2009-07-30 Thomas Schwinge <tschwinge@gnu.org>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179 int print_symbol_loading = 1;
180
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
190
191 int auto_solib_add = 1;
192
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201 int auto_solib_limit;
202 \f
203
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
206
207 static int
208 compare_psymbols (const void *s1p, const void *s2p)
209 {
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
215 }
216
217 void
218 sort_pst_symbols (struct partial_symtab *pst)
219 {
220 /* Sort the global list; don't sort the static list */
221
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
224 compare_psymbols);
225 }
226
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232 char *
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
234 {
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
240 const char *p1 = ptr;
241 char *p2 = p;
242 const char *end = ptr + size;
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248 }
249
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253 char *
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
256 {
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263 }
264
265 /* True if we are nested inside psymtab_to_symtab. */
266
267 int currently_reading_symtab = 0;
268
269 static void
270 decrement_reading_symtab (void *dummy)
271 {
272 currently_reading_symtab--;
273 }
274
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280 struct symtab *
281 psymtab_to_symtab (struct partial_symtab *pst)
282 {
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
289 {
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297 }
298
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308 void
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
310 {
311 asection **lowest = (asection **) obj;
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323 }
324
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
329 {
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340 }
341
342
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
347 {
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364 }
365
366
367
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
374 {
375 struct section_addr_info *sap;
376 const struct target_section *stp;
377 int oidx;
378
379 sap = alloc_section_addr_info (end - start);
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
386 {
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396 }
397
398
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401 extern void
402 free_section_addr_info (struct section_addr_info *sap)
403 {
404 int idx;
405
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
409 xfree (sap);
410 }
411
412
413 /* Initialize OBJFILE's sect_index_* members. */
414 static void
415 init_objfile_sect_indices (struct objfile *objfile)
416 {
417 asection *sect;
418 int i;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
421 if (sect)
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
425 if (sect)
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
429 if (sect)
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
433 if (sect)
434 objfile->sect_index_rodata = sect->index;
435
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473 /* The arguments to place_section. */
474
475 struct place_section_arg
476 {
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479 };
480
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484 static void
485 place_section (bfd *abfd, asection *sect, void *obj)
486 {
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
491
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
502
503 do {
504 asection *cur_sec;
505
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
534 break;
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
544 }
545
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552 void
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555 {
556 int i;
557
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
645 }
646 }
647 }
648
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652 }
653
654
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
663 {
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717 }
718
719 /* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
722 OBJFILE is where the symbols are to be read from.
723
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
744
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
748
749 void
750 syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
754 int add_flags)
755 {
756 struct section_addr_info *local_addr = NULL;
757 struct cleanup *old_chain;
758 const int mainline = add_flags & SYMFILE_MAINLINE;
759
760 gdb_assert (! (addrs && offsets));
761
762 init_entry_point_info (objfile);
763 objfile->sf = find_sym_fns (objfile->obfd);
764
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
770 old_chain = make_cleanup_free_objfile (objfile);
771
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
777 local_addr
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
785 if (mainline)
786 {
787 /* We will modify the main symbol table, make sure that all its users
788 will be cleaned up if an error occurs during symbol reading. */
789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
803
804 (*objfile->sf->sym_new_init) (objfile);
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
809 and assume that <addr> is where that got loaded.
810
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
813 if (!mainline && addrs && addrs->other[0].name)
814 {
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
820 /* Find lowest loadable section to be used as starting point for
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
826 &lower_sect);
827 if (lower_sect == NULL)
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
833 else
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
839
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
879
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
895
896 (*objfile->sf->sym_read) (objfile, mainline);
897
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
901 xfree (local_addr);
902 }
903
904 /* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
907
908 void
909 new_symfile_objfile (struct objfile *objfile, int add_flags)
910 {
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (add_flags & SYMFILE_MAINLINE)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
923 {
924 breakpoint_re_set ();
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
929 }
930
931 /* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
936
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
943
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
946
947 static struct objfile *
948 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int flags)
954 {
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961 const int from_tty = add_flags & SYMFILE_VERBOSE;
962
963 my_cleanups = make_cleanup_bfd_close (abfd);
964
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
967
968 if ((have_full_symbols () || have_partial_symbols ())
969 && (add_flags & SYMFILE_MAINLINE)
970 && from_tty
971 && !query (_("Load new symbol table from \"%s\"? "), name))
972 error (_("Not confirmed."));
973
974 objfile = allocate_objfile (abfd, flags);
975 discard_cleanups (my_cleanups);
976
977 if (addrs)
978 {
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
981 }
982
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
987 {
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
990 else
991 {
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
998 }
999 }
1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1001 add_flags);
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1009 {
1010 if ((from_tty || info_verbose) && print_symbol_loading)
1011 {
1012 printf_unfiltered (_("expanding to full symbols..."));
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
1017 for (psymtab = objfile->psymtabs;
1018 psymtab != NULL;
1019 psymtab = psymtab->next)
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
1030 if (debugfile)
1031 {
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
1044
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
1048
1049 xfree (debugfile);
1050 }
1051
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
1054 {
1055 wrap_here ("");
1056 printf_unfiltered (_("(no debugging symbols found)"));
1057 if (from_tty || info_verbose)
1058 printf_unfiltered ("...");
1059 else
1060 printf_unfiltered ("\n");
1061 wrap_here ("");
1062 }
1063
1064 if (from_tty || info_verbose)
1065 {
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
1068 else
1069 {
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
1072 }
1073 }
1074
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
1080 do_cleanups (my_cleanups);
1081
1082 if (objfile->sf == NULL)
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
1087
1088 new_symfile_objfile (objfile, add_flags);
1089
1090 observer_notify_new_objfile (objfile);
1091
1092 bfd_cache_close_all ();
1093 return (objfile);
1094 }
1095
1096
1097 /* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102 struct objfile *
1103 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1104 struct section_addr_info *addrs,
1105 int flags)
1106 {
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
1109 }
1110
1111
1112 /* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115 struct objfile *
1116 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
1118 {
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
1121 }
1122
1123
1124 /* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
1131
1132 void
1133 symbol_file_add_main (char *args, int from_tty)
1134 {
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136 }
1137
1138 static void
1139 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140 {
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
1143
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1149 }
1150
1151 void
1152 symbol_file_clear (int from_tty)
1153 {
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
1160 error (_("Not confirmed."));
1161
1162 free_all_objfiles ();
1163
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1172 }
1173
1174 struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182 static struct build_id *
1183 build_id_bfd_get (bfd *abfd)
1184 {
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197 }
1198
1199 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201 static int
1202 build_id_verify (const char *filename, struct build_id *check)
1203 {
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
1229
1230 xfree (found);
1231
1232 return retval;
1233 }
1234
1235 static char *
1236 build_id_to_debug_filename (struct build_id *build_id)
1237 {
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269 }
1270
1271 static char *
1272 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273 {
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
1280
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
1287
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1297
1298 *crc32_out = crc32;
1299 return contents;
1300 }
1301
1302 static int
1303 separate_debug_file_exists (const char *name, unsigned long crc)
1304 {
1305 unsigned long file_crc = 0;
1306 bfd *abfd;
1307 gdb_byte buffer[8*1024];
1308 int count;
1309
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
1316 return 0;
1317
1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
1321 bfd_close (abfd);
1322
1323 return crc == file_crc;
1324 }
1325
1326 char *debug_file_directory = NULL;
1327 static void
1328 show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330 {
1331 fprintf_filtered (file, _("\
1332 The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334 }
1335
1336 #if ! defined (DEBUG_SUBDIRECTORY)
1337 #define DEBUG_SUBDIRECTORY ".debug"
1338 #endif
1339
1340 static char *
1341 find_separate_debug_file (struct objfile *objfile)
1342 {
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
1348 char *canon_name;
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
1360 xfree (build_id);
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
1376
1377 dir = xstrdup (objfile->name);
1378
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1389 dir[i+1] = '\0';
1390
1391 debugfile = alloca (strlen (debug_file_directory) + 1
1392 + strlen (dir)
1393 + strlen (DEBUG_SUBDIRECTORY)
1394 + strlen ("/")
1395 + strlen (basename)
1396 + 1);
1397
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1401
1402 if (separate_debug_file_exists (debugfile, crc32))
1403 {
1404 xfree (basename);
1405 xfree (dir);
1406 return xstrdup (debugfile);
1407 }
1408
1409 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1410 strcpy (debugfile, dir);
1411 strcat (debugfile, DEBUG_SUBDIRECTORY);
1412 strcat (debugfile, "/");
1413 strcat (debugfile, basename);
1414
1415 if (separate_debug_file_exists (debugfile, crc32))
1416 {
1417 xfree (basename);
1418 xfree (dir);
1419 return xstrdup (debugfile);
1420 }
1421
1422 /* Then try in the global debugfile directory. */
1423 strcpy (debugfile, debug_file_directory);
1424 strcat (debugfile, "/");
1425 strcat (debugfile, dir);
1426 strcat (debugfile, basename);
1427
1428 if (separate_debug_file_exists (debugfile, crc32))
1429 {
1430 xfree (basename);
1431 xfree (dir);
1432 return xstrdup (debugfile);
1433 }
1434
1435 /* If the file is in the sysroot, try using its base path in the
1436 global debugfile directory. */
1437 canon_name = lrealpath (dir);
1438 if (canon_name
1439 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1440 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1441 {
1442 strcpy (debugfile, debug_file_directory);
1443 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1444 strcat (debugfile, "/");
1445 strcat (debugfile, basename);
1446
1447 if (separate_debug_file_exists (debugfile, crc32))
1448 {
1449 xfree (canon_name);
1450 xfree (basename);
1451 xfree (dir);
1452 return xstrdup (debugfile);
1453 }
1454 }
1455
1456 if (canon_name)
1457 xfree (canon_name);
1458
1459 xfree (basename);
1460 xfree (dir);
1461 return NULL;
1462 }
1463
1464
1465 /* This is the symbol-file command. Read the file, analyze its
1466 symbols, and add a struct symtab to a symtab list. The syntax of
1467 the command is rather bizarre:
1468
1469 1. The function buildargv implements various quoting conventions
1470 which are undocumented and have little or nothing in common with
1471 the way things are quoted (or not quoted) elsewhere in GDB.
1472
1473 2. Options are used, which are not generally used in GDB (perhaps
1474 "set mapped on", "set readnow on" would be better)
1475
1476 3. The order of options matters, which is contrary to GNU
1477 conventions (because it is confusing and inconvenient). */
1478
1479 void
1480 symbol_file_command (char *args, int from_tty)
1481 {
1482 dont_repeat ();
1483
1484 if (args == NULL)
1485 {
1486 symbol_file_clear (from_tty);
1487 }
1488 else
1489 {
1490 char **argv = gdb_buildargv (args);
1491 int flags = OBJF_USERLOADED;
1492 struct cleanup *cleanups;
1493 char *name = NULL;
1494
1495 cleanups = make_cleanup_freeargv (argv);
1496 while (*argv != NULL)
1497 {
1498 if (strcmp (*argv, "-readnow") == 0)
1499 flags |= OBJF_READNOW;
1500 else if (**argv == '-')
1501 error (_("unknown option `%s'"), *argv);
1502 else
1503 {
1504 symbol_file_add_main_1 (*argv, from_tty, flags);
1505 name = *argv;
1506 }
1507
1508 argv++;
1509 }
1510
1511 if (name == NULL)
1512 error (_("no symbol file name was specified"));
1513
1514 do_cleanups (cleanups);
1515 }
1516 }
1517
1518 /* Set the initial language.
