36f5918b098818a8b3426f5f0b47f0041f7ce185
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 bfd *symfile_bfd_open (char *);
95
96 int get_section_index (struct objfile *, char *);
97
98 static const struct sym_fns *find_sym_fns (bfd *);
99
100 static void decrement_reading_symtab (void *);
101
102 static void overlay_invalidate_all (void);
103
104 static void overlay_auto_command (char *, int);
105
106 static void overlay_manual_command (char *, int);
107
108 static void overlay_off_command (char *, int);
109
110 static void overlay_load_command (char *, int);
111
112 static void overlay_command (char *, int);
113
114 static void simple_free_overlay_table (void);
115
116 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
118
119 static int simple_read_overlay_table (void);
120
121 static int simple_overlay_update_1 (struct obj_section *);
122
123 static void add_filename_language (char *ext, enum language lang);
124
125 static void info_ext_lang_command (char *args, int from_tty);
126
127 static void init_filename_language_table (void);
128
129 static void symfile_find_segment_sections (struct objfile *objfile);
130
131 void _initialize_symfile (void);
132
133 /* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
135 prepared to read. */
136
137 typedef const struct sym_fns *sym_fns_ptr;
138 DEF_VEC_P (sym_fns_ptr);
139
140 static VEC (sym_fns_ptr) *symtab_fns = NULL;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153 \f
154
155 /* True if we are reading a symbol table. */
156
157 int currently_reading_symtab = 0;
158
159 static void
160 decrement_reading_symtab (void *dummy)
161 {
162 currently_reading_symtab--;
163 gdb_assert (currently_reading_symtab >= 0);
164 }
165
166 /* Increment currently_reading_symtab and return a cleanup that can be
167 used to decrement it. */
168
169 struct cleanup *
170 increment_reading_symtab (void)
171 {
172 ++currently_reading_symtab;
173 gdb_assert (currently_reading_symtab > 0);
174 return make_cleanup (decrement_reading_symtab, NULL);
175 }
176
177 /* Remember the lowest-addressed loadable section we've seen.
178 This function is called via bfd_map_over_sections.
179
180 In case of equal vmas, the section with the largest size becomes the
181 lowest-addressed loadable section.
182
183 If the vmas and sizes are equal, the last section is considered the
184 lowest-addressed loadable section. */
185
186 void
187 find_lowest_section (bfd *abfd, asection *sect, void *obj)
188 {
189 asection **lowest = (asection **) obj;
190
191 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
192 return;
193 if (!*lowest)
194 *lowest = sect; /* First loadable section */
195 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
196 *lowest = sect; /* A lower loadable section */
197 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
198 && (bfd_section_size (abfd, (*lowest))
199 <= bfd_section_size (abfd, sect)))
200 *lowest = sect;
201 }
202
203 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
204 new object's 'num_sections' field is set to 0; it must be updated
205 by the caller. */
206
207 struct section_addr_info *
208 alloc_section_addr_info (size_t num_sections)
209 {
210 struct section_addr_info *sap;
211 size_t size;
212
213 size = (sizeof (struct section_addr_info)
214 + sizeof (struct other_sections) * (num_sections - 1));
215 sap = (struct section_addr_info *) xmalloc (size);
216 memset (sap, 0, size);
217
218 return sap;
219 }
220
221 /* Build (allocate and populate) a section_addr_info struct from
222 an existing section table. */
223
224 extern struct section_addr_info *
225 build_section_addr_info_from_section_table (const struct target_section *start,
226 const struct target_section *end)
227 {
228 struct section_addr_info *sap;
229 const struct target_section *stp;
230 int oidx;
231
232 sap = alloc_section_addr_info (end - start);
233
234 for (stp = start, oidx = 0; stp != end; stp++)
235 {
236 if (bfd_get_section_flags (stp->bfd,
237 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
238 && oidx < end - start)
239 {
240 sap->other[oidx].addr = stp->addr;
241 sap->other[oidx].name
242 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
243 sap->other[oidx].sectindex
244 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
245 oidx++;
246 }
247 }
248
249 sap->num_sections = oidx;
250
251 return sap;
252 }
253
254 /* Create a section_addr_info from section offsets in ABFD. */
255
256 static struct section_addr_info *
257 build_section_addr_info_from_bfd (bfd *abfd)
258 {
259 struct section_addr_info *sap;
260 int i;
261 struct bfd_section *sec;
262
263 sap = alloc_section_addr_info (bfd_count_sections (abfd));
264 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
265 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
266 {
267 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
268 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
269 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
270 i++;
271 }
272
273 sap->num_sections = i;
274
275 return sap;
276 }
277
278 /* Create a section_addr_info from section offsets in OBJFILE. */
279
280 struct section_addr_info *
281 build_section_addr_info_from_objfile (const struct objfile *objfile)
282 {
283 struct section_addr_info *sap;
284 int i;
285
286 /* Before reread_symbols gets rewritten it is not safe to call:
287 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
288 */
289 sap = build_section_addr_info_from_bfd (objfile->obfd);
290 for (i = 0; i < sap->num_sections; i++)
291 {
292 int sectindex = sap->other[i].sectindex;
293
294 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
295 }
296 return sap;
297 }
298
299 /* Free all memory allocated by build_section_addr_info_from_section_table. */
300
301 extern void
302 free_section_addr_info (struct section_addr_info *sap)
303 {
304 int idx;
305
306 for (idx = 0; idx < sap->num_sections; idx++)
307 xfree (sap->other[idx].name);
308 xfree (sap);
309 }
310
311 /* Initialize OBJFILE's sect_index_* members. */
312
313 static void
314 init_objfile_sect_indices (struct objfile *objfile)
315 {
316 asection *sect;
317 int i;
318
319 sect = bfd_get_section_by_name (objfile->obfd, ".text");
320 if (sect)
321 objfile->sect_index_text = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".data");
324 if (sect)
325 objfile->sect_index_data = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
328 if (sect)
329 objfile->sect_index_bss = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
332 if (sect)
333 objfile->sect_index_rodata = sect->index;
334
335 /* This is where things get really weird... We MUST have valid
336 indices for the various sect_index_* members or gdb will abort.
337 So if for example, there is no ".text" section, we have to
338 accomodate that. First, check for a file with the standard
339 one or two segments. */
340
341 symfile_find_segment_sections (objfile);
342
343 /* Except when explicitly adding symbol files at some address,
344 section_offsets contains nothing but zeros, so it doesn't matter
345 which slot in section_offsets the individual sect_index_* members
346 index into. So if they are all zero, it is safe to just point
347 all the currently uninitialized indices to the first slot. But
348 beware: if this is the main executable, it may be relocated
349 later, e.g. by the remote qOffsets packet, and then this will
350 be wrong! That's why we try segments first. */
351
352 for (i = 0; i < objfile->num_sections; i++)
353 {
354 if (ANOFFSET (objfile->section_offsets, i) != 0)
355 {
356 break;
357 }
358 }
359 if (i == objfile->num_sections)
360 {
361 if (objfile->sect_index_text == -1)
362 objfile->sect_index_text = 0;
363 if (objfile->sect_index_data == -1)
364 objfile->sect_index_data = 0;
365 if (objfile->sect_index_bss == -1)
366 objfile->sect_index_bss = 0;
367 if (objfile->sect_index_rodata == -1)
368 objfile->sect_index_rodata = 0;
369 }
370 }
371
372 /* The arguments to place_section. */
373
374 struct place_section_arg
375 {
376 struct section_offsets *offsets;
377 CORE_ADDR lowest;
378 };
379
380 /* Find a unique offset to use for loadable section SECT if
381 the user did not provide an offset. */
382
383 static void
384 place_section (bfd *abfd, asection *sect, void *obj)
385 {
386 struct place_section_arg *arg = obj;
387 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
388 int done;
389 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
390
391 /* We are only interested in allocated sections. */
392 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
393 return;
394
395 /* If the user specified an offset, honor it. */
396 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
397 return;
398
399 /* Otherwise, let's try to find a place for the section. */
400 start_addr = (arg->lowest + align - 1) & -align;
401
402 do {
403 asection *cur_sec;
404
405 done = 1;
406
407 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
408 {
409 int indx = cur_sec->index;
410
411 /* We don't need to compare against ourself. */
412 if (cur_sec == sect)
413 continue;
414
415 /* We can only conflict with allocated sections. */
416 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
417 continue;
418
419 /* If the section offset is 0, either the section has not been placed
420 yet, or it was the lowest section placed (in which case LOWEST
421 will be past its end). */
422 if (offsets[indx] == 0)
423 continue;
424
425 /* If this section would overlap us, then we must move up. */
426 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
427 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
428 {
429 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
430 start_addr = (start_addr + align - 1) & -align;
431 done = 0;
432 break;
433 }
434
435 /* Otherwise, we appear to be OK. So far. */
436 }
437 }
438 while (!done);
439
440 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
441 arg->lowest = start_addr + bfd_get_section_size (sect);
442 }
443
444 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
445 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
446 entries. */
447
448 void
449 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
450 int num_sections,
451 const struct section_addr_info *addrs)
452 {
453 int i;
454
455 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
456
457 /* Now calculate offsets for section that were specified by the caller. */
458 for (i = 0; i < addrs->num_sections; i++)
459 {
460 const struct other_sections *osp;
461
462 osp = &addrs->other[i];
463 if (osp->sectindex == -1)
464 continue;
465
466 /* Record all sections in offsets. */
467 /* The section_offsets in the objfile are here filled in using
468 the BFD index. */
469 section_offsets->offsets[osp->sectindex] = osp->addr;
470 }
471 }
472
473 /* Transform section name S for a name comparison. prelink can split section
474 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
475 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
476 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
477 (`.sbss') section has invalid (increased) virtual address. */
478
479 static const char *
480 addr_section_name (const char *s)
481 {
482 if (strcmp (s, ".dynbss") == 0)
483 return ".bss";
484 if (strcmp (s, ".sdynbss") == 0)
485 return ".sbss";
486
487 return s;
488 }
489
490 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
491 their (name, sectindex) pair. sectindex makes the sort by name stable. */
492
493 static int
494 addrs_section_compar (const void *ap, const void *bp)
495 {
496 const struct other_sections *a = *((struct other_sections **) ap);
497 const struct other_sections *b = *((struct other_sections **) bp);
498 int retval;
499
500 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
501 if (retval)
502 return retval;
503
504 return a->sectindex - b->sectindex;
505 }
506
507 /* Provide sorted array of pointers to sections of ADDRS. The array is
508 terminated by NULL. Caller is responsible to call xfree for it. */
509
510 static struct other_sections **
511 addrs_section_sort (struct section_addr_info *addrs)
512 {
513 struct other_sections **array;
514 int i;
515
516 /* `+ 1' for the NULL terminator. */
517 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
518 for (i = 0; i < addrs->num_sections; i++)
519 array[i] = &addrs->other[i];
520 array[i] = NULL;
521
522 qsort (array, i, sizeof (*array), addrs_section_compar);
523
524 return array;
525 }
526
527 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
528 also SECTINDEXes specific to ABFD there. This function can be used to
529 rebase ADDRS to start referencing different BFD than before. */
530
531 void
532 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
533 {
534 asection *lower_sect;
535 CORE_ADDR lower_offset;
536 int i;
537 struct cleanup *my_cleanup;
538 struct section_addr_info *abfd_addrs;
539 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
540 struct other_sections **addrs_to_abfd_addrs;
541
542 /* Find lowest loadable section to be used as starting point for
543 continguous sections. */
544 lower_sect = NULL;
545 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
546 if (lower_sect == NULL)
547 {
548 warning (_("no loadable sections found in added symbol-file %s"),
549 bfd_get_filename (abfd));
550 lower_offset = 0;
551 }
552 else
553 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
554
555 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
556 in ABFD. Section names are not unique - there can be multiple sections of
557 the same name. Also the sections of the same name do not have to be
558 adjacent to each other. Some sections may be present only in one of the
559 files. Even sections present in both files do not have to be in the same
560 order.
561
562 Use stable sort by name for the sections in both files. Then linearly
563 scan both lists matching as most of the entries as possible. */
564
565 addrs_sorted = addrs_section_sort (addrs);
566 my_cleanup = make_cleanup (xfree, addrs_sorted);
567
568 abfd_addrs = build_section_addr_info_from_bfd (abfd);
569 make_cleanup_free_section_addr_info (abfd_addrs);
570 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
571 make_cleanup (xfree, abfd_addrs_sorted);
572
573 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
574 ABFD_ADDRS_SORTED. */
575
576 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
577 * addrs->num_sections);
578 make_cleanup (xfree, addrs_to_abfd_addrs);
579
580 while (*addrs_sorted)
581 {
582 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
583
584 while (*abfd_addrs_sorted
585 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
586 sect_name) < 0)
587 abfd_addrs_sorted++;
588
589 if (*abfd_addrs_sorted
590 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
591 sect_name) == 0)
592 {
593 int index_in_addrs;
594
595 /* Make the found item directly addressable from ADDRS. */
596 index_in_addrs = *addrs_sorted - addrs->other;
597 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
598 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
599
600 /* Never use the same ABFD entry twice. */
601 abfd_addrs_sorted++;
602 }
603
604 addrs_sorted++;
605 }
606
607 /* Calculate offsets for the loadable sections.
608 FIXME! Sections must be in order of increasing loadable section
609 so that contiguous sections can use the lower-offset!!!
610
611 Adjust offsets if the segments are not contiguous.
612 If the section is contiguous, its offset should be set to
613 the offset of the highest loadable section lower than it
614 (the loadable section directly below it in memory).
615 this_offset = lower_offset = lower_addr - lower_orig_addr */
616
617 for (i = 0; i < addrs->num_sections; i++)
618 {
619 struct other_sections *sect = addrs_to_abfd_addrs[i];
620
621 if (sect)
622 {
623 /* This is the index used by BFD. */
624 addrs->other[i].sectindex = sect->sectindex;
625
626 if (addrs->other[i].addr != 0)
627 {
628 addrs->other[i].addr -= sect->addr;
629 lower_offset = addrs->other[i].addr;
630 }
631 else
632 addrs->other[i].addr = lower_offset;
633 }
634 else
635 {
636 /* addr_section_name transformation is not used for SECT_NAME. */
637 const char *sect_name = addrs->other[i].name;
638
639 /* This section does not exist in ABFD, which is normally
640 unexpected and we want to issue a warning.
641
642 However, the ELF prelinker does create a few sections which are
643 marked in the main executable as loadable (they are loaded in
644 memory from the DYNAMIC segment) and yet are not present in
645 separate debug info files. This is fine, and should not cause
646 a warning. Shared libraries contain just the section
647 ".gnu.liblist" but it is not marked as loadable there. There is
648 no other way to identify them than by their name as the sections
649 created by prelink have no special flags.
