4908a310c8f3588d3db7d30fbb50df68265a5798
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include <readline/readline.h>
47 #include "gdb_assert.h"
48
49 #include <sys/types.h>
50 #include <fcntl.h>
51 #include "gdb_string.h"
52 #include "gdb_stat.h"
53 #include <ctype.h>
54 #include <time.h>
55
56 #ifndef O_BINARY
57 #define O_BINARY 0
58 #endif
59
60 #ifdef HPUXHPPA
61
62 /* Some HP-UX related globals to clear when a new "main"
63 symbol file is loaded. HP-specific. */
64
65 extern int hp_som_som_object_present;
66 extern int hp_cxx_exception_support_initialized;
67 #define RESET_HP_UX_GLOBALS() do {\
68 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
69 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
70 } while (0)
71 #endif
72
73 int (*ui_load_progress_hook) (const char *section, unsigned long num);
74 void (*show_load_progress) (const char *section,
75 unsigned long section_sent,
76 unsigned long section_size,
77 unsigned long total_sent,
78 unsigned long total_size);
79 void (*pre_add_symbol_hook) (char *);
80 void (*post_add_symbol_hook) (void);
81 void (*target_new_objfile_hook) (struct objfile *);
82
83 static void clear_symtab_users_cleanup (void *ignore);
84
85 /* Global variables owned by this file */
86 int readnow_symbol_files; /* Read full symbols immediately */
87
88 /* External variables and functions referenced. */
89
90 extern void report_transfer_performance (unsigned long, time_t, time_t);
91
92 /* Functions this file defines */
93
94 #if 0
95 static int simple_read_overlay_region_table (void);
96 static void simple_free_overlay_region_table (void);
97 #endif
98
99 static void set_initial_language (void);
100
101 static void load_command (char *, int);
102
103 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
104
105 static void add_symbol_file_command (char *, int);
106
107 static void add_shared_symbol_files_command (char *, int);
108
109 static void reread_separate_symbols (struct objfile *objfile);
110
111 static void cashier_psymtab (struct partial_symtab *);
112
113 bfd *symfile_bfd_open (char *);
114
115 int get_section_index (struct objfile *, char *);
116
117 static void find_sym_fns (struct objfile *);
118
119 static void decrement_reading_symtab (void *);
120
121 static void overlay_invalidate_all (void);
122
123 static int overlay_is_mapped (struct obj_section *);
124
125 void list_overlays_command (char *, int);
126
127 void map_overlay_command (char *, int);
128
129 void unmap_overlay_command (char *, int);
130
131 static void overlay_auto_command (char *, int);
132
133 static void overlay_manual_command (char *, int);
134
135 static void overlay_off_command (char *, int);
136
137 static void overlay_load_command (char *, int);
138
139 static void overlay_command (char *, int);
140
141 static void simple_free_overlay_table (void);
142
143 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
144
145 static int simple_read_overlay_table (void);
146
147 static int simple_overlay_update_1 (struct obj_section *);
148
149 static void add_filename_language (char *ext, enum language lang);
150
151 static void set_ext_lang_command (char *args, int from_tty);
152
153 static void info_ext_lang_command (char *args, int from_tty);
154
155 static char *find_separate_debug_file (struct objfile *objfile);
156
157 static void init_filename_language_table (void);
158
159 void _initialize_symfile (void);
160
161 /* List of all available sym_fns. On gdb startup, each object file reader
162 calls add_symtab_fns() to register information on each format it is
163 prepared to read. */
164
165 static struct sym_fns *symtab_fns = NULL;
166
167 /* Flag for whether user will be reloading symbols multiple times.
168 Defaults to ON for VxWorks, otherwise OFF. */
169
170 #ifdef SYMBOL_RELOADING_DEFAULT
171 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
172 #else
173 int symbol_reloading = 0;
174 #endif
175
176 /* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
183 library symbols are not loaded, commands like "info fun" will *not*
184 report all the functions that are actually present. */
185
186 int auto_solib_add = 1;
187
188 /* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196 int auto_solib_limit;
197 \f
198
199 /* Since this function is called from within qsort, in an ANSI environment
200 it must conform to the prototype for qsort, which specifies that the
201 comparison function takes two "void *" pointers. */
202
203 static int
204 compare_symbols (const void *s1p, const void *s2p)
205 {
206 register struct symbol **s1, **s2;
207
208 s1 = (struct symbol **) s1p;
209 s2 = (struct symbol **) s2p;
210 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
211 }
212
213 /*
214
215 LOCAL FUNCTION
216
217 compare_psymbols -- compare two partial symbols by name
218
219 DESCRIPTION
220
221 Given pointers to pointers to two partial symbol table entries,
222 compare them by name and return -N, 0, or +N (ala strcmp).
223 Typically used by sorting routines like qsort().
224
225 NOTES
226
227 Does direct compare of first two characters before punting
228 and passing to strcmp for longer compares. Note that the
229 original version had a bug whereby two null strings or two
230 identically named one character strings would return the
231 comparison of memory following the null byte.
232
233 */
234
235 static int
236 compare_psymbols (const void *s1p, const void *s2p)
237 {
238 register struct partial_symbol **s1, **s2;
239 register char *st1, *st2;
240
241 s1 = (struct partial_symbol **) s1p;
242 s2 = (struct partial_symbol **) s2p;
243 st1 = SYMBOL_SOURCE_NAME (*s1);
244 st2 = SYMBOL_SOURCE_NAME (*s2);
245
246
247 if ((st1[0] - st2[0]) || !st1[0])
248 {
249 return (st1[0] - st2[0]);
250 }
251 else if ((st1[1] - st2[1]) || !st1[1])
252 {
253 return (st1[1] - st2[1]);
254 }
255 else
256 {
257 return (strcmp (st1, st2));
258 }
259 }
260
261 void
262 sort_pst_symbols (struct partial_symtab *pst)
263 {
264 /* Sort the global list; don't sort the static list */
265
266 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
267 pst->n_global_syms, sizeof (struct partial_symbol *),
268 compare_psymbols);
269 }
270
271 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
272
273 void
274 sort_block_syms (register struct block *b)
275 {
276 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
277 sizeof (struct symbol *), compare_symbols);
278 }
279
280 /* Call sort_symtab_syms to sort alphabetically
281 the symbols of each block of one symtab. */
282
283 void
284 sort_symtab_syms (register struct symtab *s)
285 {
286 register struct blockvector *bv;
287 int nbl;
288 int i;
289 register struct block *b;
290
291 if (s == 0)
292 return;
293 bv = BLOCKVECTOR (s);
294 nbl = BLOCKVECTOR_NBLOCKS (bv);
295 for (i = 0; i < nbl; i++)
296 {
297 b = BLOCKVECTOR_BLOCK (bv, i);
298 if (BLOCK_SHOULD_SORT (b))
299 sort_block_syms (b);
300 }
301 }
302
303 /* Make a null terminated copy of the string at PTR with SIZE characters in
304 the obstack pointed to by OBSTACKP . Returns the address of the copy.
305 Note that the string at PTR does not have to be null terminated, I.E. it
306 may be part of a larger string and we are only saving a substring. */
307
308 char *
309 obsavestring (const char *ptr, int size, struct obstack *obstackp)
310 {
311 register char *p = (char *) obstack_alloc (obstackp, size + 1);
312 /* Open-coded memcpy--saves function call time. These strings are usually
313 short. FIXME: Is this really still true with a compiler that can
314 inline memcpy? */
315 {
316 register const char *p1 = ptr;
317 register char *p2 = p;
318 const char *end = ptr + size;
319 while (p1 != end)
320 *p2++ = *p1++;
321 }
322 p[size] = 0;
323 return p;
324 }
325
326 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
327 in the obstack pointed to by OBSTACKP. */
328
329 char *
330 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
331 const char *s3)
332 {
333 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
334 register char *val = (char *) obstack_alloc (obstackp, len);
335 strcpy (val, s1);
336 strcat (val, s2);
337 strcat (val, s3);
338 return val;
339 }
340
341 /* True if we are nested inside psymtab_to_symtab. */
342
343 int currently_reading_symtab = 0;
344
345 static void
346 decrement_reading_symtab (void *dummy)
347 {
348 currently_reading_symtab--;
349 }
350
351 /* Get the symbol table that corresponds to a partial_symtab.
352 This is fast after the first time you do it. In fact, there
353 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
354 case inline. */
355
356 struct symtab *
357 psymtab_to_symtab (register struct partial_symtab *pst)
358 {
359 /* If it's been looked up before, return it. */
360 if (pst->symtab)
361 return pst->symtab;
362
363 /* If it has not yet been read in, read it. */
364 if (!pst->readin)
365 {
366 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
367 currently_reading_symtab++;
368 (*pst->read_symtab) (pst);
369 do_cleanups (back_to);
370 }
371
372 return pst->symtab;
373 }
374
375 /* Initialize entry point information for this objfile. */
376
377 void
378 init_entry_point_info (struct objfile *objfile)
379 {
380 /* Save startup file's range of PC addresses to help blockframe.c
381 decide where the bottom of the stack is. */
382
383 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
384 {
385 /* Executable file -- record its entry point so we'll recognize
386 the startup file because it contains the entry point. */
387 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
388 }
389 else
390 {
391 /* Examination of non-executable.o files. Short-circuit this stuff. */
392 objfile->ei.entry_point = INVALID_ENTRY_POINT;
393 }
394 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
395 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
396 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
397 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
398 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
399 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
400 }
401
402 /* Get current entry point address. */
403
404 CORE_ADDR
405 entry_point_address (void)
406 {
407 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
408 }
409
410 /* Remember the lowest-addressed loadable section we've seen.
411 This function is called via bfd_map_over_sections.
412
413 In case of equal vmas, the section with the largest size becomes the
414 lowest-addressed loadable section.
415
416 If the vmas and sizes are equal, the last section is considered the
417 lowest-addressed loadable section. */
418
419 void
420 find_lowest_section (bfd *abfd, asection *sect, void *obj)
421 {
422 asection **lowest = (asection **) obj;
423
424 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
425 return;
426 if (!*lowest)
427 *lowest = sect; /* First loadable section */
428 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
429 *lowest = sect; /* A lower loadable section */
430 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
431 && (bfd_section_size (abfd, (*lowest))
432 <= bfd_section_size (abfd, sect)))
433 *lowest = sect;
434 }
435
436
437 /* Build (allocate and populate) a section_addr_info struct from
438 an existing section table. */
439
440 extern struct section_addr_info *
441 build_section_addr_info_from_section_table (const struct section_table *start,
442 const struct section_table *end)
443 {
444 struct section_addr_info *sap;
445 const struct section_table *stp;
446 int oidx;
447
448 sap = xmalloc (sizeof (struct section_addr_info));
449 memset (sap, 0, sizeof (struct section_addr_info));
450
451 for (stp = start, oidx = 0; stp != end; stp++)
452 {
453 if (bfd_get_section_flags (stp->bfd,
454 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
455 && oidx < MAX_SECTIONS)
456 {
457 sap->other[oidx].addr = stp->addr;
458 sap->other[oidx].name
459 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
460 sap->other[oidx].sectindex = stp->the_bfd_section->index;
461 oidx++;
462 }
463 }
464
465 return sap;
466 }
467
468
469 /* Free all memory allocated by build_section_addr_info_from_section_table. */
470
471 extern void
472 free_section_addr_info (struct section_addr_info *sap)
473 {
474 int idx;
475
476 for (idx = 0; idx < MAX_SECTIONS; idx++)
477 if (sap->other[idx].name)
478 xfree (sap->other[idx].name);
479 xfree (sap);
480 }
481
482
483 /* Initialize OBJFILE's sect_index_* members. */
484 static void
485 init_objfile_sect_indices (struct objfile *objfile)
486 {
487 asection *sect;
488 int i;
489
490 sect = bfd_get_section_by_name (objfile->obfd, ".text");
491 if (sect)
492 objfile->sect_index_text = sect->index;
493
494 sect = bfd_get_section_by_name (objfile->obfd, ".data");
495 if (sect)
496 objfile->sect_index_data = sect->index;
497
498 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
499 if (sect)
500 objfile->sect_index_bss = sect->index;
501
502 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
503 if (sect)
504 objfile->sect_index_rodata = sect->index;
505
506 /* This is where things get really weird... We MUST have valid
507 indices for the various sect_index_* members or gdb will abort.
508 So if for example, there is no ".text" section, we have to
509 accomodate that. Except when explicitly adding symbol files at
510 some address, section_offsets contains nothing but zeros, so it
511 doesn't matter which slot in section_offsets the individual
512 sect_index_* members index into. So if they are all zero, it is
513 safe to just point all the currently uninitialized indices to the
514 first slot. */
515
516 for (i = 0; i < objfile->num_sections; i++)
517 {
518 if (ANOFFSET (objfile->section_offsets, i) != 0)
519 {
520 break;
521 }
522 }
523 if (i == objfile->num_sections)
524 {
525 if (objfile->sect_index_text == -1)
526 objfile->sect_index_text = 0;
527 if (objfile->sect_index_data == -1)
528 objfile->sect_index_data = 0;
529 if (objfile->sect_index_bss == -1)
530 objfile->sect_index_bss = 0;
531 if (objfile->sect_index_rodata == -1)
532 objfile->sect_index_rodata = 0;
533 }
534 }
535
536
537 /* Parse the user's idea of an offset for dynamic linking, into our idea
538 of how to represent it for fast symbol reading. This is the default
539 version of the sym_fns.sym_offsets function for symbol readers that
540 don't need to do anything special. It allocates a section_offsets table
541 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
542
543 void
544 default_symfile_offsets (struct objfile *objfile,
545 struct section_addr_info *addrs)
546 {
547 int i;
548
549 objfile->num_sections = SECT_OFF_MAX;
550 objfile->section_offsets = (struct section_offsets *)
551 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
552 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
553
554 /* Now calculate offsets for section that were specified by the
555 caller. */
556 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
557 {
558 struct other_sections *osp ;
559
560 osp = &addrs->other[i] ;
561 if (osp->addr == 0)
562 continue;
563
564 /* Record all sections in offsets */
565 /* The section_offsets in the objfile are here filled in using
566 the BFD index. */
567 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
568 }
569
570 /* Remember the bfd indexes for the .text, .data, .bss and
571 .rodata sections. */
572 init_objfile_sect_indices (objfile);
573 }
574
575
576 /* Process a symbol file, as either the main file or as a dynamically
577 loaded file.