1519
1520 FIXME: A better solution would be to record the language in the
1521 psymtab when reading partial symbols, and then use it (if known) to
1522 set the language. This would be a win for formats that encode the
1523 language in an easily discoverable place, such as DWARF. For
1524 stabs, we can jump through hoops looking for specially named
1525 symbols or try to intuit the language from the specific type of
1526 stabs we find, but we can't do that until later when we read in
1527 full symbols. */
1528
1529 void
1530 set_initial_language (void)
1531 {
1532 struct partial_symtab *pst;
1533 enum language lang = language_unknown;
1534
1535 pst = find_main_psymtab ();
1536 if (pst != NULL)
1537 {
1538 if (pst->filename != NULL)
1539 lang = deduce_language_from_filename (pst->filename);
1540
1541 if (lang == language_unknown)
1542 {
1543 /* Make C the default language */
1544 lang = language_c;
1545 }
1546
1547 set_language (lang);
1548 expected_language = current_language; /* Don't warn the user. */
1549 }
1550 }
1551
1552 /* Open the file specified by NAME and hand it off to BFD for
1553 preliminary analysis. Return a newly initialized bfd *, which
1554 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1555 absolute). In case of trouble, error() is called. */
1556
1557 bfd *
1558 symfile_bfd_open (char *name)
1559 {
1560 bfd *sym_bfd;
1561 int desc;
1562 char *absolute_name;
1563
1564 if (remote_filename_p (name))
1565 {
1566 name = xstrdup (name);
1567 sym_bfd = remote_bfd_open (name, gnutarget);
1568 if (!sym_bfd)
1569 {
1570 make_cleanup (xfree, name);
1571 error (_("`%s': can't open to read symbols: %s."), name,
1572 bfd_errmsg (bfd_get_error ()));
1573 }
1574
1575 if (!bfd_check_format (sym_bfd, bfd_object))
1576 {
1577 bfd_close (sym_bfd);
1578 make_cleanup (xfree, name);
1579 error (_("`%s': can't read symbols: %s."), name,
1580 bfd_errmsg (bfd_get_error ()));
1581 }
1582
1583 return sym_bfd;
1584 }
1585
1586 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1587
1588 /* Look down path for it, allocate 2nd new malloc'd copy. */
1589 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1590 O_RDONLY | O_BINARY, &absolute_name);
1591 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1592 if (desc < 0)
1593 {
1594 char *exename = alloca (strlen (name) + 5);
1595 strcat (strcpy (exename, name), ".exe");
1596 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1597 O_RDONLY | O_BINARY, &absolute_name);
1598 }
1599 #endif
1600 if (desc < 0)
1601 {
1602 make_cleanup (xfree, name);
1603 perror_with_name (name);
1604 }
1605
1606 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1607 bfd. It'll be freed in free_objfile(). */
1608 xfree (name);
1609 name = absolute_name;
1610
1611 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1612 if (!sym_bfd)
1613 {
1614 close (desc);
1615 make_cleanup (xfree, name);
1616 error (_("`%s': can't open to read symbols: %s."), name,
1617 bfd_errmsg (bfd_get_error ()));
1618 }
1619 bfd_set_cacheable (sym_bfd, 1);
1620
1621 if (!bfd_check_format (sym_bfd, bfd_object))
1622 {
1623 /* FIXME: should be checking for errors from bfd_close (for one
1624 thing, on error it does not free all the storage associated
1625 with the bfd). */
1626 bfd_close (sym_bfd); /* This also closes desc. */
1627 make_cleanup (xfree, name);
1628 error (_("`%s': can't read symbols: %s."), name,
1629 bfd_errmsg (bfd_get_error ()));
1630 }
1631
1632 return sym_bfd;
1633 }
1634
1635 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1636 the section was not found. */
1637
1638 int
1639 get_section_index (struct objfile *objfile, char *section_name)
1640 {
1641 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1642
1643 if (sect)
1644 return sect->index;
1645 else
1646 return -1;
1647 }
1648
1649 /* Link SF into the global symtab_fns list. Called on startup by the
1650 _initialize routine in each object file format reader, to register
1651 information about each format the the reader is prepared to
1652 handle. */
1653
1654 void
1655 add_symtab_fns (struct sym_fns *sf)
1656 {
1657 sf->next = symtab_fns;
1658 symtab_fns = sf;
1659 }
1660
1661 /* Initialize OBJFILE to read symbols from its associated BFD. It
1662 either returns or calls error(). The result is an initialized
1663 struct sym_fns in the objfile structure, that contains cached
1664 information about the symbol file. */
1665
1666 static struct sym_fns *
1667 find_sym_fns (bfd *abfd)
1668 {
1669 struct sym_fns *sf;
1670 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1671
1672 if (our_flavour == bfd_target_srec_flavour
1673 || our_flavour == bfd_target_ihex_flavour
1674 || our_flavour == bfd_target_tekhex_flavour)
1675 return NULL; /* No symbols. */
1676
1677 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1678 if (our_flavour == sf->sym_flavour)
1679 return sf;
1680
1681 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1682 bfd_get_target (abfd));
1683 }
1684 \f
1685
1686 /* This function runs the load command of our current target. */
1687
1688 static void
1689 load_command (char *arg, int from_tty)
1690 {
1691 /* The user might be reloading because the binary has changed. Take
1692 this opportunity to check. */
1693 reopen_exec_file ();
1694 reread_symbols ();
1695
1696 if (arg == NULL)
1697 {
1698 char *parg;
1699 int count = 0;
1700
1701 parg = arg = get_exec_file (1);
1702
1703 /* Count how many \ " ' tab space there are in the name. */
1704 while ((parg = strpbrk (parg, "\\\"'\t ")))
1705 {
1706 parg++;
1707 count++;
1708 }
1709
1710 if (count)
1711 {
1712 /* We need to quote this string so buildargv can pull it apart. */
1713 char *temp = xmalloc (strlen (arg) + count + 1 );
1714 char *ptemp = temp;
1715 char *prev;
1716
1717 make_cleanup (xfree, temp);
1718
1719 prev = parg = arg;
1720 while ((parg = strpbrk (parg, "\\\"'\t ")))
1721 {
1722 strncpy (ptemp, prev, parg - prev);
1723 ptemp += parg - prev;
1724 prev = parg++;
1725 *ptemp++ = '\\';
1726 }
1727 strcpy (ptemp, prev);
1728
1729 arg = temp;
1730 }
1731 }
1732
1733 target_load (arg, from_tty);
1734
1735 /* After re-loading the executable, we don't really know which
1736 overlays are mapped any more. */
1737 overlay_cache_invalid = 1;
1738 }
1739
1740 /* This version of "load" should be usable for any target. Currently
1741 it is just used for remote targets, not inftarg.c or core files,
1742 on the theory that only in that case is it useful.
1743
1744 Avoiding xmodem and the like seems like a win (a) because we don't have
1745 to worry about finding it, and (b) On VMS, fork() is very slow and so
1746 we don't want to run a subprocess. On the other hand, I'm not sure how
1747 performance compares. */
1748
1749 static int validate_download = 0;
1750
1751 /* Callback service function for generic_load (bfd_map_over_sections). */
1752
1753 static void
1754 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1755 {
1756 bfd_size_type *sum = data;
1757
1758 *sum += bfd_get_section_size (asec);
1759 }
1760
1761 /* Opaque data for load_section_callback. */
1762 struct load_section_data {
1763 unsigned long load_offset;
1764 struct load_progress_data *progress_data;
1765 VEC(memory_write_request_s) *requests;
1766 };
1767
1768 /* Opaque data for load_progress. */
1769 struct load_progress_data {
1770 /* Cumulative data. */
1771 unsigned long write_count;
1772 unsigned long data_count;
1773 bfd_size_type total_size;
1774 };
1775
1776 /* Opaque data for load_progress for a single section. */
1777 struct load_progress_section_data {
1778 struct load_progress_data *cumulative;
1779
1780 /* Per-section data. */
1781 const char *section_name;
1782 ULONGEST section_sent;
1783 ULONGEST section_size;
1784 CORE_ADDR lma;
1785 gdb_byte *buffer;
1786 };
1787
1788 /* Target write callback routine for progress reporting. */
1789
1790 static void
1791 load_progress (ULONGEST bytes, void *untyped_arg)
1792 {
1793 struct load_progress_section_data *args = untyped_arg;
1794 struct load_progress_data *totals;
1795
1796 if (args == NULL)
1797 /* Writing padding data. No easy way to get at the cumulative
1798 stats, so just ignore this. */
1799 return;
1800
1801 totals = args->cumulative;
1802
1803 if (bytes == 0 && args->section_sent == 0)
1804 {
1805 /* The write is just starting. Let the user know we've started
1806 this section. */
1807 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1808 args->section_name, hex_string (args->section_size),
1809 paddress (target_gdbarch, args->lma));
1810 return;
1811 }
1812
1813 if (validate_download)
1814 {
1815 /* Broken memories and broken monitors manifest themselves here
1816 when bring new computers to life. This doubles already slow
1817 downloads. */
1818 /* NOTE: cagney/1999-10-18: A more efficient implementation
1819 might add a verify_memory() method to the target vector and
1820 then use that. remote.c could implement that method using
1821 the ``qCRC'' packet. */
1822 gdb_byte *check = xmalloc (bytes);
1823 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1824
1825 if (target_read_memory (args->lma, check, bytes) != 0)
1826 error (_("Download verify read failed at %s"),
1827 paddress (target_gdbarch, args->lma));
1828 if (memcmp (args->buffer, check, bytes) != 0)
1829 error (_("Download verify compare failed at %s"),
1830 paddress (target_gdbarch, args->lma));
1831 do_cleanups (verify_cleanups);
1832 }
1833 totals->data_count += bytes;
1834 args->lma += bytes;
1835 args->buffer += bytes;
1836 totals->write_count += 1;
1837 args->section_sent += bytes;
1838 if (quit_flag
1839 || (deprecated_ui_load_progress_hook != NULL
1840 && deprecated_ui_load_progress_hook (args->section_name,
1841 args->section_sent)))
1842 error (_("Canceled the download"));
1843
1844 if (deprecated_show_load_progress != NULL)
1845 deprecated_show_load_progress (args->section_name,
1846 args->section_sent,
1847 args->section_size,
1848 totals->data_count,
1849 totals->total_size);
1850 }
1851
1852 /* Callback service function for generic_load (bfd_map_over_sections). */
1853
1854 static void
1855 load_section_callback (bfd *abfd, asection *asec, void *data)
1856 {
1857 struct memory_write_request *new_request;
1858 struct load_section_data *args = data;
1859 struct load_progress_section_data *section_data;
1860 bfd_size_type size = bfd_get_section_size (asec);
1861 gdb_byte *buffer;
1862 const char *sect_name = bfd_get_section_name (abfd, asec);
1863
1864 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1865 return;
1866
1867 if (size == 0)
1868 return;
1869
1870 new_request = VEC_safe_push (memory_write_request_s,
1871 args->requests, NULL);
1872 memset (new_request, 0, sizeof (struct memory_write_request));
1873 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1874 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1875 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1876 new_request->data = xmalloc (size);
1877 new_request->baton = section_data;
1878
1879 buffer = new_request->data;
1880
1881 section_data->cumulative = args->progress_data;
1882 section_data->section_name = sect_name;
1883 section_data->section_size = size;
1884 section_data->lma = new_request->begin;
1885 section_data->buffer = buffer;
1886
1887 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1888 }
1889
1890 /* Clean up an entire memory request vector, including load
1891 data and progress records. */
1892
1893 static void
1894 clear_memory_write_data (void *arg)
1895 {
1896 VEC(memory_write_request_s) **vec_p = arg;
1897 VEC(memory_write_request_s) *vec = *vec_p;
1898 int i;
1899 struct memory_write_request *mr;
1900
1901 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1902 {
1903 xfree (mr->data);
1904 xfree (mr->baton);
1905 }
1906 VEC_free (memory_write_request_s, vec);
1907 }
1908
1909 void
1910 generic_load (char *args, int from_tty)
1911 {
1912 bfd *loadfile_bfd;
1913 struct timeval start_time, end_time;
1914 char *filename;
1915 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1916 struct load_section_data cbdata;
1917 struct load_progress_data total_progress;
1918
1919 CORE_ADDR entry;
1920 char **argv;
1921
1922 memset (&cbdata, 0, sizeof (cbdata));
1923 memset (&total_progress, 0, sizeof (total_progress));
1924 cbdata.progress_data = &total_progress;
1925
1926 make_cleanup (clear_memory_write_data, &cbdata.requests);
1927
1928 if (args == NULL)
1929 error_no_arg (_("file to load"));
1930
1931 argv = gdb_buildargv (args);
1932 make_cleanup_freeargv (argv);
1933
1934 filename = tilde_expand (argv[0]);
1935 make_cleanup (xfree, filename);
1936
1937 if (argv[1] != NULL)
1938 {
1939 char *endptr;
1940
1941 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1942
1943 /* If the last word was not a valid number then
1944 treat it as a file name with spaces in. */
1945 if (argv[1] == endptr)
1946 error (_("Invalid download offset:%s."), argv[1]);
1947
1948 if (argv[2] != NULL)
1949 error (_("Too many parameters."));
1950 }
1951
1952 /* Open the file for loading. */
1953 loadfile_bfd = bfd_openr (filename, gnutarget);
1954 if (loadfile_bfd == NULL)
1955 {
1956 perror_with_name (filename);
1957 return;
1958 }
1959
1960 /* FIXME: should be checking for errors from bfd_close (for one thing,
1961 on error it does not free all the storage associated with the
1962 bfd). */
1963 make_cleanup_bfd_close (loadfile_bfd);
1964
1965 if (!bfd_check_format (loadfile_bfd, bfd_object))
1966 {
1967 error (_("\"%s\" is not an object file: %s"), filename,
1968 bfd_errmsg (bfd_get_error ()));
1969 }
1970
1971 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1972 (void *) &total_progress.total_size);
1973
1974 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1975
1976 gettimeofday (&start_time, NULL);
1977
1978 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1979 load_progress) != 0)
1980 error (_("Load failed"));
1981
1982 gettimeofday (&end_time, NULL);
1983
1984 entry = bfd_get_start_address (loadfile_bfd);
1985 ui_out_text (uiout, "Start address ");
1986 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1987 ui_out_text (uiout, ", load size ");
1988 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1989 ui_out_text (uiout, "\n");
1990 /* We were doing this in remote-mips.c, I suspect it is right
1991 for other targets too. */
1992 regcache_write_pc (get_current_regcache (), entry);
1993
1994 /* FIXME: are we supposed to call symbol_file_add or not? According
1995 to a comment from remote-mips.c (where a call to symbol_file_add
1996 was commented out), making the call confuses GDB if more than one
1997 file is loaded in. Some targets do (e.g., remote-vx.c) but
1998 others don't (or didn't - perhaps they have all been deleted). */
1999
2000 print_transfer_performance (gdb_stdout, total_progress.data_count,
2001 total_progress.write_count,
2002 &start_time, &end_time);
2003
2004 do_cleanups (old_cleanups);
2005 }
2006
2007 /* Report how fast the transfer went. */
2008
2009 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2010 replaced by print_transfer_performance (with a very different
2011 function signature). */
2012
2013 void
2014 report_transfer_performance (unsigned long data_count, time_t start_time,
2015 time_t end_time)
2016 {
2017 struct timeval start, end;
2018
2019 start.tv_sec = start_time;
2020 start.tv_usec = 0;
2021 end.tv_sec = end_time;
2022 end.tv_usec = 0;
2023
2024 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2025 }
2026
2027 void
2028 print_transfer_performance (struct ui_file *stream,
2029 unsigned long data_count,
2030 unsigned long write_count,
2031 const struct timeval *start_time,
2032 const struct timeval *end_time)
2033 {
2034 ULONGEST time_count;
2035
2036 /* Compute the elapsed time in milliseconds, as a tradeoff between
2037 accuracy and overflow. */
2038 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2039 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2040
2041 ui_out_text (uiout, "Transfer rate: ");
2042 if (time_count > 0)
2043 {
2044 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2045
2046 if (ui_out_is_mi_like_p (uiout))
2047 {
2048 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2049 ui_out_text (uiout, " bits/sec");
2050 }
2051 else if (rate < 1024)
2052 {
2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2054 ui_out_text (uiout, " bytes/sec");
2055 }
2056 else
2057 {
2058 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2059 ui_out_text (uiout, " KB/sec");
2060 }
2061 }
2062 else
2063 {
2064 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2065 ui_out_text (uiout, " bits in <1 sec");
2066 }
2067 if (write_count > 0)
2068 {
2069 ui_out_text (uiout, ", ");
2070 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2071 ui_out_text (uiout, " bytes/write");
2072 }
2073 ui_out_text (uiout, ".\n");
2074 }
2075
2076 /* This function allows the addition of incrementally linked object files.