650
651 For the sections `.bss' and `.sbss' see addr_section_name. */
652
653 if (!(strcmp (sect_name, ".gnu.liblist") == 0
654 || strcmp (sect_name, ".gnu.conflict") == 0
655 || (strcmp (sect_name, ".bss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)
659 || (strcmp (sect_name, ".sbss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)))
663 warning (_("section %s not found in %s"), sect_name,
664 bfd_get_filename (abfd));
665
666 addrs->other[i].addr = 0;
667 addrs->other[i].sectindex = -1;
668 }
669 }
670
671 do_cleanups (my_cleanup);
672 }
673
674 /* Parse the user's idea of an offset for dynamic linking, into our idea
675 of how to represent it for fast symbol reading. This is the default
676 version of the sym_fns.sym_offsets function for symbol readers that
677 don't need to do anything special. It allocates a section_offsets table
678 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
679
680 void
681 default_symfile_offsets (struct objfile *objfile,
682 const struct section_addr_info *addrs)
683 {
684 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
685 objfile->section_offsets = (struct section_offsets *)
686 obstack_alloc (&objfile->objfile_obstack,
687 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
688 relative_addr_info_to_section_offsets (objfile->section_offsets,
689 objfile->num_sections, addrs);
690
691 /* For relocatable files, all loadable sections will start at zero.
692 The zero is meaningless, so try to pick arbitrary addresses such
693 that no loadable sections overlap. This algorithm is quadratic,
694 but the number of sections in a single object file is generally
695 small. */
696 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
697 {
698 struct place_section_arg arg;
699 bfd *abfd = objfile->obfd;
700 asection *cur_sec;
701
702 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
703 /* We do not expect this to happen; just skip this step if the
704 relocatable file has a section with an assigned VMA. */
705 if (bfd_section_vma (abfd, cur_sec) != 0)
706 break;
707
708 if (cur_sec == NULL)
709 {
710 CORE_ADDR *offsets = objfile->section_offsets->offsets;
711
712 /* Pick non-overlapping offsets for sections the user did not
713 place explicitly. */
714 arg.offsets = objfile->section_offsets;
715 arg.lowest = 0;
716 bfd_map_over_sections (objfile->obfd, place_section, &arg);
717
718 /* Correctly filling in the section offsets is not quite
719 enough. Relocatable files have two properties that
720 (most) shared objects do not:
721
722 - Their debug information will contain relocations. Some
723 shared libraries do also, but many do not, so this can not
724 be assumed.
725
726 - If there are multiple code sections they will be loaded
727 at different relative addresses in memory than they are
728 in the objfile, since all sections in the file will start
729 at address zero.
730
731 Because GDB has very limited ability to map from an
732 address in debug info to the correct code section,
733 it relies on adding SECT_OFF_TEXT to things which might be
734 code. If we clear all the section offsets, and set the
735 section VMAs instead, then symfile_relocate_debug_section
736 will return meaningful debug information pointing at the
737 correct sections.
738
739 GDB has too many different data structures for section
740 addresses - a bfd, objfile, and so_list all have section
741 tables, as does exec_ops. Some of these could probably
742 be eliminated. */
743
744 for (cur_sec = abfd->sections; cur_sec != NULL;
745 cur_sec = cur_sec->next)
746 {
747 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
748 continue;
749
750 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
751 exec_set_section_address (bfd_get_filename (abfd),
752 cur_sec->index,
753 offsets[cur_sec->index]);
754 offsets[cur_sec->index] = 0;
755 }
756 }
757 }
758
759 /* Remember the bfd indexes for the .text, .data, .bss and
760 .rodata sections. */
761 init_objfile_sect_indices (objfile);
762 }
763
764 /* Divide the file into segments, which are individual relocatable units.
765 This is the default version of the sym_fns.sym_segments function for
766 symbol readers that do not have an explicit representation of segments.
767 It assumes that object files do not have segments, and fully linked
768 files have a single segment. */
769
770 struct symfile_segment_data *
771 default_symfile_segments (bfd *abfd)
772 {
773 int num_sections, i;
774 asection *sect;
775 struct symfile_segment_data *data;
776 CORE_ADDR low, high;
777
778 /* Relocatable files contain enough information to position each
779 loadable section independently; they should not be relocated
780 in segments. */
781 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
782 return NULL;
783
784 /* Make sure there is at least one loadable section in the file. */
785 for (sect = abfd->sections; sect != NULL; sect = sect->next)
786 {
787 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
788 continue;
789
790 break;
791 }
792 if (sect == NULL)
793 return NULL;
794
795 low = bfd_get_section_vma (abfd, sect);
796 high = low + bfd_get_section_size (sect);
797
798 data = XZALLOC (struct symfile_segment_data);
799 data->num_segments = 1;
800 data->segment_bases = XCALLOC (1, CORE_ADDR);
801 data->segment_sizes = XCALLOC (1, CORE_ADDR);
802
803 num_sections = bfd_count_sections (abfd);
804 data->segment_info = XCALLOC (num_sections, int);
805
806 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
807 {
808 CORE_ADDR vma;
809
810 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
811 continue;
812
813 vma = bfd_get_section_vma (abfd, sect);
814 if (vma < low)
815 low = vma;
816 if (vma + bfd_get_section_size (sect) > high)
817 high = vma + bfd_get_section_size (sect);
818
819 data->segment_info[i] = 1;
820 }
821
822 data->segment_bases[0] = low;
823 data->segment_sizes[0] = high - low;
824
825 return data;
826 }
827
828 /* This is a convenience function to call sym_read for OBJFILE and
829 possibly force the partial symbols to be read. */
830
831 static void
832 read_symbols (struct objfile *objfile, int add_flags)
833 {
834 (*objfile->sf->sym_read) (objfile, add_flags);
835
836 /* find_separate_debug_file_in_section should be called only if there is
837 single binary with no existing separate debug info file. */
838 if (!objfile_has_partial_symbols (objfile)
839 && objfile->separate_debug_objfile == NULL
840 && objfile->separate_debug_objfile_backlink == NULL)
841 {
842 bfd *abfd = find_separate_debug_file_in_section (objfile);
843 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
844
845 if (abfd != NULL)
846 symbol_file_add_separate (abfd, add_flags, objfile);
847
848 do_cleanups (cleanup);
849 }
850 if ((add_flags & SYMFILE_NO_READ) == 0)
851 require_partial_symbols (objfile, 0);
852 }
853
854 /* Initialize entry point information for this objfile. */
855
856 static void
857 init_entry_point_info (struct objfile *objfile)
858 {
859 /* Save startup file's range of PC addresses to help blockframe.c
860 decide where the bottom of the stack is. */
861
862 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
863 {
864 /* Executable file -- record its entry point so we'll recognize
865 the startup file because it contains the entry point. */
866 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
867 objfile->ei.entry_point_p = 1;
868 }
869 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
870 && bfd_get_start_address (objfile->obfd) != 0)
871 {
872 /* Some shared libraries may have entry points set and be
873 runnable. There's no clear way to indicate this, so just check
874 for values other than zero. */
875 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
876 objfile->ei.entry_point_p = 1;
877 }
878 else
879 {
880 /* Examination of non-executable.o files. Short-circuit this stuff. */
881 objfile->ei.entry_point_p = 0;
882 }
883
884 if (objfile->ei.entry_point_p)
885 {
886 CORE_ADDR entry_point = objfile->ei.entry_point;
887
888 /* Make certain that the address points at real code, and not a
889 function descriptor. */
890 entry_point
891 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
892 entry_point,
893 &current_target);
894
895 /* Remove any ISA markers, so that this matches entries in the
896 symbol table. */
897 objfile->ei.entry_point
898 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
899 }
900 }
901
902 /* Process a symbol file, as either the main file or as a dynamically
903 loaded file.
904
905 This function does not set the OBJFILE's entry-point info.
906
907 OBJFILE is where the symbols are to be read from.
908
909 ADDRS is the list of section load addresses. If the user has given
910 an 'add-symbol-file' command, then this is the list of offsets and
911 addresses he or she provided as arguments to the command; or, if
912 we're handling a shared library, these are the actual addresses the
913 sections are loaded at, according to the inferior's dynamic linker
914 (as gleaned by GDB's shared library code). We convert each address
915 into an offset from the section VMA's as it appears in the object
916 file, and then call the file's sym_offsets function to convert this
917 into a format-specific offset table --- a `struct section_offsets'.
918 If ADDRS is non-zero, OFFSETS must be zero.
919
920 OFFSETS is a table of section offsets already in the right
921 format-specific representation. NUM_OFFSETS is the number of
922 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
923 assume this is the proper table the call to sym_offsets described
924 above would produce. Instead of calling sym_offsets, we just dump
925 it right into objfile->section_offsets. (When we're re-reading
926 symbols from an objfile, we don't have the original load address
927 list any more; all we have is the section offset table.) If
928 OFFSETS is non-zero, ADDRS must be zero.
929
930 ADD_FLAGS encodes verbosity level, whether this is main symbol or
931 an extra symbol file such as dynamically loaded code, and wether
932 breakpoint reset should be deferred. */
933
934 static void
935 syms_from_objfile_1 (struct objfile *objfile,
936 struct section_addr_info *addrs,
937 const struct section_offsets *offsets,
938 int num_offsets,
939 int add_flags)
940 {
941 struct section_addr_info *local_addr = NULL;
942 struct cleanup *old_chain;
943 const int mainline = add_flags & SYMFILE_MAINLINE;
944
945 gdb_assert (! (addrs && offsets));
946
947 objfile->sf = find_sym_fns (objfile->obfd);
948
949 if (objfile->sf == NULL)
950 {
951 /* No symbols to load, but we still need to make sure
952 that the section_offsets table is allocated. */
953 int num_sections = gdb_bfd_count_sections (objfile->obfd);
954 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
955
956 objfile->num_sections = num_sections;
957 objfile->section_offsets
958 = obstack_alloc (&objfile->objfile_obstack, size);
959 memset (objfile->section_offsets, 0, size);
960 return;
961 }
962
963 /* Make sure that partially constructed symbol tables will be cleaned up
964 if an error occurs during symbol reading. */
965 old_chain = make_cleanup_free_objfile (objfile);
966
967 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
968 list. We now establish the convention that an addr of zero means
969 no load address was specified. */
970 if (! addrs && ! offsets)
971 {
972 local_addr = alloc_section_addr_info (1);
973 make_cleanup (xfree, local_addr);
974 addrs = local_addr;
975 }
976
977 /* Now either addrs or offsets is non-zero. */
978
979 if (mainline)
980 {
981 /* We will modify the main symbol table, make sure that all its users
982 will be cleaned up if an error occurs during symbol reading. */
983 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
984
985 /* Since no error yet, throw away the old symbol table. */
986
987 if (symfile_objfile != NULL)
988 {
989 free_objfile (symfile_objfile);
990 gdb_assert (symfile_objfile == NULL);
991 }
992
993 /* Currently we keep symbols from the add-symbol-file command.
994 If the user wants to get rid of them, they should do "symbol-file"
995 without arguments first. Not sure this is the best behavior
996 (PR 2207). */
997
998 (*objfile->sf->sym_new_init) (objfile);
999 }
1000
1001 /* Convert addr into an offset rather than an absolute address.
1002 We find the lowest address of a loaded segment in the objfile,
1003 and assume that <addr> is where that got loaded.
1004
1005 We no longer warn if the lowest section is not a text segment (as
1006 happens for the PA64 port. */
1007 if (addrs && addrs->num_sections > 0)
1008 addr_info_make_relative (addrs, objfile->obfd);
1009
1010 /* Initialize symbol reading routines for this objfile, allow complaints to
1011 appear for this new file, and record how verbose to be, then do the
1012 initial symbol reading for this file. */
1013
1014 (*objfile->sf->sym_init) (objfile);
1015 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1016
1017 if (addrs)
1018 (*objfile->sf->sym_offsets) (objfile, addrs);
1019 else
1020 {
1021 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1022
1023 /* Just copy in the offset table directly as given to us. */
1024 objfile->num_sections = num_offsets;
1025 objfile->section_offsets
1026 = ((struct section_offsets *)
1027 obstack_alloc (&objfile->objfile_obstack, size));
1028 memcpy (objfile->section_offsets, offsets, size);
1029
1030 init_objfile_sect_indices (objfile);
1031 }
1032
1033 read_symbols (objfile, add_flags);
1034
1035 /* Discard cleanups as symbol reading was successful. */
1036
1037 discard_cleanups (old_chain);
1038 xfree (local_addr);
1039 }
1040
1041 /* Same as syms_from_objfile_1, but also initializes the objfile
1042 entry-point info. */
1043
1044 void
1045 syms_from_objfile (struct objfile *objfile,
1046 struct section_addr_info *addrs,
1047 const struct section_offsets *offsets,
1048 int num_offsets,
1049 int add_flags)
1050 {
1051 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1052 init_entry_point_info (objfile);
1053 }
1054
1055 /* Perform required actions after either reading in the initial
1056 symbols for a new objfile, or mapping in the symbols from a reusable
1057 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1058
1059 void
1060 new_symfile_objfile (struct objfile *objfile, int add_flags)
1061 {
1062 /* If this is the main symbol file we have to clean up all users of the
1063 old main symbol file. Otherwise it is sufficient to fixup all the
1064 breakpoints that may have been redefined by this symbol file. */
1065 if (add_flags & SYMFILE_MAINLINE)
1066 {
1067 /* OK, make it the "real" symbol file. */
1068 symfile_objfile = objfile;
1069
1070 clear_symtab_users (add_flags);
1071 }
1072 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1073 {
1074 breakpoint_re_set ();
1075 }
1076
1077 /* We're done reading the symbol file; finish off complaints. */
1078 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1079 }
1080
1081 /* Process a symbol file, as either the main file or as a dynamically
1082 loaded file.
1083
1084 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1085 A new reference is acquired by this function.
1086
1087 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1088 extra, such as dynamically loaded code, and what to do with breakpoins.
1089
1090 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1091 syms_from_objfile, above.