578
579 OBJFILE is where the symbols are to be read from.
580
581 ADDRS is the list of section load addresses. If the user has given
582 an 'add-symbol-file' command, then this is the list of offsets and
583 addresses he or she provided as arguments to the command; or, if
584 we're handling a shared library, these are the actual addresses the
585 sections are loaded at, according to the inferior's dynamic linker
586 (as gleaned by GDB's shared library code). We convert each address
587 into an offset from the section VMA's as it appears in the object
588 file, and then call the file's sym_offsets function to convert this
589 into a format-specific offset table --- a `struct section_offsets'.
590 If ADDRS is non-zero, OFFSETS must be zero.
591
592 OFFSETS is a table of section offsets already in the right
593 format-specific representation. NUM_OFFSETS is the number of
594 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
595 assume this is the proper table the call to sym_offsets described
596 above would produce. Instead of calling sym_offsets, we just dump
597 it right into objfile->section_offsets. (When we're re-reading
598 symbols from an objfile, we don't have the original load address
599 list any more; all we have is the section offset table.) If
600 OFFSETS is non-zero, ADDRS must be zero.
601
602 MAINLINE is nonzero if this is the main symbol file, or zero if
603 it's an extra symbol file such as dynamically loaded code.
604
605 VERBO is nonzero if the caller has printed a verbose message about
606 the symbol reading (and complaints can be more terse about it). */
607
608 void
609 syms_from_objfile (struct objfile *objfile,
610 struct section_addr_info *addrs,
611 struct section_offsets *offsets,
612 int num_offsets,
613 int mainline,
614 int verbo)
615 {
616 asection *lower_sect;
617 asection *sect;
618 CORE_ADDR lower_offset;
619 struct section_addr_info local_addr;
620 struct cleanup *old_chain;
621 int i;
622
623 gdb_assert (! (addrs && offsets));
624
625 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
626 list. We now establish the convention that an addr of zero means
627 no load address was specified. */
628 if (! addrs && ! offsets)
629 {
630 memset (&local_addr, 0, sizeof (local_addr));
631 addrs = &local_addr;
632 }
633
634 /* Now either addrs or offsets is non-zero. */
635
636 init_entry_point_info (objfile);
637 find_sym_fns (objfile);
638
639 if (objfile->sf == NULL)
640 return; /* No symbols. */
641
642 /* Make sure that partially constructed symbol tables will be cleaned up
643 if an error occurs during symbol reading. */
644 old_chain = make_cleanup_free_objfile (objfile);
645
646 if (mainline)
647 {
648 /* We will modify the main symbol table, make sure that all its users
649 will be cleaned up if an error occurs during symbol reading. */
650 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
651
652 /* Since no error yet, throw away the old symbol table. */
653
654 if (symfile_objfile != NULL)
655 {
656 free_objfile (symfile_objfile);
657 symfile_objfile = NULL;
658 }
659
660 /* Currently we keep symbols from the add-symbol-file command.
661 If the user wants to get rid of them, they should do "symbol-file"
662 without arguments first. Not sure this is the best behavior
663 (PR 2207). */
664
665 (*objfile->sf->sym_new_init) (objfile);
666 }
667
668 /* Convert addr into an offset rather than an absolute address.
669 We find the lowest address of a loaded segment in the objfile,
670 and assume that <addr> is where that got loaded.
671
672 We no longer warn if the lowest section is not a text segment (as
673 happens for the PA64 port. */
674 if (!mainline)
675 {
676 /* Find lowest loadable section to be used as starting point for
677 continguous sections. FIXME!! won't work without call to find
678 .text first, but this assumes text is lowest section. */
679 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
680 if (lower_sect == NULL)
681 bfd_map_over_sections (objfile->obfd, find_lowest_section,
682 &lower_sect);
683 if (lower_sect == NULL)
684 warning ("no loadable sections found in added symbol-file %s",
685 objfile->name);
686 else
687 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
688 warning ("Lowest section in %s is %s at %s",
689 objfile->name,
690 bfd_section_name (objfile->obfd, lower_sect),
691 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
692 if (lower_sect != NULL)
693 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
694 else
695 lower_offset = 0;
696
697 /* Calculate offsets for the loadable sections.
698 FIXME! Sections must be in order of increasing loadable section
699 so that contiguous sections can use the lower-offset!!!
700
701 Adjust offsets if the segments are not contiguous.
702 If the section is contiguous, its offset should be set to
703 the offset of the highest loadable section lower than it
704 (the loadable section directly below it in memory).
705 this_offset = lower_offset = lower_addr - lower_orig_addr */
706
707 /* Calculate offsets for sections. */
708 if (addrs)
709 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
710 {
711 if (addrs->other[i].addr != 0)
712 {
713 sect = bfd_get_section_by_name (objfile->obfd,
714 addrs->other[i].name);
715 if (sect)
716 {
717 addrs->other[i].addr
718 -= bfd_section_vma (objfile->obfd, sect);
719 lower_offset = addrs->other[i].addr;
720 /* This is the index used by BFD. */
721 addrs->other[i].sectindex = sect->index ;
722 }
723 else
724 {
725 warning ("section %s not found in %s",
726 addrs->other[i].name,
727 objfile->name);
728 addrs->other[i].addr = 0;
729 }
730 }
731 else
732 addrs->other[i].addr = lower_offset;
733 }
734 }
735
736 /* Initialize symbol reading routines for this objfile, allow complaints to
737 appear for this new file, and record how verbose to be, then do the
738 initial symbol reading for this file. */
739
740 (*objfile->sf->sym_init) (objfile);
741 clear_complaints (&symfile_complaints, 1, verbo);
742
743 if (addrs)
744 (*objfile->sf->sym_offsets) (objfile, addrs);
745 else
746 {
747 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
748
749 /* Just copy in the offset table directly as given to us. */
750 objfile->num_sections = num_offsets;
751 objfile->section_offsets
752 = ((struct section_offsets *)
753 obstack_alloc (&objfile->psymbol_obstack, size));
754 memcpy (objfile->section_offsets, offsets, size);
755
756 init_objfile_sect_indices (objfile);
757 }
758
759 #ifndef IBM6000_TARGET
760 /* This is a SVR4/SunOS specific hack, I think. In any event, it
761 screws RS/6000. sym_offsets should be doing this sort of thing,
762 because it knows the mapping between bfd sections and
763 section_offsets. */
764 /* This is a hack. As far as I can tell, section offsets are not
765 target dependent. They are all set to addr with a couple of
766 exceptions. The exceptions are sysvr4 shared libraries, whose
767 offsets are kept in solib structures anyway and rs6000 xcoff
768 which handles shared libraries in a completely unique way.
769
770 Section offsets are built similarly, except that they are built
771 by adding addr in all cases because there is no clear mapping
772 from section_offsets into actual sections. Note that solib.c
773 has a different algorithm for finding section offsets.
774
775 These should probably all be collapsed into some target
776 independent form of shared library support. FIXME. */
777
778 if (addrs)
779 {
780 struct obj_section *s;
781
782 /* Map section offsets in "addr" back to the object's
783 sections by comparing the section names with bfd's
784 section names. Then adjust the section address by
785 the offset. */ /* for gdb/13815 */
786
787 ALL_OBJFILE_OSECTIONS (objfile, s)
788 {
789 CORE_ADDR s_addr = 0;
790 int i;
791
792 for (i = 0;
793 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
794 i++)
795 if (strcmp (bfd_section_name (s->objfile->obfd,
796 s->the_bfd_section),
797 addrs->other[i].name) == 0)
798 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
799
800 s->addr -= s->offset;
801 s->addr += s_addr;
802 s->endaddr -= s->offset;
803 s->endaddr += s_addr;
804 s->offset += s_addr;
805 }
806 }
807 #endif /* not IBM6000_TARGET */
808
809 (*objfile->sf->sym_read) (objfile, mainline);
810
811 if (!have_partial_symbols () && !have_full_symbols ())
812 {
813 wrap_here ("");
814 printf_filtered ("(no debugging symbols found)...");
815 wrap_here ("");
816 }
817
818 /* Don't allow char * to have a typename (else would get caddr_t).
819 Ditto void *. FIXME: Check whether this is now done by all the
820 symbol readers themselves (many of them now do), and if so remove
821 it from here. */
822
823 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
824 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
825
826 /* Mark the objfile has having had initial symbol read attempted. Note
827 that this does not mean we found any symbols... */
828
829 objfile->flags |= OBJF_SYMS;
830
831 /* Discard cleanups as symbol reading was successful. */
832
833 discard_cleanups (old_chain);
834
835 /* Call this after reading in a new symbol table to give target
836 dependent code a crack at the new symbols. For instance, this
837 could be used to update the values of target-specific symbols GDB
838 needs to keep track of (such as _sigtramp, or whatever). */
839
840 TARGET_SYMFILE_POSTREAD (objfile);
841 }
842
843 /* Perform required actions after either reading in the initial
844 symbols for a new objfile, or mapping in the symbols from a reusable
845 objfile. */
846
847 void
848 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
849 {
850
851 /* If this is the main symbol file we have to clean up all users of the
852 old main symbol file. Otherwise it is sufficient to fixup all the
853 breakpoints that may have been redefined by this symbol file. */
854 if (mainline)
855 {
856 /* OK, make it the "real" symbol file. */
857 symfile_objfile = objfile;
858
859 clear_symtab_users ();
860 }
861 else
862 {
863 breakpoint_re_set ();
864 }
865
866 /* We're done reading the symbol file; finish off complaints. */
867 clear_complaints (&symfile_complaints, 0, verbo);
868 }
869
870 /* Process a symbol file, as either the main file or as a dynamically
871 loaded file.
872
873 NAME is the file name (which will be tilde-expanded and made
874 absolute herein) (but we don't free or modify NAME itself).
875
876 FROM_TTY says how verbose to be.
877
878 MAINLINE specifies whether this is the main symbol file, or whether
879 it's an extra symbol file such as dynamically loaded code.
880
881 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
882 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
883 non-zero.
884
885 Upon success, returns a pointer to the objfile that was added.
886 Upon failure, jumps back to command level (never returns). */
887 static struct objfile *
888 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
889 struct section_addr_info *addrs,
890 struct section_offsets *offsets,
891 int num_offsets,
892 int mainline, int flags)
893 {
894 struct objfile *objfile;
895 struct partial_symtab *psymtab;
896 char *debugfile;
897 bfd *abfd;
898 struct section_addr_info orig_addrs;
899
900 if (addrs)
901 orig_addrs = *addrs;
902
903 /* Open a bfd for the file, and give user a chance to burp if we'd be
904 interactively wiping out any existing symbols. */
905
906 abfd = symfile_bfd_open (name);
907
908 if ((have_full_symbols () || have_partial_symbols ())
909 && mainline
910 && from_tty
911 && !query ("Load new symbol table from \"%s\"? ", name))
912 error ("Not confirmed.");
913
914 objfile = allocate_objfile (abfd, flags);
915
916 /* If the objfile uses a mapped symbol file, and we have a psymtab for
917 it, then skip reading any symbols at this time. */
918
919 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
920 {
921 /* We mapped in an existing symbol table file that already has had
922 initial symbol reading performed, so we can skip that part. Notify
923 the user that instead of reading the symbols, they have been mapped.
924 */
925 if (from_tty || info_verbose)
926 {
927 printf_filtered ("Mapped symbols for %s...", name);
928 wrap_here ("");
929 gdb_flush (gdb_stdout);
930 }
931 init_entry_point_info (objfile);
932 find_sym_fns (objfile);
933 }
934 else
935 {
936 /* We either created a new mapped symbol table, mapped an existing
937 symbol table file which has not had initial symbol reading
938 performed, or need to read an unmapped symbol table. */
939 if (from_tty || info_verbose)
940 {
941 if (pre_add_symbol_hook)
942 pre_add_symbol_hook (name);
943 else
944 {
945 printf_filtered ("Reading symbols from %s...", name);
946 wrap_here ("");
947 gdb_flush (gdb_stdout);
948 }
949 }
950 syms_from_objfile (objfile, addrs, offsets, num_offsets,
951 mainline, from_tty);
952 }
953
954 /* We now have at least a partial symbol table. Check to see if the
955 user requested that all symbols be read on initial access via either
956 the gdb startup command line or on a per symbol file basis. Expand
957 all partial symbol tables for this objfile if so. */
958
959 if ((flags & OBJF_READNOW) || readnow_symbol_files)
960 {
961 if (from_tty || info_verbose)
962 {
963 printf_filtered ("expanding to full symbols...");
964 wrap_here ("");
965 gdb_flush (gdb_stdout);
966 }
967
968 for (psymtab = objfile->psymtabs;
969 psymtab != NULL;
970 psymtab = psymtab->next)
971 {
972 psymtab_to_symtab (psymtab);
973 }
974 }
975
976 debugfile = find_separate_debug_file (objfile);
977 if (debugfile)
978 {
979 if (from_tty || info_verbose)
980 {
981 printf_filtered ("loading separate debug info from '%s'",
982 debugfile);
983 wrap_here ("");
984 gdb_flush (gdb_stdout);
985 }
986
987 if (addrs != NULL)
988 {
989 objfile->separate_debug_objfile
990 = symbol_file_add (debugfile, from_tty, &orig_addrs, 0, flags);
991 }
992 else
993 {
994 objfile->separate_debug_objfile
995 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
996 }
997 objfile->separate_debug_objfile->separate_debug_objfile_backlink
998 = objfile;
999
1000 /* Put the separate debug object before the normal one, this is so that
1001 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1002 put_objfile_before (objfile->separate_debug_objfile, objfile);
1003
1004 xfree (debugfile);
1005 }
1006
1007 if (from_tty || info_verbose)
1008 {
1009 if (post_add_symbol_hook)
1010 post_add_symbol_hook ();
1011 else
1012 {
1013 printf_filtered ("done.\n");
1014 }
1015 }
1016
1017 /* We print some messages regardless of whether 'from_tty ||
1018 info_verbose' is true, so make sure they go out at the right
1019 time. */
1020 gdb_flush (gdb_stdout);
1021
1022 if (objfile->sf == NULL)
1023 return objfile; /* No symbols. */
1024
1025 new_symfile_objfile (objfile, mainline, from_tty);
1026
1027 if (target_new_objfile_hook)
1028 target_new_objfile_hook (objfile);
1029
1030 return (objfile);
1031 }
1032
1033
1034 /* Process a symbol file, as either the main file or as a dynamically
1035 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1036 for details. */
1037 struct objfile *
1038 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1039 int mainline, int flags)
1040 {
1041 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
1042 mainline, flags);
1043 }
1044
1045
1046 /* Call symbol_file_add() with default values and update whatever is
1047 affected by the loading of a new main().