2077 It does not modify any state in the target, only in the debugger. */
2078 /* Note: ezannoni 2000-04-13 This function/command used to have a
2079 special case syntax for the rombug target (Rombug is the boot
2080 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2081 rombug case, the user doesn't need to supply a text address,
2082 instead a call to target_link() (in target.c) would supply the
2083 value to use. We are now discontinuing this type of ad hoc syntax. */
2084
2085 static void
2086 add_symbol_file_command (char *args, int from_tty)
2087 {
2088 struct gdbarch *gdbarch = get_current_arch ();
2089 char *filename = NULL;
2090 int flags = OBJF_USERLOADED;
2091 char *arg;
2092 int expecting_option = 0;
2093 int section_index = 0;
2094 int argcnt = 0;
2095 int sec_num = 0;
2096 int i;
2097 int expecting_sec_name = 0;
2098 int expecting_sec_addr = 0;
2099 char **argv;
2100
2101 struct sect_opt
2102 {
2103 char *name;
2104 char *value;
2105 };
2106
2107 struct section_addr_info *section_addrs;
2108 struct sect_opt *sect_opts = NULL;
2109 size_t num_sect_opts = 0;
2110 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2111
2112 num_sect_opts = 16;
2113 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2114 * sizeof (struct sect_opt));
2115
2116 dont_repeat ();
2117
2118 if (args == NULL)
2119 error (_("add-symbol-file takes a file name and an address"));
2120
2121 argv = gdb_buildargv (args);
2122 make_cleanup_freeargv (argv);
2123
2124 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2125 {
2126 /* Process the argument. */
2127 if (argcnt == 0)
2128 {
2129 /* The first argument is the file name. */
2130 filename = tilde_expand (arg);
2131 make_cleanup (xfree, filename);
2132 }
2133 else
2134 if (argcnt == 1)
2135 {
2136 /* The second argument is always the text address at which
2137 to load the program. */
2138 sect_opts[section_index].name = ".text";
2139 sect_opts[section_index].value = arg;
2140 if (++section_index >= num_sect_opts)
2141 {
2142 num_sect_opts *= 2;
2143 sect_opts = ((struct sect_opt *)
2144 xrealloc (sect_opts,
2145 num_sect_opts
2146 * sizeof (struct sect_opt)));
2147 }
2148 }
2149 else
2150 {
2151 /* It's an option (starting with '-') or it's an argument
2152 to an option */
2153
2154 if (*arg == '-')
2155 {
2156 if (strcmp (arg, "-readnow") == 0)
2157 flags |= OBJF_READNOW;
2158 else if (strcmp (arg, "-s") == 0)
2159 {
2160 expecting_sec_name = 1;
2161 expecting_sec_addr = 1;
2162 }
2163 }
2164 else
2165 {
2166 if (expecting_sec_name)
2167 {
2168 sect_opts[section_index].name = arg;
2169 expecting_sec_name = 0;
2170 }
2171 else
2172 if (expecting_sec_addr)
2173 {
2174 sect_opts[section_index].value = arg;
2175 expecting_sec_addr = 0;
2176 if (++section_index >= num_sect_opts)
2177 {
2178 num_sect_opts *= 2;
2179 sect_opts = ((struct sect_opt *)
2180 xrealloc (sect_opts,
2181 num_sect_opts
2182 * sizeof (struct sect_opt)));
2183 }
2184 }
2185 else
2186 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2187 }
2188 }
2189 }
2190
2191 /* This command takes at least two arguments. The first one is a
2192 filename, and the second is the address where this file has been
2193 loaded. Abort now if this address hasn't been provided by the
2194 user. */
2195 if (section_index < 1)
2196 error (_("The address where %s has been loaded is missing"), filename);
2197
2198 /* Print the prompt for the query below. And save the arguments into
2199 a sect_addr_info structure to be passed around to other
2200 functions. We have to split this up into separate print
2201 statements because hex_string returns a local static
2202 string. */
2203
2204 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2205 section_addrs = alloc_section_addr_info (section_index);
2206 make_cleanup (xfree, section_addrs);
2207 for (i = 0; i < section_index; i++)
2208 {
2209 CORE_ADDR addr;
2210 char *val = sect_opts[i].value;
2211 char *sec = sect_opts[i].name;
2212
2213 addr = parse_and_eval_address (val);
2214
2215 /* Here we store the section offsets in the order they were
2216 entered on the command line. */
2217 section_addrs->other[sec_num].name = sec;
2218 section_addrs->other[sec_num].addr = addr;
2219 printf_unfiltered ("\t%s_addr = %s\n", sec,
2220 paddress (gdbarch, addr));
2221 sec_num++;
2222
2223 /* The object's sections are initialized when a
2224 call is made to build_objfile_section_table (objfile).
2225 This happens in reread_symbols.
2226 At this point, we don't know what file type this is,
2227 so we can't determine what section names are valid. */
2228 }
2229
2230 if (from_tty && (!query ("%s", "")))
2231 error (_("Not confirmed."));
2232
2233 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2234 section_addrs, flags);
2235
2236 /* Getting new symbols may change our opinion about what is
2237 frameless. */
2238 reinit_frame_cache ();
2239 do_cleanups (my_cleanups);
2240 }
2241 \f
2242
2243 /* Re-read symbols if a symbol-file has changed. */
2244 void
2245 reread_symbols (void)
2246 {
2247 struct objfile *objfile;
2248 long new_modtime;
2249 int reread_one = 0;
2250 struct stat new_statbuf;
2251 int res;
2252
2253 /* With the addition of shared libraries, this should be modified,
2254 the load time should be saved in the partial symbol tables, since
2255 different tables may come from different source files. FIXME.
2256 This routine should then walk down each partial symbol table
2257 and see if the symbol table that it originates from has been changed */
2258
2259 for (objfile = object_files; objfile; objfile = objfile->next)
2260 {
2261 if (objfile->obfd)
2262 {
2263 #ifdef DEPRECATED_IBM6000_TARGET
2264 /* If this object is from a shared library, then you should
2265 stat on the library name, not member name. */
2266
2267 if (objfile->obfd->my_archive)
2268 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2269 else
2270 #endif
2271 res = stat (objfile->name, &new_statbuf);
2272 if (res != 0)
2273 {
2274 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2275 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2276 objfile->name);
2277 continue;
2278 }
2279 new_modtime = new_statbuf.st_mtime;
2280 if (new_modtime != objfile->mtime)
2281 {
2282 struct cleanup *old_cleanups;
2283 struct section_offsets *offsets;
2284 int num_offsets;
2285 char *obfd_filename;
2286
2287 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2288 objfile->name);
2289
2290 /* There are various functions like symbol_file_add,
2291 symfile_bfd_open, syms_from_objfile, etc., which might
2292 appear to do what we want. But they have various other
2293 effects which we *don't* want. So we just do stuff
2294 ourselves. We don't worry about mapped files (for one thing,
2295 any mapped file will be out of date). */
2296
2297 /* If we get an error, blow away this objfile (not sure if
2298 that is the correct response for things like shared
2299 libraries). */
2300 old_cleanups = make_cleanup_free_objfile (objfile);
2301 /* We need to do this whenever any symbols go away. */
2302 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2303
2304 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2305 bfd_get_filename (exec_bfd)) == 0)
2306 {
2307 /* Reload EXEC_BFD without asking anything. */
2308
2309 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2310 }
2311
2312 /* Clean up any state BFD has sitting around. We don't need
2313 to close the descriptor but BFD lacks a way of closing the
2314 BFD without closing the descriptor. */
2315 obfd_filename = bfd_get_filename (objfile->obfd);
2316 if (!bfd_close (objfile->obfd))
2317 error (_("Can't close BFD for %s: %s"), objfile->name,
2318 bfd_errmsg (bfd_get_error ()));
2319 if (remote_filename_p (obfd_filename))
2320 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2321 else
2322 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2323 if (objfile->obfd == NULL)
2324 error (_("Can't open %s to read symbols."), objfile->name);
2325 /* bfd_openr sets cacheable to true, which is what we want. */
2326 if (!bfd_check_format (objfile->obfd, bfd_object))
2327 error (_("Can't read symbols from %s: %s."), objfile->name,
2328 bfd_errmsg (bfd_get_error ()));
2329
2330 /* Save the offsets, we will nuke them with the rest of the
2331 objfile_obstack. */
2332 num_offsets = objfile->num_sections;
2333 offsets = ((struct section_offsets *)
2334 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2335 memcpy (offsets, objfile->section_offsets,
2336 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2337
2338 /* Remove any references to this objfile in the global
2339 value lists. */
2340 preserve_values (objfile);
2341
2342 /* Nuke all the state that we will re-read. Much of the following
2343 code which sets things to NULL really is necessary to tell
2344 other parts of GDB that there is nothing currently there.