1092 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1093
1094 PARENT is the original objfile if ABFD is a separate debug info file.
1095 Otherwise PARENT is NULL.
1096
1097 Upon success, returns a pointer to the objfile that was added.
1098 Upon failure, jumps back to command level (never returns). */
1099
1100 static struct objfile *
1101 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1102 int add_flags,
1103 struct section_addr_info *addrs,
1104 const struct section_offsets *offsets,
1105 int num_offsets,
1106 int flags, struct objfile *parent)
1107 {
1108 struct objfile *objfile;
1109 const char *name = bfd_get_filename (abfd);
1110 const int from_tty = add_flags & SYMFILE_VERBOSE;
1111 const int mainline = add_flags & SYMFILE_MAINLINE;
1112 const int should_print = ((from_tty || info_verbose)
1113 && (readnow_symbol_files
1114 || (add_flags & SYMFILE_NO_READ) == 0));
1115
1116 if (readnow_symbol_files)
1117 {
1118 flags |= OBJF_READNOW;
1119 add_flags &= ~SYMFILE_NO_READ;
1120 }
1121
1122 /* Give user a chance to burp if we'd be
1123 interactively wiping out any existing symbols. */
1124
1125 if ((have_full_symbols () || have_partial_symbols ())
1126 && mainline
1127 && from_tty
1128 && !query (_("Load new symbol table from \"%s\"? "), name))
1129 error (_("Not confirmed."));
1130
1131 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1132
1133 if (parent)
1134 add_separate_debug_objfile (objfile, parent);
1135
1136 /* We either created a new mapped symbol table, mapped an existing
1137 symbol table file which has not had initial symbol reading
1138 performed, or need to read an unmapped symbol table. */
1139 if (should_print)
1140 {
1141 if (deprecated_pre_add_symbol_hook)
1142 deprecated_pre_add_symbol_hook (name);
1143 else
1144 {
1145 printf_unfiltered (_("Reading symbols from %s..."), name);
1146 wrap_here ("");
1147 gdb_flush (gdb_stdout);
1148 }
1149 }
1150 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1151 add_flags);
1152
1153 /* We now have at least a partial symbol table. Check to see if the
1154 user requested that all symbols be read on initial access via either
1155 the gdb startup command line or on a per symbol file basis. Expand
1156 all partial symbol tables for this objfile if so. */
1157
1158 if ((flags & OBJF_READNOW))
1159 {
1160 if (should_print)
1161 {
1162 printf_unfiltered (_("expanding to full symbols..."));
1163 wrap_here ("");
1164 gdb_flush (gdb_stdout);
1165 }
1166
1167 if (objfile->sf)
1168 objfile->sf->qf->expand_all_symtabs (objfile);
1169 }
1170
1171 if (should_print && !objfile_has_symbols (objfile))
1172 {
1173 wrap_here ("");
1174 printf_unfiltered (_("(no debugging symbols found)..."));
1175 wrap_here ("");
1176 }
1177
1178 if (should_print)
1179 {
1180 if (deprecated_post_add_symbol_hook)
1181 deprecated_post_add_symbol_hook ();
1182 else
1183 printf_unfiltered (_("done.\n"));
1184 }
1185
1186 /* We print some messages regardless of whether 'from_tty ||
1187 info_verbose' is true, so make sure they go out at the right
1188 time. */
1189 gdb_flush (gdb_stdout);
1190
1191 if (objfile->sf == NULL)
1192 {
1193 observer_notify_new_objfile (objfile);
1194 return objfile; /* No symbols. */
1195 }
1196
1197 new_symfile_objfile (objfile, add_flags);
1198
1199 observer_notify_new_objfile (objfile);
1200
1201 bfd_cache_close_all ();
1202 return (objfile);
1203 }
1204
1205 /* Add BFD as a separate debug file for OBJFILE. */
1206
1207 void
1208 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1209 {
1210 struct objfile *new_objfile;
1211 struct section_addr_info *sap;
1212 struct cleanup *my_cleanup;
1213
1214 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1215 because sections of BFD may not match sections of OBJFILE and because
1216 vma may have been modified by tools such as prelink. */
1217 sap = build_section_addr_info_from_objfile (objfile);
1218 my_cleanup = make_cleanup_free_section_addr_info (sap);
1219
1220 new_objfile = symbol_file_add_with_addrs_or_offsets
1221 (bfd, symfile_flags,
1222 sap, NULL, 0,
1223 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1224 | OBJF_USERLOADED),
1225 objfile);
1226
1227 do_cleanups (my_cleanup);
1228 }
1229
1230 /* Process the symbol file ABFD, as either the main file or as a
1231 dynamically loaded file.
1232
1233 See symbol_file_add_with_addrs_or_offsets's comments for
1234 details. */
1235
1236 struct objfile *
1237 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1238 struct section_addr_info *addrs,
1239 int flags, struct objfile *parent)
1240 {
1241 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1242 flags, parent);
1243 }
1244
1245 /* Process a symbol file, as either the main file or as a dynamically
1246 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1247 for details. */
1248
1249 struct objfile *
1250 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1251 int flags)
1252 {
1253 bfd *bfd = symfile_bfd_open (name);
1254 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1255 struct objfile *objf;
1256
1257 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1258 do_cleanups (cleanup);
1259 return objf;
1260 }
1261
1262 /* Call symbol_file_add() with default values and update whatever is
1263 affected by the loading of a new main().
1264 Used when the file is supplied in the gdb command line
1265 and by some targets with special loading requirements.
1266 The auxiliary function, symbol_file_add_main_1(), has the flags
1267 argument for the switches that can only be specified in the symbol_file
1268 command itself. */
1269
1270 void
1271 symbol_file_add_main (char *args, int from_tty)
1272 {
1273 symbol_file_add_main_1 (args, from_tty, 0);
1274 }
1275
1276 static void
1277 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1278 {
1279 const int add_flags = (current_inferior ()->symfile_flags
1280 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1281
1282 symbol_file_add (args, add_flags, NULL, flags);
1283
1284 /* Getting new symbols may change our opinion about
1285 what is frameless. */
1286 reinit_frame_cache ();
1287
1288 if ((flags & SYMFILE_NO_READ) == 0)
1289 set_initial_language ();
1290 }
1291
1292 void
1293 symbol_file_clear (int from_tty)
1294 {
1295 if ((have_full_symbols () || have_partial_symbols ())
1296 && from_tty
1297 && (symfile_objfile
1298 ? !query (_("Discard symbol table from `%s'? "),
1299 symfile_objfile->name)
1300 : !query (_("Discard symbol table? "))))
1301 error (_("Not confirmed."));
1302
1303 /* solib descriptors may have handles to objfiles. Wipe them before their
1304 objfiles get stale by free_all_objfiles. */
1305 no_shared_libraries (NULL, from_tty);
1306
1307 free_all_objfiles ();
1308
1309 gdb_assert (symfile_objfile == NULL);
1310 if (from_tty)
1311 printf_unfiltered (_("No symbol file now.\n"));
1312 }
1313
1314 static int
1315 separate_debug_file_exists (const char *name, unsigned long crc,
1316 struct objfile *parent_objfile)
1317 {
1318 unsigned long file_crc;
1319 int file_crc_p;
1320 bfd *abfd;
1321 struct stat parent_stat, abfd_stat;
1322 int verified_as_different;
1323
1324 /* Find a separate debug info file as if symbols would be present in
1325 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1326 section can contain just the basename of PARENT_OBJFILE without any
1327 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1328 the separate debug infos with the same basename can exist. */
1329
1330 if (filename_cmp (name, parent_objfile->name) == 0)
1331 return 0;
1332
1333 abfd = gdb_bfd_open_maybe_remote (name);
1334
1335 if (!abfd)
1336 return 0;
1337
1338 /* Verify symlinks were not the cause of filename_cmp name difference above.
1339
1340 Some operating systems, e.g. Windows, do not provide a meaningful
1341 st_ino; they always set it to zero. (Windows does provide a
1342 meaningful st_dev.) Do not indicate a duplicate library in that
1343 case. While there is no guarantee that a system that provides
1344 meaningful inode numbers will never set st_ino to zero, this is
1345 merely an optimization, so we do not need to worry about false
1346 negatives. */
1347
1348 if (bfd_stat (abfd, &abfd_stat) == 0
1349 && abfd_stat.st_ino != 0
1350 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1351 {
1352 if (abfd_stat.st_dev == parent_stat.st_dev
1353 && abfd_stat.st_ino == parent_stat.st_ino)
1354 {
1355 gdb_bfd_unref (abfd);
1356 return 0;
1357 }
1358 verified_as_different = 1;
1359 }
1360 else
1361 verified_as_different = 0;
1362
1363 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1364
1365 gdb_bfd_unref (abfd);
1366
1367 if (!file_crc_p)
1368 return 0;
1369
1370 if (crc != file_crc)
1371 {
1372 unsigned long parent_crc;
1373
1374 /* If one (or both) the files are accessed for example the via "remote:"
1375 gdbserver way it does not support the bfd_stat operation. Verify
1376 whether those two files are not the same manually. */
1377
1378 if (!verified_as_different)
1379 {
1380 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1381 return 0;
1382 }
1383
1384 if (verified_as_different || parent_crc != file_crc)
1385 warning (_("the debug information found in \"%s\""
1386 " does not match \"%s\" (CRC mismatch).\n"),
1387 name, parent_objfile->name);
1388
1389 return 0;
1390 }
1391
1392 return 1;
1393 }
1394
1395 char *debug_file_directory = NULL;
1396 static void
1397 show_debug_file_directory (struct ui_file *file, int from_tty,
1398 struct cmd_list_element *c, const char *value)
1399 {
1400 fprintf_filtered (file,
1401 _("The directory where separate debug "
1402 "symbols are searched for is \"%s\".\n"),
1403 value);
1404 }
1405
1406 #if ! defined (DEBUG_SUBDIRECTORY)
1407 #define DEBUG_SUBDIRECTORY ".debug"
1408 #endif
1409
1410 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1411 where the original file resides (may not be the same as
1412 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1413 looking for. CANON_DIR is the "realpath" form of DIR.
1414 DIR must contain a trailing '/'.
1415 Returns the path of the file with separate debug info, of NULL. */
1416
1417 static char *
1418 find_separate_debug_file (const char *dir,
1419 const char *canon_dir,
1420 const char *debuglink,
1421 unsigned long crc32, struct objfile *objfile)
1422 {
1423 char *debugdir;
1424 char *debugfile;
1425 int i;
1426 VEC (char_ptr) *debugdir_vec;
1427 struct cleanup *back_to;
1428 int ix;
1429
1430 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1431 i = strlen (dir);
1432 if (canon_dir != NULL && strlen (canon_dir) > i)
1433 i = strlen (canon_dir);
1434
1435 debugfile = xmalloc (strlen (debug_file_directory) + 1
1436 + i
1437 + strlen (DEBUG_SUBDIRECTORY)
1438 + strlen ("/")
1439 + strlen (debuglink)
1440 + 1);
1441
1442 /* First try in the same directory as the original file. */
1443 strcpy (debugfile, dir);
1444 strcat (debugfile, debuglink);
1445
1446 if (separate_debug_file_exists (debugfile, crc32, objfile))
1447 return debugfile;
1448
1449 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1450 strcpy (debugfile, dir);
1451 strcat (debugfile, DEBUG_SUBDIRECTORY);
1452 strcat (debugfile, "/");
1453 strcat (debugfile, debuglink);
1454
1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
1456 return debugfile;
1457
1458 /* Then try in the global debugfile directories.
1459
1460 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1461 cause "/..." lookups. */
1462
1463 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1464 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1465
1466 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1467 {
1468 strcpy (debugfile, debugdir);
1469 strcat (debugfile, "/");
1470 strcat (debugfile, dir);
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 return debugfile;
1475
1476 /* If the file is in the sysroot, try using its base path in the
1477 global debugfile directory. */
1478 if (canon_dir != NULL
1479 && filename_ncmp (canon_dir, gdb_sysroot,
1480 strlen (gdb_sysroot)) == 0
1481 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1482 {
1483 strcpy (debugfile, debugdir);
1484 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1485 strcat (debugfile, "/");
1486 strcat (debugfile, debuglink);
1487
1488 if (separate_debug_file_exists (debugfile, crc32, objfile))
1489 return debugfile;
1490 }
1491 }
1492
1493 do_cleanups (back_to);
1494 xfree (debugfile);
1495 return NULL;
1496 }
1497
1498 /* Modify PATH to contain only "[/]directory/" part of PATH.
1499 If there were no directory separators in PATH, PATH will be empty
1500 string on return. */
1501
1502 static void
1503 terminate_after_last_dir_separator (char *path)
1504 {
1505 int i;
1506
1507 /* Strip off the final filename part, leaving the directory name,
1508 followed by a slash. The directory can be relative or absolute. */
1509 for (i = strlen(path) - 1; i >= 0; i--)
1510 if (IS_DIR_SEPARATOR (path[i]))
1511 break;
1512
1513 /* If I is -1 then no directory is present there and DIR will be "". */
1514 path[i + 1] = '\0';
1515 }
1516
1517 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1518 Returns pathname, or NULL. */
1519
1520 char *
1521 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1522 {
1523 char *debuglink;
1524 char *dir, *canon_dir;
1525 char *debugfile;
1526 unsigned long crc32;
1527 struct cleanup *cleanups;
1528
1529 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1530
1531 if (debuglink == NULL)
1532 {
1533 /* There's no separate debug info, hence there's no way we could
1534 load it => no warning. */
1535 return NULL;
1536 }
1537
1538 cleanups = make_cleanup (xfree, debuglink);
1539 dir = xstrdup (objfile->name);
1540 make_cleanup (xfree, dir);
1541 terminate_after_last_dir_separator (dir);
1542 canon_dir = lrealpath (dir);
1543
1544 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1545 crc32, objfile);
1546 xfree (canon_dir);
1547
1548 if (debugfile == NULL)
1549 {
1550 #ifdef HAVE_LSTAT
1551 /* For PR gdb/9538, try again with realpath (if different from the
1552 original). */
1553
1554 struct stat st_buf;
1555
1556 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1557 {
1558 char *symlink_dir;
1559
1560 symlink_dir = lrealpath (objfile->name);
1561 if (symlink_dir != NULL)
1562 {
1563 make_cleanup (xfree, symlink_dir);
1564 terminate_after_last_dir_separator (symlink_dir);
1565 if (strcmp (dir, symlink_dir) != 0)
1566 {
1567 /* Different directory, so try using it. */
1568 debugfile = find_separate_debug_file (symlink_dir,
1569 symlink_dir,
1570 debuglink,
1571 crc32,
1572 objfile);
1573 }
1574 }
1575 }
1576 #endif /* HAVE_LSTAT */
1577 }
1578
1579 do_cleanups (cleanups);
1580 return debugfile;
1581 }
1582
1583 /* This is the symbol-file command. Read the file, analyze its
1584 symbols, and add a struct symtab to a symtab list. The syntax of
1585 the command is rather bizarre:
1586
1587 1. The function buildargv implements various quoting conventions
1588 which are undocumented and have little or nothing in common with
1589 the way things are quoted (or not quoted) elsewhere in GDB.
