 /* If we do not have segment mappings for the object file, we
3650 can not relocate it by segments. */
3651 gdb_assert (data != NULL);
3652 gdb_assert (data->num_segments > 0);
3653
3654 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3655 {
3656 int which = data->segment_info[i];
3657
3658 gdb_assert (0 <= which && which <= data->num_segments);
3659
3660 /* Don't bother computing offsets for sections that aren't
3661 loaded as part of any segment. */
3662 if (! which)
3663 continue;
3664
3665 /* Use the last SEGMENT_BASES entry as the address of any extra
3666 segments mentioned in DATA->segment_info. */
3667 if (which > num_segment_bases)
3668 which = num_segment_bases;
3669
3670 offsets->offsets[i] = (segment_bases[which - 1]
3671 - data->segment_bases[which - 1]);
3672 }
3673
3674 return 1;
3675 }
3676
3677 static void
3678 symfile_find_segment_sections (struct objfile *objfile)
3679 {
3680 bfd *abfd = objfile->obfd;
3681 int i;
3682 asection *sect;
3683 struct symfile_segment_data *data;
3684
3685 data = get_symfile_segment_data (objfile->obfd);
3686 if (data == NULL)
3687 return;
3688
3689 if (data->num_segments != 1 && data->num_segments != 2)
3690 {
3691 free_symfile_segment_data (data);
3692 return;
3693 }
3694
3695 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3696 {
3697 int which = data->segment_info[i];
3698
3699 if (which == 1)
3700 {
3701 if (objfile->sect_index_text == -1)
3702 objfile->sect_index_text = sect->index;
3703
3704 if (objfile->sect_index_rodata == -1)
3705 objfile->sect_index_rodata = sect->index;
3706 }
3707 else if (which == 2)
3708 {
3709 if (objfile->sect_index_data == -1)
3710 objfile->sect_index_data = sect->index;
3711
3712 if (objfile->sect_index_bss == -1)
3713 objfile->sect_index_bss = sect->index;
3714 }
3715 }
3716
3717 free_symfile_segment_data (data);
3718 }
3719
3720 void
3721 _initialize_symfile (void)
3722 {
3723 struct cmd_list_element *c;
3724
3725 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3726 Load symbol table from executable file FILE.\n\
3727 The `file' command can also load symbol tables, as well as setting the file\n\
3728 to execute."), &cmdlist);
3729 set_cmd_completer (c, filename_completer);
3730
3731 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3732 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3733 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3734 ...]\nADDR is the starting address of the file's text.\n\
3735 The optional arguments are section-name section-address pairs and\n\
3736 should be specified if the data and bss segments are not contiguous\n\
3737 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3738 &cmdlist);
3739 set_cmd_completer (c, filename_completer);
3740
3741 c = add_cmd ("load", class_files, load_command, _("\
3742 Dynamically load FILE into the running program, and record its symbols\n\
3743 for access from GDB.\n\
3744 A load OFFSET may also be given."), &cmdlist);
3745 set_cmd_completer (c, filename_completer);
3746
3747 add_prefix_cmd ("overlay", class_support, overlay_command,
3748 _("Commands for debugging overlays."), &overlaylist,
3749 "overlay ", 0, &cmdlist);
3750
3751 add_com_alias ("ovly", "overlay", class_alias, 1);
3752 add_com_alias ("ov", "overlay", class_alias, 1);
3753
3754 add_cmd ("map-overlay", class_support, map_overlay_command,
3755 _("Assert that an overlay section is mapped."), &overlaylist);
3756
3757 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3758 _("Assert that an overlay section is unmapped."), &overlaylist);
3759
3760 add_cmd ("list-overlays", class_support, list_overlays_command,
3761 _("List mappings of overlay sections."), &overlaylist);
3762
3763 add_cmd ("manual", class_support, overlay_manual_command,
3764 _("Enable overlay debugging."), &overlaylist);
3765 add_cmd ("off", class_support, overlay_off_command,
3766 _("Disable overlay debugging."), &overlaylist);
3767 add_cmd ("auto", class_support, overlay_auto_command,
3768 _("Enable automatic overlay debugging."), &overlaylist);
3769 add_cmd ("load-target", class_support, overlay_load_command,
3770 _("Read the overlay mapping state from the target."), &overlaylist);
3771
3772 /* Filename extension to source language lookup table: */
3773 init_filename_language_table ();
3774 add_setshow_string_noescape_cmd ("extension-language", class_files,
3775 &ext_args, _("\
3776 Set mapping between filename extension and source language."), _("\
3777 Show mapping between filename extension and source language."), _("\
3778 Usage: set extension-language .foo bar"),
3779 set_ext_lang_command,
3780 show_ext_args,
3781 &setlist, &showlist);
3782
3783 add_info ("extensions", info_ext_lang_command,
3784 _("All filename extensions associated with a source language."));
3785
3786 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3787 &debug_file_directory, _("\
3788 Set the directories where separate debug symbols are searched for."), _("\
3789 Show the directories where separate debug symbols are searched for."), _("\
3790 Separate debug symbols are first searched for in the same\n\
3791 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3792 and lastly at the path of the directory of the binary with\n\
3793 each global debug-file-directory component prepended."),
3794 NULL,
3795 show_debug_file_directory,
3796 &setlist, &showlist);
3797 }
This page took 0.207626 seconds and 4 git commands to generate.