2345
2346 Try to keep the freeing order compatible with free_objfile. */
2347
2348 if (objfile->sf != NULL)
2349 {
2350 (*objfile->sf->sym_finish) (objfile);
2351 }
2352
2353 clear_objfile_data (objfile);
2354
2355 /* FIXME: Do we have to free a whole linked list, or is this
2356 enough? */
2357 if (objfile->global_psymbols.list)
2358 xfree (objfile->global_psymbols.list);
2359 memset (&objfile->global_psymbols, 0,
2360 sizeof (objfile->global_psymbols));
2361 if (objfile->static_psymbols.list)
2362 xfree (objfile->static_psymbols.list);
2363 memset (&objfile->static_psymbols, 0,
2364 sizeof (objfile->static_psymbols));
2365
2366 /* Free the obstacks for non-reusable objfiles */
2367 bcache_xfree (objfile->psymbol_cache);
2368 objfile->psymbol_cache = bcache_xmalloc ();
2369 bcache_xfree (objfile->macro_cache);
2370 objfile->macro_cache = bcache_xmalloc ();
2371 if (objfile->demangled_names_hash != NULL)
2372 {
2373 htab_delete (objfile->demangled_names_hash);
2374 objfile->demangled_names_hash = NULL;
2375 }
2376 obstack_free (&objfile->objfile_obstack, 0);
2377 objfile->sections = NULL;
2378 objfile->symtabs = NULL;
2379 objfile->psymtabs = NULL;
2380 objfile->psymtabs_addrmap = NULL;
2381 objfile->free_psymtabs = NULL;
2382 objfile->cp_namespace_symtab = NULL;
2383 objfile->msymbols = NULL;
2384 objfile->deprecated_sym_private = NULL;
2385 objfile->minimal_symbol_count = 0;
2386 memset (&objfile->msymbol_hash, 0,
2387 sizeof (objfile->msymbol_hash));
2388 memset (&objfile->msymbol_demangled_hash, 0,
2389 sizeof (objfile->msymbol_demangled_hash));
2390
2391 objfile->psymbol_cache = bcache_xmalloc ();
2392 objfile->macro_cache = bcache_xmalloc ();
2393 /* obstack_init also initializes the obstack so it is
2394 empty. We could use obstack_specify_allocation but
2395 gdb_obstack.h specifies the alloc/dealloc
2396 functions. */
2397 obstack_init (&objfile->objfile_obstack);
2398 if (build_objfile_section_table (objfile))
2399 {
2400 error (_("Can't find the file sections in `%s': %s"),
2401 objfile->name, bfd_errmsg (bfd_get_error ()));
2402 }
2403 terminate_minimal_symbol_table (objfile);
2404
2405 /* We use the same section offsets as from last time. I'm not
2406 sure whether that is always correct for shared libraries. */
2407 objfile->section_offsets = (struct section_offsets *)
2408 obstack_alloc (&objfile->objfile_obstack,
2409 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2410 memcpy (objfile->section_offsets, offsets,
2411 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2412 objfile->num_sections = num_offsets;
2413
2414 /* What the hell is sym_new_init for, anyway? The concept of
2415 distinguishing between the main file and additional files
2416 in this way seems rather dubious. */
2417 if (objfile == symfile_objfile)
2418 {
2419 (*objfile->sf->sym_new_init) (objfile);
2420 }
2421
2422 (*objfile->sf->sym_init) (objfile);
2423 clear_complaints (&symfile_complaints, 1, 1);
2424 /* The "mainline" parameter is a hideous hack; I think leaving it
2425 zero is OK since dbxread.c also does what it needs to do if
2426 objfile->global_psymbols.size is 0. */
2427 (*objfile->sf->sym_read) (objfile, 0);
2428 if (!have_partial_symbols () && !have_full_symbols ())
2429 {
2430 wrap_here ("");
2431 printf_unfiltered (_("(no debugging symbols found)\n"));
2432 wrap_here ("");
2433 }
2434
2435 /* We're done reading the symbol file; finish off complaints. */
2436 clear_complaints (&symfile_complaints, 0, 1);
2437
2438 /* Getting new symbols may change our opinion about what is
2439 frameless. */
2440
2441 reinit_frame_cache ();
2442
2443 /* Discard cleanups as symbol reading was successful. */
2444 discard_cleanups (old_cleanups);
2445
2446 /* If the mtime has changed between the time we set new_modtime
2447 and now, we *want* this to be out of date, so don't call stat
2448 again now. */
2449 objfile->mtime = new_modtime;
2450 reread_one = 1;
2451 reread_separate_symbols (objfile);
2452 init_entry_point_info (objfile);
2453 }
2454 }
2455 }
2456
2457 if (reread_one)
2458 {
2459 clear_symtab_users ();
2460 /* At least one objfile has changed, so we can consider that
2461 the executable we're debugging has changed too. */
2462 observer_notify_executable_changed ();
2463
2464 /* Notify objfiles that we've modified objfile sections. */
2465 objfiles_changed ();
2466 }
2467 }
2468
2469
2470 /* Handle separate debug info for OBJFILE, which has just been
2471 re-read:
2472 - If we had separate debug info before, but now we don't, get rid
2473 of the separated objfile.
2474 - If we didn't have separated debug info before, but now we do,
2475 read in the new separated debug info file.
2476 - If the debug link points to a different file, toss the old one
2477 and read the new one.
2478 This function does *not* handle the case where objfile is still
2479 using the same separate debug info file, but that file's timestamp
2480 has changed. That case should be handled by the loop in
2481 reread_symbols already. */
2482 static void
2483 reread_separate_symbols (struct objfile *objfile)
2484 {
2485 char *debug_file;
2486 unsigned long crc32;
2487
2488 /* Does the updated objfile's debug info live in a
2489 separate file? */
2490 debug_file = find_separate_debug_file (objfile);
2491
2492 if (objfile->separate_debug_objfile)
2493 {
2494 /* There are two cases where we need to get rid of
2495 the old separated debug info objfile:
2496 - if the new primary objfile doesn't have
2497 separated debug info, or
2498 - if the new primary objfile has separate debug
2499 info, but it's under a different filename.
2500
2501 If the old and new objfiles both have separate
2502 debug info, under the same filename, then we're
2503 okay --- if the separated file's contents have
2504 changed, we will have caught that when we
2505 visited it in this function's outermost
2506 loop. */
2507 if (! debug_file
2508 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2509 free_objfile (objfile->separate_debug_objfile);
2510 }
2511
2512 /* If the new objfile has separate debug info, and we
2513 haven't loaded it already, do so now. */
2514 if (debug_file
2515 && ! objfile->separate_debug_objfile)
2516 {
2517 /* Use the same section offset table as objfile itself.
2518 Preserve the flags from objfile that make sense. */
2519 objfile->separate_debug_objfile
2520 = (symbol_file_add_with_addrs_or_offsets
2521 (symfile_bfd_open (debug_file),
2522 info_verbose ? SYMFILE_VERBOSE : 0,
2523 0, /* No addr table. */
2524 objfile->section_offsets, objfile->num_sections,
2525 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2526 | OBJF_USERLOADED)));
2527 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2528 = objfile;
2529 }
2530 if (debug_file)
2531 xfree (debug_file);
2532 }
2533
2534
2535 \f
2536
2537
2538 typedef struct
2539 {
2540 char *ext;
2541 enum language lang;
2542 }
2543 filename_language;
2544
2545 static filename_language *filename_language_table;
2546 static int fl_table_size, fl_table_next;
2547
2548 static void
2549 add_filename_language (char *ext, enum language lang)
2550 {
2551 if (fl_table_next >= fl_table_size)
2552 {
2553 fl_table_size += 10;
2554 filename_language_table =
2555 xrealloc (filename_language_table,
2556 fl_table_size * sizeof (*filename_language_table));
2557 }
2558
2559 filename_language_table[fl_table_next].ext = xstrdup (ext);
2560 filename_language_table[fl_table_next].lang = lang;
2561 fl_table_next++;
2562 }
2563
2564 static char *ext_args;
2565 static void
2566 show_ext_args (struct ui_file *file, int from_tty,
2567 struct cmd_list_element *c, const char *value)
2568 {
2569 fprintf_filtered (file, _("\
2570 Mapping between filename extension and source language is \"%s\".\n"),
2571 value);
2572 }
2573
2574 static void
2575 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2576 {
2577 int i;
2578 char *cp = ext_args;
2579 enum language lang;
2580
2581 /* First arg is filename extension, starting with '.' */
2582 if (*cp != '.')
2583 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2584
2585 /* Find end of first arg. */
2586 while (*cp && !isspace (*cp))
2587 cp++;
2588
2589 if (*cp == '\0')
2590 error (_("'%s': two arguments required -- filename extension and language"),
2591 ext_args);
2592
2593 /* Null-terminate first arg */
2594 *cp++ = '\0';
2595
2596 /* Find beginning of second arg, which should be a source language. */
2597 while (*cp && isspace (*cp))
2598 cp++;
2599
2600 if (*cp == '\0')
2601 error (_("'%s': two arguments required -- filename extension and language"),
2602 ext_args);
2603
2604 /* Lookup the language from among those we know. */
2605 lang = language_enum (cp);
2606
2607 /* Now lookup the filename extension: do we already know it? */
2608 for (i = 0; i < fl_table_next; i++)
2609 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2610 break;
2611
2612 if (i >= fl_table_next)
2613 {
2614 /* new file extension */
2615 add_filename_language (ext_args, lang);
2616 }
2617 else
2618 {
2619 /* redefining a previously known filename extension */
2620
2621 /* if (from_tty) */
2622 /* query ("Really make files of type %s '%s'?", */
2623 /* ext_args, language_str (lang)); */
2624
2625 xfree (filename_language_table[i].ext);
2626 filename_language_table[i].ext = xstrdup (ext_args);
2627 filename_language_table[i].lang = lang;
2628 }
2629 }
2630
2631 static void
2632 info_ext_lang_command (char *args, int from_tty)
2633 {
2634 int i;
2635
2636 printf_filtered (_("Filename extensions and the languages they represent:"));
2637 printf_filtered ("\n\n");
2638 for (i = 0; i < fl_table_next; i++)
2639 printf_filtered ("\t%s\t- %s\n",
2640 filename_language_table[i].ext,
2641 language_str (filename_language_table[i].lang));
2642 }
2643
2644 static void
2645 init_filename_language_table (void)
2646 {
2647 if (fl_table_size == 0) /* protect against repetition */
2648 {
2649 fl_table_size = 20;
2650 fl_table_next = 0;
2651 filename_language_table =
2652 xmalloc (fl_table_size * sizeof (*filename_language_table));
2653 add_filename_language (".c", language_c);
2654 add_filename_language (".C", language_cplus);
2655 add_filename_language (".cc", language_cplus);
2656 add_filename_language (".cp", language_cplus);
2657 add_filename_language (".cpp", language_cplus);
2658 add_filename_language (".cxx", language_cplus);
2659 add_filename_language (".c++", language_cplus);
2660 add_filename_language (".java", language_java);
2661 add_filename_language (".class", language_java);
2662 add_filename_language (".m", language_objc);
2663 add_filename_language (".f", language_fortran);
2664 add_filename_language (".F", language_fortran);
2665 add_filename_language (".s", language_asm);
2666 add_filename_language (".sx", language_asm);
2667 add_filename_language (".S", language_asm);
2668 add_filename_language (".pas", language_pascal);
2669 add_filename_language (".p", language_pascal);
2670 add_filename_language (".pp", language_pascal);
2671 add_filename_language (".adb", language_ada);
2672 add_filename_language (".ads", language_ada);
2673 add_filename_language (".a", language_ada);
2674 add_filename_language (".ada", language_ada);
2675 }
2676 }
2677
2678 enum language
2679 deduce_language_from_filename (char *filename)
2680 {
2681 int i;
2682 char *cp;
2683
2684 if (filename != NULL)
2685 if ((cp = strrchr (filename, '.')) != NULL)
2686 for (i = 0; i < fl_table_next; i++)
2687 if (strcmp (cp, filename_language_table[i].ext) == 0)
2688 return filename_language_table[i].lang;
2689
2690 return language_unknown;
2691 }
2692 \f
2693 /* allocate_symtab:
2694
2695 Allocate and partly initialize a new symbol table. Return a pointer
2696 to it. error() if no space.