1590
1591 2. Options are used, which are not generally used in GDB (perhaps
1592 "set mapped on", "set readnow on" would be better)
1593
1594 3. The order of options matters, which is contrary to GNU
1595 conventions (because it is confusing and inconvenient). */
1596
1597 void
1598 symbol_file_command (char *args, int from_tty)
1599 {
1600 dont_repeat ();
1601
1602 if (args == NULL)
1603 {
1604 symbol_file_clear (from_tty);
1605 }
1606 else
1607 {
1608 char **argv = gdb_buildargv (args);
1609 int flags = OBJF_USERLOADED;
1610 struct cleanup *cleanups;
1611 char *name = NULL;
1612
1613 cleanups = make_cleanup_freeargv (argv);
1614 while (*argv != NULL)
1615 {
1616 if (strcmp (*argv, "-readnow") == 0)
1617 flags |= OBJF_READNOW;
1618 else if (**argv == '-')
1619 error (_("unknown option `%s'"), *argv);
1620 else
1621 {
1622 symbol_file_add_main_1 (*argv, from_tty, flags);
1623 name = *argv;
1624 }
1625
1626 argv++;
1627 }
1628
1629 if (name == NULL)
1630 error (_("no symbol file name was specified"));
1631
1632 do_cleanups (cleanups);
1633 }
1634 }
1635
1636 /* Set the initial language.
1637
1638 FIXME: A better solution would be to record the language in the
1639 psymtab when reading partial symbols, and then use it (if known) to
1640 set the language. This would be a win for formats that encode the
1641 language in an easily discoverable place, such as DWARF. For
1642 stabs, we can jump through hoops looking for specially named
1643 symbols or try to intuit the language from the specific type of
1644 stabs we find, but we can't do that until later when we read in
1645 full symbols. */
1646
1647 void
1648 set_initial_language (void)
1649 {
1650 enum language lang = language_unknown;
1651
1652 if (language_of_main != language_unknown)
1653 lang = language_of_main;
1654 else
1655 {
1656 const char *filename;
1657
1658 filename = find_main_filename ();
1659 if (filename != NULL)
1660 lang = deduce_language_from_filename (filename);
1661 }
1662
1663 if (lang == language_unknown)
1664 {
1665 /* Make C the default language */
1666 lang = language_c;
1667 }
1668
1669 set_language (lang);
1670 expected_language = current_language; /* Don't warn the user. */
1671 }
1672
1673 /* If NAME is a remote name open the file using remote protocol, otherwise
1674 open it normally. Returns a new reference to the BFD. On error,
1675 returns NULL with the BFD error set. */
1676
1677 bfd *
1678 gdb_bfd_open_maybe_remote (const char *name)
1679 {
1680 bfd *result;
1681
1682 if (remote_filename_p (name))
1683 result = remote_bfd_open (name, gnutarget);
1684 else
1685 result = gdb_bfd_open (name, gnutarget, -1);
1686
1687 return result;
1688 }
1689
1690 /* Open the file specified by NAME and hand it off to BFD for
1691 preliminary analysis. Return a newly initialized bfd *, which
1692 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1693 absolute). In case of trouble, error() is called. */
1694
1695 bfd *
1696 symfile_bfd_open (char *name)
1697 {
1698 bfd *sym_bfd;
1699 int desc;
1700 char *absolute_name;
1701 struct cleanup *back_to;
1702
1703 if (remote_filename_p (name))
1704 {
1705 sym_bfd = remote_bfd_open (name, gnutarget);
1706 if (!sym_bfd)
1707 error (_("`%s': can't open to read symbols: %s."), name,
1708 bfd_errmsg (bfd_get_error ()));
1709
1710 if (!bfd_check_format (sym_bfd, bfd_object))
1711 {
1712 make_cleanup_bfd_unref (sym_bfd);
1713 error (_("`%s': can't read symbols: %s."), name,
1714 bfd_errmsg (bfd_get_error ()));
1715 }
1716
1717 return sym_bfd;
1718 }
1719
1720 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1721
1722 /* Look down path for it, allocate 2nd new malloc'd copy. */
1723 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1724 O_RDONLY | O_BINARY, &absolute_name);
1725 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1726 if (desc < 0)
1727 {
1728 char *exename = alloca (strlen (name) + 5);
1729
1730 strcat (strcpy (exename, name), ".exe");
1731 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1732 O_RDONLY | O_BINARY, &absolute_name);
1733 }
1734 #endif
1735 if (desc < 0)
1736 {
1737 make_cleanup (xfree, name);
1738 perror_with_name (name);
1739 }
1740
1741 xfree (name);
1742 name = absolute_name;
1743 back_to = make_cleanup (xfree, name);
1744
1745 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1746 if (!sym_bfd)
1747 error (_("`%s': can't open to read symbols: %s."), name,
1748 bfd_errmsg (bfd_get_error ()));
1749 bfd_set_cacheable (sym_bfd, 1);
1750
1751 if (!bfd_check_format (sym_bfd, bfd_object))
1752 {
1753 make_cleanup_bfd_unref (sym_bfd);
1754 error (_("`%s': can't read symbols: %s."), name,
1755 bfd_errmsg (bfd_get_error ()));
1756 }
1757
1758 do_cleanups (back_to);
1759
1760 return sym_bfd;
1761 }
1762
1763 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1764 the section was not found. */
1765
1766 int
1767 get_section_index (struct objfile *objfile, char *section_name)
1768 {
1769 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1770
1771 if (sect)
1772 return sect->index;
1773 else
1774 return -1;
1775 }
1776
1777 /* Link SF into the global symtab_fns list. Called on startup by the
1778 _initialize routine in each object file format reader, to register
1779 information about each format the reader is prepared to handle. */
1780
1781 void
1782 add_symtab_fns (const struct sym_fns *sf)
1783 {
1784 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1785 }
1786
1787 /* Initialize OBJFILE to read symbols from its associated BFD. It
1788 either returns or calls error(). The result is an initialized
1789 struct sym_fns in the objfile structure, that contains cached
1790 information about the symbol file. */
1791
1792 static const struct sym_fns *
1793 find_sym_fns (bfd *abfd)
1794 {
1795 const struct sym_fns *sf;
1796 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1797 int i;
1798
1799 if (our_flavour == bfd_target_srec_flavour
1800 || our_flavour == bfd_target_ihex_flavour
1801 || our_flavour == bfd_target_tekhex_flavour)
1802 return NULL; /* No symbols. */
1803
1804 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1805 if (our_flavour == sf->sym_flavour)
1806 return sf;
1807
1808 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1809 bfd_get_target (abfd));
1810 }
1811 \f
1812
1813 /* This function runs the load command of our current target. */
1814
1815 static void
1816 load_command (char *arg, int from_tty)
1817 {
1818 dont_repeat ();
1819
1820 /* The user might be reloading because the binary has changed. Take
1821 this opportunity to check. */
1822 reopen_exec_file ();
1823 reread_symbols ();
1824
1825 if (arg == NULL)
1826 {
1827 char *parg;
1828 int count = 0;
1829
1830 parg = arg = get_exec_file (1);
1831
1832 /* Count how many \ " ' tab space there are in the name. */
1833 while ((parg = strpbrk (parg, "\\\"'\t ")))
1834 {
1835 parg++;
1836 count++;
1837 }
1838
1839 if (count)
1840 {
1841 /* We need to quote this string so buildargv can pull it apart. */
1842 char *temp = xmalloc (strlen (arg) + count + 1 );
1843 char *ptemp = temp;
1844 char *prev;
1845
1846 make_cleanup (xfree, temp);
1847
1848 prev = parg = arg;
1849 while ((parg = strpbrk (parg, "\\\"'\t ")))
1850 {
1851 strncpy (ptemp, prev, parg - prev);
1852 ptemp += parg - prev;
1853 prev = parg++;
1854 *ptemp++ = '\\';
1855 }
1856 strcpy (ptemp, prev);
1857
1858 arg = temp;
1859 }
1860 }
1861
1862 target_load (arg, from_tty);
1863
1864 /* After re-loading the executable, we don't really know which
1865 overlays are mapped any more. */
1866 overlay_cache_invalid = 1;
1867 }
1868
1869 /* This version of "load" should be usable for any target. Currently
1870 it is just used for remote targets, not inftarg.c or core files,
1871 on the theory that only in that case is it useful.
1872
1873 Avoiding xmodem and the like seems like a win (a) because we don't have
1874 to worry about finding it, and (b) On VMS, fork() is very slow and so
1875 we don't want to run a subprocess. On the other hand, I'm not sure how
1876 performance compares. */
1877
1878 static int validate_download = 0;
1879
1880 /* Callback service function for generic_load (bfd_map_over_sections). */
1881
1882 static void
1883 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1884 {
1885 bfd_size_type *sum = data;
1886
1887 *sum += bfd_get_section_size (asec);
1888 }
1889
1890 /* Opaque data for load_section_callback. */
1891 struct load_section_data {
1892 CORE_ADDR load_offset;
1893 struct load_progress_data *progress_data;
1894 VEC(memory_write_request_s) *requests;
1895 };
1896
1897 /* Opaque data for load_progress. */
1898 struct load_progress_data {
1899 /* Cumulative data. */
1900 unsigned long write_count;
1901 unsigned long data_count;
1902 bfd_size_type total_size;
1903 };
1904
1905 /* Opaque data for load_progress for a single section. */
1906 struct load_progress_section_data {
1907 struct load_progress_data *cumulative;
1908
1909 /* Per-section data. */
1910 const char *section_name;
1911 ULONGEST section_sent;
1912 ULONGEST section_size;
1913 CORE_ADDR lma;
1914 gdb_byte *buffer;
1915 };
1916
1917 /* Target write callback routine for progress reporting. */
1918
1919 static void
1920 load_progress (ULONGEST bytes, void *untyped_arg)
1921 {
1922 struct load_progress_section_data *args = untyped_arg;
1923 struct load_progress_data *totals;
1924
1925 if (args == NULL)
1926 /* Writing padding data. No easy way to get at the cumulative
1927 stats, so just ignore this. */
1928 return;
1929
1930 totals = args->cumulative;
1931
1932 if (bytes == 0 && args->section_sent == 0)
1933 {
1934 /* The write is just starting. Let the user know we've started
1935 this section. */
1936 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1937 args->section_name, hex_string (args->section_size),
1938 paddress (target_gdbarch (), args->lma));
1939 return;
1940 }
1941
1942 if (validate_download)
1943 {
1944 /* Broken memories and broken monitors manifest themselves here
1945 when bring new computers to life. This doubles already slow
1946 downloads. */
1947 /* NOTE: cagney/1999-10-18: A more efficient implementation
1948 might add a verify_memory() method to the target vector and
1949 then use that. remote.c could implement that method using
1950 the ``qCRC'' packet. */
1951 gdb_byte *check = xmalloc (bytes);
1952 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1953
1954 if (target_read_memory (args->lma, check, bytes) != 0)
1955 error (_("Download verify read failed at %s"),
1956 paddress (target_gdbarch (), args->lma));
1957 if (memcmp (args->buffer, check, bytes) != 0)
1958 error (_("Download verify compare failed at %s"),
1959 paddress (target_gdbarch (), args->lma));
1960 do_cleanups (verify_cleanups);
1961 }
1962 totals->data_count += bytes;
1963 args->lma += bytes;
1964 args->buffer += bytes;
1965 totals->write_count += 1;
1966 args->section_sent += bytes;
1967 if (check_quit_flag ()
1968 || (deprecated_ui_load_progress_hook != NULL
1969 && deprecated_ui_load_progress_hook (args->section_name,
1970 args->section_sent)))
1971 error (_("Canceled the download"));
1972
1973 if (deprecated_show_load_progress != NULL)
1974 deprecated_show_load_progress (args->section_name,
1975 args->section_sent,
1976 args->section_size,
1977 totals->data_count,
1978 totals->total_size);
1979 }
1980
1981 /* Callback service function for generic_load (bfd_map_over_sections). */
1982
1983 static void
1984 load_section_callback (bfd *abfd, asection *asec, void *data)
1985 {
1986 struct memory_write_request *new_request;
1987 struct load_section_data *args = data;
1988 struct load_progress_section_data *section_data;
1989 bfd_size_type size = bfd_get_section_size (asec);
1990 gdb_byte *buffer;
1991 const char *sect_name = bfd_get_section_name (abfd, asec);
1992
1993 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1994 return;
1995
1996 if (size == 0)
1997 return;
1998
1999 new_request = VEC_safe_push (memory_write_request_s,
2000 args->requests, NULL);
2001 memset (new_request, 0, sizeof (struct memory_write_request));
2002 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2003 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2004 new_request->end = new_request->begin + size; /* FIXME Should size
2005 be in instead? */
2006 new_request->data = xmalloc (size);
2007 new_request->baton = section_data;
2008
2009 buffer = new_request->data;
2010
2011 section_data->cumulative = args->progress_data;
2012 section_data->section_name = sect_name;
2013 section_data->section_size = size;
2014 section_data->lma = new_request->begin;
2015 section_data->buffer = buffer;
2016
2017 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2018 }
2019
2020 /* Clean up an entire memory request vector, including load
2021 data and progress records. */
2022
2023 static void
2024 clear_memory_write_data (void *arg)
2025 {
2026 VEC(memory_write_request_s) **vec_p = arg;
2027 VEC(memory_write_request_s) *vec = *vec_p;
2028 int i;
2029 struct memory_write_request *mr;
2030
2031 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2032 {
2033 xfree (mr->data);
2034 xfree (mr->baton);
2035 }
2036 VEC_free (memory_write_request_s, vec);
2037 }
2038
2039 void
2040 generic_load (char *args, int from_tty)
2041 {
2042 bfd *loadfile_bfd;
2043 struct timeval start_time, end_time;
2044 char *filename;
2045 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2046 struct load_section_data cbdata;
2047 struct load_progress_data total_progress;
2048 struct ui_out *uiout = current_uiout;
2049
2050 CORE_ADDR entry;
2051 char **argv;
2052
2053 memset (&cbdata, 0, sizeof (cbdata));
2054 memset (&total_progress, 0, sizeof (total_progress));
2055 cbdata.progress_data = &total_progress;
2056
2057 make_cleanup (clear_memory_write_data, &cbdata.requests);
2058
2059 if (args == NULL)
2060 error_no_arg (_("file to load"));
2061
2062 argv = gdb_buildargv (args);
2063 make_cleanup_freeargv (argv);
2064
2065 filename = tilde_expand (argv[0]);
2066 make_cleanup (xfree, filename);
2067
2068 if (argv[1] != NULL)
2069 {
2070 const char *endptr;
2071
2072 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2073
2074 /* If the last word was not a valid number then
2075 treat it as a file name with spaces in. */
2076 if (argv[1] == endptr)
2077 error (_("Invalid download offset:%s."), argv[1]);
2078
2079 if (argv[2] != NULL)
2080 error (_("Too many parameters."));
2081 }
2082
2083 /* Open the file for loading. */
2084 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2085 if (loadfile_bfd == NULL)
2086 {
2087 perror_with_name (filename);
2088 return;
2089 }
2090
2091 make_cleanup_bfd_unref (loadfile_bfd);
2092
2093 if (!bfd_check_format (loadfile_bfd, bfd_object))
2094 {
2095 error (_("\"%s\" is not an object file: %s"), filename,
2096 bfd_errmsg (bfd_get_error ()));
2097 }
2098
2099 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2100 (void *) &total_progress.total_size);
2101
2102 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2103
2104 gettimeofday (&start_time, NULL);
2105
2106 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2107 load_progress) != 0)
2108 error (_("Load failed"));
2109
2110 gettimeofday (&end_time, NULL);
2111
2112 entry = bfd_get_start_address (loadfile_bfd);
2113 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2114 ui_out_text (uiout, "Start address ");
2115 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2116 ui_out_text (uiout, ", load size ");
2117 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2118 ui_out_text (uiout, "\n");
2119 /* We were doing this in remote-mips.c, I suspect it is right
2120 for other targets too. */
2121 regcache_write_pc (get_current_regcache (), entry);
2122
2123 /* Reset breakpoints, now that we have changed the load image. For
2124 instance, breakpoints may have been set (or reset, by
2125 post_create_inferior) while connected to the target but before we
2126 loaded the program. In that case, the prologue analyzer could
2127 have read instructions from the target to find the right
2128 breakpoint locations. Loading has changed the contents of that
2129 memory. */
2130
2131 breakpoint_re_set ();
2132
2133 /* FIXME: are we supposed to call symbol_file_add or not? According
2134 to a comment from remote-mips.c (where a call to symbol_file_add
2135 was commented out), making the call confuses GDB if more than one
2136 file is loaded in. Some targets do (e.g., remote-vx.c) but
2137 others don't (or didn't - perhaps they have all been deleted). */
2138
2139 print_transfer_performance (gdb_stdout, total_progress.data_count,
2140 total_progress.write_count,
2141 &start_time, &end_time);
2142
2143 do_cleanups (old_cleanups);
2144 }
2145
2146 /* Report how fast the transfer went. */
2147
2148 void
2149 print_transfer_performance (struct ui_file *stream,
2150 unsigned long data_count,
2151 unsigned long write_count,
2152 const struct timeval *start_time,
2153 const struct timeval *end_time)
2154 {
2155 ULONGEST time_count;
2156 struct ui_out *uiout = current_uiout;
2157
2158 /* Compute the elapsed time in milliseconds, as a tradeoff between
2159 accuracy and overflow. */
2160 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2161 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2162
2163 ui_out_text (uiout, "Transfer rate: ");
2164 if (time_count > 0)
2165 {
2166 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2167
2168 if (ui_out_is_mi_like_p (uiout))
2169 {
2170 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2171 ui_out_text (uiout, " bits/sec");
2172 }
2173 else if (rate < 1024)
2174 {
2175 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2176 ui_out_text (uiout, " bytes/sec");
2177 }
2178 else
2179 {
2180 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2181 ui_out_text (uiout, " KB/sec");
2182 }
2183 }
2184 else
2185 {
2186 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2187 ui_out_text (uiout, " bits in <1 sec");
2188 }
2189 if (write_count > 0)
2190 {
2191 ui_out_text (uiout, ", ");
2192 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2193 ui_out_text (uiout, " bytes/write");
2194 }
2195 ui_out_text (uiout, ".\n");
2196 }
2197
2198 /* This function allows the addition of incrementally linked object files.