1048 Used when the file is supplied in the gdb command line
1049 and by some targets with special loading requirements.
1050 The auxiliary function, symbol_file_add_main_1(), has the flags
1051 argument for the switches that can only be specified in the symbol_file
1052 command itself. */
1053
1054 void
1055 symbol_file_add_main (char *args, int from_tty)
1056 {
1057 symbol_file_add_main_1 (args, from_tty, 0);
1058 }
1059
1060 static void
1061 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1062 {
1063 symbol_file_add (args, from_tty, NULL, 1, flags);
1064
1065 #ifdef HPUXHPPA
1066 RESET_HP_UX_GLOBALS ();
1067 #endif
1068
1069 /* Getting new symbols may change our opinion about
1070 what is frameless. */
1071 reinit_frame_cache ();
1072
1073 set_initial_language ();
1074 }
1075
1076 void
1077 symbol_file_clear (int from_tty)
1078 {
1079 if ((have_full_symbols () || have_partial_symbols ())
1080 && from_tty
1081 && !query ("Discard symbol table from `%s'? ",
1082 symfile_objfile->name))
1083 error ("Not confirmed.");
1084 free_all_objfiles ();
1085
1086 /* solib descriptors may have handles to objfiles. Since their
1087 storage has just been released, we'd better wipe the solib
1088 descriptors as well.
1089 */
1090 #if defined(SOLIB_RESTART)
1091 SOLIB_RESTART ();
1092 #endif
1093
1094 symfile_objfile = NULL;
1095 if (from_tty)
1096 printf_unfiltered ("No symbol file now.\n");
1097 #ifdef HPUXHPPA
1098 RESET_HP_UX_GLOBALS ();
1099 #endif
1100 }
1101
1102 static char *
1103 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1104 {
1105 asection *sect;
1106 bfd_size_type debuglink_size;
1107 unsigned long crc32;
1108 char *contents;
1109 int crc_offset;
1110 unsigned char *p;
1111
1112 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1113
1114 if (sect == NULL)
1115 return NULL;
1116
1117 debuglink_size = bfd_section_size (objfile->obfd, sect);
1118
1119 contents = xmalloc (debuglink_size);
1120 bfd_get_section_contents (objfile->obfd, sect, contents,
1121 (file_ptr)0, (bfd_size_type)debuglink_size);
1122
1123 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1124 crc_offset = strlen (contents) + 1;
1125 crc_offset = (crc_offset + 3) & ~3;
1126
1127 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1128
1129 *crc32_out = crc32;
1130 return contents;
1131 }
1132
1133 static int
1134 separate_debug_file_exists (const char *name, unsigned long crc)
1135 {
1136 unsigned long file_crc = 0;
1137 int fd;
1138 char buffer[8*1024];
1139 int count;
1140
1141 fd = open (name, O_RDONLY | O_BINARY);
1142 if (fd < 0)
1143 return 0;
1144
1145 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1146 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1147
1148 close (fd);
1149
1150 return crc == file_crc;
1151 }
1152
1153 static char *debug_file_directory = NULL;
1154
1155 #if ! defined (DEBUG_SUBDIRECTORY)
1156 #define DEBUG_SUBDIRECTORY ".debug"
1157 #endif
1158
1159 static char *
1160 find_separate_debug_file (struct objfile *objfile)
1161 {
1162 asection *sect;
1163 char *basename;
1164 char *dir;
1165 char *debugfile;
1166 char *name_copy;
1167 bfd_size_type debuglink_size;
1168 unsigned long crc32;
1169 int i;
1170
1171 basename = get_debug_link_info (objfile, &crc32);
1172
1173 if (basename == NULL)
1174 return NULL;
1175
1176 dir = xstrdup (objfile->name);
1177
1178 /* Strip off filename part */
1179 for (i = strlen(dir) - 1; i >= 0; i--)
1180 {
1181 if (IS_DIR_SEPARATOR (dir[i]))
1182 break;
1183 }
1184 dir[i+1] = '\0';
1185
1186 debugfile = alloca (strlen (debug_file_directory) + 1
1187 + strlen (dir)
1188 + strlen (DEBUG_SUBDIRECTORY)
1189 + strlen ("/")
1190 + strlen (basename)
1191 + 1);
1192
1193 /* First try in the same directory as the original file. */
1194 strcpy (debugfile, dir);
1195 strcat (debugfile, basename);
1196
1197 if (separate_debug_file_exists (debugfile, crc32))
1198 {
1199 xfree (basename);
1200 xfree (dir);
1201 return xstrdup (debugfile);
1202 }
1203
1204 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1205 strcpy (debugfile, dir);
1206 strcat (debugfile, DEBUG_SUBDIRECTORY);
1207 strcat (debugfile, "/");
1208 strcat (debugfile, basename);
1209
1210 if (separate_debug_file_exists (debugfile, crc32))
1211 {
1212 xfree (basename);
1213 xfree (dir);
1214 return xstrdup (debugfile);
1215 }
1216
1217 /* Then try in the global debugfile directory. */
1218 strcpy (debugfile, debug_file_directory);
1219 strcat (debugfile, "/");
1220 strcat (debugfile, dir);
1221 strcat (debugfile, "/");
1222 strcat (debugfile, basename);
1223
1224 if (separate_debug_file_exists (debugfile, crc32))
1225 {
1226 xfree (basename);
1227 xfree (dir);
1228 return xstrdup (debugfile);
1229 }
1230
1231 xfree (basename);
1232 xfree (dir);
1233 return NULL;
1234 }
1235
1236
1237 /* This is the symbol-file command. Read the file, analyze its
1238 symbols, and add a struct symtab to a symtab list. The syntax of
1239 the command is rather bizarre--(1) buildargv implements various
1240 quoting conventions which are undocumented and have little or
1241 nothing in common with the way things are quoted (or not quoted)
1242 elsewhere in GDB, (2) options are used, which are not generally
1243 used in GDB (perhaps "set mapped on", "set readnow on" would be
1244 better), (3) the order of options matters, which is contrary to GNU
1245 conventions (because it is confusing and inconvenient). */
1246 /* Note: ezannoni 2000-04-17. This function used to have support for
1247 rombug (see remote-os9k.c). It consisted of a call to target_link()
1248 (target.c) to get the address of the text segment from the target,
1249 and pass that to symbol_file_add(). This is no longer supported. */
1250
1251 void
1252 symbol_file_command (char *args, int from_tty)
1253 {
1254 char **argv;
1255 char *name = NULL;
1256 struct cleanup *cleanups;
1257 int flags = OBJF_USERLOADED;
1258
1259 dont_repeat ();
1260
1261 if (args == NULL)
1262 {
1263 symbol_file_clear (from_tty);
1264 }
1265 else
1266 {
1267 if ((argv = buildargv (args)) == NULL)
1268 {
1269 nomem (0);
1270 }
1271 cleanups = make_cleanup_freeargv (argv);
1272 while (*argv != NULL)
1273 {
1274 if (STREQ (*argv, "-mapped"))
1275 flags |= OBJF_MAPPED;
1276 else
1277 if (STREQ (*argv, "-readnow"))
1278 flags |= OBJF_READNOW;
1279 else
1280 if (**argv == '-')
1281 error ("unknown option `%s'", *argv);
1282 else
1283 {
1284 name = *argv;
1285
1286 symbol_file_add_main_1 (name, from_tty, flags);
1287 }
1288 argv++;
1289 }
1290
1291 if (name == NULL)
1292 {
1293 error ("no symbol file name was specified");
1294 }
1295 do_cleanups (cleanups);
1296 }
1297 }
1298
1299 /* Set the initial language.
1300
1301 A better solution would be to record the language in the psymtab when reading
1302 partial symbols, and then use it (if known) to set the language. This would
1303 be a win for formats that encode the language in an easily discoverable place,
1304 such as DWARF. For stabs, we can jump through hoops looking for specially
1305 named symbols or try to intuit the language from the specific type of stabs
1306 we find, but we can't do that until later when we read in full symbols.
1307 FIXME. */
1308
1309 static void
1310 set_initial_language (void)
1311 {
1312 struct partial_symtab *pst;
1313 enum language lang = language_unknown;
1314
1315 pst = find_main_psymtab ();
1316 if (pst != NULL)
1317 {
1318 if (pst->filename != NULL)
1319 {
1320 lang = deduce_language_from_filename (pst->filename);
1321 }
1322 if (lang == language_unknown)
1323 {
1324 /* Make C the default language */
1325 lang = language_c;
1326 }
1327 set_language (lang);
1328 expected_language = current_language; /* Don't warn the user */
1329 }
1330 }
1331
1332 /* Open file specified by NAME and hand it off to BFD for preliminary
1333 analysis. Result is a newly initialized bfd *, which includes a newly
1334 malloc'd` copy of NAME (tilde-expanded and made absolute).
1335 In case of trouble, error() is called. */
1336
1337 bfd *
1338 symfile_bfd_open (char *name)
1339 {
1340 bfd *sym_bfd;
1341 int desc;
1342 char *absolute_name;
1343
1344
1345
1346 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1347
1348 /* Look down path for it, allocate 2nd new malloc'd copy. */
1349 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1350 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1351 if (desc < 0)
1352 {
1353 char *exename = alloca (strlen (name) + 5);
1354 strcat (strcpy (exename, name), ".exe");
1355 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1356 0, &absolute_name);
1357 }
1358 #endif
1359 if (desc < 0)
1360 {
1361 make_cleanup (xfree, name);
1362 perror_with_name (name);
1363 }
1364 xfree (name); /* Free 1st new malloc'd copy */
1365 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1366 /* It'll be freed in free_objfile(). */
1367
1368 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1369 if (!sym_bfd)
1370 {
1371 close (desc);
1372 make_cleanup (xfree, name);
1373 error ("\"%s\": can't open to read symbols: %s.", name,
1374 bfd_errmsg (bfd_get_error ()));
1375 }
1376 sym_bfd->cacheable = 1;
1377
1378 if (!bfd_check_format (sym_bfd, bfd_object))
1379 {
1380 /* FIXME: should be checking for errors from bfd_close (for one thing,
1381 on error it does not free all the storage associated with the
1382 bfd). */
1383 bfd_close (sym_bfd); /* This also closes desc */
1384 make_cleanup (xfree, name);
1385 error ("\"%s\": can't read symbols: %s.", name,
1386 bfd_errmsg (bfd_get_error ()));
1387 }
1388 return (sym_bfd);
1389 }
1390
1391 /* Return the section index for the given section name. Return -1 if
1392 the section was not found. */
1393 int
1394 get_section_index (struct objfile *objfile, char *section_name)
1395 {
1396 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1397 if (sect)
1398 return sect->index;
1399 else
1400 return -1;
1401 }
1402
1403 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1404 startup by the _initialize routine in each object file format reader,
1405 to register information about each format the the reader is prepared
1406 to handle. */
1407
1408 void
1409 add_symtab_fns (struct sym_fns *sf)
1410 {
1411 sf->next = symtab_fns;
1412 symtab_fns = sf;
1413 }
1414
1415
1416 /* Initialize to read symbols from the symbol file sym_bfd. It either
1417 returns or calls error(). The result is an initialized struct sym_fns
1418 in the objfile structure, that contains cached information about the
1419 symbol file. */
1420
1421 static void
1422 find_sym_fns (struct objfile *objfile)
1423 {
1424 struct sym_fns *sf;
1425 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1426 char *our_target = bfd_get_target (objfile->obfd);
1427
1428 if (our_flavour == bfd_target_srec_flavour
1429 || our_flavour == bfd_target_ihex_flavour
1430 || our_flavour == bfd_target_tekhex_flavour)
1431 return; /* No symbols. */
1432
1433 /* Special kludge for apollo. See dstread.c. */
1434 if (STREQN (our_target, "apollo", 6))
1435 our_flavour = (enum bfd_flavour) -2;
1436
1437 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1438 {
1439 if (our_flavour == sf->sym_flavour)
1440 {
1441 objfile->sf = sf;
1442 return;
1443 }
1444 }
1445 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1446 bfd_get_target (objfile->obfd));
1447 }
1448 \f
1449 /* This function runs the load command of our current target. */
1450
1451 static void
1452 load_command (char *arg, int from_tty)
1453 {
1454 if (arg == NULL)
1455 arg = get_exec_file (1);
1456 target_load (arg, from_tty);
1457
1458 /* After re-loading the executable, we don't really know which
1459 overlays are mapped any more. */
1460 overlay_cache_invalid = 1;
1461 }
1462
1463 /* This version of "load" should be usable for any target. Currently
1464 it is just used for remote targets, not inftarg.c or core files,
1465 on the theory that only in that case is it useful.