2697
2698 Caller must set these fields:
2699 LINETABLE(symtab)
2700 symtab->blockvector
2701 symtab->dirname
2702 symtab->free_code
2703 symtab->free_ptr
2704 possibly free_named_symtabs (symtab->filename);
2705 */
2706
2707 struct symtab *
2708 allocate_symtab (char *filename, struct objfile *objfile)
2709 {
2710 struct symtab *symtab;
2711
2712 symtab = (struct symtab *)
2713 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2714 memset (symtab, 0, sizeof (*symtab));
2715 symtab->filename = obsavestring (filename, strlen (filename),
2716 &objfile->objfile_obstack);
2717 symtab->fullname = NULL;
2718 symtab->language = deduce_language_from_filename (filename);
2719 symtab->debugformat = obsavestring ("unknown", 7,
2720 &objfile->objfile_obstack);
2721
2722 /* Hook it to the objfile it comes from */
2723
2724 symtab->objfile = objfile;
2725 symtab->next = objfile->symtabs;
2726 objfile->symtabs = symtab;
2727
2728 return (symtab);
2729 }
2730
2731 struct partial_symtab *
2732 allocate_psymtab (char *filename, struct objfile *objfile)
2733 {
2734 struct partial_symtab *psymtab;
2735
2736 if (objfile->free_psymtabs)
2737 {
2738 psymtab = objfile->free_psymtabs;
2739 objfile->free_psymtabs = psymtab->next;
2740 }
2741 else
2742 psymtab = (struct partial_symtab *)
2743 obstack_alloc (&objfile->objfile_obstack,
2744 sizeof (struct partial_symtab));
2745
2746 memset (psymtab, 0, sizeof (struct partial_symtab));
2747 psymtab->filename = obsavestring (filename, strlen (filename),
2748 &objfile->objfile_obstack);
2749 psymtab->symtab = NULL;
2750
2751 /* Prepend it to the psymtab list for the objfile it belongs to.
2752 Psymtabs are searched in most recent inserted -> least recent
2753 inserted order. */
2754
2755 psymtab->objfile = objfile;
2756 psymtab->next = objfile->psymtabs;
2757 objfile->psymtabs = psymtab;
2758 #if 0
2759 {
2760 struct partial_symtab **prev_pst;
2761 psymtab->objfile = objfile;
2762 psymtab->next = NULL;
2763 prev_pst = &(objfile->psymtabs);
2764 while ((*prev_pst) != NULL)
2765 prev_pst = &((*prev_pst)->next);
2766 (*prev_pst) = psymtab;
2767 }
2768 #endif
2769
2770 return (psymtab);
2771 }
2772
2773 void
2774 discard_psymtab (struct partial_symtab *pst)
2775 {
2776 struct partial_symtab **prev_pst;
2777
2778 /* From dbxread.c:
2779 Empty psymtabs happen as a result of header files which don't
2780 have any symbols in them. There can be a lot of them. But this
2781 check is wrong, in that a psymtab with N_SLINE entries but
2782 nothing else is not empty, but we don't realize that. Fixing
2783 that without slowing things down might be tricky. */
2784
2785 /* First, snip it out of the psymtab chain */
2786
2787 prev_pst = &(pst->objfile->psymtabs);
2788 while ((*prev_pst) != pst)
2789 prev_pst = &((*prev_pst)->next);
2790 (*prev_pst) = pst->next;
2791
2792 /* Next, put it on a free list for recycling */
2793
2794 pst->next = pst->objfile->free_psymtabs;
2795 pst->objfile->free_psymtabs = pst;
2796 }
2797 \f
2798
2799 /* Reset all data structures in gdb which may contain references to symbol
2800 table data. */
2801
2802 void
2803 clear_symtab_users (void)
2804 {
2805 /* Someday, we should do better than this, by only blowing away
2806 the things that really need to be blown. */
2807
2808 /* Clear the "current" symtab first, because it is no longer valid.
2809 breakpoint_re_set may try to access the current symtab. */
2810 clear_current_source_symtab_and_line ();
2811
2812 clear_displays ();
2813 breakpoint_re_set ();
2814 set_default_breakpoint (0, 0, 0, 0);
2815 clear_pc_function_cache ();
2816 observer_notify_new_objfile (NULL);
2817
2818 /* Clear globals which might have pointed into a removed objfile.
2819 FIXME: It's not clear which of these are supposed to persist
2820 between expressions and which ought to be reset each time. */
2821 expression_context_block = NULL;
2822 innermost_block = NULL;
2823
2824 /* Varobj may refer to old symbols, perform a cleanup. */
2825 varobj_invalidate ();
2826
2827 }
2828
2829 static void
2830 clear_symtab_users_cleanup (void *ignore)
2831 {
2832 clear_symtab_users ();
2833 }
2834
2835 /* clear_symtab_users_once:
2836
2837 This function is run after symbol reading, or from a cleanup.
2838 If an old symbol table was obsoleted, the old symbol table
2839 has been blown away, but the other GDB data structures that may
2840 reference it have not yet been cleared or re-directed. (The old
2841 symtab was zapped, and the cleanup queued, in free_named_symtab()
2842 below.)
2843
2844 This function can be queued N times as a cleanup, or called
2845 directly; it will do all the work the first time, and then will be a
2846 no-op until the next time it is queued. This works by bumping a
2847 counter at queueing time. Much later when the cleanup is run, or at
2848 the end of symbol processing (in case the cleanup is discarded), if
2849 the queued count is greater than the "done-count", we do the work
2850 and set the done-count to the queued count. If the queued count is
2851 less than or equal to the done-count, we just ignore the call. This
2852 is needed because reading a single .o file will often replace many
2853 symtabs (one per .h file, for example), and we don't want to reset
2854 the breakpoints N times in the user's face.
2855
2856 The reason we both queue a cleanup, and call it directly after symbol
2857 reading, is because the cleanup protects us in case of errors, but is
2858 discarded if symbol reading is successful. */
2859
2860 #if 0
2861 /* FIXME: As free_named_symtabs is currently a big noop this function
2862 is no longer needed. */
2863 static void clear_symtab_users_once (void);
2864
2865 static int clear_symtab_users_queued;
2866 static int clear_symtab_users_done;
2867
2868 static void
2869 clear_symtab_users_once (void)
2870 {
2871 /* Enforce once-per-`do_cleanups'-semantics */
2872 if (clear_symtab_users_queued <= clear_symtab_users_done)
2873 return;
2874 clear_symtab_users_done = clear_symtab_users_queued;
2875
2876 clear_symtab_users ();
2877 }
2878 #endif
2879
2880 /* Delete the specified psymtab, and any others that reference it. */
2881
2882 static void
2883 cashier_psymtab (struct partial_symtab *pst)
2884 {
2885 struct partial_symtab *ps, *pprev = NULL;
2886 int i;
2887
2888 /* Find its previous psymtab in the chain */
2889 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2890 {
2891 if (ps == pst)
2892 break;
2893 pprev = ps;
2894 }
2895
2896 if (ps)
2897 {
2898 /* Unhook it from the chain. */
2899 if (ps == pst->objfile->psymtabs)
2900 pst->objfile->psymtabs = ps->next;
2901 else
2902 pprev->next = ps->next;
2903
2904 /* FIXME, we can't conveniently deallocate the entries in the
2905 partial_symbol lists (global_psymbols/static_psymbols) that
2906 this psymtab points to. These just take up space until all
2907 the psymtabs are reclaimed. Ditto the dependencies list and
2908 filename, which are all in the objfile_obstack. */
2909
2910 /* We need to cashier any psymtab that has this one as a dependency... */
2911 again:
2912 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2913 {
2914 for (i = 0; i < ps->number_of_dependencies; i++)
2915 {
2916 if (ps->dependencies[i] == pst)
2917 {
2918 cashier_psymtab (ps);
2919 goto again; /* Must restart, chain has been munged. */
2920 }
2921 }
2922 }
2923 }
2924 }
2925
2926 /* If a symtab or psymtab for filename NAME is found, free it along
2927 with any dependent breakpoints, displays, etc.
2928 Used when loading new versions of object modules with the "add-file"
2929 command. This is only called on the top-level symtab or psymtab's name;
2930 it is not called for subsidiary files such as .h files.
2931
2932 Return value is 1 if we blew away the environment, 0 if not.
2933 FIXME. The return value appears to never be used.
2934
2935 FIXME. I think this is not the best way to do this. We should
2936 work on being gentler to the environment while still cleaning up
2937 all stray pointers into the freed symtab. */
2938
2939 int
2940 free_named_symtabs (char *name)
2941 {
2942 #if 0
2943 /* FIXME: With the new method of each objfile having it's own
2944 psymtab list, this function needs serious rethinking. In particular,
2945 why was it ever necessary to toss psymtabs with specific compilation
2946 unit filenames, as opposed to all psymtabs from a particular symbol
2947 file? -- fnf
2948 Well, the answer is that some systems permit reloading of particular
2949 compilation units. We want to blow away any old info about these
2950 compilation units, regardless of which objfiles they arrived in. --gnu. */
2951
2952 struct symtab *s;
2953 struct symtab *prev;
2954 struct partial_symtab *ps;
2955 struct blockvector *bv;
2956 int blewit = 0;
2957
2958 /* We only wack things if the symbol-reload switch is set. */
2959 if (!symbol_reloading)
2960 return 0;
2961
2962 /* Some symbol formats have trouble providing file names... */
2963 if (name == 0 || *name == '\0')
2964 return 0;
2965
2966 /* Look for a psymtab with the specified name. */
2967
2968 again2:
2969 for (ps = partial_symtab_list; ps; ps = ps->next)
2970 {
2971 if (strcmp (name, ps->filename) == 0)
2972 {
2973 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2974 goto again2; /* Must restart, chain has been munged */
2975 }
2976 }
2977
2978 /* Look for a symtab with the specified name. */
2979
2980 for (s = symtab_list; s; s = s->next)
2981 {
2982 if (strcmp (name, s->filename) == 0)
2983 break;
2984 prev = s;
2985 }
2986
2987 if (s)
2988 {
2989 if (s == symtab_list)
2990 symtab_list = s->next;
2991 else
2992 prev->next = s->next;
2993
2994 /* For now, queue a delete for all breakpoints, displays, etc., whether
2995 or not they depend on the symtab being freed. This should be
2996 changed so that only those data structures affected are deleted. */
2997
2998 /* But don't delete anything if the symtab is empty.
2999 This test is necessary due to a bug in "dbxread.c" that
3000 causes empty symtabs to be created for N_SO symbols that
3001 contain the pathname of the object file. (This problem
3002 has been fixed in GDB 3.9x). */
3003
3004 bv = BLOCKVECTOR (s);
3005 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3006 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3007 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3008 {
3009 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3010 name);
3011 clear_symtab_users_queued++;
3012 make_cleanup (clear_symtab_users_once, 0);
3013 blewit = 1;
3014 }
3015 else
3016 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3017 name);
3018
3019 free_symtab (s);
3020 }
3021 else
3022 {
3023 /* It is still possible that some breakpoints will be affected
3024 even though no symtab was found, since the file might have
3025 been compiled without debugging, and hence not be associated
3026 with a symtab. In order to handle this correctly, we would need
3027 to keep a list of text address ranges for undebuggable files.
3028 For now, we do nothing, since this is a fairly obscure case. */
3029 ;
3030 }
3031
3032 /* FIXME, what about the minimal symbol table? */
3033 return blewit;
3034 #else
3035 return (0);
3036 #endif
3037 }
3038 \f
3039 /* Allocate and partially fill a partial symtab. It will be
3040 completely filled at the end of the symbol list.