2199 It does not modify any state in the target, only in the debugger. */
2200 /* Note: ezannoni 2000-04-13 This function/command used to have a
2201 special case syntax for the rombug target (Rombug is the boot
2202 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2203 rombug case, the user doesn't need to supply a text address,
2204 instead a call to target_link() (in target.c) would supply the
2205 value to use. We are now discontinuing this type of ad hoc syntax. */
2206
2207 static void
2208 add_symbol_file_command (char *args, int from_tty)
2209 {
2210 struct gdbarch *gdbarch = get_current_arch ();
2211 char *filename = NULL;
2212 int flags = OBJF_USERLOADED;
2213 char *arg;
2214 int section_index = 0;
2215 int argcnt = 0;
2216 int sec_num = 0;
2217 int i;
2218 int expecting_sec_name = 0;
2219 int expecting_sec_addr = 0;
2220 char **argv;
2221
2222 struct sect_opt
2223 {
2224 char *name;
2225 char *value;
2226 };
2227
2228 struct section_addr_info *section_addrs;
2229 struct sect_opt *sect_opts = NULL;
2230 size_t num_sect_opts = 0;
2231 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2232
2233 num_sect_opts = 16;
2234 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2235 * sizeof (struct sect_opt));
2236
2237 dont_repeat ();
2238
2239 if (args == NULL)
2240 error (_("add-symbol-file takes a file name and an address"));
2241
2242 argv = gdb_buildargv (args);
2243 make_cleanup_freeargv (argv);
2244
2245 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2246 {
2247 /* Process the argument. */
2248 if (argcnt == 0)
2249 {
2250 /* The first argument is the file name. */
2251 filename = tilde_expand (arg);
2252 make_cleanup (xfree, filename);
2253 }
2254 else
2255 if (argcnt == 1)
2256 {
2257 /* The second argument is always the text address at which
2258 to load the program. */
2259 sect_opts[section_index].name = ".text";
2260 sect_opts[section_index].value = arg;
2261 if (++section_index >= num_sect_opts)
2262 {
2263 num_sect_opts *= 2;
2264 sect_opts = ((struct sect_opt *)
2265 xrealloc (sect_opts,
2266 num_sect_opts
2267 * sizeof (struct sect_opt)));
2268 }
2269 }
2270 else
2271 {
2272 /* It's an option (starting with '-') or it's an argument
2273 to an option. */
2274
2275 if (*arg == '-')
2276 {
2277 if (strcmp (arg, "-readnow") == 0)
2278 flags |= OBJF_READNOW;
2279 else if (strcmp (arg, "-s") == 0)
2280 {
2281 expecting_sec_name = 1;
2282 expecting_sec_addr = 1;
2283 }
2284 }
2285 else
2286 {
2287 if (expecting_sec_name)
2288 {
2289 sect_opts[section_index].name = arg;
2290 expecting_sec_name = 0;
2291 }
2292 else
2293 if (expecting_sec_addr)
2294 {
2295 sect_opts[section_index].value = arg;
2296 expecting_sec_addr = 0;
2297 if (++section_index >= num_sect_opts)
2298 {
2299 num_sect_opts *= 2;
2300 sect_opts = ((struct sect_opt *)
2301 xrealloc (sect_opts,
2302 num_sect_opts
2303 * sizeof (struct sect_opt)));
2304 }
2305 }
2306 else
2307 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2308 " [-readnow] [-s <secname> <addr>]*"));
2309 }
2310 }
2311 }
2312
2313 /* This command takes at least two arguments. The first one is a
2314 filename, and the second is the address where this file has been
2315 loaded. Abort now if this address hasn't been provided by the
2316 user. */
2317 if (section_index < 1)
2318 error (_("The address where %s has been loaded is missing"), filename);
2319
2320 /* Print the prompt for the query below. And save the arguments into
2321 a sect_addr_info structure to be passed around to other
2322 functions. We have to split this up into separate print
2323 statements because hex_string returns a local static
2324 string. */
2325
2326 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2327 section_addrs = alloc_section_addr_info (section_index);
2328 make_cleanup (xfree, section_addrs);
2329 for (i = 0; i < section_index; i++)
2330 {
2331 CORE_ADDR addr;
2332 char *val = sect_opts[i].value;
2333 char *sec = sect_opts[i].name;
2334
2335 addr = parse_and_eval_address (val);
2336
2337 /* Here we store the section offsets in the order they were
2338 entered on the command line. */
2339 section_addrs->other[sec_num].name = sec;
2340 section_addrs->other[sec_num].addr = addr;
2341 printf_unfiltered ("\t%s_addr = %s\n", sec,
2342 paddress (gdbarch, addr));
2343 sec_num++;
2344
2345 /* The object's sections are initialized when a
2346 call is made to build_objfile_section_table (objfile).
2347 This happens in reread_symbols.
2348 At this point, we don't know what file type this is,
2349 so we can't determine what section names are valid. */
2350 }
2351 section_addrs->num_sections = sec_num;
2352
2353 if (from_tty && (!query ("%s", "")))
2354 error (_("Not confirmed."));
2355
2356 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2357 section_addrs, flags);
2358
2359 /* Getting new symbols may change our opinion about what is
2360 frameless. */
2361 reinit_frame_cache ();
2362 do_cleanups (my_cleanups);
2363 }
2364 \f
2365
2366 typedef struct objfile *objfilep;
2367
2368 DEF_VEC_P (objfilep);
2369
2370 /* Re-read symbols if a symbol-file has changed. */
2371
2372 void
2373 reread_symbols (void)
2374 {
2375 struct objfile *objfile;
2376 long new_modtime;
2377 struct stat new_statbuf;
2378 int res;
2379 VEC (objfilep) *new_objfiles = NULL;
2380 struct cleanup *all_cleanups;
2381
2382 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2383
2384 /* With the addition of shared libraries, this should be modified,
2385 the load time should be saved in the partial symbol tables, since
2386 different tables may come from different source files. FIXME.
2387 This routine should then walk down each partial symbol table
2388 and see if the symbol table that it originates from has been changed. */
2389
2390 for (objfile = object_files; objfile; objfile = objfile->next)
2391 {
2392 /* solib-sunos.c creates one objfile with obfd. */
2393 if (objfile->obfd == NULL)
2394 continue;
2395
2396 /* Separate debug objfiles are handled in the main objfile. */
2397 if (objfile->separate_debug_objfile_backlink)
2398 continue;
2399
2400 /* If this object is from an archive (what you usually create with
2401 `ar', often called a `static library' on most systems, though
2402 a `shared library' on AIX is also an archive), then you should
2403 stat on the archive name, not member name. */
2404 if (objfile->obfd->my_archive)
2405 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2406 else
2407 res = stat (objfile->name, &new_statbuf);
2408 if (res != 0)
2409 {
2410 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2411 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2412 objfile->name);
2413 continue;
2414 }
2415 new_modtime = new_statbuf.st_mtime;
2416 if (new_modtime != objfile->mtime)
2417 {
2418 struct cleanup *old_cleanups;
2419 struct section_offsets *offsets;
2420 int num_offsets;
2421 char *obfd_filename;
2422
2423 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2424 objfile->name);
2425
2426 /* There are various functions like symbol_file_add,
2427 symfile_bfd_open, syms_from_objfile, etc., which might
2428 appear to do what we want. But they have various other
2429 effects which we *don't* want. So we just do stuff
2430 ourselves. We don't worry about mapped files (for one thing,
2431 any mapped file will be out of date). */
2432
2433 /* If we get an error, blow away this objfile (not sure if
2434 that is the correct response for things like shared
2435 libraries). */
2436 old_cleanups = make_cleanup_free_objfile (objfile);
2437 /* We need to do this whenever any symbols go away. */
2438 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2439
2440 if (exec_bfd != NULL
2441 && filename_cmp (bfd_get_filename (objfile->obfd),
2442 bfd_get_filename (exec_bfd)) == 0)
2443 {
2444 /* Reload EXEC_BFD without asking anything. */
2445
2446 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2447 }
2448
2449 /* Keep the calls order approx. the same as in free_objfile. */
2450
2451 /* Free the separate debug objfiles. It will be
2452 automatically recreated by sym_read. */
2453 free_objfile_separate_debug (objfile);
2454
2455 /* Remove any references to this objfile in the global
2456 value lists. */
2457 preserve_values (objfile);
2458
2459 /* Nuke all the state that we will re-read. Much of the following
2460 code which sets things to NULL really is necessary to tell
2461 other parts of GDB that there is nothing currently there.