1466
1467 Avoiding xmodem and the like seems like a win (a) because we don't have
1468 to worry about finding it, and (b) On VMS, fork() is very slow and so
1469 we don't want to run a subprocess. On the other hand, I'm not sure how
1470 performance compares. */
1471
1472 static int download_write_size = 512;
1473 static int validate_download = 0;
1474
1475 /* Callback service function for generic_load (bfd_map_over_sections). */
1476
1477 static void
1478 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1479 {
1480 bfd_size_type *sum = data;
1481
1482 *sum += bfd_get_section_size_before_reloc (asec);
1483 }
1484
1485 /* Opaque data for load_section_callback. */
1486 struct load_section_data {
1487 unsigned long load_offset;
1488 unsigned long write_count;
1489 unsigned long data_count;
1490 bfd_size_type total_size;
1491 };
1492
1493 /* Callback service function for generic_load (bfd_map_over_sections). */
1494
1495 static void
1496 load_section_callback (bfd *abfd, asection *asec, void *data)
1497 {
1498 struct load_section_data *args = data;
1499
1500 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1501 {
1502 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1503 if (size > 0)
1504 {
1505 char *buffer;
1506 struct cleanup *old_chain;
1507 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1508 bfd_size_type block_size;
1509 int err;
1510 const char *sect_name = bfd_get_section_name (abfd, asec);
1511 bfd_size_type sent;
1512
1513 if (download_write_size > 0 && size > download_write_size)
1514 block_size = download_write_size;
1515 else
1516 block_size = size;
1517
1518 buffer = xmalloc (size);
1519 old_chain = make_cleanup (xfree, buffer);
1520
1521 /* Is this really necessary? I guess it gives the user something
1522 to look at during a long download. */
1523 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1524 sect_name, paddr_nz (size), paddr_nz (lma));
1525
1526 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1527
1528 sent = 0;
1529 do
1530 {
1531 int len;
1532 bfd_size_type this_transfer = size - sent;
1533
1534 if (this_transfer >= block_size)
1535 this_transfer = block_size;
1536 len = target_write_memory_partial (lma, buffer,
1537 this_transfer, &err);
1538 if (err)
1539 break;
1540 if (validate_download)
1541 {
1542 /* Broken memories and broken monitors manifest
1543 themselves here when bring new computers to
1544 life. This doubles already slow downloads. */
1545 /* NOTE: cagney/1999-10-18: A more efficient
1546 implementation might add a verify_memory()
1547 method to the target vector and then use
1548 that. remote.c could implement that method
1549 using the ``qCRC'' packet. */
1550 char *check = xmalloc (len);
1551 struct cleanup *verify_cleanups =
1552 make_cleanup (xfree, check);
1553
1554 if (target_read_memory (lma, check, len) != 0)
1555 error ("Download verify read failed at 0x%s",
1556 paddr (lma));
1557 if (memcmp (buffer, check, len) != 0)
1558 error ("Download verify compare failed at 0x%s",
1559 paddr (lma));
1560 do_cleanups (verify_cleanups);
1561 }
1562 args->data_count += len;
1563 lma += len;
1564 buffer += len;
1565 args->write_count += 1;
1566 sent += len;
1567 if (quit_flag
1568 || (ui_load_progress_hook != NULL
1569 && ui_load_progress_hook (sect_name, sent)))
1570 error ("Canceled the download");
1571
1572 if (show_load_progress != NULL)
1573 show_load_progress (sect_name, sent, size,
1574 args->data_count, args->total_size);
1575 }
1576 while (sent < size);
1577
1578 if (err != 0)
1579 error ("Memory access error while loading section %s.", sect_name);
1580
1581 do_cleanups (old_chain);
1582 }
1583 }
1584 }
1585
1586 void
1587 generic_load (char *args, int from_tty)
1588 {
1589 asection *s;
1590 bfd *loadfile_bfd;
1591 time_t start_time, end_time; /* Start and end times of download */
1592 char *filename;
1593 struct cleanup *old_cleanups;
1594 char *offptr;
1595 struct load_section_data cbdata;
1596 CORE_ADDR entry;
1597
1598 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1599 cbdata.write_count = 0; /* Number of writes needed. */
1600 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1601 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1602
1603 /* Parse the input argument - the user can specify a load offset as
1604 a second argument. */
1605 filename = xmalloc (strlen (args) + 1);
1606 old_cleanups = make_cleanup (xfree, filename);
1607 strcpy (filename, args);
1608 offptr = strchr (filename, ' ');
1609 if (offptr != NULL)
1610 {
1611 char *endptr;
1612
1613 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1614 if (offptr == endptr)
1615 error ("Invalid download offset:%s\n", offptr);
1616 *offptr = '\0';
1617 }
1618 else
1619 cbdata.load_offset = 0;
1620
1621 /* Open the file for loading. */
1622 loadfile_bfd = bfd_openr (filename, gnutarget);
1623 if (loadfile_bfd == NULL)
1624 {
1625 perror_with_name (filename);
1626 return;
1627 }
1628
1629 /* FIXME: should be checking for errors from bfd_close (for one thing,
1630 on error it does not free all the storage associated with the
1631 bfd). */
1632 make_cleanup_bfd_close (loadfile_bfd);
1633
1634 if (!bfd_check_format (loadfile_bfd, bfd_object))
1635 {
1636 error ("\"%s\" is not an object file: %s", filename,
1637 bfd_errmsg (bfd_get_error ()));
1638 }
1639
1640 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1641 (void *) &cbdata.total_size);
1642
1643 start_time = time (NULL);
1644
1645 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1646
1647 end_time = time (NULL);
1648
1649 entry = bfd_get_start_address (loadfile_bfd);
1650 ui_out_text (uiout, "Start address ");
1651 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1652 ui_out_text (uiout, ", load size ");
1653 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1654 ui_out_text (uiout, "\n");
1655 /* We were doing this in remote-mips.c, I suspect it is right
1656 for other targets too. */
1657 write_pc (entry);
1658
1659 /* FIXME: are we supposed to call symbol_file_add or not? According to
1660 a comment from remote-mips.c (where a call to symbol_file_add was
1661 commented out), making the call confuses GDB if more than one file is
1662 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1663 does. */
1664
1665 print_transfer_performance (gdb_stdout, cbdata.data_count,
1666 cbdata.write_count, end_time - start_time);
1667
1668 do_cleanups (old_cleanups);
1669 }
1670
1671 /* Report how fast the transfer went. */
1672
1673 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1674 replaced by print_transfer_performance (with a very different
1675 function signature). */
1676
1677 void
1678 report_transfer_performance (unsigned long data_count, time_t start_time,
1679 time_t end_time)
1680 {
1681 print_transfer_performance (gdb_stdout, data_count,
1682 end_time - start_time, 0);
1683 }
1684
1685 void
1686 print_transfer_performance (struct ui_file *stream,
1687 unsigned long data_count,
1688 unsigned long write_count,
1689 unsigned long time_count)
1690 {
1691 ui_out_text (uiout, "Transfer rate: ");
1692 if (time_count > 0)
1693 {
1694 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1695 (data_count * 8) / time_count);
1696 ui_out_text (uiout, " bits/sec");
1697 }
1698 else
1699 {
1700 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1701 ui_out_text (uiout, " bits in <1 sec");
1702 }
1703 if (write_count > 0)
1704 {
1705 ui_out_text (uiout, ", ");
1706 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1707 ui_out_text (uiout, " bytes/write");
1708 }
1709 ui_out_text (uiout, ".\n");
1710 }
1711
1712 /* This function allows the addition of incrementally linked object files.
1713 It does not modify any state in the target, only in the debugger. */
1714 /* Note: ezannoni 2000-04-13 This function/command used to have a
1715 special case syntax for the rombug target (Rombug is the boot
1716 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1717 rombug case, the user doesn't need to supply a text address,
1718 instead a call to target_link() (in target.c) would supply the
1719 value to use. We are now discontinuing this type of ad hoc syntax. */
1720
1721 /* ARGSUSED */
1722 static void
1723 add_symbol_file_command (char *args, int from_tty)
1724 {
1725 char *filename = NULL;
1726 int flags = OBJF_USERLOADED;
1727 char *arg;
1728 int expecting_option = 0;
1729 int section_index = 0;
1730 int argcnt = 0;
1731 int sec_num = 0;
1732 int i;
1733 int expecting_sec_name = 0;
1734 int expecting_sec_addr = 0;
1735
1736 struct
1737 {
1738 char *name;
1739 char *value;
1740 } sect_opts[SECT_OFF_MAX];
1741
1742 struct section_addr_info section_addrs;
1743 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1744
1745 dont_repeat ();
1746
1747 if (args == NULL)
1748 error ("add-symbol-file takes a file name and an address");
1749
1750 /* Make a copy of the string that we can safely write into. */
1751 args = xstrdup (args);
1752
1753 /* Ensure section_addrs is initialized */
1754 memset (&section_addrs, 0, sizeof (section_addrs));
1755
1756 while (*args != '\000')
1757 {
1758 /* Any leading spaces? */
1759 while (isspace (*args))
1760 args++;
1761
1762 /* Point arg to the beginning of the argument. */
1763 arg = args;
1764
1765 /* Move args pointer over the argument. */
1766 while ((*args != '\000') && !isspace (*args))
1767 args++;
1768
1769 /* If there are more arguments, terminate arg and
1770 proceed past it. */
1771 if (*args != '\000')
1772 *args++ = '\000';
1773
1774 /* Now process the argument. */
1775 if (argcnt == 0)
1776 {
1777 /* The first argument is the file name. */
1778 filename = tilde_expand (arg);
1779 make_cleanup (xfree, filename);
1780 }
1781 else
1782 if (argcnt == 1)
1783 {
1784 /* The second argument is always the text address at which
1785 to load the program. */
1786 sect_opts[section_index].name = ".text";
1787 sect_opts[section_index].value = arg;
1788 section_index++;
1789 }
1790 else
1791 {
1792 /* It's an option (starting with '-') or it's an argument
1793 to an option */
1794
1795 if (*arg == '-')
1796 {
1797 if (strcmp (arg, "-mapped") == 0)
1798 flags |= OBJF_MAPPED;
1799 else
1800 if (strcmp (arg, "-readnow") == 0)
1801 flags |= OBJF_READNOW;
1802 else
1803 if (strcmp (arg, "-s") == 0)
1804 {
1805 if (section_index >= SECT_OFF_MAX)
1806 error ("Too many sections specified.");
1807 expecting_sec_name = 1;
1808 expecting_sec_addr = 1;
1809 }
1810 }
1811 else
1812 {
1813 if (expecting_sec_name)
1814 {
1815 sect_opts[section_index].name = arg;
1816 expecting_sec_name = 0;
1817 }
1818 else
1819 if (expecting_sec_addr)
1820 {
1821 sect_opts[section_index].value = arg;
1822 expecting_sec_addr = 0;
1823 section_index++;
1824 }
1825 else
1826 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1827 }
1828 }
1829 argcnt++;
1830 }
1831
1832 /* Print the prompt for the query below. And save the arguments into
1833 a sect_addr_info structure to be passed around to other
1834 functions. We have to split this up into separate print
1835 statements because local_hex_string returns a local static
1836 string. */
1837
1838 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1839 for (i = 0; i < section_index; i++)
1840 {
1841 CORE_ADDR addr;
1842 char *val = sect_opts[i].value;
1843 char *sec = sect_opts[i].name;
1844
1845 val = sect_opts[i].value;
1846 if (val[0] == '0' && val[1] == 'x')
1847 addr = strtoul (val+2, NULL, 16);
1848 else
1849 addr = strtoul (val, NULL, 10);
1850
1851 /* Here we store the section offsets in the order they were
1852 entered on the command line. */
1853 section_addrs.other[sec_num].name = sec;
1854 section_addrs.other[sec_num].addr = addr;
1855 printf_filtered ("\t%s_addr = %s\n",
1856 sec,
1857 local_hex_string ((unsigned long)addr));
1858 sec_num++;
1859
1860 /* The object's sections are initialized when a
1861 call is made to build_objfile_section_table (objfile).
1862 This happens in reread_symbols.
1863 At this point, we don't know what file type this is,
1864 so we can't determine what section names are valid. */
1865 }
1866
1867 if (from_tty && (!query ("%s", "")))
1868 error ("Not confirmed.");
1869
1870 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1871
1872 /* Getting new symbols may change our opinion about what is
1873 frameless. */
1874 reinit_frame_cache ();
1875 do_cleanups (my_cleanups);
1876 }
1877 \f
1878 static void
1879 add_shared_symbol_files_command (char *args, int from_tty)
1880 {
1881 #ifdef ADD_SHARED_SYMBOL_FILES
1882 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1883 #else
1884 error ("This command is not available in this configuration of GDB.");
1885 #endif
1886 }
1887 \f
1888 /* Re-read symbols if a symbol-file has changed. */
1889 void
1890 reread_symbols (void)
1891 {
1892 struct objfile *objfile;
1893 long new_modtime;
1894 int reread_one = 0;
1895 struct stat new_statbuf;
1896 int res;
1897
1898 /* With the addition of shared libraries, this should be modified,
1899 the load time should be saved in the partial symbol tables, since
1900 different tables may come from different source files. FIXME.