3041
3042 FILENAME is the name of the symbol-file we are reading from. */
3043
3044 struct partial_symtab *
3045 start_psymtab_common (struct objfile *objfile,
3046 struct section_offsets *section_offsets, char *filename,
3047 CORE_ADDR textlow, struct partial_symbol **global_syms,
3048 struct partial_symbol **static_syms)
3049 {
3050 struct partial_symtab *psymtab;
3051
3052 psymtab = allocate_psymtab (filename, objfile);
3053 psymtab->section_offsets = section_offsets;
3054 psymtab->textlow = textlow;
3055 psymtab->texthigh = psymtab->textlow; /* default */
3056 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3057 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3058 return (psymtab);
3059 }
3060 \f
3061 /* Helper function, initialises partial symbol structure and stashes
3062 it into objfile's bcache. Note that our caching mechanism will
3063 use all fields of struct partial_symbol to determine hash value of the
3064 structure. In other words, having two symbols with the same name but
3065 different domain (or address) is possible and correct. */
3066
3067 static const struct partial_symbol *
3068 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3069 enum address_class class,
3070 long val, /* Value as a long */
3071 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3072 enum language language, struct objfile *objfile,
3073 int *added)
3074 {
3075 char *buf = name;
3076 /* psymbol is static so that there will be no uninitialized gaps in the
3077 structure which might contain random data, causing cache misses in
3078 bcache. */
3079 static struct partial_symbol psymbol;
3080
3081 if (name[namelength] != '\0')
3082 {
3083 buf = alloca (namelength + 1);
3084 /* Create local copy of the partial symbol */
3085 memcpy (buf, name, namelength);
3086 buf[namelength] = '\0';
3087 }
3088 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3089 if (val != 0)
3090 {
3091 SYMBOL_VALUE (&psymbol) = val;
3092 }
3093 else
3094 {
3095 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3096 }
3097 SYMBOL_SECTION (&psymbol) = 0;
3098 SYMBOL_LANGUAGE (&psymbol) = language;
3099 PSYMBOL_DOMAIN (&psymbol) = domain;
3100 PSYMBOL_CLASS (&psymbol) = class;
3101
3102 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3103
3104 /* Stash the partial symbol away in the cache */
3105 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3106 objfile->psymbol_cache, added);
3107 }
3108
3109 /* Helper function, adds partial symbol to the given partial symbol
3110 list. */
3111
3112 static void
3113 append_psymbol_to_list (struct psymbol_allocation_list *list,
3114 const struct partial_symbol *psym,
3115 struct objfile *objfile)
3116 {
3117 if (list->next >= list->list + list->size)
3118 extend_psymbol_list (list, objfile);
3119 *list->next++ = (struct partial_symbol *) psym;
3120 OBJSTAT (objfile, n_psyms++);
3121 }
3122
3123 /* Add a symbol with a long value to a psymtab.
3124 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3125 Return the partial symbol that has been added. */
3126
3127 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3128 symbol is so that callers can get access to the symbol's demangled
3129 name, which they don't have any cheap way to determine otherwise.
3130 (Currenly, dwarf2read.c is the only file who uses that information,
3131 though it's possible that other readers might in the future.)
3132 Elena wasn't thrilled about that, and I don't blame her, but we
3133 couldn't come up with a better way to get that information. If
3134 it's needed in other situations, we could consider breaking up
3135 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3136 cache. */
3137
3138 const struct partial_symbol *
3139 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3140 enum address_class class,
3141 struct psymbol_allocation_list *list,
3142 long val, /* Value as a long */
3143 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3144 enum language language, struct objfile *objfile)
3145 {
3146 const struct partial_symbol *psym;
3147
3148 int added;
3149
3150 /* Stash the partial symbol away in the cache */
3151 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3152 val, coreaddr, language, objfile, &added);
3153
3154 /* Do not duplicate global partial symbols. */
3155 if (list == &objfile->global_psymbols
3156 && !added)
3157 return psym;
3158
3159 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3160 append_psymbol_to_list (list, psym, objfile);
3161 return psym;
3162 }
3163
3164 /* Initialize storage for partial symbols. */
3165
3166 void
3167 init_psymbol_list (struct objfile *objfile, int total_symbols)
3168 {
3169 /* Free any previously allocated psymbol lists. */
3170
3171 if (objfile->global_psymbols.list)
3172 {
3173 xfree (objfile->global_psymbols.list);
3174 }
3175 if (objfile->static_psymbols.list)
3176 {
3177 xfree (objfile->static_psymbols.list);
3178 }
3179
3180 /* Current best guess is that approximately a twentieth
3181 of the total symbols (in a debugging file) are global or static
3182 oriented symbols */
3183
3184 objfile->global_psymbols.size = total_symbols / 10;
3185 objfile->static_psymbols.size = total_symbols / 10;
3186
3187 if (objfile->global_psymbols.size > 0)
3188 {
3189 objfile->global_psymbols.next =
3190 objfile->global_psymbols.list = (struct partial_symbol **)
3191 xmalloc ((objfile->global_psymbols.size
3192 * sizeof (struct partial_symbol *)));
3193 }
3194 if (objfile->static_psymbols.size > 0)
3195 {
3196 objfile->static_psymbols.next =
3197 objfile->static_psymbols.list = (struct partial_symbol **)
3198 xmalloc ((objfile->static_psymbols.size
3199 * sizeof (struct partial_symbol *)));
3200 }
3201 }
3202
3203 /* OVERLAYS:
3204 The following code implements an abstraction for debugging overlay sections.
3205
3206 The target model is as follows:
3207 1) The gnu linker will permit multiple sections to be mapped into the
3208 same VMA, each with its own unique LMA (or load address).
3209 2) It is assumed that some runtime mechanism exists for mapping the
3210 sections, one by one, from the load address into the VMA address.
3211 3) This code provides a mechanism for gdb to keep track of which
3212 sections should be considered to be mapped from the VMA to the LMA.
3213 This information is used for symbol lookup, and memory read/write.
3214 For instance, if a section has been mapped then its contents
3215 should be read from the VMA, otherwise from the LMA.
3216
3217 Two levels of debugger support for overlays are available. One is
3218 "manual", in which the debugger relies on the user to tell it which
3219 overlays are currently mapped. This level of support is
3220 implemented entirely in the core debugger, and the information about
3221 whether a section is mapped is kept in the objfile->obj_section table.
3222
3223 The second level of support is "automatic", and is only available if
3224 the target-specific code provides functionality to read the target's
3225 overlay mapping table, and translate its contents for the debugger
3226 (by updating the mapped state information in the obj_section tables).
3227
3228 The interface is as follows:
3229 User commands:
3230 overlay map <name> -- tell gdb to consider this section mapped
3231 overlay unmap <name> -- tell gdb to consider this section unmapped
3232 overlay list -- list the sections that GDB thinks are mapped
3233 overlay read-target -- get the target's state of what's mapped
3234 overlay off/manual/auto -- set overlay debugging state
3235 Functional interface:
3236 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3237 section, return that section.
3238 find_pc_overlay(pc): find any overlay section that contains
3239 the pc, either in its VMA or its LMA
3240 section_is_mapped(sect): true if overlay is marked as mapped
3241 section_is_overlay(sect): true if section's VMA != LMA
3242 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3243 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3244 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3245 overlay_mapped_address(...): map an address from section's LMA to VMA
3246 overlay_unmapped_address(...): map an address from section's VMA to LMA
3247 symbol_overlayed_address(...): Return a "current" address for symbol:
3248 either in VMA or LMA depending on whether
3249 the symbol's section is currently mapped
3250 */
3251
3252 /* Overlay debugging state: */
3253
3254 enum overlay_debugging_state overlay_debugging = ovly_off;
3255 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3256
3257 /* Function: section_is_overlay (SECTION)
3258 Returns true if SECTION has VMA not equal to LMA, ie.
3259 SECTION is loaded at an address different from where it will "run". */
3260
3261 int
3262 section_is_overlay (struct obj_section *section)
3263 {
3264 if (overlay_debugging && section)
3265 {
3266 bfd *abfd = section->objfile->obfd;
3267 asection *bfd_section = section->the_bfd_section;
3268
3269 if (bfd_section_lma (abfd, bfd_section) != 0
3270 && bfd_section_lma (abfd, bfd_section)
3271 != bfd_section_vma (abfd, bfd_section))
3272 return 1;
3273 }
3274
3275 return 0;
3276 }
3277
3278 /* Function: overlay_invalidate_all (void)
3279 Invalidate the mapped state of all overlay sections (mark it as stale). */
3280
3281 static void
3282 overlay_invalidate_all (void)
3283 {
3284 struct objfile *objfile;
3285 struct obj_section *sect;
3286
3287 ALL_OBJSECTIONS (objfile, sect)
3288 if (section_is_overlay (sect))
3289 sect->ovly_mapped = -1;
3290 }
3291
3292 /* Function: section_is_mapped (SECTION)
3293 Returns true if section is an overlay, and is currently mapped.
3294
3295 Access to the ovly_mapped flag is restricted to this function, so
3296 that we can do automatic update. If the global flag
3297 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3298 overlay_invalidate_all. If the mapped state of the particular
3299 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3300
3301 int
3302 section_is_mapped (struct obj_section *osect)
3303 {
3304 struct gdbarch *gdbarch;
3305
3306 if (osect == 0 || !section_is_overlay (osect))
3307 return 0;
3308
3309 switch (overlay_debugging)
3310 {
3311 default:
3312 case ovly_off:
3313 return 0; /* overlay debugging off */
3314 case ovly_auto: /* overlay debugging automatic */
3315 /* Unles there is a gdbarch_overlay_update function,
3316 there's really nothing useful to do here (can't really go auto) */
3317 gdbarch = get_objfile_arch (osect->objfile);
3318 if (gdbarch_overlay_update_p (gdbarch))
3319 {
3320 if (overlay_cache_invalid)
3321 {
3322 overlay_invalidate_all ();
3323 overlay_cache_invalid = 0;
3324 }
3325 if (osect->ovly_mapped == -1)
3326 gdbarch_overlay_update (gdbarch, osect);
3327 }
3328 /* fall thru to manual case */
3329 case ovly_on: /* overlay debugging manual */
3330 return osect->ovly_mapped == 1;
3331 }
3332 }
3333
3334 /* Function: pc_in_unmapped_range
3335 If PC falls into the lma range of SECTION, return true, else false. */
3336
3337 CORE_ADDR
3338 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3339 {
3340 if (section_is_overlay (section))
3341 {
3342 bfd *abfd = section->objfile->obfd;
3343 asection *bfd_section = section->the_bfd_section;
3344
3345 /* We assume the LMA is relocated by the same offset as the VMA. */
3346 bfd_vma size = bfd_get_section_size (bfd_section);
3347 CORE_ADDR offset = obj_section_offset (section);
3348
3349 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3350 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3351 return 1;
3352 }
3353
3354 return 0;
3355 }
3356
3357 /* Function: pc_in_mapped_range
3358 If PC falls into the vma range of SECTION, return true, else false. */
3359
3360 CORE_ADDR
3361 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3362 {
3363 if (section_is_overlay (section))
3364 {
3365 if (obj_section_addr (section) <= pc
3366 && pc < obj_section_endaddr (section))
3367 return 1;
3368 }
3369
3370 return 0;
3371 }
3372
3373
3374 /* Return true if the mapped ranges of sections A and B overlap, false
3375 otherwise. */
3376 static int
3377 sections_overlap (struct obj_section *a, struct obj_section *b)
3378 {
3379 CORE_ADDR a_start = obj_section_addr (a);
3380 CORE_ADDR a_end = obj_section_endaddr (a);
3381 CORE_ADDR b_start = obj_section_addr (b);
3382 CORE_ADDR b_end = obj_section_endaddr (b);
3383
3384 return (a_start < b_end && b_start < a_end);
3385 }
3386
3387 /* Function: overlay_unmapped_address (PC, SECTION)
3388 Returns the address corresponding to PC in the unmapped (load) range.
3389 May be the same as PC. */
3390
3391 CORE_ADDR
3392 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3393 {
3394 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3395 {
3396 bfd *abfd = section->objfile->obfd;
3397 asection *bfd_section = section->the_bfd_section;
3398
3399 return pc + bfd_section_lma (abfd, bfd_section)
3400 - bfd_section_vma (abfd, bfd_section);
3401 }
3402
3403 return pc;
3404 }
3405
3406 /* Function: overlay_mapped_address (PC, SECTION)
3407 Returns the address corresponding to PC in the mapped (runtime) range.
3408 May be the same as PC. */
3409
3410 CORE_ADDR
3411 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3412 {
3413 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3414 {
3415 bfd *abfd = section->objfile->obfd;
3416 asection *bfd_section = section->the_bfd_section;
3417
3418 return pc + bfd_section_vma (abfd, bfd_section)
3419 - bfd_section_lma (abfd, bfd_section);
3420 }
3421
3422 return pc;
3423 }
3424
3425
3426 /* Function: symbol_overlayed_address
3427 Return one of two addresses (relative to the VMA or to the LMA),
3428 depending on whether the section is mapped or not. */
3429
3430 CORE_ADDR
3431 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3432 {
3433 if (overlay_debugging)
3434 {
3435 /* If the symbol has no section, just return its regular address. */
3436 if (section == 0)
3437 return address;
3438 /* If the symbol's section is not an overlay, just return its address */
3439 if (!section_is_overlay (section))
3440 return address;
3441 /* If the symbol's section is mapped, just return its address */
3442 if (section_is_mapped (section))
3443 return address;
3444 /*
3445 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3446 * then return its LOADED address rather than its vma address!!