2462
2463 Try to keep the freeing order compatible with free_objfile. */
2464
2465 if (objfile->sf != NULL)
2466 {
2467 (*objfile->sf->sym_finish) (objfile);
2468 }
2469
2470 clear_objfile_data (objfile);
2471
2472 /* Clean up any state BFD has sitting around. */
2473 {
2474 struct bfd *obfd = objfile->obfd;
2475
2476 obfd_filename = bfd_get_filename (objfile->obfd);
2477 /* Open the new BFD before freeing the old one, so that
2478 the filename remains live. */
2479 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2480 if (objfile->obfd == NULL)
2481 {
2482 /* We have to make a cleanup and error here, rather
2483 than erroring later, because once we unref OBFD,
2484 OBFD_FILENAME will be freed. */
2485 make_cleanup_bfd_unref (obfd);
2486 error (_("Can't open %s to read symbols."), obfd_filename);
2487 }
2488 gdb_bfd_unref (obfd);
2489 }
2490
2491 objfile->name = bfd_get_filename (objfile->obfd);
2492 /* bfd_openr sets cacheable to true, which is what we want. */
2493 if (!bfd_check_format (objfile->obfd, bfd_object))
2494 error (_("Can't read symbols from %s: %s."), objfile->name,
2495 bfd_errmsg (bfd_get_error ()));
2496
2497 /* Save the offsets, we will nuke them with the rest of the
2498 objfile_obstack. */
2499 num_offsets = objfile->num_sections;
2500 offsets = ((struct section_offsets *)
2501 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2502 memcpy (offsets, objfile->section_offsets,
2503 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2504
2505 /* FIXME: Do we have to free a whole linked list, or is this
2506 enough? */
2507 if (objfile->global_psymbols.list)
2508 xfree (objfile->global_psymbols.list);
2509 memset (&objfile->global_psymbols, 0,
2510 sizeof (objfile->global_psymbols));
2511 if (objfile->static_psymbols.list)
2512 xfree (objfile->static_psymbols.list);
2513 memset (&objfile->static_psymbols, 0,
2514 sizeof (objfile->static_psymbols));
2515
2516 /* Free the obstacks for non-reusable objfiles. */
2517 psymbol_bcache_free (objfile->psymbol_cache);
2518 objfile->psymbol_cache = psymbol_bcache_init ();
2519 if (objfile->demangled_names_hash != NULL)
2520 {
2521 htab_delete (objfile->demangled_names_hash);
2522 objfile->demangled_names_hash = NULL;
2523 }
2524 obstack_free (&objfile->objfile_obstack, 0);
2525 objfile->sections = NULL;
2526 objfile->symtabs = NULL;
2527 objfile->psymtabs = NULL;
2528 objfile->psymtabs_addrmap = NULL;
2529 objfile->free_psymtabs = NULL;
2530 objfile->template_symbols = NULL;
2531 objfile->msymbols = NULL;
2532 objfile->minimal_symbol_count = 0;
2533 memset (&objfile->msymbol_hash, 0,
2534 sizeof (objfile->msymbol_hash));
2535 memset (&objfile->msymbol_demangled_hash, 0,
2536 sizeof (objfile->msymbol_demangled_hash));
2537
2538 set_objfile_per_bfd (objfile);
2539
2540 /* obstack_init also initializes the obstack so it is
2541 empty. We could use obstack_specify_allocation but
2542 gdb_obstack.h specifies the alloc/dealloc functions. */
2543 obstack_init (&objfile->objfile_obstack);
2544 build_objfile_section_table (objfile);
2545 terminate_minimal_symbol_table (objfile);
2546
2547 /* We use the same section offsets as from last time. I'm not
2548 sure whether that is always correct for shared libraries. */
2549 objfile->section_offsets = (struct section_offsets *)
2550 obstack_alloc (&objfile->objfile_obstack,
2551 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2552 memcpy (objfile->section_offsets, offsets,
2553 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2554 objfile->num_sections = num_offsets;
2555
2556 /* What the hell is sym_new_init for, anyway? The concept of
2557 distinguishing between the main file and additional files
2558 in this way seems rather dubious. */
2559 if (objfile == symfile_objfile)
2560 {
2561 (*objfile->sf->sym_new_init) (objfile);
2562 }
2563
2564 (*objfile->sf->sym_init) (objfile);
2565 clear_complaints (&symfile_complaints, 1, 1);
2566
2567 objfile->flags &= ~OBJF_PSYMTABS_READ;
2568 read_symbols (objfile, 0);
2569
2570 if (!objfile_has_symbols (objfile))
2571 {
2572 wrap_here ("");
2573 printf_unfiltered (_("(no debugging symbols found)\n"));
2574 wrap_here ("");
2575 }
2576
2577 /* We're done reading the symbol file; finish off complaints. */
2578 clear_complaints (&symfile_complaints, 0, 1);
2579
2580 /* Getting new symbols may change our opinion about what is
2581 frameless. */
2582
2583 reinit_frame_cache ();
2584
2585 /* Discard cleanups as symbol reading was successful. */
2586 discard_cleanups (old_cleanups);
2587
2588 /* If the mtime has changed between the time we set new_modtime
2589 and now, we *want* this to be out of date, so don't call stat
2590 again now. */
2591 objfile->mtime = new_modtime;
2592 init_entry_point_info (objfile);
2593
2594 VEC_safe_push (objfilep, new_objfiles, objfile);
2595 }
2596 }
2597
2598 if (new_objfiles)
2599 {
2600 int ix;
2601
2602 /* Notify objfiles that we've modified objfile sections. */
2603 objfiles_changed ();
2604
2605 clear_symtab_users (0);
2606
2607 /* clear_objfile_data for each objfile was called before freeing it and
2608 observer_notify_new_objfile (NULL) has been called by
2609 clear_symtab_users above. Notify the new files now. */
2610 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2611 observer_notify_new_objfile (objfile);
2612
2613 /* At least one objfile has changed, so we can consider that
2614 the executable we're debugging has changed too. */
2615 observer_notify_executable_changed ();
2616 }
2617
2618 do_cleanups (all_cleanups);
2619 }
2620 \f
2621
2622 typedef struct
2623 {
2624 char *ext;
2625 enum language lang;
2626 }
2627 filename_language;
2628
2629 static filename_language *filename_language_table;
2630 static int fl_table_size, fl_table_next;
2631
2632 static void
2633 add_filename_language (char *ext, enum language lang)
2634 {
2635 if (fl_table_next >= fl_table_size)
2636 {
2637 fl_table_size += 10;
2638 filename_language_table =
2639 xrealloc (filename_language_table,
2640 fl_table_size * sizeof (*filename_language_table));
2641 }
2642
2643 filename_language_table[fl_table_next].ext = xstrdup (ext);
2644 filename_language_table[fl_table_next].lang = lang;
2645 fl_table_next++;
2646 }
2647
2648 static char *ext_args;
2649 static void
2650 show_ext_args (struct ui_file *file, int from_tty,
2651 struct cmd_list_element *c, const char *value)
2652 {
2653 fprintf_filtered (file,
2654 _("Mapping between filename extension "
2655 "and source language is \"%s\".\n"),
2656 value);
2657 }
2658
2659 static void
2660 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2661 {
2662 int i;
2663 char *cp = ext_args;
2664 enum language lang;
2665
2666 /* First arg is filename extension, starting with '.' */
2667 if (*cp != '.')
2668 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2669
2670 /* Find end of first arg. */
2671 while (*cp && !isspace (*cp))
2672 cp++;
2673
2674 if (*cp == '\0')
2675 error (_("'%s': two arguments required -- "
2676 "filename extension and language"),
2677 ext_args);
2678
2679 /* Null-terminate first arg. */
2680 *cp++ = '\0';
2681
2682 /* Find beginning of second arg, which should be a source language. */
2683 cp = skip_spaces (cp);
2684
2685 if (*cp == '\0')
2686 error (_("'%s': two arguments required -- "
2687 "filename extension and language"),
2688 ext_args);
2689
2690 /* Lookup the language from among those we know. */
2691 lang = language_enum (cp);
2692
2693 /* Now lookup the filename extension: do we already know it? */
2694 for (i = 0; i < fl_table_next; i++)
2695 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2696 break;
2697
2698 if (i >= fl_table_next)
2699 {
2700 /* New file extension. */
2701 add_filename_language (ext_args, lang);
2702 }
2703 else
2704 {
2705 /* Redefining a previously known filename extension. */
2706
2707 /* if (from_tty) */
2708 /* query ("Really make files of type %s '%s'?", */
2709 /* ext_args, language_str (lang)); */
2710
2711 xfree (filename_language_table[i].ext);
2712 filename_language_table[i].ext = xstrdup (ext_args);
2713 filename_language_table[i].lang = lang;
2714 }
2715 }
2716
2717 static void
2718 info_ext_lang_command (char *args, int from_tty)
2719 {
2720 int i;
2721
2722 printf_filtered (_("Filename extensions and the languages they represent:"));
2723 printf_filtered ("\n\n");
2724 for (i = 0; i < fl_table_next; i++)
2725 printf_filtered ("\t%s\t- %s\n",
2726 filename_language_table[i].ext,
2727 language_str (filename_language_table[i].lang));
2728 }
2729
2730 static void
2731 init_filename_language_table (void)
2732 {
2733 if (fl_table_size == 0) /* Protect against repetition. */
2734 {
2735 fl_table_size = 20;
2736 fl_table_next = 0;
2737 filename_language_table =
2738 xmalloc (fl_table_size * sizeof (*filename_language_table));
2739 add_filename_language (".c", language_c);
2740 add_filename_language (".d", language_d);
2741 add_filename_language (".C", language_cplus);
2742 add_filename_language (".cc", language_cplus);
2743 add_filename_language (".cp", language_cplus);
2744 add_filename_language (".cpp", language_cplus);
2745 add_filename_language (".cxx", language_cplus);
2746 add_filename_language (".c++", language_cplus);
2747 add_filename_language (".java", language_java);
2748 add_filename_language (".class", language_java);
2749 add_filename_language (".m", language_objc);
2750 add_filename_language (".f", language_fortran);
2751 add_filename_language (".F", language_fortran);
2752 add_filename_language (".for", language_fortran);
2753 add_filename_language (".FOR", language_fortran);
2754 add_filename_language (".ftn", language_fortran);
2755 add_filename_language (".FTN", language_fortran);
2756 add_filename_language (".fpp", language_fortran);
2757 add_filename_language (".FPP", language_fortran);
2758 add_filename_language (".f90", language_fortran);
2759 add_filename_language (".F90", language_fortran);
2760 add_filename_language (".f95", language_fortran);
2761 add_filename_language (".F95", language_fortran);
2762 add_filename_language (".f03", language_fortran);
2763 add_filename_language (".F03", language_fortran);
2764 add_filename_language (".f08", language_fortran);
2765 add_filename_language (".F08", language_fortran);
2766 add_filename_language (".s", language_asm);
2767 add_filename_language (".sx", language_asm);
2768 add_filename_language (".S", language_asm);
2769 add_filename_language (".pas", language_pascal);
2770 add_filename_language (".p", language_pascal);
2771 add_filename_language (".pp", language_pascal);
2772 add_filename_language (".adb", language_ada);
2773 add_filename_language (".ads", language_ada);
2774 add_filename_language (".a", language_ada);
2775 add_filename_language (".ada", language_ada);
2776 add_filename_language (".dg", language_ada);
2777 }
2778 }
2779
2780 enum language
2781 deduce_language_from_filename (const char *filename)
2782 {
2783 int i;
2784 char *cp;
2785
2786 if (filename != NULL)
2787 if ((cp = strrchr (filename, '.')) != NULL)
2788 for (i = 0; i < fl_table_next; i++)
2789 if (strcmp (cp, filename_language_table[i].ext) == 0)
2790 return filename_language_table[i].lang;
2791
2792 return language_unknown;
2793 }
2794 \f
2795 /* allocate_symtab:
2796
2797 Allocate and partly initialize a new symbol table. Return a pointer
2798 to it. error() if no space.
2799
2800 Caller must set these fields:
2801 LINETABLE(symtab)
2802 symtab->blockvector
2803 symtab->dirname
2804 symtab->free_code
2805 symtab->free_ptr
2806 */
2807
2808 struct symtab *
2809 allocate_symtab (const char *filename, struct objfile *objfile)
2810 {
2811 struct symtab *symtab;
2812
2813 symtab = (struct symtab *)
2814 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2815 memset (symtab, 0, sizeof (*symtab));
2816 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2817 objfile->per_bfd->filename_cache);
2818 symtab->fullname = NULL;
2819 symtab->language = deduce_language_from_filename (filename);
2820 symtab->debugformat = "unknown";
2821
2822 /* Hook it to the objfile it comes from. */
2823
2824 symtab->objfile = objfile;
2825 symtab->next = objfile->symtabs;
2826 objfile->symtabs = symtab;
2827
2828 if (symtab_create_debug)
2829 {
2830 /* Be a bit clever with debugging messages, and don't print objfile
2831 every time, only when it changes. */
2832 static char *last_objfile_name = NULL;
2833
2834 if (last_objfile_name == NULL
2835 || strcmp (last_objfile_name, objfile->name) != 0)
2836 {
2837 xfree (last_objfile_name);
2838 last_objfile_name = xstrdup (objfile->name);
2839 fprintf_unfiltered (gdb_stdlog,
2840 "Creating one or more symtabs for objfile %s ...\n",
2841 last_objfile_name);
2842 }
2843 fprintf_unfiltered (gdb_stdlog,
2844 "Created symtab %s for module %s.\n",
2845 host_address_to_string (symtab), filename);
2846 }
2847
2848 return (symtab);
2849 }
2850 \f
2851
2852 /* Reset all data structures in gdb which may contain references to symbol
2853 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2854
2855 void
2856 clear_symtab_users (int add_flags)
2857 {
2858 /* Someday, we should do better than this, by only blowing away
2859 the things that really need to be blown. */
2860
2861 /* Clear the "current" symtab first, because it is no longer valid.
2862 breakpoint_re_set may try to access the current symtab. */
2863 clear_current_source_symtab_and_line ();
2864
2865 clear_displays ();
2866 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2867 breakpoint_re_set ();
2868 clear_last_displayed_sal ();
2869 clear_pc_function_cache ();
2870 observer_notify_new_objfile (NULL);
2871
2872 /* Clear globals which might have pointed into a removed objfile.
2873 FIXME: It's not clear which of these are supposed to persist
2874 between expressions and which ought to be reset each time. */
2875 expression_context_block = NULL;
2876 innermost_block = NULL;
2877
2878 /* Varobj may refer to old symbols, perform a cleanup. */
2879 varobj_invalidate ();
2880
2881 }
2882
2883 static void
2884 clear_symtab_users_cleanup (void *ignore)
2885 {
2886 clear_symtab_users (0);
2887 }
2888 \f
2889 /* OVERLAYS:
2890 The following code implements an abstraction for debugging overlay sections.
2891
2892 The target model is as follows:
2893 1) The gnu linker will permit multiple sections to be mapped into the
2894 same VMA, each with its own unique LMA (or load address).
2895 2) It is assumed that some runtime mechanism exists for mapping the
2896 sections, one by one, from the load address into the VMA address.
2897 3) This code provides a mechanism for gdb to keep track of which
2898 sections should be considered to be mapped from the VMA to the LMA.
2899 This information is used for symbol lookup, and memory read/write.
2900 For instance, if a section has been mapped then its contents
2901 should be read from the VMA, otherwise from the LMA.
2902
2903 Two levels of debugger support for overlays are available. One is
2904 "manual", in which the debugger relies on the user to tell it which
2905 overlays are currently mapped. This level of support is
2906 implemented entirely in the core debugger, and the information about
2907 whether a section is mapped is kept in the objfile->obj_section table.
2908
2909 The second level of support is "automatic", and is only available if
2910 the target-specific code provides functionality to read the target's
2911 overlay mapping table, and translate its contents for the debugger
2912 (by updating the mapped state information in the obj_section tables).
2913
2914 The interface is as follows:
2915 User commands:
2916 overlay map <name> -- tell gdb to consider this section mapped
2917 overlay unmap <name> -- tell gdb to consider this section unmapped
2918 overlay list -- list the sections that GDB thinks are mapped
2919 overlay read-target -- get the target's state of what's mapped
2920 overlay off/manual/auto -- set overlay debugging state
2921 Functional interface:
2922 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2923 section, return that section.