1901 This routine should then walk down each partial symbol table
1902 and see if the symbol table that it originates from has been changed */
1903
1904 for (objfile = object_files; objfile; objfile = objfile->next)
1905 {
1906 if (objfile->obfd)
1907 {
1908 #ifdef IBM6000_TARGET
1909 /* If this object is from a shared library, then you should
1910 stat on the library name, not member name. */
1911
1912 if (objfile->obfd->my_archive)
1913 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1914 else
1915 #endif
1916 res = stat (objfile->name, &new_statbuf);
1917 if (res != 0)
1918 {
1919 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1920 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1921 objfile->name);
1922 continue;
1923 }
1924 new_modtime = new_statbuf.st_mtime;
1925 if (new_modtime != objfile->mtime)
1926 {
1927 struct cleanup *old_cleanups;
1928 struct section_offsets *offsets;
1929 int num_offsets;
1930 char *obfd_filename;
1931
1932 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1933 objfile->name);
1934
1935 /* There are various functions like symbol_file_add,
1936 symfile_bfd_open, syms_from_objfile, etc., which might
1937 appear to do what we want. But they have various other
1938 effects which we *don't* want. So we just do stuff
1939 ourselves. We don't worry about mapped files (for one thing,
1940 any mapped file will be out of date). */
1941
1942 /* If we get an error, blow away this objfile (not sure if
1943 that is the correct response for things like shared
1944 libraries). */
1945 old_cleanups = make_cleanup_free_objfile (objfile);
1946 /* We need to do this whenever any symbols go away. */
1947 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1948
1949 /* Clean up any state BFD has sitting around. We don't need
1950 to close the descriptor but BFD lacks a way of closing the
1951 BFD without closing the descriptor. */
1952 obfd_filename = bfd_get_filename (objfile->obfd);
1953 if (!bfd_close (objfile->obfd))
1954 error ("Can't close BFD for %s: %s", objfile->name,
1955 bfd_errmsg (bfd_get_error ()));
1956 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1957 if (objfile->obfd == NULL)
1958 error ("Can't open %s to read symbols.", objfile->name);
1959 /* bfd_openr sets cacheable to true, which is what we want. */
1960 if (!bfd_check_format (objfile->obfd, bfd_object))
1961 error ("Can't read symbols from %s: %s.", objfile->name,
1962 bfd_errmsg (bfd_get_error ()));
1963
1964 /* Save the offsets, we will nuke them with the rest of the
1965 psymbol_obstack. */
1966 num_offsets = objfile->num_sections;
1967 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1968 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1969
1970 /* Nuke all the state that we will re-read. Much of the following
1971 code which sets things to NULL really is necessary to tell
1972 other parts of GDB that there is nothing currently there. */
1973
1974 /* FIXME: Do we have to free a whole linked list, or is this
1975 enough? */
1976 if (objfile->global_psymbols.list)
1977 xmfree (objfile->md, objfile->global_psymbols.list);
1978 memset (&objfile->global_psymbols, 0,
1979 sizeof (objfile->global_psymbols));
1980 if (objfile->static_psymbols.list)
1981 xmfree (objfile->md, objfile->static_psymbols.list);
1982 memset (&objfile->static_psymbols, 0,
1983 sizeof (objfile->static_psymbols));
1984
1985 /* Free the obstacks for non-reusable objfiles */
1986 bcache_xfree (objfile->psymbol_cache);
1987 objfile->psymbol_cache = bcache_xmalloc ();
1988 bcache_xfree (objfile->macro_cache);
1989 objfile->macro_cache = bcache_xmalloc ();
1990 obstack_free (&objfile->psymbol_obstack, 0);
1991 obstack_free (&objfile->symbol_obstack, 0);
1992 obstack_free (&objfile->type_obstack, 0);
1993 objfile->sections = NULL;
1994 objfile->symtabs = NULL;
1995 objfile->psymtabs = NULL;
1996 objfile->free_psymtabs = NULL;
1997 objfile->msymbols = NULL;
1998 objfile->minimal_symbol_count = 0;
1999 memset (&objfile->msymbol_hash, 0,
2000 sizeof (objfile->msymbol_hash));
2001 memset (&objfile->msymbol_demangled_hash, 0,
2002 sizeof (objfile->msymbol_demangled_hash));
2003 objfile->fundamental_types = NULL;
2004 if (objfile->sf != NULL)
2005 {
2006 (*objfile->sf->sym_finish) (objfile);
2007 }
2008
2009 /* We never make this a mapped file. */
2010 objfile->md = NULL;
2011 /* obstack_specify_allocation also initializes the obstack so
2012 it is empty. */
2013 objfile->psymbol_cache = bcache_xmalloc ();
2014 objfile->macro_cache = bcache_xmalloc ();
2015 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
2016 xmalloc, xfree);
2017 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
2018 xmalloc, xfree);
2019 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
2020 xmalloc, xfree);
2021 if (build_objfile_section_table (objfile))
2022 {
2023 error ("Can't find the file sections in `%s': %s",
2024 objfile->name, bfd_errmsg (bfd_get_error ()));
2025 }
2026
2027 /* We use the same section offsets as from last time. I'm not
2028 sure whether that is always correct for shared libraries. */
2029 objfile->section_offsets = (struct section_offsets *)
2030 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
2031 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
2032 objfile->num_sections = num_offsets;
2033
2034 /* What the hell is sym_new_init for, anyway? The concept of
2035 distinguishing between the main file and additional files
2036 in this way seems rather dubious. */
2037 if (objfile == symfile_objfile)
2038 {
2039 (*objfile->sf->sym_new_init) (objfile);
2040 #ifdef HPUXHPPA
2041 RESET_HP_UX_GLOBALS ();
2042 #endif
2043 }
2044
2045 (*objfile->sf->sym_init) (objfile);
2046 clear_complaints (&symfile_complaints, 1, 1);
2047 /* The "mainline" parameter is a hideous hack; I think leaving it
2048 zero is OK since dbxread.c also does what it needs to do if
2049 objfile->global_psymbols.size is 0. */
2050 (*objfile->sf->sym_read) (objfile, 0);
2051 if (!have_partial_symbols () && !have_full_symbols ())
2052 {
2053 wrap_here ("");
2054 printf_filtered ("(no debugging symbols found)\n");
2055 wrap_here ("");
2056 }
2057 objfile->flags |= OBJF_SYMS;
2058
2059 /* We're done reading the symbol file; finish off complaints. */
2060 clear_complaints (&symfile_complaints, 0, 1);
2061
2062 /* Getting new symbols may change our opinion about what is
2063 frameless. */
2064
2065 reinit_frame_cache ();
2066
2067 /* Discard cleanups as symbol reading was successful. */
2068 discard_cleanups (old_cleanups);
2069
2070 /* If the mtime has changed between the time we set new_modtime
2071 and now, we *want* this to be out of date, so don't call stat
2072 again now. */
2073 objfile->mtime = new_modtime;
2074 reread_one = 1;
2075
2076 /* Call this after reading in a new symbol table to give target
2077 dependent code a crack at the new symbols. For instance, this
2078 could be used to update the values of target-specific symbols GDB
2079 needs to keep track of (such as _sigtramp, or whatever). */
2080
2081 TARGET_SYMFILE_POSTREAD (objfile);
2082
2083 reread_separate_symbols (objfile);
2084 }
2085 }
2086 }
2087
2088 if (reread_one)
2089 clear_symtab_users ();
2090 }
2091
2092
2093 /* Handle separate debug info for OBJFILE, which has just been
2094 re-read:
2095 - If we had separate debug info before, but now we don't, get rid
2096 of the separated objfile.
2097 - If we didn't have separated debug info before, but now we do,
2098 read in the new separated debug info file.
2099 - If the debug link points to a different file, toss the old one
2100 and read the new one.
2101 This function does *not* handle the case where objfile is still
2102 using the same separate debug info file, but that file's timestamp
2103 has changed. That case should be handled by the loop in
2104 reread_symbols already. */
2105 static void
2106 reread_separate_symbols (struct objfile *objfile)
2107 {
2108 char *debug_file;
2109 unsigned long crc32;
2110
2111 /* Does the updated objfile's debug info live in a
2112 separate file? */
2113 debug_file = find_separate_debug_file (objfile);
2114
2115 if (objfile->separate_debug_objfile)
2116 {
2117 /* There are two cases where we need to get rid of
2118 the old separated debug info objfile:
2119 - if the new primary objfile doesn't have
2120 separated debug info, or
2121 - if the new primary objfile has separate debug
2122 info, but it's under a different filename.
2123
2124 If the old and new objfiles both have separate
2125 debug info, under the same filename, then we're
2126 okay --- if the separated file's contents have
2127 changed, we will have caught that when we
2128 visited it in this function's outermost
2129 loop. */
2130 if (! debug_file
2131 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2132 free_objfile (objfile->separate_debug_objfile);
2133 }
2134
2135 /* If the new objfile has separate debug info, and we
2136 haven't loaded it already, do so now. */
2137 if (debug_file
2138 && ! objfile->separate_debug_objfile)
2139 {
2140 /* Use the same section offset table as objfile itself.
2141 Preserve the flags from objfile that make sense. */
2142 objfile->separate_debug_objfile
2143 = (symbol_file_add_with_addrs_or_offsets
2144 (debug_file,
2145 info_verbose, /* from_tty: Don't override the default. */
2146 0, /* No addr table. */
2147 objfile->section_offsets, objfile->num_sections,
2148 0, /* Not mainline. See comments about this above. */
2149 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2150 | OBJF_SHARED | OBJF_READNOW
2151 | OBJF_USERLOADED)));
2152 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2153 = objfile;
2154 }
2155 }
2156
2157
2158 \f
2159
2160
2161 typedef struct
2162 {
2163 char *ext;
2164 enum language lang;
2165 }
2166 filename_language;
2167
2168 static filename_language *filename_language_table;
2169 static int fl_table_size, fl_table_next;
2170
2171 static void
2172 add_filename_language (char *ext, enum language lang)
2173 {
2174 if (fl_table_next >= fl_table_size)
2175 {
2176 fl_table_size += 10;
2177 filename_language_table =
2178 xrealloc (filename_language_table,
2179 fl_table_size * sizeof (*filename_language_table));
2180 }
2181
2182 filename_language_table[fl_table_next].ext = xstrdup (ext);
2183 filename_language_table[fl_table_next].lang = lang;
2184 fl_table_next++;
2185 }
2186
2187 static char *ext_args;
2188
2189 static void
2190 set_ext_lang_command (char *args, int from_tty)
2191 {
2192 int i;
2193 char *cp = ext_args;
2194 enum language lang;
2195
2196 /* First arg is filename extension, starting with '.' */
2197 if (*cp != '.')
2198 error ("'%s': Filename extension must begin with '.'", ext_args);
2199
2200 /* Find end of first arg. */
2201 while (*cp && !isspace (*cp))
2202 cp++;
2203
2204 if (*cp == '\0')
2205 error ("'%s': two arguments required -- filename extension and language",
2206 ext_args);
2207
2208 /* Null-terminate first arg */
2209 *cp++ = '\0';
2210
2211 /* Find beginning of second arg, which should be a source language. */
2212 while (*cp && isspace (*cp))
2213 cp++;
2214
2215 if (*cp == '\0')
2216 error ("'%s': two arguments required -- filename extension and language",
2217 ext_args);
2218
2219 /* Lookup the language from among those we know. */
2220 lang = language_enum (cp);
2221
2222 /* Now lookup the filename extension: do we already know it? */
2223 for (i = 0; i < fl_table_next; i++)
2224 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2225 break;
2226
2227 if (i >= fl_table_next)
2228 {
2229 /* new file extension */
2230 add_filename_language (ext_args, lang);
2231 }
2232 else
2233 {
2234 /* redefining a previously known filename extension */
2235
2236 /* if (from_tty) */
2237 /* query ("Really make files of type %s '%s'?", */
2238 /* ext_args, language_str (lang)); */
2239
2240 xfree (filename_language_table[i].ext);
2241 filename_language_table[i].ext = xstrdup (ext_args);
2242 filename_language_table[i].lang = lang;
2243 }
2244 }
2245
2246 static void
2247 info_ext_lang_command (char *args, int from_tty)
2248 {
2249 int i;
2250
2251 printf_filtered ("Filename extensions and the languages they represent:");
2252 printf_filtered ("\n\n");
2253 for (i = 0; i < fl_table_next; i++)
2254 printf_filtered ("\t%s\t- %s\n",
2255 filename_language_table[i].ext,
2256 language_str (filename_language_table[i].lang));
2257 }
2258
2259 static void
2260 init_filename_language_table (void)
2261 {
2262 if (fl_table_size == 0) /* protect against repetition */
2263 {
2264 fl_table_size = 20;
2265 fl_table_next = 0;
2266 filename_language_table =
2267 xmalloc (fl_table_size * sizeof (*filename_language_table));
2268 add_filename_language (".c", language_c);
2269 add_filename_language (".C", language_cplus);
2270 add_filename_language (".cc", language_cplus);
2271 add_filename_language (".cp", language_cplus);
2272 add_filename_language (".cpp", language_cplus);
2273 add_filename_language (".cxx", language_cplus);
2274 add_filename_language (".c++", language_cplus);
2275 add_filename_language (".java", language_java);
2276 add_filename_language (".class", language_java);
2277 add_filename_language (".m", language_objc);
2278 add_filename_language (".f", language_fortran);
2279 add_filename_language (".F", language_fortran);
2280 add_filename_language (".s", language_asm);
2281 add_filename_language (".S", language_asm);
2282 add_filename_language (".pas", language_pascal);
2283 add_filename_language (".p", language_pascal);
2284 add_filename_language (".pp", language_pascal);
2285 }
2286 }
2287
2288 enum language
2289 deduce_language_from_filename (char *filename)
2290 {
2291 int i;
2292 char *cp;
2293
2294 if (filename != NULL)
2295 if ((cp = strrchr (filename, '.')) != NULL)
2296 for (i = 0; i < fl_table_next; i++)
2297 if (strcmp (cp, filename_language_table[i].ext) == 0)
2298 return filename_language_table[i].lang;
2299
2300 return language_unknown;
2301 }
2302 \f
2303 /* allocate_symtab:
2304
2305 Allocate and partly initialize a new symbol table. Return a pointer
2306 to it. error() if no space.
2307
2308 Caller must set these fields:
2309 LINETABLE(symtab)
2310 symtab->blockvector
2311 symtab->dirname
2312 symtab->free_code
2313 symtab->free_ptr
2314 possibly free_named_symtabs (symtab->filename);
2315 */
2316
2317 struct symtab *
2318 allocate_symtab (char *filename, struct objfile *objfile)
2319 {
2320 register struct symtab *symtab;
2321
2322 symtab = (struct symtab *)
2323 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2324 memset (symtab, 0, sizeof (*symtab));
2325 symtab->filename = obsavestring (filename, strlen (filename),
2326 &objfile->symbol_obstack);
2327 symtab->fullname = NULL;
2328 symtab->language = deduce_language_from_filename (filename);
2329 symtab->debugformat = obsavestring ("unknown", 7,
2330 &objfile->symbol_obstack);
2331
2332 /* Hook it to the objfile it comes from */
2333
2334 symtab->objfile = objfile;
2335 symtab->next = objfile->symtabs;
2336 objfile->symtabs = symtab;
2337
2338 /* FIXME: This should go away. It is only defined for the Z8000,
2339 and the Z8000 definition of this macro doesn't have anything to
2340 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2341 here for convenience. */
2342 #ifdef INIT_EXTRA_SYMTAB_INFO
2343 INIT_EXTRA_SYMTAB_INFO (symtab);
2344 #endif
2345
2346 return (symtab);
2347 }
2348
2349 struct partial_symtab *
2350 allocate_psymtab (char *filename, struct objfile *objfile)
2351 {
2352 struct partial_symtab *psymtab;
2353
2354 if (objfile->free_psymtabs)
2355 {
2356 psymtab = objfile->free_psymtabs;
2357 objfile->free_psymtabs = psymtab->next;
2358 }
2359 else
2360 psymtab = (struct partial_symtab *)
2361 obstack_alloc (&objfile->psymbol_obstack,
2362 sizeof (struct partial_symtab));
2363
2364 memset (psymtab, 0, sizeof (struct partial_symtab));
2365 psymtab->filename = obsavestring (filename, strlen (filename),
2366 &objfile->psymbol_obstack);
2367 psymtab->symtab = NULL;
2368
2369 /* Prepend it to the psymtab list for the objfile it belongs to.