3447 */
3448 return overlay_unmapped_address (address, section);
3449 }
3450 return address;
3451 }
3452
3453 /* Function: find_pc_overlay (PC)
3454 Return the best-match overlay section for PC:
3455 If PC matches a mapped overlay section's VMA, return that section.
3456 Else if PC matches an unmapped section's VMA, return that section.
3457 Else if PC matches an unmapped section's LMA, return that section. */
3458
3459 struct obj_section *
3460 find_pc_overlay (CORE_ADDR pc)
3461 {
3462 struct objfile *objfile;
3463 struct obj_section *osect, *best_match = NULL;
3464
3465 if (overlay_debugging)
3466 ALL_OBJSECTIONS (objfile, osect)
3467 if (section_is_overlay (osect))
3468 {
3469 if (pc_in_mapped_range (pc, osect))
3470 {
3471 if (section_is_mapped (osect))
3472 return osect;
3473 else
3474 best_match = osect;
3475 }
3476 else if (pc_in_unmapped_range (pc, osect))
3477 best_match = osect;
3478 }
3479 return best_match;
3480 }
3481
3482 /* Function: find_pc_mapped_section (PC)
3483 If PC falls into the VMA address range of an overlay section that is
3484 currently marked as MAPPED, return that section. Else return NULL. */
3485
3486 struct obj_section *
3487 find_pc_mapped_section (CORE_ADDR pc)
3488 {
3489 struct objfile *objfile;
3490 struct obj_section *osect;
3491
3492 if (overlay_debugging)
3493 ALL_OBJSECTIONS (objfile, osect)
3494 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3495 return osect;
3496
3497 return NULL;
3498 }
3499
3500 /* Function: list_overlays_command
3501 Print a list of mapped sections and their PC ranges */
3502
3503 void
3504 list_overlays_command (char *args, int from_tty)
3505 {
3506 int nmapped = 0;
3507 struct objfile *objfile;
3508 struct obj_section *osect;
3509
3510 if (overlay_debugging)
3511 ALL_OBJSECTIONS (objfile, osect)
3512 if (section_is_mapped (osect))
3513 {
3514 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3515 const char *name;
3516 bfd_vma lma, vma;
3517 int size;
3518
3519 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3520 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3521 size = bfd_get_section_size (osect->the_bfd_section);
3522 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3523
3524 printf_filtered ("Section %s, loaded at ", name);
3525 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3526 puts_filtered (" - ");
3527 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3528 printf_filtered (", mapped at ");
3529 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3530 puts_filtered (" - ");
3531 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3532 puts_filtered ("\n");
3533
3534 nmapped++;
3535 }
3536 if (nmapped == 0)
3537 printf_filtered (_("No sections are mapped.\n"));
3538 }
3539
3540 /* Function: map_overlay_command
3541 Mark the named section as mapped (ie. residing at its VMA address). */
3542
3543 void
3544 map_overlay_command (char *args, int from_tty)
3545 {
3546 struct objfile *objfile, *objfile2;
3547 struct obj_section *sec, *sec2;
3548
3549 if (!overlay_debugging)
3550 error (_("\
3551 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3552 the 'overlay manual' command."));
3553
3554 if (args == 0 || *args == 0)
3555 error (_("Argument required: name of an overlay section"));
3556
3557 /* First, find a section matching the user supplied argument */
3558 ALL_OBJSECTIONS (objfile, sec)
3559 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3560 {
3561 /* Now, check to see if the section is an overlay. */
3562 if (!section_is_overlay (sec))
3563 continue; /* not an overlay section */
3564
3565 /* Mark the overlay as "mapped" */
3566 sec->ovly_mapped = 1;
3567
3568 /* Next, make a pass and unmap any sections that are
3569 overlapped by this new section: */
3570 ALL_OBJSECTIONS (objfile2, sec2)
3571 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3572 {
3573 if (info_verbose)
3574 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3575 bfd_section_name (objfile->obfd,
3576 sec2->the_bfd_section));
3577 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3578 }
3579 return;
3580 }
3581 error (_("No overlay section called %s"), args);
3582 }
3583
3584 /* Function: unmap_overlay_command
3585 Mark the overlay section as unmapped
3586 (ie. resident in its LMA address range, rather than the VMA range). */
3587
3588 void
3589 unmap_overlay_command (char *args, int from_tty)
3590 {
3591 struct objfile *objfile;
3592 struct obj_section *sec;
3593
3594 if (!overlay_debugging)
3595 error (_("\
3596 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3597 the 'overlay manual' command."));
3598
3599 if (args == 0 || *args == 0)
3600 error (_("Argument required: name of an overlay section"));
3601
3602 /* First, find a section matching the user supplied argument */
3603 ALL_OBJSECTIONS (objfile, sec)
3604 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3605 {
3606 if (!sec->ovly_mapped)
3607 error (_("Section %s is not mapped"), args);
3608 sec->ovly_mapped = 0;
3609 return;
3610 }
3611 error (_("No overlay section called %s"), args);
3612 }
3613
3614 /* Function: overlay_auto_command
3615 A utility command to turn on overlay debugging.
3616 Possibly this should be done via a set/show command. */
3617
3618 static void
3619 overlay_auto_command (char *args, int from_tty)
3620 {
3621 overlay_debugging = ovly_auto;
3622 enable_overlay_breakpoints ();
3623 if (info_verbose)
3624 printf_unfiltered (_("Automatic overlay debugging enabled."));
3625 }
3626
3627 /* Function: overlay_manual_command
3628 A utility command to turn on overlay debugging.
3629 Possibly this should be done via a set/show command. */
3630
3631 static void
3632 overlay_manual_command (char *args, int from_tty)
3633 {
3634 overlay_debugging = ovly_on;
3635 disable_overlay_breakpoints ();
3636 if (info_verbose)
3637 printf_unfiltered (_("Overlay debugging enabled."));
3638 }
3639
3640 /* Function: overlay_off_command
3641 A utility command to turn on overlay debugging.
3642 Possibly this should be done via a set/show command. */
3643
3644 static void
3645 overlay_off_command (char *args, int from_tty)
3646 {
3647 overlay_debugging = ovly_off;
3648 disable_overlay_breakpoints ();
3649 if (info_verbose)
3650 printf_unfiltered (_("Overlay debugging disabled."));
3651 }
3652
3653 static void
3654 overlay_load_command (char *args, int from_tty)
3655 {
3656 struct gdbarch *gdbarch = get_current_arch ();
3657
3658 if (gdbarch_overlay_update_p (gdbarch))
3659 gdbarch_overlay_update (gdbarch, NULL);
3660 else
3661 error (_("This target does not know how to read its overlay state."));
3662 }
3663
3664 /* Function: overlay_command
3665 A place-holder for a mis-typed command */
3666
3667 /* Command list chain containing all defined "overlay" subcommands. */
3668 struct cmd_list_element *overlaylist;
3669
3670 static void
3671 overlay_command (char *args, int from_tty)
3672 {
3673 printf_unfiltered
3674 ("\"overlay\" must be followed by the name of an overlay command.\n");
3675 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3676 }
3677
3678
3679 /* Target Overlays for the "Simplest" overlay manager:
3680
3681 This is GDB's default target overlay layer. It works with the
3682 minimal overlay manager supplied as an example by Cygnus. The
3683 entry point is via a function pointer "gdbarch_overlay_update",
3684 so targets that use a different runtime overlay manager can
3685 substitute their own overlay_update function and take over the
3686 function pointer.
3687
3688 The overlay_update function pokes around in the target's data structures
3689 to see what overlays are mapped, and updates GDB's overlay mapping with
3690 this information.
3691
3692 In this simple implementation, the target data structures are as follows:
3693 unsigned _novlys; /# number of overlay sections #/
3694 unsigned _ovly_table[_novlys][4] = {
3695 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3696 {..., ..., ..., ...},
3697 }
3698 unsigned _novly_regions; /# number of overlay regions #/
3699 unsigned _ovly_region_table[_novly_regions][3] = {
3700 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3701 {..., ..., ...},
3702 }
3703 These functions will attempt to update GDB's mappedness state in the
3704 symbol section table, based on the target's mappedness state.
3705
3706 To do this, we keep a cached copy of the target's _ovly_table, and
3707 attempt to detect when the cached copy is invalidated. The main
3708 entry point is "simple_overlay_update(SECT), which looks up SECT in
3709 the cached table and re-reads only the entry for that section from
3710 the target (whenever possible).
3711 */
3712
3713 /* Cached, dynamically allocated copies of the target data structures: */
3714 static unsigned (*cache_ovly_table)[4] = 0;
3715 #if 0
3716 static unsigned (*cache_ovly_region_table)[3] = 0;
3717 #endif
3718 static unsigned cache_novlys = 0;
3719 #if 0
3720 static unsigned cache_novly_regions = 0;
3721 #endif
3722 static CORE_ADDR cache_ovly_table_base = 0;
3723 #if 0
3724 static CORE_ADDR cache_ovly_region_table_base = 0;
3725 #endif
3726 enum ovly_index
3727 {
3728 VMA, SIZE, LMA, MAPPED
3729 };
3730
3731 /* Throw away the cached copy of _ovly_table */
3732 static void
3733 simple_free_overlay_table (void)
3734 {
3735 if (cache_ovly_table)
3736 xfree (cache_ovly_table);
3737 cache_novlys = 0;
3738 cache_ovly_table = NULL;
3739 cache_ovly_table_base = 0;
3740 }
3741
3742 #if 0
3743 /* Throw away the cached copy of _ovly_region_table */
3744 static void
3745 simple_free_overlay_region_table (void)
3746 {
3747 if (cache_ovly_region_table)
3748 xfree (cache_ovly_region_table);
3749 cache_novly_regions = 0;
3750 cache_ovly_region_table = NULL;
3751 cache_ovly_region_table_base = 0;
3752 }
3753 #endif
3754
3755 /* Read an array of ints of size SIZE from the target into a local buffer.
3756 Convert to host order. int LEN is number of ints */
3757 static void
3758 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3759 int len, int size, enum bfd_endian byte_order)
3760 {
3761 /* FIXME (alloca): Not safe if array is very large. */
3762 gdb_byte *buf = alloca (len * size);
3763 int i;
3764
3765 read_memory (memaddr, buf, len * size);
3766 for (i = 0; i < len; i++)
3767 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3768 }
3769
3770 /* Find and grab a copy of the target _ovly_table
3771 (and _novlys, which is needed for the table's size) */
3772 static int
3773 simple_read_overlay_table (void)
3774 {
3775 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3776 struct gdbarch *gdbarch;
3777 int word_size;
3778 enum bfd_endian byte_order;
3779
3780 simple_free_overlay_table ();
3781 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3782 if (! novlys_msym)
3783 {
3784 error (_("Error reading inferior's overlay table: "
3785 "couldn't find `_novlys' variable\n"
3786 "in inferior. Use `overlay manual' mode."));
3787 return 0;
3788 }
3789
3790 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3791 if (! ovly_table_msym)
3792 {
3793 error (_("Error reading inferior's overlay table: couldn't find "
3794 "`_ovly_table' array\n"
3795 "in inferior. Use `overlay manual' mode."));
3796 return 0;
3797 }
3798
3799 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3800 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3801 byte_order = gdbarch_byte_order (gdbarch);
3802
3803 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3804 4, byte_order);
3805 cache_ovly_table
3806 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3807 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3808 read_target_long_array (cache_ovly_table_base,
3809 (unsigned int *) cache_ovly_table,
3810 cache_novlys * 4, word_size, byte_order);
3811
3812 return 1; /* SUCCESS */
3813 }
3814
3815 #if 0
3816 /* Find and grab a copy of the target _ovly_region_table
3817 (and _novly_regions, which is needed for the table's size) */
3818 static int
3819 simple_read_overlay_region_table (void)
3820 {
3821 struct minimal_symbol *msym;
3822 struct gdbarch *gdbarch;
3823 int word_size;
3824 enum bfd_endian byte_order;
3825
3826 simple_free_overlay_region_table ();
3827 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3828 if (msym == NULL)
3829 return 0; /* failure */
3830
3831 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3832 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3833 byte_order = gdbarch_byte_order (gdbarch);
3834
3835 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3836 4, byte_order);
3837
3838 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3839 if (cache_ovly_region_table != NULL)
3840 {
3841 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3842 if (msym != NULL)
3843 {
3844 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3845 read_target_long_array (cache_ovly_region_table_base,
3846 (unsigned int *) cache_ovly_region_table,
3847 cache_novly_regions * 3,
3848 word_size, byte_order);
3849 }
3850 else
3851 return 0; /* failure */
3852 }
3853 else
3854 return 0; /* failure */
3855 return 1; /* SUCCESS */
3856 }
3857 #endif
3858
3859 /* Function: simple_overlay_update_1
3860 A helper function for simple_overlay_update. Assuming a cached copy
3861 of _ovly_table exists, look through it to find an entry whose vma,
3862 lma and size match those of OSECT. Re-read the entry and make sure
3863 it still matches OSECT (else the table may no longer be valid).