2924 find_pc_overlay(pc): find any overlay section that contains
2925 the pc, either in its VMA or its LMA
2926 section_is_mapped(sect): true if overlay is marked as mapped
2927 section_is_overlay(sect): true if section's VMA != LMA
2928 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2929 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2930 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2931 overlay_mapped_address(...): map an address from section's LMA to VMA
2932 overlay_unmapped_address(...): map an address from section's VMA to LMA
2933 symbol_overlayed_address(...): Return a "current" address for symbol:
2934 either in VMA or LMA depending on whether
2935 the symbol's section is currently mapped. */
2936
2937 /* Overlay debugging state: */
2938
2939 enum overlay_debugging_state overlay_debugging = ovly_off;
2940 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2941
2942 /* Function: section_is_overlay (SECTION)
2943 Returns true if SECTION has VMA not equal to LMA, ie.
2944 SECTION is loaded at an address different from where it will "run". */
2945
2946 int
2947 section_is_overlay (struct obj_section *section)
2948 {
2949 if (overlay_debugging && section)
2950 {
2951 bfd *abfd = section->objfile->obfd;
2952 asection *bfd_section = section->the_bfd_section;
2953
2954 if (bfd_section_lma (abfd, bfd_section) != 0
2955 && bfd_section_lma (abfd, bfd_section)
2956 != bfd_section_vma (abfd, bfd_section))
2957 return 1;
2958 }
2959
2960 return 0;
2961 }
2962
2963 /* Function: overlay_invalidate_all (void)
2964 Invalidate the mapped state of all overlay sections (mark it as stale). */
2965
2966 static void
2967 overlay_invalidate_all (void)
2968 {
2969 struct objfile *objfile;
2970 struct obj_section *sect;
2971
2972 ALL_OBJSECTIONS (objfile, sect)
2973 if (section_is_overlay (sect))
2974 sect->ovly_mapped = -1;
2975 }
2976
2977 /* Function: section_is_mapped (SECTION)
2978 Returns true if section is an overlay, and is currently mapped.
2979
2980 Access to the ovly_mapped flag is restricted to this function, so
2981 that we can do automatic update. If the global flag
2982 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2983 overlay_invalidate_all. If the mapped state of the particular
2984 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2985
2986 int
2987 section_is_mapped (struct obj_section *osect)
2988 {
2989 struct gdbarch *gdbarch;
2990
2991 if (osect == 0 || !section_is_overlay (osect))
2992 return 0;
2993
2994 switch (overlay_debugging)
2995 {
2996 default:
2997 case ovly_off:
2998 return 0; /* overlay debugging off */
2999 case ovly_auto: /* overlay debugging automatic */
3000 /* Unles there is a gdbarch_overlay_update function,
3001 there's really nothing useful to do here (can't really go auto). */
3002 gdbarch = get_objfile_arch (osect->objfile);
3003 if (gdbarch_overlay_update_p (gdbarch))
3004 {
3005 if (overlay_cache_invalid)
3006 {
3007 overlay_invalidate_all ();
3008 overlay_cache_invalid = 0;
3009 }
3010 if (osect->ovly_mapped == -1)
3011 gdbarch_overlay_update (gdbarch, osect);
3012 }
3013 /* fall thru to manual case */
3014 case ovly_on: /* overlay debugging manual */
3015 return osect->ovly_mapped == 1;
3016 }
3017 }
3018
3019 /* Function: pc_in_unmapped_range
3020 If PC falls into the lma range of SECTION, return true, else false. */
3021
3022 CORE_ADDR
3023 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3024 {
3025 if (section_is_overlay (section))
3026 {
3027 bfd *abfd = section->objfile->obfd;
3028 asection *bfd_section = section->the_bfd_section;
3029
3030 /* We assume the LMA is relocated by the same offset as the VMA. */
3031 bfd_vma size = bfd_get_section_size (bfd_section);
3032 CORE_ADDR offset = obj_section_offset (section);
3033
3034 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3035 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3036 return 1;
3037 }
3038
3039 return 0;
3040 }
3041
3042 /* Function: pc_in_mapped_range
3043 If PC falls into the vma range of SECTION, return true, else false. */
3044
3045 CORE_ADDR
3046 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3047 {
3048 if (section_is_overlay (section))
3049 {
3050 if (obj_section_addr (section) <= pc
3051 && pc < obj_section_endaddr (section))
3052 return 1;
3053 }
3054
3055 return 0;
3056 }
3057
3058 /* Return true if the mapped ranges of sections A and B overlap, false
3059 otherwise. */
3060
3061 static int
3062 sections_overlap (struct obj_section *a, struct obj_section *b)
3063 {
3064 CORE_ADDR a_start = obj_section_addr (a);
3065 CORE_ADDR a_end = obj_section_endaddr (a);
3066 CORE_ADDR b_start = obj_section_addr (b);
3067 CORE_ADDR b_end = obj_section_endaddr (b);
3068
3069 return (a_start < b_end && b_start < a_end);
3070 }
3071
3072 /* Function: overlay_unmapped_address (PC, SECTION)
3073 Returns the address corresponding to PC in the unmapped (load) range.
3074 May be the same as PC. */
3075
3076 CORE_ADDR
3077 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3078 {
3079 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3080 {
3081 bfd *abfd = section->objfile->obfd;
3082 asection *bfd_section = section->the_bfd_section;
3083
3084 return pc + bfd_section_lma (abfd, bfd_section)
3085 - bfd_section_vma (abfd, bfd_section);
3086 }
3087
3088 return pc;
3089 }
3090
3091 /* Function: overlay_mapped_address (PC, SECTION)
3092 Returns the address corresponding to PC in the mapped (runtime) range.
3093 May be the same as PC. */
3094
3095 CORE_ADDR
3096 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3097 {
3098 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3099 {
3100 bfd *abfd = section->objfile->obfd;
3101 asection *bfd_section = section->the_bfd_section;
3102
3103 return pc + bfd_section_vma (abfd, bfd_section)
3104 - bfd_section_lma (abfd, bfd_section);
3105 }
3106
3107 return pc;
3108 }
3109
3110 /* Function: symbol_overlayed_address
3111 Return one of two addresses (relative to the VMA or to the LMA),
3112 depending on whether the section is mapped or not. */
3113
3114 CORE_ADDR
3115 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3116 {
3117 if (overlay_debugging)
3118 {
3119 /* If the symbol has no section, just return its regular address. */
3120 if (section == 0)
3121 return address;
3122 /* If the symbol's section is not an overlay, just return its
3123 address. */
3124 if (!section_is_overlay (section))
3125 return address;
3126 /* If the symbol's section is mapped, just return its address. */
3127 if (section_is_mapped (section))
3128 return address;
3129 /*
3130 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3131 * then return its LOADED address rather than its vma address!!
3132 */
3133 return overlay_unmapped_address (address, section);
3134 }
3135 return address;
3136 }
3137
3138 /* Function: find_pc_overlay (PC)
3139 Return the best-match overlay section for PC:
3140 If PC matches a mapped overlay section's VMA, return that section.
3141 Else if PC matches an unmapped section's VMA, return that section.
3142 Else if PC matches an unmapped section's LMA, return that section. */
3143
3144 struct obj_section *
3145 find_pc_overlay (CORE_ADDR pc)
3146 {
3147 struct objfile *objfile;
3148 struct obj_section *osect, *best_match = NULL;
3149
3150 if (overlay_debugging)
3151 ALL_OBJSECTIONS (objfile, osect)
3152 if (section_is_overlay (osect))
3153 {
3154 if (pc_in_mapped_range (pc, osect))
3155 {
3156 if (section_is_mapped (osect))
3157 return osect;
3158 else
3159 best_match = osect;
3160 }
3161 else if (pc_in_unmapped_range (pc, osect))
3162 best_match = osect;
3163 }
3164 return best_match;
3165 }
3166
3167 /* Function: find_pc_mapped_section (PC)
3168 If PC falls into the VMA address range of an overlay section that is
3169 currently marked as MAPPED, return that section. Else return NULL. */
3170
3171 struct obj_section *
3172 find_pc_mapped_section (CORE_ADDR pc)
3173 {
3174 struct objfile *objfile;
3175 struct obj_section *osect;
3176
3177 if (overlay_debugging)
3178 ALL_OBJSECTIONS (objfile, osect)
3179 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3180 return osect;
3181
3182 return NULL;
3183 }
3184
3185 /* Function: list_overlays_command
3186 Print a list of mapped sections and their PC ranges. */
3187
3188 static void
3189 list_overlays_command (char *args, int from_tty)
3190 {
3191 int nmapped = 0;
3192 struct objfile *objfile;
3193 struct obj_section *osect;
3194
3195 if (overlay_debugging)
3196 ALL_OBJSECTIONS (objfile, osect)
3197 if (section_is_mapped (osect))
3198 {
3199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3200 const char *name;
3201 bfd_vma lma, vma;
3202 int size;
3203
3204 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3205 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3206 size = bfd_get_section_size (osect->the_bfd_section);
3207 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3208
3209 printf_filtered ("Section %s, loaded at ", name);
3210 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3211 puts_filtered (" - ");
3212 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3213 printf_filtered (", mapped at ");
3214 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3215 puts_filtered (" - ");
3216 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3217 puts_filtered ("\n");
3218
3219 nmapped++;
3220 }
3221 if (nmapped == 0)
3222 printf_filtered (_("No sections are mapped.\n"));
3223 }
3224
3225 /* Function: map_overlay_command
3226 Mark the named section as mapped (ie. residing at its VMA address). */
3227
3228 static void
3229 map_overlay_command (char *args, int from_tty)
3230 {
3231 struct objfile *objfile, *objfile2;
3232 struct obj_section *sec, *sec2;
3233
3234 if (!overlay_debugging)
3235 error (_("Overlay debugging not enabled. Use "
3236 "either the 'overlay auto' or\n"
3237 "the 'overlay manual' command."));
3238
3239 if (args == 0 || *args == 0)
3240 error (_("Argument required: name of an overlay section"));
3241
3242 /* First, find a section matching the user supplied argument. */
3243 ALL_OBJSECTIONS (objfile, sec)
3244 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3245 {
3246 /* Now, check to see if the section is an overlay. */
3247 if (!section_is_overlay (sec))
3248 continue; /* not an overlay section */
3249
3250 /* Mark the overlay as "mapped". */
3251 sec->ovly_mapped = 1;
3252
3253 /* Next, make a pass and unmap any sections that are
3254 overlapped by this new section: */
3255 ALL_OBJSECTIONS (objfile2, sec2)
3256 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3257 {
3258 if (info_verbose)
3259 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3260 bfd_section_name (objfile->obfd,
3261 sec2->the_bfd_section));
3262 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3263 }
3264 return;
3265 }
3266 error (_("No overlay section called %s"), args);
3267 }
3268
3269 /* Function: unmap_overlay_command
3270 Mark the overlay section as unmapped
3271 (ie. resident in its LMA address range, rather than the VMA range). */
3272
3273 static void
3274 unmap_overlay_command (char *args, int from_tty)
3275 {
3276 struct objfile *objfile;
3277 struct obj_section *sec;
3278
3279 if (!overlay_debugging)
3280 error (_("Overlay debugging not enabled. "
3281 "Use either the 'overlay auto' or\n"
3282 "the 'overlay manual' command."));
3283
3284 if (args == 0 || *args == 0)
3285 error (_("Argument required: name of an overlay section"));
3286
3287 /* First, find a section matching the user supplied argument. */
3288 ALL_OBJSECTIONS (objfile, sec)
3289 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3290 {
3291 if (!sec->ovly_mapped)
3292 error (_("Section %s is not mapped"), args);
3293 sec->ovly_mapped = 0;
3294 return;
3295 }
3296 error (_("No overlay section called %s"), args);
3297 }
3298
3299 /* Function: overlay_auto_command
3300 A utility command to turn on overlay debugging.
3301 Possibly this should be done via a set/show command. */
3302
3303 static void
3304 overlay_auto_command (char *args, int from_tty)
3305 {
3306 overlay_debugging = ovly_auto;
3307 enable_overlay_breakpoints ();
3308 if (info_verbose)
3309 printf_unfiltered (_("Automatic overlay debugging enabled."));
3310 }
3311
3312 /* Function: overlay_manual_command
3313 A utility command to turn on overlay debugging.
3314 Possibly this should be done via a set/show command. */
3315
3316 static void
3317 overlay_manual_command (char *args, int from_tty)
3318 {
3319 overlay_debugging = ovly_on;
3320 disable_overlay_breakpoints ();
3321 if (info_verbose)
3322 printf_unfiltered (_("Overlay debugging enabled."));
3323 }
3324
3325 /* Function: overlay_off_command
3326 A utility command to turn on overlay debugging.
3327 Possibly this should be done via a set/show command. */
3328
3329 static void
3330 overlay_off_command (char *args, int from_tty)
3331 {
3332 overlay_debugging = ovly_off;
3333 disable_overlay_breakpoints ();
3334 if (info_verbose)
3335 printf_unfiltered (_("Overlay debugging disabled."));
3336 }
3337
3338 static void
3339 overlay_load_command (char *args, int from_tty)
3340 {
3341 struct gdbarch *gdbarch = get_current_arch ();
3342
3343 if (gdbarch_overlay_update_p (gdbarch))
3344 gdbarch_overlay_update (gdbarch, NULL);
3345 else
3346 error (_("This target does not know how to read its overlay state."));
3347 }
3348
3349 /* Function: overlay_command
3350 A place-holder for a mis-typed command. */
3351
3352 /* Command list chain containing all defined "overlay" subcommands. */
3353 static struct cmd_list_element *overlaylist;
3354
3355 static void
3356 overlay_command (char *args, int from_tty)
3357 {
3358 printf_unfiltered
3359 ("\"overlay\" must be followed by the name of an overlay command.\n");
3360 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3361 }
3362
3363 /* Target Overlays for the "Simplest" overlay manager:
3364
3365 This is GDB's default target overlay layer. It works with the
3366 minimal overlay manager supplied as an example by Cygnus. The
3367 entry point is via a function pointer "gdbarch_overlay_update",
3368 so targets that use a different runtime overlay manager can
3369 substitute their own overlay_update function and take over the
3370 function pointer.
3371
3372 The overlay_update function pokes around in the target's data structures
3373 to see what overlays are mapped, and updates GDB's overlay mapping with
3374 this information.
3375
3376 In this simple implementation, the target data structures are as follows:
3377 unsigned _novlys; /# number of overlay sections #/
3378 unsigned _ovly_table[_novlys][4] = {
3379 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3380 {..., ..., ..., ...},
3381 }
3382 unsigned _novly_regions; /# number of overlay regions #/
3383 unsigned _ovly_region_table[_novly_regions][3] = {
3384 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3385 {..., ..., ...},
3386 }
3387 These functions will attempt to update GDB's mappedness state in the
3388 symbol section table, based on the target's mappedness state.