2370 Psymtabs are searched in most recent inserted -> least recent
2371 inserted order. */
2372
2373 psymtab->objfile = objfile;
2374 psymtab->next = objfile->psymtabs;
2375 objfile->psymtabs = psymtab;
2376 #if 0
2377 {
2378 struct partial_symtab **prev_pst;
2379 psymtab->objfile = objfile;
2380 psymtab->next = NULL;
2381 prev_pst = &(objfile->psymtabs);
2382 while ((*prev_pst) != NULL)
2383 prev_pst = &((*prev_pst)->next);
2384 (*prev_pst) = psymtab;
2385 }
2386 #endif
2387
2388 return (psymtab);
2389 }
2390
2391 void
2392 discard_psymtab (struct partial_symtab *pst)
2393 {
2394 struct partial_symtab **prev_pst;
2395
2396 /* From dbxread.c:
2397 Empty psymtabs happen as a result of header files which don't
2398 have any symbols in them. There can be a lot of them. But this
2399 check is wrong, in that a psymtab with N_SLINE entries but
2400 nothing else is not empty, but we don't realize that. Fixing
2401 that without slowing things down might be tricky. */
2402
2403 /* First, snip it out of the psymtab chain */
2404
2405 prev_pst = &(pst->objfile->psymtabs);
2406 while ((*prev_pst) != pst)
2407 prev_pst = &((*prev_pst)->next);
2408 (*prev_pst) = pst->next;
2409
2410 /* Next, put it on a free list for recycling */
2411
2412 pst->next = pst->objfile->free_psymtabs;
2413 pst->objfile->free_psymtabs = pst;
2414 }
2415 \f
2416
2417 /* Reset all data structures in gdb which may contain references to symbol
2418 table data. */
2419
2420 void
2421 clear_symtab_users (void)
2422 {
2423 /* Someday, we should do better than this, by only blowing away
2424 the things that really need to be blown. */
2425 clear_value_history ();
2426 clear_displays ();
2427 clear_internalvars ();
2428 breakpoint_re_set ();
2429 set_default_breakpoint (0, 0, 0, 0);
2430 clear_current_source_symtab_and_line ();
2431 clear_pc_function_cache ();
2432 if (target_new_objfile_hook)
2433 target_new_objfile_hook (NULL);
2434 }
2435
2436 static void
2437 clear_symtab_users_cleanup (void *ignore)
2438 {
2439 clear_symtab_users ();
2440 }
2441
2442 /* clear_symtab_users_once:
2443
2444 This function is run after symbol reading, or from a cleanup.
2445 If an old symbol table was obsoleted, the old symbol table
2446 has been blown away, but the other GDB data structures that may
2447 reference it have not yet been cleared or re-directed. (The old
2448 symtab was zapped, and the cleanup queued, in free_named_symtab()
2449 below.)
2450
2451 This function can be queued N times as a cleanup, or called
2452 directly; it will do all the work the first time, and then will be a
2453 no-op until the next time it is queued. This works by bumping a
2454 counter at queueing time. Much later when the cleanup is run, or at
2455 the end of symbol processing (in case the cleanup is discarded), if
2456 the queued count is greater than the "done-count", we do the work
2457 and set the done-count to the queued count. If the queued count is
2458 less than or equal to the done-count, we just ignore the call. This
2459 is needed because reading a single .o file will often replace many
2460 symtabs (one per .h file, for example), and we don't want to reset
2461 the breakpoints N times in the user's face.
2462
2463 The reason we both queue a cleanup, and call it directly after symbol
2464 reading, is because the cleanup protects us in case of errors, but is
2465 discarded if symbol reading is successful. */
2466
2467 #if 0
2468 /* FIXME: As free_named_symtabs is currently a big noop this function
2469 is no longer needed. */
2470 static void clear_symtab_users_once (void);
2471
2472 static int clear_symtab_users_queued;
2473 static int clear_symtab_users_done;
2474
2475 static void
2476 clear_symtab_users_once (void)
2477 {
2478 /* Enforce once-per-`do_cleanups'-semantics */
2479 if (clear_symtab_users_queued <= clear_symtab_users_done)
2480 return;
2481 clear_symtab_users_done = clear_symtab_users_queued;
2482
2483 clear_symtab_users ();
2484 }
2485 #endif
2486
2487 /* Delete the specified psymtab, and any others that reference it. */
2488
2489 static void
2490 cashier_psymtab (struct partial_symtab *pst)
2491 {
2492 struct partial_symtab *ps, *pprev = NULL;
2493 int i;
2494
2495 /* Find its previous psymtab in the chain */
2496 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2497 {
2498 if (ps == pst)
2499 break;
2500 pprev = ps;
2501 }
2502
2503 if (ps)
2504 {
2505 /* Unhook it from the chain. */
2506 if (ps == pst->objfile->psymtabs)
2507 pst->objfile->psymtabs = ps->next;
2508 else
2509 pprev->next = ps->next;
2510
2511 /* FIXME, we can't conveniently deallocate the entries in the
2512 partial_symbol lists (global_psymbols/static_psymbols) that
2513 this psymtab points to. These just take up space until all
2514 the psymtabs are reclaimed. Ditto the dependencies list and
2515 filename, which are all in the psymbol_obstack. */
2516
2517 /* We need to cashier any psymtab that has this one as a dependency... */
2518 again:
2519 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2520 {
2521 for (i = 0; i < ps->number_of_dependencies; i++)
2522 {
2523 if (ps->dependencies[i] == pst)
2524 {
2525 cashier_psymtab (ps);
2526 goto again; /* Must restart, chain has been munged. */
2527 }
2528 }
2529 }
2530 }
2531 }
2532
2533 /* If a symtab or psymtab for filename NAME is found, free it along
2534 with any dependent breakpoints, displays, etc.
2535 Used when loading new versions of object modules with the "add-file"
2536 command. This is only called on the top-level symtab or psymtab's name;
2537 it is not called for subsidiary files such as .h files.
2538
2539 Return value is 1 if we blew away the environment, 0 if not.
2540 FIXME. The return value appears to never be used.
2541
2542 FIXME. I think this is not the best way to do this. We should
2543 work on being gentler to the environment while still cleaning up
2544 all stray pointers into the freed symtab. */
2545
2546 int
2547 free_named_symtabs (char *name)
2548 {
2549 #if 0
2550 /* FIXME: With the new method of each objfile having it's own
2551 psymtab list, this function needs serious rethinking. In particular,
2552 why was it ever necessary to toss psymtabs with specific compilation
2553 unit filenames, as opposed to all psymtabs from a particular symbol
2554 file? -- fnf
2555 Well, the answer is that some systems permit reloading of particular
2556 compilation units. We want to blow away any old info about these
2557 compilation units, regardless of which objfiles they arrived in. --gnu. */
2558
2559 register struct symtab *s;
2560 register struct symtab *prev;
2561 register struct partial_symtab *ps;
2562 struct blockvector *bv;
2563 int blewit = 0;
2564
2565 /* We only wack things if the symbol-reload switch is set. */
2566 if (!symbol_reloading)
2567 return 0;
2568
2569 /* Some symbol formats have trouble providing file names... */
2570 if (name == 0 || *name == '\0')
2571 return 0;
2572
2573 /* Look for a psymtab with the specified name. */
2574
2575 again2:
2576 for (ps = partial_symtab_list; ps; ps = ps->next)
2577 {
2578 if (STREQ (name, ps->filename))
2579 {
2580 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2581 goto again2; /* Must restart, chain has been munged */
2582 }
2583 }
2584
2585 /* Look for a symtab with the specified name. */
2586
2587 for (s = symtab_list; s; s = s->next)
2588 {
2589 if (STREQ (name, s->filename))
2590 break;
2591 prev = s;
2592 }
2593
2594 if (s)
2595 {
2596 if (s == symtab_list)
2597 symtab_list = s->next;
2598 else
2599 prev->next = s->next;
2600
2601 /* For now, queue a delete for all breakpoints, displays, etc., whether
2602 or not they depend on the symtab being freed. This should be
2603 changed so that only those data structures affected are deleted. */
2604
2605 /* But don't delete anything if the symtab is empty.
2606 This test is necessary due to a bug in "dbxread.c" that
2607 causes empty symtabs to be created for N_SO symbols that
2608 contain the pathname of the object file. (This problem
2609 has been fixed in GDB 3.9x). */
2610
2611 bv = BLOCKVECTOR (s);
2612 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2613 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2614 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2615 {
2616 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2617 name);
2618 clear_symtab_users_queued++;
2619 make_cleanup (clear_symtab_users_once, 0);
2620 blewit = 1;
2621 }
2622 else
2623 {
2624 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2625 name);
2626 }
2627
2628 free_symtab (s);
2629 }
2630 else
2631 {
2632 /* It is still possible that some breakpoints will be affected
2633 even though no symtab was found, since the file might have
2634 been compiled without debugging, and hence not be associated
2635 with a symtab. In order to handle this correctly, we would need
2636 to keep a list of text address ranges for undebuggable files.
2637 For now, we do nothing, since this is a fairly obscure case. */
2638 ;
2639 }
2640
2641 /* FIXME, what about the minimal symbol table? */
2642 return blewit;
2643 #else
2644 return (0);
2645 #endif
2646 }
2647 \f
2648 /* Allocate and partially fill a partial symtab. It will be
2649 completely filled at the end of the symbol list.
2650
2651 FILENAME is the name of the symbol-file we are reading from. */
2652
2653 struct partial_symtab *
2654 start_psymtab_common (struct objfile *objfile,
2655 struct section_offsets *section_offsets, char *filename,
2656 CORE_ADDR textlow, struct partial_symbol **global_syms,
2657 struct partial_symbol **static_syms)
2658 {
2659 struct partial_symtab *psymtab;
2660
2661 psymtab = allocate_psymtab (filename, objfile);
2662 psymtab->section_offsets = section_offsets;
2663 psymtab->textlow = textlow;
2664 psymtab->texthigh = psymtab->textlow; /* default */
2665 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2666 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2667 return (psymtab);
2668 }
2669 \f
2670 /* Add a symbol with a long value to a psymtab.
2671 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2672
2673 void
2674 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2675 enum address_class class,
2676 struct psymbol_allocation_list *list, long val, /* Value as a long */
2677 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2678 enum language language, struct objfile *objfile)
2679 {
2680 register struct partial_symbol *psym;
2681 char *buf = alloca (namelength + 1);
2682 /* psymbol is static so that there will be no uninitialized gaps in the
2683 structure which might contain random data, causing cache misses in
2684 bcache. */
2685 static struct partial_symbol psymbol;
2686
2687 /* Create local copy of the partial symbol */
2688 memcpy (buf, name, namelength);
2689 buf[namelength] = '\0';
2690 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2691 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2692 if (val != 0)
2693 {
2694 SYMBOL_VALUE (&psymbol) = val;
2695 }
2696 else
2697 {
2698 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2699 }
2700 SYMBOL_SECTION (&psymbol) = 0;
2701 SYMBOL_LANGUAGE (&psymbol) = language;
2702 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2703 PSYMBOL_CLASS (&psymbol) = class;
2704 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2705
2706 /* Stash the partial symbol away in the cache */
2707 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2708
2709 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2710 if (list->next >= list->list + list->size)
2711 {
2712 extend_psymbol_list (list, objfile);
2713 }
2714 *list->next++ = psym;
2715 OBJSTAT (objfile, n_psyms++);
2716 }
2717
2718 /* Add a symbol with a long value to a psymtab. This differs from
2719 * add_psymbol_to_list above in taking both a mangled and a demangled
2720 * name. */
2721
2722 void
2723 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2724 int dem_namelength, namespace_enum namespace,
2725 enum address_class class,
2726 struct psymbol_allocation_list *list, long val, /* Value as a long */
2727 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2728 enum language language,
2729 struct objfile *objfile)
2730 {
2731 register struct partial_symbol *psym;
2732 char *buf = alloca (namelength + 1);
2733 /* psymbol is static so that there will be no uninitialized gaps in the
2734 structure which might contain random data, causing cache misses in
2735 bcache. */
2736 static struct partial_symbol psymbol;
2737
2738 /* Create local copy of the partial symbol */
2739
2740 memcpy (buf, name, namelength);
2741 buf[namelength] = '\0';
2742 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2743
2744 buf = alloca (dem_namelength + 1);
2745 memcpy (buf, dem_name, dem_namelength);
2746 buf[dem_namelength] = '\0';
2747
2748 switch (language)
2749 {
2750 case language_c:
2751 case language_cplus:
2752 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2753 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2754 break;
2755 /* FIXME What should be done for the default case? Ignoring for now. */
2756 }
2757
2758 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2759 if (val != 0)
2760 {
2761 SYMBOL_VALUE (&psymbol) = val;
2762 }
2763 else
2764 {
2765 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2766 }
2767 SYMBOL_SECTION (&psymbol) = 0;
2768 SYMBOL_LANGUAGE (&psymbol) = language;
2769 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2770 PSYMBOL_CLASS (&psymbol) = class;
2771 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2772
2773 /* Stash the partial symbol away in the cache */
2774 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2775
2776 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2777 if (list->next >= list->list + list->size)
2778 {
2779 extend_psymbol_list (list, objfile);
2780 }
2781 *list->next++ = psym;
2782 OBJSTAT (objfile, n_psyms++);
2783 }
2784
2785 /* Initialize storage for partial symbols. */
2786
2787 void
2788 init_psymbol_list (struct objfile *objfile, int total_symbols)
2789 {
2790 /* Free any previously allocated psymbol lists. */
2791
2792 if (objfile->global_psymbols.list)
2793 {
2794 xmfree (objfile->md, objfile->global_psymbols.list);
2795 }
2796 if (objfile->static_psymbols.list)
2797 {
2798 xmfree (objfile->md, objfile->static_psymbols.list);
2799 }
2800
2801 /* Current best guess is that approximately a twentieth
2802 of the total symbols (in a debugging file) are global or static
2803 oriented symbols */
2804
2805 objfile->global_psymbols.size = total_symbols / 10;
2806 objfile->static_psymbols.size = total_symbols / 10;
2807
2808 if (objfile->global_psymbols.size > 0)
2809 {
2810 objfile->global_psymbols.next =
2811 objfile->global_psymbols.list = (struct partial_symbol **)
2812 xmmalloc (objfile->md, (objfile->global_psymbols.size
2813 * sizeof (struct partial_symbol *)));
2814 }
2815 if (objfile->static_psymbols.size > 0)
2816 {
2817 objfile->static_psymbols.next =
2818 objfile->static_psymbols.list = (struct partial_symbol **)
2819 xmmalloc (objfile->md, (objfile->static_psymbols.size
2820 * sizeof (struct partial_symbol *)));
2821 }
2822 }
2823
2824 /* OVERLAYS:
2825 The following code implements an abstraction for debugging overlay sections.
2826
2827 The target model is as follows:
2828 1) The gnu linker will permit multiple sections to be mapped into the
2829 same VMA, each with its own unique LMA (or load address).