3864 Set OSECT's mapped state to match the entry. Return: 1 for
3865 success, 0 for failure. */
3866
3867 static int
3868 simple_overlay_update_1 (struct obj_section *osect)
3869 {
3870 int i, size;
3871 bfd *obfd = osect->objfile->obfd;
3872 asection *bsect = osect->the_bfd_section;
3873 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3874 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3875 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3876
3877 size = bfd_get_section_size (osect->the_bfd_section);
3878 for (i = 0; i < cache_novlys; i++)
3879 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3880 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3881 /* && cache_ovly_table[i][SIZE] == size */ )
3882 {
3883 read_target_long_array (cache_ovly_table_base + i * word_size,
3884 (unsigned int *) cache_ovly_table[i],
3885 4, word_size, byte_order);
3886 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3887 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3888 /* && cache_ovly_table[i][SIZE] == size */ )
3889 {
3890 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3891 return 1;
3892 }
3893 else /* Warning! Warning! Target's ovly table has changed! */
3894 return 0;
3895 }
3896 return 0;
3897 }
3898
3899 /* Function: simple_overlay_update
3900 If OSECT is NULL, then update all sections' mapped state
3901 (after re-reading the entire target _ovly_table).
3902 If OSECT is non-NULL, then try to find a matching entry in the
3903 cached ovly_table and update only OSECT's mapped state.
3904 If a cached entry can't be found or the cache isn't valid, then
3905 re-read the entire cache, and go ahead and update all sections. */
3906
3907 void
3908 simple_overlay_update (struct obj_section *osect)
3909 {
3910 struct objfile *objfile;
3911
3912 /* Were we given an osect to look up? NULL means do all of them. */
3913 if (osect)
3914 /* Have we got a cached copy of the target's overlay table? */
3915 if (cache_ovly_table != NULL)
3916 /* Does its cached location match what's currently in the symtab? */
3917 if (cache_ovly_table_base ==
3918 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3919 /* Then go ahead and try to look up this single section in the cache */
3920 if (simple_overlay_update_1 (osect))
3921 /* Found it! We're done. */
3922 return;
3923
3924 /* Cached table no good: need to read the entire table anew.
3925 Or else we want all the sections, in which case it's actually
3926 more efficient to read the whole table in one block anyway. */
3927
3928 if (! simple_read_overlay_table ())
3929 return;
3930
3931 /* Now may as well update all sections, even if only one was requested. */
3932 ALL_OBJSECTIONS (objfile, osect)
3933 if (section_is_overlay (osect))
3934 {
3935 int i, size;
3936 bfd *obfd = osect->objfile->obfd;
3937 asection *bsect = osect->the_bfd_section;
3938
3939 size = bfd_get_section_size (bsect);
3940 for (i = 0; i < cache_novlys; i++)
3941 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3942 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3943 /* && cache_ovly_table[i][SIZE] == size */ )
3944 { /* obj_section matches i'th entry in ovly_table */
3945 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3946 break; /* finished with inner for loop: break out */
3947 }
3948 }
3949 }
3950
3951 /* Set the output sections and output offsets for section SECTP in
3952 ABFD. The relocation code in BFD will read these offsets, so we
3953 need to be sure they're initialized. We map each section to itself,
3954 with no offset; this means that SECTP->vma will be honored. */
3955
3956 static void
3957 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3958 {
3959 sectp->output_section = sectp;
3960 sectp->output_offset = 0;
3961 }
3962
3963 /* Relocate the contents of a debug section SECTP in ABFD. The
3964 contents are stored in BUF if it is non-NULL, or returned in a
3965 malloc'd buffer otherwise.
3966
3967 For some platforms and debug info formats, shared libraries contain
3968 relocations against the debug sections (particularly for DWARF-2;
3969 one affected platform is PowerPC GNU/Linux, although it depends on
3970 the version of the linker in use). Also, ELF object files naturally
3971 have unresolved relocations for their debug sections. We need to apply
3972 the relocations in order to get the locations of symbols correct.
3973 Another example that may require relocation processing, is the
3974 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3975 debug section. */
3976
3977 bfd_byte *
3978 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3979 {
3980 /* We're only interested in sections with relocation
3981 information. */
3982 if ((sectp->flags & SEC_RELOC) == 0)
3983 return NULL;
3984
3985 /* We will handle section offsets properly elsewhere, so relocate as if
3986 all sections begin at 0. */
3987 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3988
3989 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3990 }
3991
3992 struct symfile_segment_data *
3993 get_symfile_segment_data (bfd *abfd)
3994 {
3995 struct sym_fns *sf = find_sym_fns (abfd);
3996
3997 if (sf == NULL)
3998 return NULL;
3999
4000 return sf->sym_segments (abfd);
4001 }
4002
4003 void
4004 free_symfile_segment_data (struct symfile_segment_data *data)
4005 {
4006 xfree (data->segment_bases);
4007 xfree (data->segment_sizes);
4008 xfree (data->segment_info);
4009 xfree (data);
4010 }
4011
4012
4013 /* Given:
4014 - DATA, containing segment addresses from the object file ABFD, and
4015 the mapping from ABFD's sections onto the segments that own them,
4016 and
4017 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4018 segment addresses reported by the target,
4019 store the appropriate offsets for each section in OFFSETS.
4020
4021 If there are fewer entries in SEGMENT_BASES than there are segments
4022 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4023
4024 If there are more entries, then ignore the extra. The target may
4025 not be able to distinguish between an empty data segment and a
4026 missing data segment; a missing text segment is less plausible. */
4027 int
4028 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4029 struct section_offsets *offsets,
4030 int num_segment_bases,
4031 const CORE_ADDR *segment_bases)
4032 {
4033 int i;
4034 asection *sect;
4035
4036 /* It doesn't make sense to call this function unless you have some
4037 segment base addresses. */
4038 gdb_assert (segment_bases > 0);
4039
4040 /* If we do not have segment mappings for the object file, we
4041 can not relocate it by segments. */
4042 gdb_assert (data != NULL);
4043 gdb_assert (data->num_segments > 0);
4044
4045 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4046 {
4047 int which = data->segment_info[i];
4048
4049 gdb_assert (0 <= which && which <= data->num_segments);
4050
4051 /* Don't bother computing offsets for sections that aren't
4052 loaded as part of any segment. */
4053 if (! which)
4054 continue;
4055
4056 /* Use the last SEGMENT_BASES entry as the address of any extra
4057 segments mentioned in DATA->segment_info. */
4058 if (which > num_segment_bases)
4059 which = num_segment_bases;
4060
4061 offsets->offsets[i] = (segment_bases[which - 1]
4062 - data->segment_bases[which - 1]);
4063 }
4064
4065 return 1;
4066 }
4067
4068 static void
4069 symfile_find_segment_sections (struct objfile *objfile)
4070 {
4071 bfd *abfd = objfile->obfd;
4072 int i;
4073 asection *sect;
4074 struct symfile_segment_data *data;
4075
4076 data = get_symfile_segment_data (objfile->obfd);
4077 if (data == NULL)
4078 return;
4079
4080 if (data->num_segments != 1 && data->num_segments != 2)
4081 {
4082 free_symfile_segment_data (data);
4083 return;
4084 }
4085
4086 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4087 {
4088 CORE_ADDR vma;
4089 int which = data->segment_info[i];
4090
4091 if (which == 1)
4092 {
4093 if (objfile->sect_index_text == -1)
4094 objfile->sect_index_text = sect->index;
4095
4096 if (objfile->sect_index_rodata == -1)
4097 objfile->sect_index_rodata = sect->index;
4098 }
4099 else if (which == 2)
4100 {
4101 if (objfile->sect_index_data == -1)
4102 objfile->sect_index_data = sect->index;
4103
4104 if (objfile->sect_index_bss == -1)
4105 objfile->sect_index_bss = sect->index;
4106 }
4107 }
4108
4109 free_symfile_segment_data (data);
4110 }
4111
4112 void
4113 _initialize_symfile (void)
4114 {
4115 struct cmd_list_element *c;
4116
4117 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4118 Load symbol table from executable file FILE.\n\
4119 The `file' command can also load symbol tables, as well as setting the file\n\
4120 to execute."), &cmdlist);
4121 set_cmd_completer (c, filename_completer);
4122
4123 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4124 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4125 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4126 ADDR is the starting address of the file's text.\n\
4127 The optional arguments are section-name section-address pairs and\n\
4128 should be specified if the data and bss segments are not contiguous\n\
4129 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4130 &cmdlist);
4131 set_cmd_completer (c, filename_completer);
4132
4133 c = add_cmd ("load", class_files, load_command, _("\
4134 Dynamically load FILE into the running program, and record its symbols\n\
4135 for access from GDB.\n\
4136 A load OFFSET may also be given."), &cmdlist);
4137 set_cmd_completer (c, filename_completer);
4138
4139 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4140 &symbol_reloading, _("\
4141 Set dynamic symbol table reloading multiple times in one run."), _("\
4142 Show dynamic symbol table reloading multiple times in one run."), NULL,
4143 NULL,
4144 show_symbol_reloading,
4145 &setlist, &showlist);
4146
4147 add_prefix_cmd ("overlay", class_support, overlay_command,
4148 _("Commands for debugging overlays."), &overlaylist,
4149 "overlay ", 0, &cmdlist);
4150
4151 add_com_alias ("ovly", "overlay", class_alias, 1);
4152 add_com_alias ("ov", "overlay", class_alias, 1);
4153
4154 add_cmd ("map-overlay", class_support, map_overlay_command,
4155 _("Assert that an overlay section is mapped."), &overlaylist);
4156
4157 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4158 _("Assert that an overlay section is unmapped."), &overlaylist);
4159
4160 add_cmd ("list-overlays", class_support, list_overlays_command,
4161 _("List mappings of overlay sections."), &overlaylist);
4162
4163 add_cmd ("manual", class_support, overlay_manual_command,
4164 _("Enable overlay debugging."), &overlaylist);
4165 add_cmd ("off", class_support, overlay_off_command,
4166 _("Disable overlay debugging."), &overlaylist);
4167 add_cmd ("auto", class_support, overlay_auto_command,
4168 _("Enable automatic overlay debugging."), &overlaylist);
4169 add_cmd ("load-target", class_support, overlay_load_command,
4170 _("Read the overlay mapping state from the target."), &overlaylist);
4171
4172 /* Filename extension to source language lookup table: */
4173 init_filename_language_table ();
4174 add_setshow_string_noescape_cmd ("extension-language", class_files,
4175 &ext_args, _("\
4176 Set mapping between filename extension and source language."), _("\
4177 Show mapping between filename extension and source language."), _("\
4178 Usage: set extension-language .foo bar"),
4179 set_ext_lang_command,
4180 show_ext_args,
4181 &setlist, &showlist);
4182
4183 add_info ("extensions", info_ext_lang_command,
4184 _("All filename extensions associated with a source language."));
4185
4186 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4187 &debug_file_directory, _("\
4188 Set the directory where separate debug symbols are searched for."), _("\
4189 Show the directory where separate debug symbols are searched for."), _("\
4190 Separate debug symbols are first searched for in the same\n\
4191 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4192 and lastly at the path of the directory of the binary with\n\
4193 the global debug-file directory prepended."),
4194 NULL,
4195 show_debug_file_directory,
4196 &setlist, &showlist);
4197
4198 add_setshow_boolean_cmd ("symbol-loading", no_class,
4199 &print_symbol_loading, _("\
4200 Set printing of symbol loading messages."), _("\
4201 Show printing of symbol loading messages."), NULL,
4202 NULL,
4203 NULL,
4204 &setprintlist, &showprintlist);
4205 }
This page took 0.118115 seconds and 4 git commands to generate.