3389
3390 To do this, we keep a cached copy of the target's _ovly_table, and
3391 attempt to detect when the cached copy is invalidated. The main
3392 entry point is "simple_overlay_update(SECT), which looks up SECT in
3393 the cached table and re-reads only the entry for that section from
3394 the target (whenever possible). */
3395
3396 /* Cached, dynamically allocated copies of the target data structures: */
3397 static unsigned (*cache_ovly_table)[4] = 0;
3398 static unsigned cache_novlys = 0;
3399 static CORE_ADDR cache_ovly_table_base = 0;
3400 enum ovly_index
3401 {
3402 VMA, SIZE, LMA, MAPPED
3403 };
3404
3405 /* Throw away the cached copy of _ovly_table. */
3406
3407 static void
3408 simple_free_overlay_table (void)
3409 {
3410 if (cache_ovly_table)
3411 xfree (cache_ovly_table);
3412 cache_novlys = 0;
3413 cache_ovly_table = NULL;
3414 cache_ovly_table_base = 0;
3415 }
3416
3417 /* Read an array of ints of size SIZE from the target into a local buffer.
3418 Convert to host order. int LEN is number of ints. */
3419
3420 static void
3421 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3422 int len, int size, enum bfd_endian byte_order)
3423 {
3424 /* FIXME (alloca): Not safe if array is very large. */
3425 gdb_byte *buf = alloca (len * size);
3426 int i;
3427
3428 read_memory (memaddr, buf, len * size);
3429 for (i = 0; i < len; i++)
3430 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3431 }
3432
3433 /* Find and grab a copy of the target _ovly_table
3434 (and _novlys, which is needed for the table's size). */
3435
3436 static int
3437 simple_read_overlay_table (void)
3438 {
3439 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3440 struct gdbarch *gdbarch;
3441 int word_size;
3442 enum bfd_endian byte_order;
3443
3444 simple_free_overlay_table ();
3445 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3446 if (! novlys_msym)
3447 {
3448 error (_("Error reading inferior's overlay table: "
3449 "couldn't find `_novlys' variable\n"
3450 "in inferior. Use `overlay manual' mode."));
3451 return 0;
3452 }
3453
3454 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3455 if (! ovly_table_msym)
3456 {
3457 error (_("Error reading inferior's overlay table: couldn't find "
3458 "`_ovly_table' array\n"
3459 "in inferior. Use `overlay manual' mode."));
3460 return 0;
3461 }
3462
3463 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3464 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3465 byte_order = gdbarch_byte_order (gdbarch);
3466
3467 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3468 4, byte_order);
3469 cache_ovly_table
3470 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3471 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3472 read_target_long_array (cache_ovly_table_base,
3473 (unsigned int *) cache_ovly_table,
3474 cache_novlys * 4, word_size, byte_order);
3475
3476 return 1; /* SUCCESS */
3477 }
3478
3479 /* Function: simple_overlay_update_1
3480 A helper function for simple_overlay_update. Assuming a cached copy
3481 of _ovly_table exists, look through it to find an entry whose vma,
3482 lma and size match those of OSECT. Re-read the entry and make sure
3483 it still matches OSECT (else the table may no longer be valid).
3484 Set OSECT's mapped state to match the entry. Return: 1 for
3485 success, 0 for failure. */
3486
3487 static int
3488 simple_overlay_update_1 (struct obj_section *osect)
3489 {
3490 int i, size;
3491 bfd *obfd = osect->objfile->obfd;
3492 asection *bsect = osect->the_bfd_section;
3493 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3494 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3495 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3496
3497 size = bfd_get_section_size (osect->the_bfd_section);
3498 for (i = 0; i < cache_novlys; i++)
3499 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3500 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3501 /* && cache_ovly_table[i][SIZE] == size */ )
3502 {
3503 read_target_long_array (cache_ovly_table_base + i * word_size,
3504 (unsigned int *) cache_ovly_table[i],
3505 4, word_size, byte_order);
3506 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3507 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3508 /* && cache_ovly_table[i][SIZE] == size */ )
3509 {
3510 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3511 return 1;
3512 }
3513 else /* Warning! Warning! Target's ovly table has changed! */
3514 return 0;
3515 }
3516 return 0;
3517 }
3518
3519 /* Function: simple_overlay_update
3520 If OSECT is NULL, then update all sections' mapped state
3521 (after re-reading the entire target _ovly_table).
3522 If OSECT is non-NULL, then try to find a matching entry in the
3523 cached ovly_table and update only OSECT's mapped state.
3524 If a cached entry can't be found or the cache isn't valid, then
3525 re-read the entire cache, and go ahead and update all sections. */
3526
3527 void
3528 simple_overlay_update (struct obj_section *osect)
3529 {
3530 struct objfile *objfile;
3531
3532 /* Were we given an osect to look up? NULL means do all of them. */
3533 if (osect)
3534 /* Have we got a cached copy of the target's overlay table? */
3535 if (cache_ovly_table != NULL)
3536 {
3537 /* Does its cached location match what's currently in the
3538 symtab? */
3539 struct minimal_symbol *minsym
3540 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3541
3542 if (minsym == NULL)
3543 error (_("Error reading inferior's overlay table: couldn't "
3544 "find `_ovly_table' array\n"
3545 "in inferior. Use `overlay manual' mode."));
3546
3547 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3548 /* Then go ahead and try to look up this single section in
3549 the cache. */
3550 if (simple_overlay_update_1 (osect))
3551 /* Found it! We're done. */
3552 return;
3553 }
3554
3555 /* Cached table no good: need to read the entire table anew.
3556 Or else we want all the sections, in which case it's actually
3557 more efficient to read the whole table in one block anyway. */
3558
3559 if (! simple_read_overlay_table ())
3560 return;
3561
3562 /* Now may as well update all sections, even if only one was requested. */
3563 ALL_OBJSECTIONS (objfile, osect)
3564 if (section_is_overlay (osect))
3565 {
3566 int i, size;
3567 bfd *obfd = osect->objfile->obfd;
3568 asection *bsect = osect->the_bfd_section;
3569
3570 size = bfd_get_section_size (bsect);
3571 for (i = 0; i < cache_novlys; i++)
3572 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3573 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3574 /* && cache_ovly_table[i][SIZE] == size */ )
3575 { /* obj_section matches i'th entry in ovly_table. */
3576 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3577 break; /* finished with inner for loop: break out. */
3578 }
3579 }
3580 }
3581
3582 /* Set the output sections and output offsets for section SECTP in
3583 ABFD. The relocation code in BFD will read these offsets, so we
3584 need to be sure they're initialized. We map each section to itself,
3585 with no offset; this means that SECTP->vma will be honored. */
3586
3587 static void
3588 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3589 {
3590 sectp->output_section = sectp;
3591 sectp->output_offset = 0;
3592 }
3593
3594 /* Default implementation for sym_relocate. */
3595
3596 bfd_byte *
3597 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3598 bfd_byte *buf)
3599 {
3600 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3601 DWO file. */
3602 bfd *abfd = sectp->owner;
3603
3604 /* We're only interested in sections with relocation
3605 information. */
3606 if ((sectp->flags & SEC_RELOC) == 0)
3607 return NULL;
3608
3609 /* We will handle section offsets properly elsewhere, so relocate as if
3610 all sections begin at 0. */
3611 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3612
3613 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3614 }
3615
3616 /* Relocate the contents of a debug section SECTP in ABFD. The
3617 contents are stored in BUF if it is non-NULL, or returned in a
3618 malloc'd buffer otherwise.
3619
3620 For some platforms and debug info formats, shared libraries contain
3621 relocations against the debug sections (particularly for DWARF-2;
3622 one affected platform is PowerPC GNU/Linux, although it depends on
3623 the version of the linker in use). Also, ELF object files naturally
3624 have unresolved relocations for their debug sections. We need to apply
3625 the relocations in order to get the locations of symbols correct.
3626 Another example that may require relocation processing, is the
3627 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3628 debug section. */
3629
3630 bfd_byte *
3631 symfile_relocate_debug_section (struct objfile *objfile,
3632 asection *sectp, bfd_byte *buf)
3633 {
3634 gdb_assert (objfile->sf->sym_relocate);
3635
3636 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3637 }
3638
3639 struct symfile_segment_data *
3640 get_symfile_segment_data (bfd *abfd)
3641 {
3642 const struct sym_fns *sf = find_sym_fns (abfd);
3643
3644 if (sf == NULL)
3645 return NULL;
3646
3647 return sf->sym_segments (abfd);
3648 }
3649
3650 void
3651 free_symfile_segment_data (struct symfile_segment_data *data)
3652 {
3653 xfree (data->segment_bases);
3654 xfree (data->segment_sizes);
3655 xfree (data->segment_info);
3656 xfree (data);
3657 }
3658
3659 /* Given:
3660 - DATA, containing segment addresses from the object file ABFD, and
3661 the mapping from ABFD's sections onto the segments that own them,
3662 and
3663 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3664 segment addresses reported by the target,
3665 store the appropriate offsets for each section in OFFSETS.
3666
3667 If there are fewer entries in SEGMENT_BASES than there are segments
3668 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3669
3670 If there are more entries, then ignore the extra. The target may
3671 not be able to distinguish between an empty data segment and a
3672 missing data segment; a missing text segment is less plausible. */
3673
3674 int
3675 symfile_map_offsets_to_segments (bfd *abfd,
3676 const struct symfile_segment_data *data,
3677 struct section_offsets *offsets,
3678 int num_segment_bases,
3679 const CORE_ADDR *segment_bases)
3680 {
3681 int i;
3682 asection *sect;
3683
3684 /* It doesn't make sense to call this function unless you have some
3685 segment base addresses. */
3686 gdb_assert (num_segment_bases > 0);
3687
3688 /* If we do not have segment mappings for the object file, we
3689 can not relocate it by segments. */
3690 gdb_assert (data != NULL);
3691 gdb_assert (data->num_segments > 0);
3692
3693 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3694 {
3695 int which = data->segment_info[i];
3696
3697 gdb_assert (0 <= which && which <= data->num_segments);
3698
3699 /* Don't bother computing offsets for sections that aren't
3700 loaded as part of any segment. */
3701 if (! which)
3702 continue;
3703
3704 /* Use the last SEGMENT_BASES entry as the address of any extra
3705 segments mentioned in DATA->segment_info. */
3706 if (which > num_segment_bases)
3707 which = num_segment_bases;
3708
3709 offsets->offsets[i] = (segment_bases[which - 1]
3710 - data->segment_bases[which - 1]);
3711 }
3712
3713 return 1;
3714 }
3715
3716 static void
3717 symfile_find_segment_sections (struct objfile *objfile)
3718 {
3719 bfd *abfd = objfile->obfd;
3720 int i;
3721 asection *sect;
3722 struct symfile_segment_data *data;
3723
3724 data = get_symfile_segment_data (objfile->obfd);
3725 if (data == NULL)
3726 return;
3727
3728 if (data->num_segments != 1 && data->num_segments != 2)
3729 {
3730 free_symfile_segment_data (data);
3731 return;
3732 }
3733
3734 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3735 {
3736 int which = data->segment_info[i];
3737
3738 if (which == 1)
3739 {
3740 if (objfile->sect_index_text == -1)
3741 objfile->sect_index_text = sect->index;
3742
3743 if (objfile->sect_index_rodata == -1)
3744 objfile->sect_index_rodata = sect->index;
3745 }
3746 else if (which == 2)
3747 {
3748 if (objfile->sect_index_data == -1)
3749 objfile->sect_index_data = sect->index;
3750
3751 if (objfile->sect_index_bss == -1)
3752 objfile->sect_index_bss = sect->index;
3753 }
3754 }
3755
3756 free_symfile_segment_data (data);
3757 }
3758
3759 void
3760 _initialize_symfile (void)
3761 {
3762 struct cmd_list_element *c;
3763
3764 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3765 Load symbol table from executable file FILE.\n\
3766 The `file' command can also load symbol tables, as well as setting the file\n\
3767 to execute."), &cmdlist);
3768 set_cmd_completer (c, filename_completer);
3769
3770 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3771 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3772 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3773 ...]\nADDR is the starting address of the file's text.\n\
3774 The optional arguments are section-name section-address pairs and\n\
3775 should be specified if the data and bss segments are not contiguous\n\
3776 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3777 &cmdlist);
3778 set_cmd_completer (c, filename_completer);
3779
3780 c = add_cmd ("load", class_files, load_command, _("\
3781 Dynamically load FILE into the running program, and record its symbols\n\
3782 for access from GDB.\n\
3783 A load OFFSET may also be given."), &cmdlist);
3784 set_cmd_completer (c, filename_completer);
3785
3786 add_prefix_cmd ("overlay", class_support, overlay_command,
3787 _("Commands for debugging overlays."), &overlaylist,
3788 "overlay ", 0, &cmdlist);
3789
3790 add_com_alias ("ovly", "overlay", class_alias, 1);
3791 add_com_alias ("ov", "overlay", class_alias, 1);
3792
3793 add_cmd ("map-overlay", class_support, map_overlay_command,
3794 _("Assert that an overlay section is mapped."), &overlaylist);
3795
3796 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3797 _("Assert that an overlay section is unmapped."), &overlaylist);
3798
3799 add_cmd ("list-overlays", class_support, list_overlays_command,
3800 _("List mappings of overlay sections."), &overlaylist);
3801
3802 add_cmd ("manual", class_support, overlay_manual_command,
3803 _("Enable overlay debugging."), &overlaylist);
3804 add_cmd ("off", class_support, overlay_off_command,
3805 _("Disable overlay debugging."), &overlaylist);
3806 add_cmd ("auto", class_support, overlay_auto_command,
3807 _("Enable automatic overlay debugging."), &overlaylist);
3808 add_cmd ("load-target", class_support, overlay_load_command,
3809 _("Read the overlay mapping state from the target."), &overlaylist);
3810
3811 /* Filename extension to source language lookup table: */
3812 init_filename_language_table ();
3813 add_setshow_string_noescape_cmd ("extension-language", class_files,
3814 &ext_args, _("\
3815 Set mapping between filename extension and source language."), _("\
3816 Show mapping between filename extension and source language."), _("\
3817 Usage: set extension-language .foo bar"),
3818 set_ext_lang_command,
3819 show_ext_args,
3820 &setlist, &showlist);
3821
3822 add_info ("extensions", info_ext_lang_command,
3823 _("All filename extensions associated with a source language."));
3824
3825 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3826 &debug_file_directory, _("\
3827 Set the directories where separate debug symbols are searched for."), _("\
3828 Show the directories where separate debug symbols are searched for."), _("\
3829 Separate debug symbols are first searched for in the same\n\
3830 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3831 and lastly at the path of the directory of the binary with\n\
3832 each global debug-file-directory component prepended."),
3833 NULL,
3834 show_debug_file_directory,
3835 &setlist, &showlist);
3836 }
This page took 0.344956 seconds and 4 git commands to generate.