2830 2) It is assumed that some runtime mechanism exists for mapping the
2831 sections, one by one, from the load address into the VMA address.
2832 3) This code provides a mechanism for gdb to keep track of which
2833 sections should be considered to be mapped from the VMA to the LMA.
2834 This information is used for symbol lookup, and memory read/write.
2835 For instance, if a section has been mapped then its contents
2836 should be read from the VMA, otherwise from the LMA.
2837
2838 Two levels of debugger support for overlays are available. One is
2839 "manual", in which the debugger relies on the user to tell it which
2840 overlays are currently mapped. This level of support is
2841 implemented entirely in the core debugger, and the information about
2842 whether a section is mapped is kept in the objfile->obj_section table.
2843
2844 The second level of support is "automatic", and is only available if
2845 the target-specific code provides functionality to read the target's
2846 overlay mapping table, and translate its contents for the debugger
2847 (by updating the mapped state information in the obj_section tables).
2848
2849 The interface is as follows:
2850 User commands:
2851 overlay map <name> -- tell gdb to consider this section mapped
2852 overlay unmap <name> -- tell gdb to consider this section unmapped
2853 overlay list -- list the sections that GDB thinks are mapped
2854 overlay read-target -- get the target's state of what's mapped
2855 overlay off/manual/auto -- set overlay debugging state
2856 Functional interface:
2857 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2858 section, return that section.
2859 find_pc_overlay(pc): find any overlay section that contains
2860 the pc, either in its VMA or its LMA
2861 overlay_is_mapped(sect): true if overlay is marked as mapped
2862 section_is_overlay(sect): true if section's VMA != LMA
2863 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2864 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2865 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2866 overlay_mapped_address(...): map an address from section's LMA to VMA
2867 overlay_unmapped_address(...): map an address from section's VMA to LMA
2868 symbol_overlayed_address(...): Return a "current" address for symbol:
2869 either in VMA or LMA depending on whether
2870 the symbol's section is currently mapped
2871 */
2872
2873 /* Overlay debugging state: */
2874
2875 enum overlay_debugging_state overlay_debugging = ovly_off;
2876 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2877
2878 /* Target vector for refreshing overlay mapped state */
2879 static void simple_overlay_update (struct obj_section *);
2880 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2881
2882 /* Function: section_is_overlay (SECTION)
2883 Returns true if SECTION has VMA not equal to LMA, ie.
2884 SECTION is loaded at an address different from where it will "run". */
2885
2886 int
2887 section_is_overlay (asection *section)
2888 {
2889 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2890
2891 if (overlay_debugging)
2892 if (section && section->lma != 0 &&
2893 section->vma != section->lma)
2894 return 1;
2895
2896 return 0;
2897 }
2898
2899 /* Function: overlay_invalidate_all (void)
2900 Invalidate the mapped state of all overlay sections (mark it as stale). */
2901
2902 static void
2903 overlay_invalidate_all (void)
2904 {
2905 struct objfile *objfile;
2906 struct obj_section *sect;
2907
2908 ALL_OBJSECTIONS (objfile, sect)
2909 if (section_is_overlay (sect->the_bfd_section))
2910 sect->ovly_mapped = -1;
2911 }
2912
2913 /* Function: overlay_is_mapped (SECTION)
2914 Returns true if section is an overlay, and is currently mapped.
2915 Private: public access is thru function section_is_mapped.
2916
2917 Access to the ovly_mapped flag is restricted to this function, so
2918 that we can do automatic update. If the global flag
2919 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2920 overlay_invalidate_all. If the mapped state of the particular
2921 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2922
2923 static int
2924 overlay_is_mapped (struct obj_section *osect)
2925 {
2926 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2927 return 0;
2928
2929 switch (overlay_debugging)
2930 {
2931 default:
2932 case ovly_off:
2933 return 0; /* overlay debugging off */
2934 case ovly_auto: /* overlay debugging automatic */
2935 /* Unles there is a target_overlay_update function,
2936 there's really nothing useful to do here (can't really go auto) */
2937 if (target_overlay_update)
2938 {
2939 if (overlay_cache_invalid)
2940 {
2941 overlay_invalidate_all ();
2942 overlay_cache_invalid = 0;
2943 }
2944 if (osect->ovly_mapped == -1)
2945 (*target_overlay_update) (osect);
2946 }
2947 /* fall thru to manual case */
2948 case ovly_on: /* overlay debugging manual */
2949 return osect->ovly_mapped == 1;
2950 }
2951 }
2952
2953 /* Function: section_is_mapped
2954 Returns true if section is an overlay, and is currently mapped. */
2955
2956 int
2957 section_is_mapped (asection *section)
2958 {
2959 struct objfile *objfile;
2960 struct obj_section *osect;
2961
2962 if (overlay_debugging)
2963 if (section && section_is_overlay (section))
2964 ALL_OBJSECTIONS (objfile, osect)
2965 if (osect->the_bfd_section == section)
2966 return overlay_is_mapped (osect);
2967
2968 return 0;
2969 }
2970
2971 /* Function: pc_in_unmapped_range
2972 If PC falls into the lma range of SECTION, return true, else false. */
2973
2974 CORE_ADDR
2975 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2976 {
2977 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2978
2979 int size;
2980
2981 if (overlay_debugging)
2982 if (section && section_is_overlay (section))
2983 {
2984 size = bfd_get_section_size_before_reloc (section);
2985 if (section->lma <= pc && pc < section->lma + size)
2986 return 1;
2987 }
2988 return 0;
2989 }
2990
2991 /* Function: pc_in_mapped_range
2992 If PC falls into the vma range of SECTION, return true, else false. */
2993
2994 CORE_ADDR
2995 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2996 {
2997 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2998
2999 int size;
3000
3001 if (overlay_debugging)
3002 if (section && section_is_overlay (section))
3003 {
3004 size = bfd_get_section_size_before_reloc (section);
3005 if (section->vma <= pc && pc < section->vma + size)
3006 return 1;
3007 }
3008 return 0;
3009 }
3010
3011
3012 /* Return true if the mapped ranges of sections A and B overlap, false
3013 otherwise. */
3014 int
3015 sections_overlap (asection *a, asection *b)
3016 {
3017 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3018
3019 CORE_ADDR a_start = a->vma;
3020 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3021 CORE_ADDR b_start = b->vma;
3022 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3023
3024 return (a_start < b_end && b_start < a_end);
3025 }
3026
3027 /* Function: overlay_unmapped_address (PC, SECTION)
3028 Returns the address corresponding to PC in the unmapped (load) range.
3029 May be the same as PC. */
3030
3031 CORE_ADDR
3032 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3033 {
3034 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3035
3036 if (overlay_debugging)
3037 if (section && section_is_overlay (section) &&
3038 pc_in_mapped_range (pc, section))
3039 return pc + section->lma - section->vma;
3040
3041 return pc;
3042 }
3043
3044 /* Function: overlay_mapped_address (PC, SECTION)
3045 Returns the address corresponding to PC in the mapped (runtime) range.
3046 May be the same as PC. */
3047
3048 CORE_ADDR
3049 overlay_mapped_address (CORE_ADDR pc, asection *section)
3050 {
3051 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3052
3053 if (overlay_debugging)
3054 if (section && section_is_overlay (section) &&
3055 pc_in_unmapped_range (pc, section))
3056 return pc + section->vma - section->lma;
3057
3058 return pc;
3059 }
3060
3061
3062 /* Function: symbol_overlayed_address
3063 Return one of two addresses (relative to the VMA or to the LMA),
3064 depending on whether the section is mapped or not. */
3065
3066 CORE_ADDR
3067 symbol_overlayed_address (CORE_ADDR address, asection *section)
3068 {
3069 if (overlay_debugging)
3070 {
3071 /* If the symbol has no section, just return its regular address. */
3072 if (section == 0)
3073 return address;
3074 /* If the symbol's section is not an overlay, just return its address */
3075 if (!section_is_overlay (section))
3076 return address;
3077 /* If the symbol's section is mapped, just return its address */
3078 if (section_is_mapped (section))
3079 return address;
3080 /*
3081 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3082 * then return its LOADED address rather than its vma address!!
3083 */
3084 return overlay_unmapped_address (address, section);
3085 }
3086 return address;
3087 }
3088
3089 /* Function: find_pc_overlay (PC)
3090 Return the best-match overlay section for PC:
3091 If PC matches a mapped overlay section's VMA, return that section.
3092 Else if PC matches an unmapped section's VMA, return that section.
3093 Else if PC matches an unmapped section's LMA, return that section. */
3094
3095 asection *
3096 find_pc_overlay (CORE_ADDR pc)
3097 {
3098 struct objfile *objfile;
3099 struct obj_section *osect, *best_match = NULL;
3100
3101 if (overlay_debugging)
3102 ALL_OBJSECTIONS (objfile, osect)
3103 if (section_is_overlay (osect->the_bfd_section))
3104 {
3105 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3106 {
3107 if (overlay_is_mapped (osect))
3108 return osect->the_bfd_section;
3109 else
3110 best_match = osect;
3111 }
3112 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3113 best_match = osect;
3114 }
3115 return best_match ? best_match->the_bfd_section : NULL;
3116 }
3117
3118 /* Function: find_pc_mapped_section (PC)
3119 If PC falls into the VMA address range of an overlay section that is
3120 currently marked as MAPPED, return that section. Else return NULL. */
3121
3122 asection *
3123 find_pc_mapped_section (CORE_ADDR pc)
3124 {
3125 struct objfile *objfile;
3126 struct obj_section *osect;
3127
3128 if (overlay_debugging)
3129 ALL_OBJSECTIONS (objfile, osect)
3130 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3131 overlay_is_mapped (osect))
3132 return osect->the_bfd_section;
3133
3134 return NULL;
3135 }
3136
3137 /* Function: list_overlays_command
3138 Print a list of mapped sections and their PC ranges */
3139
3140 void
3141 list_overlays_command (char *args, int from_tty)
3142 {
3143 int nmapped = 0;
3144 struct objfile *objfile;
3145 struct obj_section *osect;
3146
3147 if (overlay_debugging)
3148 ALL_OBJSECTIONS (objfile, osect)
3149 if (overlay_is_mapped (osect))
3150 {
3151 const char *name;
3152 bfd_vma lma, vma;
3153 int size;
3154
3155 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3156 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3157 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3158 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3159
3160 printf_filtered ("Section %s, loaded at ", name);
3161 print_address_numeric (lma, 1, gdb_stdout);
3162 puts_filtered (" - ");
3163 print_address_numeric (lma + size, 1, gdb_stdout);
3164 printf_filtered (", mapped at ");
3165 print_address_numeric (vma, 1, gdb_stdout);
3166 puts_filtered (" - ");
3167 print_address_numeric (vma + size, 1, gdb_stdout);
3168 puts_filtered ("\n");
3169
3170 nmapped++;
3171 }
3172 if (nmapped == 0)
3173 printf_filtered ("No sections are mapped.\n");
3174 }
3175
3176 /* Function: map_overlay_command
3177 Mark the named section as mapped (ie. residing at its VMA address). */
3178
3179 void
3180 map_overlay_command (char *args, int from_tty)
3181 {
3182 struct objfile *objfile, *objfile2;
3183 struct obj_section *sec, *sec2;
3184 asection *bfdsec;
3185
3186 if (!overlay_debugging)
3187 error ("\
3188 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3189 the 'overlay manual' command.");
3190
3191 if (args == 0 || *args == 0)
3192 error ("Argument required: name of an overlay section");
3193
3194 /* First, find a section matching the user supplied argument */
3195 ALL_OBJSECTIONS (objfile, sec)
3196 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3197 {
3198 /* Now, check to see if the section is an overlay. */
3199 bfdsec = sec->the_bfd_section;
3200 if (!section_is_overlay (bfdsec))
3201 continue; /* not an overlay section */
3202
3203 /* Mark the overlay as "mapped" */
3204 sec->ovly_mapped = 1;
3205
3206 /* Next, make a pass and unmap any sections that are
3207 overlapped by this new section: */
3208 ALL_OBJSECTIONS (objfile2, sec2)
3209 if (sec2->ovly_mapped
3210 && sec != sec2
3211 && sec->the_bfd_section != sec2->the_bfd_section
3212 && sections_overlap (sec->the_bfd_section,
3213 sec2->the_bfd_section))
3214 {
3215 if (info_verbose)
3216 printf_filtered ("Note: section %s unmapped by overlap\n",
3217 bfd_section_name (objfile->obfd,
3218 sec2->the_bfd_section));
3219 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3220 }
3221 return;
3222 }
3223 error ("No overlay section called %s", args);
3224 }
3225
3226 /* Function: unmap_overlay_command
3227 Mark the overlay section as unmapped
3228 (ie. resident in its LMA address range, rather than the VMA range). */
3229
3230 void
3231 unmap_overlay_command (char *args, int from_tty)
3232 {
3233 struct objfile *objfile;
3234 struct obj_section *sec;
3235
3236 if (!overlay_debugging)
3237 error ("\
3238 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3239 the 'overlay manual' command.");
3240
3241 if (args == 0 || *args == 0)
3242 error ("Argument required: name of an overlay section");
3243
3244 /* First, find a section matching the user supplied argument */
3245 ALL_OBJSECTIONS (objfile, sec)
3246 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3247 {
3248 if (!sec->ovly_mapped)
3249 error ("Section %s is not mapped", args);
3250 sec->ovly_mapped = 0;
3251 return;
3252 }
3253 error ("No overlay section called %s", args);
3254 }
3255
3256 /* Function: overlay_auto_command
3257 A utility command to turn on overlay debugging.
3258 Possibly this should be done via a set/show command. */
3259
3260 static void
3261 overlay_auto_command (char *args, int from_tty)
3262 {
3263 overlay_debugging = ovly_auto;
3264 enable_overlay_breakpoints ();
3265 if (info_verbose)
3266 printf_filtered ("Automatic overlay debugging enabled.");
3267 }
3268
3269 /* Function: overlay_manual_command
3270 A utility command to turn on overlay debugging.
3271 Possibly this should be done via a set/show command. */
3272
3273 static void
3274 overlay_manual_command (char *args, int from_tty)
3275 {
3276 overlay_debugging = ovly_on;
3277 disable_overlay_breakpoints ();
3278 if (info_verbose)
3279 printf_filtered ("Overlay debugging enabled.");
3280 }
3281
3282 /* Function: overlay_off_command
3283 A utility command to turn on overlay debugging.
3284 Possibly this should be done via a set/show command. */
3285
3286 static void
3287 overlay_off_command (char *args, int from_tty)
3288 {
3289 overlay_debugging = ovly_off;
3290 disable_overlay_breakpoints ();
3291 if (info_verbose)
3292 printf_filtered ("Overlay debugging disabled.");
3293 }
3294
3295 static void
3296 overlay_load_command (char *args, int from_tty)
3297 {
3298 if (target_overlay_update)
3299 (*target_overlay_update) (NULL);
3300 else
3301 error ("This target does not know how to read its overlay state.");
3302 }
3303
3304 /* Function: overlay_command
3305 A place-holder for a mis-typed command */
3306
3307 /* Command list chain containing all defined "overlay" subcommands. */
3308 struct cmd_list_element *overlaylist;
3309
3310 static void
3311 overlay_command (char *args, int from_tty)
3312 {
3313 printf_unfiltered
3314 ("\"overlay\" must be followed by the name of an overlay command.\n");
3315 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3316 }
3317
3318
3319 /* Target Overlays for the "Simplest" overlay manager:
3320
3321 This is GDB's default target overlay layer. It works with the
3322 minimal overlay manager supplied as an example by Cygnus. The
3323 entry point is via a function pointer "target_overlay_update",
3324 so targets that use a different runtime overlay manager can
3325 substitute their own overlay_update function and take over the
3326 function pointer.
3327
3328 The overlay_update function pokes around in the target's data structures
3329 to see what overlays are mapped, and updates GDB's overlay mapping with
3330 this information.
3331
3332 In this simple implementation, the target data structures are as follows:
3333 unsigned _novlys; /# number of overlay sections #/
3334 unsigned _ovly_table[_novlys][4] = {
3335 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3336 {..., ..., ..., ...},
3337 }
3338 unsigned _novly_regions; /# number of overlay regions #/
3339 unsigned _ovly_region_table[_novly_regions][3] = {
3340 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3341 {..., ..., ...},
3342 }
3343 These functions will attempt to update GDB's mappedness state in the
3344 symbol section table, based on the target's mappedness state.
3345
3346 To do this, we keep a cached copy of the target's _ovly_table, and
3347 attempt to detect when the cached copy is invalidated. The main
3348 entry point is "simple_overlay_update(SECT), which looks up SECT in
3349 the cached table and re-reads only the entry for that section from
3350 the target (whenever possible).
3351 */
3352
3353 /* Cached, dynamically allocated copies of the target data structures: */
3354 static unsigned (*cache_ovly_table)[4] = 0;
3355 #if 0
3356 static unsigned (*cache_ovly_region_table)[3] = 0;
3357 #endif
3358 static unsigned cache_novlys = 0;
3359 #if 0
3360 static unsigned cache_novly_regions = 0;
3361 #endif
3362 static CORE_ADDR cache_ovly_table_base = 0;
3363 #if 0
3364 static CORE_ADDR cache_ovly_region_table_base = 0;
3365 #endif
3366 enum ovly_index
3367 {
3368 VMA, SIZE, LMA, MAPPED
3369 };
3370 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3371
3372 /* Throw away the cached copy of _ovly_table */
3373 static void
3374 simple_free_overlay_table (void)
3375 {
3376 if (cache_ovly_table)
3377 xfree (cache_ovly_table);
3378 cache_novlys = 0;
3379 cache_ovly_table = NULL;
3380 cache_ovly_table_base = 0;
3381 }
3382
3383 #if 0
3384 /* Throw away the cached copy of _ovly_region_table */
3385 static void
3386 simple_free_overlay_region_table (void)
3387 {
3388 if (cache_ovly_region_table)
3389 xfree (cache_ovly_region_table);
3390 cache_novly_regions = 0;
3391 cache_ovly_region_table = NULL;
3392 cache_ovly_region_table_base = 0;
3393 }
3394 #endif
3395
3396 /* Read an array of ints from the target into a local buffer.
3397 Convert to host order. int LEN is number of ints */
3398 static void
3399 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3400 {
3401 /* FIXME (alloca): Not safe if array is very large. */
3402 char *buf = alloca (len * TARGET_LONG_BYTES);
3403 int i;
3404
3405 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3406 for (i = 0; i < len; i++)
3407 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3408 TARGET_LONG_BYTES);
3409 }
3410
3411 /* Find and grab a copy of the target _ovly_table
3412 (and _novlys, which is needed for the table's size) */
3413 static int
3414 simple_read_overlay_table (void)
3415 {
3416 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3417
3418 simple_free_overlay_table ();
3419 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3420 if (! novlys_msym)
3421 {
3422 error ("Error reading inferior's overlay table: "
3423 "couldn't find `_novlys' variable\n"
3424 "in inferior. Use `overlay manual' mode.");
3425 return 0;
3426 }
3427
3428 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3429 if (! ovly_table_msym)
3430 {
3431 error ("Error reading inferior's overlay table: couldn't find "
3432 "`_ovly_table' array\n"
3433 "in inferior. Use `overlay manual' mode.");
3434 return 0;
3435 }
3436
3437 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3438 cache_ovly_table
3439 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3440 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3441 read_target_long_array (cache_ovly_table_base,
3442 (int *) cache_ovly_table,
3443 cache_novlys * 4);
3444
3445 return 1; /* SUCCESS */
3446 }
3447
3448 #if 0
3449 /* Find and grab a copy of the target _ovly_region_table
3450 (and _novly_regions, which is needed for the table's size) */
3451 static int
3452 simple_read_overlay_region_table (void)
3453 {
3454 struct minimal_symbol *msym;
3455
3456 simple_free_overlay_region_table ();
3457 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3458 if (msym != NULL)
3459 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3460 else
3461 return 0; /* failure */
3462 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3463 if (cache_ovly_region_table != NULL)
3464 {
3465 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3466 if (msym != NULL)
3467 {
3468 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3469 read_target_long_array (cache_ovly_region_table_base,
3470 (int *) cache_ovly_region_table,
3471 cache_novly_regions * 3);
3472 }
3473 else
3474 return 0; /* failure */
3475 }
3476 else
3477 return 0; /* failure */
3478 return 1; /* SUCCESS */
3479 }
3480 #endif
3481
3482 /* Function: simple_overlay_update_1
3483 A helper function for simple_overlay_update. Assuming a cached copy
3484 of _ovly_table exists, look through it to find an entry whose vma,
3485 lma and size match those of OSECT. Re-read the entry and make sure
3486 it still matches OSECT (else the table may no longer be valid).
3487 Set OSECT's mapped state to match the entry. Return: 1 for
3488 success, 0 for failure. */
3489
3490 static int
3491 simple_overlay_update_1 (struct obj_section *osect)
3492 {
3493 int i, size;
3494 bfd *obfd = osect->objfile->obfd;
3495 asection *bsect = osect->the_bfd_section;
3496
3497 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3498 for (i = 0; i < cache_novlys; i++)
3499 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3500 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3501 /* && cache_ovly_table[i][SIZE] == size */ )
3502 {
3503 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3504 (int *) cache_ovly_table[i], 4);
3505 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3506 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3507 /* && cache_ovly_table[i][SIZE] == size */ )
3508 {
3509 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3510 return 1;
3511 }
3512 else /* Warning! Warning! Target's ovly table has changed! */
3513 return 0;
3514 }
3515 return 0;
3516 }
3517
3518 /* Function: simple_overlay_update
3519 If OSECT is NULL, then update all sections' mapped state
3520 (after re-reading the entire target _ovly_table).
3521 If OSECT is non-NULL, then try to find a matching entry in the
3522 cached ovly_table and update only OSECT's mapped state.
3523 If a cached entry can't be found or the cache isn't valid, then
3524 re-read the entire cache, and go ahead and update all sections. */
3525
3526 static void
3527 simple_overlay_update (struct obj_section *osect)
3528 {
3529 struct objfile *objfile;
3530
3531 /* Were we given an osect to look up? NULL means do all of them. */
3532 if (osect)
3533 /* Have we got a cached copy of the target's overlay table? */
3534 if (cache_ovly_table != NULL)
3535 /* Does its cached location match what's currently in the symtab? */
3536 if (cache_ovly_table_base ==
3537 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3538 /* Then go ahead and try to look up this single section in the cache */
3539 if (simple_overlay_update_1 (osect))
3540 /* Found it! We're done. */
3541 return;
3542
3543 /* Cached table no good: need to read the entire table anew.
3544 Or else we want all the sections, in which case it's actually
3545 more efficient to read the whole table in one block anyway. */
3546
3547 if (! simple_read_overlay_table ())
3548 return;
3549
3550 /* Now may as well update all sections, even if only one was requested. */
3551 ALL_OBJSECTIONS (objfile, osect)
3552 if (section_is_overlay (osect->the_bfd_section))
3553 {
3554 int i, size;
3555 bfd *obfd = osect->objfile->obfd;
3556 asection *bsect = osect->the_bfd_section;
3557
3558 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3559 for (i = 0; i < cache_novlys; i++)
3560 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3561 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3562 /* && cache_ovly_table[i][SIZE] == size */ )
3563 { /* obj_section matches i'th entry in ovly_table */
3564 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3565 break; /* finished with inner for loop: break out */
3566 }
3567 }
3568 }
3569
3570
3571 void
3572 _initialize_symfile (void)
3573 {
3574 struct cmd_list_element *c;
3575
3576 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3577 "Load symbol table from executable file FILE.\n\
3578 The `file' command can also load symbol tables, as well as setting the file\n\
3579 to execute.", &cmdlist);
3580 set_cmd_completer (c, filename_completer);
3581
3582 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3583 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3584 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3585 ADDR is the starting address of the file's text.\n\
3586 The optional arguments are section-name section-address pairs and\n\
3587 should be specified if the data and bss segments are not contiguous\n\
3588 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3589 &cmdlist);
3590 set_cmd_completer (c, filename_completer);
3591
3592 c = add_cmd ("add-shared-symbol-files", class_files,
3593 add_shared_symbol_files_command,
3594 "Load the symbols from shared objects in the dynamic linker's link map.",
3595 &cmdlist);
3596 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3597 &cmdlist);
3598
3599 c = add_cmd ("load", class_files, load_command,
3600 "Dynamically load FILE into the running program, and record its symbols\n\
3601 for access from GDB.", &cmdlist);
3602 set_cmd_completer (c, filename_completer);
3603
3604 add_show_from_set
3605 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3606 (char *) &symbol_reloading,
3607 "Set dynamic symbol table reloading multiple times in one run.",
3608 &setlist),
3609 &showlist);
3610
3611 add_prefix_cmd ("overlay", class_support, overlay_command,
3612 "Commands for debugging overlays.", &overlaylist,
3613 "overlay ", 0, &cmdlist);
3614
3615 add_com_alias ("ovly", "overlay", class_alias, 1);
3616 add_com_alias ("ov", "overlay", class_alias, 1);
3617
3618 add_cmd ("map-overlay", class_support, map_overlay_command,
3619 "Assert that an overlay section is mapped.", &overlaylist);
3620
3621 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3622 "Assert that an overlay section is unmapped.", &overlaylist);
3623
3624 add_cmd ("list-overlays", class_support, list_overlays_command,
3625 "List mappings of overlay sections.", &overlaylist);
3626
3627 add_cmd ("manual", class_support, overlay_manual_command,
3628 "Enable overlay debugging.", &overlaylist);
3629 add_cmd ("off", class_support, overlay_off_command,
3630 "Disable overlay debugging.", &overlaylist);
3631 add_cmd ("auto", class_support, overlay_auto_command,
3632 "Enable automatic overlay debugging.", &overlaylist);
3633 add_cmd ("load-target", class_support, overlay_load_command,
3634 "Read the overlay mapping state from the target.", &overlaylist);
3635
3636 /* Filename extension to source language lookup table: */
3637 init_filename_language_table ();
3638 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3639 (char *) &ext_args,
3640 "Set mapping between filename extension and source language.\n\
3641 Usage: set extension-language .foo bar",
3642 &setlist);
3643 set_cmd_cfunc (c, set_ext_lang_command);
3644
3645 add_info ("extensions", info_ext_lang_command,
3646 "All filename extensions associated with a source language.");
3647
3648 add_show_from_set
3649 (add_set_cmd ("download-write-size", class_obscure,
3650 var_integer, (char *) &download_write_size,
3651 "Set the write size used when downloading a program.\n"
3652 "Only used when downloading a program onto a remote\n"
3653 "target. Specify zero, or a negative value, to disable\n"
3654 "blocked writes. The actual size of each transfer is also\n"
3655 "limited by the size of the target packet and the memory\n"
3656 "cache.\n",
3657 &setlist),
3658 &showlist);
3659
3660 debug_file_directory = xstrdup (DEBUGDIR);
3661 c = (add_set_cmd
3662 ("debug-file-directory", class_support, var_string,
3663 (char *) &debug_file_directory,
3664 "Set the directory where separate debug symbols are searched for.\n"
3665 "Separate debug symbols are first searched for in the same\n"
3666 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3667 "' subdirectory,\n"
3668 "and lastly at the path of the directory of the binary with\n"
3669 "the global debug-file directory prepended\n",
3670 &setlist));
3671 add_show_from_set (c, &showlist);
3672 set_cmd_completer (c, filename_completer);
3673
3674 }
This page took 0.104867 seconds and 4 git commands to generate.